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Closing Developments in Aerodynamic Simulation

with Disjoint Patched Meshes

Charles K. Lombard, Ethiraj Venkatapathy,

Jorge Bardina and N. Nagaraj

PEDA Corporation

Joseph Oliger

Stanford University

1. Introduction

Recent and projected developments in supercomputers, numerical grid gen-

eration techniques and computational algorithms for the compressible Euler and

Navier-Stokes equations portend a major revolution in the manner, pace, and cost

of design and the resulting performance of aerodynamic systems. To realize these

potential benefits, certain closing developments in computational technique must

be made in order to effect a highly accurate, reliable, efficient and productive sim-

ulation environment for aerodynamic design analysis.

A primary need of the developments is to achieve the capability for a user to

easily, rapidly and accurately perform flowfield calculations among problems of dis-
parate and realistically complex geometries. The natural approach to realizing this

objective with comparatively straightforward extensions of existing finite difference

compatational technology is through the use of systems of quadrilateral patched

meshes.

Such systems can be either/both composite (joined) or overset (disjoint). In

the former case adjacent patches share a common boundary, or at least parailel

boundaries in the case of mesh patch overlap for purposes of applying numerical

boundary conditions. With composite meshes, patch boundaries are piecewise fitted

to segments of physical or computational boundaries or embedded flow structures. ..

As shown by Lombard, et al1, composite mesh systems, that may have numerically .-
useful properties of geometric continuity across patch boundaries, admit topolog-

ically singular global meshes that have the capability to connect computational

regions of great (really any) geometric complexity. However, situations exist where

multiple mesh topologies, each naturally related to some different piece of geome-

try or flow structure, offer greater flexibility and accuracy than composite meshing

alone. Examples involve multiple bodies that may have relative motion or weak ........... -
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shocks that bear little geometric relationship to boundaries of the flow domain. In

such cases systems of disparately oriented and at least partially overset grids as

proposed by Berger and Oliger2 allow arbitrarily high resolution of all features of

the flowfield.

To make efficient, productive use of patched meshing strategies requires a body

of new computational tools and methodology that are the objectives of the present
research. The needed factors are: (1) a simple procedure for generating patched

computational meshes with freedom of point and gradient specification on all patch

boundaries; (2) improved upwind algorithm/numerical boundary condition proce-

dures for semi-autonomous implicit but unconditionally stable conservative coupling

of solutions on a system of multiple patched meshes; and (3) computer graphics,

particularly a simple algorithm for constructing contour plots on systems of over-

set patched meshes. The glue that is to tie these tools together in a simulation

requiring minimum human intervention to adapt to new configurations is a flexible

parameter controlled multiple mesh data structure. An important objective of the

program is to test the evolving techniques in appropriate problems.

2. Research Accomplishments

accomplishments of the first two years of an anticipated three year program. In the

first year the emphasis was placed on the most crucial and challenging objectives

- patched grid generation and robust upwind algorithm/boundary procedures for

rapid relaxation on multiple meshes. The first years effort 3 sufficed to create some

needed tools of algebraic grid generation and to establish an operationally explicit

but unconditionally stable upwind algorithm/numerical boundary condition proce-

dure for systems of patched meshes. The techniques were tested in comparatively

simple problems.

In the second years effort the techniques were tested against challenging inter-

nal aerodynamics problems and improved and extended from two to three space

dimensions. A simple, effective algorithm for contour plotting on domains covered

by multiple patched meshes was created to exhibit results.

Algebraic Grid Generation

The concept of patched meshing in which complex domains are broken up into

many geometrically regular and topologically rectangular subdomains leads natu-

2

7--"-



rally to the use of efficient algebraic techniques for the construction of the individual

mesh patches. To obtain the desired smoothness properties over the global mesh
in the vicinity of patch boundaries, a technique that permits specification of point

distribution and gradient on all boundaries was devised. The technique - termed

generalized transfinite interpolation 4 - makes use of a parameterized general cubic
polynomial for the coordinate curves. Regularity of the mesh is obtained by em-

ploying continuous distributions of the parameters of the curves within judiciously

chosen bounds based on analysis. Stretching functions such as that of Vinokur5 are

used to distribute points and blending functions are used to distribute parameters

of the curves between lateral boundaries.

A novel feature of the technique is the introduction of the corner singularity

from analysis to govern distribution of points and parameters in the vicinity of

boundary slope singularities. At such points, the method thus obtains the desired

properties of mesh smoothness to the interior. A global mesh solution obtained with

the method for a backward step problem is shown in Figure 1. Here the solution

was generated in two patches one containing the exterior corner and the other the

interior corner. The solution was matched analytically at the patch interface.

Early in the second year, in the process of attempting to apply the generalized

transfinite interpolation technique in a variety of 2-D problems it became evident

the method was too sensitive to parameter selection among too many options, was

confusing and ultimately required too much artistry to meet the objectives of sim-
plicity and user friendliness set for the products of the research. Further, the lack

of an analytical solution to corner problems blocked the straightforward extention

of the technique to 3-D.

With some reflection it became evident to us that the difficulty lay in trying

to accomplish too much in a single step process. Rather, borrowing the tools of

the algebraic technique and redefining the process in multiple steps with interactive

computer graphics sets, we could define a straightforward procedure to meet the

desired ends.

The approach that has been implemented is in the realm of two boundary

methods in that one pair of opposite sides of a patch is regarded as prescribed and

often includes a portion of a physical boundary. The other pair of sides is formed

of the left and right limiting members of the family of generalized cubic coordinate

3
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curves joining the initially given two boundaries. In either 2-D or 3-D the general

cubic coordinate curve has the simple form

(r 2 - r)f(u) + uig(u) + a 2h(u) (1)

where

f(u) = u'(3 - 2u)

g(u) u(1-

h(u) -- u2(u - 1)

Equation (1) is a hermite interpolation of value (r) and gradient (a) on the two

boundaries and is parameterized in terms of u which varies from zero to unity. The

scalings of 0l and a 2 influence the shape (curvature) of the curve between any pair

of end points. The specification of a discrete set of u values using a generalized

distribution function such as that of reference 4 defines the nodal intersections with

the other family of coordinate curves.

In our implementation the left and right limiting (lateral bounding) coordinate

curves are developed interactively on a graphics terminal or workstation to have

the desired configurations. The parameters of these lateral bounding curves are

then blended with polynomial weighting functions to describe the general cubic

coordinate curve over the intervening also discretized interval.

The lateral patch boundaries are essentially control devices that specify shape

and distribution to surrounding regions. As such they are placed where needed -

at breaks in body surface geometry and as terminators or transition guides from

regions of strong shape variation to regions of very regular mesh. In fact the mesh
generation problem, particularly for geometries with any substantial complexity, is

a problem of multiple length scales. The purpose of multiple patching is to isolate

regions of comparable scales and on which subdomains the solution is comparatively

regular and can be conveniently fit by simple functions.

