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. 1
N
NOTATION AND ABBREVIATIONS
: Notation ‘
R the real numbers.
C the complex numbers.
: =4
= dt
(¢) Dirac delta function.
y E expectation operator.
- A7l inverse of the matrix A .
Al pseudo-inverse of the matrix A .
" A orthogonal complement of the matrix A .
AT transpose of the matrix A .
:- A* complex conjugate transpose of the matrix A .
: A>0 the matrix A is positive definite.
~ -
> A0 the matrix A is positive semi-definite.
M (A) the i™ eigenvalue of the matrix 4 .
:: a,(A) the i * singuiar value of the matrix A .
Ji HA) the maximum singular value of the matrix A .
:: Ker(A) the kernel of the matrix A when viewed as a linear operator.
Tr( A | the trace of the matrix A .
y 1A |lr Frobenius norm of the matrix A .
: R, proper, real-rational functions.
: G*(e) 4 GT(-e).
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point on the imaginary axis (real parameter w € ( - 00,00)).
the imaginary axis.
the unit circle (| z | = 1).

Hilbert space of matrix-valued functions which are square integrable on jR (or T) in the
sense of inner product on j R

(g

an
<F.G> 2% [ Tr[F(jw)‘G(jw)] dw i F,G € L{jR)
p

{foron T
1 b4
<F,G> & 27] Tr[F(c")‘G(c")] do0 il F, G € LAT)).
1]

the functions in L, which are analytic in the open right balf plane (or in the unit disc) and
satisfying

x©
e . d
:gg-fw Tr[G(a+]w) G(a+1w)] w < 00
(or
2
G (ret)] 46 .
oéyz{Tr[G(re )*G (re’?) < 00)

the orthogonal complement of H, in L,

the orthogonal projection from L, to H,.

the orthogonal projection from L, to H 31 .

Banach space of matrix-valued functions which are (essentially} bounded on R (or T}.

the functions in L, with with a bounded analytic continuation to the right half plane {or
inside the unit disc).

L,/H; norm
a El? .fm Tr[G(jw)‘G(jw)] dw if G € LAjR)or H{/R).

a

Tr[G(e")‘G(e")] d0 it G €LyT)or HAT).

ot ¥

L
2
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G lle L o/H » norm

2 eu:g;?[c(ju)] it G €L(iR)orH,(iR).

2 eu'eugma[G(c")] it G €L(T)or H(T).

[IM ] the operator norm of M .

M. multiplicative (Laurent) operator generated by G € L .
H; Hankel operator (matrix) generated by G € L,

T¢ Toeplitz operator (matrix) generated by G € L .

F (P .K) linear fractional transformation of P and K .

AlB
[C D] 4 D + C(el-A)?'B (shorthand notation transfer functions).

When R is used as a prefix, it denotes real-rational. The superscripts "n” and "p Xm" (a8 in R"
and R” ™ ) will denote the corresponding n-vectors and p X m matrices.

Abbreviations

rhp right half plane of complex number plane.
thp left half plane of complex number plane.
ref right coprime factorization.

lef left coprime factorization.

SISO single-input /single-output.

MIMO multiple-input/multiple-output.

LQG linear-quadratic-Gaussian.

WHKB Wiener-Hopf-Kalman-Bucy.

LFT linear fractional transformation.

GEP generalized eigenvalue problem.

IOF inner-outer factorization.

CIF complementary inner factor.

ARE algebraic Riccati equation.

GDP general distance problem.
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INTRODUCTION
.;\
.': This report presents some new methods for analysis and synthesis of control systems for robust per-
o,
5]
‘E formance in the presence of structured uncertainty. It builds on the results of Doyle (1984). The techni-
‘ cal approach involves the structured singular value, u, as an analysis tool and H,, as a synthesis tool.
t'_: These are combined to form the basis for u-synthesis.
'_'.' The major contributions of this report with their corresponding chapters are:
'.'j- (1) A comparison is given of H,, performance and robustness formulations with some alternatives
:j'. using other norms. Performance for bounded magnitude time signals are found in terms of
- H ,, norms on transfer functions. (1)
= (2) Extensions of u to handle real parameter variations are considered. Improved bounds are
: - obtained for this problem. ( 1)
'.:: (3) The issue of convergence of u-synthesis to a global optimum is studied. It is shown that the
oY
?:: global solution to the p-synthesis problem can be found in the constant (or equivalently
~ acausal) case. This provides useful information for the general case and is encouraging regard-
o ing the prospects of obtaining similar results there. (1)
“~
~N (4) A comprehensive and unified treatment is given to the synthesis of general optimal controllers
(m,
. for linear lumped time-invariant systems. ( 2 )
N (5) The existence of an optimal solution for the general H ,-optimization formulation is proven.
:- In particular, it is shown that there exists a real-rational optimal solution when the original
data is real-rational. ( 3)
:-'_; (6) An iterative procedure, called y-iteration, is discussed which reduces the general distance for-

mulation to an equivalent solvable best approximation formulation. Some tight and comput-
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able bounds are derived and properties which guarantee rapid convergence of the iteration are

established. ( 4 )

(7) A new and eflicient algorithm for solving a class of algebraic Riccati equations that arises in

the v-iteration is obtained. { 5 )

(8) State-space representations and reliable algorithms are derived in parallel to the development

of the other theory throughout this work. { 5)

9) Expiicit error bounds are obtained which make model reduction in the synthesis process possi-

ble and simplify the complexity of the controller significantly. ( 6 )

Based on the results in this report and in Doyle(1984), an experimental software package has been
developed which uses only standard matrix operations and linear algebra techpiques. Several example
designs have been performed whichk have been very successful and most encouraging. These example
designs will be presented elsewhere. Many of the results presented in this report have appeared in papers

by the authors.
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1.1 General Analysls Framework

This chapter will review some basic methods for analyzing the performance and robustness properties
of feedback systems. The particular approach taken here is from [D14]-[D19} and |{C2}-|C4] which builds on
results by many other researchers. In this context, analysis refers to the process of determining whether a
system with a given controller has desired characteristics, whereas synthesis refers to the process of inding
a controller that gives desired characteristics, usually expressed in terms of some analysis method. This is
the fairly standard usage of these terms in the control community. It should be obvious that the question
of analysis must be settled to some degree before a reasonable synthesis problem can be posed. The formal
analysis and synthesis techniques discussed in this report are only some of the methods that might make up

the overall process of engineering design.

The general framework to be used in this report is illustrated in the diagram in Figure 1.1. Any linear
interconnection of inputs, outputs, commands, perturbations, and a controller can be rearranged to match
this diagram. For the purpose of analysis the controller may be thought of as just another system component
and the diagram reduces to that in Figure 1.2. The analysis problem involves determining whether the error
e remains in a desired set for sets of inputs v and perturbations A. Analysis methods differ on the description
of these sets and the assumptions on the interconnection structure G. In this report G will be taken to be
a linear, time-invariant, lumped system and be represented by a rational transfer function. The convolution
kernel associated with G will be denoted as g, so G is a real-rational matrix function of a complex variable
and g is a matrix function of time. The interconnection structure G can be partitioned so that the transfer

function from v to e can be expressed as the linear fractional transformation

e= F'(G‘ A) v= [Ggg + G"A(I - GuA)—l G13] v.

The external input v is an additive signal entering the system and is typically used to model disturbances,
commands, and poise. The alternative descriptions of the sets to which v is assumed to belong and the
corresponding performance requirements on ¢ will be considered in the next section. It is generally inadequate
in modeling systems for control design to consider uncertainty only in the form of uncertain additive signals
[H4]. The system model itself typically has uncertainty which can have a significant impact on system

performance. This uncertainty is a consequence of unmodeled dynamics and parameter variations and is

modeled as the perturbations A to the sominal interconnection structure G. Note that the uncertainty
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modeled as A has a very different effect from that of v on the performance of the system. For example,
perturbations can cause a nominally stable system to become unstable, which v cannot do. Techniques for

modeling plant perturbations and anaiyzing their impact on stability will be considered in Section 3.

At the heart of any theory about control are the assumptions made about G, v and A, as well as the
performance specifications on e. These assumptions determine the analysis methods which can be applied
to obtain conclusions about system performance. A desirable objective is to make weak assumptions but
still arrive at strong conclusions and the inevitable tradeoff implied by this objective drives the development
of new theory. The control theoreticians role may be viewed as one of developing methods that allow the
control engineer to make assumptions which seem relatively natural and physically motivated. The ultimate
question of the applicability of any mathematical technique to a specific physical problem will always require

a “leap of faith” on the part of the engineer and the theoretician can only hope to make this leap smaller.

The methods in this chapter provide a powerful set of techniques for modeling and analyzing uncertain
systems. To provide a context for these methods consider an alternative analysis technique based on simu-
lation. Modern simulation methods allow for a wide variety of plant models and performance specifications
and as a consequence are an essential part of the control engineers toolkit. The price paid for this flexibility
is that the system inputs and perturbations can be considered only one at a time. This chapter focuses on
describing sets of signals and perturbations and drawing conclusions on worst-case performance for entire
sets at once. An important issue to be addressed here is the description of sets which adequately model
physical phenomena. It can be just as limiting to have models which allow signals or perturbations which
bave no physical motivation but severely impact performance (of the model) as it is to have models that
ignore critical physical phenomena. The methods in this chapter are aimed at allowing for signal and pertur-
bation models that naturally match the physical phenomena that the models are intended to represent. The
price paid for this flexibility, in contrast with simulation, is that very restrictive assumptions , in particular
linearity, must be made about the nominal interconnection structure. Nonlinearities can only be handled as

perturbations.

It is beyond the scope of this report to give a thorough discussion of the relationship between models

and the physical systems they represent. Attention will be given to the main assumptions that have been

proven useful in practice, and some comparison of the alternatives. The particular focus of this chapter is




: :
;- on developing techniques that allow very precise analysis of systems which have fairly standard performance
requiremeants and uncertainty models in terms of additive noise and plaat perturbations. While the “best”
assumptions for engineering purposes will always be a matter of debate, it is clear that for any given set
':\: of assumptions it is desirable to bave very precise analysis techniques. The ideal would be necessary and
N sufficient conditions for the satisfaction of a performance specification in the presence of sets of inputs and

perturbations. Additionally, the conditions should be computable or should at least yield bounds which

give useful estimates of system periormance. With such methods, the engineer can focus directly on the

relationship between uncertainty assumptions and system performance without worrying about potential

eal gaps caused by inadequate analysis techniques.

The assumptions about v and the system performance specifications on e are considered in Section 2. A

::I basic requirement is that the nominal system (A = 0} be stable. Recall that this is analysis of the closed-loop
system with controller in place so it is assumed that G is stable, which will be taken to mean having no
thp poles. Performance will be expressed in terms of 2 being contained in a specified set bounded in power,
‘ energy, or magnitude. In Section 2 only uncertainty in v will be considered so this will be referred to as
nomsnal performance to indicate that A = 0. Nominal performance will be seen to be equivalent to a norm

test on G33. The main focus of this report will be on || @ ||oc, but other norms of practical interest will be

.. considered and briefly compared. It will be argued that the || ¢ || norm is a useful and fexible norm for

studying performance.

Section 3 considers stability in the presence of perturbations. This will be referred to as robust stabdity
with robust used here to indicate that the property of stability is maintained under perturbations. For simple
unstructured perturbations, this also leads naturally to a || ]|, norm test, but now on G;,. The || ¢|| norm
thus provides a single norm which handles both nominal per'lormuce and robust stability. Unfortunately,
norm bounds are inadequate in dealing with more realistic models of plant uncertainty involving structure

and more complicated mathematical objects involving the structured singular value, u, are required.

The methods outlined in Sections 2 and 3 allow for assessing either pominal performance or robust
stability. Obviously, it would be desirable to treat performance with both noise and perturbations occurring

simultaneously. Section 3 concludes with this problem and shows that this also leads to tests using u, but

now involving the entire transfer function G. Thus y emerges as an essential analysis tool in dealing with
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e
>
* Section 4 briefly reviews H,, and H3 optimal control. The H,, metbods combine with the properties of
: \ﬁ p discussed in Section § to form the basis for u-synthesis. Chapters 2-7 of this report expand on the theory
% outlined in Section 4.
The mathematical properties and computation of u are briely taken up in Sections 5 for the case of
-:-_- complex perturbations and @ for the real case. Here i is viewed as a natural generalization of both spectral
B radius and spectral norm, and this viewpoint leads to useful characterizations of 4 in terms of these more
familiar quantities. One consequence is that estimates for s can be obtained by scaling of ordinary singular
< values. The implications of this approach for synthesis are also briefly considered in Section 7.
:'_:; The main results of this chapter will be expressed as theorems which are each instances of the following
s form of a General Analysis Theorem:
o
o~ General Analysis Theorem (GAT):
J ‘;f‘ Performance| for all Uncertainty
P
' if | Analysis Test
As implied by the form of this “theorem”, this chapter will focus on necessary and sufficient conditions
for performance in the presence of uncertainty. The uncertainty will be combinations of input signals,
;‘ perturbations, and parameter variations. Performance will be simply stability or stability plus a bound oa
:-_f the error e. It is hoped that by organizing the many alternative methods of performance and robustness
analysis in this way, it will be easier to compare the assumptions and their relative merits,
o -
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>
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1.3 Nominal Performance

This section considers performance in terms of bounds on e in the presence of uncertain bounded inputs
v. Bounds for both v and ¢ are expressed in terms of signal power, energy, or magnitude. Such descriptions
are standard within the control theory community and a rigorous treatment will not be given here. The focus
is on comparing the resulting tests on G implied by the alternative assumptions. While other assumptions
on signals could be considered, these are the most common both in the literature and in practice. To simplify
the comparisons, assume temporarily that the signals are scalars so that spatial norms are not an issue. This™
will focus attention on the contrasts between the alternative descriptions of the time content of the norms,

which is far more significant.

The three alternative assumptions about the signals is that they are bounded in “average power”, “total
energy”, or magnitude. The terms power and energy are used here in a generalized sense to indicate that
integrals of the square of the signals are involved. This is standard usage of these terms within the control
community. Suppose that v is a function of time such that on any finite interval it is square integrable. Then
we may obtain bounds on v in terms of:

. 1 [T ]
(1) Power: BP -{v rh-x-%o T /_r |u(¢)]® dt < l}

@Eseer: 8L, =[0Il = [ 1o a<1)

-00

(3) Maguitude: BLo ={v lellec = ess sup lv(e)] < 1}

The prefix B denotes the unit ball. The bounds are scaled to 1 since any other scaling can simply be
absorbed into the interconnection structure G. Likewise, any weighting or coloring filter can be absorbed
into G so that only unweighted signals need be considered. Note that in practice, the use of weightings on
both v and e are essential to reflect the varying spatial and frequency content of both the input signals and

the performance specifications. For simplicity, all signals will be assumed to be complex.
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For nominal performance the GAT takes the form:

y GAT for Nominal Performance:

" ¢ € Performance Set| for all v € Input Set
X

: i [ Norm Test

o

::: Here the performance and input sets are taken to be either BP, BLj, or BL, as defined above with
) j; the additional input set of sinusoids also being considered. Table 1 gives the norm test for each combination
4 -,.

that makes sense where

N 1 00 1/3

: 6l = (35 [ erace (Gl Gl )

- T -0

: Gl = sup (G0

o0
d lotle = [ loto ae.
E‘_ TL IGlo norm is defined for matrices since this will be used in the remaining sections.
Table 1. Performance Summary

3
:_ P
. Power | Energy | Magnitude
b 1: v

. Power lIGlleo ) o
.
o~
- Every | 0 |Gl | [IGll

(n

A Maguitude | [[Glloo | oo llofla

Sinusoids | [|G]loo 00 Gl
’\

‘.:: In each case the norm test m the indicated norm being less than or equal to one; the norm would be
Cd

f applied to G35 ( the subscript is dropped in the table). For example, the upper left hand corner case would
yield the following version of the GAT:

. |

|

>

v

w .o> -
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Performance Theorem (Power/Power):

e € BPYv € BP

iff |Gaalleo S 1.

Some of the entries in Table 1 are either 0 or 00. The 0 occurs because for any stable G, v € BL, yields
e of zero average power. The oo occurs because for the indicated combinations any G # 0 allows unbounded

outputs for some bounded inputs. These combinations are clearly of no practical or theoretical interest,

Note that ||Glle is the clearly the most common norm in Table 1 and will be the norm used in the
rest of this paper. It results from several different assumptions of practical and theoretical interest. Perhaps
the most useful are v € BP and ¢ € BP and the cases of sinusoidal inputs. The vectcr case is no different
provided the spatial part of the vector norm in each case is taken to be the usual Euclidean 2-norm. The
[IG]la and ||g|ls norms each appear only once. The ||G|ls appears for v € BL; and ¢ € BLo. While this
appears to be a strange combination, it could have some significance in some problems. To my knowledge,

po one has described control problems in this way.

The standard assumptions which lead to ||G]|3 are not covered in the table but concern situations where
either v has a fixed power spectrum and ¢ € BP or v is a stochastic process with fixed power spectral
density function and performance is measured in terms of the variance of e. The ||G|l; also arises when v
is » fixed signal and e € BL;. Zames and others ([22],|Z3]) bave argued that these assumptions are often
not appropriate for control problems. At the heart of this argument is the observation that when frequency-
dependent weights are use to shape the spectral content of signals and performance specifications, it may be
a better model of physical reality to view inputs as being, for example, bounded in power than characterized
by a perfectly known, fixed power spectrum. In addition, it is usually quite easy to find performance weights
that turn a problem specified in terms of || ¢ ||; into one involving only ||  [|. While this would be of
no particular value when only uncertain inputs are considered, it could prove quite useful, as will be seen,
when uncertainty in the form of plant perturbations are included. While these issues still remain largely
upresolved, it is clear that the popularity of || o || is due in great part to its convenient mathematical

properties, which are substantial and well-known. Fortunately, this distinction between || ¢ ||; and || o || is

becoming less significant.




The ||g||, norm cannot be dismissed as lightly. The assumptions which lead to it, that both v and ¢

are in BLo,, are very appealing. It is often the case in practice that the critical issue is the magnitude
of signals and not their power or energy. In fact, it could be argued that this would be the obvious norm
of choice for most engineering problems were it not for the mathematical difficulties associated with [|g]|;.
For example, it seems more difficult to shape the spectral content of signals in BL ., using weights than for
signals assumed to be in BP. This is of great practical significance since it is typically critical in achieving
good designs to take advantage of what is known about the frequency content of signals. In addition, ||g|l, is
very difficult to work with analytically. It has no useful sets of invariaats analogous to the inner or all-pass
functions for ||G||; and ||G||co. There is no synthesis methodology for optimiz'.ing liglls except in very special

cases [Pearson].

Given the difficulties associated with directly synthesizing for ||g||: and its potential practical impor-
tance, it is interesting to ask how ||g||; relates to [|G||o. In particular, it is important to know that optimizing
[|Gllec will not do great violence to ||g||;. Since the constant term in G simply adds to ||g||,, suppose for the

moment that G is strictly proper. It can be shown that

IGlleo < llglls < (2n + 1)[|Gllo (2.1)

where p is the McMillan degree of G. The left hand bound is well known and the right hand side is proven

at the end of this section. In fact, a stronger result is proven, namely that

llell, < 22 o, (2.2)

where {o;} are the singular values of the Hankel operator associated with G. Given that the response of
many systems can be approximated at least crudely by fairly low order systems, this bound suggests that

l|Gllc may often be a reasonable approximation to ||g|l;.

It should be noted that examples can be constructed for any n so that all the bounds in (2.1) and (2.2)
are achieved. The examples that achieve the upper bounds are pathological and require G to have poles and
zeros widely spread and the inputs to have very broad spectral content. This suggests that even more useful

bounds may be obtained when additional assumptions such as restrictions on pole and zero locations and

input signal bandwidth are imposed. This is clearly an area that will require additional research.
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Proof of bound |jgll; € 2n}|Gjjec . { the idea for this proof is due to I. Gohberg)

R

Let G(s) = c{sa] — A)~'b, where (A,b,c) is an internally balanced minimal realization (Moore) so that

)
.

F"

o © ., , oo L

o / ¢“cce’"dt=/ At bb'eA tdt

wo ° °

P-\':

R =Y =diag(01,03,--+,02) > 0. (2.3)

Let ¢:(¢) = 7‘;; e, A and vi(t) = 7“,—‘ c eAte; where ¢; is the i'® unit vector. Note that (2.3) implies that

6ulla = lIvilla = 1. Expanding g(t) = c e = =, 0: vu(3) 6i(3) vields
oo t t
ol = [ IE s (3) #(3)
25 [ ) st ae
< 22 o,

Furthermore, since ||Gllec 2 ¢i, Vi, |iglli € 2n||Glleo -

dt
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1.8 Robust Stabllity and Robust Performance

In this section, we will consider plant perturbations, a type of uncertainty entirely different from uncer-
tain input signals. Since plant perturbations can destabilize a nominally stable system, the first issue to be
addressed is robust stability. Robust performance will be treated at the end of this section. In what follows,
it makes no difference whether A is a constant complex, rational, or real-rational matrix so for simplicity it
will be assumed constant complex. Stability will be taken to mean that the perturbed system has no closed

thp poles. Under these assumptions, we have the following simple and well-knowa theorem({Z1],{D10]):

Theorem RSU (Robust Stability, Unstructured):
F.(G,A) stable ¥ A ,7(A) <1

iff [Gnillo € L.

While the || |[oc norm bad some reasonable competition for analyzing nominal performance, it is clearly
the norm of choice for robustness analysis. While it is possible to use other norms in theorems such as the
above to obtain sufficient conditions for stability, only || ¢ || yields necessary and sufficient conditions. The
only change that can be made and still have iff is to allow other spatial norms. In contrast, || ¢ ||; norm

cannot even be used to obtain sufficient conditions for robust stability.

The term unstructured refers to the {act that A is assumed to be bounded but otherwise unknowan.
Typically weights are used when modeling plant uncertainty to reflect the frequency and spatial variation of
the perturbations. These weights can always be absorbed into the nominal interconnection structure so in
that sense it is no loss of generality to assume a uniform norm bound on A. It is in the assumption that no
structural information is available for A that limits the usefulness of Theorem RSU. In practical problems,
it is generally the case that the uncertainty consists of parameter variations and maltiple norm-bounded
perturbations. Using only a single norm-bounded perturbation for analysis is rarely adequate. Parameter
variations typically arise because of uncertain coefficients in differential equation models of physical systems
and iovolve real scalars. Norm-bounded perturbations often arise when trying to capture the effect of
unmodeled dynamics and are themselves dypamic systems. This would typically lead to norm-bounded
real-rational perturbations, but for analysis, it is sufficient to instead consider constant complex matrix

perturbations.
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Any linear interconnection of inputs, outputs, transfer functions, parameter variations, and perturba-
tions can be rearranged to fit the diagram in figure 2, where #(A) < 1 but A is block-diagonal. This is an
obvious consequence of the fact that composition of linear fractional transformations are linear fractional,
and it bolds {or perturbations to tzansfer functions as well as elements of state-space realizations. Reducing
to the uniform norm bound typically requires the absorption into the nominal interconnection structure of

scalings and weights. Then A will be a member of a set like
A= {dl&‘ (61,61,...,Jm.Al,Az,...,A.)
I 5 €R, A5 € Ck”‘hj} (3.1)

or its bounded subset:

BA={AeA|a(A)<1}. (3.2)

It is possible to define more general sets involving, for example, repeated perturbations, and these will be
considered in Section 5. Nonsquare perturbations can easily be bandled in what follows by augmenting the
interconnection structure with rows or columns of zeros. It should be noted that although the block diagonal
perturbation structure with square, uniformly bounded blocks can be used without loss of generality, it may
be desirable from a computational point of view to use other structures. This particular structure is chosen

- because it is mathematically general and conceptually elegant.

Given A € BA Theorem RSU could be used to obtain sufficient conditions for robust stability, but
the test could be arbitrarily conservative. That is, it is easy to construct examples where |G, |l can be
made arbitrarily large but no A € BA leads to instability. In order to obtain a precise generalization of
Theorem RSU to haadle structured uncertainty, we need the structured singular value, u [D13]. The positive

real-valued function p satisfies the property

det (] -MA)#0 forVA € A, F(A) <7

iff yu(M) <L (3.3)

Note that 4 is a function of M that depends on the structure of the A's in A. This dependency is typically
not represented explicitly. If (M) # 0, that is 3A € A such that det(] — MMA) =0, then

1 .
u(a) ~ 3 {’“"

det(I - MA) = o} . (3.4)
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Unfortunately, (3.4 ) is not typically very useful in computing y since the implied optimization problem is
cumbersome and can have multiple local maxima which are not global. Computation of 4 is a complicated

problem and some results will be given in Sections 5 and 6. For now, assume p is the function defined above.

With these definitions, the correct generalization of Theorem RSU to structured uncertainty is

Theorem RSS (Robust Stability, Structured) :
Fy(G, A) stable VA € BA

if [Gulls 1

where

G, supp[Gljw)}. (3.5)

Note that {|G]|, is not actually a norm, but the notation is convenient. Note also that it depends not

only on G but also the assumed structure of A.

The methods outlined above allow for analyzing either nominal performance or robust stability. Obvi-
ously, it would be desirable to treat performance with both noise and perturbations occuring simultaneously

[D14]. The following theorem addresses exactly this problem. The proof is given at the end of this section.

