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NON-ORTHOGONAL DESIGNS FOR MEASURING DISPERSION ---

EFFECTS IN SEQUENTIAL FACTOR SCREENING EXPERIMENTS NT ;i

USING SEARCH LINEAR MODELS DTIC '

Subir Ghosh

University of California, Riverside

L, t s t .

ABSTRACT; i Ir

:- Dispersion' effects are considered in addition to "Location"

effects of factors in the inferential procedure of sequential

factor screening experiments with m factors each at two levels &
under search linear models. Search designs in measuring

-- Dispersion- and 'Location( effects of factors are presented for

both stage one and stage two of factor screening experiments with

4< m< 10.

1. INTRODUCTION

In a factor screening experiment the problem is to find a few

effective factors from a list of a large number of possible

factors influencing the response and screen out all non-effective

factors. Watson (1961), Patel (1962) -nd others considered only

"location" effects in their study of influence of factors on

response. Taguchi and Wu (1985), Box and Meyer (1986) and others
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considered both "location" and "dispersion" effects in the study

of influence of factors on response. The concept of "dispersion"

effects in factor screening experiments was introduced in Taguchi

and Wu (1985) for replicated fractional factorial designs and in

Box and Meyers (1986) for unreplicated fractional factorial

designs. Srivastava (1975, 1976) introduced the search linear

model and showed that factor screening problems can be solved

using designs under the search linear model (called search

designs) which have smaller numbers of treatments than that in

comparable designs in the literature. Ghosh (1979), Ghosh and

Avila (1985) presented many such search designs. However, those

search designs were constructed to measure the "location" effects

only and most of them are unable to measure the "dispersion"

effects of factors. In this paper we define the "dispersion"

effects of factors under the search linear model and present

search designs to measure both the "location" and "dispersion"

effects for factor screening experiments.

Throughout this paper, we consider the sequential factor

screening experiments with m factors each at two levels under

search linear models. At the first stage of the experimentation

the problem is to estimate the dispersion effects at two levels of

factors under search linear models, to use the dispersion effects

in finding the most effective factor out of m factors and finally

to determine the optimum level combination of the most effective

factor using the "signal to noise" ratio. At the second stage,

the problem is to estimate again the dispersion effects at four

level combinations of every two factors under search linear

models, to find two most effective factors out of m factors in

presence of interactions anc finally to determine the optimu'i

level combinations of two most effective factors. The process

continues until we find al'l effective factors. In section 2 of

this paper we discuss the models and inferential procedures. In

I%



section 3 we present search designs (4 < m < 10) for both stage

one and stage two of factor screening experimentation.

2. INFERENCE

In a factorial experiment, the treatments are denoted by

(al,...,a), ai=O,l; the general mean, main effects and two factor

interactions are denoted by v, Fi and FiFj, respectively; the

observation corresponding to the treatment (al,...,a m) is denoted

by y(al,...,am). The expectation form of the model is

m m m
E(y(a1 ,.,am)) = . " + r b F + £E b F F+. (1)

i<j
where b.= 1 if a =l and bi= -1 if a =O.

Stage I

At the stage 1 of the experimentation we consider m different

models and the ith model is

E(y(al,..,ai,...,a) = + b iFi i=l,...,m, (2)

Iy.= )) a2(ai) (3)V Y al .. ,a ,, ., m  = i

and the observations are uncorrelated, where the variance 02(0)

ando 2 ), i=1,...,m, are unknown constants, called the

"dispersion" effects for the factor i. We now consider a

fractional factorial design with N1 treatments. (Treatments may

or may not be all distinct.) We denote for u 0 0, 1,

= the vector of Nu observations corresponding to the treatments
i

with the ith factor at the level u,

Y = the simple arithmetic mean of N. observations in yi'

*1 siju) = N) i-

u

(Ni - 1)

SJU
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(N 0 -1)S 2 (0) + (' 1.2(s2 = 1 Ni 1

s i i
= Ni - ) INi - s(l

Note that N = N? + N1 . We now write (2) and (3) as
I i

N N NN , 5
'<: "i V Yi = i( )0'N

where j is a vector with all elements unity. It can be checked

thatE(s(u)) = 2(u) and the generalized least squares (and also
tha1

the ordinary least squares) estimators of (P-Fi) and (P+Fi) are

0
yi and y i, respectively. We select the ith factor as the most

effective if s2 is a minimum for i e{1,...m}. We select the uth
i

level of the factor i as the optimum level if the (square of)

"signal to noise" ratio [yi/si(u)j2 is a maximum.