Once a primary grid is generated by the technique described above it can be

interactively improved by modifying parameter blending and point distribution in-

cluding point redistribution along the alternate family of coordinate lines implicitly

defined by the nodes on the cubic coordinate curves. The latter operation is in

4



the spirit, if not the detailed implementation of a two step generalized transfinite

interpolation.
Another secondary operation that we employ is the modification of coordinate

lines in the vicinity of a boundary to smoothly enforce local normality. The latter

operation like all the procedures has been programmed as a convenient tool requiring

minimal input to apply at a boundary. Finally, a parameterized tension spline that

provides an analytical description of a curve amongst discrete data is a tool that

has proved useful in the latter operation, in effecting redistribution of points along

coordinate curves of either family and for fitting numerically specified boundary

data. In Figures 2 and 3 are shown respectively typical examples of 2-D and 3-D
mesh planes generated with the simplified technique.

Upwind Implicit Relaxation Algorithm/Boundary Procedures

Under the contract we have devised a new single level operationally explicit

but effectively implicit algorithm for gasdynamics. The algorithm is particularly

appropriate for multiple patch mesh systems because each solution sweep operation

on any patch is decoupled from any other. Thus the method is not only very storage

efficient and simple to program including the coupling at patch boundaries but, also,

can make excellent use of parallel computing in several straightforward ways.

Previously the Beam-Warming factored implicit algorithm6 with the Baldwin-

Lomax thin layer viscous approximation 7 has provided the basis for two similar

space marching (PNS) procedures"," for the compressible Navier-Stokes equations.

These PNS methods which are highly efficient - requiring half the data storage

* and a small fraction of the computer time of two level time dependent methods -
have proven effective for flows 1 ' with favorable streamwise pressure gradient or

with relatively small adverse pressure gradients. However, in the presence of strong

adverse pressure gradient such as occurs in a wing or fin root regions the contem-

porary PNS methods suffer numerical stability problems and may infer streamwise

separation even where separation doesn't occur 12 . In such unseparated (perhaps

weakly separated) regions, numerical stability has been maintained at the price of

employing large amounts of artificial viscosity with a resulting loss in predictive

accuracy and knowledge of the actual state of the flow. Where strong streamwise I
separation occurs the methods are unstable and cannot proceed. Particularly for

the increasingly relevant laminar flow situation that will be encountered at very high

5
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L altitude by aerodynamic systems such as orbital transfer vehicles (OTV's) and space

shuttle, streamnwise separation becomes a likely occurrence 1 3 in compression corners

associated with canopies, pods, flared bodies, wing or fin roots and deflected con-

trol surfaces. Thus a more general technique is needed that is inherently stable for

all types of upstream influence. At a minimum the mixed elliptic-hyperbolic prob-

lem requires global iteration, preferably with type dependent differencing. More

background on this problem area is given in the first annual report 3 .

New Universal Single Level Scheme CSCM-S

The CSCM flux difference eigenvector split upwind implicit method 1 ""," for

basis for an unconditionally stable space marching technique through regions of

subsonic and streamnwise separated flow. In such regions the split method can be

likened to stable marching of each scalar characteristic wave system in the direction

ofisassociated cigenvalue (simple wave velocity). In supersonic flow, where all

eigenvalues have the same sign, the method automatically becomes equivalent to the

referenced PNS techniques based on the Beam-Warming factored implicit method

with the Baldwin-Lomax thin layer viscous approximation.

Compared to contemporary central difference methods, the CSCM character-

istics based upwind difference approximation with its inherent numerical stability
leads to greatly reduced oscillation and greater accuracy in the presence of captured

discontinuities such as shocks, contacts and physical or computational boundaries.

The correct mathematical domains of dependence that correspond with physical

directions of wave propagation are coupled with well posed characteristic boundary

approximations'15 naturally consistent with the interior point scheme. The result

- is faster sorting out of transient disturbances and substantially more rapid conver-

gence to the steady state. The splitting and the associated time dependent implicit

method have been described in detail in references (14) and (16) for quasi 1-D and

2-D planar or axisymmetric flow.

In the following, we will sketch the differences between the time dependent

method and the new space marching technique which we designate GSCM-S. The

discussion will begin with the quasi I-D inviscid formulation, present some results

,.

elucidating the properties and performance of the method, then give additional de-
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present some 2-D solutions obtained with the new single level scheme in problems

solved previously16 with the time dependent method. Lastly we sketch a 3-D im-

plicit method of planes algorithm and give some results for an axisymmetric nozzle

flow over a backward facing step.

Quasi 1-D Formulation

The general jth interior point difference equations for the time dependent

CSCM upwind implicit method is written

(I +AXV +AA)bqj -A Aq) k - Aq) (2)-- j- 1 -a AJ(2

where V and A are backward and forward spatial difference operators. In the

notation the interval averaged matrices between node points j and j + 1 are indexed

j. The right hand side of equation (2) is written for the first order method. Higher
order methods in space are given with results in references 14 and 16.

Central to its accurate shock capturing capability, the CSCM conservative flux
difference splitting has the "property U" put forth by Roe 7

(A + Ai-)Aq)j = AF)j = Fj . - Fj (3)

Here q is the conservative dependent variable vector and F is the associated flux
vector. The matrices A+ and A- are the splittings of the CSCM interval averaged

Jacobian matrix according to the signs of the averaged eigenvalues. Thus in the

equation for the jth grid point, A+Aeq)j-l represents stable characteristic spatial
differencing backward for positive eigenvalue contributions and A-Aq)j, forward

for negative ones.

With Sq = qn+' - qr, equation (2) defines a two level linearized coupled block

matrix implicit scheme that can be solved by a block tridiagonal procedure. In

reference (16) a new (DDADI) approximately factored alternating sweep bidiagonal
solution procedure for equation (2) is presented that is shown to be very robust

and is operationally explicit, i.e. requires only a decoupled sequence of local block

matrix inversions rather than the solution of the coupled set. For the forward sweep

the bidiagonal solution procedure can be written

(I + k - i)bqj = RIIS + AXSq> 1  (4)

7



For the linear problem, i.e. constant coefficient case of stability analysis, equation

(4) is equivalent to the single level space marching procedure

=)b n _,-A q) n

(I A+q, - A-)Sq*. -q~ q -) (5)
2 2

Nonlinearity enters in the single level space marching form (5) in that at each step of

the forward sweep the matrices A+ are averaged between qi- 11 and qrather than

homogeneously at the old iteration level n. Similarly, a companion backward space

marching sweep that is symmetric to equation (5) and that is intimately related to

the backward sweep of the alternating bidiagonal algorithm of reference (16) is

(I + A+ - A-)bqj = -A+Aq')i + A-q* - A-q (6)j +1(6

The method given by equations (5) and (6) is von Neumann unconditionally sta-

ble for the scalar wave equation. The analysis shows the significance of DDADI

approximate factorization in rendering both the forward and backward sweeps sep-

arately stable regardless of eigenvalue sign. Consequently as the local Courant

number becomes very large, ;':e robust method becomes a very effective (symmetric

Gauss-Seidel) relaxation schci,., "or the steady equations, a fact which substantially

contributes to the very fast performance that will be demonstrated.