Theorem RP:
F.(G, A) stable and ||F,(G,A)]lx <1 YA € BA

if [IGll. < 1

where 4 is taken w.r.t. the structure

A = (A = diag (A, Ans1) | A € A}

This theorem is the real payoff for using u. It gives necessary and sufficient conditions for robust
performance in the presence of structured uncertainty. It's made possible by the equivalence of performance
and robust stability when using |[e{lc. The block A, may be thought of loosely as a “performance block”

used to turn the performance condition into a robust stability condition and finally into a test using u. Note

Tataia ato u Al Bt
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that i is computed for the full G and is taken with respect to an augmented structure. The analysis results

presented in this paper are summarized in Table 2.

Table 3. Analysis Summary

Performance
Stability e€ BP
Perturbation
A=0 No C4 poles | [|Gaalloc < ¢
7(a) <1 IGullo <1 | lIGllu S 1
A € BA "Gu"u <1 Gl <1

Proof of Theoremn RP: From Theorem RSU,

IF(G,A)llo < 1

iff det(I = Fu(G, A)Ans1) £0,
Ve=jw, VAnsr, 2(Aasi) < 1.
Similarly,
Fu(G,A) is stable VA € BA
i det(I - G1;4) #0 Vs = jw, VA € BA.

Since

det (I - GA) =det (I - G,A)det (I = Fu(G,A)Ans1),

the result follows immediately from deflnition of y and || - ||...
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1.4 Overview of Optimal Synthesis Theory

The previous sections showed how nominal performance and robust stability with unstructured
uncertainty could be treated using the H, framework. More complicated issues like structured uncer-
tainty and robust performance require u. This section contains a review of the general H, and H,,
optimal synthesis theory using the framework depicted in Figure 1-3. The approach outlined in this sec-
tion was developed in Doyle (1983,1984), Chu and Doyle (1984,1985), and Chu (1985). Although the focus
of this report is on H ,, methods, it is useful to put these newer methods in a context which includes the
more familiar H, theory. The general approach taken in this section makes this easy since the H, and
H ,, theory can be developed in paralle]l up to the final step, called the General Distance Problem (GDP),

which is the subject of the remainder of this report.

In Figure 1-3, the transfer function matrix P is the interconnection structure from the nominal
model of the system and the transfer function matrix K is the "controller” to be designed. The variable
v coasists of all external inputs, ¢ are the error signals which are to be regulated, u are the control
inputs, and y are the measurements. This general framework covers all standard lumped linear time-
invariant filtering and control problems. Attention will be restricted to the lumped case so all transfer

- functions will be assumed to be rational.

: Kl

Figure 1-3. General Framework for Synthesis
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: Partitioning P accordiogly, the closed-loop transfer function matrix can be written as the following
~
linear fractional transformation (LFT)
- e = F/(P.K)v = (P + PuK(I-PoK)'Pa)v (41)
where
Py Py
(Prrrgdx(m;+my P xXm 2
P-[,,n,,a € R , P, € R""7 . (4-2)
The H, and H ,, synthesis problem is one of finding a stabilizing K € R "2*%2 guch that the perfor-
‘.‘ mance measure
- HF(P.K) |la for a = 2 or © (4-3)
v
. is minimized. For pontriviality, assume that p;, > myand m; > p,.
The first step is to ind
; Ky Ky
- ("z”z)"(’z"‘z) 44
K, = [sz Kxn €ER ( )
- such that
2 ] F(P;F(K :Q) =F(T;Q) =Ty +T,QT, € RHY ™ (+-5)
- is stable and affine for any Q € RH;’X”. This is the "Youla parametrization™ of all stabilizing con-
- trollers and is obtained by finding coprime factorizations of P over the ring of stable rationals and solving
:: a double Bezout identity to obtain the coeflicients of K, (Youla, Jabr, and Bongiorno (1976), Desoer, Liu,
g Murray, and Saeks (1980) ). For simplicity, the superscripts demoting spatial dimensions will be
suppressed in the remainder of this section. All quantities are assumed to be of compatible but otherwise
';- arbitrary dimeansion.
‘ We are interested in a particular K, which results in T, and T, being inner and co-inner respec-
- tively; that is, T 4T, =/ and Tu{TH ==/ . This requires a coprime factorization with inaer
- . Ta ‘
A numerator. In addition, T, and Tl can be found so that [T,, Tl] and 7‘.1 are square and inner.
N

T, and 1-'1 are called complementary inner factors (CIF). These factorizations can be carried out using

............
............
..............
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standard real matrix operations on state-space representations ( Doyle (1983,1984), Chu and Doyle (1984)
). Computation of state-space realizations of K,, T, T, and 1.'1 from one for P involves solving two

standard algebraic Riccati equations (ARE).

Because both the ||« ||; and || ¢ || DOrms are invariant under multiplication by square inner

matrices, an alternative expression is possible. Forany @ € RH,

[1Tu + TwQTa |l

. T21 ¢
= [‘Tu Ti] (Tu + T1,QT4) il

-T8TuTH -Q -TT, T
= TPT, TS TAT, T

rn‘QRu]

[+]

4-5
Ra Ralll, (+5)
where
Ry Ry -T# . e (47}
R - Rzl Rm == Tl‘ Tll [Tzl .l ] . l’

A state-space realization for R can be obtained from a corresponding one for P using the factoriza-
tions involved in obtaining K, (Doyle (1984), Chu (1985)). In particular, this approach yields an R with

all its poles in the open rip, i.e,, R is completely unstable.

Up to equation 4-6 the H, and H ., problems can be handled in parallel and the same factorization
techniques can be used to reduce 4-3 to 4-6. It is in minimizing 4-6 that the two cases differ substantially.

Here, the a == 2 case is particularly simple. Since

1
R,-Q Ry l R 2 0 Ry 2]/1 (4-8)
Ry Ra|ll,™ || "_QHz * Ry Rz
the optimal Q@ can be found from
Q?g‘”x ” Rll - Q ”2 - ” Rll - Qapt H? (4-9)

where

‘. }"F .
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@it = Py (Ry) + Ry(oo) = Ryfco) (410}

Equations 4-9 and 4-10 follow immediately from the Hilbert space structure of L, and the fact that R,

is completely unstable. In most 4, problems, R, is strictly proper, so @,,, = 0 and K,,, = K.

The case of a = oo (H ,-optimizatior) is substantially more complicated and the correspoading
optimization problem in Eq. 4-6 is refered to in this report as the "general distance problem” (GDP).

This terminology arises from viewing the optimization in 4-6 as follows:

Ry Ry .
Given R == R+ R € Ly, find the optimal @ € H , such that
a Kz

) Ry-Q Ry (+11)
To = Q"e"g, Ry Razl|le
is minimized. Note that the minimum norm is the distance
He O
v, = dist (R, [0 0]) (+12)
from R to the set of {matrix) fupctions of the form
QO
[0 0] , Q@ € H,. (413)

This class of problems will be called the "4-block problem” in this report to distinguish from the

Rz
special case where [R,l Rz] or [Rn] is identically zero. The latter will be referred as the "1-block

Ry
problem™. If both [Rm Rn] and [Ra] are zero, this is known as the "best {or Hankel) approxima-

tion” problem (eg. Adamjan, Arov, and Krein {(1971,1978), Sarason (1967), Glover (1984)) since

oMb, HRu - Q llo = || He |l (414)
This problem has the special property that it reduces to a finite dimensional eigenvalue problem and solu-

tions can be computed with standard matrix algebra routines. Note that, in general, a @,, which

achieves the minimum in 4-14 does not minimize the GDP in 4-11, although it will be shown to provide a

reasonable approximation to the actual minimizer.
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1.8 y For Complex Perturbations

In the previous sections, it was shown that robust performance and stability with structured uncertainty
reduces to computing p for constant matrices G(jw) and then taking sup over all w. For this to be usetul,
we must have ways of computing s or bounds for it. This section will begin by outlining some of the
mathematical properties of u for complex perturbations and viewing it as a natural generalization of the
spectral radius p, and the spectral norm (maximum singular value) # . The rest of this section will focus on

using scalings to characterize u in terms of p and 2.
Suppose that A is some subalgebra of matrices satisfying
{MIxeC} c¢ A c CNxN, (5.1)

In this report we will be interested in block diagonal A. Deflne the spectrum, sp(M), and inverse spectrum,

isp(M), of a matrix M € CY*V with reapect to the subalgebra A as

(M) = {AGA

det(M - A) = 0}

isp(M) = {A €A

det(I - MA) = o} : : (5.2)

Since both sets depend on A it would be appropriate to subscript the symbols, but to keep notation simpie
this will be avoided throughout. The set sp(M) is a natural generalization of the usual notion of spectrum
and is always nonempty. 1o this context, ¢ can be viewed as a natural generalization of spectral radius since

it is easily verified that

u(M)= sup g(A). (5.3)
A€wp(M)

If u(M) # 0 (which is equivalent to iap{M) # @) then

1
wM)= s AT (54)

This characterization emphasizes the view of i as a generalization of # aad is simply a restatement of (3.4).
Indeed, in the special cases where A is equal to one of its possible extreme sets in (5.1), u is exactly either
the usual spectral radius or maximum singulas value:

A={M]AeC) = u(M)=p(M)
(5.5)

A =CN*N => p(M)=e(M)
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It is poasible to use these two special cases to obtain bounds for u. For any set A it easy to see that
M) < w(M) < a(M) (5.6)

but these bounds are not directly useful for computation as matrices may be found that make the differences

between the bounds and u as large as desired.

It is possible to improve the bounds in (5.6) by using simple properties of A. Suppose that U and D

are sets such that for any A € A

Vel = 2(UA) =e2(A)

(5.7)
Ded = D'aD=A.
Then it is easy to see from the deflnition of u that
Uel = p(MU)=pM)
(5.8)
DeDd = u(DMD™!')=pu(M)
so the bounds in (5.6) can be improved to
; -1
2up o(MU) < u(M) < jat 0 (DMD™'). (59)

The key theorems about y show when these inequalities are actually equalities.

Let us first consider the case where all the blocks are complex and none are repeated. Then we have

the sets
A= {di“ (Alu A’v-"vAn) l A,‘ € Cm"xmj}

U= {diag (U, Us,....Ug)

U, =1}

D= {diag(d.z.a,t,....d.n

d; € R+} (5.10)

It is easy to verify that (5.7) bolds so that the inequalities in (5.9} apply. What is more important is that

sup p(MU) = u(M) (5.11)
veu
kolds for all M and A and
=i -1
(M) = jaf 2 (DMD™') (5.12)
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if n < 3 ( three or fewer blocks ) [D13]. There are other conditions under which this upper bound is an
equality but they are more cumbersome to state and generally of less interest. An example of strict inequality
for the upper bound has been found for n = 4. Extensive computational experimentation has yet to ind a
matrix for which the upper bound exceeds u (actually some lower bound for u) by more than 15%, and the
upper bound is nearly equal for most matrices. This seems to be independent of matrix size and number of
blocks. This is encouraging but additional theoretical work is needed to guarantee the quality of the upper

bound in general.

The case of repeated blocks is less well understood. To see what U and D arise when there are repeated

blocks consider the simple case where each block is a repeated scalar

A= {diag (6.1,841,...,6.1)

6,'€C}

U= {diag (sil,usd,... ual)

u; € C, lu;| = 1}

D = {dl&‘(Dh Dg,...,D.)

D; invenible} (5.13)

It is possible to restrict the D € D to positive definite Hermitian matrices (D; = D} > 0) without loss of
generality. As above, the inequalities in (5.9) hold and (5.11) also holds for all M and A. Unfortunately, the
conditions under which the upper bound is an equality are not easily checked. The computational experience
with the case of repeated blocks is much more limited than with nonrepeated blocks, but the evidence so far
suggests that the upper bound is also nearly an equality. The case of repeated nonscalar blocks is just the

obvious combination of the the above two cases.

The lower bounds in terms of p(MU) have the desirable property of always achieving p independent
of the number of blocks. Uanfortunately, p(MU) can have multiple local maxima which are not global so
direct computation of (5.11) by gradient search may not find the actual maximum. At this time there is no
alternative scheme guaranteed to find the global maximum that has reasonable computational properties.
Fan and Tits (1985) do have an alternative scheme for a lower bound which does not guarantee that g will

be found but appears to be very fast and bas many advantages over using (5.11).

The upper bound in (5.9) is more easily found since the expression # (DM D=!) has only global minima.

This is a direct consequence of the fact that 2 (¢PMe~D) is convex in D. This fact was used in [D13} to
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S argue that the upper bound in (5.9) probably offered a reasonable alternative to (5.11) for computation of
'z #. The original proof of convexity was rather cumbersome and appeared later in [S5|. A much simpler proof

is included at the end of this section.

.?.' Computational experience to date has indicated that it is desirable in practice to use both upper and
. lower bounds for u, since the existing bounds nicely complement each other. The upper bound is easily
- computed but may not give s except in special cases. On the other band, it appears to be nearly equal to

:- p in all cases. The existing lower bounds (includirg both (5.11) and those Fan and Tits) are, in principle,

_/ equal to g in all cases but may fail because of local maxima. By having an upper bound it is much easier to
; recoguize when a local maxima is not global and restart the algorithm with another initial guess. Extensive

computational experience has yet to reveal a (complex) u problem where the bounds obtained in this way

differed by more than about 15%. More research is needed to show whether this is always true. It could

s simply turn out that counterexamples exist but are dificult to find.

L :-f-: Proof of convexity of 2 (¢? Me=?)

~
:::" This proof is based oan the following simple lemma. Suppose that f: R — R is continuous.

;'{5 .

“ Lemma. Suppose Vz,3g, : R — R twice differentiable such that f(z) = g,(z), f{t) > g.(¢) and
J z‘?f,g,(z)lm’ > 0. Then / is convex.

-i': To prove convexity of & (¢? Me~P) it suffices to prove convexity of f(z) = & (e?*Me~2*) for arbitrary

J_f D = D* € C¥*N, To apply the lemma define M, = ¢P*Me~P% and let u and v be (any) singular vectors
. such that f(z) = ¢ (M,) = u*M,v. Then define g,(t) = R {u*cP*Me=P'v}. Since /(¢) 2 g,(¢) and
- &

. mg,(t) . =R {u* (D'M, - 2DM,D + M,D) v}

o = f(z)(u*D?u + v*D?v) - 2R {u* DM, Dv}

5 -teo ol 150 7] (51

' >0

_«_ by the lemma f is convex.

-
.
-
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’_:: 1.8 Computation of u for Real Perturbations

The properties of 4 when A has some elements restricted to be real are quite different from the purely
~
o complex case. Suppose that
o A = {diag (61, 65,- . 6m, A1 B, .., )

- 5 €R A, € C*ts) (6.1)
‘;"..Q and sp(M) and isp(M) are defined for A exactly as in (5.2). In this case, it is possible for either 2p{AM) or
a isp(M) to be the empty set. Furthermore, (5.3) is no longer a correct characterization of y in general and
there is no natural way to view u as a simple generalization of the usual notion of spectral radius. Of course,

(5.4) still applies provided u(M) # 0 (i.e. iap(M) # 8).

This section will focus on upper bounds to u that can be obtained by scaling #. The choice of scaling is
oy based on the following lemma which characterizes a useful class of scalings. In the following lemma, assume
i_ that
T e [T.. T.,]
= Ty Ta
- and det(] - T;3M) # 0 so that
:::' ) F(T,M)=Tu+Tia M(I - TuM)™' Ty,
<
DA is well-defined.

':: Lemma:
) Suppose 3T such that BA C {F.(T.A) ’o(A) < 1}
o then o(F(T,M)) < 1> p(M) <1
This lemma says that if F,(T, A) “covers” BA then T can be used to obtain an upper bound for u.

The proof is given at the end of this section. The next step is to identify a set of T's that satisfy the lemma.

To this end define

D = {diag(dy.da,... . da,dms1l.dmsal,....dmsal)




wen)

e € [-l. ll}

= {diag(chcg....,c,,.,0.0,....O)

T- {[ je, (-cano]

D! 0

DED,CGC} (8.2)

where D and C are partitioned conformally with A. With these definitions, for T € T

F(T.M)=jC +(1-¢")"" pMD-". (6.3)

It is a matter of some simple algebra to show that ail T € T satisfy the lemma. Note that if there are no
real parameters (m=0), then Fi(T,M) = DMD~" and this scaling reduces to that considered in (5.10) and
(5.12). Other T also satisfy the lemma but this parametrization is convenient because (6.3) is particularly

simple.

Obtaining an upper bound based on (6.3) is somewhat more complicated than is possible in (5.12). The
difficulty is that the above lemma only implies that (M) < 1 and does not scale. Using the sets in (6.2),

we can define

- . . 1
u(M)—GIGIg‘ {a ;g!{o(ﬂ(T.;M)) <1}. (6.4)
It follows immediately from the lemma that
M) < B(M)

and thus ji provides an upper bound for . Again note that for no real parameters, (M) simplifies to

B(M) = jnt @ (DMD™Y)

The natural question is how good a bouad is ji for . Recall that for m = 0, n < 3 that ji = u for
all matrices independent of block size {m is the number of real parameters and n is the number of complex
blocks). A simple extension of this result yields i = y whea m =1, n < 2. Although counterexamples
exist for problems with more than these pumber of blocks, experience has shown that 4 is often a good
approximation to u even in these cases. While this experience is encouraging it is not conclusive and

additional research is needed to establish the value of i. Unfortunately, when there is more than one real

parameter it is possible for u(M) <« H(M).




27

Proof of lemma: Since

det(] - T35 M) det (I -~ F(T,M)A)

= det(7 - Ty &) det (I - MF, (T, 4A)),

o(F(T, M)) <1 = det(I - Fi(T,M)A) #0 V2(A) < 1

= det(I - M F,(T,A)) #0 Vo(a) < 1

= det(] - MA) # 0 VA € BA

>uM)<1
[
1
f
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1.7 u-Synthesis

The previous sections on analysis showed that the synthesis problem reduces to finding a stabilizing
controller K so that

IFi(P,K)la €1 a=ocoorp (1.1)

where Fi(P,K) = P,y + Pi3 K(I = P33K)~! P;,. The solution to (7.1) for a = oo was outlined in section
4 and additional details are presented in the remaining chapters of this report. This H.,-synthesis solution

can be used to provide an approach to solving the p-norm synthesis problem, refered to as u-synthesis.

Recall that the first step in the H,, synthesis solution involves finding J so that the substitution
K = Fi(J,Q) yields

F(P,K)=F(P,F(JQ))=R+UQV (7.2)

with Fi(P, K) internally stable if Q € H.,. Further, U is inner and V co-inger (U*U =7 and VV* = I),
and there exist complementary inner factors U, and V, such that [UU,] and ]:l ] are both square and
inner. The U and V are obtained from coprime factorizations P,3 = UM,"l and Py, = M,'"V. The next
step involves using a rational matrix version of the Davis-Kahan-Weinberger matrix dilation results [D1] to

furtber reduce the problem to one of inding @ € RHo, such that
IG+Qllo S1 (7.3)

where G € RL,. This problem can then be solved using the Hankel norm approximation methods
developed by Glover |[G2]. The resulting optimal Q can then be used to find first the optimal Q and then

the optimal K.

The p-synthesis problem does not yet have as complete a solution as does the H,, synthesis problem.

A reasonable approach would be to try to find a stabilizing controller X and scaling D so that
I[DF(P,K)D~![|lo < 1. (74)

One method to do this is to alternately minimize the above expression for either X and D while holding the
other constant. For fixed D the left-hand side of (7.4) is just an H, control problem and can be solved using

the methods reviewed above. For fixed K, the left-hand side of (7.4) can be minimized at each frequency

A '-‘_ LA A S IR IR Ve B N N N N
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as a convex optimization problem in D. The resulting D can be it with a stable, rational transfer function

with stable inverse (the phase of D does not affect the norm).

This approach to u-synthesis has been successfully applied to several example problems. In principle, it
could be used to obtain controllers that are arbitrarily close to u-optimal in the case of 3 or fewer blocks and
provide nearly optimal controllers for the general case. This would depend oa the suggested iterative scheme
converging to the global optimal K and D. Unfortunately, individual convexity in the two parameters of an
optimization problem does not imply joint convexity, and this scheme is not always guaranteed to converge

globally to the best K and D.

To better understand the properties of the problem in (7.4) it is useful to consider the constant matrix

problem. Using (7.2}, we can reduce (7.2) to
ID(R+UQV)D~ s < 1. (1.5)
for constant R, U,V with U'U =1 and VV* = 1. For D = [, it follows from {G2| that
nbin F(R+UQV) =max (F(UIR), (RV])) {7.6)

where U3 and V] are chosen so that [U U,] and [‘Y‘] are both square and unitary. All of these quantities

are easily computed using standard SVD routines.
Posing {7.5) as an optimization problems gives
; -1
min #(D(R+UQV)D™!'). (1.7

It is known that this problem is convex in either D (actually ln(D)) or Q individually when the other is
held fixed, but is not convex in both variables jointly. This means that the iterative scheme suggested as
a possible approach to u-synthesis is not guaranteed to converge even in the constant matrix case. It is

possible, however, to compute the desired D in (7.7) directly.
The result in (7.6) may be applied to (7.8} to abtain

mia 7 (D(R +UQV)D™") =

max {7 (DV),DRD") , # (DRD~*(V D)} )} (1.8)




where

(DU)L & D=V, (UL DU, )~/ (1.9)

and (VD~!), is defined similarly. Note that [DU(U*D?U)~"/? (DU)_] is unitary. It can be shown that
the right hand side of (7.8) is convex in In(D) so that the “optimal” scaling for (7.7) may be computed

by search in advance. This gives a tight lower bound for (7.7) and the resulting D scaling may be used to

compute the optimal Q.

A simple example will illustrate all the essential features of this possibly confusing sequence of ideas.

Counsider the problem

mon ([0 2]+[3] o)
=z o ([0 1)) (7.10)

The p-optimal ¢ is ¢ = 0 which gives 4 = 1. For fxed d the #-optimal ¢ = 4 aad for fixed ¢ > O the
g-optimal d is d = /. Thus, iteratively solving for either ¢ or d will immediately converge to the curve
q = d*. For example, with the initial guess of ¢ = d = 1, the iterative scheme will not change either g or d

and will thus fail to find the global optimum.

On the other hand,

L]

[-]
§
Pr—
2
—
Q.
[ S )
i

wax (7(-14) 7 (1))

1+d3, {7.11)

Thus,
. . -1 d .
m‘m(m'mv[q/d l])--m‘m Vi+d® (1.12)
which is clearly convex in both d and /nd and achieves its minimum as d — 0. If the expression in (7.8) were
used to compute the d in advance, it would be possible to find the optimal achievable level for {7.9). This

example also illustrates why, strictly speaking, inf, not min must be used for the D scalings as in (5.9). This

issue will not be taken up in this report. It turns out to be of little significance anyway.

The simplest application of these ideas to the selection of the D scalings for the u-synthesis problem is

to compute an initial guess for D at each frequency using (7.8). This would be the optimal D for an acausal
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controller, and should provide a good initial guess for the optimal D for the causal controller problem. A
deeper question is whether some generalization of (7.8) and its convexity properties applies to the rational
case. While this seems likely, the details have not been worked out and the practical implications are

uncertain. For some additional results on u-synthesis, see [S5].
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1.8 Outline of Chapters 2-8

The remainder of this report considers various issues arising in H ., optimal control theory which are
associated with a particular solution approach which involves reduction of the standard problem to a
"general distance problem” (GDP) in L . Since H, methods were introduced to the engineering com-
munity by Helton ( 1981), Tannenbaum (1980), and Zames(1981), there have been numerous papers on the
subject from many points of view (e.g. Chang and Pearson (1984), Feintuch and Francis (1984), Foo and
Posthlethwaite (1984), Francis and Zames (1984), Glover (1984), Kbargonekar and Tannenbaum (1985I
Kwakernaak (1983), Safonov and Verma (1983), Verma and Jonkheere {(1084), to name just a few). This
paper will focus on the approach developed in Doyle (1983, 1984}, Chu and Doyle (1984, 1985), and Chu

(1985), which was outlined in Section 1.4. For an overview of H,, control theory and a review of the

literature see the expository paper by Francis and Doyle (1985).

This report is divided into eight chapters. Chapter 2 expands on the overview in Section 1.4 of the
general optimal synthesis theory from Doyle (1984), which includes both the H, and H, optimal control
problems. The afline parametrization of the closed-loop transfer matrix is obtained following Youla's
parametrization of all controllers achieving internal stability. A particular parametrization is employed
involving coprime factorization with inner numerator; the 4 ~optimal controller is found immediately and
the H -optimization formulation is transformed to am equivalent "general distance problem” (GDP).

Two simple examples are also presented.

Chapter 3 describes results on optimal solutions to the general distance problem. The optimal norm
of the GDP can be expressed in terms of an induced operator norm or an equivalent eigenvalue problem
involving a combination of Hankel and Toeplitz operators. The approach is conceptually elegant; how-

ever, it does not yield a2 computable formula for either the minimal norm or the optimal solution.

In Section 4, the approach of 7-iteration is introduced. It essentially involves guessing a ¥ and then
reducing the problem to an equivalent best approximation formulation. The guess for v is iterated until it
converges to the minimal norm, and the optimal solution is thus obtained. Some fairly tight bounds for

the minimal norm which are easily computed are also given; these immediately allow for reasonable esti-

mates of the minimal norm as well as giving an approximation technique for obtaining suboptimal solu-




tions that are within a guaranteed bound of optimal. To study the convergence properties of the ~-

iteration it is then viewed as a problem of finding the zero crossing of a function. It is established that

this function is continuous, moootonically decreasing, convex, and in turn bounded by some very simple

. functions. These properties make it possible to obtain very rapid convergence of the +-iteration. An

interesting example is given to illustrate some important aspects of the general distance problem which

were not previously well-understood.

