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R INTRODUCTION

In recent years, an explosion in the capabilities of

‘
?é Computational Fluid Dynamics (CFD) has occured. Since the

i . introduction of the Small Ferturbation me;hod of Murman and Cole,
e transonic CFD has quickly evolved towards Full Potential and Euler
-

%& methods capable of analyzing a variety of three-dimensional

é& configurations. Although much duccess has been realized in this

field, continued success is inevitable with the ever increasing

;§\ advances in computing power and faster algorithms. The purpose of
W
AN
Sud this research is to study the applicability of pseudo-spectral
Wy
schemes for transonic CFD.
P
1
‘,
) -
d
ﬂ . MODEL FROEBLEMS
Ty oo B
- Several time-stepping procedures were investigated to become
M
(
& familiar with techniques appropriate for the pseudo-spectral scheme.
v
t)
Q& The procedures were tested on two model problems (including Burgers’
:‘\0
inviecid equation), and each procedure’'s stability criterion was
ci.'l
$ﬁ‘ determined. The main purpose of these exercises was to provide the
)
ﬁa author experience and a sense of confidence in several time-stepping
A : )
v procedures, specifically, their accuracy, and their stability as
i)
\2 defined by the mathematical analyses. . . -
Y
:ﬁi The first model problem was to solve a simple differential
«‘s »
) equation with a known solution for comparison. The differential
bt
ﬂﬁ equation simulated was
o
|
‘J.‘
. dy/dt - a®*y = exp(b*t), with initial condition y(0Q) =1, (1)
N}
Ko,
)
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Y
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where y is a function of t, and a ¥ b are complex constants. The

exact solution to equation (1) is

y(t) = (1/(b-a))*exp(bxt) + (1 - 1/(b—-a))*explaxt). (2)

The four time—-stepping procedures used were Euler ‘s method, a
backward method, the mid-point rule, and a leap-frog method. These
methods and their stability are discussed below.

Euler ‘s method is a forward-difference scheme which is

first—order accurate in time. This scheme is described as

Yin+l) = (1 + axd)*Y(n) + d*exp(b*n#*d), ()

where Y is the approximation of y, d is the time step, and n ig the
time level, ie. t = n¥d. A stability analysis of this scheme defines

the boundary on the time step as

d <= -2%al/(al**2 + aZ#**2), 4

where a = al + i*a2, and 1 is the square root of -1. Thus, from
equation (4) it is easily seen that Euler’'s method cannot be used 1+
al is greater than or equal to O, or if al**2 > abslall.

The backward method 1s a backward-difference scheme which 1s

also first—order accurate i1in time and is described as

(1 - axd)*Y(n+1l) = Y(n) + deexp(b*(n+1)x*d). (5)
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A stability analysis indicates that this scheme becomes more and more
stable as the time step goes to infinity. However, since this scheme
is only first-order accurate in time, only small time steps should be
applied.

The mid-point rule is a second-order time accurate scheme

described by
(1 — . S#*a*xd)*¥Y(n+1) = (1 + .Sxaxd)*Y(n) + deexp(b*(n+.5)#d). (&)

The stability of this scheme requires al to be strictly less than 0.
The leap-frog method is also second-order accurate in time and

is described as
Y{(n+1) = Y(n~-1) + Zxaxd*Y(n) + 2#drexp(b*n*d). (7

Starting the leap-frog scheme also requires an additional unknown,
ie. Y{1), which can be approximated using the mid-point rule so that
second-order accuracy is maintained. The leap~frog scheme is stable
if d < 1/al, thus useless if al is negative.

The above time-stepping procedures were tested for a variety
of complex constants a ¥ b to verify the stability estimates and
srder of accuracy determined by the mathematical analyses. With the
confidence provided by the first simple model problem, it was time to
study an equation with the flavor of a tramsonic flow problem.

