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NOTATION AND ABBREVIATIONS

R the real numbers.

Cthe complex numbers.

d

6(t) Dirac delta function.

E expectation operator.

A-' inverse of the matrix A.

A pseudo-inverse of the matrix A.

A orthogonal complement of the matrix A.

A r transpose of the matrix A.

A * complex conjugate transpose of the matrix A.

A >0 the matrix A is positive definite.

A >0 the matrix A is positive semi-definite.

X, (A) the i h eigenvalue of the matrix A.

o, (A) the i th singular value of the matrix A.

;MA) the maximum singular value of the matrix A.

Ker(A) the kernel of the matrix A when viewed as a linear operator.

Tr A I the trace of the matrix A.

11A Ji Frobenius norm of the matrix A.

RP proper, real-rational functions.

G. O(&-
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j point on the imaginary axis (real parameter w E ( - o0,o)).

j BR the imaginary axis.

T the unit circle(I z =

L 2  Hilbert space of matrix-valued functions which are square integrable on jR (or T) in the
sense of inner product on j R

I CO

<J; G >. f Tr[F(jw)"'G(jw)] dw if F, G E L jIR)

(or on T

<F,> - Tr F("')*'(e") di if F, G E L (T)).

H 2  the functions in L 2 which are analytic in the open right half plane (or in the unit disc) and

satisfying

,up f Tr [G(o + w)*G(o w)] d w < oo

(or

#up f Tr [G(re")'G(re')] d < o0).

H' the orthogonal complement of H 2 in L 2.

PH2  the orthogonal projection from L 2 to H2.

P B2i the orthogonal projection from L 2 to H 2'.

L Banach space of matrix-valued functions which are (essentially) bounded on j R (or T).

HOD the functions in L ,n with with a bounded. analytic continuation to the right half plane (or
- inside the unit disc).

IIG 112  L 2/H2 norm

A i _ f Tr G(jI J (DIJW1 dw if G E L (jR)orH 2 (jR).

,. , []
f ' G ( d0 if G EL4T)orH2(T).

2x 0
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JIG 11. L ®IH. norm

t e 8 a [G ] if G EL 1 4jR)orH.(jR).

IIMII the operator norm of M.

MG multiplicative (Laurent) operator generated by G E L

E  Hankel operator (matrix) generated by G E L ,

TG Toeplitz operator (matrix) generated by G E L,.

F, (P ,K) linear fractional transformation of P and K.

A--'B]  'I D + C (al-A )-'B (shorthand notation transfer functions).

When R is used as a prefix, it denotes real-rational. The superscripts "n" and "p x m" (as in !R'
and R P I" ) will denote the corresponding n-vectors and p X m matrices.

Abbreviations

rAp right halt plane of complex number plane.

lhp left half plane of complex number plane.

rcf right coprime factorization.

1Cf left coprime factorization.

SISO single-input/single-output.

MIMO multiple-input/multiple-output.

LQG linear-quadratic-Gausmian.

WHKB Wiener-Hopf-Kalman-Bucy.

LFT linear fractional transformation.

GEP generalized eigenvalue problem.

IOF inner-outer factorization.

CIF complementary inner factor.

ARE algebraic Riccati equation.

GDP general distance problem.
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CHAPTER 1

INTRODUCTION
This report presents some new methods for analysis and synthesis of control systems for robust per-

-t

*i formance in the presence of structured uncertainty. It builds on the results of Doyle (1984). The techni-

cal approach involves the structured singular value, p, as an analysis tool and H.n as a synthesis tool.

These are combined to form the basis for p-synthesis.

The major contributions of this report with their corresponding chapters are:

(1) A comparison is given of H. performance and robustness formulations with some alternatives

using other norms. Performance for bounded magnitude time signals are found in terms of

H0 norms on transfer functions. ( 1)

(2) Extensions of p to handle real parameter variations are considered. Improved bounds are

obtained for this problem. (1)

(3) The issue of convergence of p-synthesis to a global optimum is studied. It is shown that the

global solution to the p-synthesis problem can be found in the constant (or equivalently

acausal) case. This provides useful information for the general case and is encouraging regard-

ing the prospects of obtaining similar results there. (I)

(4) A comprehensive and unified treatment is given to the synthesis of general optimal controllers

for linear lumped time-invariant systems. ( 2

(5) The existence of an optimal solution for the general H -optimization formulation is proven.

In particular, it is shown that there exists a real-rational optimal solution when the original

data is real-rational. ( 3

(6) An iterative procedure, called "-iteration, is discussed which reduces the general distance for-

mulation to an equivalent solvable best approximation formulation. Some tight and comput-

IIJ
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able bounds are derived and properties which guarantee rapid convergence of the iteration are

established. (4

(7) A new and efficient algorithm for solving a clas of algebraic Riccati equations that arises in

the -f-iteration is obtained. ( 5 )

(8) State-space representations and reliable algorithms are derived in parallel to the development

*", of the other theory throughout this work. ( 5)

(9) Explicit error bounds are obtained which make model reduction in the synthesis process possi-

ble and simplify the complexity of the controller significantly. ( 6)

Based on the resu!ts in this report and in Doyle(1984), an experimental software package has been

developed which uses only standard matrix operations and linear algebra techniques. Several example

designs have been performed which have been very successful and most encouraging. These example

designs will be presented elsewhere. Many of the results presented in this report have appeared in papers

by the authors.

'd
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1.1 General Analysls Framework

This chapter will review some basic methods for analyzing the performance and robustness properties

of feedback systems. The particular approach taken here is from ID141-1D191 and IC21-[C41 which builds on

results by many other researchers. In this context, analysis refers to the process of determining whether a

system with a given controller has desired characteristics, whereas synthesis refers to the process of finding

a controller that gives desired characteristics, usually expressed in terms of some analysis method. This is

the fairly standard usage of these terms in the control community. It should be obvious that the question

of analysis must be settled to some degree before a reasonable synthesis problem can be posed. The formal

analysis and synthesis techniques discussed in this report are only some of the methods that might make up

the overall process of engineering design.

The general framework to be used in this report is illustrated in the diagram in Figure I.1. Any linear

interconnection of inputs, outputs, commands, perturbations, and a controller can be rearranged to match

this diagram. For the purpose of analysis the controller may be thought of as just another system component

and the diagram reduces to that in Figure 1.2. The analysis problem involves determining whether the error

e remains in a desired set for sets of inputs v and perturbations A. Analysis methods differ on the description

of these sets and the assumptions on the interconnection structure G. In this report G will be taken to be

a linear, time-invariant, lumped system and be represented by a rational transfer function. The convolution

kernel associated with G will be denoted as g, so G is a real-rational matrix function of a complex variable

and g is a matrix function of time. The interconnection structure G can be partitioned so that the transfer

function from v to e can be expressed as the linear fractional transformation

e = FU(G, A) v = [C2, + G,,A(I - G,1 )-' G12 ] v.

The external input v is an additive signal entering the system and is typically used to model disturbances,

commands, and noise. The alternative descriptions of the sets to which v is assumed to belong and the

corresponding performance requirements on e will be considered in the next section. It is generally inadequate

in modeling systems for control design to consider uncertainty only in the form of uncertain additive signals

[H41. The system model itself typically has uncertainty which can have a significant impact on system

performance. This uncertainty is a consequence of unmodeled dynamics and parameter variations and is

modeled as the perturbations A to the nominal interconnection structure G. Note that the uncertainty
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modeled as A has a very different effect from that of v on the performance of the system. For example,

V perturbations can cause a nominally stable system to become unstable, which v cannot do. Techniques for

modeling plant perturbations and analyzing their impact on stability will be Considered in Section 3.

4'I4At the heart of any theory about control are the assumptions made about G, v and 46, as well as the

performance specifications on e. These assumptions determine the analysis methods which can be applied

to obtain conclusions about system performance. A desirable objective is to make weak assumptions but

still arrive at strong conclusions and the inevitable tradeoff implied by this objective drives the development

of new theory. The control theoreticians role may be viewed as one of developing methods that allow the

control engineer to make assumptions which seem relatively natural and physically motivated. The ultimate

question of the applicability of any mathematical technique to a specific physical problem will always require

a "leap of faith" on the part of the engineer and the theoretician can only hope to make this leap smaller.

The methods in this chapter provide a powerful set of techniques for modeling and analyzing uncertain

systems. To provide a context for these methods consider an altenaiive analysis technique based! on simu-

lation. Modern simulation methods allow for a wide variety of plant models and performance specifications

and as a consequence are an essential part of the control engineers toolkit. The price paid for this flexibility

-' is that the system inputs and perturbations can be considered only one at a time. This chapter focuses on

describing adaO Of Signals and perturbations and drawing conclusions on worst-case performance for entire

sets at once. An important issue to be addressed here is the description of sets which adequately model

physical phenomena. It can be just as limiting to have models which allow signals or perturbations which

have no physical motivation but severely impact performance (of the model) as it is to have models that

ignore critical physical phenomena. The methods in this chapter are aimed at allowing for signal and pertur-

bation models that naturally match the physical phenomena that the models are intended to represent. The

price paid for 1ks fexibility, in contrast with simulation, is that very restrictive assumptions ,in particular

linearity, must be made about the nominal interconnection structure. Nonlinearities can only be handled as

perturbations.

It is beyond the scope of this report to give a thorough discussion of the relationship between models

and the physical systems they represent. Attention will be given to the main assumptions that have been

proven useful in practice, and some comparison of the alternatives. The particular focus of this chapter is



on developing techniques that &llow very precise analysis of systems which have fairly standard performance

requirements and uncertainty models in terms of additive noise and plant perturbations. While the "best"

* assumptions for engineering purposes will always be a matter of debate, it is clear that for any given set

Of assumptions it is desirable to have very precise analysis techniques. The ideal would be necessary and

sufficient conditions for the satisfaction of a performance specification in the presence Of sets Of inputs and

* perturbations. Additionally, tho- conditions should be computable or should at least yield bounds which

give useful estimates of system performance. With such methods, the engineer can focus directly on the

relationship between uncertainty assumptions and system performance without worrying about potential

gaps caused by inadequate analysis techniques.

The assumptions about v and the system performance specifications on e are considered in Section 2. A

* basic requirement is that the nominal System (A = 0) be stable. Recall that this is analysis Of the closed-loop

system with controller in place so it is assumed that G is stable, which will be taken to mean having no

rhp poles. Performance will be expressed in terms of e being contained in a specified set bounded in power,

energy, or magnitude. In Section 2 only uncertainty in v will be considered so this will be referred to as

somnal performance to indicate that A = 0. Nominal performance will be seen to be equivalent to a norm

test on G22.- The main focus of this report will be on ejbut other norms of practical interest will be

Considered and briefly compared. It will be argued that the j~* norm is a useful and flexible norm for

studying performance.

Section 3 considers stability in the presence of perturbations. This will be referred to as robsel .Itabiity

* with robust used here to indicate that the property of stability is maintained under perturbations. For simple

* unstructured perturbations, this also leads naturally to a * norm test, but now on G, 1. The ~e~norm

thus provides a single norm which handles both nominal performance and robust stability. Unfortunately,

norm bounds are inadequate in dealing with more realistic models of plant uncertainty involving structure

and more complicated mathematical objects involvig the structured singular value, p, are required.

The methods outlined in Sections 2 and 3 allow for assessing either nominal performance or robust

stability. Obviously, it would be desirable to treat performance with both noise and perturbations Occurring

simultaneously. Section 3 concludes with this problem and shows that this also leads to tests using p, but

now involving the entire transfer function G. Thus p emerges as an essential analysis tool in dealing with
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robust performtace as well as with structured perturbations.

Section 4 briefy reviews H. and Hs optimal control. The H,. methods combine with the properties of

p discussed in Section 5 to form the basis for p-synthesis. Chapters 2-7 of this report expand on the theory

outlined in Section 4.

The mathematical properties and computation of p are briefly taken up in Sections 5 for the case of

complex perturbations and 6 for the real came. Here p is viewed as a natural generalization of both spectral

radius and spectral norm, and this viewpoint leads to useful characterizations of p in terms of these more

familiar quantities. One consequence is that estimates for p can be obtained by scaling of ordinary singular

" . values. The implications of this approach for synthesis are also briefly considered in Section 7.

The main results of this chapter will be expressed as theorems which are each instances of the following

form of a General Analysis Theorem:

General Analysis Theorem (GAT):

Performance for all

:..if A nalysis Testj

As implied by the form of this "theorem', this chapter will focus on necessary and sufficient conditions

for performance in the presence of uncertainty. The uncertainty will be combinations of input signals,

perturbations, and parameter variations. Performance will be simply stability or stability plus a bound on

the error e. It is hoped that by organizing the many alternative methods of performance and robustness

analysis in this way, it will be easier to compare the assumptions and their relative merits.

J.

..................................................... ... ... - . -. ... ...
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1.2 Nominal Performance

This section considers performance in terms of bounds on e in the presence of uncertain bounded inputs

v. Bounds for both v and e are expressed in terms of signal power, energy, or magnitude. Such descriptions

are standard within the control theory community and a rigorous treatment will not be given here. The focus

is on comparing the resulting tests on G implied by the alternative assumptions. While other assumptions

on signals could be considered, these are the most common both in the literature and in practice. To simplify

the comparisons, assume temporarily that the signals are scalars so that spatial norms are not an issue. This"

will focus attention on the contrasts between the alternative descriptions of the time content of the norms,

which is far more significant.

The three alternative assumptions about the signals is that they are bounded in "average power", "total

energy", or magnitude. The terms power and energy are used here in a generalized sense to indicate that

integrals of the square 'of the signals are involved. This is standard usage of these terms within the control

community. Suppose that v is a function of time such that on any finite interval it is square integrable. Then

we may obtain bounds on v in terms of:

(1) Power. EP = {vlr) di L ) }

* - (2) Energy: ELs +{ J lv =J I(1)I' dt <I

The prefix B denotes the unit ball The bounds are scaled to I since any other scaling can simply be

absorbed into the interconnection structure G. Likewise, any weighting or coloring filter can be absorbed

into G so that only unweighted signals need be considered. Note that in practice, the use of weightings on

both v and e are essential to reflect the varying spatial and frequency content of both the input signals and

the performance specifications. For simplicity, all signals will be assumed to be complex.

4'
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For nominal performance the GAT takes the form:

GAT for Nominal Performance:

e ePeformme St] for all v E Input Set

Here the performance and input sets are taken to be either BP, BL,, or BL"o as defined above with

the additional input set of sinusoids also being considered. Table I gives the norm test for each combination

that makes sense where

IG11, = f f trace [G(jw)" G(jw)] w

llGllo = sup a'[G(j )
00

1lli = jo I([) dt.

iZ- ,,. norm is defined for matrices since this will be used in the remaining sections.

Table 1. Performance Summary

e
Power Energy Magnitude

v

Power llG11- 00 0c

.Energy 0 j1G llG1l,

Magnitude IIGI! c llail

Sinusoids IIGIIo oo uGh0.

In each case the norm test is the indicated norm being less than or equal to one; the norm would be

applied to G,, ( the subscript is dropped in the table). For example, the upper left hand corner case would

yield the following version of the GAT:

.
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Perfonmance Theorem (Power/Power):

e E BP V v e BP

iff 11Gssj1". S 1.

Some of the entries in Table I are either 0 or co. The 0 occurs because for any stable G, v 6 BL2 yields

e of zero average power. The oo occurs because for the indicated combinations any G 0 0 allows unbounded

outputs for some bounded inputs. These combinations are clearly of no practical or theoretical interest.

Note that IGIIo i the clearly the most common norm in Table I and will be the norm used in the

rest of this paper. It results from several different assumptions of practical and theoretical interest. Perhaps

the most useful are v E BP and e EBP and the caes of sinusoidal inputs. The vector case is no different

provided the spatial part of the vector norm in each case is taken to be the usual Euclidean 2-norm. The

JlG112 and II II, norms each appear only once. The GhI2 appears for v E BLs and e E BL,,. While this

appears to be a strange combination, it could have some significance in some problems. To my knowledge,

no one has described control problems in this way.

The standard assumptions which lead to IGhI1 are not covered in the table but concern situations where

either v has a fixed power spectrum and e E BP or v is a stochastic process with fixed power spectral

density function and performance is measured in terms of the variance of e. The JIGI12 also arises when v

is a fixed signal and e 6 BL2 . Zames and others ([Z2],JZ3]) have argued that these assumptions are often

not appropriate for control problems. At the heart of this argument is the observation that when frequency-

dependent weights are use to shape the spectral content of signals and performance specifications, it may be

a better model of physical reality to view inputs as being, for example, bousded in power than characterized

by a perfectly known, fixed power spectrum. In addition, it is usually quite easy to find performance weights

that turn a problem specified in terms of 1 I3 into one involving only fI • 1 While this would be of

no particular value when only uncertain inputs are considered, it could prove quite useful, as will be seen,

when uncertainty in the form of plant perturbations are included. While these issues still remain largely

unresolved, it is clear that the popularity of 11 e 112 is due in great part to its convenient mathematical

properties, which are substantial and well-known. Fortunately, this distinction between 11 9 112 and 11 [ 11. is

becoming less significant.

