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INTRODUCTION

In recent years, an explosion in the capabilities of

Computational Fluid Dynamics (CFD) has occured. Since the

introduction of the Small Perturbation method of Murman and Cole,

transonic CFD has quickly evolved towards Full Potential and Euler

methods capable of analyzing a variety of three-dimensional

configurations. Although much tuccess has been realized in this

field, continued success is inevitable with the ever increasing

advances in computing power and faster algorithms. The purpose of

this research is to study the applicability of pseudo-spectral

schemes for transonic CFD.

I

MODEL PROBLEMS

Several time-stepping procedures were investigated to become

familiar with techniques appropriate for the pseudo-spectral scheme.

The procedures were tested on two model problems (including Burgers'

inviscid equation), and each procedure's stability criterion was

determined. The main purpose of these exercises was to provide the

author experience and a sense of confidence in several time-stepping

procedures, specifically, their accuracy, and their stability as

defined by the mathematical analyses.

The first model problem was to solve a simple differential

equation with a known solution for comparison. The differential

equation simulated was

dy/dt - a*y = exp(b*t), with initial condition y(O) = I, (1)
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where y is a function of t, And a & b are complex constants. The

exact solution to equation (1) is

y(t) = (1/(b-a))*exp(b*t) + (I - 1/(b-a))*exp(a*t). (2)

The four time-stepping procedures used were Euler's method, a

backward method, the mid-point rule, and a leap-frog method. These

methods and their stability are discussed below.

Euler's method is a forward-difference scheme which is

first-order accurate in time. This scheme is described as

Y(n+l) = (1 + a*d)*Y(n) + d*exp(b*n*d), (3)

where Y is the approximation of y, d is the time step, and n is the

time level, ie. t = n*d. A stability analysis of this scheme defines

the boundary on the time step as

d .:= -2*al/(al**2 + a2-**2), (4)

where a = al + i*a2, and i is the square root of -1. Thus, +rom

equation (4) it is easily seen that Euler's method cannot be used if

al is greater than or equal to 0, or if a2**2 > abs~al].

The backward method is a backward-difference scheme which is

also first-order accurate in time and is described as

(1 -a*d)*Y(n+l) Y(n) + d*ep(b*(n+1)*d). (5)



A stability analysis indicates that this scheme becomes more and more

stable as the time step goes to infinity. However, since this scheme

is only first-order accurate in time, only small time steps should be

applied.

The mid-point rule is a second-order time accurate scheme

described by

(1 - .5*a*d)*Y(n+l) = (1 + .5*a*d)*Y(n) + d*exp(b*(n+.5)*d). (6)

The stability of this scheme requires al to be strictly less than 0.

The leap-frog method is also second-order accurate in time and

is described as

Y(n+l) = Y(n-1) + 2*a*d*Y(n) + 2*d*exp(b*n*d). (7)

Starting the leap-frog scheme also requires an additional unknown,

ie. Y(1), which can be approximated using the mid-point rule so that

second-order accuracy is maintained. The leap-frog scheme is stable

if d .:' 1/al, thus useless if al is negative.

The above time-stepping procedures were tested for a variety

of complex constants a & b to verify the stability estimates and

order of accuracy determined by the mathematical analyses. With the

confidence provided by the first simple model problem, it was time to

study an equation with the flavor of a transonic flow problem.

The second model problem investigated was Burgers' inviscid

equation. In conservation form, this quasi-linear partial



differential equation is described by

du/dt + .5*d(u**2)/dx = 0, (8a)

or in quasi-linear form, described by

du/dt + u*du/dx = 0. (8b)

Let us consider the initial conditions

u(x,O) = 0.5, x . ,

u(x,) = 1.25 - sqrt(O.5625 + 2*x - x**2), 0 x I , (8c)

u x ,O0) = 0.0, 1 x.

The initial conditions were chosen such that a "shock ." Would

eventually form in the solution, thus providing a reasonable test

case for a scheme to be used for transonic flow calculations. The

exact solution to equations (8) is presented and discussed. In

addition, several numerical methods are used to calculate

approximations for the above problem and are compared to the exact

solution through discussion. The numerical methods are analyzed for

stability criteria and order of dissipation when applied to a form of

equations (8b) with constant coefficients, ie. du/dt + A*du/dx = 0,

where u is a vector and A is a constant matrix,. The stability

criteria used (for appro:imating the differential equation) is the

most restrictive one obtained by allowing the constant A to vary over

the interval containing all values of u, ie. C0.0,C).5].
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Observe that equation (Sb) can be solved using the method of