K: P_ At a right computational boundary on the forward sweep we solve the charac-

teristic boundary point approximation I6

+N qN- -A+qn (7)

qn 1  q and at a left, on the backward sweep

(A -- A-)6q ,  A i-q - A-q (8)
1 2

Following the solution of equations (7) and (8) the conservative state vector is

iteratively corrected' 5 to maintain the accuracy of prescribed boundary condition,
while not, disrupting the represeritition of he coTTputd clt( ra(ttt, C v ri ;1lc.

running to the boundary from the interior, Ofnlysis T i ()( ,l sVSt (,ii Wil 11 1i)wiiiI

differenced scalar equations and coupled bo11undary con(lit ions was related 1 o 14,

linearized bidiagonal scheme"" by Oli ger and I nhlm ird Is. the analysis also stron-ly
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supports the numerically confirmed robust stability of the present nonlinear method

for gasdynamics. A useful result of reference 18 that simplifies the procedure of

reference 16 is that on the forward sweep there is no need for a predictor step at

the left boundary J = 1; thus, the solution sweep begins at J =2. Similarly, the

backward sweep begins at J N-1.

n+1With the updating at each step, where in equation (6) bqn q j qt, it is

clear that the symmetric pair of equations (5) and (6) serve to advance the solution

two pseudo time (iteration) levels; whereas, the linear alternating bidiagonal sweep

algorithm of reference (16) advances the solution only one level. To maintain con-

servation to a very high degree, in single sweep marching in supersonic zones we

iterate (at least) once locally at each space marching step. The local iteration serves

eto make the eigenvectors in the coefficient matrices consistent with the advanced

state and, thus, provides improved accuracy for the nonlinear system. It appears

effective to do this inner iteration everywhere, i.e. in both subsonic and supersonic

regions, as the number of global iteration steps to convergence with two inner iter-

ations has been found reduced by a factor of three to four. Since the computational

* work per two steps is about the same for the single level and two level schemes and

beyond the fact that one saves a level of storage in the space marching algorithm,

the question arises: Can one get solutions in less computational work through faster

aconvergence with the nonlinear space marching algorithm?

One Dimensional Results

First, we present results for supersonic flow with no shock in Shubin's diverging

* nozzle. In purely supersonic zones, the experience with the present method is that

, the solution can be marched accurately in one global iteration, as ought to be the

case. Figure 4 shows the exact solution (in solid line) and the computed result

from the first forward sweep. It is evident that the method correctly predicts

the solution to plotting accuracy in one forward sweep. With subsequent sweeps *

the error (the difference between the exact and the computed solution) reduces to

machine accuracy in less than three global iterations. In fact, by increasing (from

two) the number of inner iterations on the solution procedure at each space marching

step, convergence to prescribed accuracy can be guaranteed in one forward sweep.

This is also true of contemporary locally linearized unsplit methods in supersonic

flow.

9
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With the globally iterative nonlinear space marching formulation, early expe-

rience in two quasi 1-D nozzle problems with mixed supersonic-subsonic zones is

that solutions are obtained in roughly an order of magnitude fewer iteration steps

than had been required with the previously fast pseudo time dependent technique

and block tridiagonal solving.

The two nozzle problems which are described and solved by Yee, Beam and

Warming1 9 and solved with the CSCM time dependent technique in references (14)

and (15) are Shubin's diverging nozzle flow and Blottner's converging-diverging

nozzle flow. Both problems involve unmatched overpressures at the outflow which

result in internal shock terminated supersonic zones and subsonic outflow. For

the experiments involving flow of mixed type the same initial data given by Yee,

Beam and Warming - a linear interpolation between inflow and outflow values for

effectively exact solutions of the problems - is used that was used previously with

the time dependent approach.

For flows of mixed type, in Figures 5 and 6 respectively, results are shown for

successive forward and backward sweeps for five global iteration steps with Shubin's

and Blottner's nozzle flows. In both cases, the exact solution as given by Yee, Beam

and Warming is shown in solid line and the present computational results solved

on a 51 point mesh, in boxes. Blottner's nozzle flow is shown converged after 10

global iteration steps. There is substantial evidence in other results not shown that

with further work the number of global iterations required to compute flows such

as Blottner's can be reduced by a factor of two, to about five.

In Figure 7, we show a subcritical, i.e. completely subsonic, flow solution

*" computed in only two global iteration steps for the Blottner nozzle geometry with

different inflow conditions. Here the exact analytical solution derived by Venkata-

pathy is shown in solid line and our computed results in boxes.

The alternating direction sweeps in our method have been derived directly out
of theory for solving the implicit set of difference equations. However, one can see

mechanistically, numerically speaking, that omitting the backward sweep from the

pair and globally iterating only with the forward sweep equation (5) will result in

permitting the influence of a subsonic outflow boundary (or interior disturbance) to

propagate upstream only one grid point per global iteration. In such a case, which

relates to other global iteration methods found in the literature and that also sweep

10
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* only in the main flow direction, the rate of convergence is greatly inhibited relative

to symmetric sweeping by a factor of order roughly the number of grid points in the

subsonic zone. Mathematically, this inhibition is the result of the failure to include

in the implicit process the effect of the eigenvectors governing upstream influence

but to treat these waves explicitly with effective CFL unity.

In Figure 8 we illustrate the progress of the transient solution to the subcritical

nozzle problem after 15 forward sweeps, with the backward sweeps omitted. One

can clearly see that the wave influence of the outflow boundary has progressed only

15 mesh points forward of the outflow boundary. In Figure 9 the transient solution

is shown after 60 steps which is beyond one characteristic transit time (equivalent

to 50 mesh intervals) for the upwind wave to reach the inflow boundary. In Figure

10 we show the history of the RMS error in the primitive variables. The solution is

found to converge to roughly the same RMS error after three characteristic times

(150 steps) as the solution obtained with the symmetric alternating sweep sequence

after only 3 global iterations.

Blottner's supercritical nozzle problem which involves subsonic inflow acceler-

ating through a sonic point to a supersonic zone terminated by a shock to subsonic

outflow is the most computationally demanding of the test cases and indicates the

capability for the method to compute simply and consistently over the subsonic

forebody and base regions of blunt bodies in supersonic flow. Thus the need for

separate time dependent codes will be obviated by this new method.

Finally, in Figures 11 and 12, we present the convergence history for the present

nonlinear scheme and the linearized time dependent scheme for completely subsonic
and supersonic nozzle flows. The x-axis shows the number of iterations each scheme

requires to reduce the exact error to five orders of magnitude for various Courant

numbers. It is evident that the present scheme converges extremely fast at all CFL

numbers compared with the method based on the linearized block tridiagonal solver.