%'A~
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The JIguII norm cannot be dismissed as lightly. The assumptions which lead to it, that both v and e

are in BLo, are very appealing. It is often the case in practice that the critical issue is the magnitude

of signals and not their power or energy. In fact, it could be argued that this would be the obvious norm

of choice for most engineering problems were it not for the mathematical difficulties associated with Ilgll.

For example, it seems more difficult to shape the spectral content of signals in BLo. using weights than for

signals assumed to be in BP. This is of great practical signifcance since it is typically critical in achieving

good designs to take advantage of what is known about the frequency content of signals. In addition, lIght is

very difficult to work with analytically. It has no useful sets of invariants analogous to the inner or a-pass

functions for JIG112 and IIGlloo. There is no synthesis methodology for optimizing JIogII except in very special

cases [Pearson].

Given the difficulties associated with directly synthesizing for h1g[tj and its potential practical impor-

tance, it is interesting to ask how JligJh relates to IGhIoa. In particular, it is important to know that optimizing

IIGIIoc will not do great violence to JlhIgJ. Since the constant term in G simply adds to Ithlli, suppose for the

moment that G is strictly proper. It can be shown that

IIGII0 _5 lul~gl :5 (2n + 1)IG1100  (2.1)

where a is the McMiUlan degree of G. The left hand bound is well known and the right hand side is proven

at the end of this section. In fact, a stronger result is proven, namely that

lIlhIl < 2F u, (2.2)
i

where (e,) are the singular values of the Hankel operator associated with G. Given that the response of

many systems can be approximated at least crudely by fairly low order systems, this bound suggests that

JIG" may often be a reasonable approximation to Ilgllt.

It should be noted that examples can be constructed for any n so that all the bounds in (2.1) and (2.2)

are achieved. The examples that achieve the upper bounds are pathological and require G to have poles and

zeros widely spread and the inputs to have very broad spectral content. This suggests that even more useful

bounds may be obtained when additional assumptions such as restrictions on pole and zero locations and

input signal bandwidth are imposed. This is clearly an area that will require additional research.
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Proof of bound I11l < 2n)IGII.• (the idea for this proof is due to I. Gohberg)

Let G(.) = e(eI - A)-Ib, where (A,b,c) is an internally balanced minimal realization (Moore) so that

L" I"
,° g 'ccAdl = rA bb'eAtdi

d= ag+ (,,,a3,. -- ,ff.) > o. (2.3)

Let o.(t) = ' e eA'b and i ,(l) = I e let where ej is the 0' unit vector. Note that (2.3) implies that

Ikll =II't~s=1. Expanding g(t) =c e"'b =~ a, C(I Oil) yields

II011 = j, o, ",, d00
_<2 wi fo Oj (r) O,,(r) dr

Furthermore, since IllGI> vi , , 1 <I,,l l5 2nIGII.

. . . . . . .
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"-J 1.3 Robust Stability and Robust Performance

In this section, we will consider plant perturbations, a type of uncertainty entirely different from uncer-

tain input signals. Since plant perturbations can destabilize a nominally stable system, the first issue to be

addressed is robust stability. Robust performance will be treated at the end of this section. In what follows,

it makes no difference whether A is a constant complex, rational, or real-rational matrix so for simplicity it

will be assumed constant complex. Stability will be taken to mean that the perturbed system has no closed

rhp poles. Under these assumptions, we have the following simple and well-known theorem([Z11,ID0):

Theorem RSU (Robust Stability, Unstructured):

F.(G, A) stable V A ,i(A) < 1

iff JIG, Ill. :5 1.

While the II *11. norm bad some reasonable competition for analyzing nominal performance, it is clearly

the norm of choice for robustness analysis. While it is possible to use other norms in theorems such as the

above to obtain sufficient conditions for stability, only 11 e lIlo yields necessary and sufficient conditions. The

only change that can be made and still have if is to allow other spatial norms. In contrast, II * 113 norm

cannot even be used to obtain sufficient conditions for robust stability.

The term unstructured refers to the fact that A is assumed to be bounded but otherwise unknown.

Typically weights are used when modeling plant uncertainty to reflect the frequency and spatial variation of

the perturbations. These weights can always be absorbed into the nominal interconnection structure so in

that sense it is no loss of generality to assume a uniform norm bound on 4. It is in the assumption that no

structural information is available for A that limits the usefulness of Theorem RSU. In practical problems,

it is generally the case that the uncertainty consists of parameter variations and musltiple norm-bounded

perturbations. Using only a single norm-bounded perturbation for analysis is rarely adequate. Parameter

variations typically arise because of uncertain coefficients in differential equation models of physical systems

and involve real scalars. Norm-bounded perturbations often arise when trying to capture the effect of

unmodeled dynamics and are themselves dynamic systems. This would typically lead to norm-bounded

real-rational perturbations, but for analysis, it is sufficient to instead consider constant complex matrix

perturbations.

-,,.
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Any linear interconnection of inputs, outputs, transfer functions, parameter variations, and perturba-

tions can be rearranged to fit the diagram in figure 2, where a(,) < I but A is block-diagonal. This is an

obvious consequence of the fact that composition of linear fractional transformations are linear fractional,

and it holds for perturbations to transfer functions as well as elements of state-space realizations. Reducing

to the uniform norm bound typically requires the absorption into the nominal interconnection structure of

scalings and weights. Then A will be a member of a set like

A ( diag (61,,6s,..., 6.,41,,13 ...... 1.)

or its bounded subset:

BA =( e A '(A) <1}. (3.2)

It is possible to define more general sets involving, for example, repeated perturbations, and these will be

considered in Section 5. Nonsquare perturbations can easily be handled in what follows by augmenting the

interconnection structure with rows or columns of zeros. It should be noted that although the block diagonal

perturbation structure with square, uniformly bounded blocks can be used without loss of generality, it may

be desirable from a computational point of view to use other structures. This particular structure is chosen

because it is mathematically general and conceptually elegant.

Given 4 4E BA Theorem RSU could be used to obtain sufficient conditions for robust stability, but

the test could be arbitrarily conservative. That is, it is easy to construct examples where IIG11I'Oo can be

made arbitrarily large but no A E BA leads to instability. In order to obtain a precise generalization of

Theorem RSU to handle structured uncertainty, we need the structured singular value, 0 IDl31. The positive

real-valued function p satisfies the property

det (r- MA) 0 forV A E A,5(A) <

iff -YP(M) :5 1. (3.3)

Note that p is a function of M that depends on the structure of the I's in A. This dependency is typically

not represented explicitly. If p(M) # 0, that is 34 E A such that det(I - MA) = 0, then

m firin 0,(11) ldet( - MA)O . 034

A '
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Unfortunately, (3.4) is not typically very useful in computing p since the implied optimization problem is

cumbersome and can have multiple local maxima which are not global. Computation of p is a complicated

problem and some results will be given in Sections 5 and 6. For now, assume p is the function defined above.

With these definitions, the correct generalization of Theorem RSU to structured uncertainty is

Theorem RSS (Robust Stability, Structured):

F.(G, &) stable VA E BA

if IIGIIli. - 1

where

JII, si .upp[G(jw)j. (3.5)

Note that IIGIIM is not actually a norm, but the notation is convenient. Note also that it depends not

*- only on G but also the assumed structure of A.

The methods outlined above allow for analyzing either nominal performance or robust stability. Obvi-

ously, it would be desirable to treat performance with both noise and perturbations occuring simultaneously

-DI41. The following theorem addresses exactly this problem. The proof is given at the end of this section.

Theorem RP:

F,(G,A) stable and <IV,(GA)10  VA E BA

iff fGJJ :5 1

where p is taken w.r.t. the structure

- = (A =diag (A, A.+,)J A 6 A).

This theorem is the real payoff for using p. It gives necessary and sufficient conditions for robust

performance in the presence of structured uncertainty. It's made possible by the equivalence of performance

and robust stability when using i1U{). The block A.+, may be thought of loosely as a "performance block"

used to turn the performance condition into a robust stability condition and finally into a test using p. Note

'-"
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that p is computed for the full G and is taken with respect to an augmented structure. The analysis results

presented in this paper are summarized in Table 2.

Table 2. Analysis Summary

Performance
Stability e E BP

Perturbation

A = 0 No C+ poles IGsI3 0 _< 1

a,(A} < I JIG,, lo. -5 1 IIlI, _< 1

a e BA IIG,11II. _5 IIGII,, <I

Proof of Theorem RP: From Theorem RSU,

IF. (G, A)I1:5 1

if det(I - FU(G, A)A.+ 1 ) $ 0,

Ve = j , VA., ,&(A.+,) < I.

Similarly,

F. (G,A) is stable VA C BA

iffdet(I - GI A) 0 0Y = jw, VA E BA.

Since

det (I - GA) = det (I - GA)det (I - F,(G, A)A.+ ),

the result follows immediately from definition of p and " H "

S7A '

r3

.... . ........------------------------------------- -' -- ----------- --------------- A'. . " " -I ' ' ' i
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* 1.4 Overview of Optimal Synthesis Theory

The previous sections showed how nominal performance and robust stability with unstructured

uncertainty could be treated using the H,. framework. More complicated issues like structured uncer-

tainty and robust performance require p. This section contains a review of the general H2 and H,,,

optimal synthesis theory using the framework depicted in Figure 1-3. The approach outlined in this sec-

* tion was developed in Doyle (1983,1984), Chu and Doyle (1984,1985), and Chu (1985). Although the focus

* of this report is on H., methods, it is useful to put these newer methods in a context which includes the

more familiar H 2 theory. The general approach taken in this section makes this easy since the H2 and

He,,. theory can be developed in parallel up to the final step, called the General Distance Problem (GDP),

which is the subject of the remainder of this report.

In Figure 1-3, the transfer function matrix P is the interconnection structure from the nominal

model of the system and the transfer function matrix K is the "controller" to be designed. The variable

u zoasista of all external inputs, e are the error signals which are to be regulated, u are the control

inputs, and y are the measurements. This general framework covers a standard lumped linear time-

invariant filtering and control problems. Attention will be restricted to the lumped case so all transfer

- functions will be assumed to be rational.

Figure 1-3. General Framework for Synthesis

* Sv
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Partitioning P accordingly, the closed-loop transfer function matrix can be written as the following

linear fractional transformation (LFT)

e =,, F(P,K) v = (P 11 + P 12K(I-P=K)-P .f) (4-1)

where

P [ P2P E ,R(P1*F2x(n1*N P'j E RPX N (4-2)

The H 2 and H., synthesis problem is one of finding a stabilizing K E R "2Xp2 such that the perfor-

mance measure

IIF(P,K)Ii for = 2 or oo (4-3)

is minimized. For nontriviality, assume that p I> M2 and mI > p2.

The first step is to find

K 1  1 (4-4)

such that 

K.

F(P;F,(K.;Q)) - F,(T;Q) - T11 +T12 QT 2, E RH/""O1R (4-5)

is stable and affine for any Q E RH:2XP. This is the "Youla parametrization" of all stabilizing con-

trollers and is obtained by finding coprime factorizations of P over the ring of stable rationals and solving

a double Bezout identity to obtain the coefficients of K. (Youla, Jabr, and Bongiorno (1976), Desoer, Liu,

Murray, and Saeks (1980) ). For simplicity, the superscripts denoting spatial dimensions will be

suppressed in the remainder of this section. All quantities are assumed to be of compatible but otherwise

arbitrary dimension.

We are interested in a particular K. which results in T 12 and T.s being inner and co-inner respec-

tively; that is, T0T 12 - I and T2T - I . This requires a coprime factorization with inner

numerator. In addition, T, and ii can be found so that T12 T] and are square and inner.

T, and T, are called complementary inner factors (CIF). These factorizations can be carried out using
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standard real matrix operations on state-space representations ( Doyle (1983,1984), Chu and Doyle (1984)

). Computation of state-space realizations of K., T, Ti, and T from one for P involves solving two

standard algebraic Riccati equations (ARE).

Because both the I I * 112 and II * II. norms are invariant under multiplication by square inner

matrices, an alternative expression is possible. For any Q E RH.,

II Tl + T12QT21 ha

=TM T] (T 11 + T12 QT 2 1) [Ti]*

[Ti -Ti [rA Q

rR11- Q R121(-6
= R 2 2 ]

where

R R [ R22 T-r ] T11 [T21 ']. (4-7)

A state-space realization for R can be obtained from a corresponding one for P using the factoriza-

tions involved in obtaining K, (Doyle (1984). Chu (1985)). In particular, this approach yields an R with

all its poles in the open rhp, i.e., R is completely unstable.

Up to equation 4-6 the H2 and H. problems can be handled in parallel and the same factorization

techniques can be used to reduce 4-3 to 4-8. It is in minimizing 4-6 that the two cases differ substantially.

Here, the a - 2 case is particularly simple. Since

R 11  Q ] - Q - Q 1 2 + 1 [ 0 R 12] 12 4-

S R~ 21 RI 2 112 [ R2  R=2  21

the optimal Q can be found from

min II R - Q 112 - IR - QoW 112 (4-9)
Q E RH"

where

• -".,,.. ... - .- . .. ... ... :.. #* . .-- - _. i . -............ ,...-. . :.... ....... . ".,
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.- ,t PM,(Ru) + R 11(o) - R 11(o)- (4-10)

Equations 4-9 and 4-10 follow immediately from the Hiibert space structure of L2 and the fact that R 

is completely unstable. In most H2 problems, R1I is strictly proper, so Q, = 0 and K,,t m K1I.

The case of a - oo (H .- optimization) is substantially more complicated and the corresponding

optimization problem in Eq. 4-6 is refered to in this report as the "general distance problem" (GDP).

This terminology arises from viewing the optimization in 4- as follows:

Given R =I 2, R]22 E L® , find the optimal Q E Ho, such that

m== rin [R R-Q 12 ] -

QEH~ IL 21  R=J

is minimized. Note that the minimum norm is the distance-y, =d' .0
-. . - ,+iat (R, )(.2

from R to the set of (matrix) functions of the form

[. 0 Q E H,. (4-13)

This class of problems will be called the "4-block problem" in this report to distinguish from the

S[R
121special case where [R 21 R22o I is identically zero. The latter will be referred as the "1-block

problem". If both [Ra R ] and R1 are zero, this is known as the "best (or Hankel) approxima-

tion" problem (eg. Adamjan, Arov, and Krein (1971,1978), Sarason (1967), Glover (1984)) since

min R - Q I1 H - It II. (4-14)
Q E RJM

This problem has the special property that it reduces to a finite dimensional eigenvalue problem and solu-

tions can be computed with standard matrix algebra routines. Note that, in general, a Q,,, which

achieves the minimum in 4-14 does not minimize the GDP in 4-11, although it will be shown to provide a

reasonable approximation to the actual minimizer.

-Lot
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1.6 p For Complex Perturbations

In the previous sections, it was shown that robust performance and stability with structured uncertainty

reduces to Computing p for constat matrices G(jw) and then taking sup over all w. For this to be useful,

we must have ways of computing p or bounds for it. This section will begin by outlining some of the

mathematical properties of p for complex perturbations and viewing it as a natural generalization of the

spectral radius p, and the spectral norm (maximum singular value) a. The rest of this section will focus on

using scalings to characterize p in terms of p and O.

Suppose that A is some subalgebra of matrices satisfying

(AI A E C) c A C cNN. (5.1)

In this report we will be interested in block diagonal A. Define the spectrum, 8p(M), and inverse spectrum,

iap(M), of a matrix M E CNX v with respect to the oubalgebra A as

Op(M) = A e A det(M - A) = 0

isp(M) = {A e A det(I - MA) = 0} (5.2)

Since both sets depend on A it would be appropriate to subscript the symbols, but to keep notation simple

- this will be avoided throughout. The set sp(M) is a natural generalization of the usual notion of spectrum

and is always nonempty. In this context, p can be viewed as a natural generalization of spectral radius since

it is easily verified that

p,(M) = sup T(A). (5.3)

If p(M) & 0 (which is equivalent to isp(M) 0 0) then

p(M) = sup (5.4)

This characterization emphasizes the view of p as a generalization of u and is simply a restatement of (3.4).

Indeed, in the special cases where A is equal to one of its possible extreme sets in (5.1), p is exactly either

the usual spectral radius or maximum singular value:

A = (AIJA C) p(M) = p(M)

(5.5)
A=CNXNP = p()=(M)
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It is possible to use these two special cases to obtain bounds for p. For any set A it easy to see that

P(M) <5 P(M) <5 F(M) 15.6)

but these bounds are not directly useful for computation as matrices may be found that make the differences

between the bounds and p as large as desired.

It is possible to improve the bounds in (5.6) by using simple properties of A. Suppose that U and D

are sets such that for any A E A

U C- I &(UA) = $(a)
(5.7)

DeD D-'AD =A.