The state-space formulation of the 7-iteration is then developed and presented in Chapter 5. In the

-iteration, a key step is to find the spectral factor of a para-Hermitian matrix of the form (v?/ - G*G)

(or (v*1 - GG *)) which typically, requires one to solve for a coprime factorization with inner denominator

and a standard spectral factorization. Each of the factorizations reguires finding the stabilizing solution of

';:' an algebraic Riccati equation (ARE). The ARE associated with coprime factorization has a special struc-

ture where the constant term is identically zero. A very eflicient algorithm based on a Schur decomposi-

tion is developed to solve the ARE with this special structure. For completeness, balanced realizations

. and Glover’s algorithm to the best approximation problem are also reviewed. Combining previous results,

the "closed-form™ state-space optimal solution of the general distance problem is then obtained.

Chapter 6 recapitulates the results detailed in Chapter 2 through Chapter 5, with a discussion of

some numerical aspects of the algorithms. Chapter 6 also discusses some results on model reduction in the

context of the GDP as a method for obtaining suboptimal solutions with reduced order. The focus here
- is on model reduction techniques where the error produced by a reduction can be related directly to the

degree of suboptimality of the resulting solution.

- T
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CHAPTER 2
OPTIMAL SYNTHESIS THEORY

This chapter contaius a review of the general H, and H, optimal syothesis theory. It is an expan-
sion of the material outlined in Section 4 of Chapter 1 and shows in detail how the general H problem
reduces to the ‘‘General Distance Problem’’. Recall that the framework used here is depicted in Figure 2-

1. The approach used in this chapter follows closely that in [D16].

Figure 2-1. General Framework for Synthesis

Partitioning P appropriately, the closed-loop transfer function matrix from v to ¢ can be writtened as

the following LFT

F[(P,K) = Pll + PlzK(l—PzK)_lpzl (2'1)

where

.
1
‘
1
1
!
!
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Pll Pl2 Pyt )xX(m,+m L3
F= [le PZJ € R, Pr » P, € R™™ (2-2)

The problem in H, and H, synthesis is to find a controller K achieving "internal stability” such

that the performance measure || F, (P ,K ) ||, is minimized for a = 2 or co.

In this chapter, the notion of internal stability for the LFT F,(P ,K) is reviewed first in Section 2.1.
Section 2.2 gives an algebraic treatment of the Youla parametrization of all stabilizing controllers in terms
of a stable parameter matrix @ € RH , with the LFT representation,

K = F/(/,Q). (2-3)

This parametrization has the additional property that substitution of Eq. 2-3 into Eq. 2-1 yields

FI(P vK) == Fl(PrFl(J!Q ))

= Fl ( T IQ )

where

Fi(T.Q) = T, + TnQT, (2-4)
providing an afline parametrization of all internally stable closed-loop transfer function matrices
F/(P,K). The Youla parameterization is then constructed using the standard state-space computations
of observer-based stabilization methods, providing explicit realizations of the desired J in Eq. 2-3 in terms
of a realization of P. The afline parameterization of the closed-loop system is also derived using a state-

space realization.

In Section 2.3, a particular parametrization is derived such that T, is inner and T, is co-inner.
The algebraic Riccati equation plays an essential role in obtaining such a parametrization. Using the
unitary-invariant property of the H and H .-norm, the Hroptimal controller is immediately obtained.
The H,, optimal control formulation is transformed iato an equivalent "general distance problem” which

will be discussed in great detail in the next three chapters. Section 2.4 presents two examples to illustrate

the H, and H ., optimal coatrol respectively.
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3.1 Internal Stabllity

The results in this section are entirely standard, although typically not expressed in the LFT frame-
work. For an interesting alternative treatment which is closely related see Nett (1985). In this section P

and K are fixed proper transfer function matrices. The block diagram associated with Figure 2-1

- i b - -

It is convenient to introduce two fictitious external signals, w, and w,, as in Figure 2-2.

represents the two equations

+
K v,

Flgure 2-2.

Suppose the signals v,w,, and w, are specified and that u in Figure 2-2 is well-defined. Then so are

¢ and y. Thus it makes sense to define the system as diagrammed in Figure 2-2 to be "well-posed” pro-

T
vided the transfer function matrix from [u T wl w{] to u exists and is a proper one. The following

theorem shows the necessary and sufficient conditions of well-posedness.
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o Theorem 1
<,
The following statements are equivalent:
.
<,
':' (i) The system as diagrammed in Figure 2-1 is well-posed.
Ld
. (ii) I - K(oo)Pay{oc) isinvertible. (2-5)
; o ke
: (iii) Puf) I is invertible. (2-6)
. (iv) I - Po{o)K (o) is invertible . (2-7)
Alternatively, the well-posedness condition can be stated in terms of state-space realizations. For
this purpose, introduce minimal realizations of P and K : _
- P = (2-8)
":
K = (2-9)
2
f.‘ The partition in Eq. 2-8 corresponds to that in Eq. 2-2, i.e.,
-" -
.
y A B, " 10
‘ P, = \co, | (>-10)
\ Then Px{o0) = D » and K () = D, and so (from Eq. 2-6) well-posedness is equivalent to the condition
‘:.:! that the matrix
S I -D
. 2-11)
J -D fi ] ("
\:, [ z
. is invertible. Well-posedness of the system as represented by its transfer function matrix will be assumed
\'
throughout this chapter.
;::: Let z and z denote the state vectors associated with minimal realizations of P and K respectively,
rd
- and write the corresponding system equations for the interconnection structure in Figure 2-1 with v set to

zero and ¢ ignored as:
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n...

4-5 z = Az + By (2-12a)
o

" vy = C;z + Dyu (2-12b)
2 ;= Ai + By (2-12c)
»

'A - & a

‘J:: u = Cz + Dy (2-12d)
” The system diagrammed in Figure 2-1 is “internally stable” provided the null solution (z,z) = (0,0) of
ro Eqs. 2-12a to 2-12d is asymptotically stable To get a concrete characterization of internal stability, solve
S Eqs. 2-12b and 2-12d for u and y: -
o u 1 -0 o ¢ z

’ == .

- ” - Dn ’ Cz 0 z '

‘:: (Note that the inverse exists because of the well-posedness condition Eq. 2-11). Now substitute this

expression for u and y into Eqs. 2-12a and 2-12¢ to get

1«

R dlz -1z

2 W[z}'A[Z]

':::'. where
" - A0 B, 0 1 -b]1'[o ¢

A = i |+ 5 .

. 0 A 0 B|(-Dy I C, 0

Thus internal stability is equivalent to the condition that A is a stability matrix, i.e., all eigenvalues of A
f':: - lie in the open Ihp .
_— It is oot difficult to verify that the above definition of internal stability depends only on the transfer
-:‘_:' function matrices P and K, and not on the specific minimal realizations of them. The following result is
h
o standard.

> .

. Theorem 2

"l}' Consider 2 minimal realization of the system P as in Eq. 2-8. Then there exists a proper real-
4

rational transfer function K achieving internal stability if and only if the pair (A ,B,) is stabilizable and

& the pair (C,A) is detectable. The latter stabilizability and detectability conditions are assumed
o throughout this chapter.
e
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Since

A|B
Po = [C"ﬁi] ' (2-13)

Eqs. 2-12a through 2-12d constitute a state-space representation of the system diagrammed in Figure 2-3.
Although the realization in Eq. 2-13 is not necessarily minimal, it is stabilizable and detectable, and these

are enough to yield the following result.

Pz

K fo——

- ’ Figure 2-3.

Theorem 3

The system diagrammed in Figure 2-1 is internally stable if and only if the system diagrammed in

Figure 2-3 is internally stable.

The above notion of internal stability was defined in terms of state-space realizations of P and K.
It is also important and useful to characterize internal stability from an input/output point of view. For
this, consider the feedback system diagrammed in Figure 2-4. This system has an input/output relation-

ship:
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I Kl vy
—Pn [ €2 = va : (z-l‘)
€
v, —3 P
+
-+
+
| K Vi
]
Figure 2-4.

It is intuitively clear that if the system diagrammed in Figure 2-4 is internally stable, then for all
bounded inputs (v,,v,), the outputs (¢ ,,¢,) are also bounded. This idea leads to an input/output charac-

terization of internal stability.

Theorem 4

The system diagrammed in Figure 2-4 is internally stable if and only if (/ -P »K ) is invertible and

the transfer function matrix

i _K] ! [1 +K(I-PoK)Y'Pn K(I-PxK )" 215)

[- Pn I ({-PzK)'Pn  (I-PzK)"

between (v,,v;) and {e,¢;) belongs to RH .
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Note that to check internal stability it is necessary (and sufficient) to check that each of the four

transfer function matrices in Eq. 2-15 are in RH . It is not difficult to construct examples involving P,

and K such that some of the four transfer matrices in Eq. 2-15 are in RH, while the others are unstable

[D4].
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:_': 2.3 Parametrization of All Stabllizsing Controllers

-

For the discussion here, there are two main approaches to constructing stabilizing controllers for
linear systems: the Youla parametrization and state-space methods using observers and state feedback
~: |[K2,L4). Each is well-known among the control community and each has its advantages. The Youla
P~ parametrization yields all stabilizing controllers as well as a convenient afline parametrization of the
‘,:: closed-loop system. Unfortunately, the standard algebraic treatment of this subject gives no reliable
f_: scheme to compute the coeflicients of the parametrization. Observer-based stabilizing controllers, on the
> other hand, are easily constructed in terms of a realization of the transfer function matrix P using a
.: variety of state-space computation schemes.
._ In has been shown that these two methods of stabilization are actually equivalent. This allows the
. Youla parametrization to be constructed using the standard state-space computations of observer-based
: stabilization methods, providing explicit realizations of the desired J in Eq. 2-3 in terms of a realization
"\ of P. Combining the results of the previous section and this section, the desired affine parametrization of
- the closed-loop system is then obtained.
\‘J It should be noted that many of the results on the connections between the algebrzic and observer-
S‘l - based stabilization methods were discovered independently by Nett and coauthors [N2]. Also, many of
o these results were known within the "systems over rings” community |[K4]. A complete treatment on the
".' equivalence of these two stabilization methods and the parametrization in terms of the general framework
..': (Figure 2-1) using linear fractional transformation was first given by Doyle [D16].

Ky
? The following definitions of coprimeness in RH, provide the appropriate framework for the
W

: equivalences to be discussed.

,: . Definition: (Right Coprimeness)

Two matrices N, M € RH ,, with the same number of columns m are right coprime if there exists

X, Y € RH, such that

XM + YN =], . (2-16)
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Definition: (Left Coprimeness)

Two matrices 1\7, M e RH ,, with the same number of rows p are left coprime if there exists

Y Y € RH  such that

X,
<.
+
2,
~
]

(2-17)

Remarks

M
N

(1) Eq. 2-16 {2-17) is equivalent to saying that the combined matrix [ ( [ﬂ N ]) has a left (right)

inverse in RH .

{2) An alternative definition for the right (left) coprime factorization, ref (lcf ), is that two matrices in
RH ., are right (left) coprime if every common right (left) divisor in RH  is invertible in RH .
This is equivalent to the above definition in terms of a left inverse.

(3) Eq. 2-16 (or Eq. 2-17) is often called a Bezout (or Diophantine) identity.

It is a fact that every G € R, (proper, real-rational transfer function matrices) has an
ref G = NM™ where the pair N, M € RH, are right coprime. Similarly, there exists an lcf ,
defined in the obvious way by duality. The proof of the existence of such coprime factorizations can be
found in several publications [D16,K4,N2,V3] with explicit realizations for the factorizations. In this sec-
tion, it will be shown how these factorizations can be used to obtain a parametrization of all stabilizing

controllers,

Begioning with rcf s and [cf 8 of P and K in Figure 2-4:

Py = NM' = M'N, (2-18)

K = UV = VU . (2-19)

The following lemma is well-knowan.

Lemma 1l
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Consider the feedback system diagrammed as in Figure 2-4. The following conditions are

equivalent:
(i) The feedback system as represented by Eqs. 2-12a to 2-12d is internally stable.
. AM U . . . .
(i) N y| isiovertible in RH ..

v -U
(iii) [_ N M ] is invertible in RH .
(iv) VM -UN isinvertible in RH .

()} MV -NU isiovertible in RH .

Explicit realizations for N, M, N, M, v,,v,,U,, aad V, will be given later in this section
which satisfly Eq. 2-18 and

‘;a = (} . M Un 1o
: i - (2-20)
-N M NV, 0 I
which is often also called "doubly Bezout identity”. By the above lemma

Kc g Uo Vc—l - ‘};‘(}u (00

then qualifies as a particular controller achieving internal stability. The result of the next theorem means

that all stabilizing controllers can be expressed in terms of matrix K, and a parameter matrix @ € RH .
The proof can be found elsewhere, for example, [D5,D16,V2,V3)].
Theorem 2

The set of all proper controllers achieving internal stability for the feedback system (see Figure 2-1)

is parametrized by the formula

K = (U, +MQ)(V, +NQ)* (2-22a)
= (V. +QN)Y(U, +QM) (2-22b)
P e e AR I I LI R OIS SR .-"J"-'-.‘."‘-"‘ R "'.‘-"‘..-.'“."_.-‘l
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= K, + VJIQU+V, NQ)'V,?

where Q ranges over RH, such that (/ + V,”'NQ)(co) is invertible.

It is not difficult to recognize that K, as in Eq. 2-22¢c, can be expressed in terms of a LFT as shown

in Figure 2-5, i.e.,

K had FI(J’Q)

K, v} .
a 2-23
I8 |ya _yanl (2-23)

Therefore, it is concluded that every stabilizing controller can be represented as a transfer function
matrix K == F,(J,Q), as in Figure 2-5, for some parameter matrix Q € RH ,, (constrained only to be
stable and proper and to make K proper). Using results of the above lemma, the afline parameterization

of the closed-loop transfer matrix follows immediately.

Q}—

Flgure 2-5.
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.: Theorem 3

The set of all closed-loop transfer function matrices from v to ¢ (Figure 2-2) achievable by an inter-
\ nally stabilizing proper controller as in Theorem 2 is

\

-

[ '.'A.'l.rx.i [

{Tu + TiQTn : Q ERHy,, | + DpQ(x) invertiblc}.

]

- where

".:‘ T, = P, + PyUMPy (2-24a)
'; Ty, = PpM (2-24b)
:“:'. and

:: Tg] = Mpgl (2‘24C)
‘.; (P, M, and V, are defined as in Eqgs. 2-2, 2-18, and 2-21 respectively).

o Proof

p Substituting Eq. 2-22a into F, (P ,K ) in Eq. 2-1 yields

- o .
| N F/(P.K) = Py + PdU, +MQ)V,+NQJ! [1 -MN(U, +MQ)(V, + NQ )'l] Py

N -
&

» - - -

= Py, + P4U, +MQ)[M(V, +NQ)- N(U, +MQ)] MP,
i:: Eqs. 2-18 and 2-20 then yield MN = NM and MV, - NU, = I. Therelore,
F/(P,K) = P, + P{U, + MQ)MPy

- =(P11+P12U-MP21) *(Ple)Q(MPn)

' = Ty + T1.QT . (>-25)
- where Ty, Tyq and T, are defined as in Eq. 2-24.

.-_', QED

. Remark




A

R v

g

AT

L}
DRI

L4

T
f

R

x a
LA

. "l "l (

47

Eq. 2-25 is also a linear fractional transformation, F, (T ,@ ) with T == Q.

In the following, the coprime factorizations will be given in terms of state-space representations.
Using these formula, an explicit realization of one choice of the interconnection matrix J (Eq. 2-23} is

then derived.

A B
For the next two lemmas, it is assumed that G == [C D} € R} ™ where the pair (A ,B) is sta-

bilizable and the pair {(C',A ) is detectable. The [following iemma shows that an rcf of G can be
obtained using a stabilizing state feedback gain matrix F. The existence of £ is guaranteed since (4 ,B)

is stabilizable.

Lemma 4

A stabilizing state feedback F yields ref G = NM ! where
M A+BF|\B
Nl = F I11. (2-26)
C+DF\D

Note that for any nonsingular Z

" A +BF |BZ
vl =1 F [Z]- (2-27)
C+DF D2

is also a realization of an ref of G.

By duality, to get an lef of G, take H such that A +HC is a stability matrix. Call such a stabil-

izthg matrix 4 an output injection gain.

Lemma 4'

A stabilizing output injection gain H yields l¢f G = MN where




L

Sl Sl

o

.
.
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AT

- A+HC|H B+HD
[1" N]’

c 11 D (2-28)

The next step is to specify U,, V,, l),, ‘7, to satisfy the doubly Bezout identity in Eq. 2-20. The
idea behind the choice of these matrices is as follows. Using observer theory [Kai], find a controller K,
and the associated matrices F, H achieving internal stability and then perform factorizations on P ., and
K, analogous to the ones just performed on G {Eqs. 2-26 and 2-28). Then the result summarized as in

Lemma 1 implies that the left-hand side of Eq. 2-20 must be invertible in RH .. In addition, Eq. 2-20 is

satisfied.

The transfer matrices N, M, N, and M in Eq. 2-18 have the following realizations,

: [ 4 +B .
M A +B,F |B,
NJ = ' (2-293’
r
S A+HC,|H B+ HD »
.
M 8] = |=% .| (2-29b)
The realization equations for K, are
3‘ = AZ~ + By + H(sz‘ + Dau - V)
¢ = Fz,
that is,
A +B,F+HC ,+HD oF |-H
K, = : F : }0 (2:30)
Define
A = A+B,F+HC,+HD oF B = -H ,
é = F ’ D‘ = 0 '
F = Cy+DxF , H = -(By+HDy).
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Following Eqs. 2-26 and 2-28, define

s v, +BF|B A+BF|-H
g vl = r .1 c+or 1 (2-31a)
- ' b

and
- L A+HC|H B+HD| [A+HC;|-(Bi+HDz) -H .
: - - X - 2-31b
g [v. 0.] [c 1 D] 7 T 1 o (2-51b)
Therefore,
- [M v, A+B,F |B; -H
T vv,| = F | I o}f. i (2-32a)
2 LC:'FD&F Da I
2 V. -0 A+HC,|~(By+HD ) H
-.\ l- -0
3 [_ N M ] - F 1 of. (2-32b)
-I:.‘ l. Cz -Da I

and Eq. 2-20 is satisfied.

A realization of J is now immediate. Substitution of Eqgs. 2-29a, 2-30, and 2-31 into Eq. 2-23 leads

L}
- to, after simplification,
A +BgF+HC,+HDQF|-—H Ba+HD o

J = F 0 1 . (2-33)
o -(C3 + DxF) 1 -Dgy
o
[

:: Theorem 2 provides a parametrization, in terms of @, of all proper K's which achieve internal sta-
S

Q bility in Figure 2-1. Substitution of the transfer function relationship of the block diagram in Figure 2-5
’ into that in Figure 2-1 leads to the one in Figure 2-6. Elimination of the signals u and y leads to the
2 trapsfer function relationship diagrammed as Figure 2-7 for a suitable transfer matrix T. Thus all
>

f.'

closed-loop transfer matrices are representable as in Figure 2-7.

....... e e e .'--..~,.-..-.- .~~‘-
S R LR AP A - - - .
. ~ [ S S PSR S

.~

e e TN ~ S SRS TN
PP PR (L1L{L‘LfL(L kaxJL(AILsJ-\-\-xL\-q AT AT S A A J‘_-\Al Ll‘ l-\l 1.‘_
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Figure 2-7.

2 The following theorem gives one particular realization of T .




............
---------------------------------

.................

Theorem §

Consider T as in Figure 2-7, then T has a representation in the form

A+B,F -HC, -HD, B, )
Tu le 0 A +HCg Bl+HDQ‘ 0 J
T = - (2-34)
h Ty O C,+DpF C, | v Dy

where the matrices F and H are defined as in Egs. 2-29a and 2-29b.

Proof

(i) T2

Substituting Eqs. 2-8 and 2-29a into Eq. 2-24b,

Ty, = PuM
A|B,
= lc,IDy,

A B,F |B,

A+BgFle
F 11

Cl DI2F D 12

I -1] .
Applying the similarity transformation [0 I yields,

A 0 0 A+B,F | B,
N Tp == 0 A+B.F | B, ol Cl+012F D12 (2—353)

C, C,+DFID,,

(ll) Tgll

Substituting Eqs. 2-8 and 2-29b into Eq. 2-24c,

T, = MP-‘.,

_ [A+HC,JH] [A,B] 3

[D2y

.............
..................
................
v N I A T TR T I P I T S T N P T DR, Sl Tl Pl P P M A
7
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A+HC, HC,|HD
o 4B
C; Ci|Dn

11
Applying the similarity transformation [0 I yields,

A+HC, 0|B, + HD, A+HC:|B, + HD ,
Tﬂ - 0 A Bl -

C: | Dn (2-35b)
Cz 0] Dy

(lll) Tul

From Eqs. 2-8, 2-31a, and 2-35b,

N [ A | B2 A +BF|-H A +HC;| B, + HD
Plgu, Aan - *x x

[C11Dy, F o C | Da

A B,F 0 0

0 A+B,F -HC, -HD,,

0 0 A +HC,|B, + HD 5
C, DF 0o | 0

b

I ~I -1
Applying the similarity transformation |0 [ 0| yields,
00 [

A 0 0 - B,
0 A+B,F -HC, -HD
0 0 A +HC,|B, +HD
C, C,+DF ¢, | o

P12U.MP21 -

Therefore, from Eq. 2-243,

T, = Py + Plzqusz
A 0 0 -B,

A | B, 0 A+B,F -HC, | -HDy
= lc, /o] * lo 0 A +HC,|B, + HD,,

C.,C,+DF ¢, | 0
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e A+B,F  -HC, | -HD,
- 0 A +HC,|B, + HD,, (2-36¢)
::‘ C| +D lgr Cl I D 11
d :;
Ll
'.:. Combining Eqs. 2-35a through 2-35¢ and the fact that T ,, = 0, Eq. 2-34 follows immediately.
QED
T Remark
The following expression is an alternative realization for T which was given by Doyle [D16].
- A+B;F -B,f| B, B,
‘..: 0 A +HCz B“"HDzl 0
:'-‘ T == (2-36)
Ci+DpF -DyuF| Dy Dy
) - 0 C, Dxn 0
- : It is important to note that the closed-loop transfer matrix is simply an "afline” function of the con-
. troller parameter matrix @ and that the coeflficient matrices T,, have very simple realizations; namely as
- described by Eq. 2-34 (or Eq. 2-36).
:-: } Note that the Youla parametrization and associated observer-based controller described above allow
-
choice of the matrices F and H. In the next section, specific choices of F and H will be presented such
::: that the afline parametrization in Theorem 3 has additional properties, namely that, T, and T, are
:::; inner and co-inner respectively. The algebraic Riccati equation will play an essential role in obtaining
= such a parametrization.
.
2
!
)
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2.3 Coprime Factorization with Inner Numerator

Section 2.2 contains 3 summary of methods for finding the interconnection matrix J so that the sub-

stitution K = F,(/,Q ] yields

F/(P,K) = F/(PF (/,Q))
- FI(T'Q)

= Ty + TuQTy
with the additional requirement that T € H  and

F,(P.K) internally stable
ifandonlyif Q €EH, .

This parametrizes all stabilizing controllers K in terms of a stability matrix Q € H,, in addition to
providing an affline parametrization of all stable F;(P ,K ). The actual structure of J was derived in
terms of an observer-based compensator. The stabilizing state feedback and output injection of the
observer-based compensator were shown to provide coprime factorizations of Py and solve the Bezout

identities necessary to provide the parametrization of all stabilizing controllers.

In this section, the requirement is added that T, and T, be inner and co-inner respectively; that

s, T8Ti=1 a0d TuT8 =1 . Inaddition, T) aad T, will be found so that [T, 7] aad
T'.'l
T are square and inner.
l

The key idea bebind the factorization in this section is the connection between inaer functioans, alge-

braic Riccati equations (AREs), and spectral factorizations. The stabilizing solution of the ARE’s will be

needed in order to construct the desired factorizations.

Coprime factorizations with inaer oumerator and complementary inner factors (CIF) will be
obtained which involve using a state feedback or output injection gain based on the stabilizing solution of
a particular ARE. This provides a reliable computational method based on standard approaches to

finding solutions of AREs [C5,K6,L1,M1,M2,M3,P3,V1l]. A complete treatment on this subject can be

found elsewhere [A3,A4,C2,D16,W1,Y1].
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J‘.-
3’ Consider the Algebraic Riccati Equation,
"~
R ETX + XE - XWX + Q=0 (ARE)
S
:.r: with the associated Hamiltonian matrix
-
J‘
S E -W
": Ay = [ Q Er] , (Hamiltonian)
::: where
E.W,QeR , W=WT20,ad Q=07
‘.t:f The following theorem and corollary characterize the relationship between spectral factorization, AREs,
. - and decomposition of Hamiltonians. The proofs can be found in {D16].
7
A -
~ a
- Theorem 1
N Let A,B,P,S,and R be matrices of compatible dimensions for the ARE such that
ﬁ
o P =PT R =RT >0, with the pair (4 ,B) stabilizable and the pair (P,A ) detectable. Then the
F
} j: following statements are equivalent:
t > T
3
N (i) The para-Hermitian rational matrix
- P 5| [er-4)8
' - T g_aT)!
¥ o = [orca-aryt [ ][4
O satisies
- Mjw)>0 forall 0<w< co.