characteristics. Thus, u = u(r,s), where r describes the x-location

on the data line where the characteristic line starts and s is in the

direction of the characteristic line. Note that at some time, the

characteristic lines begin to merge to form a shock. The movement of

this discontinuity can be described by the entropy jump condition

(see Reference 1). By observation of equation (Sb) and initial

conditions (8c), it can be noted that a shock will surely form and

will travel to the right. The presentation of the exact solution

will be given in three parts, specifically, the time before the shock

(ie. C ' t < t1), during the growth of the shock (ie. tI < t < t2),

and after the shock is fully mature (ie. t2 < t). Using the method

of characteristics, the exact solution for the first time interval

can be shown to be

u(X,t) = 0.5, t/2,

L(X,t) = u(r,O) , t/2 . 1, (9a)

u(x,t) = 0.0, 1

where u(r,O) is defined by (8c) and r is given by

1.25*t - sqrt(0.5625 + 2*r - r**2)*t + r - = C. 9b)

Solutions (9) are valid only on the time interval: 0 t ti,

where tl is the time at which the shock first forms. The value of tI

can be determined by finding the first occurrence of abs(du/d' )

approaching infinity, ie. when characteristic lines begin to merge

'P " " ,": ' ","¢5', ° .. , ' ,' , ,,, Ji ', ' " i " 4 ' """ '% "' L '" v~', "".", % '' . . .,



together. These calculations show that the shock begins at x = 0.375

and t = 0.75, thus defining t1.

The exact solution for the second interval is described by

u(G, ,t) = 0.5, shock,

u(x,'t) = u(r,0) , .shock < . 1, (10)

u<' ,t) = 0.0, 1 < .,

where u(r,O) and r are as before, and xshock is the x-location of the

shock. To define the motion of the shock during its growth, a

numerical time-stepping procedure was utilized based on conserving

properties across the discontinuity. This shock motion is provided

in Table I where shock location, r-, r+, u+, and shock speed are

provided as a function of time. (Here, the + and - indicate on which

side of the shock the property is given.) Note that the shock speed

nonotonically decreases from 0.5 to 0.25 during its growth. Another

important item to note from Table I is the time of shock maturity,

which defines t2 to be 2.7953.

The exact solution for the third interval is now known to be

described by

u(x,t) = 0.5, x xshock,

u(X,t) = O :-:shock , (1)

where ;-,shock I + 0.25*(t - t2).
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The exact solution to Burgers' problem (8) is described by

equations (9-11) and is illustrated in Table I and Figures 1-2.

Figure 1 provides a solution profile for several "key" times. The

first time (t = 0.0) illustrates the initial conditions, the second

time (t = ti = 0.75) indicates the start of the shock, the third &

fourth times (t = 1.5 & 2.25) help show the growth of the shock, and

the fifth time (t = 2.79533.) shows the instant the shock becomes

fully mature. Figure 2 illustrates the position of the shock as a

function of time. Notice that the shock forms at x 0.375 and t =

tl = .)75, and becomes fully mature at x = 1.0 and t = t2 = 2.79533.

Also, notice that the solution to the left of the shock and the r = '

characteristic is u = 0.5, the solution to the right of the mature

shock and the r = 1 characteristic is u = 0.0, and the solution in

between is determined by equations (9b), (8c), and Table I. With the

exact solution of Burgers' equation (8) known, several numerical

approaches will be evaluated.

The first numerical approximation to equations (8) uses

MacCormack's method (Reference 2). This scheme is second-order

accurate, conditionally stable, fourth-order dissipative, and can be

split into two steps; a predictor step and a corrector step. For the

c-onservation form (8a), the scheme is described by

'/tmp(i) = V(i,n) - q*..5*(V i+1,n)**2 - V(i,n)**2)

V(i,n+l) = 0.5*(V(i,n) - q*u.5*(Vtmp(i)**2 - Vtmp(i-1)**2)) (12ai

+ 0.5*Vtmp(i) ,



and for the quasi-linear form (8b), the scheme is described by

Vtmp(i) = V(i,n) - V(i,n)*q*(V(i+l,n) - V(i,n)>

Y(i,n+1) = 0.5*(V(i,n) - Vtmp(i)*q*(Vtmp(i) - Vtmp(i-1)) (12b)