Then it is easy to see from the definition of p that

U eU P(MU) =P(M)
(5.8)

D•D p(DMD-')=pM)

so the bounds in (5.6) can be improved to

sup p(MU) :5 p(M) :_ inf a (DMD-'). (5.9
UE1 D4E

The key theorems about p show when these inequalities are actually equalities.

Let us first consider the case where all the blocks are complex and none are repeated. Then we have

the sets

A= (diag (Al,,A,. A.) A e Cmixmi}

U =(diag (Ur ..... U.) U;u =I

- dia(du1,da 9 ... ,d.) Idi E R.} (5.10)

It is easy to verify that (5.7) holds so that the inequalities in (5.9) apply. What is more important is that

-.' sup p(MU) = P(M) (5.11)
UEU

holds for all M and A and

p(M) =inf aP (DMD-') (5.12)
DEP

V.
-. ,

.
,-2

€.-

k-.-'-- -. ." ,." .?.\.',-.,.--. .'-:.'..-_; .- ---.-.. . . . . .. . . . . . . . . . . . . . . . . . . . . .,'.,.. .". .".. . . . . . . . ." ,

" # n:,. ., c,. .. -. l - ,,-t .a-a . d.d ,. . . . . . . . . . . . . . . . . . . . • •
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if n < 3 ( three or fewer blocks ) [D131. There are other conditions under which this upper bound is an

equality but they are more cumbersome to state and generally of less interest. An example of strict inequality

for the upper bound has been found for n = 4. Extensive computational experimentation has yet to find a

matrix for which the upper bound exceeds p (actually some lower bound for p) by more than 15%, and the

upper bound is nearly equal for most matrices. This seems to be independent of matrix size and number of

blocks. This is encouraging but additional theoretical work s needed to guarantee the quality of the upper

bound in general.

The case of repeated blocks is less well understood. To see what U and D arise when there are repeated

blocks consider the simple case where each block is a repeated scalar

A= {diag (66i,,s .... I)j6,EC}

U = I diag (uir, u,..... url) I ui E C,,u,, =f ZI

D = {diag(DI,D 2,... ,D.) D i invertible} (5.13)

It is possible to restrict the D 6 D to positive definite Hermitian matrices (Di = > 0) without loss of

generality. As above, the inequalities in (5.9) hold and (5.11) also holds for all M and A. Unfortunately, the

conditions under which the upper bound is an equality are not easily checked. The computational experience

with the case of repeated blocks is much more limited than with nonrepeated blocks, but the evidence so far

suggests that the upper bound is also nearly an equality. The case of repeated nonscalar blocks is just the

obvious combination of the the above two cases.

The lower bounds in terms of p(MU) have the desirable property of always achieving p independent

of the number of blocks. Unfortunately, p(MU) can have multiple local maxima which are not global so

direct computation of (5.11) by gradient search may not find the actual maximum. At this time there is no

alternative scheme guaranteed to find the global maximum that has reasonable computational properties.

Fan and Tits (1985) do have an alternative scheme for a lower bound which does not guarantee that p will

be found but appears to be very fast and has many advantages over using (5.11).

The upper bound in (5.9) is more easily found since the expression & (DMD-') has only global minima.

This is a direct consequence of the fact that u (eDMeD- ) is convex in D. This fact was used in [D13 to

ii.i



24

argue that the upper bound in (5.9) probably offered a reasonable alternative to (5.11) for computation of

p. The original proof of convexity was rather cumbersome and appeared later in 1S51. A much simpler proof

is included at the end of this section.

Computational experience to date has indicated that it is desirable in practice to use both upper and

lower bounds for i, since the existing bounds nicely complement each other. The upper bound is easily

computed but may not give p except in special cases. On the other hand, it appears to be nearly equal to

p in all cases. The existing lower bounds (includip-i both (5.11) and those Fan and Tits) are, in principle,

equal to p in all cases but may fail because of local maxima. By having an upper bound it is much easier to

recognize when a local maxima is not global and restart the algorithm with another initial guess. Extensive

computational experience has yet to reveal a (complex) p problem where the bounds obtained in this way

differed by more than about 15%. More research is needed to show whether this is always true. It could

simply turn out that counterexamples exist but are difficult to find.

Proof of convexity of & (CPMe-D)

This proof is based on the following simple lemma. Suppose that f: R R. . is continuous.

Lemma. Suppose Vz, 3g, : R R twice differentiable such that 1(z) = gq(z), f(t) 2! g(t) and

-e 0. Then f is convex

To prove convexity ofa (.DMe-D) it suffices to prove convexity of f1(z) -" (CDzMe- D) for arbitrary

D = D" E CNXN. To apply the lemma define M = DeD -  and let u and v be (any) singular vectors

such that f1(z) = u(M.) = u'Mzv. Then define g,(t) = V (u'eCtMe-Dv}. Since f(9) 2 g,(9) and

g. M (0* (D'M - 2DMSD + MID) ul

= 1(z)(uDu + v}D'v) - 22 (u*DM Dv)
.u*D *Dj-m 2 1- (z)! Dv

. .. > 0

by the lemma f is convex.

• ".-..............................................................................................
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1.6 Computation of p for Real Perturbations

The properties of 1 when A has some elements restricted to be real are quite diferent from the purely

complex case. Suppose that

A (diag (6A,62 ... A6m,,s,..... ,)

6, e R,I, 6 Cki(.j 1)

and ap(M) and iap(M) are defined for A exactly as in (5.2). In this case, it is possible for either ap(M) or

isp(M) to be the empty set. Furthermore, (5.3) is no longer a correct characterization of p in general and

there is no natural way to view p as a simple generalization of the usual notion of spectral radius. Of course,

(5.4) still applies provided p(M) $ 0 (i.e. uap(M) $ 0).

This section will focus on upper bounds to I that can be obtained by scaling a. The choice of scaling is

based on the following lemma which characterizes a useful class of scalings. In the following lemma, assume

that

T = ,1  T12

and det(I - T22 M) # 0 so that

F(T, M) = T + T1 M(I- T2 2 M) T21

is well-defined.

Lemma:

Suppose 3T such that BA C { F.(T, A) * (a) < I}

then &(F(T, M)) :5 1 =s- (M) :5 I

This lemma says that if F.(T.,A) "covers" BA then T can be used to obtain an upper bound for P.

The proof is given at the end of this section. The next step is to identify a set of T's that satisfy the lemma.

To this end define

D = (diag(d,d 2 , .. d.,d,,+1I,d.+ 2 I . d.+,I)
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C f diag (c I, c3.....v cm, 0,0'.....0) C, E 1-1, 11}

T , 'C D ED, }

.= D -1 01

where D and C are partitioned conformally with A. With these definitions, for T E T

Ft(T,M) = iC + (I - C), 2 DMD'. (6.3)

It is a matter of some simple algebra to show that all T E T satisfy the lemma. Note that if there are no

real parameters (m=0), then F(T, M) = DMD - ' and this scaling reduces to that considered in (5.10) and

(5.12). Other T also satisfy the lemma but this parametrization is convenient because (6.3) is particularly

simple.

Obtaining an upper bound based on (6.3) is somewhat more complicated than is possible in (5.12). The

difficulty is that the above lemma only implies that p(M) :5 I and does not scale. Using the sets in (6.2),

we can define

A(M) = inf inf it (F(T - M) < 1 (6.4)
aER+ T T a"

It follows immediately from the lemma that

p(M) < A(M)

and thus A provides an upper bound for p. Again note that for no real parameters, I(M) simplifies to

-o.".-A(M) =inf S (DMD-')
DEP

The natural question is how good a bound is j for p. Recall that for m = 0, n S 3 that A = p for

all matrices independent of block size (m is the number of real parameters and n is the number of complex

blocks). A simple extension of this result yields A = p when m = 1, n < 2. Although counterexamples

exist for problems with more than these number of blocks, experience has shown that A is often a good

approximation to p even in these cases. While this experience is encouraging it is not conclusive and

additional research is needed to establish the value of g. Unfortunately, when there is more than one real

parameter it is possible for ((M) 4 As(M) .
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Proof of lemmnas Since

det(Jv - T2 2 M) det (r - F1 T, M)A)

= det(vI- 7a1A) det v - MF (T,A a)),

~(F1TM) <I ~det(I - Fj(T, M)A) 0 0YCa(A,) < I

Sdet(I- m F.(T,A%)) o0 va(a) <I

sdet(I - ma) s 0 VA EBA

Sp(M) : I



28

1.7 p-Synthesis

The previous sections on analysis showed that the synthesis problem reduces to finding a stabilizing

controller K so that

IIFI(P,K)II, < a = oc orp (7.1)

where F(P, K) = P11 + PI: K(I - P3IK)- I P21 . The solution to (7.1) for a = oo was outlined in section

4 and additional details are presented in the remaining chapters of this report. This H -synthesis solution

can be used to provide an approach to solving the p-norm synthesis problem, refered to as p-synthesis.

Recall that the first step in the Ho synthesis solution involves finding J so that the substitution

K = F(J,Q) yields

F,(P,K) = F(P, F,(J, Q)) = R + UQV (7.2)

with F(P, K) internally stable iif Q E Ho. Further, U is inner and V co-inner (U*U = I and VV" = I),

and there exist complementary inner factors U.L and Vj. such that IUU.] and I I are both square and

inner. The U and V are obtained from coprime factorizations PI, = UMT1 and P 11 = M;" V. The next

step involves using a rational matrix version of the Davis-Kahan-Weinberger matrix dilation results (D I to

further reduce the problem to one of finding Q 6 RHoo such that

Ila + QI 01. < 1 (7.3)

where G E RLo,. This problem can then be solved using the Hankel norm approximation methods

developed by Glover [G21. The resulting optimal Q can then be used to fnd first the optimal Q and then

the optimal K.

The p-synthesis problem does not yet have as complete a solution as does the H,,, synthesis problem.

A reasonable approach would be to try to find a stabilizing controller K and scaling D so that
-V

~IIDF,(,'PK)D-'Ill _5 1. (7.4)

One method to do this is to alternately minimize the above expression for either K and D while holding the

other constant. For fixed D the left-hand side of (7.4) is just an H.. control problem and can be solved using

the methods reviewed above. For fixed K, the left-hand side of (7.4) can be minimized at each frequency
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as a convex optimization problem in D. The resulting D can be fit with a stable, rational transfer function

with stable inverse (the phase of D does not affect the norm).

This approach to p-synthesis has been successfully applied to several example problems. In principle, it

could be used to obtain controllers that are arbitrarily close to p-optimal in the case of 3 or fewer blocks and

provide nearly optimal controllers for the general case. This would depend on the suggested iterative scheme

converging to the global optimal K and D. Unfortunately, individual convexity in the two parameters of an

optimization problem does not imply joint convexity, and this scheme is not always guaranteed to converge

globally to the best K and D.

To better understand the properties of the problem in (7.4) it is useful to consider the constant matrix

problem. Using (7.2), we can reduce (7.2) to

fJD(R + UQV)D-'I1, !5 1. (7.5)

for constant R, U, V with U'U = I and VV = 1. For D = I, it follows from IG21 that

min ar(R + UQV) = ax( iUR) , a'(RVI)) (7.6)
Q

where U. and V1 are chosen so that .U U.] and I ]' are both square and unitary. All of these quantities

are easily computed using standard SVD routines.

Posing (7.5) as an optimization problems gives

min Y(D(R+UQV)D-'). (T. T)D.Q

It is known that this problem is convex in either D (actually ln(D)) or Q individually when the other is

held fixed, but is not convex in both variables jointly. This means that the iterative scheme suggested as

a possible approach to p-synthesis is not guaranteed to converge even in the constant matrix case. It is

possible, however, to compute the desired D in (7.7) directly.

The result in (7.6) may be applied to (7.8) to obtain

min 5 (D(R + UQV)D-') =

max { ((DU) -DRD') , a' (DRD-'(VD-')1)} (7.8)

L . ' E *5 ,. . *'**"*'. ~ % '*,.~.
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where

(DU)± - D-'U.L(UD-2 U.)-' 1 2  (7.9)

and (VD-')± is defined similarly. Note that [DU(U@D 2 U)-'/ 2  (DU).] is unitary. It can be shown that

the right hand side of (7.8) is convex in ln(D) so that the "optimal" scaling for (7.7) may be computed

by search in advance. This gives a tight lower bound for (7.7) and the resulting D scaling may be used to

compute the optimal Q.

A simple example will illustrate all the essential features of this possibly confusing sequence of ideas.

Consider the problem

&I d,,0,
min a, [ (7.10)

The p-optimal q is q = 0 which gives p = 1. For fixed d the a,-optimal q d' and for fixed q > 0 the

a'-optimal d is d = " Thus, iteratively solving for either q or d will immediately converge to the curve

q = d. For example, with the initial guess of q = d = 1, the iterative scheme will not change either q or d

and will thus fail to And the global optimum.

On the other hand,

min a, d] max (a,(,_Idj) '(I I
= fl T + d . (T. 1 )

Thus,

min(Iin[,/ l =min i, v ," (7.12)

which is clearly convex in both d and Ind and achieves its minimum as d -0. If the expression in (7.8) were

used to compute the d in advance, it would be possible to find the optimal achievable level for (7.9). This

example also illustrates why, strictly speaking, inf, not min must be used for the D scalings as in (5.9). This

issue will not be taken up in this report. It turns out to be of little significance anyway.

The simplest application of these ideas to the selection of the D scalings for the p-synthesis problem is

to compute an initial guess for D at each frequency using (7.8). This would be the optimal D for an acausal

*. .. . .-" -
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controller, and should provide a good initial guess for the optimal D for the causal controller problem. A

deeper question is whether some generalization of (7.8) and its convexity properties applies to the rational

case. While this seems likely, the details have not been worked out and the practical implications are