(i) ForE = A-BR'ST ,W = BR'BT and @ = P-SR'ST, there exists a unique real matrix
X = XT guch that

ETX + XE - XWX + Q@ =0

and (E-BR'BTX) is a stability matrix.
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(ii)  The Hamiltoniaa matrix

A-BR'ST  -BR™'BT

Ag = | _p4SR-IST {A-BR™'ST)T

has no eigenvalues on the j w-axis.

Remark

The unique stabilizing solution of the ARE (X as in (ii) of Theorem 1) will be denoted by Rie (Ay)

throughout where Ay is the associated Hamiltonian matrix.

Corollary 2
If the conditions in Theorem 1 are satisfied then 5 M € R, such that M™ € RH , and

= M*RM .

A particular realization of one such M is

AlB -

where F = -RYST +8TX).

In the following, the special form of coprime factorizations required to simplify the general H,
(a == 2, o) optimal control to a distance problem will be developed. In particular, explicit realizations

are given for coprime factorizations G == NM~! with inner numerator N (Theorem 4) and for the com-
plementary inner factor N which completes the inper numerator to make [N Nl] square and inner

(Theorem 5). The results will be stated as theorems for rcf s. The duals for icf s following just as for

the general case of coprime factorization developed Section 2.2.

The following lemma summarizes the necessary and sufficient conditions of an inner transfer matrix

with state-space representation. The proof can be found in [D16).
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- Lemma 3
. AlB L
" The transfer matrix N = clo| € RH , is inner if and only if
R~ (i) BTX + DTC =0 (2-38)
and
" - -
N (i) DTD = [ (2-39)
y where the observability gramian X solves
: ATX + X4 + CTC =0 (2-40)
: . AB
B For the next two results, it is assumed that G == E‘B € R ™™ and the realization for G is
:;', minimal. The notation Rp™ (Rp > 0) will be used to denote the square root matrix such that-
- (R0 TRp” = Rp (or Rp™Rp™)" = Rp) and use "D " for any orthogonal complement of D so-that
v
[DRD' " p .L] (with Rp == D T D) is square and orthogonal.
f-j From Lemma 2.2.4, a stabilizing state feedback F yields ref G = NM~! where
:. .
. (2-41)
j-: and Z can be any nonsingular matrix. To obtain an rcf with N inner, we simply need to use Eqs. 2-38
through 2-41 to solve for F' and Z. This yields the following result.
N Theorem 4
' Assume p > m. Then, there exists an rcf G = NM ™' with N inner if and oaly if G*G > O on
:: the jw-axis, including at oo. This factorization is unique up to a constant orthogonal multiple. A par-
’
:. ticular realization for the factorization is
-":
e e N e e S e N e e e )
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A Y - - - - . .

&8
; [A +BF |BRp™**
-,
. R “¥l € RH[*?)xm (2-42)
C+DF DRy '?
-,
>
- where
Rp = DTD > 0
. F = -R;'(BTX +D7C) (2-43)
::: and
A-BR;'DTC -BR;'BT (244)
- - 2-44
- X Ric -cTD,D,"C -(A-BR;'DTC)T 20
;: In a similar manner Eqgs. 2.38 through 2-40 can be used to obtain the complementary inner factor
‘ (CIF) in the following theorem.
. Theorem §
. It p > m in Theorem 4, then there exists a complementary inner factor (CIF) N, € RH .’ <(p-m)
'; such that the matrix [N Nl] is square and inner. A particular realization is
‘i)
" - A+BF|-X'CTD|] "
N Ny = |esoFrt— D] | (2-43)
:.:: where X and F are from Theorem 4 and X' is the pseudo-inverse of X .
’e
x|
Remarks
',:' (1) If G € RH?.*™ in Theorem 4, then M is a "unit” in RH,, and M is "outer”. In this case,
.-
5 G = N (M) is called an "inner-outer factorization™ (IOF).
= (2) Dual results for all factorizations can be obtained when p € m. In these factorizations, output
::f injection using the dual Riccati solution replaces state feedback to obtain corresponding left fac-
“~
> torizations.
.;\

- 1
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v
=
: In the rest of this section, the results of the Youla parametrization which parameterizes all stabiliz-
)
>
ing controllers and coprime factorization with inner numerator will be combined in a way that is con-
o
':.: venient for solving H roptimal and H -optimal control problems.
L]
. Assume P as the transfer function matrix associated with Eqs. 2-2 and 2-33 and neither P, nor P,
has transmission zeros (see reference [K1] for definition of transmission zeros) on the ju-axis (including
en
:: 0o). This implies that

A Ry =D,™D;;>0 and Rp=mDyDyT >0.
.
- Under these assumptions, let D, = (D), and D = (Dy) , that is, [D eRpy™ 2 Dl] and
::" Rp~"Dy
e D are orthogonal matrices where
]
¢"~
. .- -
. (R\™)T R, = Ry and REARSNT = R
o
- By Theorem 4, N,; & T .Rp"'” is inoer where the state feedback gain matrix F is -
N F = -R5'(DELC, +BIX) (2-46a)
i
y and
~.‘:
*”
] A -B.R;'DNC, -BR;'BT 2.46b
s X = Rie r r apreoar| - ( )
;.: - -ClDlchl '-(A —BgRD DuCl)
":: Similarly, using the dual form of Theorem 4, N, 2 R.D' V2T, is co-inner where the output-injection
.\_: gain H is
-\.
-\' -
. H = -(BD} +YC])Rp (2-47a)
: and
N (A - B,DER 51C)T -clR e,
) Y = Rie (2-47b)

-B,D D BT HA -B,DER;Cy) |

Then, N3N2=1 and NyNj} =1[. Also, let N, and Nl be the corresponding CIFs so that
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A +BoF | BoRy ™ -X'0ID|
(Ve M) = G5 Pum ™ D, (2-48)
v A +HC; |B, + HD ]
i 21 - -
N = | Rg¥C,; |Rg"Dy (2-49)
d o) Tyt 3
-0 By D,
Therefore,
F,(P.K) = F/(T,Q)
= T, + T,QT,
= Ty - Nul-Rp®QR J)N2
=T, - Nué Ny (2-50)
where
@ = -Ry“QR}* €RH, (2-51)

is the new stable parameter matrix.

Because botb the || ¢ ||, and || o ||, Dorms are unitarily invariant, an alternative expression is pos-

sible. For any Q € RH,, ,

- Tn - NxzéNzx IL

Ry Ry

[Rll'é Rl2

where

Y . NZ! *
Nz Nl (Tn - NszNm) V
Ny

[NaTHNa - @ N3TuNp
NEPT,NG

NETuN ] (s
(2-52)
Rll R12 “Vl.2 -
R = [Rq Rnl = |ne| T [N;, Nf]. (2-53)
¢ - Ul

A - - .
N e e .
A .
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':-: Now, the a == 2 case is particularly simple. Since
\
& Ve
Ry~ QRu [ R T 0 Ry 2]
¥ Ry 2 H “-Q”z * Ry Rz] ||z
q \':
,}: the optimal @ is found immediately to be
-
é opt = PI‘l,(R ll) (2"54)
. and the the corresponding optimal Q is
'.-. Qapt = 'RD V?PH (Rll)R ;e (?’55)
N The case of a == 00 is more complicated and the formulation in Eq. 2-52 is called the "general dis-
'.:; tance problem” (in short, GDP) which will be investigated in great detail in the next three chapters.
.':: A state-space realization for R is given in the following theorem. It is suggested that all the poles
_-'_‘i of R are in the open rhp, i.e., R is completely unstable. For convenience, R is represented as the cas-
::'_f cade operation from two system matrices.
- Theorem 8
:::: Consider R from the formulation in Eq. 2-53, then R has the realization
X - . ) )
< (A +BoF)T|(C, +DuF)T -XH (A +HC)T | -(B5¥ca)™ Y'BD[
R = | (BRy"™T [ (DpRy™™)T 0 | 4 1C1Y +D(By + HD)T| Dy(R 5D )T DD I
- -pfcxt Df 0 0 Ry 0
',‘_‘ Proof
=N Note that the realization of T ,;, Eq. 2-35¢, can be expressed as the cascade of two systems, i.e.,
]
::‘ A +BgF -HCg -HD 21
::' T, = 0 A +”Cg Blf”Dn
o Ci+DpF €, | Dy |
::t A+BQF lo —H A +‘HClel+HDzl
2 = |c,+DF|1 0 Gy l D
C, D




= (Th)a (Tu)s

N -
It is convenient to compute [N .](Tu),‘ and (T,,)8 [Ng‘, Nl.] separately.
it

(a)
[ r r ©
. (A +321';) rl (c, +ler) A+B.F |0 -H
Nl- (Tula = ‘(B:.Ro' 1) (L 12"70; AT 1« C, +szFI 7 0
pic.x D]
AA+B,F)T (Cy+DuF)T(Cy +DpF)|(Cy+DuF)T o1
0 A+B,F 0 -H
= | -BRy"™T (Dy2Ro"A)T(Cy + Dy:F) (D2Rp""T 0
plc.x! DI(Cy+DwF) D}
i h
(A +B,F)T €D, D]C, + XBRp'B,X |(C, +DF)T 0
0 A +B,F 0 -H
= |- (B ™) - (B2Rp™ )T X (DR"T 0
r t T r

[0
Applying the similarity transformation {—X I] (X is as in Eq. 2-46a) yields,

-(A +32F)r (%) (C, *szp)r -XH
N3 0 A+B.F |-X(C,+DF)T -H
ve] Tl = | BT o rw,,ﬂo-“)f 0
plc, X' DC,(I-XX" pf 0

where

() = (A+B,F)TX + X(A+B,F) + XB:R5'BIX + C\D,D'C,
= (A-B,DLC,)TX + X(A-B,DC,) - XB:R;'BJX + C,0 D]C,

= 0.

Also,

P
- T

RPN W U P T PRI T PR PN
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N
Y
. Ker(X) C Ker(DfC)) ==> DJC,(I-XX") = 0.
\
b
N +A +B,r)f, (C.+ D F)T -XH
- o [N.l.] (Twa = |-(BR"™)T| (DR 0 . (2-56)
v pfcxt pf
-+
Dy
(b)
. A+HC4| B, + HD o [ (A+HC)T | (R5C)T -Y'BD [
T [N < N .-] = |77 D -
(Twes 21 R 1 11 * (B, + HD”)T-I (Rp VzDu)T Dlr
C, Dn
|
[A+HCy B, + HD (B, + HD )| (B, + HD 20D % (B, + HD ) |
. 0 ~(A+HD )T (Ry¥Cy)T -Y'BD T
i C, - D (B, + HD )" l Dy(R 5D y)T D[
;{ C; Du(By + HD»)T R 0
2,
- r - . -
y A+HC, ~B\D D BT) -yel B.D
N - -
b 0 A +HC)T (Rp¥ca)T -Y'BD
} = ¢, -Dy(By+ HDy)" | Dy(R 5 ¥*Dy)" DD lr
- Cs - C,Y R 0
N -
~ 1y
Applying the similarity transformation 01 (Y is as in Eq. 2-47a) yields,
"
= A+HC, (6) 0 (I-YY)B,D T
o - -
. 0 -(A+HC)T (Rp *Cy)T -YBD
oL (Tuls [Nz'x N'] - T T T
} i C, -C,Y -D (B, +HDy)" | D (R 5 D y) DuDl
d -~
» Ca 0 R,® 0
.",' where
L,
Y
' (O) = - {(A +HC)Y + Y(A+HC,)T + B\D D Bl + YCIR 5‘02)’}
\ = - {(A -B\DIR'Co)Y + Y(A-B\DER;'Cy)T - YCIR;'C,Y + B.D D BT
e
o
f-
7
o,
"¢

............

o ey e e e e e ) R . T P S S S »
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. e . . .
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Ker(Y) C Ker(D | Bf) ==> (I-YY)B,D T=0.

HA +HC)T | -(R5"c)T vB.D[
So (Tuls [Na N2] = |CY +DulBr+ HD2) | DB 5 D)™ Dub [T | . (257)
R} 0

Combining Eqgs. 2-56 and 2-57, the theorem follows immediately.

Remark
This realization is not unique, An equivalent expression can be found in [D16}.

It is clear that R has all of its poles in the open rhp. Thus, the projection onto H, + C leaves

only the constant term. Therefore, in the /, case one has the following result.

Corollary 7
- The H ~optimal solution is

Q.t = -R5'DLDLDAR 5 (2-58)

In the H, case, the solution of the general distance problem is not trivial which will be discussed
extensively in the next three chapters. To illustrate the approach described in this chapter, two examples,

corresponding to H, and H ., optimization respectively, will be presented in the next section.
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:ﬁ 2.4 Examples
In this section, two examples will be presented. In the first example, the familiar linear quadratic
e
‘: Gaussian {LQG) formulation is treated using the general A, optimal control theory described in previous
“
) sections.
¢
Example 1: (LQG)
_'..' Consider a linear time-invariant system with the following stochastic description :
) z = Az + Bu + Gd (2-59a)
y = Cz + Nn {2-59b)
g where
' A, G € R'*™, B €eEeR™*™, C € R*™and N € R**™,
- (A ,B) is controllable and (C,A) is observable,
: E[d(t)) = 0, E[d(t)dT(r)] = I§t-7),
y Eln(t)) = 0, E[n(t)aT(n] = I§t-1),
and
:: N is nonsingular.
» .
<
. The standard LQG formulation involves minimization of the (expectation of) quadratic cost func-
- tion, that is, minimization of
::; . _
' E[f{l=z1§ + llulld})a (2-60)
- o
‘.'_' with respect to z and u. In addition, the factorizations @ = L TL>0and W=MTM >0 are
{: assumed. A block diagram representation is shown in Figure 2-8 which can be further rearranged into the
general synthesis framework suggested in Figure 2-9,
P
-3
-
o
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Flgure 2-8. Block diagram o1 representation LQG

Figure 3-9. General synthesis framework for LQG
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Let P(s) = (s1-A)"
then
LdG o L<I>B d
] [C‘DG N cdB :

The interconnection matrix P of Figure 2-9 in partitioned form is simply

0 0 M |,

[Pu Pn] L®G o L®B
P - -
cdG N cdB

and has the following realization

By assumptions, (A ,B) is a controllable pair and (C ,A ) is an observable pair. Therefore, according
to Section 2.3, the state feedback gain matrix F and observer gain matrix H can then be found by solv-

ing the appropriate AREs. Explicit solutions for F and H are:

(i) F = - (M"M)"{[o M] [{,’] + B"X} = - (M"M)'BTX

-B(MTM)'BT
-AT

A
where X = Rlic [-Lrl.

(i) H = -{[oo]

0
N,] + yc'}uwv’)-l - - YCT(NNT)!

AT -CT(NN’)-'C]

where Y = Ric [—GG’ A
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Hence, from Eq. 2-32a, the matrix J has the following realization:

A+BF+HC|-H B
J = F o 7|
-c I o

Since the external inputs are assumed to be white Gaussian, and the performance is measured in
terms of the minimum-mean-square-error (MMSE) criterion, it can be shown that this is an H, optimal

control problem. Therefore, from Corollary 2.3.7, the H roptimal solution is -

Qi = -uTmy o m7] [3 3] [A?r]uwv’r‘ -0

The optimal stabilizing controller K,,, can be computed from the LFT F,(/,Q,, ) and has the following

realization:

[4 +BF+HC|-H
K, = F (J0) = J) = l F Io

It is not difficult to identify that the transfer function of optimal controller K, is exactly the same
as that derived from the traditional LQG theory. This means that the LQG formulation can be handled

easily in the general synthesis procedure presented in this chapter.

The next example is a H -optimal control problem.

Example 3:

Figure 2-10 shows a familiar feedback control formulation. The external inputs, commands and dis-
turbances at inputs of the plant, are assumed to be L »bounded signals. The performance is measured in

terms of the energy of weighted tracking errors (semsitivity minimization) and weighted control input sig-

nals (preventing actuator saturation).
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:: Figure 2-10. A Feedback Control Problem
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N Again, Figure 2-10 can be rearranged and put in the general framework as in Figure 2-11 where the
g interconnection matrix P is
) Py Py 0 0 W
:- P == Pﬂ Pa - - ch Wz - WgG
-G 1 -G

o

¥

.
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~,
~
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Figure 2-11.

By assumptions on the input signals and the performance, it is known [D16,F4,F5,22,23| that this is

an H 4, optimal control problem and the general distance problem arises (Eq. 2-52).

R _“-.\\'."-‘-" Yo

An interesting fact is that the matrix R does not necessarily have the 2X 2 block structure as in Eq.

ML
£ 478t

Ry,
2-53. For some control problems, only two blocks appear in the GDP, that is, either [ Ra] =0 or

[R - Rz,] == 0, This can be seen clearly from this example.

A Note that,

" . Then,

Ty = P, + PyU,MP, (from Eq. 2-24a)

0 -
' - {[WJ + Pzzqu} Py

i}
-

- - .- - . . IR I T R I R TN : P N
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0 7 -1
- fuNm
where
Na 2 Rp™T,
and
- 0o|. . -
T, = { w2 M= + PmU,}Rr.
From Eq. 2-53,
NG
R = f Tu [Nﬁ N ].
= ](TuNzx) [Nzx -f]-
.
NgT
= Nl‘i‘ ]
) Therefore,
R,,
Rn == 0.

This is 3 special general distance problem and will be referred as "2-block GDP. Both the 2-block and

the full 2 X 2 block cases will be discussed in later chapters.
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CHAPTER 3
GENERAL DISTANCE PROBLEMS

This chapter is devoted to a summary of results for the "General Distance Problem” (GDP):

) Ry Ry,
Given R = Ry R € L, find an element @ € H, such that

R;-Q Ry
Rzl R22

> ]

is minimized. Note that the minimum value, denoted as 7, , is the distance from R to the set of (matrix)

functions of the form

Qo
0] L oen.

This formulation of the GDP is called the "4-block problem” to distinguish it from the special cases

Ry
where [Rn Rg] or [Rzz] is identically zero. This special case will be referred as the "2-block prob-

Ry,
lem”. Note that if both [Rz, Rgg] and [Rz] are zero, this formulation is known as the "best (or

Hankel) approximation” problem [A1,A2,B1,G2].

The GDP can also be regarded as a matrix dilation problem with the coastraint of causality on Q.
The subject of constant dilation will be reviewed first in Section 3.1 where Parrott's theorem on norm-
preserving dilations {D1,P1,P4] will play a central role in establishing the existence of the optimal solution
of the GDP. The Hankel operator and its relation in best approximation is then treated in Section 3.2
using Parrott's theorem. Section 3.3 introduces the Toeplitz operator and some of its algebraic properties
which provide insight into the GDP. Generalizing the approach in Section 3.2, an abstract operator
point of view is adopted. The existence of an optimal Q and expressions for the optimal norm are

detailed in Section 3.4. These expressions are given in terms of an operator norm or an equivalent stan-

dard eigenvalue problem. The operator and eigenvalue problem are of infinite rank and the results do not
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yield computable formulas for either the optimal norm or Q. Nevertheless, the existence of the optimal

solution is established. A more practical approach will be discussed in chapter 4.

The results of this section and the next are more easily obtained using functions on the uait disc
instead of the half-plane. Since there is 2 well-known isometric isomorphism between H; and H, on the

balf-plane and the disk {see Appendix B), the general distance problem on the disk will be considered

throughout this and the next chapter.
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3.1 Dllation of Constant Matrix

Consider the optimization problem of finding

(3-1)

Yo -m}n

0

X B
C A
X B
where X, B, C, and A are constant matrices of compatible dimensions. The matrix C A is a diig

tion of its submatrices as indicated in the following diagram:

H
.zT lc 4T Ic ©2)
e 4]

a x
>
atloa

«Tlo

Here ¢ stands for the operation of compression and d stands for the operation of dilation. Compression
is always norm decreasing; however, dilation can sometimes be made to be norm preserving. Norm
preserving dilations are the focus of this section. Since it is not the purpose of this work to review the
related theory throughly, only useful facts will be presented; more complete treatment on this subject can

be found elsewhere [D1,D16,P1,P4].

The simplest matrix dilation problem occurs when fnding

4]

Although Eq. 3-3 is a much simplified version of Eq. 3-1, it contains all the essential features. It is

(3-3)

To =

X

= ]

immediate that v, = || A |]. The following theorem characterizes all solutions X to Eq. 3-3.
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Theorem 1
V‘7 2 70 ’

"~y
x XM <
X Allle="7

Py
]

' if and only if
::'.: 3 Y with |] Y ||e < 1{i-e, Y is a contraction) such that X = Y (v¥*/-A*4 )"

[+”

-

P This theorem implies that, in general, Eq. 3-3 has more than one solution. X == O is the central solution
. but others are possible unless A®4 == 72/. A more testricted version of the theorem is the following
corollary.

Corollary 2
V1>,
- X 2 »”
€71 e [[X(P-A*A)# |, <1. (3-4)
2z A ®

o,

.

17
f-', - The corresponding dual results are stated as the following theorem.

v "

~ Theorem 3

".

e Yv21,,

4
_ X Allle £ 7
. if and only if

v 3 Y with || Y ||o < 1(ie, Y is a contraction) such that X = (7°/-AA *)"?Y.

.

] \:

::: Corollary 4

&3
“

3 Y1>1,,

-

.
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- X Allle S 1 <> |[[(P1-44%)7%X |l < 1, (3-5)
- The following theorem, usually attributed to Parrott [Par], characterizes 4, and will play a central
;" role in establishing tbe existence of the optimal solution to the best approximation and general distance
g problem.
) Theorem §
B
7, = max ”lC A]”w- A (3'6)
[s ]
::', As in Eq. 3-3, there may be more than one solution to Eq. 3-1. The following theorem parametrizes
. all solutions to Eq. 3-1.
o Theorem 6
- Suppose 7 2 v,. The solutions X such that

< 4 (3-7)

@

- 2

are exactly those of the form

X = -YA*Z + A(I-YY*)*W(I-2°Z)" (3-8)
where W is an arbitrary contraction (|| W || € 1) and Y and Z solve the linear equations
® B = Y(1U-A*A)” (3-9)

& and

> C = (PI-A4*)"2Z. (3-10)

The following corollary gives an alternative version of Theorem 6.
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b Corollary 7
\|
v 1>,
5 X B
311
: ‘ l [C A] -7 )
Z
if and oaly if
: HU-YY*) "X + Y*AZ)I-2°Z) % || < 7 (3-12)
b
\ where
y Y = B(Y[-A*A)" 2
J 1)
. Z = (PI-AA*)-*iC. (313) '
There are many alternative characterizations of solutions to Eq. 3-11, although the formula in Eq.
3-12 seems to be the simplest.
The restriction that ¥ > v, in Corollary 7 doec introduce some loss of generality. If these alterna-
X tives to Theorem 6 are used, it is not possible to get all solutions for 4 == v, . The set of all solutions
i ) arbitrarily close to the optimal 7, is the best that can be done. The reason for considering this special
< case is that Eq. 3-12 has a reasonably straightforward generalizations to the rational matrix case, whereas
N Eq. 3-8 does not. A further difficulty with the rational case is that, unlike the constant case, it appears
"'_ that it is not possible to actually compute v, exactly. This makes our inability to obtain a direct general-
ization of Theorem 6 seem less critical, at least with respect to application of this theory.
.y
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3.2 Hankel Operators and Best Approximation Problems

Two classes of operators on a Hilbert space, Hankel operators and Toeplitz operators, have played
an important role in function theory on the unit circle. In recent years the theory of Hankel operators
has attracted increasing attention in the areas of control and systems theory, mainly due to its applica-

tions in model-reduction and best approximation.

The best (or Hankel) approximation is reviewed in this section where the Hanke! operator plays an

essential role. The problem is stated as follows:

For given (matrix) function G € L, , finding a function @ € H such that

G - @ lle is minimized.

This problem was first solved by Nebari for general scalar discrete systems [N1]. The multivariable v;r-
sion was later solved completely by Adamjan et al. |A1,A2]. Recently Glover considers a special-case- of
the problem where the function to be approximated is real-rational, i.e., G € RL 5. Ap efficient and con-
structive algorithm for the optimal solution was constructed in terms of a balanced realization of the sys-
tem [G2]. For the real-rational case this is a most effective algorithm. A simple proof of existence of the
minimizing solution @ is possible using a Parrott/Davis-Kahan-Weinberger theorem on norm-preserving
dilations [D15,D16,P4]. This approach is quite elegant and will be used later in the proois related to the

GDP.

Assume that G (z) belongs to L o(T ) with the power series expansion

G(z) = i Gz,

| - -0

The following definitions will be used throughout this chapter.

LAY Sl Rl S




Definition : (Multiplicative or Laurent Operator)

The Multiplicative (Laurent) operator M generated by G (z), is defined as

Mg : LAT) — LAT)
/ — Mg/ =G /f

Definition : (Hankel Operator)
The Hankel operator H; generated by G (z), is defined as
Hg : HAT) — H{(T)
/ — Hg/ = (PyM, )/
Remark

A matrix representation of H; is

G4 G, Gy ...
G-z G.g * e
G_“ . e ...
) L] * ...