Two Dimensional Formulation

For two dimensional flow, assuming a marching coordinate , inviscid terms

B+V', + BA (9a)

and

- Aqk- B-Aq)k (9b)

::4 11
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are added to the left and right hand sides respectively of both the forward and back-
ward sweep equations (5) and (6). For viscous flow, second centrally differenced,

thin layer viscous terms are also added in the 77 direction as is conventionally prac-

ticed, e.g. Steger 2° . With the terms for the r7 cross marching coordinate direction,

the technique now becomes an implicit method of lines. Along each 27 coordinate
line, one can solve the equations coupled with a block tridiagonal procedure. Alter-

" natively, a further DDADI bidiagonal approximate factorization can be employed in
the 7/ direction and solved either linearly as in reference (16) or nonlinearly as here

in the direction. As shown in the quasi 2-D numerical experiments of reference

(16), DDADI bidiagonal approximate factorization is stable for viscous as well as

inviscid terms. Finally in reference (16) there is a relevant discussion of the reduced

approximate factorization error that attends using DDADI in one or more space

directions.

Two Dimensional Results

We present results for a 450 - 150 axisymmetric transonic nozzle flow previously
studied experimentally by Cuffel, Back and Massier 2 1 and computationally by Cline,

Prozan, Serra and Shelton (all referenced in (21)) and ourselves' 6 . In Figure 13 we
show results after 10 steps of an early computation run at a local CFL number of
14 with the present first order single level scheme. Except for the addition of an

error correction procedure' 6 to counter numerical inflow boundary condition drift,

a factor which has improved the present solution in the vicinity of the axis, the
effectively converged results found here are the same as those given for the two

level scheme in reference 16. (As long as the problem has a unique solution, the two
schemes must give equivalent results since the right hand side difference equation

sets, including boundary approximations, are the same.)

For the solution given in Figure 13, we noted a very rapid rate of reduction

in residual, three orders of magnitude in ten steps. This compares with 60 steps
given in reference (16) for the solution obtained with the two level scheme. The

rapid convergence found in this transonic problem for the CSCM-S method with

viscous terms provides the reasonable expectation of similar fast results to be ob-

tained without viscous effects. Thus the method in multidimensions appears to have
attractive potential for an improved transonic Euler solver as well as Navier-Stokes

solver.
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Next, we present first order inviscid and viscous results for an inlet problem

shown in Figure 14. The pressure contours for the first order inviscid solutions

are shown in Figure 15. Figure 16 shows the first order viscous results. The vis-

cous computation shows the presence of the leading edge shock. The flow structure

compares very well with the theoretical (for the inviscid case) and other computa-

tional results. In Figure 17, the inviscid and viscous wall pressure are compared

with the exact solution (inviscid). Figure 18 shows the convergence history of the

RMS residue of all the conservative flow variables for the inviscid problem solved

at CFL = 100 with 4 inner iterations at every axial location. For the inviscid case,

only forward marching was carried out and backward marching was omitted. The

solution has converged for practical purposes at the end of the first sweep. The

residue reaches machine accuracy in 10 iterations. In reference 22, we show the

residual reduction versus inner iteration number in single sweep solutions for super- -

*" sonic flow and compare results with contemporary PNS procedures. Finally in work U

described in reference 23 we have applied the single level scheme to the solution of

the coupled forebody captured shock layer and massively separated wake flow of a

hypersonic axisymmetric AOTV.

Three Dimensional Method of Planes Algorithm

In reference 24 we presented a symbolic algebra for DDADI approximate fac-

torization and derived single level relaxation schemes. The algebra is based on the

implicit difference stencil of the implicit method. Here we will show how the ap-

proach can be used to derive an symmetric Gauss-Seidel implicit method of planes

relaxation algorithm.

The unfactored three dimensional linearized implicit method can be represented

by the symbolic matrix expression

B-
I C-

-A +  D - A-
_C +  I

_B +

The block diagonal where matrix D I + A +  A- + B + -B- + C + -C-. A

once DDADI approximate factorization in the coordinate direction leads to the
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expression

B-B
B I C- I C-

-A + * D - 1  * D A-
' -C+ -C +

S-B +  -B+

By analogy with the derivation of the single level scheme for quasi 1-D flow from
DDADI bidiagonal approximate factorization we identify the above expression with

the alternate space marching implicit method of planes algorithm

Forward Sweep

B 1
+ D C- I q = RHS[ qj 1  q7-B +  -,q

Backward Sweep

%~ -] qn+ 1  nHSq 1~ n+2]-C +  D C- q2+ - RHS[ qj q +j
-B +

In the planes the coupled block matrix problem can be further simplified by the

approximate factorization

[-C + , D, C- ]D-1 [-B * D B- ] RHS

which leads directly to the block tridiagonal solution sequence

[-C + D C 16q -RHS

V[ -B- D B- ]q= Dbq*

Three Dimensional Results

Ile. This 3-D space marching algorithm has been tested against an axisymmetric

viscous flow problem of a supersonic RL-10 nozzle exhausting over a backward facing

step into a cylindrical shroud.

In Figure 19 we show a 3-D perspective view of the wall surface mesh in the
quarter sector for which we solved. A section of computational mesh in a longitu-

dinal plane through the axis is shown in Figure 20. For such planes, Figures 21 and

14
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22 show pressure contour and velocity vector plots that exhibit the expected flow

structures - a weak shock in the nozzle diffuser, a strong expansion at the nozzle

exit with subsequent recompression shock off the shroud wall and, lastly, a substan-

tial region of streamwise separated flow under the backward facing step. The Mach

contour plot of Figure 23 for a cross flow data plane in the shroud shows the ex-

cellence with which the method and, in particular the lateral boundary conditions,

numerically maintain the axisymmetry of the solution.

Patched Mesh Boundary Procedures

In previous work Lombard, et al' 6 and Oliger and Lombard"8 gave stable

implicit procedures for computing the solution at external boundaries of a com-

putational domain. Those procedures generalized the work of Kenzer to matrix

coupled linearized boundary conditions complementing a set of advective difference

equations (associated with well posed characteristics) to the boundary.

Under the present contract we have explored the problem of implicitly cou-

pling at interior patch boundaries the global solution on a system of multiple patch

meshes. The approach we have taken in this research is numerical experimenta-

tion among a number of boundary treatment approximations to the solution of the

continuous domain problem. For comparison purposes with previous single mesh

results, numerical experiments were performed with the well tested two level pseudo

time relaxation CSCM scheme at the interior points of the mesh patches.

Quasi 2-D Studies

Our first experiments, to be described here, dealt with breaking a single co-

ordinate line into segments and solving sequentially on each the equations for a

quasi 2-D viscous compressible flow. The model problem, with which we experi-

mented in reference 16 for an uninterrupted mesh, is a transient pipe flow resulting

from an initially nonequilibrated pressure between the axis and wall boundaries.