The second model problem investigated was Burgers’ inviscid

equation. In conservation form, this quasi-linear partial

.
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differential equation is described by

du/dt + . S%d(u**2)/dx = 0O, (8a)

or in quasi-linear form, described by

du/dt + uxdu/dx = O, (8b)

Let us consider the initial conditions

u(x,0) = 0.5, X “ 0,

[
-
-
O
~
i

1.25 - sqgqrt(0.S5625 + 2%x — x*x2), O < o <1, . {8c)

u(x,0) = 0.0, A

The initial conditions were chosen such that a "shock" would
eventually form in the solution, thus providing a reasonable test
case for a scheme to be used for transonic flow calculations. The
erxact solution to equations (8) is presented and discussed. In
addition, several numerical methods are used to calculate
approximations for the above problem and are compared to the exact
solution through discussion. The numerical methods are analyzed for

stability criteria and order of dissipation when applied to a form of

equations (Bb) with constant coefficients, ie. du/s/dt + Axdu/dx = O,
where u is a vector and A is a constant matrix. The stability
criteria used (far approximating the differential equation) is the
most restrictive one obtained by allowing the constant A to vary over

the interval containing all values of u, ie. [Q.0,0.5].
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f§§ Observe that equation (8b) can be solved using the method of
characteristics. Thus, u = ulr,s), where r describes the x-location

o
i? on the data line where the characteristic line starts and s is in the
!
'2 direction of the characteristic line. Note that at some time, the

< ’

o characteristic lines begin to merge to form a shock. The movement of
Vo,

DO _ . N
ﬁ“ this discontinuity can be described by the entropy jump condition
K)
$, {see Reference 1). By observation of equation (8b) and initial

LA

. conditions (8c), it can be noted that a shock will surely form and
L}
e
$§ will travel to the right. The presentation of the exact solution
“.‘!
) . . .
&g will be given in three parts, gpecifically, the time before the shock
Ui
vag {ie. O < t < t1), during the growth of the shock (ie. t1 < t < £2),.
i3
.;ﬁ and after the shock is fully mature (ie. t2 < t). Using the method
1528
,3: of characteristics, the exact solution for the first time interval
e

12t can be shown to be
i W
:
el

3
o _ |
B ulx,t) = 0.3, ®ow b/2,
o ulx,t) = ulr,0, /2 < ow w1, (Fa)
¢
? ) ulx,t) = 0,0, 1 < 9,
) !
AR
e where u(r,0) is defined by (8Bc) and r is given by

.

<

a

ie .

) 1.25#t - sqrt(0.S625 + 2¥#r — r#x2)xt + r — 0 = O, (30
I
;;5 Solutions (9) are valid only on the time interval: O <=t <= t1{,

)

o where t1 is the time at which the shock first forms. The value of t!
R can be determined by finding the first occurrence of abs(du/d:?

W
W
:ﬁﬁ approaching infinity, ie. when characteristic lines begin to merge
ﬁﬂ
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¢ together. These calculations show that the shock begins at x = 0,375
RO

and t = 0.79, thus defining tl.

Q‘.'

:*, The exact solution for the second interval is described by

) '
i‘.'.

3 "

uls,t) = 0.9, % < sushock,

Q? ux,t? = ulr,0), wshock < u i, (10
o .
g WG, t) = 0.0, 1 ¢ x,

Sy

3 where u(r,0) and r are as before, and xshock is the x-location af the
K
ﬁ{ shock. To define the motion of the shock during its growth, a
K)

v

numerical time-stepping procedure was utilized based on conserving
properties across the discontinuity. This shock motion is provided

in Table I where shock location, r—, r+, u+, and shock speed are

praovided as & function of time. (Here, the + and - indicate on which

side of the shock the property is given.) Note that the shock speed

;& monotonically decreases from 0.9 to 0.25 during its growth. Another

important item to note from Table I is the time of shock maturity,
79573

which defines t2 to be 2.79333.