Stage 2

At the stage 2 of the experimentation we consider 12

different models and the (i,j)th model is
E(y(al,...,ai,....,aj,...,a m) -- +b iF i+b jFji+b ibjF iFi,

i,j-1,...,m,i~j, (6)
V(y((al,. ,i, . ,j ... ,a ) )  -- 02j(aiaj (7)

1 1 j i ij iJ

and the observations are uncorrelated, where the variances

a2 (00), (01) (10) and a2 (11) are unknown constants,
'j ii ijcalled the "dispersion" effects for the factors i and j. We now

consider a fractional factorial design with N2 treatments. Note

0%4
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again that a particular treatment may or may not be replicated in

the design. We denote for u, v=0,1,
uv uthe vector of Nu observations corresponding to the treat-

-ij ij
ments with the levels of factors i and j are u and v,

respectively,

Y = the simple arithmetic mean of Nii observations in -iij ,jZ
N- Iiv UV v UV

Y - Yij 3_ uij - ij uv)
Si 2(uv) = N(-ij N Sj ,

ij (Nuv - 1)
ij

uv
S1 (Ni i2 (uv)

2 u=O v=Os ij = 1

1 1 N
u=0 v=0

00 01 10 11
Observe that N2  N ij + Nij + Ntj + Ntj We write (6) and (7) as

00
,10001.'

-ij NJ oo --N 00 NJ 00 N00

ii ij ij ij
01
-jJ01 -Jo 1 01 01 Fi

E Nij >iLj Nij Nij
10 , 1
ij .10 - 10 -- 10 -1 F.ij N ij Nij Nj

11

Nij i Nij Nij

00 0 0 0 i-FIFj+FiF jNi 00 7-1-j

0 Ao 0 0 0 1i1-Fi+F -F.F.

N.
0 0 j_ I 0 ii+Fi-F-FF

Nij
0 0 0 3i+Fi+Fj+F F

Nij (8)



00 2I that oo10Iio o(

*13

01 02

VN.P

-- i (9)

0 0 2
-iji i0 10

Nij
11 2
Zij  0 0 0 °i(11l

j i Ni

Wb e se lt te (uv) 2 (uv) and the generalized least

squares (and also the ordinary least squares) estimators of
()j-F -F +F Fj) (p-F +Fj-FIFj) , (p+Fi-F-F ) and (lj+Fi+F +FiF )

are yij' YiV' Yi and yiis' respectively. We select the factors i

and j as the most effective factors if s2 is a minimum for i,j in
Jj{1,..,}.We select the level (u,v) of the factors i and j as

the optimum level if the (square of) "signal to noise" ratio

yuv S (uv)j2 is a maximum.

2j is 2 eycoet iiu
We stop at the stage 2 if Minimum s is very close to Minimum

2 i ii
sii ; otherwise we go to the stage 3. The stage 3 inferential

procedure is similar to those in stages I and 2.

3. DESIGN

The orthogonal fractional factorial designs are indeed

efficient but have restriction on the number of treatments in the

design. The designs used in Taguchi and Wu (1985), Box and Meyer

(1986) are all classical orthogonal designs. In this section we

construct designs to measure the "dispersion" effects defined in

section 2 for the stage 1 and stage 2 of the experiment, relaxing

the restriction on the number of treatments. We want to have

enough observations (at least two!) in measuring the "dispersion"

effects, the number of treatments to be small and furthermore the

designs to be near orthogonal.

%.



3.1 DESIGNS FOR THE STAGE I EXPERIMENT

The design condition obtained in Srivastava (1975) requires

that for all i and J, i*j, i,j in {I1...,m}, i, Fi and F. are

unbiasedly estimable (u.e.) under the model (1) assuming all other

parameters to be zero. We denote a design by a treatment matrix

T(Nlxm) with rows as treatments and columns as factors.

Theorem 1. A necessary and sufficient condition that a treatment

matrix T(Nlxm) satisfies the design condition is that for every

submatrix Tj(Njx2) of T, at least three pairs out of the four

pairs (00), (01), (10) and (11) appear as rows in T1 .

Proof. To estimate the three parameters v, F and F, we need

three independent equations in parameters from (1) under the

assumption that all other parameters are exactly equal to zero.