Three kinds of cases were run with the two-level linearized implicit procedure; all

featured sequential solving on patches with at least one point of overlap. Case 1

had frozen boundary data, obtained from the solution on neighboring meshes in an

operationally explicit manner. Specifically at left and right first computed interior

points of a patch, we solved the bidiagonal equations respectively

(+ k k -A)T 6q qT-) q A ~1a
1 2 -Aq3 (lOa)

€.t- 15 .
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and

( (I- + V) 6q, i+q -( - - q (lob)
N- 2 N - 1 N

Here the symbols n indicate the "frozen" boundary data coming from the solution

on the interior of an adjoining and partially overlying patch was at the old iteration

level in the global procedure. In Case 1 the solution on all the grids was effectively

updated at the same time.

Case 2 featured reverse sequential cycling of the two level time dependent solu-

tion procedure through the grids on alternate global steps. In the forward sequence

the right interior patch boundaries were (a) frozen or (b) computed with one-sided

characteristic boundary conditions obviating any change in the characteristic data

from outside (to the right of) a patch. The left interior patch boundaries inherited

implicit data (6q) from the solution on the computed patch to the left. In the

backward sequence all the roles were reversed including the directions of forward

elimination and back substitution in the tridiagonal matrix inversion procedure.

Case 3 featured cycling through the patches in the predictor (forward elimi-

nation) step of the solution procedure, inheriting implicit left boundary data as in

Case 2. Then the patches were cycled through in reverse order on the corrector

(back substitution) step. The result (save for interpolation if data points of the
grids were interlaced) is identically equivalent to solving on an uninterrupted single

patch mesh.

The results of the three sets of experiments were comparable for local time
....

steps based on constant CFL number up to about 50. Beyond that the rate of
convergence of the solutions for Cases 1 and 2 diminished and at sufficiently high

9- CFL number failed to converge. The effort involved in Case 2 with the two level

scheme was not rewarded relative to the simple procedure of Case 1. Within the

framework of the single-level symmetric Gauss-Seidel implicit relaxation scheme,

which is linearly equivalent to the bidiagonal scheme employed at the boundary,

Case 2a is operationally no more difficult than Case 1 and more closely approximates

Case 3. Case 2b has a consistency problem that inhibits firm convergence.

Figure 24 compares rms residual (density) convergence history for Cases 1 and

3 with three mesh segments with two cells of overlap and run at CFL 25. As one

might expect, the effectively uninterrupted mesh procedure is found to converge

16
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(two to three times) faster for about the first 50 steps through the major transient.

After that the performance is comparable. The performance of the frozen boundary

treatment Case 1 with five segments at CFL 25 was found to be not materially worse

than with three segments, but the performance degradation with increasing CFL

was found to proceed faster with increasing number of patches.

From the results of the quasi 2-D experiments and extrapolation from experi-

ence with the single level scheme, we observe that the simple boundary procedure

with frozen conservative variable data taken from the solutions at either iteration

level n or n + 1 on adjacent meshes and coupled implicitly by alternating direction

sequential solving through the patches has robust stability to sufficiently high CFL

number to yield a rate of convergence meeting our needs.

Two Dimensional Patch Boundary Treatment

In earlier work solving the Euler equations on multiple patch meshes Benek,

et al.2" employed linear interpolation of the conservative variables from the interior

solution of one mesh to give Dirichlet boundary data for the other. With several

points of mesh overlap at the mesh boundaries, transonic solutions obtained with

central differencing exhibited considerable oscillation in the vicinity of shocks prop- L

agating through the boundary region. Eberhardt2 6 with the code of Benek, et al.25

attempted to reduce the oscillation and attendant stability problems encountered

in the vicinity of a bluff body shock intersecting an embedded patch boundary by

introducing a characteristic computed boundary point approximation with scalar

upwind difference equations in Riemann variables. In his procedure, interpolation

was performed in only the variables whose characteristics ran to the patch boundary

from outside the computational domain. Eberhardt based the decision about do-

main of dependence of the characteristics on eigenvalues computed within the patch

domain. When this decision was compatible with the flow, then the characteris-

tics boundary procedure gave markedly superior results compared to interpolation

of conservative variable data, which leads to solution overspecification in subsonic

zones. In other cases where incorrect domain of dependence was inferred, the char-

acteristic boundary procedure was unstable.

Here based on our quasi 2-D studies described above, we give a simple, robustly

stable implicit approach to computing solutions of the conservative equations of

gasdynamics on either composite or overset meshes. Without requiring special flux

17
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conservative operators, but rather, interpolating conservative variable data at mesh

boundaries, the implicit upwind method is accurate and relatively free of oscillation

where shocks intersect interior patch boundaries. In a supersonic inlet problem

with expansion and reflected shocks, we exhibit the capability to conveniently carry

out with rapidly convergent implicit methods for systems of equations the adaptive

refined meshing strategy in overset patches proposed by Berger and Oliger 2 . Fur-

ther, the test case shows concretely in a realistic aerodynamic problem the savings

in mesh points (about an order of magnitude here in two dimensions) for similar

accuracy that flow structure aligned adaptive patched meshing affords compared to

uniform grid refinement.

The factors in our approach are supported by previous research by ourselves and

generically by others cited in reference 27 and are proven in numerical experiments

reported here and elsewhere 28 . We employ an implicit conservative upwind scheme

CSCM' 6 with which in the present work we can solve to either first or second

order spatial accuracy the Euler or compressible Navier-Stokes equations in two-

dimensional planar or axisymmetric flows. The flux difference split upwind schemes

of generalized Roe form such as CSCM have a number of qualities that make them

ideal for the purpose of solving on discontinuous patched mesh systems.

First, conservative schemes in the Roe form satisfy Roe's property U that

guarantees the correct speed for captured shocks. The CSCM scheme has been

tested in a wide variety of internal and external transonic and hypersonic flows 1 6 '2 2

and has been found to capture strong and weak shocks accurately in location and

with little oscillation. The shock transition is particularly sharp, about two mesh

cells wide, on an aligned grid; and this factor will be accommodated as much as

possible in our adaptive patched mesh strategy.

Second, in the Roe form the difference operators on conservative variable data

represent the effects of differencing to characteristic data only for disturbances prop-

agating toward the given node and reject the mathematically unstable contribution

from disturbances that may be propagating downwind of the node. The one sided

upwind difference operation represents identically2" the (split) conservative partial

flux difference between the nodes. To the extent that the data from an adjacent

mesh is consistent with the solution, then the associated upwind partial flux differ-

ence to that data will serve to provide at convergence consistency of the partial flux

convective into the given mesh from its neighbor, and vice versa for signals of the

18
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other eigenvalue sign. Thus the method acts within truncation error to provide the

similar continuity of the flux tensor among patched grids that exists in the phys-

ical solution across shocks and would obtain on a single grid alone. The correct

domain of dependence coupled with the well posed characteristic boundary point

approximations 16 tend not to support oscillatory disturbances but convect them

out of the flow domain.

Third, one sided difference interval averaged eigenvalues let majority rule de-

termine the direction of local signal propagation. When applied, as we do, to a

difference operator between boundary data obtained from an adjacent mesh and

the local mesh solution point, the data of both meshes participate in making the
decision as to whether an incoming signal is being sent. Both in concept and our
experience, this factor seems to overcome the inter mesh communication difficulty

experienced by Eberhardt26 with his characteristic boundary procedure.