uncertain. For some additional results on p-synthesis, see [$5j.

~~~~~~~~~~~.... .- .. . . . ... ........... ,-,.......,..-.. ....... ,..... .. .,,. ..... .. ........ ,-,,
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1.8 Outline of Chapter@ 2-6

The remainder of this report considers various issues arising in H. optimal control theory which are

associated with a particular solution approach which involves reduction of the standard problem to a

"general distance problem" (GDP) in L.e. Since Ho, methods were introduced to the engineering com-

munity by Helton ( 1981), Tannenbaum (1980), and Zames(1981), there have been numerous papers on the

subject from many points of view (e.g. Chang and Pearson (1984), Feintuch and Francis (1984), Foo and

Posthlethwaite (1984), Francis and Zames (1984), Glover (1984), Khargonekar and Tannenbaum (1985),

Kwakernaak (1983), Safonov and Verma (1983), Verma and Jonkheere (1984), to name just a few). This

paper will focus on the approach developed in Doyle (1983, 1984), Chu and Doyle (1984, 1985), and Chu

(1985), which was outlined in Section 1.4. For an overview of H. control theory and a review of the

literature see the expository paper by Francis and Doyle (1985).

This report is divided into eight chapters. Chapter 2 expands on the overview in Section 1.4 of the

general optimal synthesis theory from Doyle (1984), which includes both the H 2 and Ho, optimal control

problems. The affine parametrization of the closed-loop transfer matrix is obtained following Youla's

parametrization of all controllers achieving internal stability. A particular parametrization is employed

involving coprime factorization with inner numerator; the H2-optimal controller is found immediately and

the H.-optimization formulation is transformed to an equivalent "general distance problem" (GDP).

Two simple examples are also presented.

Chapter 3 describes results on optimal solutions to the general distance problem. The optimal norm

of the GDP can be expressed in terms of an induced operator norm or an equivalent eigenvalue problem

involving a combination of Hankel and Toeplitz operators. The ,pproach is conceptually elegant; how-

ever, it does not yield a computable formula for either the minimal norm or the optimal solution.

In Section 4, the approach of -,-iteration is introduced. It essentially involves guessing a -y and then

reducing the problem to an equivalent best approximation formulation. The guess for - is iterated until it

converges to the minimal norm, and the optimal solution is thus obtained. Some fairly tight bounds for

the minimal norm which are easily computed are also given; these immediately allow for reasonable esti-

mates of the minimal norm as well as giving an approximation technique for obtaining suboptimal solu-

- ..
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tions that are within a guaranteed bound of optimal. To study the convergence properties of the -.

iteration it is then viewed as a problem of finding the zero crossing of a function. It is established that

this function is continuous, monotonically decreasing, convex, and in turn bounded by some very simple

functions. These properties make it possible to obtain very rapid convergence of the -t-iteration. An

interesting example is given to illustrate some important aspects of the general distance problem which

were not previously well-understood.

The state-space formulation of the 7-iteration is then developed and presented in Chapter 5. In the

-1-iteration, a key step is to find the spectral factor of a para-Hermitian matrix of the form (7y2! - G*G )

(or (-121 - GG 0)) which typically, requires one to solve for a coprime factorization with inner denominator

and a standard spectral factorization. Each of the factorizations requires finding the stabilizing solution of

an algebraic Riccati equation (ARE). The ARE associated with coprime factorization has a special struc-

ture where the constant term is identically zero. A very efficient algorithm based on a Schur decomposi-

tion is developed to solve the ARE with this special structure. For completeness, balanced realizations

and Glover's algorithm to the best approximation problem are also reviewed. Combining previous results,

the "closed-form" state-space optimal solution of the general distance problem is then obtained.

Chapter 6 recapitulates the results detailed in Chapter 2 through Chapter 5, with a discussion of

some numerical aspects of the algorithms. Chapter 6 also discusses some results on model reduction in the

context of the GDP as a method for obtaining suboptimal solutions with reduced order. The focus here

is on model reduction techniques where the error produced by a reduction can be related directly to the

degree of suboptimality of the resulting solution.

.- 7

S.
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CHAPTER 2

OPTIMAL SYNTHESIS THEORY

I.I
This chapter contans a review of the general H2 and H,, optimal synthesis theory. It is an expan-

sion of the material outlined in Section 4 of Chapter I and shows in detail how the general Ho,, problem

reduces to the "General Distance Problem". Recall that the framework used here is depicted in Figure 2-

1. The approach used in this chapter follows closely that in [D161.

Flgure 2-1. General Framework for Synthesis

Partitioning P appropriately, the closed-loop transfer function matrix from v to e can be writtened as

the following LFT

FI(P,K) = P11 + P 12K(f-P=K)-'P j (2-1)

where

U.--

....... ........ ,.. ... "-.-. ...... :''..-.'. ..- ,.,.-. ,.,..-->- .. , . -.- . .-.--..-:. " -.-.',- ;,. -.-.- .-;.---'-', .-. - .. ..- ,-," ; .*, " , id i u umn l
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P11 P121
.::I E R,(= +PI x(j*n'  P e R Pxft . (22)

The problem in H2 and Ho, synthesis is to find a controller K achieving "internal stability" such

that the performance measure IP ,z (P ,K) I is minimized for a - 2 or o.

In this chapter, the notion of internal stability for the LFT F, (P,K ) is reviewed first in Section 2.1.

Section 2.2 gives an algebraic treatment of the Youla parametrization of all stabilizing controllers in terms

of a stable parameter matrix Q E RH. with the LFT representation,

K - F,(J,Q). (2-3)

This parametrization has the additional property that substitution of Eq. 2-3 into Eq. 2-1 yields

F,(P,K) - FI(P,FI(J,Q))

- FI(T,Q)

where

FI(T,Q)- Til + TQT2 (2-4)

providing an affine parametrization of all internally stable closed-loop transfer function matrices

FI (P,K). The Youla parameterization is then constructed using the standard state-space computations

of observer-based stabilization methods, providing explicit realizations of the desired J in Eq. 2-3 in terms

of a realization of P. The affine parameterization of the closed-loop system is also derived using a state-

. space realization.

In Section 2.3, a particular parametrization is derived such that T12 is inner and T21 is co-inner.

The algebraic Riccati equation plays an essential role in obtaining such a parametrization. Using the

unitary-invariant property of the Hr. and H.-norm, the H2-optimal controller is immediately obtained.

The H., optimal control formulation is transformed into an equivalent "general distance problem" which

will be discussed in great detail in the next three chapters. Section 2.4 presents two examples to illustrate

the H2 and H. optimal control respectively.

,%
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2.1 Internal Stability

The results in this section are entirely standard, although typically not expressed in the LFT frame-

work. For an interesting alternative treatment which is closely related see Nett (1985). In this section P

and K are fixed proper transfer function matrices. The block diagram associated with Figure 2.1

represents the two equations

[: [ :]Ky
It is convenient to introduce two fictitious external signals, w, and w2 , as in Figure 2-2.

V p e

W+ W

2

Figure 2-2.

Suppose the signals v ,w l , and w2 are specified and that u in Figure 2-2 is well-defined. Then so are

e and y. Thus it makes sense to define the system as diagrammed in Figure 2-2 to be "well-posed" pro-

vided the transfer function matrix from wr w to u exists and is a proper one. The following

theorem shows the necessary and sufficient conditions of well-posedness.
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Theoremm 1

The following statements are equivalent:

(i) The system as diagrammed in Figure 2-1 is well-posed.

(ii) I - K(oo)P=(oo) is invertible. (2-5)

(iii) PK ) ] is invertible. (2-6)

(iv) I - P=4oo)K (cc) is invertible. (2-7)

Alternatively, the well-posedness condition can be stated in terms of state-space realizations. For

this purpose, introduce minimal realizations of P and K:

A IB, B 2

P - C DI D 12  (2-8)

c2 D21 DJ

K (2-g)

The partition in Eq. 2-8 corresponds to that in Eq. 2-2, i.e.,

P" - Lc , D,,

Then P=(oo) = D=., and K(oo) 1 D, and so (from Eq. 2-6) well-posedness is equivalent to the condition

that the matrix

is invertible. Well-posedness of the system as represented by its transfer function matrix will be assumed

throughout this chapter.

Let z and z denote the state vectors associated with minimal realizations of P and K respectively,

and write the corresponding system equations for the interconnection structure in Figure 2-1 with v set to

zero and e ignored as:

U- , . -... -, - .- , . , . , - - .. " ",. , . , . . , , . - - .. . . ', -' ' . . -' -. , , . , , - -- . . . . -. . -- . , . . .
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z - Ax + B2 U (2-12a)

= C2Z + D2 u (2-12b)
-S-. : - Az + By 2.:

4 Z' J 9(2-1 2c)
. ii - C; + by. (2-12d)

The system diagrammed in Figure 2-1 is "internally stable" provided the null solution (z ,z) = (0,0) of

Eqs. 2-12a to 2-12d is asymptotically stable To get a concrete characterization of internal stability, solve

Eqs. 2-12b and 2-12d for u and y:

_ID ]

(Note that the inverse exists because of the well-posedness condition Eq. 2-11). Now substitute this

expression for u and y into Eqs. 2-12a and 2-12c to get

T. d

where

A 0] +[21[ ]J0 0 -- +D - = / 0 •

Thus internal stability is equivalent to the condition that A is a stability matrix, i.e., all eigenvalues of A

lie in the open Lhp.

It is not difficult to verify that the above definition of internal stability depends only on the transfer

function matrices P and K, and not on the specific minimal realizations of them. The following result is

standard.

Theorem 2

Consider a minimal realization of the system P as in Eq. 2-8. Then there exists a proper real-

rational transfer function K achieving internal stability if and only if the pair (A ,B 2 ) is stabilizable and

the pair (C 2,A) is detectable. The latter stabilizability and detectability conditions are assumed

throughout this chapter.

2. Z
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Since

a P22 - [¢=IDB2, (2-13)

Eqs. 2-12a through 2-12d constitute a state-space representation of the system diagrammed in Figure 2-3.

Although the realization in Eq. 2-13 is not necessarily minimal, it is stabilizable and detectable, and these

are enough to yield the following result.

u y

FIgure 2-3.

Theorem 3

The system diagrammed in Figure 2-1 is internally stable if and only if the system diagrammed in

Figure 2-3 is internally stable.

The above notion of internal stability was defined in terms of state-space realizations of P22 and K.

It is also important and useful to characterize internal stability from an input/output point of view. For

this, consider the feedback system diagrammed in Figure 2-4. This system has an input/output relation-

ship:

. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... , . . .
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V1 '

2V 2

Figure 2-4.

It is intuitively clear that it the system diagrammed in Figure 2-4 is internally stable, then for all

bounded inputs (v1 ,v2 ), the outputs (C 1,e 2) are also bounded. This idea leads to an input/output charac-

terization of internal stability.

Theorem 4

The system diagrammed in Figure 2-4 is internally stable it and only if (I -P=K) is invertible and

the transfer function matrix

P2 1 (I-P=K)-'P22 (I-P2K)-' 1

between (U1 ,v2) and (e 1,e 2) belonp to RH,.
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Note that to check internal stability it is necessary (and sufficient) to check that each of the four

transfer function matrices in Eq. 2-15 are in RH,.,. It is not difficult to construct examples involving P=

and K such that some of the four transfer matrices in Eq. 2-15 are in RH,,, while the others are unstable

1D41.
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2.2 Parametriation of All Stabilizing Controllers

For the discussion here, there are two main approaches to constructing stabilizing controllers for

linear systems: the Youla parametrization and state-space methods using observers and state feedback

JK2,L4). Each is well-known among the control community and each has its advantages. The Youla

parametrization yields sU stabilizing controllers as well as a convenient affine parametrization of the

closed-loop system. Unfortunately, the standard algebraic treatment of this subject gives no reliable

scheme to compute the coefficients of the parametrization. Observer-based stabilizing controllers, on the

other hand, are easily constructed in terms of a realization of the transfer function matrix P using a

variety of state-space computation schemes.

In has been shown that these two methods of stabilization are actually equivalent. This allows the

Youla parametrization to be constructed using the standard state-space computations of observer-based

stabilization methods, providing explicit realizations of the desired I in Eq. 2-3 in terms of a realization

of P. Combining the results of the previous section and this section, the desired affine parametrization of

the closed-loop system is then obtained.

It should be noted that many of the results on the connections between the algebrpic and observer-

based stabilization methods were discovered independently by Nett and coauthors IN21. Also, many of

these results were known within the "systems over rings" community 1K41. A complete treatment on the

equivalence of these two stabilization methods and the parametrization in terms of the general framework

(Figure 2-1) using linear fractional transformation was first given by Doyle [D161.

The following definitions of coprimeness in RH. provide the appropriate framework for the

equivalences to be discussed.

Definitioni (Right Coprlmeness)

Two matrices N, M E RH. with the same number of columns m are right coprime if there exists

X, Y E RH, such that

XM + YN I,, . (216)

.... . .* *''
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DefinItIons (Left Coprlmenes)

Two matrices N, M E RH//o with the same number of rows p are left coprime if there exists

Y, Y E RH such that

MX+ NY P, (2-17)

Rema ks

(1 q.216 (2-17) is equivalent to saying that the combined matrix [N] ([.4 N]) has a left (right)

inverse in RHo,.

(2) An alternative definition for the right (left) coprime factorization, ref (lcf), is that two matrices in

RH,. are right (left) coprime if every common right (left) divisor in RH. is invertible in RH.

This is equivalent to the above definition in terms of a left inverse.

(3) Eq. 2-16 (or Eq. 2-17) is often called a Bezout (or Diophantine) identity.

It is a fact that every G E R, (proper, real-rational transfer function matrices) has an

rcf G == NM -' where the pair N, M E RHo, are right coprime. Similarly, there exists an cf,

defined in the obvious way by duality. The proof of the existence of such coprime factorizations can be

found in several publications [DI6,K4,N2,V3] with explicit realizations for the factorizations. In this sec-

tion, it will be shown how these factorizations can be used to obtain a parametrization of all stabilizing

controllers.

Beginning with rcf s and lcf s of P2 and K in Figure 2-4:

P22 - NM - - M-1N, (2-18)

K - V - /- . (2-1)

The following lemma is well-known.

Lemma 1

t4-. - .. : .. ... " .. ,. ' -. . '.". .' - .. ... , ,-. -. , .'" -,- . .. .. . .'.," ." x .. ,,',.",," - . . ---. . . .'.' " .. .... " .
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Consider the feedback system diagrammed as in Figure 2-4. The following conditions are