B j

which is the well-known (infinite) Hankel matrix.

Theorem 1 (Best Approximation)

Counsider the following minimization problem:

4 G -
1 & min |16 - Q.

Then,
7, = ||Hg ||

and the minimum is achieved by some @ € H .

Proof

__________
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Sl The inequality

nf {na -9 lle:Q eﬁm(r)} > |[Hg (|

..‘_: is easy to establish. Fix @ in Ho(T), then
N
16 - @ lla = mp {I1(G - Q)f lls:/ €HAT). 1|/ |1S1)
- 2 o (I1Pg(G - @ Il €HAT) 11 hsi)
=
. ~ s [11Py Gf lla:f € HAT) 111 {ks1)
s = Il Hq |].

and take the infimum over Q.

Since f € HA{T), it can be written as the power series expansion

f(z) = 3 7.2

e 1 =)
::j:: ) and let
NS ,

Mz) = Hof = PyiGf) = 55 hs'.
- 1w - 00
:}:: Then the matrix representation of Hc can be expressed as
J‘::-

1 r r

‘ [h_, Gy Gy .| [r.]
.:'..:-' h_z G_z G4 ...... /l
.:_\'- h4 04 G_‘ ...... fz
:',\‘. [ ] - [ ] ® Liaves L

-J.."" * 3 * ... .

] . J [ ¢ ... J | J
RS
N This is exactly the matrix representation of the Hankel operator generated by G .
o

v

v

e
Y

o

‘e
t
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Now, it is sufficient to show there exists a function Q in H (T ) such that

(1G - Q [lo = [[Hg [I.

By a result of Parrott's [P1,P4], there exists a Qo such that the norm of the Hankel matrix is preserved,

ie.,

G,-Q, G ... .
G, G ..
“ HG ” - ° |
. * ...
[ ] ® i
Similarly, there exists a @ such that
G-Q: G,-Q, ...
G, —Q‘ G-l ...... Go'Qo G-l ......
G-l G_g ...... G-l G-2 ......
I3 * ... == Y ® i
[ ® ... ° ® e
) L * @  Liaees

x
Continuing in this way gives a suitable Q (z) = 2 Q. 2' € Ho(T) such that the minimal porm is

1 =)
achieved.
QED
The following corollary is immediate.
Corollary 3 .
[l He || = MzalHg *Hg] (3-15)

where \,[Hg *H | is the maximum eigenvalue of the matrix [H; *Hg|.

Note that if G is real-rational, then there exists an optimal solution Q@ € RH,,. Related materials

are presented in Chapter 5 where an algorithm for constructing the optimal Q is given.



3.3 Toeplitr Operators

For the GDP, the solution is more complicated and both Hankel and Toeplitz operators are
involved. Therefore, a overview of the necessary properties of Toeplitz operators will be established using

simple algebraic procedures. More details on Toeplitz operators can be found in standard publications

[B5,D7,D8,53].

The definition of Toeplitz operator is given in the following.

Definition: ( Toeplitz Operator)

The Toeplitz operator T generated by G(z) € L (T), is defined as

T; : H{T) — HAT)

/ - Tl = (PyM¢)f

Remark

A matrix represeatation of T is

Go G, Gy ......]
G, Gy G, ...
Ga G4 Go ......
. [ ] ®  Liisee
L J [ ®  Liiees
[ 4 L J ®  Lii.ee §

which is the well-known (infinite) Toeplitz matrix.

In the following, some of algebraic properties of Toeplitz operators are reviewed. The first lemma is

well-known.
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< Lemma 1

T [[ = [IMg [[ = || G ll»

DAY
. %

Proof

PhS
PP

s a4,

The proof can be found in [B5,D7].

I'd

Lemma 3
X Te* = T
Proof
Y f.9 € HAT),
<T.S .9)=(PgM,f 3>
= </ MPyyg >
= <[ ,Mgg >

r = <Pyf Mgy >

3

N = <[ ,PgMgg >

s: -

":j = < f tTG, >

o> = <TG., 8 >

\'-

» s T, = Te"

. QED

Definition:

:'.:-‘ The operator S; generated by G (z) € L (T ) is defined by
LN
_, Sg : Hi(T) — HAT)

b ;= 8g/ = (PyMg)f

‘-
o -

NN

R R e et Q. N
LN

-

<. .‘_ -‘ ,.. 0.. . .4.‘
P YRR I WL iy W P ¥
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[y Lemma 3
-2
o
) S(; - HE.
b,
’ Proof
r
2.
X Y f € H{(T) and g € HAT)
N <8¢/ .9 > = <PygM¢/ .9 >
"¢
)
o = <[ ,MEPyyg >
“‘ == < j 'MG“ >
= < Pylf Mg >
=</ -Pn}Ma-’ >
. = <[ H;9>
: .
v = << HG- g >
N
:‘; % SG = HE.
- QED
,
:.: ) Lemma 4
,.
] Assume &, ¥ € L (T). Then
o
(i) Tey ~ TeTy = H2H,. (Sarason)
(i) Tew = TeTy if either &* or ¥ belongs to H(T). (Brown-Halmos)
},’, Proof
& () ¥ s € HAT),
Tew/ = PyMaov/
'?
~! = PyMM,/f
>
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= PuMo{Py, + Py IMyS
= (PuMoPuMy)/ + (PuMePyMy/f)
= (PuMoPy )Py M)/ + (PuMoPy1)(PaMy)/
= (T¢Tv + SeHy)/
From Lemma 3, S¢ = HJ, and
Tew = ToTy + HEH,
(ii) 1f either ®* or W belongs to Ho (T ), then
H,_ = 0or Hy = 0.

From (i), The equality follows immediately.

Remark

Lemma 4 shows that the Toeplitz operator does not have the multiplicative property in general

except for the case of Lemma 4-(ii}.

Definltion:
The operator T generated by G(z) € L o(T) is defined as

Ts : HH(T) — Hi(T)

f = Tef = (PyMc)s
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Remark

The operator 'i‘c is upitarily equivalent to the Toeplitz operator T ., by means of the unitary

operator U which is defined as
U: HI(T) — HLT)
Uf = zf*

that is, T U =U T; [D9]. -

Lemma §

The multiplicative (Laurent) operator M can be represented as

T¢ Hg
Mg = 8¢ Tg

Proof

Let L, == H} ®H,, thea

M; : H} ®H, — H! ®H,

Me [,] [:: Hc] [/]

where f,EHgl and f,€ H,.
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3.4 Optimal Solutions of General Distance Problems

The fundamental issue in the general distance problem is the existence of the optimal solution. In
this section it will be shown that the optimal solution of the GDP exists. Since internal stability (or
equivalently, causality) is required , the nature of the problem considered will be very different from that
in the constant matrix case [D1,D16]. The proof is essentially a generalization of that for best approxima-
tion given by Doyle [D15,D16] where the Parrott/Davis-Kahan-Weinberger theorem of Section 3.1 on
norm-preserving dilations is used. In case that R is real-rational, it can be shown that there exists a
real-rational optimal solution. The 2-block GDP will be studied first. The results are then generalized to
the 4-block GDP. Both the 2 and 4 block problem have been studied by Feintuch and Prancis
([F1].[F2]). Their results are more general than those presented here because they consider time-varying

as well as time-invariant systems.

Consider the following 2-block GDP:

Q R,
v, = Quél!l'lw R - [0 ] . where R = [Rz € L. (2gdp)
Define the operator ' from H, to H...l @ L , as follows:
I‘R : Hz g Hgl eLg
FuiRid (3-16)
rﬂf = R2/ ' f € H2

Theorem 1

Consider the 2-block GDP in (2gdp), then

R,-Q
’ R, ,m- [Ce Il

min
QEN,

Proof
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L d
f.
4N
-.:'_' The following inequality is proved first.
3
In fi-@ > |Ir (3-17)
:::; 0“61"” R, o = [T I ‘
"z -Q F(Rl Q )
s = sup :f €EHy IS 2 S
¥ Fpnzl(’?x - Q)
> sup R.f S €Hy |l S |l2<1
: 2
-
*:‘ o
o RS
fhe » - .
Vj sup | R 2-/6”3.“/“25
= |Irall
,"
N It will be convenient to complete the proof by transforming the rhp into the unit disc (see Appendix B).
'&E For the rest of the proof assume that this bas been done. Since Ry, R; € L (T ), they can be written as
2'. ) power series expansions:
N a0
- Ryz) = ¥ ozt
. -- t e -
i. . o
Riz) = 3 Azt
v t - -0
x and
:': oo
- [(z) = % .2 €H,
“.. ' w0
\ Now, let
-1
o h(z) = (b2
:::: = - = ‘ = % £ y ' )
-.. (Rl Q)f Pilzl (Rl/)lpll:l l'-‘_‘_wﬂkz lgo /,z P“21
-\‘
o
5y
u"
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Using these expression for A (z) and A,z ), Eq. 3-16 can be written as the following 2quivalent matrix

equation:

2 Gy e,
Ay ayg o ...
« B oo
Bi By ..
Bo By ...
8y Bq ...
B ﬁ.g ﬂ_g ......
Ba Bs o ...

The next step is to show that there exists an optimal @ € H, such that the equality in Eq. 3-17

bolds; for which
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. .a-l ag Qg ... ]

o ag Gy * ...
. g o L R
| [ ] L) ® s.ieee
'\-3 . . * ...
. : . o B ...
! » ' ﬂl ﬂo ......
" WCell = 1 g 8 84 ... (3-18)
:\- Bo By B ...

N By Bg By ...
& Bz Bs o ...

ﬂ_. ° L

.‘ ® [ ] ®  iienn
:}- | ] ] ¢ ... ] 00

o

:‘-;- From Theorem 3.1.5 (Parrott's theorem), there exists a @, such that

?tj -ao— Qo a4y ag ... ]

- a; a3 Qg ...

‘ a.z ag o ... )
' ag « o ...

L~ o o o ...

ey [ ] [ ] ®  eieae
‘E - * e B ...

t [IFall = . B Bo .

B Bo By -

::: o Ba Pz ..

o Ba Bag Bs ...

:_: Ba Bs o ...

= By o o ...

.0 L ] L d ® ..ee..

- SR N | ™

f:: Next, choose @, such that
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e
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ral—Ql ao-Qo (> 55 PPN T
Qo - Qo a_y [+ 20 R
a.y a_z Qg ooeeen
a. g a.g ®  .auy
a.g L] ® ...
[ ] L ] ﬂl ......
[Ta | = . By By e
b Bo By e
ﬂo ﬂ-l ﬂ_g ......
ﬂ-l ﬁ—z 54 ......
ﬂ_z ﬁ_a L I
ﬂ4 ] * ...
! L] . ® ...l J o)
Continuing in this way to find {Qo, @1, Q2 ------ } such that

Rl'Qayt &
7, = R _ = lfall, where Qui(z)= ¥ @' € Ha

2 14

This concludes the proof of equality.

QED
The minimal norm <, can also be expressed in terms of the following eigenvalue problem ([V4]).
Corollary 2
HI‘R ” = anfx [HRI.HRI + Tﬂsz] (3-19)

where H”: is the Hankel matrix generated by R, and TR?Rz is the Toeplitz matrix generated by R*R,




Proof

Assume that R , is a function in H o, such that R »R 2= R?R;and define

. R, . © .
R = R, where Rfz) = ¥ 4,2 .

t s

- m -
Following the proof in Theorem 1, there exists a @ ,,(z) = 2 Q, z' € H, such that

1 w=0
Rl"é Rl"éap!
el = =2 |1 & [l = R,

2L - (10

==> 7, = |[F&l]

X

V Q@ €Hy

o

Therefore,

* [ ] ® eeaen

. . *
a) - é, ag - Qo ay ...
ag - Q 0 Q. Qg ...

a, a_p L

a_p [} ...

......

The right hand side of Eq. 3-20 is also cqual to
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'a-, ag ag ... ]

Qg g ©* ...

04 [ ] ® ..

[ ] [ ] ®  eveas

[ ] [ ® ceveee

o o B ...

« B By (3-21)
B Bo O

fo 0 O ...

0 0 o ...

0 . ¢ ...
L * . * L. ‘ o0

because {Q , } are chosen to be norm-preserving. The zero rows in Eq. 3-21 can then be deleted without

affecting the norm.

Hp,

2 . .
Tﬁz - Xm [HRI.HRI + TR;TR,]

Since R 2 € Hy, by Lemmas 3.3.2 and 3.3.4-{ii),

T = T

T‘iz.T’iz = Tﬁ,-T’iz = RpR,

RpRy
This completes the proof.

QED

Remark

Corollary 2 can also be proved using Lemma 3.3.4-(i) (Sarason {S3]). Recognizing that Eq. 3-18 is

equivalent to

HR‘
v, = Thg, = Ak [Hn,'ﬂn, + Tp*Tg, + HR,'HR,]
Hp,

x©

The result follows immediately from Lemma 3.3.4-(i), since

Vs

“' et ot
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. Tnsz - Tnz"rn’ == TRq‘Rg - TR{ TRS - H(Rf r‘nnz = Hthﬂnz . |

The following theorem is the real-rational version of Theorem 1. The theorem is stated without

. proof which will be given in Chapter 5 where real-rational matrices are the focused topic.

N Theorem 3
N
; It R € RL , (realrational) in (2gdp), then there exists an optimal Q € RH » .
Although Theorem 3.1 and Corollary 3.2 give explicit formulas for v, , the formulas cannot be used

. directly to compute either v, or optimal @ 's. Certain observations can be made from general operator

theoretic considerations which indicate the difficuity of such computations. A Hermitian Toeplitz opera-
: tor has no point spectrum (i.e., no eigenvalues). This is known as the Hartman-Winter theorem (see

Douglas (|D9})). Therefore, in Eq. 3-4, TR;R, has infinite rank even whes R, is rational. This is quite

different from the simple best-approximation problem (e.g. Adamjan, Arov, and Krein ([Al],|A2]), and
) Glover ({G2])), where in the real-rational case the corresponding Hanke! matrix has only finite rank which ’
- - is equal to the McMillan degree of the given transfer matrix. While peither Theorem 3.1 nor Corollary 3.2 !

provide a numerically attractive method for computating 4, , which remains an open question, existence is
settled, and the Hankel @ Toeplitz structure appearing in Corollary 3.2 can be analyzed to provide

further insight into the problem of computing 7, . ’

Since for rational R the Hankel part of the operator in (3-4) is finite rank and therefore compact,

the operator Hnl‘ﬂnl *Tn;n, can be viewed as a compact perturbation H"x‘n“x of the operator !
TR;R,‘ A standard result in operator theory is that compact perturbations do not change the continuous

part of the spectrum of an operator (Gohberg and Krein, [G4]). It is easily shown from these general

operator theoretic considerations that the spectrum of HR“HRI +T, . consists of the continuous spec- -

PR

trum of Tan plus a finite number of discrete elements. The spectral radius is then either equal to that It
2

of T"d‘”z and can be computed from p'* [TR,-R,] = || R,||x OF is achieved on the discrete part of




A the spectrum. In the latter case, there is no known method for directly obtaining 7, ; this has motivated

the investigation involving approximations and bounds that appear later in this section as well as the

iterative scheme in the next section.

Operators with the Hankel @ Toeplitz structure of Corollary 3.2 have been investigated in some

detail by Jonckheere and co-workers, both in the H,, context ([V4]) and earlier in problems arising in

LQG (eg. [J1]). Recently, Joukheere and Verma ([J2]) have proposed a scheme for estimating 7, by

computing the solution to a single Riccati equation; it is hoped that this will ultimately lead to more com-

putationally attractive methods than are curreatly available.

-4 To avoid these difficulties which arise in the direct approach, an iterative scheme, called a 7-

:: iteration, will be proposed in Chapter 4. The rest of this section is devoted to the generalization of

Theorem 1 to the 4-block GDP.

» For the 4-block GDP, i.e.,

(4gdp)

RII_Q sz
Rn Ra

min
QeEH, %

let’s define the operator 'y as follows:

e : H®L, — H} ®L,

/ Pyt 0 Ry Rul|f
rnﬂ- 0 I||Ra R=jls]

Theorem 4

~ - Consider the 4-block GDP and assume




min
QEH,

RII'Q Rl2
Rn Rz

= Il

Proof

The proof is based on the Parrott/Davis-Kahan-Weinberger theorem, and follows closely the proof

of Theorem 1.

First it is useful to establish that

Ry,-Q@ R
min . I > el (3-:22)
QEH, Rn Rznl||l, =
YV QE€EH,,
[Ru-Q Ry,
L R2l Ra @©
{ -(Ru'Q)/ + Ry ! }
= gup | Ruf + Ray z-/GHz,ﬂGLz 7 251
Pu,}{(Ru-Q)/ + Ryuyg) /
2 sup Ruyf + Ruy 25f€Hz»¢€L2y otl, S1
P,,ﬂl(Ruf + Ryz9) /
= sup { RZl! +Ra, 2:l 6”2.’ €L2t ? Sl
= |[Fg]].

The matrix representation of the operator ['g is derived as follows. Since R € L, its four subma-

trices can be written as power series expansions:

D )
R [Rn sz] b= -0 t = -
= [Ry R=| T & w

21 2 E Z




YV N

-n'l
L2 T

4

1

o ES /‘ 4'.‘.

"
ua

PN O\ DAY

‘I‘c “ ‘e .'

e %%

fz) = 3 1.2 €H,

1 em(
and
g(z) = Y a2z €L,
Now, let
-1
hy(z) = % (k)2

= (R,-Q)/ + R”,IPH}

= (R, / + Ryy)

Pl
H;

hfz) = 5 (Ao

-

= Rn/ + Rpy

= Y A Y 1+ Y at Y g

t == -00 1] [ I | - -

which can be expressed in the following matrix form:

r("1)-1 ra-n ap M Mo N4 N2
(A1) g o Mo N1 N2 °
L] L] L ] L] [ ] [ ] [ ]
[ ] [ L ] L ] [ ] [ ] L]
L ] [ ] * [ ] [ ] [ ) [ J
L] [ ] L ] L ] L] L] L]
B | = |8 Ao * e O %
(A2 Bo B, 0 fo £
(h2), B, B 1 o ¢ 2
(A2)2 Ba o fo &1 $2 °
[ ) L] [ ] L] L [ ) L]
[ ] .1 [ ) L [ [ ) L] .
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The next step is to show that there exists an optimal Q € H ., such that the minimum is achieved.

Therefore
P -
a., a.g Mr Mo N4 N2
ag o Mo M1 N3 o
[ ] [ ] L] ® L ] L
L] L ] [ ] [ ] [ ] *
L] * * . [ ] [ ]
° [} [} ) ] [ -
[ICa ]l = B Bo T (3-23)
Bo Ba * G % ¢
B B fii o S1 §2
Bg o fo €1 C2 o
[ 3 L] [ ] [ ] [ ] L ]
| * . e o o o J lloe
Applying the norm-preserving dilation repeatedly, {Qqo @1, Q2 ... } can be found such that
R ) Qapt R 12 )
Ry Ra|ll. where Q. (z) = Y, Q' €H,
' &=
This concludes the proof of equality.
QED

Identifying the structure in Eq. 3-23 with the operators defined in Section 3.2 and 3.3, the following

corollary follows immediately.

Corollary §

Hnu 'i‘nu H”u
T, = Tr, Sa, Tr, (3-24)

HR:: T"a “sz

Similar to 2-block case (Theorem 3], the following theorem will be proved later in Chapter 5.
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) Theorem 8
I
. If R € RL (T ) (real-rational} in (4gdp), then there exists an opiimal @ € RH ..
s
n
N Although the existence of the optimal solution is also justified for the 4-block case, Theorem 3
| suffers the same criticism as in the 2-block case of being nonconstructive. The associated eigenvalue prob-
‘ lem (Corollary 5) is much worse than that in Corollary 2. An alternative approach must be sought. This
s will be the subject of the next chapter.
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CHAPTER 4
AN ITERATIVE METHOD FOR
GENERAL DISTANCE PROBLEMS

The existence of the optimal solution of the general distance problem (GDP) is shown in Chapter 3
from a somewhat abstract operator theory point of view. Although the approach is conceptually elegant,
it doesn't give any computable formula for either the minimal achievable norm v, or the optimal solution
@ . In this chapter an alternative approach, 7-iteration, is introduced which involves guessing 3 v and
then reducing the problem of finding all @ that give norm less than v to a standard best (Hankel-norm)
approximation problem. In Section 4.1 a method for reducing the GDP to an equivalent best approxima-
tion problem is shown Bounds for the optimal v, are given in terms of easily computable quantities which
yield reasonable estimates of 7v,. The guess for 7 is iterated on until it converges to the optimal norm,
7.. The optimal @ is thus obtained. A general description of the y-iteration procedure is presented. In
Section 4.2, the ~-iteration is viewed as finding the "zero crossing” of a function. This function is shown.
to be continuous, monotonically decreasing, convex, and bounded by some very simple functions. These
properties make very rapid convergence of the y-iteration possible. The conditions for which the optimal

norm is achieved are given. An example is shown in Section 4.3 to illustrate the important aspects of the

GDP.
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4.1 ~7-Iteratlon and Bounds

In this section, we present an iterative scheme suggested in Doyle (1983,1984) to solve the general
distance problem. The idea is that by guessing a value for the minimal norm, 7,, the distance problem
can be simplified to an equivalent best approximation problem which can be solved by existing algorithms
(for example, Glover (1984)). This guess can be iterated to obtain convergence to the optimal norm and
optimal Q. This witeration procedure was suggested independently by Francis (1983) (Chapter 8} for the
2-block GDP and by Verma and Jonckheere (1984) for the so-called "SISO mixed sensitivity problem,” a

2-block case.

Again, the 2-block and 4-block cases will be considered separately. Theorems 4.1 and 4.2 lie at the
heart of the 4y-iteration scheme. In what follows, M will be called a spectral factor of a ratiopal para-

Hermitian S if M € RH ., is a unit (M™' € RH ), and M*M =S

Theorem 4.1

Assume Q € Hand v > || R; || Then
R,-Q
R,

HRi-Q)M ||l <1 (4-2)

< 7 (4-1)

x©

if and only if

where M is a spectral factor of the para-Hermitian matrix (v2 - R ,*R ,).

Proof

Note that

(Ri-Q)*R,-Q) <" -RSR,
evaluated on the imaginary axis is equivalent to both (4-1) and (4-2).

QED
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The theorem means that if 7 > || R, ||, there exists a @ € H, such that [{[R,M'-Q ||, <1

and hence, |[HR1”_.|| < 1. For such a @, @M will satisfy Eq. 4-1. Solutions to Eq. 42 can be

obtained by considering the following best approximation problem

[ (1) = ngl;;m HRAM™ - Q|lo = |[Hp yall. (4-3)

Therefore, the general distance problem can be reduced to a best approximation problem. [n the case that
the function R,M ™' is real-rational, the algorithms in Glover (1984) can then be applied to solve for the

optimal Q@ € RH ,, corresponding to the given 7.

The case where vy = || R, || must be handled slightly differeatly because the factorization
required in Theorem 4.1 would yield an M with zeros on the ju-axis and thus not a unit. A necessary
condition for 4-2 to hold is that R,M™ € L even though M is not in L. While this is possible
conceptually it is a condition that can never be verified numerically and we must settle in practice for the

conditions of Theorem 4.1.

Using Theorem 4.1, we can view -'1 in 4-3 as a function of 4 and iterate on the choice of 4 until

:7 == 1. The following procedure is a general description of the v-iteration procedure for the 2-block prob-

lem:

(i) Compute the lower bound ||R ,}|«.

(i) Choose ¥ such that ||R,)|, < 7.

(iii) Find a spectral factor M == (¥*] - R 2R ;)2
(iv) Let :7=HHR lM.IH.

(a) it1>1, go to (ii) and choose a larger .

{b) if v<1, 80 to (ii) and choose a smaller 7.

e e

Fal L e e e,
- . S e . .
DR, S R A Y, N VLAY PNV YR U T AT YT




(¢) if =1 go to (v).

{v) The value of v is the miaimal achievable porm. Find a best approximation of R M}, denoted by

Q..
(vi} An optimal solution @,, = Q v

A numerical implementation of this procedure could not, of course, evaluatc:y exactly, so the test in
(iv-c) would never be met exactly. This procedure could be used to iad a @ that yields a solution arbi-
trarily close to v,. In order to do this, some scheme for selecting the next guess for v in step (iv) is
peeded and the convergence properties of the procedure would depend on this scheme. The next section

will focus on the properties of 7 as a function of 7 that make it possible to converge rapidly to v, .

Since the approach proposed is an iterative one, it will be helpful if the upper and lower bounds can-
be provided in advance. The bounds in Theorems 2 and 4 are quite useful since they are relatively easily
computed and the upper and lower bounds have a ratio no greater than v2 in the 2-block case (Theorem

2) and 2 in the 4-block case (Theorem 4).