Lastly, with the CSCM difference equations, with diagonally dominant approx-

imate factorization 16' 22 that retains on the diagonal the contributions from both

sets of eigenvalues in what is effectively an absolute value Jacobian matrix, we can

solve the equations either with two data level linearized block implicit methods10

or with a single data level relaxation technique 22 that is substantially more rapidly

convergent than the linearized implicit procedures. As can be inferred from the

theory and numerical experiments of reference 22, the use of DDADI on the solu-

tion point while differencing effectively explicitly to data obtained from an adjoining

mesh (which may be at either the old (n) or new (n+l) level) is unconditionally sta-

ble. When the solutions on the patched meshes are alternately updated using either

the linearized implicit or relaxation methods the global procedure is implicit. As

will be shown here, the robust stability of the global procedure has been confirmed

to approximately coarse mesh CFL 100.

One point that has not been touched on is the form of interpolation that we

use. Differencing to interpolated data is equivalent to a weighted sum of differences

operating on the interpolants. It is intuitive that for robust stability each of these

assumed upwind differences ought to be well posed. This implies that the inter-

polation weights should all be positive and the domains of dependence of all the

interpolants should be outside (i.e. on the assumed side) of the solution point with

respect to its mesh interior. Neither of these properties was shared by the data

interpolation schemes used by Benek, et al. 25 or Eberhardt 2 3.
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Finally, extending a direction of Benek, et al. 2 5, we do not compute on sections

of coarser meshes underlying patches of overset refinement. Our data structure and

automated procedures for the consequent partitioning of meshes are described in

reference 30. The partitioning concept in which coordinate lines of a patch have

differing (index) lengths in computational space also leads to useful possibilities

including as will be shown here, fitting mesh patches obliquely to boundaries, e.g.

to sharply capture reflecting shocks.

Interior Boundary Treatment - First Computed Point Formulation

We review here the first order scheme for one space dimension. In equation (2)

the CSCM flux difference splitting is

( +  )Aq AF + + AF- AF

with

and
1 + = (I :ksgn (A))

2
exhibiting the similarity transformation that diagonalizes the constructed flux diE-

ference Jacobian A. Here A is a diagonal matrix of the interval averaged eigenvalues

that through the truth function diagonal matrices I' make the decisions about di-

- rections of characteristic wave propagation and whether or not to send signal to

the solution point. Thus in the equation, +Aq)j-j represents the convection

of characteristic wave contributions in the positive coordinate direction from grid

point j -1 to solution point j and A-, in the negative direction from j + 1 to

j. As the result of incorporating multiplicatively the (local) time step (for pseudo

time relaxation) and the spatial (divided) differences in the matrices, the numerical

eigenvalues are Courant numbers for the characteristic waves whose speeds are u,

u + c and u - c, with c the sound speed.

For exterior boundaries of the computational domain, at a right boundary point

we retain only the right running positive eigenvalue contributions and, negative

at left. At such boundary points the identity matrix on the left hand side of the
equation (1) is replaced by a matrix that contains the time linearized conservative

variable representations of the computed characteristic variable fluctuations at the

boundary and also imposed boundary condition relations.
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Of more interest here is what we do at an interior patch boundary. The left

hand side of equation (2) has the tridiagonal structure

, I+A + - I - , (12)

In relation (12), the central block which we call D can be seen to contain the

absolute values of the eigenvalues for signals propagating to the solution point from

either left or right. Indeed, the simplified approximation to equation (2)

D6qj=+qnn.+1 (A+_A-)qn -qn n l (13)
i-1 3 t+

leads to an operationally explicit implicit relaxation procedure 2 that is uncondi-

tionally stable either as a computed interior patch boundary point or general interior

point relation. Here n, n + 1 means data from either time level. If the interior point

implicit solution procedure is two level, then, the term of equation (12) at the inte-

rior point j - 1 or j -;- 1 will be linearized (assumed at the n + 1 level) as in equations

(10a) or (10b).

For left or right boundary points, the frozen (i.e. not computed on the patch)

data at j - 1 or j + 1 in equation (13) is gotten from adjacent patch mesh data.

If the mesh system is composite and mesh lines cross the boundary to the solution

point, then, the frozen boundary data is the solution point data of the adjoining

mesh. For the case of nodes on lines ending at the patch boundary, which case

relates equally to composite mesh with lines of either patch ending at the boundary

or to overset meshes, the frozen data is got by interpolation of adjacent mesh patch

data to the boundary point location.

Linear interpolation to an included point on a coordinate line or within a

polygonal cell involve only positive weights on the interpolant data. In most of

the numerical experiments made to date with overset grids we have employed a

bilinear interpolation3" based on the four corner points of the overlapping mesh cell

enclosing the frozen boundary point. However, with less data processing a linear

interpolation involving the three corner points on the including triangle (Figure

25a) generalizes to the use of the four corner points of the enclosing tetrahedron in

three dimensions.

In the composite mesh case, Figure 25b, interpolation is naturally along an

interior coordinate line paralleling the zonal boundary. Such interpolation is
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one-dimensional for a two-dimensional problem and two-dimensional for a three-

dimensional problem. The generic composite grid problem just described and which

we have tested among the numerical experiments to be reported in the next section

also serves as a gedanken model problem for the overset mesh case. Possible solu-

tions that come to mind by analogy are shown in Figure 25c and Figure 25d. In

both figures the interpolation is along two point coordinate lines segments (or three

point triangular surfaces in 3-D) of the adjacent mesh and thus is a direct analog

with the attendant data requirements of the composite mesh case.

We use stable and consistent first order differencing and interpolation at the

boundaries regardless of the order of accuracy of the difference approximation in the

patch interiors. Since the divided differences of the computed boundary point ap-

proximation are of the same accuracy as the interpolation, the approaches sketched

in Figures 25c and 25d may be regarded as letting the difference operator perform

the interpolation (to uniformly spaced data Figure 25a) in the direction away from

the computed boundary. Thus, to the extent that the solution is locally well rep-

resented by a linear function the approaches sketched in Figures 25a and 25c and

25d are equivalent. The treatment shown in Figure 25a, however, requires the same

dimensionality of the (triangular) interpolation procedure as that of the problem

and one higher than for the (linear) treatment of Figures 25c and 25d.

As a final theoretical point regarding data exchange at patch mesh boundaries,

we note here that equations (11) imply 2

AF- - AiAF (14)

Hence we may equivalently write the right hand side difference operators of equation

(13) directly in terms of flux components. An advantage of this approach is that

the flux components normal to the shock discontinuity are continuous across the

discontinuity. Thus interpolating flux data from one grid to serve as needed bound-

ary data of another can be a smoother more accurate procedure than interpolating

conservative variable data.