+ 0.5*Vtmp(i),

where V is the approximation of the exact solution u, Vtmp is a

temporary value determined by the predictor step, i indicates the

spatial location (ie. = i*delta-x), n indicates the time level (ie,

t = n*delta-t), and q is the ratio of delta-t to delta-x. As

mentioned previously, MacCormack's scheme is conditionally stable and

through mathematical analyses, stability requires q <= 2.0. Figure 3

illustrates the solution of equations (12a) for initial data (8c) at

times of 0, 1, 2, 7, 4, 5, and 6. Notice that the shock is fully

I,AtUre by time equal to 3.0. (Recall that the exact solution has the

rirst occurrence of a mature shock at time equal to 2.795.:.) Also,

,cftice that the mature shoc speed is almost exactly equal to 0.25,

.. hir-h co-pares very nicely with the exact solution. Another item to

no-tice in Figure 7. is that the solution seems to be stable with no

pre-shock oscillations evident. This solution was obtained with

% jelta-x = 0.05, and delta-t = 0.10, which by the mathematical

-Analysis is neutrally stable (ie. q = 2.0). Figure 4 shows the

solution of equations (12b) for the same time levels. This solution

is stable; however, the most important thing to note is that the

shock stagnates at x = 1.0. This figure definitely indicates the

iportance of using the conservation form of Eurgers' equation as

opposed to using its quasi-linear form. Another item to notice t

% % %
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that a pre-shock oscillation seems to be forming as the time

increases. This solution also used delta-x = 0.05 and delta-t

%' C). 10.

The second approach used to solve Burgers' problem (8) was an

implicit scheme developed by Beam and Warming (Reference 3). This

scheme has been analyzed to be neutrally stable and non-dissipative.

For convenience, delta-x and delta-t have been chosen to be equal to

that used for MacCormack's method. This scheme approximates the

conservative form (8a) by,

; .25*q*(V(il,n)*V(i+l ,n+1) - V(i-l,n)*V(i-1,n+1))

+ V(i,n+l) V(i,n), (13a)

and the quasi-linear form (Sb) by,

V(i,n+l) + 0.5*q*V(i,n)*(V(i+l,n+l) - V(i-V,n- >) = V(i,n). (13b)

Figure 5 shows the solution of (13a) for times equal to 0C-, 0.5,

.- 1.0, 1.5, and 2.0. Notice the extreme pre-shock oscillations for

this solution. This occurs because the Beam-Warming scheme is

non-dissipative. The solution to equation (1.b), shown in Figure 6,

also has the extreme pre-shock oscillation. To remedy this problem,

a fourth-order dissipative term is added to the right-hand side of

equations (1.). This term is explicitly defined as,

-V. 125*w*((i+2,n) + Vii-2,n

- 4* (i(14-,n) + V(i-1,n)) + 6*V(i,n) 1i4



where w determines the amount of dissipation and is allowed to have

the values 0 <= w <= I according to a linearized stability analysis.

Figure 7 shows the Solution of equation (1.a) with the dissipation

term (14) for times of 0.0, 0.5, 1.0, 1.5, 2.C, 2.5, and 3.0 with w

equal to (.75. The dissipation term had very little effect on the

pre-shock oscillations when applied to the conservative form (17a),

yet damped the oscillations of the quasi-linear form (17b) very

nicely as is shown in Figure 8. Also, notice in 7igures 7-8 that the

dissipation term produced a small oscillation at the base of the

shock.

The third approach used to solve Burgers' problem (8) was a

pseudo-spectral method. Since the solution to Burgers' inviscid

problem with the given initial conditions is obviously non-periodic,

a Chebyshev polynomial expansion is employed to evaluate the spatial

* derivatives in a spectral manner. In particular, the author

• investigated the space interval (-1,3) for times between 0) and

The spatial interval is discreatized with I cells, thus the solution

is described by I+1 values at the collocation points. These points

,?re located at,

X(i) = S*cos(pi*i/I) + T for i , 1,...,I, (!5,

where S is a scale parameter, and T is a translation parameter. For

. the spatial interval investigated, S = 2, and T = 1. The solution at

the I+1 points is described by,

'i(i) = SLum(j=U,I) A(j)*cos(pi*i*j/I) for i = :,l,...,I,



where the AOj) coefficients can be evaluAted by the inverse

transform,

A~)= _2/(I*C(j)) * SUM(i=u,I) U(i)*COS(pi*j*i/I)/CUi, (17)

where C(j) = 2 for j = 0 or I, and C(j) = 1 otherwise. Equations

(16-17) can be evaluated by Fast Fourier Transforms (FFT) if I is a

composite integer. By differentiating equation (16), one obtains,

JX (i) Su(h~0,l) B(jJ*cos(pi*j*j/l)/S, (18)

w.~here B(j) can be computed from A(i) by using the recurrent

rela~ti ons,

B(I) o'0

B(I-1) -2*I*A(I) , (19)

B(j) = (B(j+2) + 2-*(j+1)*A(j+l))/C(j).