R,-@Q
Qnﬁufl;,, R )

||Hg 1
||R2||oo

2

max { [Hall. |IRalls )

max | |[Hg,)]. [I1Rsll }
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Proof

Let Q,,; and Q opt 8atisly

Rl'Qapt Rl‘Q
QeEH, 2 @
and
R - Qupt [l = Fa IR - Q lle
To prove that v, < 7, < V2 4, , note that
) Rl Qopt] .Rl‘q.nt]
o - L R2 o
r”Rl - é pt ”m ’
) - (from Lemma A.1)
S L 1Rl , (=) A
< 11 Ry - Qe |lw
= L ”R2”oo 2
R\-Q,
< V2 H[ ~ Qo (from Lemma A.1)

o’ Yo S Ty S \/570

To prove that v, < 1, £ 7, ,note that [[R,|lo < v, and

Q,

)] S 1Hall = mtn [1R -G llo < “R :

Finally to prove that 712- 7. < i, DOte that

|1Ha, ]
TS = Ryl || S VI max (IR IR = 1,
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. 1 <
oe 72' To & M,
QED
The following two theorems are the generalizations of Theorems 1 and 2 to the 4-block GDP.
Ry-Q Ry
Ry Rp ® s (r> ‘71‘) (+6)
Hu-w)-‘"{ FdR Lrg)-Lo Ju-LeD)|| < (+7)
7 T v o

where
(1 -LL*)¥
(I -LeL)*”
L
L
S
s
and
1 1
F,(—R.,—R
o pol 2)
Proof

From Theorem 1,

spectral factor of (I/-LL*)
spectral factor of ([-L*L)
R ;87

SRy

(*I - R 2R )"

(’721 -RupRS )m

o {Ru + R o7l 'RﬁRzz)'lRéRzl}

A

7 (7>7:)

H Riu-Q Ry,
Ry Rz

®
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: ||[Ru-@ r] 72|, < (+8)
i R

8 where T satisfies T*T = (3] - RS [1‘?21 Ra]) and can be chosen, from Lemma A.3, as

- 22

¢ A1 -L*L)” o

.* T o= \_(5YR2Ry S

‘: o [R n-Q R 12] T

I L

:‘_. ;(1 -L*L)" " 0

] = [Rn -Q Ry 1, 5 . - - .

= ;(‘71-Réﬁz)_Rész(l'L'Lrw S
o ..

X - [% { (Ru + Rufr*l ~RER 'R AR ) - @ } ([-L*L)"" R 8™

3

. Recognizing that

:’ 1 2 * -1p s 1 1 .

g 3 (Ru+Rulvl -RERZ)'RERY) = F,(?R,;Rn)

W

' which is a linear fractional transformation, one has that

3

J

J

y - (+8) <> H [{F,(lR,lRi)——l-Q }(l-i-i)-"' L] <1 (4-9)
‘< 7 7 v .

- Using the dual form of Theorem 1, the inequality 4-9 is equivalent to

:: ) -12 1 1 5e 1 e[ }-w

- (I -LL®) F(—=R,=R3)-—Q ) (I-L*L) <1.
S T 1 v I

:

[
+

- Remarks

< (i) This theorem is a generalization of Corollary 3.1.7 which was proved in [D1]. The difference is
N that the causality is a constraint in the problem considered b - e.

1

\

- (i} S and S need ot to be spectral factors. S and S can be any square transfer function matrices

such that $*S = (¥ -R2R ) and SS* = (¥ -RoR 3).
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(iii}  The linear fractional transformation F,(%R ,—;-Ri) has no poles on the jw-axis. This is true

because R € Ly and v > ||R2lle.

The next theorem provides the upper and lower bounds for the v-iteration of 4-block GDP.

Theorem 4
Let
Yo
T 1
T,
B ] :
’71,
and
Tty
Then
Proof

= [Ru-Q Ry
= e, Ry
[Hg || [Hg [
= min HR 12l “sz“oo
”[R"’IR'&“IQ:
® 2

BRI HR 2l
Rallo [1R 2]l

r

= max { [Hall, IRz Radlla.

v I g el R Rl

1

Rll

= max H
o

= max { |[He Il Rz llo  [1R 12llw |1Ranm;

1
7SS, ST S SN, S22

™.

- e ma
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Le" Qo’l ’ Q. opt 2 é opt satiﬂfy

[R n- Ql’l R 12]

Ry Ra = ol

® QEH,

Ry-Q Ry,
A Ry Ry

¥ . .
* ”[Rn'Qm Ryflle = due“#, [l{Ry- @ Ryllle

and

B0 - Qo ke = jmln || Ry - § |l

The proof is broken into two parts:

(A) Upper bounds (4, < T, € 1, €27, )

S w, &
- To establish that v, < T4, » BOte that
‘ Ry - Qm Ry,

el Ry ®

~ [H(R,,- Q uye Rl:”loo] ‘
HIRa R2]|lw

IA

Rll'dcﬂ Rl2
R‘Zl RZ

®©

(from Lemma A.1)

IA

2

I,Rll-élpl ”aa

| lelI lm
e (from Theorem 2)
- 2

IA

*
L 2 ‘7’ L

That T, < 7, i8 obvious.

A.. i} .
.- * 2 v . . .
'a e N tet

To demonstrate that T, < 274, . oote that

oy

”[HR“-émnm HR,:H,,]
HRzlle  |IRzllx

mnnu-omnx ”Rw”w}
- ”R’-‘l”oo “RQ”ao

ALy, ‘A'

AR

n.It.

g Ve

CRCCARAS '.r'r N ' e e e
S SRR RIS 0 ~ AT
LU W

.......
-, e
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Pt BB

) ’ Ru-Qp Riz
Ry Ry

< (from Lemma A.2)
x

‘\-’ o’ 7«: ..<. 270 .

~

\

N 1

~ (B) Lower bounds ( -7, < 7, < Mb<1 <)

::: To show that v, < 7, note that
:". Qut 0
- el = iz 1IR-Qlla < ||2 - |70 of || =

- In addition, it is easy to see that

.

. R,,

> H{Rz Rllle < 7, and R <

2 ®
. Ry
AN To show that Y, < i, note that both (R4 R | and Ry are the "compression” of R , hence,
the inequality follows immediately,

?

y Ry

] ) Since R,; is a "compression” of [R |, R ;] and Ryl and

R,

~ max (1R alle, 1R islle, |[Ralle) < max {117z Radlla ||| .
-~ 2 @©

:t- ..0 7{3 S 712 .

. Finally, to demonstrate that ?.l’. 7, < 7, Dote that

- 7 £ n, < 2max | |Ha |l IR 2w |R 12l ler 1R 2] } -2,

N
'3 . 1

: oo 7 1, < iy

)

y QED

Remarks

5

2

L4

1)

-
o)
L o
“
).+
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b,

. Ry R )
‘:: (i)  Note that ||R || = Rn Razll|.® also an upper bound.
» (i)  The proof of Theorem 4 implies that the 4-iteration may be avoided altogether by simply using
::: é opt instead of Q,,¢, with the guarantee that the solution will be suboptimal by no more than a
2, )
= factor of 2. Note that Q ,, is simply the best approximation to R,,. For the 2-block case this
fj: approximation method will be suboptimal by no more than V2.
-

- This section will be ended with a description for the ~-iteration procedure. Both 2-block and 4-

block cases will be discussed.

o - se ( 1-it :

Ud

(i)  Compute the lower bound |[R,}|x.

-
» (i)  Choose 7 such that ||R ]| < 7.

‘ (iii) Find a spectral factor M = (¥*] - R#R ;)2

o
:: '
[~ ) (iv) Let f (7)== “Hnly-l”'

g
. (a) if £ (7) > 1, go to (ii) and choose a larger 7.

(b)if £ (7) < 1and v > ||R,]|w, 80 to {ii) and choose a smaller 4.

o ()it f (7) =1, go to (v).

:'{ (v)  The value of v is the minimal achievable norm. Find a best approximation of R M, denoted by

§ Q- opt *

=
o (vi)  An optimal solution is Q,,, = @ ,,c M.

‘.

2

)-
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IL 4-block case ( r-iteration procedure) :

(i)

(ii)

(iii)

(iv)

()

(vi)

(vii)

Compute the lower bound v, = max { HIR2 Ra2)lleo

5]

N

Choose v such that v > +,.

Find the spectral factor § == (v - R 3R )" and S = (y3] - RpR %)™ Let L = RS
and l: = 5-13 21-

Find the spectral factor (I -LL*)¥* and (I-L*L)**.

H

1 1 . where F,(iR ,iké) is a linear frac-
(I-LLO)‘WF,(?R.T’-RQXI-LOL)‘W T

Let f (7) = l

tional transformation,
(a) if / (7) > 1, go to (ii) and choose a larger 7.
(b)if f (7) <€ 1, go to (ii) and choose a smaller 4.

{e)if f (7) = 1, go to (vi).

The value of <4 is the minimal achievable norm. Find a best approximation of

(I-LL‘)“”F,(%R,%Rﬁ)(l—E L) denoted by G, .

An optimal solution is @,y = Y(/-LL*)"*Q ,, (I-L*L)*.

The algorithms are not complete without some method for selecting the next guess for v in step (iv)

(2-block) or step (v) (4-block). The guaranteed convergence rate for the algorithm will depend on this

method and what can be proven about the relationship between v and f (7). This relationship is the

focus of the next section. The justification of the above algoritbhms can also be seen there.

ada e o8

o i N

P SR AR |
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4.2 Properties of 7-iteration

This section develops some properties of the 7-iteration in the 2-block GDP that are useful in
selecting the next guess for v in step (iv) of the algorithm in the previous section. The guaranteed conver-
gence rate for the algorithm will depend on this method and what can be proven about the relationship

between 7 and :7

Recall from Theorem 1 in the last section that for a given 4, -7 can be found as the norm of the

Hankel operator H, M Since R, and M are rational, this operator is finite rank and 5 can be found as

the square root of the largest eigenvalue A, of the following standard eigenvalue problem:

(Hn,u-l)‘(unlu-l)" = M (SEP)
or equivalently as the square root of the maximum eigenvalue of the following generalized eigenvalue

problem:

HeHe, v = Ml -Tppp) v (GEP)

To see this equivalence note that since M1 € H HR‘M_. is equal to H"‘;Tu-" Hence,

(SEP) - Tu-l.HR;‘HR.Tu—l“ = Ay
) - Hg *Hp v = MT ) T )ty (v=T,.u)
‘- Hg *Hp v = ATy *Tyv
- an‘ﬂnlv = \T,,Tuv
- Hg *Hg v = )T, v {Sarason (1967})
-

Hkl'HR," = )\(Tﬁ -Rz‘”a)v

- Hp *Hp v = M+l 'Tnfn,)" (GEP)

This is the desired generalized eigenvalue prublem {GEP) and the dependency of the (generalized)

eigenvalues on v is clear. Because » and v in (GEP) can be obtained from the standard eigenvalue prob-

.

" IN ‘..

lem in (SEP), existence of eigenvalues or eigenvectors for (GEP) is assured. The eigenvalues of (GEP) are

Th

functions of ¥ and are nonnegative for all v> ||T, [|“*=]|R ;]| We shall prove that :,,(7) (3nd its

PR,

square root) is continuous, strictly monotonically decreasing and convex in Y where. for a given

T I I T I
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1> 1R 3| leor Amax(?7) is defined as the maximum eigenvalue of (GEP). Results stated as Theorem 7 show
that X\ pae{7) can be bounded by simple functions. These properties can be used to guess successive v's in
a way that should quickly converge to the optimal norm, v,. Theorems 8 and 9 give the conditions for

which the minimal norm is achieved.

A key observation of (GEP) is that it can be regarded as a "perturbed” generalized eigenvalue prob-
lem. Therefore, the perturbation theory of generalized eigenvalue problems for a special case which can

later be applied to (GEP) will be considered first. The results can then be used to prove the properties

mentioned above.

Consider the following generalized eigenvalue problem for Hilbert space operators A and B,

Av(t) = Mt)B(t)v(t) i € (-¢€¢), >0 (GEP1)
where

A is finite rank, positive semi-definite and independent of ¢,

and

B(t) is bounded, positive-definite and analytic in the neighborhood of ¢ =0.

Since A and B(¢) are self-adjoint and B (¢)>0, it is well-known (Kato {1976)) that by appropriate ord-
ering of the eigenvalues (), } and selection of eigenvectors {v, }, it is possible to pair eigenvalues and

eigeavectors {X\, (¢ ),v, (¢ )} such that
A (t) = N\ (1)B(t)v,(t)

for all ¢, i and {),(¢)}.{v, (¢)} are analytic for all ¢t € (-¢,6). At values of ¢ where (GEP1) has simple
eigenvalues, this is trivial. At degenerate points, it requires the selection of X, (t), v, {¢) such that the

analyticity is retained through (isolated) point where eigenvalues coalesce. Therefore, \(t}), v(t) and

B(t) can be written in Taylor series expansion as follows:




AR
s

,. ,l IA ’L

AN

,‘:‘.)l"A

LI A

) s/

a2t
|

Mt) = A, +EN,+ ‘?"x, + o (A, = X(0), X, = A(0), ...)
v(t) = v, +tv, + ‘?2'6, . (v, = v(0), v,= v(0), ...)

and
B(t) = B, +1B,+ ‘éb‘, + o (B, = B(0), B,= B(0), ...)

Substitution of these expressions into (GEP1) yields

. 12..
Aly, +1ty, + 5 v + ..)

. t2.. . t2.. . 2.
= (A, +tA+ 52, + ...)(B, +tB°+TB' + v, #Ftyr —v, + )

-
Av, + Av, + '2—2A'v', + ... = (\,B,v,) + t(B, + \B,v, +\,By, +,B, )
# L0, Boo #0,5, u #3,BY, + 2B,
+2\, By, +2)B,v) + ......
Eq. 412 is true ¥ { € {-¢,¢}. This implies
(i) ¢°(constant) term:

Av, = )\, B,v,

(ii) ¢! term:

AI:I, - X'B, v, +)\,B,v, + X\, B, t},

(iii) t2 term:

Av, = X\, B,v, +\,B, v, +\,B,v, +2XBy, +X, By, +\B,v)

For simplicity, A, has multiplicity 1 and ¢ =0 is assumed to be a regular poiant, i.e., multiplicity of X(t) is

constant ¥V ¢ € (-¢,¢).

Note that {v, ()} form a complete set of eigenvectors. Hence, the generalized eigenvalue problem

considered here can also be expressed as : find A(t) such that

........

114

(4-10a)

(+11)

- (4+12)

(4-13a)

(4-13b)

(4-13c)
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AV(t) = B(t)V(t)A(t) (for some V (t) 5 0) (GEP?2)
where

AMt) O
V(t) = [v(l) Vl(t)] and  A(l) = [ g ) Al(t)}'

Lemma 1
Assume V| = V, (0) and v, and B, as defined in Eqs. +10b and 4-10¢c , then
v,*'B,V, = 0.
Proof
Consider (GEP2) at t = 0, .
AV, = B, V,A,
==> (B, ¥)*AB,~ "(B,*V,) = (B,”*V, A, &uf

where B,"? is any nonsingular matrix such that (B,"*}*B,”* = B, .

Finding A, to satisfy Eq. 4-14 is a standard eigenvalue problem where (B, " #)*A (B,)~ ¥ is Hermi-
tian (in fact, nonnegative). It is well-known that the eigenvectors of a Hermitian matrix, if they

cotrespond to different eigenvalues, are orthogonal to one another. Therefore,
(8,*v,)*B,*V, = v*B,V, = 0.

QED

The following theorem gives the formula for the first and second derivative of the eigenvalue of

(GEP1) A(t)at t = 0.

Theorem 2

Consider the (GEP1) with Taylor series expansion as given in Eqs 4-10a, 4-10b, and 4-10c. Then

v,*By,

v,*B, v,

(') xo= —X,
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. *B, v v,*B
) X, = NSl s D ()
v,*B, v, v,*B, v,
N} . 4 .
"—.——(VL‘ Bo"o)'[()‘ol “Al)(vl' B, VJ, )] (Vl. Bp,)
v,*B, v,
Proof
(i) To get the expression for X ,consider
v,* e (Eq. 4-13b) ==> v
v,*Av, = \p,*B,v, + \, v,*By, + X\, v,*B, v,
(Avo -XB,v, ).;"o - xi’v.aa v, + X, U,‘B,U,
0 = xyo‘B: v, + X, U,‘B,U,
oo fm oy, 2tBa
v,*B, v,
(ii) To get the expression for X, consider
VE o(Eq 413b) ==>
V* Av, = \V?* B,v, + \,V?® By, + \,V?* B,»,
From Lemma 1,
(AV, -X\,B,V )%y, = \,V?* By,
(B,V A - B,V )*v, = \, V?* By,
(A =X, I)B, V| )*v, = )\, V* By, (415)
Since v, and the columns of V| form a basis, v, can be expressed as:
v, = av, + V, z (+16)

where « is a scalar and z is a vector. Therefore,
(B,V )*v, = V®* B,(av, +V,z)
= aV *B,v, +V* B, V, 2

= (V,*B, V| )z (+17)
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;7_. Substitution of the expression of Eq. 417 into Eq. 4-15 yields

N

(Al— X,l)(Vl ‘B, Vl )z -_ )‘, Vl .B,U,

» e 7 == X, [(Al - X, I)(Vl .B, VJ. )]'lVl .B,U, . (4-18)
N

9

LS
) Also coansider

v,* e (Eq. 413%) ==>

. .'_o“/_/-l"l',

v,‘Alf, = 'X, v,*B, v, +X,u,‘§, v, + ), v,*B, v,

+2Ap,*By, +\,v,*By, +1p,*B, v)

(Av, =X\, B,v,)%, = X, v,*B, v, +\, v,*B, v,
+2Ap,*By, +X,v,*By, +Xp,*B, v)

! - .X., v,*B,v, = X, u,‘H, v, + Z(XJJ.‘B,U, + X, "o.BJ}o + X,V,‘B, ”o) (419)
:‘_: Finally, substitution of the expressions of X, v, and z into Eq. 4-19 yields
. . - v,*Bp, )?
v A, (v,*B,v,) = -\, v,*B, v, + 2X,‘(—'—L)
v,*B, v,
- + DV B, )\ I -A)(V, *B, V, J(V, *Ba,) .

8
o

. Remark

Note that the assumption that { = 0 is a regular point does not cause any problem. This is so

because \(¢) is analytic and M¢) (A (¢)) must be continuous and X,(X, ) can still be computed by tak-

ing the limit of A(1) (X (¢) ) as ¢ —0.

(&

Define oft) = \"*{t), 0, = 0{0), 7,=0{0) and 7, ='¢ (0), then one has the expression for ¢,and o, ,

which are given in the following corollary.

RSP A
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Corollary 3
() . g, U,.Bﬂ,
l 7 T2 v,*B, v,
. .. 1 v,*B, v, 3 v,‘é,u, 2 i
(i) 7 ?{ 7 v,*B, v, * ?a. ( v,*B, v, )
202 . . . Nve B
* omm v B A Ve BV B,
Proof
Let
. t2.. . .
oft) = o, +to,+ 500 F o (0, = o(0), 7,= 4(0), ...)
2 . L2 .. < g
==> oHt) = o} + t(20,5) + 7(20‘0' +232) + ...
(A of =,
(b) 20' é‘ == x' :
and :
() 20,5, + 207m Y,
From (b) and Theorem 2-(i), '
X. U.‘B,v, ) g, ”a‘éovo ) '
O, ™8  — —— - —
! 20' vl.Bl v, 2 U,.B, v,
From (c) and Theotem 2-(ii),
.. 1 - . y
J, = K(X, - 20'?) .
1 ,,v,"E., v, o2 U,‘B,IJ, 2 200‘ . )
= e | Lg% 0 0 2 Ve By e A
20, 7 v,*B, v, * 2o v,*B, v, ) v,*B, v, Ve B 3
. , 1 . 002 U,.B,U, 2 ..
“XOI_AL )(;l. Ba vi )l-(vlt Ba‘”a) - _(“—)

2 UG.BO UO

N T.
T L
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oh . 3 ]
v, B, v, 3 v, Bo”l )z + 20, (Vl‘ B,v. )* )

v,*B, v, ? ) ( v,*B, v, v,*B, v,

- .1.{-,
2 .

(O 1A VS BVOR(VE B

» s 2 v 5 8 0

QED

the maximum eigenvalue of {GEP) at a given 7 and

Tmal?) 2 Pl y

(1%

For 7> ||R2|lw, define Xpul7)

The following two theorems are the main results of this section. First, A yx a0d 0y, are shown to :

be strictly monotonically decreasing in 7.

Theorem 4

s .4

Consider the (GEP1) as given above. Then

X (i) Xgax I8 continuous in 7.

{11) Ouyay i continuous in 7.
Proof 3
Let t =~y ~ 7 and B(t)=t3 + 23] + (¥ -Tayn ). The theorem follows immediately )
3

from the analyticity of eigenvalues with respect to ¢.

Theorem §

Coansider the (GEP1) as given above. Then

(i) X\ max i8 strictly monotonically decreasing in 7.

(i1) Oax i8 strictly monotonically decreasing in 7.

e e et e - . . s e s e
PR S YRR N P S RPN T e - A A N TN T
T T S e Nt e IR T TS I s Ny RTINS N AT AT A




Proof

Assume 7 > |[R ||y, is given.

To prove (i), let ¢ = - 3 and B(t)= 3 + 2t31 + (3 —TRz,Ra).

o’ B, = 2;1
From Theorem 2-(i),

X 29\ vy, <0
o= - ———————
[ ] 7 [} U'.B. U.

Therefore, Ay, is strictly monotonically decreasing with respect to { and hence, 9.

To prove (ii), define ¢ the same way as in the proof of (i). From Coroilary 3-(i),

v,*v,

o, = -;a < 0
' ’ v,*B, v,

Thetefore, oy, is strictly monotonically decreasing with respect to 7.

Convexity is established next.

Theorem 6

Consider the (GEP1) as given above. Then

(i) Apay i8 convex in 7.

(ii) Ogay I8 convex in 7.

Proof

The proofs will be given in a similar way to those in Theorems 4 and 5.

To establish (i) note that
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B, = 27 ad B, = 2.

Since
- (”a‘Br"'o )2 ~, (v,%, )2 v,*v,
-v,*B, + 22— = -29%, + 2(29)° - (87%v,%v, - 2v,*B
’ v. vl‘BU vﬂ ! v. ( 7) vO‘BO v. UO‘B‘ v. ! ?u' va ’ v’ )
b3 2
B, —7]—7'”’"3(71
== Tv,%y, > v,*B,v,

- 8¥'v,%v, - 2v,*B,v, > 0

If X, is the maximum eigenvalue , then X, > 0. It follows that A rax I8 convex in 7.

To prove (ii) aote that From Corollary 3-(ii}, -
.. v,*B, v, v,*By, 273 .
g, == % -0, = + 10.( < 2 - (VL. B,U, ).
p v,*8, v, 2 v,*B, v, v,*B, v,

(O 1A XV BV Ba)

Since

v,*By, v,*

3 2 o Ve —2
-—— ¢+ =0, (———) = ————(67°v,%y, -2v,*B,v,) > O
B, v, 2 (u,‘B, v, ) B, v, ( v v v, 0, v )

It X, is the maximum eigenvalue at ¢ =0, o, > 0. Therefore, Omax 18 cODVEX in 7.
QED

Remark

The idea of using generalized eigenvalue formulation (GEP) in this section is similar to that in

Helton's broadband matching problem [H2| although the motivation here is completely different.

Although the function op,, is unknown, the properties shown in Theorems 4 to 6 have provided

some useful information about o4, that can be used to obtain fast convergence of the ~-iteration. A

detailed study of convergence rates is not given here, however some guidelines will be presented which
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show how the properties of o, can be used to find a next guess for y. One additional property of o, is
N useful in this regard and will be presented in the next theorem.
-
":: - ¢ - =
N Define 0, (7,7) = (—27;-)ﬁ where ¢ = 0. (7)(7% - F)* for some T > A = ||R1][)-
o T
™
- Theorem 7
:::'_: Let 04y, and o, be defined as above. Then
Ng
”
() omal?) < (77 if Y< 1.
% (i) Omal1) = 0, (17) if 7= 7.
YRS - . -
-, (iii) omad7) > o, (1) it 7> 7.
W
a Proof
7
= :
i 9y (,72 - 32)10
~
" -—> A p— o
= ‘ -AF ‘-2
K \.:_ -
\.\_'. —_ - 7
‘:q. LA (ln UK) - ‘72—ﬁ2
:.: From Corollary 3,
5 b = o ,%Y,
mat ~ “max 2
. v,* (vl - TR.{R,)"‘
:.':‘ where v, is the (generalized) eigenvector correspoading to A g (7).
-~
s d 7"1‘”:
o —(ln Opay) = - =
'\ d 7 U,‘('j.l - Tﬁ{”g)v'
Since
2_ 42 2
(V=81 S A -Tp,p,
3
g
-':.1
GAD)
o "
- S “o - e T L T Ty Tt T Ty N N T T e
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™
. ;S - v,* (- Py, < v, - TRz_Rz)u,
e

1 v,*y,
. === > >
‘ 7_ g%y = 2

: (7 - ﬂ ) va.(7 I - TR{RQ)U'

‘
5
'." % —d—(ln ,) < -—d-(ln Oeax) < O (4-20)

dv = dv x
- Since Omul(7) = 0, (1.7), Eq.(4-20) implies that
> In(0,) € lo(0gme) i 7> 7
and

‘:":
,'.:-" ln{o,) € o(oms) if 1<7
:‘_; The theorem follows immediately.
o QED

- The importance of Theorem 7 can be seen from Figure 4-1. Suppose that at one step in the -
r‘

- iteration, we have evaluated o, at 7, and v, from previous iterations, and want to make a new guess
1 for 7. Assume that § < v; < 7, such that on,(7/) > 1 a0d o7 ) < 1. From Theorem 7, we know
:*.:, i immediately that v, < v, < 7,. Since oy, is 2 convex function in <, o, must lie below the line seg-

. ment (denoted by F (7)) connecting the points (v,,00.d7:)) and (7, ,@ou(7, ))- In addition, by Thearem

N 2 v

T . T maxt 7 ~
7, Orax Will lie above the function o, (7,,7) = el ;)(71 mf) when 7 > 7,.