We close this section by noting that, consistent with the 2-D interior point

schemes,lG 22 we difference along the computed boundary coordinate line with op-

erators written for the boundary aligned coordinate. In the diagonally dominant

approximate factorizations that we employ in multidirnensions, the convective ma-
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trices with absolute values of the eigenvalues for both coordinate directions are

retained in the diagonal block.

Two Dimensional Numerical Experiments

To achieve both accuracy and robust stability in this difficult problem area,

particularly with overset meshes, theory can provide insight into what to attempt

but the acid test of numerical methods is performance in relevant numerical exper-

iments.

We present here some sample results with major findings from a substantial

number of experiments 2 7 designed to test various aspects of the accuracy and sta-

bility question for the conservative system of equations for gasdynamics solved on

patched meshes.

The numerical experiments to be discussed here involve solution of an inviscid

flow in a Mach 5 inlet with 100 compression ramp that we have employed in previous

experiments with first and second order upwind methods on uniform meshes1G. The

problem involves two of the generic kinds of flow structure, shock and expansion

fan, which are not possible to resolve both efficiently and to the extent desired on

uniform mesh. As the result of interaction of the expansion fan with the compression

corner and reflected shocks, they curve in non simplc regions for which the exact

solution is not known analytically. The coarse base level grid of the experiments

has 26 x 26 points.

Composite Grid with Boundary Overlap

As a simple test of employing frozen interpolated boundary data, we show in

Figure 26a and 26b the grid and density contours for a patched mesh with two

full cell overlap and refinement with twice as many mesh points in the streamwise

direction in the lower patch. Thus every other mesh point at the upper interior

boundary of the lower patch is interpolated between computed conservative variable

data of the upper patch along the common streamwise coordinate line. This test

case solving sequentially on the patches with the first order method is numerically

stable with local time stc-s based on CFL 100. There is no oscillation in the solution

in the vicinity of the patch boundary (shown) and refinement in the lower patch

has served to sharpen the solution in that region, though high gradient regions of

the solution are very smeared on the coarse, nonaligned meshes.
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Solutions on Uniformly Refined Mesh

As a standard for comparison with results from overset patched refinement, we

show in Figures 27a and 27b pressure contours for first and second order upwind

methods on 101 x 101 point uniform grids, i.e. 4 times refined in each coordinate

direction.

Adaptive Refinement in Overset Grids

Based on a uniform coarse mesh solution similar to Figure 26b, the coarse mesh

was overlaid with two refined mesh patches, Figure 28a, aligned with the compres-

sion corner and reflected shocks. Note in the reflection r, ,oon, the two overset

patches have been constructed to share the same coordinate lines for superior grid

communication. The coarse grid is segmented (broken) under the overset patches

and the refinement is segmented to terminate at the reflecting boundary (symmetry

plane). In Figures 28b and 28c we show respectively pressure contours for the first

and second order upwind methods on the overset grid.

Discussion

While the adaptive refinement about doubled the coarse mesh, the shock struc-

tures treated are better resolved than with the uniformly refined mesh in 16 times

the points. Thus the results demonstrate an order of magnitude improvement in

data efficiency to be gained by overset refinement. We sketch in Figure 28d a

strategy of refinement for the as yet untreated expansions of the problem.

Graphics for Patched Grids

Graphics is an important tool to develop and debug numerical codes and an-

alyze numerical results. In some problems, contour plots of certain flow quantities

such as pressure, Mach number are sufficient to look at; and, in other problems, one

may need to look at velocity vectors to understand the solution better. In the case

of multiple grids, complication arises due to the fact that solutions in more than

one grid are available in some regions of the flow domain and the global solution

needs to be composed from solutions on individual grids.

Graphics for Single Grid Solution

Before we deal with multiple grid graphics, we outline how we analyze the

single grid solutions. Since multiple grid solutions are made up of single grid solu-

tions, insight into the single grid graphics will help to understand the multiple grid

graphics plotting strategy. In the process of solving problems there are three roles
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for graphics. First, the grid and the starting solution can be checked. Second, as o

the solution evolves, graphics can be used as a tool to debug and undrrstand the
time evolution of the solution process. Third, the converged or the final solution is

plotted to study the physics and compare the present solution with other solutions.

Most of the above tasks can be grouped into three categories of plotting: 1) Grid

plotting; 2) Contour plotting of various scalar flow quantities and velocity vector

plotting; 3) Comparison plotting. Here we deal with the first two.

Grid Plotting

Single grid plotting is done by essentially drawing straight line segments. We

use the commercial macro plotting package DISSPLA* for all plotting purposes.

Our plot program links the macro DISSPLA program. Only higher level commands

need to be defined on the plotting program and all the lower level commands are

defined in the DISSPLA program and are transparent to the users. Given the

ordered set of grid points, the grid plotting routine calls the line segment drawing

command for every line segment and plots the grid. Since only discrete grid values

are used in all the finite difference calculations, the representation of the grid by

linear elements is most appropriate and no interpolation or smoothing is necessary.

The same philosophy is adhered to in plotting contou- curves of flow quantities.
Independent of the order of the scheme and the solution accuracy, the solution is
available only at discrete node points and any attempt to represent the solution in

a smoother sense can only corrupt the solution. With this in mind, we use a fast,

simple and robust contour plotting routine.

Contour Plotting

Contour plots for the two dimensional problems are very useful to show how

accurately shock and other flow structures have been captured. Any scalar flow

quantity, such as pressure, density, Mach number, temperature, stream function or

vorticity can be plotted for various constant contour levels. The general method

for plotting contour levels are given in the following section. First, the desired flow

quantities are calculated from the dependent variable solution vector at all grid

points and the contour subroutine is called with the set of contour values. The

contour subroutine computes and plots the various contour curves, usually, in the

o- physical domain.

*DISSPLA is a trademark of Integrated Software Systems Corp.

25

t, --. o.P'o-............................................................................................- '. . , " ".



b'. " . - . . -. , . , . . . . . . , . .. . .. . .-. - . .. . - . . . . .• " . , "

I;I

Since any finite difference/finite volume formulation solves the flow field in an

ordered set of grid points/cells, the construction and the execution of the contour

program is structured on the basic grid cell. We draw all contour curves cell by cell

as we sweep through the complete grid. At the corners of a cell, flow function F

has values F1, F2, F3, F4. It is desired that the contour curve for function level

FC need to be plotted. Then along each side of the base grid cell, where cross over

points of the contour curve FC occur they can be found through linear interpolation.
By connecting sequentially the cross over points encountered among the sides, one

obtains the part of the contour curve or curves in a given cell correpsonding to

the contour value FC. By repeating this process for all cells, the complete set of

contour curves for the whole domain can be found.

Since the interpolation used to find the contour curve in the base cell is only

linear, the accuracy of the contour curve inside the cells are also linear. This does

not mean that the solution represented by the contour curves is first order. The dis-

crete solution at the nodes is as high an order as the solution technique. If one used

higher order interpolation to represent the discrete data, then the contour curves

represent not just the solution but non-physical/extra smoothing. Also higher or-

der interpolations to represent discrete data can result in an oscillatory solution

representation when such is not the case.