The time-stepping algorithm used is a simple predictor-corrector

scheme, and is described by,

Utmp(i) = U(i,n) + k*U(i,n)*UX(i,n),

U(i n+l) = C.5*(U(i,n) +4 k*Utmp(i)*UXtmp(i) + Utmp(i)), (Q

wjhere k is the delta-time specified. Since the solution to equation

(9) is discontint-ous, spurious oscillations are introduced in the

pseUdo-spectral scheme~ such that the scheme inevitably diverges. 1 .



aid convergence, a spectral filter is applied to the A(j) terms to

reduce the amplitude of the high frequency contributions. This

filtering scheme is given as,

A(j) = A(j) for j = 0,1,...,JO,

A(j) = A(j)*ex'p(RHO*((j-JO)/(I-JC))**4) otherwise, (21)

where RHO is the decay parameter and JO is the cut-off filter

parameter.

The above pseudo-spectral method was tested on Burgers'

equation (8) in both conservative and quasi-linear form. Figure 9

illustrates the pseudo-spectral approximation of Burgers' equation

(8a) in conservation form for several times. Notice the growth of

the pre-shock oscillations with time. Figure 10 illustrates the

solution of the quasi-linear equation (8b) for the same times.

Notice that the pre-shock oscillations are more pronounced and the

shock movement is slower than the conservative solution. In fact,

the quasi-linear shock will stagnate at X = 1, while the conservative

shock will continue to move to the right with a speed approximately

equal to the exact solution. This behavior between the conservative

and quasi-linear solutions has been observed before in the MacCormack

and Beam-Warming schemes.

In addition to the above effort, some time was spent studying

Fast Fourier Transform algorithms (Reference 4) (which are essential

to the economical competitiveness of the spectral schemes), spectral

filtering schemes, and artificial dissipation terms (References 5-8)

/which are neccessary for shoc-captLtring when using the spectrtl

methods). After experimenting with these shoc-c:pturing techniques



and examining similar results from other researchers (including those

in favor of the pseudo-spectral scheme), it seems that the

pseudo-spectral method is very well suited for smooth solutions.

However, if the solution contains a discontinuity, the high-order

accuracy of the pseudo-spectral scheme can quickly degenerate to as

poor as first-order accuracy; easily eliminating any advantage the

pseudo-spectral scheme may have over the simpler second-order

finite-difference or finite-element schemes. The substantial loss in

accuracy of a spectral shock-capturing scheme is verified by Hussaini

(Reference 9) when studying the time development of shock waves in a

spiral galaxy. In order to retain the high accuracy of the

pseudo-spectral method (for solutions with discont'inuities), a

shock-fitting technique could be employed. The solution

discontinuity, by being fitted, could be represented as a boundary,

and by using Chebyshev polynomials, one could handle the non-periodic

boundary conditions (Reference i0 studies a similar approach).

Although this concept would retain the high-order accuracy desired,

it would also introduce a new set of problems. These problems inclLde

1) the prohibitively small time steps allowed by the stability of

schemes using the Chebyshev spacing, 2) problems handling multiple

shocks, and 3) problems expanding the shock-fitting scheme to

three-dimensional solutions. In view of the obstacles outlined

Above, the author feels that the pseudo-spectral scheme is not well

suited fnr "practical" transonic problems.



PROPOSED RESEARCH

The proposed research is to develop a transonic Euler method

based on a finite-element scheme similar to that of Jameson et. al.

The intention is to develop a flow solver universal to any type

configuration regardless of dimension or topology, and initially

develop a grid generation and post-processor package for

two-dimensional airfoil geometries. Although the flow solver will be

very general, the grid generation and flow-solution post-processor

packages will be particular to each case, thus future work will

include expanding the capability of the method by developing grids

for multielement airfoils and three-dimensional configurations.

Other items which may be explored are: 1) multigrid, 2) "smart"

dissipation at shock locations, 3) code designed for parallel

processing, 4) capability for an inverse mode, 5) viscous effects, 6)

local mesh refinement, 7) inclusion of power effects, and 8) more

general grid generation tools to ease future geometric needs.

. ... . . . .. .i



CONCLUSIONS

* The pseudo-spectral scheme is excellent for smooth

solutions.

* The pseudo-spectral scheme can easily degenerate to

first-order accuracy if a discontinuity exists in the

solution.