equivalent:

(i) The feedback system as represented by Eqs. 2-12a to 2-12d is internally stable.

(ii) is invertible in RH,.

(iii) [ M is invertible in RH,.

(iv) V M - UN is invertible in RH,,.

(v) M V - N U is invertible in RH,,.

Explicit realizations for N, M, A , U. V, U., and V.o will be given later in this section

which satisfy Eq. 2-18 and

L" 1_ N V 0 1J(220)-"- 0 M v,1 ,0

which is often also called "doubly Bezout identity". By the above lemma

K. '= U,V* - - (2-21)

then qualifies as a particular controller achieving internal stability. The result of the next theorem means

that all stabilizing controllers can be expressed in terms of matrix K. and a parameter matrix Q E RH,,.

The proof can be found elsewhere, for example, 1D5,DI6,V2,V3j.

Theorem 2

The set of all proper controllers achieving internal stability for the feedback system (see Figure 2-1)

is parametrized by the formula

K (U, +MQ)(V, +NQ (2-22a)

+ (. +Q )-(U. + QM) (2.22b)

A -
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- K, + V ; Q(I+V,-'NQ)- V,-1  (2-22c)

where Q ranges over RHo, such that (I + V,-NQ)(oo) is invertible.

It is not difficult to recognize that K, as in Eq. 2-22c, can be expressed in terms of a LFT as shown

in Figure 2-5, i.e.,

K - F,(,Q)

where

J = v ' - -' J ( 2 -2 3 )

Therefore, it is concluded that every stabilizing controller can be represented as a transfer function

matrix K - F (J,Q ), an in Figure 2-5, for some parameter matrix Q E RH. (constrained only to be

stable and proper and to make K proper). Using results of the above lemma, the affine parameterization

of the closed-loop transfer matrix follows immediately.

y U

FIgure 2-5.

%"
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Theorem 3

The set of all closed-loop transfer function matrices from v to e (Figure 2-2) achievable by an inter-

nally stabilizing proper controller as in Theorem 2 is

I Tx + T 12QT : Q E RHoo, I + D22Q(oo) invertible}.

where

Til- P 11 + P 12UMAP 21  (2-24a)

T12 - P 12 M (2-24b)

and

T21 = MP 21  (224c)

(P,,, M, and V, are defined as in Eqs. 2-2, 2-18, and 2-21 respectively).

Proof

Substituting Eq. 2-22a into F, (P ,K I in Eq. 2-i yields

F,(P,K) - P11 + PIU, +MQ)(V*+NQ) -1 [I- -'N(U. +MQ)(Vo +NQ)- IP 2 1

- Pi + P 12(U. +MQ)M(V NQO)-r(U MQ) MP21

Eqs. 2-18 and 2-20 then yield M N - N M and M V, - N U, = I. Therefore,

F1 (P,K) - P 11 + PIAU, +MQ)iMP2

= (P 1 +PI 2 UMP 2 ) + (PI 2M)Q(AiP 2 I)

- TI, + T12QT 21  (-5

where T1I, T 12, and T 2 1 are defined as in Eq. 2-24.

QED

Remark

.......................................................
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Eq. 2-25 is also a linear tractional transformation, F (T, Q) with T, = 0.

In the following, the coprime factorizations will be given in terms of state-space representations.

Using these formula, an explicit realization of one choice of the interconnection matrix I (Eq. 2-23) is

then derived.

For the next two lemmas, it is assumed that G =[A B] E Rp×O where the pair (A B ) is sta-

bilizable and the pair (C ,A) is detectable. The following lemma shows that an rcf of G can be

obtained using a stabilizing state feedback gain matrix F. The existence of F is guaranteed since (A ,B)

is stabilizable.

Lemma 4

A stabilizing state feedback F yields ref G - NM - 1 where

[Nj F JBI (026)
LC +DF ID

Note that for any nonsingular Z

[M] [A+BF JBZ1
N +DF ZJ(2

is also a realization of an ref of G.

By duality, to get an lcf of G, take H such that A +HC is a stability matrix. Call such a stabil-

iz'bg matrix H an output injection gain.

Lemma 4'

A stabilizing output injection gain H yields Icf G Ai M ' where
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, rA+HC H B+HDl
1ML N] C I D (2.28)

The next step is to specify U,, V,, U,, V. to satisfy the doubly Bezout identity in Eq. 2-20. The

idea behind the choice of these matrices is as follows. Using observer theory [Kai], find a controller K,

and the associated matrices F, H achieving internal stability and then perform factorizations on P- and

K, analogous to the ones just performed on G (Eqs. 2-26 and 2-28). Then the result summarized as in

Lemma 1 implies that the left-hand side of Eq. 2-20 must be invertible in RH,. In addition, Eq. 2-20 is

satisfied.

The transfer matrices N, M, N, and M in Eq. 2-18 have the following realizations,

FM1 A +B-.F B-]

NJ= F I. (2-29a)

* r ~ i A +HC2 1H B2+HD2 1
IJ[ C2  I O= ] .(2-29b)

The realization equations for K, are

x Az + B2 U + H(C2 Z + D2u - y)

u -Fi

that is,

K A - [+B 2F+HC2+HDJ H](3)[i -K, -- (2-30)

Define

A - A +B 2F+HC2+HD J F B = -H

C=-F, D 0,

F = C 2+DF , H = -(B 2+HD=).

. . -

A ai ,As. akAlat~
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Following Eqs. 2-26 and 2-28, define

[VF A+BF -H(31a1.? - C¢+DF 1 (2..31 a)u. " 0 .r l

and

[ .]- A ~ CIii [A +HC 2 1-(B 2;H92 2 ) -H11]1b

Therefore,

M U. A +B2F B2

I 2 F F 1 j (2.32a)
LNV 2+ D=F D22

.C 2  - D22 I

and Eq. 2-20 is satisfied.

A realization of J is now immediate. Substitution of Eqs. 2-29a, 2-30, and 2-31 into Eq. 2-23 leads

to, after simplification,

rA+B 2F+HC2+HDJF -H B2+HD2 1
F 0 (2-33)

-(C2 +D=F) I -1 D2

Theorem 2 provides a parametrization, in terms of Q, of all proper Ks which achieve internal sta-

bility in Figure 2-1. Substitution of the transfer function relationship of the block diagram in Figure 2-5

into that in Figure 2-1 leads to the one in Figure 2-6. Elimination of the signals u and y leads to the

transfer function relationship diagrammed as Figure 2-7 for a suitable transfer matrix T. Thus all

closed-loop transfer matrices are representable as in Figure 2-7.
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Figure 2-6.

Figure 2-7.

The following theorem gives one particular realization of T.
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Theorem 6

Consider T as in Figure 2-7, then T has a representation in the form

A s.B2F -HC 2  -11121 B 2 1
[TI, T121 0 A+HC 2 B1 +HD21  0

T T21  0 ]t + C D12F C1  :)1 D 12  (34

0 C2  D21  0]

where the matrices F and H are defined as in Eqs. 2-29a and 2-29b.

Proof

(i) T12:

Substituting Eqs. 2-8 and 2-2Na into Eq. 2-24b,

T 1= P 12M

- (.¢l' :j * £A8F 8]
A B2 A +B2 82

[A B 2F B 2 ]

0 A +B 2F B 2

IC, D 12F 112]

Applying the similarity transformation [ ']yields,

A 0 101 A +B2F B21T 12  0 A +B2F B2 [ CI + D1 2F D12 (2-35a)

C, C, + D'12F D12

(ii) T21:

Substituting Eqs. 2-8 and 2-29b into Eq. 2-24c,

T21 = MP 21

== tA + LHC[A] I B,]

-... ~ [C..
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*A HC2 HC 2 HD21 I
041 A B,

C2 C2 D2 ]

Applying the similarity transformation yields,

[U 1]

B 1 .HHD 11
T2 0+ A B, I C D1  12-35b)

L= C2 D2
C2  0 D 12  JD 1  23b

(iii) T1 1 :

From Eqs. 2-8, 2-31a, and 2-35b,

A1 UP I [ B.2J A [+B2q~h] [A +HC 2 B,;HD2 1]

PA B2 F 0 0 1
:40A +B2F -HC2 -H 2

0~ z; A + HC2 B + HD21
C D1F 0 0

Applying the similarity transformation 0 1 0 yields,

1 00!

0 A +B 2F -HC 2  -HD21
P1 2UiP2 - [, 0 A HC 2 BI+HD2 ]

C, C, + D12F C, 0

Therefore, from Eq. 2-24a,

T- P11 + P1 2 U,#AP2

[A B] 0 A +B2F -H 2  -HD21
Sc

, IoD1 J 0 0 A + HC2 B, +HD 2 1

C, C1 +D 12 F C1 0
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0 A + H2 B, + HD2 1  (2-35c)
, C, + D12F ¢ I D11

Combining Eqs. 2-35a through 2-35c and the fact that T22 0, Eq. 2-34 follows immediately.

QED

Rernaik

The following expression is an alternative realization for T which was given by Doyle [DI61.

A +B2F -B 2F B, B2

0 A +HC 2 8I+HD2 , 0
T , ¢C+D 12F -D 12 F D11  D1 2 (

0 C2  D2 0

It is important to note that the closed-loop transfer matrix is simply an "affine" function of the con-

troller parameter matrix Q and that the coefficient matrices T,, have very simple realizations; namely as

described by Eq. 2-34 (or Eq. 2-36).

Note that the Youla parametrization and associated observer-based controller described above allow

choice of the matrices F and H. In the next section, specific choices of F and H will be presented such

that the affine parametrization in Theorem 3 has additional properties, namely that, T 12 and T 21 are

inner and co-inner respectively. The algebraic Riccati equation will play an essential role in obtaining

such a parametrization.

So-

-EU.
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2.3 Coprlme Factorlsatlon with Inner Numerator

Section 2.2 contains a summary of methods for finding the interconnection matrix J so that the sub-

stitution K - F (J,Q J yields

F,(P,K) - FI(P,F,(J,Q))

- F,(T,Q)

. T11 + T 12QT=

with the additional requirement that T E H, and

F, (PK) internally stable

if and only if Q E HM.

This parametrizes all stabilizing controllers K in terms of a stability matrix Q E H,, in addition to

providing an afine parametrization of all stable FI(PK). The actual structure of J was derived in

terms of an observer-based compensator. The stabilizing state feedback and output injection of the

observer-based compensator were shown to provide coprime factorizations of P22 and solve the Bezout

identities necessary to provide the parametrization of all stabilizing controllers.

In this section, the requirement is added that T 12 and T 21 be inner and co-inner respectively; that

is, TIT 1 2 - I and T 2 1 T 2 - I. In addition, T, and will be found so that [T 1 2 T] and

[ are square and inner.

The key idea behind the factorization in this section is the connection between inner functions, alge-

braic Riccati equations (AREs), and spectral factorizations. The stabilizing solution of the ARE's will be

needed in order to construct the desired factorizations.

Coprime factorizations with inner numerator and complementary inner factors (CIF) will be

obtained which involve using a state feedback or output injection gain based on the stabilizing solution of

a particular ARE. This provides a reliable computational method based on standard approaches to

. finding solutions of AREs IC5,K6,L1,M1,M2,M3,P3,VI. A complete treatment on this subject can be

found elsewhere !A3,A4,C2,D16,WI,YlI.

V.. ... , . - .P
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Consider the Algebraic Riccati Equation,

ErX + XE XWX + Q 0 (ARE)

with the associated Hamiltonian matrix

E~ -WE ]. (Hamiltonian)

where

E, W', Q E ,
x "  W = Wr >0, and Q = Qr.

The following theorem and corollary characterize the relationship between spectral factorization, AREs,

and decomposition of Hamiltonians. The proofs can be found in (D161.

Theorem 1

Let A, B, P, S, and R be matrices of compatible dimensions for the ARE such that

p P T ,R - R r > 0, with the pair (A,B) stabilizable and the pair (P,A) detectable. Then the

following statements are equivalent:

(i) The para-Hermitian rational matrix

r(~ ~ -,, =-B(~ A r)~ ]P S] [(81-A [-'B]

satisfies

- r(jw) > 0 for all 0 < w< oo.

(ii) For E A -BR-ISr , W = BR -B T, and Q - P -SRIS T, there exists a unique real matrix

X - Xr such that

- ErX + XE - XWX + Q = 0

and (E-BR -B TX) is a stability matrix.

oS

,.4
": ;" ";" " '; '"'V;<'''I :"" )Y m' ' ) ','.'-'"'.. " " ,'< ' .'"'" 5"-" . .'" ' "- . " " '-"-" "' ' " "



(iii) The Hamiltonian matrix

[A -BR- ST -BR-'B r

A [_P+SR-Sr .(ABR-lsr)r

has no eigenvalues on the ji (-axis.

Remark

The unique stabilizing solution of the ARE (X as in (ii) of Theorem 1) will be denoted by Ric (AH)

throughout where A, is the associated Hamiltonian matrix.

Corollary 2

If the conditions in Theorem 1 are satisfied then F M E R. such that M -' E RH, and

F MORM.

A particular realization of one such M is

M m H I (2-37)
:-F.I

where F - -R-l(Sr +BrX).

In the following, the special form of coprime factorizations required to simplify the general H3

(a 2, oo) optimal control to a distance problem will be developed. In particular, explicit realizations

are given for coprime factorizations G - NM-' with inner numerator N (Theorem 4) and for the com-

plementary inner factor N, which completes the inner numerator to make N N square and inner

(Theorem 5). The results will be stated as theorems for ref s. The duals for lcf s following just as for

the general case of coprime factorization developed Section 2.2.

The following lemma summarizes the necessary and sufficient conditions of an inner transfer matrix

with state-space representation. The proof can be found in IDI6].

= - .; *
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Lemma 3

The transfer matrix N == [ E RH. is inner if and only if

(i) rX + Lr = 0 (Z-38)

and

(ii) DD r - 1 (2-39)

where the observability gramian X solves

rX + Xi + ere 0-o (2-40)

For the next two results, it is assumed that G C [ E R ×  and the realization for G is

minimal. The notation RD"* (RD > 0) will be used to denote the square root matrix such that-

(RDJ4)TRD 4 RD (or RDuRd) r - Ro) and use "D for any orthogonal complement of D so-that

[DRD-"2 D] (with RD D rD) is square and orthogonal.

From Lemma 2.2.4, a stabilizing state feedback F yields ref G = NM -' where

FM1 A +BF IBZ'

[N]- F I. (.C41)

L+DF DZJ

and Z can be any nonsingular matrix. To obtain an rcf with N inner, we simply need to use Eqs. 238

through 2-41 to solve for F and Z. This yields the following result.

Theorem 4

Assume p 2 m. Then, there exists an rcf G - NM-' with N inner if and only if G*G > 0 on

the jw.-axis, including at oo. This factorization is unique up to a constant orthogonal multiple. A par-

ticular realization for the factorization is

a ds =l lll,.................. 
i

.. .. ... . .. . .. ... .......
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N[M 

A '+ B F B R D 
1'

N -~ 1 E R (m +P)x P
- r RD- RHc , (2-42)

C +DF DR o- '?2

where

R D - DTD > 0

F . - Rff(BrX DrC) (2-43)

and

A -BRDlD r C -BR 5 'B r
X = Ric _C DDIrC _(ABRilD r C)r > 0 (2-44)

In a similar manner Eqs. 2-38 through 2-40 can be used to obtain the complementary inner factor

(CIF) in the following theorem.

Theorem 5

If p > m in Theorem 4, then there exists a complementary inner factor (C[F) Ni E RHO' O(P-')

such that the matrix iN Nil issquare and inner. A particular realization is

r[A +BF Xt( rD 1  (2-45)N = C+OF I

where X and F are from Theorem 4 and X t is the pseudo-inverse of X

Remarks

(1) If G E RH X in Theorem 4, then M is a "unit" in RHo and M - 1 is "outer". In this case,

G = N (M') is called an "inner-outer factorization" (1OF).

(2) Dual results for all factorizations can be obtained when p < m. In these factorizations, output

injection using the dual Riccati solution replaces state feedback to obtain corresponding left fac-

torizations.

f...................................................
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In the rest of this section, the results of the Youla parametrization which paramneterizes all stabiliz-

ins controllers and coprime factorization with inner numerator will be combined in a way that is con-

venient for solving Hz-optimal and H,,,-optimal control problems.

Assume P as the transfer function matrix associated with Eqs. 2-2 and 2-33 and neither P12 nor P21

has transmission zeros (see reference IKiI for definition of transmission zeros) on the j u.,iaxis (including

cc). This implies that

RD - DLD12 >O0 and RfD -D 2 1D21r>O0

Under these assumptions, let DI- (D 12)1  and D I - (D 2), 1  that is, [D 2RDA DJ] and

E D -A D211
~j ]are orthogonal matrices where

(RD )R ~RD and RDiDI 1 RD

By Theorem 4, N 12 i T 12RD" 2 is inner where the state feedback gain matrix F is

F = - '(DT 2C +B~X) (2-46a)

and

BA - 2RD'Dr C I - B 2R5-B~ 2 ]X - Ric cD 1 2, -A- 2R'TC) (2-46b)

Similarly, using the dual form of Theorem 4, N21 ' fRD '1T2  is co-inner where the output-injection

gain H is

H -- (BIDDI 2YC)D (2-47a)

and

Y i (A -BI 1 D-'C2 )7 1 _'[ LB1 I rD 1 B 1 -(A - B1 D~fi D-C2 ) J(4b

Then, N1*N 12 I and N 2 1N 2*1 1 . Also, let N, and 1 , be the corresponding CIFs so that
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N N A + B 2F B 2RD- X4 TD 1 I (2-48)
[N i] 1C,+D2FI D ' RD-1 D ]
rN 21] A +HC 2 JB1 +HD21

41 C] ~ 2 1 f,6kD~ (249)

Therefore,

F(P,K) = F,(T,Q)

- Til + T12QT21

11 - N 2( - R "Ql D)N 2 1

T11 - N2Q N 21  (2-50)

where

Q. - R 2 QRi ERH"2 (2-61)

is the new stable parameter matrix.

Because both the II * 112 and I I. I I. norms are unitarily invariant, an alternative expression is pos-

sible. For any Q E RH,,,

S -T11 - N12Q N 21 H
Nv12 NT] (T11  N1 2Q N2,) [N~

NITIIN 2-Q NY T11

[R11-0Q R121
R21  R 2 J,2

where

R = R2:, R=j : L ] Ti IN,-, N )

S. . . . . . . .