For the submatrix Tj(Njx2) of T corresponding to the factors i and

j, any three rows out of four possible distinct rows (00), (01),

(10) and (11) will give three independent equations in v, Fi and

F. under (1). This completes the proof.

The characterization in Theorem I is so simple that the checking

can even be done by eye inspection. A result similar to Theorem I

is also available in Srivastava (1975).

We now present some designs for 4 < m < 10 satisfying the

condition in Theorem 1. In the Table I, for brevity, we indicate

a treatment (i.e., a row) in T by the positions where the level I

is occuring. The treatment (0,...,0) will be denoted by 0. To

illustrate this for m=4, T(5x4) matrix is given below.

1 1 1 1

0 0 0

T= 1 1 0 0

0 0 1 1

1 0 1 0

- . " -. "I . "." .- .'" .- , .% .- °° .- % % % % " °-
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i.

We denote this T in our representation as (1234, 0, 12, 34, 13).

Notice that in every column of T, u(=0,1) is appearing either

twice or thrice.

TABLE I.

DESIGNS (4 < m < 10) FOR THE STAGE I EXPERIMENT

m Designs

4 1234, 0, 12, 34, 13

5 12345, 12, 13, 24, 35

6 3456, 1256, 1234, 146, 235

7 127, 3456, 1234, 567, 1357, 1234567

8 1278, 3456, 3478, 1256, 1357, 1234

9 1278, 3456, 34789, 1256, 13579, 1234

10 1278910, 3456, 34789105, 1256, 13579, 1234, 24689
a.

3.2 DESIGNS FOR THE STAGE 2 EXPERIMENT

The design condition obtained in Srivastava (1975) requires

for all i, j (i*j), u, v (u*v), (i,j) * (u,v), i, j, u, v in

jl,...,J, ii, F , F FiF., F, F and F F are u.e. under the11'...'M19 li Fti V 9uv
model (1) assuming all other parameters to be zero.

Theorem 2. Suppose a design T(N2xm) is such that p, Fi  , F

are u.e. for every distinct i, j and u in {i,..,m} under (1)

assuming all other parameters except F.F. and F.F to be zero.

Then F.F* and F iF are also u.e.i j iu

Proof. It can be seen using Theorem 1 that FiFi+FiF u and

-F F -+F F are u.e. This completes the proof.ij iu

Theorem 3. Suppose a design T (N2xm) is such that , Fi, F., Fu

and F are u.e. for every distinct i, j, u and v in {1,...,m}~V
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under (1) assuming all other parameters except F F and F F to bei j uv

zero. Then FiF" and F F are u.e. if and only if for T1 (N2 x2)ij u v

corresponding to factors (i,j) and T2 (N2 x2) corresponding to

factors (u,v) there are two distinct rows in T with the number of

l's in T, and T2 as follows.

The number of l's in
Row T1 T2

a even even
or

b odd odd

2 a odd even
or

b even odd

Proof. It can be seen that from the rows 1 and 2 that Fi F +F F

and -Fi F+FuFv are u.e. This completes the proof.

3.2.1 CONSTRUCTION OF DESIGNS m=4

The treatment matrix consists of 9 treatments as rows; the

first eight treatments are solutions of x1 +x24fc 3+x4 =O over the

finite field GF(2) and the last treatment is (1000). The

treatment matrix is represented as (1234,0,12,34,13,24,14,23,1).

The first eight treatments form an orthogonal resolution IV

plan. It follows from Theorem 2 that V, Fi F Fi F F Fi F
j' j u

are u.e. for any three distinct ij and u in I,...,mI. It can be

checked that P, Fi, Fj, Fu, Fv, F F +F F are u.e. for any four
i' j' u' v i jU v

distinct integers i,j, u and v. It can be seen that for all rows

in the treatment matrix the numbers of l's in submatrices

corresponding to (i,j) and (u,v) are either (even. even) or (odd,

odd) and therefore the treatment matrix does not satisfy the

conditions in Theorem 3. When the treatment (1000 is added to

the treatment matrix, it follows from Theorem 3 that V, Fit Fj,

F iF, Fu, F and F F are u.e.

.4 % h'. % % ,



m=5

The treatment matrix consists of 11 treatments as all (1x5)

vectors with two elements are unity and the other elements are

zero and furthermore the treatment with the levels of all factors

are unity.