)
!
ib The exact solution for the third interval is now known to be

——— described by
L]

[}
L]
<

“ﬁ u(x,t) 0.5, ® < wxshock,

wix,t) = 0,0, wshock < ¢, (11)

where xshock = 1 + 0,25#(t ~ t2).
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The exact solution to Burgers’ problem (8) is described by
equations (9-11) and is illustrated in Table I and Figures 1-2.
Figure 1 provides a solution profile for several "key" times. The
first time (t = 0.0) illustrates the initial conditions, the second
time (¢t = t1 = 0.73) indicates the start of the shock, the third %
fourth times (t = 1.5 % 2.29) help show the growth of the shock, and
the fifth time (t = 2.79932) shows the instant the shock becomes
fully mature. Figure 2 illustrates the position of the shock as a
function of time. Notice that the shock forms at % = 0.375 and t =
t1 = 0.75, and becomes fully mature at x = 1.0 and t = t2 = 2.79533.
Also, notice that the solution to the left of the shack and the r = ©
characteristic is u = 0.5, the solution to the right of the mature
shock and the r = 1 characteristic is u = 0.0, and the solution in
between is determined by equatioﬁs (9b), (Bc), and Table I. With the
eract solution of Burgers’' equation (8) known, several numerical
approaches will be evaluated.

The first numerical approximation to equations (8) uses
MacCormack ‘s method (Reference 2). This scheme is second-order
accurate, conditionally stable, fourth-order dissipative, and can be

split into two steps; a predictor step and a corrector step. For the

-conservation form (Ba), the scheme is described by

YEmp (1) Vii,n) — g#*0.S#(V1i+1,n)#*2 — V{i,n)*x) !
Vilyn+l) = 0.5%(V(i,n) - q*) . S*x (Vitmp (i) #*2 ~ Vimp (1-1)**2)) i12a0

+ 0.S*Vtmp (1),
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and for the guasi-linear form (8b), the scheme is described by

Yimp (1) Vi,n) — Vi ,n)*g*(V{i+1,n) - V(i,n))
Yii,n+l) = 0.5 (Vi,n) - Yitmp (i) *gq*(VEtmp (i) - Vtmp(i—-1)) (12b)

+ 0.5%¥Vtmp (i),

where V is the approximation of the exact solution u, Vtmp is a
temporary value determined by the predictor step, i indicates the
spatial location (ie. i = i#delta-x), n indicates the time level (ie,
t = n*delta-t), and q is the ratio of delta-t to delta-x. As:
mentioned previously, MacCormack’'s scheme is conditionally stable and
through mathematical analyses, stability requires gq #= 2.0. Figure 3
illustrates the solution of equations (12Za) for initial data (8c) at
times of O, 1,-2, I, 4, 5, and &. Notice that the shock is fully
mature by time equal to 3.0. (Recall that the eiact solution has the
first occocurrence of a mature shock at time equal to 2.7%95ZF. Also,
matics that the mature shock speed is almost exactly equal to ©.ZS5,
whiich compares very nicely with the exact solution. Another i1tem fto
motice in Figure T is that the solution seems to be stable with no
pre-shock oscillations evident. This sclution was obtained with
delta-x = 0,05, and delta-t = 0.10, which by the mathematical
analysis is neutrally stable (ie. g = 2.0). Figure 4 shows the

snolution of equations (12b) for the same time levels. This solutiaon

stable; however, the most important thing to note is that the

[
T

shock stagnates at % = 1.0, This figure definitely indicates the
importance of using the conservation form of Burgers’ equation as

opposed to using its quasi-linear form. Another item to notice 1s
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that a pre-shock oscillation seems to be forming as the time
increases. This seolution also used delta-x = (.05 and delta-t =
0.10,

The second approach used to solve Burgers’' problem (8) was an
implicit scheme developed by Eeam and Warming (Reference 3). This
scheme has been analyzed to be neutrally stable and non-dissipative.
For convenience, delta-x and delta-t have been chosen to be equal to
that used for MacCormack’'s method. This scheme approximates the

conservative form (3a) by,

O.29%g#(V(i+1,n)*V{i+1,n+1) - Y(i-1,m*V{i-1,n+1))

+ Vii,n+1) = Vi,n, (13a)

arid the quasi-linear form (8b) by,

Vii,n+1) + O.S*g*V{i ,mM*#(V(i+1l,n+1) - Vii-1,n+1)) = V{i,n). (13b)

Figure 5 shows the solution of (13a) for times equal to 0.0, 0.9,
1.7, 1.5, and 2.0. Notice the extreme pre-shock oscillations for
this solution. This occurs because the Beam-Warming scheme is
non-dissipative. The solution to equation (1Zb), shown in Figure 6,
also has the extreme pre-shock oscillation. To remedy this problem,

a fourth-order dissipative term is added to the right-bhand side of

equations (13). This term is explicitly defined as,

~0, 125%we (VY (1+2,n) + YV(1-Z,n)