- (-8
..s
7~ Suppose that v,’' and v,’ are the points where F\(v,’ )= 1and o,(7,,7,' )= 1. We can con-

iy

- clude immediately that v,' < v, €4.'. The next guess for v is narrowed considerably over what-

.'?f would be known on the basis of continuity, convexity, and monotonicity alone. Thus it is clearly possible
7 to obtain a scheme for picking the next guess for v that will provide rapid coavergence to the optimal.

Further consideration of convergence rates is beyond the scope of this report,

',:, Remark
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The ~-iteration can be viewed as the problem of finding the zero crossing of the function

(omax(7) - 1).

Conux(YD) T
Fiv
1 .
Smmx(Yd) T Oumax ()
SuWsY)
+ et t = ‘ i>—§'

Flgure 4-1, 7-iteration

The following two theorems give the conditions for which the optimal norm +,, is achieved.
Define F(1) = R,(v* - RPR) '~

Theorem 8

Assume 7 > ||R;||o. Then

¢ma [IF(7)-Qlle = 1 ifandonlyif y=1, .




Proof
(Necessity }):
It ||Hgz |l =1 but Y 9% 4,, then 7 must be greater than 7, (since 7, is the minimum norm).
From Theorem 5, ||H, || is strictly monotonically decreasing with respect to 7. Therefore,
1>7, ==>  |Hpq)ll > [Hegll =1

This contradicts the definition of v,. Hence, 7 = v, .
(Sufficiency):

It 7=+, but [{Hp 5| < 1, by continuity and moootonicity, 5 ¢, > O such that
HHre)| 1 (where y=7-¢,)

This is impossible since 7, is the minimal achievable norm.

M [Hegll = 1.

Theorem 9

Assume 7 = |{R;||w. Then min [|F(7)- Q|| < lifandonlyif 7=1,.
QeRH,

Proof

{Necessity) :

-

1Hemll € 1 implies 72 7,. Together with the lower bound (Theorem 4.1.2) 7, > ||R .|l

therefore, 7, =;.

{Sufliciency) :

This is obvious from the Theorem 4.1.1.
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QED

aly if;-'y,.

7= ([Ra}lw 30d [[Hy; ([ <1 if and
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4.3 An Example

In this section, a simple example with a single parameter is constructed to illustrate various proper-

ties in the 7-iteration. An exact optimal solution will be derived in detail.

Consider the following 2-block problem:

8~8 [e o)

Let @, be the optimal solution which achieves the minimum norm. Using the formula in Section 3,

I

*! < L M| <1
1 <7 - e - @) H =

[ Rk ] @

1 1 )- V2 2+a

= S e
-&#-3 #-4a e +\/'12¢§~1

where M = (-

1+a
Assume G = (-;I—I-M“),,.,,,.,, = —Zi-%i and consider the following best approximation

problem:

G -Gl
G2 116 -4 .

It is not difficult to solve this problem. The minimum norm is

5 5 1 1+a
,m G -Qlle = Fl—F 7= £02
g2 |l o = 3l (

and the optimal solution is

= 1 1+a
Ql - '?(7+m) (4‘-3‘
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« Computation of the minimum norm 7.t

Of course, in order to have Eq. 4-22 make sense, the Hankel norm of G must be less than or equal

to 1. Therefore, it is reasonable to assume -:—(-%g) == ] and solve for 4. Once v is found, sub-
< Y+ vVyas-1

stitution of it into Eqs. 4-22 and 4.23 leads to the optimal solution and minimum achievable norm of Eq.
421,

Let

2 'y + VY el '

1+ = 2(7+\/‘7!a!—l)
(14a 2y = 2VFa’-1

xz===>

Taking square on both sides and collecting the terms with same power in 4 yields

41-a) -4(1+a)y + [4+(14a)] = 0O (4-24)

There are three cases to consider.
Casel; s =1 ‘
In this case, Eq. 424 is simply a linear equation and has solution ¥ = 1. Therefore,

7. =1

If a1, Eq. (4)is a quadratic equxtion and the conditions such that a positive real solution exists

are:
. 4(1+a
(i) - —(——,,—) > 0 e a > 1
8(1-a %)
and
e ) -.." ~.> ":'.'>.'.‘A L LI VR i W 4,_..‘-_
RN AT NI T P PP ST PR P PEPOPE P P TP V. P P
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v+ ;'ﬁai—l

18 + \/’f?—l

1 -
(_D—IM l)mu. =

Therefore,

Q = {(Q.) + (’—ilM-l)mm} oM l

™,

70 - VFEL

1 1+a e + Vyai-1 s 2t Vriai-1

2 4+ Vet s+a s +g

Substituting the optimal v, into Eq. 4-25 separately,

Q = - !l+a!a+2¢
. .

2(s +a)
Qa = -1

g-1
Yo 8 +70 +T

&+a

The significance of this example can be stated as follows:

(i) From Eq. 422, the Hankel norm of G is a convex function of 7. This can be verified by comput-

ing its second derivative with respect to 7 and showing that it is always greater than zero.
(i) If0<a £1,thenv, = ||R;]]o. This means that the lower bound in Theorem 4.1.2 is tight.

(iiij If0 < a < 1, then the optimal solution is not unique. Recently, Professor Bruce Francis showed
a family of optimal solutions which includes the one given in Eq. 4-26 [F6]. However, if a > 1, it

can be shown that the optimal solution (Eqs. 427 and 4-28) is unique.
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(i)  [4(1+a)]2-4[4(1-6*)) [4+(146))] 2 0 > a*+a2+4a-4 >0

Case2: a > 1

It is easy to see that (i) and (ii) are satisBed automatically in this case. Hence, in (4) will have a real

positive solution if a > 1 and the solution is

! T
T Heon ["”\/:T'H]

Cased: a <]

In this case, Eq. (4) has no positive real solution. But observe that if 0 < s < 1

1+a

1 1
2(,—?-,—7+ a_l) 12 -

1

1 . .. 1
where - - [ — “oo Therefore, the smallest possible value of v is simply -
Y
' a
To summarize,
(i) s <1l : v, = 1
’ a
(ii) a =1 v, = 1
1 2, 4la-1]
TR N EE =)
+ Recovery of the optimal solution:

Note that
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CHAPTER 5
OPTIMAL STATE-SPACE SOLUTIONS OF
GENERAL DISTANCE PROBLEMS

In this chapter, the general distance problem is treated in the context of the real-rational transfer
function matrix (R (s) € RL ,,) where H , of the half-plane instead of the unit disc is used. Both two-
block and four-block problems are considered separately. Since any real-rational transfer function matrix
has a finite-dimensional state-space representation, it is shown that the corresponding GDP can be solved

using attractive state-space methods involving only standard real matrix operatioans.

Recall that the GDP can be simplified to an equivalent best approximation problem if the value of
7 is chosen properly (Theorems 3.4.1 and 3.4.4) where the spectral factor of the para-Hermitian matrix
with the form (v*/ - G*G ) (or (v* - GG*)) is used. Since the stability of G does not aflect the result .
of the spectral factorization, i.e., the poles of G in the open rip will be replaced by their counterpaﬁ in
the open {Ap, it would be convenient to assume G € RH . If this is not the case, a coprime factoriza-
tion of G with inner denominator can always be found and the numerator matrix can be used in place of
G . This particular coprime factorization is presented in Section 5.1 which involves finding the stabilizing
solution of an ARE. Since the constant term in this ARE is identically zero, the stabilizing solution can
be obtained more efficiently by a "modified” Schur method which is no more than finding the Schur
decomposition and solving a set of linear equations. This is discussed i Section 5.2. In Section 5.3, the
state-space formula of spectral factors (Y3 - G*G )" and (v*I - GG *)** is derived. Once the GDP is
simplified to the corresponding best approximation problem, Glover's algorithm |G2] can be applied to
find the solution which is reviewed in Section 5.4. Finally, combining the state-space formula of factoriza-
tions and the best approximation mentioned in Sections 5.1 through 5.4, the optimal solution for the

GDP is obtained in terms of the "closed-form”™ state-space realization.

Py

R S O e

S L




5.1 Coprime Factoritations with Inner Denominator

In this section, the coprime factorization with inner denominator will be developed. Explicit state-

space realizations will be given which involves solving an algebraic Riccati equation. Without loss of gen-

AlB
erality, it is assumed that G = [F{'E] € R} *™ and the realization is minimal.

Theorem 1

Consider G € R/ ™™ Then there exists a rc/ G == NM ' such that M € RHZ ™™ is inner if

and only if G has no poles on the juw-axis. A particular realization is

M A+BF\|B .
Nl = F ‘l € RH ¥ )™ (5-1)
C+DF D

Proof

(Sufficiency):

Assume G has no poles on the ju-axis, therefore, Re[\,(A)] # 0. It is known that the
ref G == NM 7' can be obtained using state-feedback gain F such that (4 +BF) is a stability matrix
where M and N have the realization as in Eq. 5-1. Since M is required to be inner, the following two

equations must be satisfied for some X (Lemma 2.3.3):

BTX + F =0 (5~4)




[N =
-
«
*

.'.

/ (A+BF)TX + X(A+BF) + FTF = 0. (5-5)
Note that

(Eq.54) e» F = -BTX

Pl A M )

(Eq.55) <> ATX - XBBTX + XA - XBBTX + XBBTX = 0

e ATX + XA - XBBTX = 0. (5-6)

Eq. 56 is an algebraic Riccati equation. Since (A ,B) is a controiiable pair and Re[), (A )] % 0, Eq. 5-6

P Il P A A

has a unique stabilizing solution X > 0.
(Necessity):
GG® = NM '(NM )* = NM (M )*N* =_NN*.

Since N € RH,,, GG* has no poles on the jw-axis. Therefore, G has no poles on the jw-axis.

QED

7 Similar results for the ic/ can be established easily by duality.
A
S
4 - Corollary 2
\ .- -
) There exists a lcf G = M "N such that M € RH2*" is inner il and only if G has no poles on

the jw-axis. A particular realization is
. - A+HC|H B+HD -
- [M N] = [ c 11 D ] € RHLP*™) (5-7)
N where

and

......................
...............
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Remarks

R A e

(i) The minimality condition on G is not necessary and can be weaken to that the pair (A B)

By by

4‘.-’4‘.‘1"
HYurs

((C,A)) is stabilizable (detectable) and Re[X,(A )] 7 0 in Theorem 1 (Corollary 2).

e

(i)  Note that the constant term in the ARE (Eq. 5-6) is identically zero. Although Eq. 5-6 can be

LR/

solved by the existing algorithms, for example, the Schur method in [L1], a simpler and more

v
s

2,

efficient algorithm will be presented in the next section for this class of ARE.
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5.2 A Lyapunov Approach for Obtaining the Inner Denominator

In Section 5.1, the coprime factorization with inner denominator is obtained where an ARE is
required to be solved. In this section, a more eflicient algorithm will be developed by taking advantage of
the block upper triangular structure of the associated Hamiltonian matrix (Eq. 5-3 or 59). The computa-
tion involved is much simpler compared to that in the general Schur method where the Schur reduction of
a 2n X 2n matrix is required |[L1]. The idea of invariant subspace corresponding to the eigenvalues in the

open (hp will be used. Without loss of generality, only the right coprime case is treated here.
Consider the Hamiltonian matrix which arises in the rcf with inner denominator,
A -BBT
A” = 0 -A r
where Re[x, (A )] % 0, ¢ = 1,2,......,n and the pair (4 ,B) is stabilizable. The algorithm is composed of

the following steps:

Step 1

- Find the upper Real Schur Form of Ay such that the eigenvalues with negative real parts appears

first, i.e.,

A, A,u]

r ==
raw = [

where A, and - A, are stable matrices and U = [U, U,,] is an orthogonal matrix. Note that

the columns of U, are the Schur vectors corresponding to the eigenvalues with negative real parts.

Step 2

ut o
Apply the similarity transformation T, = [ 0 Ur] to Ay:

- - . " . . - - - - - - " . ..
LY. NS PG I, VUL IPYL I PSS T Wiy 1A TV U Wl G G SRy




........

........

A, A, -B,BT -B,BT

. UTAU -UTBBTU 0 A, -B,BT-B,BS
TAy T, = 0 -UTATU| T Jo o -AJ 0
0 o -AT AT

where B, = U,’B and B, = U/]B.

Step 3

Solve the Lyapunov equation:
A,Z + ZAJ = B,BT. (5-10)
Since the eigepvalues of A, are in the open rhp, Eq. 5-10 has a unique solution Z. From the

assumption of the stabilizability of (A ,B), the pair (4, ,B, ) must be controllable. Therefore, Z > 0

is concluded from the Lyapunov stability theorem.

|

Tz ==

Apply similarity transformation T to T Ay T:' toget

A, A, -AT-B,BT -AT-A, +A4,2-8,8]

0 A, -B,BT+2A] 0

TZ‘(TIAH 7“!‘1)7‘2‘l = 0 0 _A'T 0

I 0 o -AT -AT
';x

[

[
& _’";';‘, h
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Form the third similarity transformation T, as

1000
e 000 /
0700
N 00170

Then

.
A
ol

A, -AT-A, +A,Z-BBT A, -Al-B BT
-AJ 0 -AT
0 A, -B,BT+24T
0 0 -AT

a2 a

".JI‘A

T;(TQTIA” Tl—lT2~l )Ts-l == . (5'11’

."
o B
o o o

. .‘ .I
’ "- ".

O

Step 0

PSS

PK -
1%

Define T = TT,T,, then

P
.

T-l = Tl'ng'lTs'l

- 17

[

Note that the left upper n X n matrix in Eq. 5-11 is stable, therefore, the stabilizing solution X s

R M /t?";'

A

g

O -~ O O
~ O N~

0
I
0
0

A

oL uYy
OO O -
OO -
-0 © O
QO -~ Q
O N O O

N AN \ e .

_er v,
+

simply
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o %

eed -“a‘

= el d)
- [0 w) [g ;’_,] [fi;i]
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2o

Ay
- s

el




= U2 >o0.

To summarize the procedure,

Find the upper real Schur form of A such that the eigenvalues with negative real parts appear

first, i.e.,

A, A,
UTAU = ¢ | where U = [U, U.,]
]

Solve the Lyapunov equation:
A2 + 2AT = UTBBTUT.

The stabilizing solution is X = U, Z "'UJT.

e Tl Ty T
B AT Ry
B I AN AP
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PUR VP W W VAP WU T Y O T )




L ol o o

s

(i)

(i)

(iii)

(iv)
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Remarks

The method described here is more eflicient because the matrix involved in the Schur reduction

is only a n X n in contrast to 2n X 2n in the general Schur method.

Since the matrix A, is already in the quasi-upper triangular form, the solution to Eq. 5-10 can

be obtained by simply solving a set of linear equations [B2,G3).

Z "' can be computed by taking advantage of the symmetry of Z which has order at most n (n

is the dimension of A .).

It the realization of G(#) is already in the balanced form, them the solution

X = diag(L, 1o , L1 ), where {0, ]} are the second order modes of the unstable subsys-
ay, 09 (4}
tem of G(e).

A special case is when the matrix A is completely unstable (i.e., Re[)\,{A )] > 0, ¥i) and (A .B)

is controllable, then the ARE

ATX + XA - XBBTX =0

is equivalent to the following Lyapunov equation

YAT + AY = BBT.
Since (A B} is controllable and Re[)\, (A )]|>0 guarantee that Y >0, X == Y ! is the unique

positive definite stabilizing solution of the ARE.

o v 4 5 s




5.3 Spectral Factorizations

In this section, without loss of generality, G () is assumed to be stable since any G € RL ., may be
factored using Corollary 5.1.2 to obtain a stable numerator N such that N*N = G*G. The objective

now is to derive a state-space formula for the spectral factor of (v*/-G*G ) (or (¥I-GG*)).

Theorem 1 (Spectral Factorisation) -

Assume G(2) € RH ™ and 7 > ||G(8}|le. Then, there exists a M € RH2 ™™ with stable

inverse such that M*M = ~°] - G*G with

A B
M “R°K, | Ry

“¥I-DTD > 0

-R;\BTX -DTC)

A+BRs'DTC -BR;'BT

Ric | cr14DRrs*DT)C -(A+BRG'DTC)T

cTc -c™p}|(s1-A)'B
DTC Ry 1 ‘

22 - G*C = [Br(-al—Ar)-l l] [:

Since ¥ > [[G ||, T(fw)>0. The minimality of the realization of G guarantees that (4 , B} is
controllable and (-C T C , A) is observable. Thus, from Corollary 2.3.2, there exists M € RH2™"™ and

M- € RH , such that T = M*M and a particular realization is

A B
N A
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where
K. = -Rg\(BTX-DT(C)
and
A+BR;'\DTC -BR;'BT
X = Rie CT(I+DR5'DT)C -(A+BR;'DTC)T
Sioce G is stable, it is concluded that M € RHZ*™.
QED

The following cotollary is the dual result of Theorem 1.

Corollary 2

With the same assumptions as in Theorem 1, then there exists a M € RH?**® with stable inverse

such that MM * = 42 - GG* with

) Al-K R}

where

Rop = 21-DDT > 0

K, = -(YCT-BTD)R
and

(A+BDTR5'C)T  -CTRj'C

Y = Rie BUI+DTR;'D)BT —(A+BDTRC)|"

Remark

The notation (v*/ - G*G )¥ ( (v*] - GG *)"* ) will be used to denote the spectral factor M () in

Theorem 1 (Corollary 2).
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. Theorem 3

It v = ||G(¢)]]|e but v > 7[G(o0)] in Theorem 1, then there exists a M € RHL ™ with M"!

analytic in the open rhp such that M*M = +°/ - G*G with

A B
M = | TRk, )RD""'

R, = ¥l -DTD > 0

K. = -R;\(BTX-DTC)
and X is the unique solution to the ARE
(A+BR;'DTC)TX + X(A+BR;'DTC)-XBR;'BTX + CT(I+DR;'DT)C = 0 (514)

such that Re{)\, (4 +BK_ )] €0, ¥ i .

Proof

Let

. . [ r s ] -CTC -CTD||(s1-A)'B
I=1-G*G = [BT(-el-AT)" I[| pro p !

By assumption, I'(jw) 2 0 and Rp = I'(00) > 0. Since (A ,B) is controllable, from a theorem of J.C.

Willems [W1], there exists a unique solution X to Eq. 5-14 such that

A + BR;\DTC - BR;'BTX = A + BK,

has no eigenvalues in the open rhp .

QED

Corollary 2 can be generalized in a similar way to the case where v = ||G ||, but v > F[G (x0)]

such that M ! is analytic in the open rhp .
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5.4 Balanced Resllsations and Best Approximation Problems

In Section 3.2, it was shown that there exists an optimal solution Q € H, to Eq. 3-14 such that
J|IR - @ {lo = }||Ha || The same equation will be reconsidered in this section for real-rational R. The

idea of balanced realization will play a key role iz this problem.

A|B
Recall that a stable transfer matrix G (s ) with minimal realization [Eb] is called "balanced™

there exists a diagonal matrix
L = diag {0y, 0, ...... , O4) 2072 ... >0, >0,
such that the following two Lyapunov equations are satisfied:
AL + CAT = -BBT
and
AT + 24 = -CcTcC

where {7, } are called the "2nd order modes™ of the system [M4,P2].

It G(2) is completely unstable (i.e., no eigenvalues in the closed {4p ), then G (#) is said to be bal-
anced if G(-#) is. The method for obtaining balanced realization is not unique which can be found in

[E1,L2,M4]. Note that balanced realization is also very useful in model-reduction [E1,G2,K7|.

The following lemma shows the relation between the norm of a Hankel operator and the balanced
realization of a completely unstable transfer function matrix G .
Lemma 1

Assume G is real-rational and completely upstable in Eq. 3-14. Then

[|Hg || = o

where o, is the largest "2nd order mode” of G .
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This lemma is very useful, since it relates that the Hankel-norm can be computed easily using state-
space methods. In fact, even if the realization is not balanced, the norm is equal to A,,'&(XY) where X
and Y are the controllability and observability gramians respectively and can be computed by solving the

corresponding Lyapunov equations:

AX + XAT = BBT

ATY + YA = cCTcC
Now, consider the best approximatioan for the real-rational case:

% o= oo IR -Qlle, R(-0)€RHS. (515)

The question is: does Eq. 5-15 have a solution which is also real-rationai? The answer is yes and the proof

can be found in [A1,A2,B3,D16,G2].

Theorem 2

If R is real-rational in Eq. 5-15, then there exists a best approximation @ € RH .

Theorem 3

Assume that @,, is the best approximation in Eq. 5-15, then

(i) ilp =1lorm =1, Q,, is unique and -;I—(G -Q,pt ) is all-pass.
]

(i) ifp 7 1and m 7 1, then Q,,, is not unique and

;‘-ac-q,,,xfu) -1 YweR.

There are various algorithms available to solve this problem [B1,B3,D16,G2|. However, the Glover's

algorithm [G2] appears to be the most efficient one so far and will be reviewed next.
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>
.',. Without loss of generality, R is assumed to be strictly proper, completely unstable (the stable part
of R can always be absorbed into Q) and square (if not square, add rows or columns of zeros). Let
ﬁ. A B .
" R = |7Tg] bea minimal realization. Then the optimal Q € RH, can be constructed using the fol-
\ lowing steps:
i
>,
";: Step 1
"

Find a balanced realization of R .

- A|B

: & = [h)

Thus both the controllability and observability gramians are diagonal and equal to

s al, O

- P=1o0¢

where ¢ > ||Z}|, i.e., r = multiplicity of o. Partition A, B, and C accordingly as
- Ay A B, .

= A= faya 8= g mdc= [c, c,].
. Step 2

‘;'-' ‘ Choose D such that

DBf +oC, =0 (5-16)

DDT = &I (517)

Set

B = HAI-L)EB, +0CID) (5-18)

st A

A = (-Anp +B,BT)T (519)

and
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(5-20)

T
2

¢ = C,L +DB

« v 0 v 9 "
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Let

Al|B
e = |¢p

Then, Q is an optimal solution to Ea. 5-15 [G2].
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3

% 5.5 State-Space Solutions of General Distance Problems

!

N Combining the results from previous sections of this chapter, in this section, the state-space realiza-
J

;-: tion of the optimal solution of the general distance problem will be derived step-by-step. Although the
L2
.p; formula may not look very simple in its appearance, the implementation is quite straightforward. Once
.0 again, the 2-block problem will be considered first, and the results are then generalized to the 4-block
o~ problem.

e te-s -

-~ Without loss of generality, both R, and R, are assumed to be completely unstable with the realiza-
> .

- tions
o A, |8, AIB
-::': Rl = Cl Dl and Rz = clip!-
r"

where the realization R is minimal. The solution can be found from the following steps:

I}

s |."..' ‘-'.'.. il‘ l‘

Step 1 ( Left coprime factorization with inner denominator ) [Corollary 5.1.2]

= - ] AlB
v Ry = MIN with N = |G1p| €RHw

where A = A4 + HC, B =B + HD and H is the observer gain such that A is asymptotically

stable.

Step 2 (Spectral factorization of (v*/-R #*R,)) [Theorem 5.3.1

i Find the spectral factor M such that A *M == ¥2/-N*N = v} - RSR,.
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where

RD = 721_Drp
K. = -R;'BTX-DTC)

and

A +BR;'DTC -BR;'BT

X = Rie CT(I+DR;'DT)C ~(A + BR;'DTC)T |

where Ric (Ay) denotes the stabilizing solution of the Riccati equation with the associated Hamil-

tonian matrix Ay .

Step 3
Form
G = R M
A, [B,] [A +BK.|BR,™
= [l *] ko | Re®
A, B\K, |B\Ry"
= |0 A +BK.|BRy™ (5-21)
¢, DK, |DR™|
Step 4 ( Spectral Decomposition )
(i) Solve the following Sylvester equation for Z:
-A,Z + Z(A +BK,) = -B\K, . (5-22)

Since both - (A ) and (f{ + BK.) are stable, Eq. 5-22 has a unique solution.

I 2
(i1) Conjugating the states in Eq. 5-21 by T = [0 l]'
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_ (4, (B, + ZB )Ry
: G = |0 A +BK, BRy, '
C, DK, -C.z2l DRy ™
A,|(By + ZB)Rp™ " [A +BK. |BR, "]
= |l 0 * bk, - ¢,21D,Ry %)
= G, +G, N

where G, is stable and G, is completely unstable.

- Step § ( Computation of the Hankel-norm )

<
Compute the Hankel-oorm of G, (), called f (7), which is equal to X oaxd W W, )|¥® where W, and
W, are the controllability and observability gramiaas of G, (-2 ) respectively, i.e., W, and W, are

DN R B

the solutions of the following two Lyapunov equations

AW, + W,A] = (B, + ZB)R;'(B, + ZB)T

N and

. AlW, + W,A, = C]c,
respectively.
(a) il / (7) > 1, it means that the value of 7 is too small. A larger v should be chosen. and the pro-

A cess will restart from Step 2 .

4
_", {b) if f {7) = 1, from Theorem 4.2.8, the corresponding 7 is the minimal achievable norm in (2gdp).