* Spectral-filtering, solution smoothing, and dissipation

terms are neccessary to stabilize the pseudo-spectral scheme

if a discontinuity is to be "captured".

* Pseudo-spectral schemes are not suited for the general inviscid

transonic problem.

* The proposed flow solver will be universal to any geometry,

thus reducing uncertanties usually introduced by different

flow solvers on different geometries.

* The proposed method will also be set up for time-accurate

solutions.

* The triangular/tetrahedral elements of the proposed method

will allow the development of very general contour-plotting,

streamline tracing, and other post-processing graphics packages.

.P J
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TABLE I

and

FIGURES 1-10:



TIPM X TAU- TAU+ U+ SHOCK SPEED
0.7560 0.37500 0.00000 0.0000 0.5000 0.500
0.30000 0.39944 -0.00056 0.03671 0.45340 0.47670
0.850. 0.42275 -0.00225 0.07321 0.41122 0.45561
0.90000 0.44S04 -0.00496 0.10991 0.37237 0.43613
0.95000 0.46641 -0.00859 0.14650 0.33674 0.41837
1.00000 0.4869a -0.01308 0.13273 0.30414 0.40M0
1.05044 0.50666 -0.01334 0621358 0.7436 0.33718
1.10000 0.52563 -0.903 0.25378 0.24713 6.37359
1.15000 0.54405 -0.8309S 0.23323 0.22240 0.36120
1.20000 0.56133 -0.03817 0.32202 0.19934 0.3499a
1.25000 0.57907 -0.04S93 0.35494 0. 17930 .0.3396S
1.30000 0.59532 -0.05413 0.33699 0.16063 0.33432
1.35040 4 .61213 -0.623 0.41317 0.14367 0.3.13
1.40000 0.62302 -0.07193 0.4434S 0.12326 0.31413
1.45000 0.64355 -0.08145 0.47734 0.11429 0430714
14000 0.65875 -0.09125 0.50633 0.10161 0.3031
1.55000 0.6736S -0.10135 0.53394 0.09013 0.29507
1.60000 0.63323 -0.1117a 0.56063 0.07974 6483987
1.65000 0.70656 -0.1223S 0.53653 0.0743S 0.23517
1.70000 0.71680 -0.13320 0.61164 0.06136 0.2093

*1.75000 0.73076 -0.14424 0.63594 0.05420 0.27710
1.80000 0.74452 -0.15543 0.6S937 0.04731 0.27365
1.35000 6.7S313 -0.16637 0.63209 0.04110 0.27055
1.90000 6.77159 -0. 17341 0.70407 0.03553 0446777
1.95000 0.78491 -0.19009 0.72534 0.03055 0.26527
2.0000 0.79312 -0420188 0.74S94 0.02609 0.26305
2.05000 0.31123 -0.21377 0.76587 0.212 0.26106
2.10000 0.32423 -0.2577 0.73513 0.01860 0.25930
2.15000 0.33716 -0.23784 0.30387 0.01548 0.2S774
2.a0000 0.35001 -0.24999 0.32198 0.01274 0.25637
2.25000 0.86230 -0.26220 0.33953 0.01034 0.25517
2.30000 0.37553 -0.87447 0.35653 0.00826 0.2S413
a.35000 0.8322 -0.28678 0.8730a 0.00647 0.25323
a.40600 0.90036 -0429914 0.33901 0.00494 0.25247
2.45000 0.91347 -0.31153 0.90452 6.0036S 0.2513
2MOM0 GA9N60 -0.32395 0.919S7 0.025 f.2S130
2.55000 0.93860 -0.33640 0.93413 0.00173 0.25037
2.60000 095113 -0.34337 0.94336 0.00107 0.25053
2.65000 0.96365 -0.36135 0.96213 0.00057 0.25029
2.70000 0.97616 -0.37334 0.97552 4.69924 0.25012
2.75000 0.98867 -0.33633 0.93352 0.0000S 0.25003
2.79533 1.00000 -0.39766 1.00000 0.00000 0.25000

TABLE I: "Tabulated Characteristics of the
Fropogating Shock. dUring its
growth from birth to maturity."
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FIGURE 1: "Exact Solution of Burgers' equation
for the show~n Initial Data at several
different times."
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i.FIGURE 2: "Shock Location +or the Exact SolUtion
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Mac~ormack's method."
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FIGURE 7z "Numerical solution of BUrgers' equation
in Fully-Conservative form using Beam-
Warming's method w.ith dissipation."
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