— G (V(1+1,m) + Vi-1,m)) + &*V(1,ni) 13
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wherae w determines the amount of dissipation and is allowed to have
the values O <= w <= 1 according to a linearized stability analys:isg.
Figure 7 shows the solution of equation (1Za) with the dissipation
term (14) for times of 0.0, 0.3, 1.0, 1.9, 2.0, 2.9, and 2.0 with w
2qual to 0.75. The dissipation term had very little effect on the
pre-shock oscillations when applied to the conservative form (1Zaj,
vet damped the oscillations of the quasi-linear form (13b)\very
nicely as is shown in Figure 8. Also, notice in Figures 7-8 that the
dissipation term produced a small oscillation at the base of the
shock.

The third approach used to solve Burgers’ problem (8) was a
pseudo—-spectral method. Since the solution to Burgers’ inviscid
problem with the given initial conditions is obviously non-periadic,
a Chebyshev polynomial expansion is employed to evaluate the spatial
derivatives in a spectral manner. In particular, the author
investigated the space interval (-1,27) for times between O and 3.
The spatial interval is discreatized with I cells, thus the solution

is described by I+1 values at the collocation points. These points

are located at,
X(i) = S#cos(pi*i/l) + T for i = O,1,...,1, 1%

where S is a scale parameter, and T is a translation parameter. For

the spatial interval investigated, S = 2, and T = 1. The solution at
the I+1 points is described oy,
i) = Sum(3=0,1) A())*cos(pi*1#)/1) for i = O0,1,...,1, Pla
5 3 .'--‘ .-.' -".-. y ‘.-." .’— . - -~" -." > ".-“--“V A 4.—“-"‘ .‘.--‘ o~ e - ) ) ..." :'A.A . - - LT
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where the A()) coefficients can be evaluated by the inverse

transform,

Z/(I%C(53)) * Sum(i=0,I) U(i)*cos(pi*j*i/1)/C(i), (17)

AC3)

where C(j) 2 for j = 0or I, and C(j) = 1 otherwise. Equations
(16-17) can be evaluated by Fast Fourier Transforms (FFT) if I is a

composite integer. By differentiating equation (16), one obtains,

UX(i) = Sum(j=0,1) B(j)*cos(pi#i*j/I1)/S, 8

where B(j) can be computed from A(j) by using the recurrent

relations,

B(I) = 0,
B(I-1) = Z2*IxAacl), (19)
E(j) = (B(j+2) + 2% (j+1)%A(j+1))/C(j).

The time-stepping algorithm used is a simple predictor-corrector

scheme, and is described by,

Udi,n) + kx*UCi,n)*UX{i,n},

Utmp (i)

0.5# (Ui, n) + k*Utmp (1) *UXtmp (i) + Utmp (i), (20

Ui ,n+1)

where bk is the delta-time specified. Since the solution to equation
‘8) is discontinunus, spurious oscillations are introduced in the

pseudo-spectral scheme such that the scheme inevitably diverges. T

%
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aid convergence, a spectral filter is applied to the A(j) terms to
reduce the amplitude of the high frequency contributions. This

filtering scheme is given as,

1

ACH) ACH) for 3 = O,1,...,J0,

Al]) Alj) *exp (RHO* ((j-J0) /(1-J0) ) #=4) otherwise, (21)
where RHO is the decay parameter and JO is the cut-off filter
parameter.

The above pseudo—-spectral method was tested on Burgers’
equation (8) in both conservative and quasi-linear form. Figure 9
illustrates the pseudo-spectral approximation of Burgers’ equation
(8a) in conservation form for several times. Notice the growth of
the pre—-shock oscillations with time. Figure 10 illustrates the
solution of the quasi-linear equation (8b) for the same times.

Motice that the pre-shock oscillations are more pronounced and the
shock movement is slower than the conservative solution. In fact,
the guasi-linear shock will stagnate at X = 1, while the conservative
shock will continue to move to the right with a speed approximately
2qual to the esrtact solution. This behavior between the conservative
and quasi-linear solutions has been abserved before in the MacCormack
and Beam-Warming schemes.