= (¢) if / {7) < 1, From Theorems 4.2.5 and 4.2.9 two cases can occur:

<

A M) 7 =7

- and

3

'._n‘ e .‘_... . "-\ _..; _»_ - _.‘ o ,\._ R R ...1_.-.’_..._-:_,.:_‘. - ~_.‘—_, o _,-~ . ‘\_ RCIRI <_._‘-.. = .-__ . -
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(i) 7 <.

Case (i) can happen only when 7, = ||R,||,. It can always be detected by letting v = ||R,|| + ¢,
in the beginning of the iterative process where ¢, is a very small but positive real number, for example,
10°°. If the corresponding f (7) < 1, then v, must be equal to ||R,||,. This special case will be dis-
cussed later in this section. Assume that (ii) is the case, it means that the value of v is over-estimated.

The value of v should be decreased. Then the process will restart from Step 2 .

Step 8 ( Best Approximation ) [Section 5.4]

It f {7) = 1, Glover's algorithm which was reviewed in Section 4 can be used to find the best approx-

imation d » € RH of G,. Assume é » has the following realization:

. Aq Byg
Qo - CQ DQ .

(A +BK. |BRy "] A | B
D\K, - C.2ID\Ry" 2| * | - RK, | R)"
A +BK. -BK.|B
= 0 A B1. (523)
D\K,-C,Z -D\K.|D,

-

I -1
(ii)) Conjugating the states in Eq. 5-23 by T = [0 l] then

A +BK, 0
GM = 0 [—0'7}7] (524

DK, -C,2 -czlo,
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Step 8
Form
- [Aq | Bo A | B
@M = eI, ) * | TRk, R
4o -8, Rp"K, | Bg Rp”
- 0 A B
Cq -DqRp™K.|DqRp"?
Note that Eq. 5-24 can be written as
[iq - BoRK.| By R
GM = |0 A B
Cq -CZ | D,
Therefore,
] Ag - Bg RpK, Bg Ry"
Q, = (Q, +G)M = | o A B . (5-25)

CQ —DQRDWK‘ - C‘ZIDQ RDW +D,

It v, = {|R3|| and 7, > F{Ry(o0)], then Step 1-8 can still be used to find the optimal Q, , the
ounly difference is in Step 3 where the factor M will have zeros on the jw-axis, ie., 4 + B.Kc has no
eigenvalues in the open rhp . Since (A. + B.K‘) does not appear in Eq. 5-25, the corresponding Q, is
still in RH. It 7, == ||R;||o but v, = F[R(cc)], then M does not have full rank at oo, which is
equivalent to saying that M has no inverse in RL . Therefore, the y-iteration doesn't apply to this par-
ticular problem. Although R {o0) can always be perturbed by some ¢>0 and use the method described
bere (Step 1-8), there is no theoretical support for this argument. Further research needs to be done in

this special case. Theorem 3.2.2 is therefore proved except the last case.

tate-s t solutions of ¢ blo
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The 4-block case is much more complicated than 2-block case. However, a closed form solution can

still be found. Without loes of generality, R is assumed to be completely unstable (Theorem 2.3.6). Due

to the complexity of the problem, the realization in the first two steps will not be shown which are not

critical in the process.
The solution can be found from the following steps:
Step 1

(i) Find factors S = (v*/ - RAR %) and § = (Y[ -RoR 3 )

Note that S and S need not be spectral factors. See the Remark (ii) after Theorem 4.1.3.

(i) Form L = R;S! and L = S7'R,,

Step 2

(i) Find the ref with inner denominator for L,

L = NLA!L-l .

(ii) Find the lcf with inner denomiaator for L,

L = M;"N;.

Assume that N, and N; have the following minimal realizations:
NL = C . l D . md N[ = 02 D 2 .

Step 3 ( Spectral factorization )

W
[
."'l

L )

(i) Using Theorem 4.1.1, find the spectral factor M such that

MM® = [-N N, = [ -LL*.
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where

(ii) Find the spectral factor M such that

M*M = I-NAN; = I -L*L

where

-~ A? Bz
M = TRk, Ry"

For simplicity, the expressions for K., K, , Rp and R p Will not be written down explicitly.

Step 4
(i) Form the linear fractional transformation

1 1 - 1 2 L -1p &

F:(;Rv:ﬁzz) =3 Ry + RVl -RERR)'RERA | .

Assume that

l l A' B’ All Bl‘
-_— —=RE) = =

F,(7R,7Rm) G, + G, c, D, + C, 0

where G, is stable and G, is completely unstable.

Step §

Form the product

R = MG M
[A +K/ ll K/ ] [AJB ] [Ag*BgK,IBgRD‘W

RD- C, R - 2

Kc rRD- V‘

[N AR e I 3 T BN ., R v ) WWWV11.W.1 LIRS
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Step 8 (Spectral decomposition)

R = R, + R,
with
[4,+ K, C, -Z,B,K, -2,B Ry "
R, = 0 Az + BoK, i B,Rp'?
| R5¥C, R5¥™Ci2,4C)Z,] o
and
_ [ A, [(B. = Z:B)Rp™ ¥
R" = _R;D'V‘(C,Zlf'cu)l 0
where

(i) Z, is the unique solution of the following Sylvester equation:
(Al‘f'K/ Cl)Zl-ZlA, +KICU = 0,
(ii) Z2 is the unique solution of the following Sylvester equation:

Au22 - ZQ(AQ"'BQKC) + B'K‘ = 0.

Step 7 ( Best approximation )

Find the best approximation of R, , i.e.,

J) = min J|R - Q |- (5-26)

J€RrH,,

Using Glover's algorithm, / (7) can be computed before the best approximation of G, is found. If

/(1) > 1, it means that the value of 7 is too small. A larger 7 should be chosen, and the process

will restart from Step 1 .

If f (v) is much smaller than 1, in general, this implies that the value of v is over-estimated and a

smaller value for v should be used. [t is desired that :1, is equal or as close as possible to 1. How-

ever, this is not true for every case.
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If / (7) = 1, thea the optimal solution to Eq. 5-23 is é , With the following realization:

. Aq | Bq
i = [ate:]

Therefore, Q, = é, + R, is the best approximation of X . Correspondingly,

Q, = M(J,+M7'G,M™ )M = MM + G, .

_ - -3
FAQ BQ Ay + K/ Cl ZIB,, K. ZlBu Ry
= Az‘*BgK‘ BQRD-IR
R5™C, Ry™C,Z,+C,)Z,!| 0 .
Al'f'K/ C; 0 -2Z,B. K, —le,‘Rp~ln
0 Aq 0 B,
= 0 0 A; + B.K, B.Rp ™2 i
R;%™C, Co RyYC,Z,+C,)Z,| D, '
(ii) Form )
MQ, M :
A +K, C, 0 -2Z\B.K. -2,B,Ry™?
(A, [-K, R})? 0 Ag 0 By A, B,
= _c.l Ry® |* 0 0 Aq+ BoK. BoRo~* ¥ 1 - R¥K. | Ry

R',,'WC, Co l'ip"w(C,Zﬁ'C. )Zil Dy

rA, -K, Cy K;R3*Cq -K;(CiZ\+C.)Z1 K, R 3”Dg Ro™K.

- K, R 3”Dq Rp™?

L

0 A|+K, C‘ 0 —Z|B.K¢ Z;B.Kf —ZlB,
0 0 Ag 0 -Bg Rp"K, Bg R
= 0 0 0 Ag"‘BgK, - B.K, B,
0 ()} 0 0 Aq B,
c, C, R p*Cq (C1Z2+C )2, R 5%Dq Ry'*K, R 3*Dg R,"? |




Step 9

Conjugating the states in the above realization by

Then

MQ, M
A, 0 -K, Rp?Cq -K;(C\2\+C)22~2\B.K. -K,;(C\2,+C.)Z:-K; DgK.|-K; Dg -zlp
0 A, +K,C, 0 - 2.8, K. (] - 2.8,
0 0 Aq 0 - Bq Ro"K. Bq Ry
= o 0 0 Az + BiK. 0 0
0 ] 0 (] A, B,
LC‘ 0 R p%Cq (Ci1Z:+C. )2, (€'121+Cy)24- R 9™Dg Ry™K. | R 3”Dg R,Y

A, ~K/Rg*Cq -K (C\2,+C,)2,-K DgK, |-K, Dy -2,B,
0 Aq - Bq Rp”K, Bg Rp™

0 0 A, B,

€, RCq  (Ci2\4C.)Z,-R Do RYK, | R 1Dg Ry”

Therefore,

Q = Map‘u + G,

A, © 0 0 B,
0 A, K, R}’Cq -K,(C12\+C,)2,-K, DoK.| - K, Dq - Z,B,
= (0 0 Aq - Bq Rp”K, Bg Rp*
0 o 0 A, B,
C, €\ RpCq (C,2,+C.)2,-RPDgRYK, | D, + R }Dg Rp”|




L I P

e
LU

W .
[ RS

166

CHAPTER 6
NUMERICAL ASPECTS OF

H, AND H_ OPTIMIZATION PROBLEMS

In this chapter, the H, and H,, optimal control problems are summarized using a unified general
framework. In addition, numerical aspects of the algorithms and the issue of model-reduction are also dis-

cussed.

Section 6.1 recapitulates the key steps required to solve the H, and H,, optimal control problems
for finite-dimensional linear time-invariant systems. One of the major contributions of this work is the
development of a complete state-space approach to obtain the optimal solution. The implementation of
the algorithms is straightforward involving only standard matrix operations and linear algebra techniques.
In Section 6.2, some numerical aspects of the algorithms are discussed. Since the H, synthesis results in
3 high-order optimal controller, and because of computational and other practical limitations, it is desir-
able that some form of modei-reduction be used. In particular, it is shown in Section 6.3 that model-
reduction can be used in the H  synthesis procedure to obtain 2 lower order (suboptimal) controller with

a priori bounds on the degree of suboptimality.
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- 6.1 Summary of H, and H,, Optimal Control
&

' This section is a recapitulation of the results developed in the previous chapters to give a complete

N algorithm for solving H, and H o, optimal control problems. The key steps are summarized as follows:

N

~

/ Step 1: Parsiaetrisation

:: Find J so that the substitution K =F,(J,Q ) yields
N

F/(P.K) = F,(PF.(/.Q))

: = F/(T.Q)

: = Ty, + T12QT2a

' with the additional requirement that T € RH ,, and
:: F,(P,K) internally stable

X ifand only if Q € RH. :
S This parametrizes all stabilizing K s in terms of a stable @ € H, in addition to providing an afline
- i parametrization of all (internally) stable F,(P,K). This "Youla parametrization” [D5,Y2] is ]
- developed in Section 2.2. In particular, explicit formula for J and T,,'s are derived using the E
observer-based stabilization method (Eqs. 2-33 and 2-34).
:
Step la: Coprime Factorization with Inner Numerator
A further requirement is that T,, and T, are inner and co-inner with the nomsingufar constant

L

j * matrix multiple respectively, Methods for obtaining the particular parametrizations which achieve

' this are developed in Section 2.3. By appropriate scaling, the new afline parametrization of the

- closed-loop transfer matrix becomes

: Tu-Nu@Ny

o

[y -

where N, is inner and N is co-inner with realizations shown in Eqs. 2-46 through 2-49.

-,
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Step 2: Unitary Invarlance

- Ny
Find the CIFs N| and N so that [Nu Nl] and [Nl] are square and inner (also Section 2.3

(Eqs. 2-46 through 2-49)). Then pre- and post-multiply by [Nlz Ni]. and
2.52)
[ra-nadnall, = [|["5° 22]
a 21 2] ||a
where

Rll Rl2 NI‘Z "
R == RZl Rn == Nl. T“ [Ng’ Nl]

[N_z,
Ny

(a = 2, o0)

The solutions to the H, and H , optimizatioa differ completely in the following step.

Step 3: Projection/Dllation
{A) H, optimization:
For a=2, the unique optimal solution for @ is immediate from Eq. 2-54:

éavt = PH,(RH)

{B) H optimization:

to yield (Eq.

For a==co, the general distance problem is solved using ~7-iteration (Chapters 3, 4 and 5). The

iterative procedure is the following:

(i) compute the lower and upper bounds (Section 4.1).

(ii) reduce the GDP to the best approximation (Sections 4.1 and 5.3).

P
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(iii)  find the Haokel norm of the corresponding approximation problem (Section 5.4).

Iterate on (i) an (iii) using the properties of 7-iteration (continuity, monotonicity and convexity)

until the optimal 7 (or arbitrarily closed to) is found (Section 4.2).

(iv)  derive the state-space formula for Q opt (Sections 5.4 and 5.5).

The complete state-space procedure for both 2- and 4-block GDPs are shown in Section 5.5.

Step 4: Recovery of the optimal controller

(i) First, recover Q,,; from Q ot through Eq. 2-51:
Qcpt - - RD- WQ. opt é D- "
{ii) The optimal controller K,,; can be recovered easily from the LFT

Koﬂ = Fl(J'Qopl)

where J is shown as in Eq. 2-33.

The above steps are also summarized in Figure 6-1.
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Parametrization
K =F(J.Q)

< Qucﬁll‘i. | Ty + T12QT lla

N *Nyp =1
mi T,y = Np2ON. here
Qe A. T = NNl w Ny\Ny* = [

2 ¢ 1 2, 1
la s e

X “

R [Rlx"é Ru]

min

- de H, Ry Rz |la

: a=2 L =e

(- Projection GDP
':I'_  Qop + Qo
:-'

_;; Kopl = FKJ'QOP()

.
-
v K
& ope
Pal

Figure 6-1.
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6.3 Numerical Considerations

The implementation of the procedure described in Section 6.1 is quite straightforward since at each
step, the state-space formula are also derived in parallel to the theory. Therefore, only standard matrix
operations (addition, subtraction, multiplication, inversion) and the familiar linear algebra techniques
(singular value decomposition, eigenvalue/eigenvector decomposition, Schur decomposition, etc.) are
required essentially. They constitute the nucleus of the entire approach and there are very reliable

software packages available [D6,G1] for this purpose.

Most of algorithms developed require solving some particular algebraic equation at an intermediate
stage. They are ARE, Lyapunov, and Sylvester equations. Therefore, robust algorithms for solving these
equations are extremely critical to a successful implementation. Many reliable algorithms can be found in

the literature, {for example, [B2,G3,H1,L1,V1|).

Note that the minimality {or stabilizability /detectability) condition is an important aaumpiion in
most of algorithms (coprime factorization, spectral factorization, etc.). To guarantee this condition, a
simple procedure is recommended here which is closely related to the notion of "balanced™ realization

(Section 5.4).

AB
Recall that, for a given stable transfer matrix G = [C D]' if the realization is balanced (Section

5.4), it must be minimal. Therefore, minimality can be achieved by "balancing™. Although all the
balancing algorithms developed so far require the given realization (before balancing) to be minimal
[L2,M4], they can be modified to handle the non-minimal case by removing the singularity of controllabil-
ity and/or observability gramians. The (balanced) minimal realization can be obtained similarly for the
completely upstable system (see Section 5.4). If the given realization of G has both stable and unstable

eigenvalues (but not on the jw-axis), then G can be expressed as
G = G, + G,

where G, is stable and G, is completely unstable.

R R, R
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This can be accomplished using Schur decomposition with eigenvalue ordering [L1,V1] and solving a set of
linear equations (see Step 4 in Section 5.5(A)). Then, combining the balanced realizations of G, and G,
leads to a minimal realization of G. Since the state matrix of either G, or G, is already in the upper

real Schur form, the Lyapunov equations associated with gramians can be solved almost immediately

[B2,G3].

This technique can be implemented very efficiently and reliably. It does not increase the complexity

of the software since the balanced realization is essential to solve the best approximation problem (Section

5.4). The testing results are very satisfactory.
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6.3 Model Reductlon in H,, Synthesls

The importance of model reduction in control system design has long been recognized. For practical
implementation, it is desired that the order of the controller can be reduced in a way such that the con-
trolled system still satisfies the performance requirements. Typically, there are two ways to obtain a
lower order controller: reducing the complexity of the plant model and using model reduction in the

design process [E1,G2]. This section considers the latter issue.

High-order optimal controllers are usually derived when using H, optimization. This can be seen
clearly from the state-space formula shown in Section 5.5. Therefore, model reduction is inevitable from a
practical point of view. Recall that the order of the controller K == F,(K, Q } is generically equal to the
order of K,, which is the same as the original interconnection structure P, plus the order of @ . Thus a
patural first step in obtaining reduced-order controllers is to consider techniques that result in lower-order
Q's. Another candidate for model reduction is the R in the GDP, since it is the complexity of R that
affects not only the order of @ but also the computational burden involved in computing Q@ . The follow-
ing analysis shows how the model reduction can be performed in the GDP with simple L .-norm bounds
on the resulting loss of performance.

Assume that Q opt i8 the optimal solution of the GDP:

R

hen f,r model reduction, one has the following two results.

Y, = _min

Q.ERHQ o

(i) Model reduction on R :

Suppose R is a reduced-order model of R, and Q ot i8 the optimal solution of

. Qo
i-[30]

. min
Q € RH ,

a0

Define
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w

- d:,t 0
Yo == R - 0 0

The question is how much error (77, --4,) is incurred if the reduced order model R is used in the

GDP. This is found as follows:

dtpt 0 - Qu( 0 ~
7. < R - g 0 cn- R'Lo 0‘+(R"R)w
- rq.upt 0' -
< B -1o of|le *IR-Rl

IA
B
i

. -
- Qoﬂ 0 I

+ R - R |lw
x
= R-[o o] +(15—R)HOD+HR—1§H°°
éapt 01

0 0f{|wo

= v, + 2“R -R”'o

IA
e
1

+ 2”R "é Hoo

% :70 -1 < 2”R —é ”m (6-1)

This inequality shows that the error is no more than 2{{R - R ||o.

(ii) Model reduction on Q ot’

Suppose that Q app 18 3 teduced order model of the optimal solution Q pt- Then

G O]
7, < R - [ 0" o -
d opt 0. d opt — é app 0
= {B-1o of* 0 of [l
éul 0. N .
< R - 0 0 o + ”Qut‘an”m
S To + Ilé ept T é spp HCD (6'2)
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Therefore, model reduction on @ ,,; will introduce an error of no more than |[@ ;¢ - Q o, ||

Suppose that model reduction in the H ,, synthesis is done by the two steps:

(a) find the reduced-order model R and the solution, Q opt Of the corresponding GDP,

(b) find the reduced-order model, é app» Of d opt -

d"'o
R-190 o

This error bound can be derived easily by combining the results of (i) and (ii) above.

Then,

L S zlr “Rllo * 19w - Qo llw

165

(6-3)

The above result is very encouraging since if the error bound in Eq. 6-3 is guaranteed to be small in

model reduction, it will not affect the performaace too much. Using either the method of truncation of

the balanced realization [E1,G2| or the method of Hankel-norm approximation [G2|, the reduced-order

model cap be found using reliable algorithms. Furthermore, both methods give the error bounds in terms

of the L ,-norm which are computable from the the second order modes of the given system (Section 5.4).

A more detailed treatment on this subject can be found elsewhere [EI,G‘.’]. Experience to date has shown

that in many practical problems, both the order of R and Q- st €an be reduced significantly without

incurring too much error.

TN S SRR

RIS
P




-
LI

L L4 LR NN

Pald

8ATI2 S

NN

-S_\. P ]

ey . \ -

APPENDIX A
LEMMAS

This appendix includes lemmas which were used in proving some of theorems.

Lemma A.1l

Assume A, B € L, then
A
B

(i} Left inequality:

s i)

g

< V2

2

Proof

By definition,

I

.~ wls

= sup [Xm(A‘A +B‘B)]w
< eup [?’(A)+?"(B)]w

< [nanz +usnz]”

H 1A IL»]

1B jlo

2

(i) Right inequality:

Since

A lle < ” [,ﬁ‘]

and || B |lo <

0

o]

[e -]
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Al 1
“’. o= l H m] < ‘ ] == 2
2 > < Hnaux S e fll =2

B a®

X
29 A 1l A

- [+ <]

A == < .
x > H[uenm <V 8 ] ]l
. QED
s
Lemma A.2

' ’ AB] <l| A Ho 118 Il <2l[,43
o c ol =1llicts o] llr=2{{c o]l
:_ Proof
L (i) Left inequality:

From Lemma A.l,
s [A B < . 4 € llle
- lc D ||le= N8 Dllls) |l
[ 2 2 v
_ = [ia cmz+ums o]

[ 2 2 va
< {HA e 1€ ol HE + W B o 11D |la) ||2]
- . . . 1"

N = [nanz+nsuzencnz+ o

.t}'

l 1A N HEB [l

.:;j: = HC lle |0 |l F

o (i) Right inequality:

"~

o l 1A 1o 118 lle (11 oLz . o 1]
- et 1o el 1L = (1A e 11e el + 10018 e 11D 111112
‘\ 12

X, < [2ma cmz+2ms o]

-

-,

o,

>

ne

\J

&l
>
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-:, c D o
QED
-::;: Lemma A.3
o Assume A = [x Y ] € L. Then,

, T*T = 4*I - A%A
s
_f wherte
>
~ W -L*L)” o
o T = 1 (syex s
r_

o S = (¥I-Y*Y)”

.-_”_. .

- and
[ = (F1-Yre)-¥x
B Proof
'-‘.I

). Instead of verifying the equality directly by forming the product T*T which is just the routine
:j:'. algebra, a different but more informative approach will be used here.

.~ Recall that in the constant positive semi-definite matrix case, a Cholesky factorization can be found
,-:: with either lower or upper triangular factors. This fact can be extended to the "block” triangular form.
.

; ‘:f Therefore, the matrix T can be assumed to have the following block lower triangular form:
."\.«
.
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-
- wo
T =lvs
:J Then
.:5 T*T = 4 - A*A
Y
o
- WeW + VoV VS 2 -X*X -X*Y
< ==> s*v sss| = SY'X - YY
o~
-
o~ W*W + V*V = 42 - Y*Y
~
a S*V = _Y*X
53 S*S = 4 - Y'Y
_,\ Therefore,
3 S = (7'.‘] _ Y.Y)\fz
.f:" . .
= V o= - (S*)lYeX
:::-. and
~ W*W m 43 - X*°X - VeV
~ = 11 - X*X - X*Y(ST)ST)rrex
Y = ¥ - X*I +Y(S*S)'Y*X
Y -
& = 1 - X*{I + Y (¥l - Y*Y)'YHX
R = v - X +(Pl -YY*)'YY*X
o = 71 - ¥X*¥ - YY*)iX
~r = (I -L*L)
5 -
: ==> W = ol -L*L)
\.t
3 QED
%
Ot The following two lemmas are well-known.
i
:-: Lemma A.4 (Solution of Sylvester Equations)
"
’_; Consider the Sylvester equation

~l
)

-
3
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AX + XB = C (A-1)

where A ER"*", B € R™*™,and C € R"*™ are given matrices. Then, there exists a unique solu-

tioon X € R**™ if and only if

Re(\,(A4) + X\, (B)]#0, VYi=1,...,n ond j =1...m.

Remark

In particular, if B = AT , Eq. A-1 is called the "Lyapunov Equation” and the necessary and

sufficient condition {or the existence of a unique solution will be that

Re[\,(A) + X\, (A)) #0, Vi, j=1...n.

Lemma A.5 (Solution of Linear Equations)

Coasider the linear equation

AX =B

where 4 € R*™" aad B € R"*™ are given matrices.

The following statements are equivalent:
(i) there exists a solution X € R"*™.
(i) the columns of B € Range (A) .
(i) rank [A B ] = rank [A ] .

(iv) Ker (AT)C Ker (BT).
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e e e s
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Al
. APPENDIX B
A
ISOMORPHISM BETWEEN
THE HALF-PLANE AND THE UNIT DISC
A
2
E Define the transformation
., s-1 142
- ¢ o +1 (s 1-2 ) (B-1)
- which maps the right half plane (Re(s¢) > 0) onto the unit disc (| z | < 1). Therefore, the relation
between a point jw on the imaginary axis and the corresponding point ¢’/ on the unit circle is, from Eq.
B-1,
¢! ' - ju—l
Jw+l’
Also define the functicn
- V2
we) (s +1)
, This yields 46 = - w;il dw= - |yY(jw)|?dw.
Let T be the unit circle in z-domain and j R be the imaginary axis in s-plane. This implies that
;. the mapping
o [ =9l H{T) = H{R),
® : , . , ..
- where f(z)=f(s) = lds o isan isomorphism. Similarly,
1 1-2
) [ =l HATHE — HA; R)

is an isomorphism; note that if f € HyTH , then / =0atz =oo, s that f =0at s = -1, and

heace ¥/ is analytic in Re # < 0.




APPENDIX C
OPERATIONS ON LINEAR SYSTEMS

This appendix describes some of standard operations on linear systems in terms of transfer functions

and their realizations which were used in previous chapters.

1. Cascade

Note: This realization may not be minimal.

2. Change of Varlables

z — 1z = Tz
v = v = Ry

u — u = Py

5 - 5] { )]
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’l ’-& -

3. State Feedback

e,

u = u + Fz

] - el ] - o]

-

A S TS

4. Output Injection

-‘_l’-fA_l‘./

vl

zt = Az + Bu — z = Az + Bu + Hy

- - e

oo

Py 4
LN

] ‘ , ‘.k‘

5. Transpose (Dual)

] - [Ae]

6. Conjugate

AlB -AT}-CT -A’lcf
[?;"B] — [Br DT ] (or [-:B’ D’] )-
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