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Now, the a - 2 case is particularly simple. Since

[R 11-Q R12  I '121 R1 2 2

1[ R 21  R22~ 112 - 21 1 - R2:11 R122
the optimal Q is found immediately to be

t,, = PH(RI) (2-54)

and the the corresponding optimal Q is

Q -- RD"PH2(Rll)Rj D (2.55)

The case of a = oo is more complicated and the formulation in Eq. 2-52 is called the "general dis-

tance problem" (in short, GDP) which will be investigated in great detail in the next three chapters.

A state-space realization for R is given in the following theorem. It is suggested that all the poles

of R are in the open rhp, i.e., R is completely unstable. For convenience, R is represented as the cas-

cade operation from two system matrices.

Theorem 6

Consider R from the formulation in Eq. 2-53, then R has the realization[ -(A +BF)T (Cl +D 12F) XH] [ -(A + HC,2)r _ C, )TC, rYIB 1 T
R -(B 2RD-)T (DI 2RD-4)r 0 CY +D I(B1 + HD21 )T D 1 1(Ri-lD 2 1 )r DI " 0D

Proof

Note that the realization of TI,, Eq. 2-35c, can be expressed as the cascade of two systems, i.e.,

A1 -B2 *HC2  -HD * 21 ]TF 0 A + HC BB HD21t

A B2 10 H][
:C + D12 FI 1 0 C D11

C2  2

.. '" C O a
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-(TIl)A(T 1)

It is convenient to compute [N1]2(TI)A and (TI)a [NA N. separately.

(a)

*(+2~ fA+B2F -H]

IN*] (r11)A = (B 2RD-') (D 12AD % 1C) + D ZF I 0
D DrC 1 X DrT

-(A +B 2 F)T (C 1 *+D t 2 F)(C + DJt2) (C 1 +D 2F)r 0

= 0 A +B 2 F 0 -H

~(B 2RD- 'I (D l2 RD ""Y T(C I+ I.-F) (D 12RD1 2) 0

D !C jXt D r(C + D 12) D r 0

-(A +B2F)r CjD D rC1 + XB2R5',B2X (Cl + D12FVT

0 A +B2F 0 -

= -(B2RD 1) (B 2RD- 2)x (D 12RDlI T0

DrCIXt D rC, D T 0

Applying the similarity transformation [ 0 1 (X is as in Eq. 2-46a) yields,

-(A +B2Fr W * (Cl + D12 F )r -XH

N 11 0 A +B2F -X(C,#D 1 2F)r -H

N.J(Tl1)A = (B -RqD )T 0 (D 12RD I) r 0

D1C jXt DrC (I -XX) D r 0

where

()=(A +B2FVX + X(A +B 2 F) + XB2RD-'B21X + C1DID TCI

=(A-B 2DirCi)TX + X(A-B 2DIrC,) -X 2 6B X C iD

= 0.

Also,
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Ker(X) C Kor(Dc) TC> D rC,(l-XXt) = 0.

N [1-(A + BF) r (CI #D 2F)T r-X

[N-I(T,,A - .. B 2RD-It)r (D,2 R- 1 ' 0 (2.6)

D Drcxt DfT

(b)

(T,,A [ ] [+HC2 B, + HD ~ (HC)r ',CjT -r y, bIDr
11)8 ~C2  D~ 2 -(BI + HD2 1)T I (RD D2 1 )'2,1 I D1r

+HC 2 -(BI + HD=,)(BI + H1J 1 (BI + HD21)Df (BI + .t0
o-(A + HD 2 1)

T  (R Pi 2  - B6r

C, - D ,(B I +HD21 )r D ,(R D 21,) T  D 1bD

C2  D21(B +HUD2,r

A+HC 2 -(B,DL1'r 1BT -yCr ,

0 -(A +HC2 )r (Rfi-4C 2)T  Y tB, I r

C1  -D ,(B I + HD21 )r D (R D "DD2 1)T D,,D I

C2  -C 2 Y D

Applying the similarity transformation Y] (Y is as in Eq. 2-47a) yields,

p. A+HC 2  e)0 (I-YY)B,Dif

NT,) 2-1 - 0 -(A +HC 2 )r (RIfi CO)T -YIBDb T
[NT1NL C, - C,Y -D,,(B, +HDZ)r Dll(RbWID 2 1)T DII61T

C2  0 D0

* where

0 e (A+HC 2)y + Y(A+HC2 )r + B,1D rD1Br + yCIr -'C 2 Y}

-~~~2 - (ABD IC2 )Y + Y(A-B 1 DrfR'C 2)t  YC~R 2 Y BDTB

e- z
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-0.

Also,

" er(Y) C KeID LB 1I ""> (1l-IY)B1bI O.

[-(A + HC2)- D(R tC 2 ) Y'B 16 r
. (Tr 1 )8  N21 1 Cy +O,(B +HD 21)

r D 11(RfV-D 21)T D 11D I (2-57)

Combining Eqs. 2-56 and 2-57, the theorem follows immediately.

QED

Remark

This realization is not unique, An equivalent expression can be found in [D161.

It is clear that R has all of its poles in the open rhp. Thus, the projection onto H 2 + 0 leaves

only the constant term. Therefore, in the H 2 case one has the following result.

Corollary 7

The H2-optimal solution is

S- R1 D 11D R -' (2-58)
- 12 11

In the H,,, case, the solution of the general distance problem is not trivial which will be discussed

extensively in the next three chapters. To illustrate the approach described in this chapter, two examples,

corresponding to H 2 and H,, optimization respectively, will be presented in the next section.

. . ... .. . . . . . . .. . . . -.-x.....-.
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2.4 Examples

In this section, two examples will be presented. In the first example, the familiar linear quadratic

Gaussian (LQG) formulation is treated using the general H2 optimal control theory described in previous

sections.

Example 13 (LQG)

Consider a linear time-invariant system with the following stochastic description

z - Az + Bu + Gd (2-59a)

y = C: + Nn (2-59b)

where

A, G E 1t"", B E 111"", C i RPx and N E R P xp'

(A ,B) is controllable and (C,A) is observable,

E [d(,)1 = 0, E [d()d r)i =-

Ejn(t)) =0 , Eln(t)nr(r)) - l6(t-r),

and

N is nonsingular.

The standard LQG formulation involves minimization of the (expectation of) quadratic cost func-

tion, that is, minimization of

with respect to z and u. In addition, the factorizations Q L 7L > 0 and W = Mr M > 0 are

assumed. A block diagram representation is shown in Figure 2-8 which can be further rearranged into the

general synthesis framework suggested in Figure 2-9.

,
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d r

Plgur* 2-8. Block diagrarn ot representation LQG

Figure 2-9. General synthesis framework for LQG
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Let 0(u) - (#I-A)-

then

Lr [LOG 0 LO4B'Id

0 0 M n
XLCJG N COBluJ

The interconnection matrix P of Figure 2-9 in partitioned form is simply

P11 12 Lf 0L OBI
• "- L. t. - LOG~aAcO l[COG N CO B

and has the following realization

P G 0 [

By assumptions, (A ,B) is a controllable pair and (C ,A) is an observable pair. Therefore, according

to Section 2.3, the state feedback gain matrix F and observer gain matrix H can then be found by solv-

ing the appropriate AREs. Explicit solutions for F and H are:

(i) F = -(M TM) o ][01 + BX} (M r-)'

where X - Ric LrL A-r

(ii) H G {[ 0] [of] + yCr}(NNr)-i - yCr(NNr)-i

where Y , Ric a C(- C

. . . C. 'Ci. .- . .i. . . . .. . . . .
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Hence, from Eq. 2-32a, the matrix J hs the following realization:

[A+BF+Hc -H 1.
Since the external inputs are assumed to be white Gaussian, and the performance is measured in

terms of the minimum-mean-square-error (MMSE) criterion, it can be shown that this is an H 2 optimal

control problem. Therefore, from Corollary 2.3.7, the H.optimal solution is

M r 0 0] [r] (NN r) - 1 =0

=P (M rMr, [0 1T [0 0] [IN NT1-

The optimal stabilizing controller K,,, can be computed from the LFT F, (J, Q,p,) and has the following

realization:

A + BF sHCI
K,,t - F,(J,O) - L F

It is not difficult to identify that the transfer function of optimal controller K,t is exactly the same

as that derived from the traditional LQG theory. This means that the LQG formulation can be handled

easily in the general synthesis procedure presented in this chapter.

The next example is a Ho.-optimal control problem.

Example 2a

Figure 2-10 shows a familiar feedback control formulation. The external inputs, commands and dis-

turbances at inputs of the plant, are assumed to be Lz-bounded signals. The performance is measured in

terms of the energy of weighted tracking errors (sensitivity minimization) and weighted control input sig-

nals (preventing actuator saturation).

e

• ......-.-.'.,z, .'.,:. :.:,-:-k.. . . .. . . . . . . . . . . . . .-.... . . -,. . --.-. . .-,. .- .,..-. . ...--- . .... ... ./:..22:.:;-.....: : . .-
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- Figure 2-10. A Feedback Control Problem

Again, Figure 2-10 can be rearranged and put in the general framework as in Figure 2-11 where the

ft. interconnection matrix P is

PHP1 0 0 W1 1
- [21 tP]- [W 2G W2~ W2G

G I G
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'Ie,

Er] E:2J

Flgure 2-11.

By assumptions on the input signals and the performance, it is known [Dl6,F4,F,Z2,Z3j that this is

an H,. optimal control problem and the general distance problem arises (Eq. 2-52).

An interesting fact is that the matrix R does not necessarily have the 2X 2 block structure as in Eq.

[R12
2-63. For some control problems, only two blocks appear in the GDP, that is, either R2 1 0or

[R 21 R =] - 0. This can be seen clearly from this example.

Note that,

PII = -W2G W2] [W2] G I1 [W2] P21

Then,

T1 P11 + P 1 2 U,.MP 2  (from Eq. 2-24a)

i:.- I[~ .o

i*0
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- w4 ' * 2u (from Eq. 2-24c)

where

N 21  = Rfd"T 2 1

and

-A -1 P12U.}i 1 z
1- ,W 2

From Eq. 2-53,

[N1, r -

[N,-f 11N2l 01.

Therefore,

This is a special general distance problem and will be referred as "2-block GDP. Both the 2-block and

the full 2 X 2 block cases will be discussed in later chapters.

. . . . - . w,. . .. . . . . .. . ...... - . . . . . . .a . .
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CHAPTER 3

GENERAL DISTANCE PROBLEMS

This chapter is devoted to a summary of results for the "General Distance Problem" (GDP):

Given R = R21 R]2 E L , ,find an element Q E H,. such that

R 11 -Q R 121
? R21  R 2 ]1

is minimized. Note that the minimum value, denoted as -y,, is the distance from R to the set of (matrix)

functions of the form

[0 01 o.
This formulation of the GDP is called the "4-block problem" to distinguish it from the special cases

where [R 21 R or [R ] is identically zero. This special case will be referred as the "','block prob.R 12
Iband

lem". Note that if both R2 1 R22 and RI] are zero, this formulation is known as the "best (or

Hankel) approximation" problem [AI,A2,B1l,G2].

The GDP can also be regarded as a matrix dilation problem with the constraint of causality on Q.

The subject of constant dilation will be reviewed first in Section 3.1 where Parrott's theorem on norm-

preserving dilations JDL,P1,P41 will play a central role in establishing the existence of the optimal solution

of the GDP. The Hankel operator and its relation in best approximation is then treated in Section 3.2

using Parrott's theorem. Section 3.3 introduces the Toeplitz operator and some of its algebraic properties

which provide insight into the GDP. Generalizing the approach in Section 3.2, an abstract operator

point of view is adopted. The existence of an optimal Q and expressions for the optimal norm are

W detailed in Section 3.4. These expressions are given in terms of an operator norm or an equivalent stan-

dard eigenvalue problem. The operator and eigenvalue problem are of infinite rank and the results do not

.- A.. . .'p. = ? i ; : :: - - : : ; : :-:;7 : -: :-:; : .:::::- . . .:::i. .: ---. : . : i
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yield computable formulas for either the optimal norm or Q. Nevertheless, the existence of the optimal

solution is established. A more practical approach will be discussed in chapter 4.

The results of this section and the next are more easily obtained using functions on the unit disc

instead of the half-plane. Since there is a well-known isometric isomorphism between H2 and H,. on the

half-plane and the disk (see Appendix B), the general distance problem on the disk will be considered

throughout this and the next chapter.

I
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3.1 Dilation of Constant Matrix

Consider the optimization problem of finding

mi B~] (3-1)

where X, B, C, and A are constant matrices of compatible dimensions. The matrix LAJis adio.

lion of its submatrices as indicated in the following diagram:

4A----

C

d

dt le dIc (3-2)

C A A

d

Here c stands for the operation of compresion and d stands for the operation of dilation. Compression

is always norm decreasing; however, dilation can sometimes be made to be norm preserving. Norm

preserving dilations are the focus of this section. Since it is not the purpose of this work to review the

related theory throughly, only useful facts will be presented; more complete treatment on this subject can

be found elsewhere [DI,D1O,P1,P4].

The simplest matrix dilation problem occurs when finding

%*.
n- [XA (3-3)X AJ

Although Eq. 3-3 is a much simplified version of Eq. 3-1, it contains all the essential features. It is

immediate that -. , A I. The following theorem characterizes all solutions X to Eq. 3-3.

C..t

t .. " 
__-"." 

•
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Theorem 1

.4'X

if and only if

,: Y with f Y 1 I (i.e., Y is a contraction) such that X = Y(,-I-A A )V2.

This theorem implies that, in general, Eq. 3-3 has more than one solution. X - 0 is the central solution

but others are possible unless A *A = 72. A more restricted version of the theorem is the following

corollary.

Corollary 2

-I, I[ X- :5 y X (- ¢-A "-A  ' I 1 . (3-4)

d. -. The corresponding dual results are stated as the following theorem.

Theorem 3

,.", V 7 > ,,

*. IIIX AI~Il _A

if and only if

-'," _ Y with II I < 1 (i.e., Y is a contraction) such that X -('I -AA *' Y.

.-

Corollary 4
.4>
.4.'

,44 '>
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IlX A (I21 f - T-A4 "X I1 .(3-5)

The following theorem, usually attributed to Parrott [Par], characterizes y. and will play a central

role in establishing tbe existence of the optimal solution to the best approximation and general distance

problem.

Theorem 5

'.-max C A] ~ [B ] }(3-6)
As in Eq. 3-3, there may be more than one solution to Eq. 3-I. The following theorem parametrizes

all solutions to Eq. 3-1.

Theorem 5

Suppose -1 _ f, . The solutions X such that

B] (-7)

are exattly those of the form

X - -YA*Z + "7 (I-Y-)IW(I-Z*Z)" (3-8)

where W is an arbitrary contraction (II W [jo 1) and Y and Z solve the linear equations

B - Y(,7I-AA)/z (3-9)

and

-C -? (I-AA *)"Z. (3-10)

The following corollary gives an alternative version of Theorem 6.

.

-.. , ._.. . . . . . . .
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Corollary 7

V - >-.

if and only if

II -YY*)-( X  + Y*AZ)(I-ZZ) - V I (3-12)

where

Y =B(j2-A-A)-',

Z , (-?I-AA*)-ktC. (3-13)

There are many alternative characterizations of solutions to Eq. 3-11, although the formula in Eq.

3-12 seems to be the simplest.

The restriction that y > -* in Corollary 7 doec introduce some loss of generality. If these alterna-

tives to Theorem 6 are used, it is not possible to get all solutions for "1 - . The set of all solutions

arbitrarily close to the optimal y. is the best that can be done. The reason for considering this special

case is that Eq. 3-12 has a reasonably straightforward generalizations to the rational matrix case, whereas

Eq. 3-8 does not. A further difficulty with the rational case is that, unlike the constant case, it appears

that it is not possible to actually compute -y, exactly. This makes our inability to obtain a direct general-

ization of Theorem 6 seem less critical, at least with respect to application of this theory.

.. .. ..
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3.2 Hankel Operators and Best Approximatlon Problems

Two classes of operators on a Hilbert space, Hankel operators and Toeplit: operators, have played

an important role in function theory on the unit circle. In recent years the theory of Hankel operators

has attracted increasing attention in the areas of control and systems theory, mainly due to its applica-

tions in model-reduction and best approximation.

The best (or Hankel) approximation is reviewed in this section where the Hanket operator plays an

essential role. The problem is stated as follows:

For given (matrix) function G E L,, , finding a function Q E Hun such that

G10 - Q l is minimized.

This problem was first solved by Nehari for general scalar discrete systems INIl. The multivariable ver-

sion was later solved completely by Adamjan et at. IAI,A21. Recently Glover considers a special case of

the problem where the function to be approximated is real-rational, i.e., G E RLoo. An efficient and con-

structive algorithm for the optimal solution was constructed in terms of a balanced realization of the sys-

tem [G21. For the real-rational case this is a most effective algorithm. A simple proof of existence of the

minimizing solution Q is possible using a Parrott/Davis-Kahan-Weinberger theorem on norm-preserving

dilations [D15,D16,P4I. This approach is quite elegant and will be used later in the proofs related to the

GDP.

Assume that G (z) belongs to L,(T) with the power series expansion
cc

0(z) G, Gz' .
iIi - -o

The following definitions will be used throughout this chapter.

.
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Definition: (Multiplicative or Laurent Operator)

The Multiplicative (Laurent) operator Ma generated by G (z), is defined as

MG L(T) -- L(T)

f ", MGI - G f

Definition : (Hankel Operator)