Velocity Vector Plotting

Apart from the contours, at times it is also desirable or necessary to look at

velocity vectors. This may be to study the location of separation and reattachment

points and to see the size of the separation zone. The development of the bound-

ary layer and shear layer can also best be shown by velocity vector plots. The

present graphics code provides the option of plotting velocity vectors. To plot the

velocity vectors, at every grid point, a line vector with or without an arrow head

proportional in length to the absolute value of the velocity at the given grid point

is drawn. Instead of the velocity vectors, an option is provided to plot just the

velocity direction. In problems where the magnitude of the velocities may change

drastically, it has been found convenient to plot the velocity direction.

Graphics for the Multiple Grids

The multiple grid graphics code is based on the single grid graphics code. In the

multiple patched grid solution procedure grids are constructed to overlap. When

26

..



77 _777..'.. N--

more than one grid is used to solve the flow problem, the major question that arises

is what to do in regions where the grids overlap. The solution is obtained in all

of the grids and so there are regions in the flow field where multiple solutions are

available. The accuracy of the solution on each grid is influenced by grid fineness and

grid topology, among overlapping grids the solution accuracy can be quite different.

Since the solutions in overlapping regions do not have the same function values or

accuracy, any attempt to represent them there will exhibit some non-smoothness.

Though it is true that the solution in the overlapping region is multivalued, if

the solution procedure assures smoothness and continuity to the interface boundary,

then any one of the solutions in the overlapping region could be used to represent

the global solution. In the solution procedure, we order the grids with assigned

indices in some sequence. The graphics plotting is done in the reverse sequence. In

general, the coarsest grid is the first grid, and any finer grid interior to it will have

a higher index value. To plot the solution in the global domain, the grid with a

highest number (finest grid) and most accurate solution will be plotted first. Next

the solution in the lower grids will be plotted sequentially. In regions of overlap,

only the finer grid with higher index values is used. It is of interest to note that

the base grid is subdivided by the higher level grids and solution in the finer grid L

• "regions except for minimal necessary overlap are available only from the finer grid

solutions and not from the coarse grid.

In Figure 28a we have shown an example of overlapping grids for a supersonic

inlet problem. Figure 28b shows the pressure contour in the global domain. To r
obtain this plot, the pressure contours in the refined and shock aligned grid was

plotted first (with the single grid contour plot). Before the contours in the base grid

were plotted, the previously plotted refined grid region was "blanked out" so that

no contour lines of the coarse grid solution could subsequently be plotted inside

the region. Blanking a curve bounded region is accomplished without special effort

using a feature of the DISSPLA graphics program. Finally, the base grid solution

is plotted only in the non-blanked regions. For all partitioned grids, like the base

grid in this case, we have a special subroutine, that plots the contour curves on the

integrable cells of the base grid. The part of a contour line outside of a blanked

region for a cell partially overlapping such a region is plotted up to the blanking

boundary.

The above choice of solution representation does not guarantee smoothness
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and continuity of contours along the boundaries of overlapping grids. The available

discrete solution itself is nonsmooth due to spatial discretization error being different

in each grid. Without adding additional smoothing, it is not possible to represent

the multiple grid solution with smoothness and continuity. We have chosen not

to add any smoothing but to represent the best available solution. The technique

has a virtue of exhibiting the extent of truncation errors between grids and making
evident places where more refinement may be needed. In our numerical studies, the

above choice of contour plotting in multiple grids seems to represent the solution

very well.

3. Professional Personnel

Professional researchers who contributed to this project are

Dr. Charles K. Lombard, Principal Investigator

Professor Joseph Oliger, Consultant

Dr. Marcel Vinokur, Consultant

Dr. Ethiraj Venkatapathy

Dr. Jorge Bardina

Dr. N. Nagaraj

4. Interactions

The research described in this report has to this point been partially presented

in the form of a paper on algebraic grid generation by Vinokur and Lombard (refer-

ence 3), a SIAM meeting paper (reference 25) by Oliger and Lombard on boundary

procedures for bidiagonal alternating sweep schemes and a Computational Fluid

Dynamics Seminar at NASA-Ames Research Center by Lombard on the Univer-

sal Single Level Implicit Algorithm. The latter invoked tremendous interest and

discussion.

The research as spawned three meeting papers on the single level relaxation

algorithm - references 22, 23 and 24. Four papers have been written on interior

patch boundary treatment, data structure and applications of patched mesh sys-

tems. There are references 27, 28, 30 of the present report and

Lombard, C.K. and Venkatapathy, Ethiraj: "Implicit Boundary Treatment for
Joined and Disjoint Patched Mesh Systems," Workshop on High Reynolds Flows,

Nobeyama, Japan, September 1985.
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The research is about to give rise to a paper on simulation of multi rocket

engine exhaust flow, a problem of interest to and partially supported by AFRPL.

5. New Discoveries

The Universal Single Level Algorithm for the compressible Euler or Navier-

Stokes equations is a new discovery in numerical methods that promises to result

in substantial efficiencies in data storage, programming, machine time and human *

productivity.
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Figure 1. Portion of an algebraically generated
computational mesh for a flow domain containing an
external and an internal corner.

Figure K Representative ?-D mesh generated with 
5;iriplified interactive algebraic procedure.
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Figure 3. Representative 3-D miesh qerierated with simplified
interactive algebraic procedure.

UU0 I 1IG Mir t Order Upwind n= 1

square - computed solution
line - exact solution
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0

flow solution developed in one forward sweep from
supersonic initial data.
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Figure 8 . Solution to subcritical nozzle problem after
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Figure 9. Solution to subcritical nozzle problem after
60 global iterations with forward marching sweeps only.
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Figure 9. Solution to subcritical nozzle problem after60 global iterations with forward marching sweeps only.
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Figure 18. Convergence history of the RMS of

the residuals for the inviscid first order inlet
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Figure 19. Perspective view of the wall surface mesh forthe quarter sector computational domain of an RL-10 rocket
nozzle exhausting over a iackward step into a cylindrical
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*.Figure 20. Longitudinal mesh plane for the problem of Figure ig.
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Figure 21. Pressure contour plot for the mesh plane of Figure 20.
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Figure 23. Mach contour plot for a cross flow
mesh plane in the shroud.
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Figure 24. Test on three patches of implicit

stability and rate of convergenceof (circles)
computed boundary point operator differencing
to frozen data in adjacent patches; (solid
line) effectively continuous grid method.
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Figure 27. Pressure contours
.~. >' / computed on 101 x 101 point

\V\ uniform mesh.
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Figure 28a. Shock aligned patched grids Figure 28b. Pressure contours from first
for the inlet problem. order solution on patched grid.
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Figure 28c Pressure contours from sec- Figure 28d. Sketch of patched adaptive
A ond order solution on patched grid. mesh topology concluded from present

results to be effective for capture of
flow structure of the inlet problem.
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