In addition to the above =2ffort, some time was spent studying
Fast Fourier Transform algorithms (Reference 4) {(which are essential
to the economical competitiveness of the spectral schemes), spectral
filtering schemes, and artificial dissipation terms (References 5-3)
‘which are neccessary for shoch-capturing when using the spectral

methods) . After experimenting with these shock-capturing technigques

R R



@ and examining similar results from other researchers (including those

in favor of the pseudo-spectral scheme), it seems that the

pseudo-spectral methaod is very well suited for smooth solutions.

S However, if the solution contains a discontinuity, the high-order
accuracy of the pseudo-spectral scheme can quickly degenerate to as

. poor as first-order accuracy; easily eliminating any advantage the

KN pseudo—-spectral scheme may have over the simpler second-order
finite-difference or finite-element schemes. The substantial loss in

L accuracy of a spectral shock-capturing scheme is verified by Hussaini

s (Reference ?) when studying the time development of shock waves in a

t spiral galaxy. In order to retain the high accuracy of the

)

s‘ pseudo—-spectral method (for solutions with discontinuities), a

g shaock—-fitting technigue could be employed. The solution

) discontinuity,.by being fitted, could be represented as a boundary,

fé and by using Chebyshev polynomials, one could handle the non-periodic

“ bourdary conditions (Feference 10 studies a similar approach).

X Although this concept would retain the high-order accuracy desired,

? it would also introduce a new set of problems. These problems incldde

? 1) the prohibitively small time steps allowed by the stability of

. schemes using the Chebyshev spacing, 2) problems handling multiple

: shocks, and 3) problems expanding the shock-fitting scheme to

? three—-dimensional solutions. In view of the obstacles outlined
above, the author feels that the pseudo-spectral scheme is not well

X~

:3 suited for "practical"” tramsonic problems.
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FROFOSED RESEARCH

The proposed research is to develop a transonic Euler method
based on a finite-element scheme similar to that of Jameson et. al.
The intention is to develop a flow solver universal to any type
configuration regardless of dimension or topoleogy, and initially
develop a grid generation and post-processor package for
two-dimensional airfoil geometries. Although the flow solver will be
very general, the grid generation and flow-solution post-processor
packages will be particular to each case, thus future work will
include expanding the capability of the method by developing grids
for multielement airfoils and three-dimensional configurations.’
Other items which may be explored are: 1) multigrid, 2) "smart"
dissipation at shock locations, I) code designed for parallel
processing, 4) capability for an inverse mode, 3) viscous effects, &)
local mesh refinement, 7) inclusion of power effects, and 8) more

general grid generation tools to ease future geometric needs.
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N CONCLUSIONS

#* The pseudo-spectral scheme is excellent for smooth
K solutions.
1) * The pseudo-spectral scheme can easily degenerate to
first—order accuracy if a discontinuity exists in the
solution.
e * Spectral—-filtering, solution smoothing, and dissipation
terms are neccessary to stabilize the pseudo-spectral scheme
W if a discontinuity is to be "captured".
K * Fseudo-spectral schemes are not suited for the gepneral inviscid
transonic problem.
! # The proposed flow scolver will be universal to any geometry,
thus reducing uncertanties usually introduced by different
flow saolvers on different geometries.
% % The proposed method will also be set up for time-accurate
solutions.
%« The triangular/tetrahedral elements of the proposed method
Y, will allow the development of very general contour-plotting,

streamline tracing, and other post-processing graphics packages.
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LT