The Hankel operator HG generated by G (z), is defined as

H; : H2(T) -- H (T)

f -. HGf - (PfIMG)f

Remark

A matrix representation of HG is

G- 1 G- 2 G 4 ......

G-2 G- * ......

G - 0 ....

which is the well-known (infinite) Hankel matrix.

Theorem 1 (Best Approximation)

Consider the following minimization problem:

n Q m G I1® (3-14)Q EHw

Then,

FI; . " IIH a II

and the minimum is achieved by some Q E H..
V.

%, Proot

o.

. .p ..
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The inequality

Inf JIG - Q I1®:Q EH (T)} > 1IHG II

is easy to establish. Fix Q in H®(T), then

G - - sup II(G - Q)1 IIs:1 E H=T), f 11251)

> sup h IN.(G - Q )f 112:1 EH2(T),IIf 112 }

sup (I1PHLG1 112:f H(T), I1 f 11251

S...' - IIG II

and take the infimum over Q.

Since IE H42{T), it can be written as the power series expansion

f(z) - f.z'

and let

2 Z-j% - _-!

Then the matrix representation of HG can be expressed as

h G_1 G_2  ......

h2  G- 2 G-3 ...... I
*h - G 4  ...... f2

This is exactly the matrix representation of the Hankel operator generated by G

,-

.- .. ..... .. . ... ..



81

Now, it is sufficient to show there exists a function Q in H, T) such that

JIG - QJ. [la hHc I.

* By a result of Parrott's [P1,P4[, there exists a Q0 such that the norm of the Hankel matrix is preserved,

G, -Q, G1..1 . .

G-.1  G-... .

IIH 1I....

*Similarly, there exists a Q such that

G ,GQ- QG .G .-G 1 .Q...... .
G.-Q.G-1 ..... G, -Q, G-1....

G-.1  G-2 .... G-1  G-2  ...

* 00

achieved.

QED

The following corollary is immediate.

Corollary 2

IHG I I -X!=2HG HGI(-)

where X.,JHG *HGJI is tbe maximum eigenvalue of the matrix [HG *HGI.

Note that it G is real-rational, then there exists an optimal solution Q E RH,,,. Related materials

are presented in Chapter 5 where an algorithm for constructing the optimal Q is given.



3.3 Toeplta Operators

For the GDP, the solution is more complicated and both Hankel and Toeplitz operators are

involved. Therefore, a overview of the necessary properties of Toeplil: operators will be established using

simple algebraic procedures. More details on Toeplitz operators can be found in standard publications

[B5,D7,D8,S3j.

* The definition of Toeplitz operator is given in the following.

Definition: (Toepiitz Operator)

The Toeplitz operator TG generated by G (z) E L..(T) , is defined as

Tr, H4(T) --+ H2 (T)

f ~ T -. f (PI (F G)f

Remark

A matrix representation of TG is

Go G I G 2 . .

G-.1 Go G I. .

G-.2 G-.1 Go . .

which is the well-known (infinite) Toeplitz matrix.

In the following, some of algebraic properties of Toeplitz operators are reviewed. The first lemma is

well-known.
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Lemma 1

[I(;r 1 - I(MG J - (I 11.

Proof

The proof can be found in 1BS,D71.

Lemma 2

T.1 = T..

Proof

V f, E HAT),

< T.f g ) -(P=,MG. ,g >

S< f ,MCPH2 >

S< f ,Mag >

i ==< PH:/ , MG >

= < f ,Ps MCg >

-~~ff= <f ,PT 2 GQ>

N- <I f.TG j >

- <TG*f u >

TO = TG.

QED

Definitlon:

.- The operator SG generated by G (z) E L ,(T) is defined by

s, :H2(T) -. HAT)

f -. SG f- (PH2MG)I

-'4 + ++J
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Lemma 3

S4 -..

Proof

Sv I ~~ ~~'(T) and EH42(T),

<SGl , > - <Pu2MGI >

- < f MePH2g >

i =" < f ,M >
<PfI ,MGog >

-< f , PIMG.g >

= < f , H01g >
.j

- < Hc .f >

". SG = Hc.

QED

- Lemma 4

Assume E, ' E L ,(T). Then

(i) T*- T - H4H,. (Sarason)

(ii) T,, - T,T, if either * or ' belongs to H,(T). (Brown-Halmos)

Proof

: (i) V f E HAT),

Tof - PHMf

d = PH2M.MAf*

.4

I i
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- PHIM,{PH, PH )M,f

- (PH2M,P5 2M}/ + (PH2M.PVIM,!)

- (PHMOPH2)(PH 2M*)f + (PH AMP MH2(PN2M,)f

= (T*T. + S.H,)f

From Lemma 3, S. - H4 and

T** - ToT. + H4.1.

(ii) If either * or *0 belongs to H.(T), then

H,,= OorH&=O 0.

From (i), The equality follows immediately.

QED.

Remark

Lemma 4 shows that the Toeplitz operator does not have the multiplicative property in general

except for the case of Lemma 4-(ii).

Definition:

The operator "ic generated by G(z) E LA(T) is defined as

!G H2 (T) H2' (T)

f 'k, Tf -(P HIMG)f

--.



Remark

The operator t,; is unitarily equivalent to the Toeptlz operator TG, by means of the unitary

operator U which is defined as

U H(T) - H42 T)

Uf =zf

that is, TGOU U TG [DO].

Lemma 5

The multiplicative (Laurent) operator MG can be represented as

MG= [ST

Proof

Let L 2 - H21(H 2 , then

M,, H'GH 2  -*H 2 GHl2

MG f i G f

where fIE H21 and f 2 E H2.

QED
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3.4 Optimal Solutions of General Distance Problems

The fundamental issue in tbe general distance problem is the existence of the optimal solution. In

this section it will be shown that the optimal solution of the GDP exists. Since internal stability (or

equivalently, causality) is required , the nature of the problem considered will be very different from that

in the constant matrix case IDI,DI61. The proof is essentially a generalization of that for best approxima-

tion given by Doyle 1DIS,D161 where the Parrott/Davis-Kahan-Weinberger theorem of Section 3.1 on

norm-preserving dilations is used. In case that R is real-rational, it can be shown that there exists a

real-rational optimal solution. The 2-block GDP will be studied first. The results are then generalized to

the 4-block GDP. Both the 2 and 4 block problem have been studied by Feintuch and Prancis

([F,11F21). Their results are more general than those presented here because they consider time-varying

as well as time-invariant systems.

Consider the following 2-block GDP:

m min R - where R = R E L.. (2gdp), 7, Q E .MO 0 001o 2

Define the operator rR from H2 to H21 GL 2 as follows:

r.: H2"- H'GL 2

Frff = ~ E H2  (3-16)

Theorem I

Consider the 2-block GDP in (2gdp), then

i,,n- IQI].
Q QH R2 o

Proof

a.2



The following inequality is proved first. 0]1Q
R 1 -minI (3-17)

> cup R [ ( 1  2 : E H2 I ,1 lha 1J

-- IrR & 2 , 1f 121I
2fr i

It will be convenient to complete the proof by transforming the rhp into the unit disc (see Appendix B).

For the rest of the proof assume that this has been done. Since R 1, R 2 E L, (T), they can be written as

power series expansions:

R1 (z) - atzk
-00~

RAz) - z
Ii-CO

and

f (z) F, f, z' E H 2
I MO

Now, let

-I

(Ri Q)f -- (Rtf ) p -- z f, z'

k E

-0 P

...............................................................7'



"04% e 02), Z'~.

:'"A 2(z) = (h=),z'

I - -00

*R -,R,) .= f,z'
k -o 1 iMO

*Using these expression for A (z) and A z), Eq. 3-16 can be written as the following equivalent matrix

equation:

'001 af- a~zC- 3 /... 0
( !J-2 a-2 a4 ...... f I

(h l) J& C ...... f/2

(A 2)2
(Ah 41 00 4- ......

l.(h21 A 00 Ll - ...... "

(h 2)-1 0-1 0 1 _2 ......

(h 2)-2  0-2 4 ......

1h2- 0- * ......

%The next step is to show that there exists an optimal Q E H,, such that the equality in Eq. 3-17

holds; for which
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1.0-

1.8

*

IIIII-L.



a.-1  a-2 a-$.. ..

a..2  Cr3 ...

A 00 0-1...

00 -1 -2 .....

s0-2 46-5 . ....

.. .. 0 00

From Theorem 3.1.5 (Parrott's theorem), there exists a Q0 such that

a 0 -Q 0 Ot.1 a....
a..- 1  a-2 a-3. .

a-.2 a-0....

04 0 6- ...

* 02 0-3 ...

* 0 0

Next, hooseQ, suhrtha



. L- Q1 ao- Q o f-I ......
90- Q0 l-I O-2 ......

nr.I  Ct_2  n.3 ......

a-.

01 00 ......

00 • 1 ......

00 0-1 0-2 ......

0- 0-2 0-. ......

0-2 0- . ......0-32

..... 000

Continuing in this way to find (Qo, Q1, Q2 .......} such that

(R 1 - Q 1 0YOfi R2 I , IPr II, where Qet) (z Q, z' E H.
,i O

This concludes the proof of equality.

QED

The minimal norm ' can also be expressed in terms of the following eigenvalue problem ([V4]).

Corollary 2

. IIr. II = X HR I HRI + (3-1)

where Hv is the Hankel matrix generated by R1 and T. is the Toeplitz matrix generated by RrR 2
1 RfR 2

4, *.-.°



g2

Proof

Assume that 2 is a function in H. such that ' 2"k 2 R R 2 and define

. I where Ii 4z) - z'

Following the proof in Theorem 1, there exists a 'pt (z E 0, z' E H. such that

R 1 II1roll 2 .®=
QE H.. 2J R

Since

Ri R Q R Q]
R2 [RI Q' IEIf

-to

Therefore,

Otl-41 ao0 0 Q_, ......
ao -00 a_. CI_2 ......-I a-2 0 ......

a-
2  0 ......

[R - :, ' ......

1  Q 0  o ......

a-Q, A o......
,o 0 0 ......

0 0 ......

0 0 ......

T t i. i e

The right hand side of Eq. 3-20 is also e~qual to

.%~ -- C- A-.. ..
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a-3 a-2 a-,& ......
a-2 a-& 0 ......

02 ......

0 4 ......

0 0 0 ......

0 0 ....... $o 0 0 ...

0 . ...... 0

because (Q ) are chosen to be norm-preserving. The zero rows in Eq. 3-21 can then be deleted without

affecting the norm.

[H R , 1R O q + T *T* L 2  ax [ 1  2 2

Since R 2 E H,, by Lemmas 3.3.2 and 3.3.4-(ii),

TR43T 2  -T.T - Tg..j2  TR R 2

This completes the proof.

QED

Remark

Corollary 2 can also be proved using Lemma 3.3.4-(i) (Sarason [$3). Recognizing that Eq. 3-18 is

equivalent to

SHRI

HR5 = T 2  = x HR14HRI +TR, 2TR, HR *H R2 ]

The result follows immediately from Lemma 3.3.4-(i), since

S.
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TRIR2 - T Z TR = Ts RR -T R, TR 2 -, H(R ).*HR2  HR*HR.

The following theorem is the real-rational version of Theorem I. The theorem is stated without

proof which will be given in Chapter 5 where real-rational matrices are the focused topic.

Theorem 3

If R E RL on (real-rational) in (2gdp), then there exists an optimal Q E RH ,

Although Theorem 3.1 and Corollary 3.2 give explicit formulas for r., the formulas cannot be used

directly to compute either -y or optimal Q 'a. Certain observations can be made from general operator

theoretic considerations which indicate the difficulty of such computations. A Hermitian Toepiz opera-

tor has no point spectrum (i.e., no eigenvaues). This is known as the Hartman-Winter theorem (see

Douglas ([D9j)). Therefore, in Eq. 3-4, T has infinite rank even when R 2 is rational. This isquite
RtR2

different from the simple best-approximation problem (e.g. Adamjan, Arov, and Krein (IAII,A21), and

Glover ([G21)), where in the real-rational case the corresponding Hankel matrix has only finite rank which

is equal to the McMillan degree of the given transfer matrix. While neither Theorem 3.1 nor Corollary 3.2

provide a numerically attractive method for computating -y. , which remains an open question, existence is

settled, and the Hankel 0 Toeplitz structure appearing in Corollary 3.2 can be analyzed to provide

further insight into the problem of computing -, .

Since for rational R the Hankel part of the operator in (3-4) is finite rank and therefore compact,

the operator FRHR I + T R&2 can be viewed as a compact perturbation HR,*HRI of the operator

TRf,2 . A standard result in operator theory is that compact perturbations do not change the continuous

part of the spectrum of an operator (Gohberg and Krein, [G41). It is easily shown from these general

operator theoretic considerations that the spectrum of HR 1 HRI + TRR2 consists of the continuous spec-

trum of TR R plus a finite number of discrete elements. The spectral radius is then either equal to that

of T RR2 and can be computed from pI [T RR] 1 1j R 2 1f1, or is achieved on the discrete part of

..., .. .,. .....,.-.. ,.-, ..o/,... .- ,, ., :, '. ., -, .:..,. .- ...- ... ,.".-. , ,, , ,, ,,,,, ,- , ,. ., ., ....,, -,.,. , ., , 1
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the spectrum. In the latter case, there is no known method for directly obtaining -y, ; this has motivated

the investigation involving approximations and bounds that appear later in this section as well as the

iterative scheme in the next section.

Operators with the Hankei G Toeplitz structure of Corollary 3.2 have been investigated in some

detail by Jonckheere and co-workers, both in the H,. context ([V41) and earlier in problems arising in

LQG (e.g. [J1). Recently, Jonkheere and Verma ([J21) have proposed a scheme for estimating -1, by

computing the solution to a single Riccati equation; it is hoped that this will ultimately lead to more com-

putationally attractive methods than are currently available.

To avoid these difficulties which arise in the direct approach, an iterative scheme, called a -y-

iteration, will be proposed in Chapter 4. The rest of this section is devoted to the generalization of

Theorem 1 to the 4-block GDP.

For the 4-block GDP, i.e.,

R1 1 -Q (4dp)

Q EH R 22

let's define the operator rR as follows:

rs: H2GL 2 - HI GL 2

L 10 R11 R

r,, 9 10 1 RZ R=J [I].

Theorem 4

Consider the 4-block GDP and assume

[ RI, R121
R21 R,,j

Then

,.%

'%.

. . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

4 4. 4* .4
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R11-QR1
' [ R2, R2 I IlrR 1Q EM.o

Proof

The proof is based on the Parrott/Davi-Kahan-Weinberger theorem, and follows closely the proof

of Theorem 1.

First it is useful to establish that

Qmin R-Q R 12 ] > I ~rI (3-22)

V Q EH=,

-. [RU...Q R1]

11 Ri 2  R I L: 2 2 E 4~ 2

> su ~ rH(R11 - Q R 12 i)
@up : R 2 1 f *Rg 1 2 E H 2, E EL2, 2 1

I 2' I( f R 12 ) ha
= sup tR2l * Rg] 2 : f Zg H2, E L2'

R2 f +Rr2 112 5-. trc sup R21te + Rp o eHre EeLa, nsos

kr •

=- I Ir R II.

I~i The matrix representation of the operator rR is derived as follows. Since R E L. , its four subma-

trices can be written as power series expansions:

R = =1 R0 -Z

k -~ k '-00fz

.

.."4 - - - - - - . -

. . . . . . . . . . . . . . . .4 - , . . . .

- .a m.I.A .M.,- . '' . .. *
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f (Z)- fZ' E H2
tnmO

and

(Z) F, g.az' EL 2

Now, let

-1
h1,() E (h 1).Z'

- (R , - q )f + R 2 * P1

" - (R 11 f + R1g)2 p

"2"2

L2k aok Zk f,z' .f.k lz' p
OD to -00 rnc

A2 z) - ( 2).1,'

- RM f + R2 g

cO 00 cc CO

E o2 kzk E f,z' + F, fkx g. lZ'
k - -00 0o k M -Go -0

which can be expressed in the following matrix form:

(h ) J a a--2 '71 17o '7-1 17-2 f £

(h )-2  C-2 o0 '7-1 '7-2 * I1

(hh A $I ;o * i fo 9-2

(h 2)0  16o 18- f* fo C-I19-

h 2)-1  0-1 -2 Ci fb C-I C-2 go

2)- C62O C-i C-2 9 1

'.

-'t. . . . . . . . . ..~- t.'. a . '* -



The next step is to show that there exists an optimal Q E H. such that the minimum is achieved.

Therefore

a-1 a-2  171 17o 17-1 17-2

a-2 17o 7-1 '7-2

I " I I 0 (32-3)

00* 0-0 0- CO *
* -1. 0- 01 CO 0 0-

0- CO C-1C-2

*~ ~ 0 0 0

Applying the norm-preserving dilation repeatedly, {Q 0 . Q 1, Q 2, ...... ) can be found such that

1- Q,t R12  where Q.,(z) -

O R 2 1  R] I L wOQ ' E H,,

This concludes the proof of equality.

WED

Identifying the structure in Eq. 3-23 with the operators defined in Section 3.2 and 3.3, the following

corollary follows immediately.

Corollary 5

- T Sir= TR22 (3-24)

IHR, TR HR,

Similar to 2-block case (Theorem 3). the following theorem will be proved later in Chapter 5.

__

.... ~ ~ , . .- . ,. . .. ,..a-' . ,., . . : .. . . , ,-.--,,"-. , a . , .,., ' ,.- -*- . . ,. .. - .,..,. -,,. . - . -
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Theorem 6

If R E RL .( T) (real-rational) in (4gdp), then there exists an optimal Q C RH,,.

Although the existence of the optimal solution is also justified for the 4-block case, Theorem 3

suffers the same criticism as in the 2-block case of being nonconstructive. The associated eigenvalue prob-

lem (Corollary 5) is much worse than that in Corollary 2. An alternative approach must be sought. This

will be the subject of the next chapter.

I,

...

*" .*-** -*..

I . . . . . . .". . . . .
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CHAPTER 4

AN ITERATIVE METHOD FOR

... GENERAL DISTANCE PROBLEMS

.

The existence of the optimal solution of the general distance problem (GDP) is shown in Chapter 3

from a somewhat abstract operator theory point of view. Although the approach is conceptually elegant,

it doesn't give any computable formula for either the minimal achievable norm 7, or the optimal solution

Q. In this chapter an alternative approach, 7-iteration, is introduced which involves guessing a -f and

then reducing the problem of finding all Q that give norm less than y to a standard best (Hankel-norm)

approximation problem. In Section 4.1 a method for reducing the GDP to an equivalent best approxima-

tion problem is shown Bounds for the optimal -,0 are given in terms of easily computable quantities which

yield reasonable estimates of y, . The guess for - is iterated on until it converges to the optimal norm,