This is a balanced array of full strength. There is a

complete 23 factorial experiment w.r.t. any three factors and

there is a resolution V plan for a 2 4 factorial experiment w.r.t.

any four factors. Thus the design satisfies the design condition.

m=6

Design 1: The treatment matrix consists of 16 treatments as

follows:

The 14 treatments are solutions of xl4x2+x3+x4 =0 and

* . x3+x4+x 5+x6 =0 over the finite field GF(2) excluding the

treatments (000000) and (111111); and the other two treatments are

(10 00 00) and (00 00 01).

It can be seen that all 23 distinct treatments are present in

rows of T w.r.t. any three factors Fi, F. and F . It thus follows

11, Fi, Fj, FiFj, Fu and F.F u are u.e. for every three distinct

factors i, j and u. For four factors of the type (F1 ,F2 ,F3,F4),

(FjF 2 ,F 5 ,F 6 ) and (F 3 ,F 4 ,F 5 ,F 6 ), we get basically the design for

m=4 with replications. We get a resolution V plan for a

factorial experiment w.r.t. any four factors other than

(F1 ,F2 ,F3 ,F4 ), (F1 ,F2 ,F5 ,F6 ) and (F3 ,F4 ,F5 ,F6 ). Therefore,

ji, Fi, Fj, F, Fj Fu, Fv and Fu F are u.e. for every four distinct

factors i, j, u and v.

Design ': The treatment matrix consists of 15 treatments as

follows.

The 13 treatments are solutions of xi+x2 +x 3+x 4 =0 and

x3+X4+x5+x6=0 over the finite field GF(2) excluding the treatments

(01 01 01), (10 10 10) and (00 00 00); and the other two

treatments are (10 00 00) and (00 00 01).

U S t . . .. . . . . . . . . . . . - . . . ... . , - -



The argument is similar to that in Design 1.

m=7

The treatment matrix consists of 17 treatments as follows.

The 14 treatments are solutions of xi+x 2+x 3+xt=0,

x 3 +x 4 +x 5 +x 6 =0 and x-+x 3+x 5-. x 7 =0 over the finite field GF(2)

* excluding the treatments (1111111) and (0000000); and the other 3

treatments are (10 00 00 0), (00 00 01 0), (00 00 00 1). [One may

keep (1111111) in the design although the design is all right

without it.]

m=8

The treatment matrix consists of 18 treatments as follows.

The 14 treatments are solutions of xl+x2 +x 3 +x 4 =0,

x 3 +x 4 +x 5 +X6 =0, x 5 +x 6 +x 7 +x 8 =0 and xi+x3 +x 5 +x 7 =0 over the finite

field GF(2) excluding the treatments (00 00 00 00) and

(11 11 11 11); and the other 4 treatments are (10 00 00 00),

(00 00 10 00), (00 00 00 10), (00 00 00 01).

m=9

The treatment matrix consists of 28 treatments as follows.

The treatments are solutions of xi+x2+x 3 +x4=0, x3+x4+x 5 +x 6 =0,

X 5+x 6 +x 7 +x 8 =0 and xI+x 3+x5 +x7 =0 over the finite field GF(2)

excluding the treatments (000000000), (000000001),

~(11 11 11 11 1), (11 11 11 11 0).

m=10

The treatment matrix consists of 35 treatments as follows.

The 30 treatments are solutions of xi+x 2+x 3+x4=0,

x 3 +X4+xSl-xG=O, x 5 +x 6 +x 7 +x 8 =0, X7 +x 8 +xg+x1 o=O and xl+x3 +x 5 +x 7 =0

- over the finite field GF(2) exlcuding the treatments

(00 00 00 00 00), (II 11 i 11 11), and the other five treatments

are (10 00 On 00 00), (00 00 10 00 00), (00 00 00 10 00),

(00 00 00 00 10), (00 00 00 01 00).

The arguments for the cases m=7 , 8, 9, 10 are similar to the

argument for m=6.

. .. . .. . .
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4. FINAL REMARKS

This paper touches the major developments in factor screening

designs over the period of more than 25 years and deals with the

important issue of measuring the "dispersion" effects in addition
to the "location" effects of factors using search linear models.
The influence of Professor R. C. Bose to this author is not easy

to describe in words and this author takes pride in dedicating

this work to honor Professor R. C. Bose.
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