-

TIME X - TAU-
0.75000 0.37500 0.00000
0.80000 0.39944 -0.00056
0.85000 0.42275 -0.00225
0.90000 0.44504 -0.00496
0.95000 0.46641 -0.00859
1.00000 0.48692 -0.01308
1.05000 0.50666 -0.01834
1.10000 0.52568 -0.02432
1.15000 0.54405 -0.03095
1.20000 0.56183 -0.03817 .
1.25000 0.57907 -0.04593
1.30000 0.59582 -0.05418
1.35000 0.61212 -0.06288
1.40000 0.62802 -0.07198
‘0450.. ..54355 -.0.3145
1.50000 0.6587S -0.0912S
1.55000 0.67365 -0.10135
1.60000 0.68828 -0.11172
1.65000 0.70255 °..13235
1.70000 0.71680 -0.13320
1.75000 0.73076 -9.14424
1.80000 0.74452 -0.15548
1.85000 0.75813 -0.16687
1.90000 0.77159 -0.1784%
1.95000 0.78491 -0.19009
2.00000 0.79812 -0.20188
2.05000 0.81123 -0.21377 -
2.10000 0.82423 -0.225?7
2.15000 9.83716 -0.23784
2.20000 0.85001 -0.24999
2.285000 0.86280 -0.26220
2.30000 0.87553 -0.27447
2.35000 0.88822 -9.28678
2.40000 0.90086 -0.29914
2.45000 0.91347 -0.31153
2.50000 0.9260S -9.3239S
2.55000 0.93860 -0.33640
2.60000 0.95113 -0.34887
2.65000 0.96365 -0.36138
207.... .097616 ’.0373'4
2.75000 0.98867 -0.38633
2.79533 1.00000 -0.39766

TABLE I:

TAU+
0.00000
0.03671
0.07321
0.10991
0.14650
0.18278
0.21858
$.25378
0.28828
¢.32202
0.35494
0.38699
0.41817
0.44845
0.47784
0.50633
0.53394
0.56068

0.61164
9.63590
0.65937
0.68209
0.70407
0.72534
0.74594
0.76587
0.78518
0.80387
0.82198
0.83953
9.85653
0.87302
0.88901
0.90452
0.91957
0.93418
0.94836
0.96213
0.9755¢
0.98852
1.00000

U+
9.50000
0.45340
0.41122
0.37237
0.33674
0.30414
0.27436
0.24718
0.22240
0.19984
0.17930
0.16063
0.14367
0.12826
0.11429
0.10161
0.09013
0.07974
0.07035
0.06186
0.05420
9.04734
0.04110
0.03553
0.03055
0.02609
0.02212
0.01860
9.01548
0.01274
0.01034
0.00826
0.00647
0.00494
0.00365
0.00259
0.00173
0.00107
0.00057
9.00024
0.00005
0.00000

“Tabul ated Characteristics of the

Fropogating Shock during its
growth from birth to maturity.”
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0.50000
0.47670
0.45561
0.43618
0.41837
0.40207
0.38718
0.37359
0.36120
0.34992

0.33965

0.33032
0.32183
0.31413
0.30714
0.30081
9.29507
0.28987
0.28517
0.28093
9.27710
0.2736S
0.27055
0.26777
0.26527
0.26305
0.26106
0.25930
0.25774
0.25637
0.25517
9.25413
0.25323
0.25e47
0.25183
0.25130
0.25087
0.25053
0.25029
0.25012
0.25003
0.25000
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equation
for the shown Initial Data at several
different times."
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REFERENCE
MAC -CORMACK*S METHOD
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FIGURE =: "Numerical solution of Burgers’' equation

in Fully-Conservative form using
MacCormack ‘s method."
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. FIGURE 4: "Numerical solution of Eurgers equation
: 1n Quasi-Linear form using
’ MacCormack 's method."
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. BEAM-NARMING SCHEME
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FIGURE S: "Numerical solution of Burgers’ equation
in Fully-Conservative form using Beam—
Warming ‘s implicit method."
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FIGURE 6: v"Numerical solution of Burgers’ eqguation
in Quasi-Linear form using Beam-—
Warming’'s implicit method."”
“ :_._.'..:_3 RCSR AN R ARy ",-"— RS -\.' .‘"_" aa N 'w: AR AR e T T T
i asTn S SO 5 LSRRI O RS S N Ey s

*."_;x‘:x‘\
"™
L3

'y

0



REFERENCE
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FIGURE 7: "Numerical solution of Burgers’ equation
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in Fully-Conservative form using Beam-
Warming ‘s method with dissipation."
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"Numerical solution of Burgers’ equation
in Quasi-Linear form using Heam—Warming's
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FIGURE 10 "Numerical solution of Burgersg -’ equation

in Quasi-Linear form using the
Fseudo~Spectral method. "
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