-,. The optimal Q is thus obtained. A general description of the 7-iteration procedure is presented. In

Section 4.2, the -iteration is viewed as finding the "zero crossing" of a function. This function is shown

to be continuous, monotonically decreasing, convex, and bounded by some very simple functions. These

properties make very rapid convergence of the 7-iteration possible. The conditions for which the optimal

norm is achieved are given. An example is shown in Section 4.3 to illustrate the important aspects or the

GDP.

.
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4.1 7-Iteration and Bounds

In this section, we present an iterative scheme suggested in Doyle (1983,1984) to solve the general

distance problem. The idea is that by guessing a value for the minimal norm, -1,, the distance problem

can be simplified to an equivalent best approximation problem which can be solved by existing algorithms

(for example, Glover (1984)). This guess can be iterated to obtain convergence to the optimal norm and

optimal Q. This -.iteration procedure was suggested independently by Francis (1983) (Chapter 8) for th-

2-block GDP and by Verma and Jonckheere (1984) for the so-called "SISO mixed sensitivity problem," a

2-block case.

Again, the 2-block and 4-block cases will be considered separately. Theorems 4.1 and 4.2 lie at the

heart of the -- iteration scheme. In what follows, M will be called a spectral factor of a rational para-

Hermitian S if M E RH, is a unit (M-' E RHX), and MOM =S.

Theorem 4.1

Assume Q E H, and y > I R 2 IIl, Then

R2 1 <00 (4-1)

if and only if

II(R -Q)Mi < 1 (4-2)

where M is a spectral factor of the para-Hermitian matrix (-t'2 - R 2"R 2).

Proof

Note that

(R1 - Q )*(R I - Q) :_ 12t - R 2'R 2

*" evaluated on the imaginary axis is equivalent to both (4-1) and (4-2).

QED

-. . . . . ..- . . .. . . . . . . .
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The theorem means that if -y > flR 2 H1 there exists a Q E H. such that I IR 1M- 1 - Q I 1 _ i

and hence, I [HRIM-11 1 5 1. For such a Q, Q M will satisfy Eq. 4-1. Solutions to Eq. 4-2 can be

obtained by considering the following best approximation problem

f ( mf -I [RM -1-Q 11. - {IHR I{I, (4-3)

Therefore, the general distance problem can be reduced to a best approximation problem. In the case that

the function R jM- is real-rational, the algorithms in Glover (1984) can then be applied to solve for the

optimal Q E RH, corresponding to the given 1.

The case where -y= fl R 2 jfo must be handled slightly differently because the factorization

required in Theorem 4.1 would yield an M with zeros on the jw-axis and thus not a unit. A necessary

condition for 4-2 to hold is that RIM-' E L , even though M is not in L o. While this is possible

conceptually it is a condition that can never be verified numerically and we must settle in practice for the

conditions of Theorem 4.1.

Using Theorem 4.1, we can view -y in 4-3 as a function of -y and iterate on the choice of -1 until

7 . The following procedure is a general description of the -1-iteration procedure for the 2-block prob-

lem:

(i) Compute the lower bound Ij R2 I.

(ii) Choose 7 such that IIR 2II1 1 7.

(iii) Find a spectral factor M - ( R1 -R

(iv) Let R=IH. ,

(a) if -1> 1, go to (ii) and choose a larger rT.

(b) if y< 1, go to (ii) and choose a smaller 7.
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(c) if -,I go to (v).

(v) The value of 7y is the mizimal achievable norm. Find a best approximation of RIM-1 , denoted by

Q0.

(vi) An optimal solution Qv, Q apt M.

A numerical implementation of this procedure could not, of course, evaluate -y exactly, so the test in

(iv.c) would never be met exactly. This procedure could be used to find a Q that yields a solution arbi-

trarily close to -r,. In order to do this, some scheme for selecting the next guess for -y in step (iv) is

needed and the convergence properties of the procedure would depend on this scheme. The next section

will focus on the properties of y as a function of -j that make it possible to converge rapidly to -y, .

Since the approach proposed is an iterative one, it will be helpful if the upper and lower bounds can.

be provided in advance. The bounds in Theorems 2 and 4 are quite useful since they are relatively easily

computed and the upper and lower bounds have a ratio no greater than vY' in the 2-block case (Theorem

2) and 2 in the 4-block case (Theorem 4).

Theorem 2

Let

Qc. H, R2 J
I HRI 

lit

- IIR2I] 1.

71= max {IIHR II, IIR2I[21
'7J 2 = max jJHjJjj R 2 11.

Then

. . . . . . ... . .
.. %

.. - . 4 .'. ~ - 4 * '.~44-. 4
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Proof

Let Q0,t and Q ,,t satisfy

I - J" R I Q
R2 Q QEH. R2

and

R, R - =oI® - tn IIR,-
Q EH.

To prove that -. : <Y v2 -y. , note that

R 2  I[R 1 R 2 J

< I IlR21 2 1 --1 (fm LemmaA.1)

Rl R - Q.,,

, _ llR2 lI

<_2 -Qp (from Lemma A.1)

-. Y, V 2 -.

To prove that yj, < t -y, note that II R211. < 7, and

Ij~ lJHRli- Q Rm [Q'-lI7.
,1 -5 1,1t H R- II I -- -i 1.0

Finally to prove that 1 7 * < 't., note that

I ( RI 2 <I Imax 
IIHI, liR 211 = ,. R 1 . 2 2 m-

~ ~-:~ -|
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QED

The following two theorems are the generalizations of Theorems I and 2 to the 4-block GDP.

Theorem 3

[ R,-Q R 12 (i'>m (4-6)

if and only if

(I -LL') -  F,( IR )I Q ( -LL)'1- < 1 (4-7)7 1 1

where

(I - LL *)I - spectral factor of (I -LL )

( -*L)I = spectral factor of (- *L)

L -R 125-

£ - - R =

and

F(-R,-R-) "I RI, +R (Y2I -AR =)-'R -R

Proof

From Theorem 1,

R11 - Q R12
' R R 1 '

I-.,,.% S -



106

IIlRjI-Q R12] T-11100 (4-8)

where T satisfies T*T -(9! - [R]2[121 R22]) and can be chosen, from Lemma A.3, as

T - -(S-)'RAR S

*. [RII-Q R 1 2 ] T 1

= R1 Q R 12I 1(,9! 1( - L) :R.2 R 2=)-'R 2,R 21VI_£ ) -

-Y R 2R2R 22)-~2  -RR 21) - Q y ( -L) 1  R 12S]

Recognizing that

(R 11IR i( -R R=) R='Rzi - F(I-R,-RA)
J -7 -7

which is a linear fractional transformation, one has that

( [4-8) A FI(-R,IR2)-IQ (I--*£) - 4*  L < 1 (4-9)
11 ( "1 7 t I 1 --

Using the dual form of Theorem 1, the inequality 4-9 is equivalent to

(I --L 7 (I I Q y ) <

QED

Remarks

(i) This theorem is a generalization of Corollary 3.1.7 which was proved in [DI I. The difference is

that the causality is a constraint in the problem considered h ..e.

(ii) S and S need not to be spectral factors. S and S can be any square transfer function matrices

such that S*S ,-1 - R =R.) and SS - 1 RR=

- . ..b. . . . . . . . . . ..,a a



(iii) The linew ractional transformation Fl(.--R ,--R= has no poles on the ,u-axis. This is true

because R E L . and y > IIR 2211..

The next theorem provides the upper and lower bounds for the -1-iteration of 4-block GDP.

Theorem 4

Let

== an R 1 1 -Q R12

f 11HR1 II 1 IIHRII
m[n I1R 1211. 1 IRz 1 1.

I R 2 1 R 1 2 R212

111= IIR 21I. IInlRII I

=,, max I H I. I tR, I 21 R , [ J 1. }

712- m" HfRj * IIH[R-RlI., IIIR 2 1 R-IA , 1R 2 J 22

and

-" - ma { IIHR,,II, IIR21II. , IIR 2I11 , IIR221 1

Then

Proof

'Z
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Let Qpt, Q ,ptQ opt satisfy

RIR11 -R R ® l RI-Q R12 J

anin

R 21l Ro, 22,111. QH. R1 = 10!E H
11 ." - m fInt 1 II 11 I,

Q E ff.

The proof is broken into two parts:

(A) Upper bounds ( : -. 1 _5 7"2 : 2 01.

To establish that -y,. ' note that

[R 11  Qopt R 12  p RR,,- R 12

<1~ R= 11 (from Lemma A.1)

I R 11  pt, H

(fro Thereo.

That -1, < -.2 is obvious.

To demonstrate that -t.2 : 2 -, note that

* [R1  1. Q I I.-ll I I [I JRZZ - Q,,,1 1 11~ jR 12 11.

II,

Ad'
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'S~ 1 fu- Qop R 121
< 2 R R= 11J 0 (from Lemma A.2)

0* < 2-y.

(B) Lower bounds ( < 7 , _ _  .

To show that -, < 7, note that

I 1R 1 -13in Q < [Q' 0] T,
QH EI ff-. 0 0

In addition, it is easy to see that

11JR21 R=)Il. < and [R=1: = -

To show that - < - note that both [Rj RA and R 1 are the "compression" of R , hence,

the inequality follows immediately.

.R1
Since R 1, is a "compression" of [R 11 R 1 j and LRo, and

max "*"R2 1 Il., 1tR 1 2 11., max { 1RR. 1 1, [ 1

I
*I [R= 1-71.

Finally, to demonstrate that -i- , note that

-", ,, <2 max IJHR,.jI, 1JR 211., IjR 12II,, JJR21 } - 2-1 3

.4 QED

Remarks

.4•".
,5.

" . ." "c '. .:- z r, ., ..- ,a. , ~ , " " """"" ' " " " ' """ "' '"" '""" "" ' - -2..."".".. " "-.""""..."S " "" "' " " " """ ". .. .."" " ,
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rR11 R121
NoteI thtII 1 2 2 is also an upper bound.

(ii) The proof of Theorem 4 implies that the -t-iteration may be avoided altogether by simply using

ins~ fltead ofi Q~l with the guarantee that the solution will be suboptimalbynmoetaa

factor of 2. Note that Q*,is simply the best approximation to R 11. For the 2-block case this

approximation method Nill be suboptimal by no more than '/ .

This section will be endled with a description for the -y-iteration procedure. Both 2-block and 4-

block cases will be discussed.

* I. 2-block came ( -- teration Dprocedure)

(i) Compute the lower bound I IR 211.-

(ii) Choose -1 such that I I R 2 1I < _Y.

(iii) Find a spectral factor M _ (91~ - R 2 R 2)'4.

-(iv) Let f (-7) - I HR IM-I.

(a) if f (-y) > 1, go to (ii) and choose a larger -t.

(b) if f (-I) < 1 and -1 > I 1R21 low go to (ii) and choose a smaller -Y.

(c) if f ('7) =1, go to (Y).

(v) The value of -y is the minimal achievable norm. Find a best approximation of R AV', denoted by

(v i) An optimal solution is Q,p =Q M.

7- _d7.Z
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]L 4-block cwe ( i-lteratlon Drocedurtl i

(i) Compute the lower bound "YJ - max IIR 21 R=IIk. R 12

(ii) Choose 7 such that 7 > -ti.

(iii) Find the spectral factor S = (721 - RAR 22)" and S - (721 - R=R: )= . Let L =R 12S -

and L - S-'R 2-

(iv) Find the spectral factor (I-LL)' and (I-L ).

( ) Let where FH1 ( R,LR7=) is a linear frac-(v) -Lt e)- (-7)=" X1 -Lei - 7 "

tional transformation,

(a) if f (-I) > 1, go to (ii) and choose a larger 7.

(b) if f (') < 1, go to (ii) and choose a smaller y.

(c) if f (-Y) - 1, go to (vi).

(vi) The value of 7 is the minimal achievable norm. Find a best approximation of

(I-LL )-'11,(-LR,-LR )(i-L *L )- 4, denoted by QP ,,

(vii) An optimal solution is Q = 7(I-LL)Q o,1 (1-i * )"' .

The algorithms are not complete without some method for selecting the next guess for 7 in step (iv)

(2-block) or step (v) (4-block). The guaranteed convergence rate for the algorithm will depend on this

method and what can be proven about the relationship between 7 and f (-y). This relationship is the

focus of the next section. The justification of the above algorithms can also be seen there.

..

" ." -. *. . QI- L.-> .. :Q.d *I"' ; . . .. *..--. " ** ** ". - . .. " . ..
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4.2 Properties of 74teration

This section develops some properties of the -y-iteration in the 2-block GDP that are useful in

selecting the next guess for Iyin step (iv) of the algorithm in the previous section. The guaranteed conver-

gence rate for the algorithm will depend on this method and what can be proven about the relationship

between -r and -t.

Recall from Theorem 1 in the Inst section that for a given -, -1 can be found as the norm of the

Han kel operator HRM Since R Iand M are rational, this operator is finite rank and -Y can be found as

the square root of the largest eigenvalue X. of the following standard eigenvalue problem:

* .(HR M1I)(HR M1)u = XU (SEP)

or equivalently as the square root of the maximum eigenvalue of the following generalized eigenvalue

problem:

/ HR1*HR1  = X(9-121) (GEP)

To see this equivalence note that since M-' E H, ., H RM. seult H TI.Hne

(SEP) 4W TAIHR I*HR IT A1U = XU

4601 H)?RHRV I = X(TM1I*'(TM-I)V (v =TAM-u)

4"a HRI HR1 V v XTM Tm v

4-O FIR HR1 v XTM.TM v

S HR HqV I v TMMV (Sarason (1967))

S HRI HR1 V = X(T 72 RIR2 )v

- ~HR *HR V =X(9Y1 -TR? )V (GEP)

This is the desired generalized eigenvalue problem (GEP) and the dependency of the (generalized)

eigenvaiues on -1 is clear. Because X~ and v in (GEP) can be obtained from the standard eigenvalue prob-

lem in (SEP), existence of eigenvalues or eigenvectors for (GEP) is assured. Tbe eigenvalues of (GEP) are

functions of -1 and are nonnegative for all -y>1I1 TRI JLA- IR 11,.. We shall prove that X~-)(and its

-. square root) is continuous, strictly monotonically decreasing and convex in -7 where. for a given
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> JR 2 1 I-, X.i(l) is defined as the maximum eigenvalue of (GEP). Results stated as Theorem 7 show

that X' -I) can be bounded by simple functions. These properties can be used to guess successive 7's in

a way that should quickly converge to the optimal norm, -y.. Theorems 8 and Q give the conditions for

which the minimal norm is achieved.

A key observation of (GEP) is that it can be regarded as a "perturbed" generalized eigenvalue prob-
4%

'4 lem. Therefore, the perturbation theory of generalized eigenvalue problems for a special case which can

later be applied to (GEP) will be considered first. The results can then be used to prove the properties

mentioned above.

Consider the following generalized eigenvalue problem for Hilbert space operators A and B,

A,,(f) X,. ,{)B (t )v,(9 t E (0 >OGp 1)

where

A is finite rank, positive semi-definite and independent of t,

and

B (t ) is bounded, positive-definite and analytic in the neighborhood of t =0.

- Since A and B (t) are self-adjoint and B (I )>0, it is well-known (Kato (1976)) that by appropriate ord-

ering of the eigenvalues {X, } and selection of eigenvectors (v, }, it is possible to pair eigenvalues and

eigenvectors {X, (1),u, (t )) such that
-4.

Au (I X,) = ( )B t)v,(f

for all t, i and {X, (t )},{v, (t )) are analytic for all ( E (-rr). At values of t where (GEPI) has simple

eigenvalues, this is trivial. At degenerate points, it requires the selection of X, (t), v, (t ) such that the

analyticity is retained through (isolated) point where eigenvalues coalesce. Therefore, X(t ), v (t) and

--. B (t) can be written in Taylor series expansion as follows:

-4

. .. . . . . . -.. . . . . . . -. -. - . - •. . - .. -. - - . . . _-. + . . - . -
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L2..

t2..

VLt V. + v, + T .. ..... (v,. vOL, ,= M (),...)4- a)

and

12
B(L) = B, + g,-

2  ... (B,--B(0I,,&--B(0) .... )

Substitution of these expressions into (GEPI) yields

L2 ..
A (v + tV, + I-v, +...)

22
t2.. 2 .. 2..

= (Xo L)i,+-.T-Xo+..., + +LBo+-.-B, + ...)(+o t 2 +, +t v, ... ) (4-11)

A,, + tA,, + -AV,. +.... (X.B,.) + I(B. +i,B,v, +X,Bu, +X,B,vj)
2

+-X, B, v, +X, + X,B.v, + 2, ,
2

2X, + ) '., .+ 2i,8, V.+ ...... (4-12)

Eq. 4-12 is true V L E (- ,). This implies

(i) I' (constant) term:

Av, X, B,v, (4-13a)

(ii) 0 term:

Au, v , + X ,B,+ *X B, (4-13b)

2(iii) term;

Av, - ", B, v, + ) , v, + X+, D, v. + 2(,v, + Xo Boo + ,,Vj (4-13c)

For simplicity, X, has multiplicity I and =0 is assumed to be a regular point, i.e., multiplicity of X(f) is

constant V t E 1-e. 1.

Note that {v, (t)} form a complete set of eigenvectors. Hence, the generalized eigenvalue problem

considered here can also be expressed as find A(L) such that

. . . . ..-. .



AV(t) - Bit)V(i)A(t) (forsome V(t) 0) (GEP2)

where an Ai o ])
V(t) = v(t) Vi(t) and A0) = A1(1 .

Lemma I

Assume Vi V, (0) and v, and B, as defined in Eqs. 4-10b and 4-10c , then

voB, V1 = 0.

Proof

Consider (GEP2) at t 0,

AV, B, V, A,

[(B.- .Bj-9(B.': v = (B,.'V)A, (4-14)

where B0 is any nonsingular matrix such that (B,.n*B,4 -2 B,.

Finding A, to satisfy Eq. 4-14 is a standard eigenvalue problem where (B,- "2)*A (B,)- ' is Hermi-

tian (in fact, nonnegative). It is well-known that the eigenvectors of a Hermitian matrix, if they

correspond to different eigenvalues, are orthogonal to one another. Therefore,

(B. v,)*B,*Vi = v°*B, V =0 .

SQED

The following theorem gives the formula for the first and second derivative of the eigenvalue of

(GEPI) X(t) at - 0.

Theorem 2

Consider the (GEPI) with Taylor series expansion as given in Eqs 4-10a, 4-10b, and 4-10c. Then
°-V,

v,*Bv,

(i)o-
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V,*Blie

(ii) ', - -X. + 2X,(4-'B, v, V'OB, v,

2X ,2
+ (V? Bp,.)-[(X., -IA)(V? B. V1 )1-'(V 1,v.)

u,*B, ti.

Proof

(i) To get the expression for .,consider

V.* (Eq. 4-13b) =>

vo'A, = Xp.*B. v, + X, u.*B,v + X, v,*B, v,

(Av, - X, B, v), - j,*B, v. + X, v,AVOv

"-" o0 = ),Ba, t0, + X, v,*),,

0 V,*BOV..4-
" VmIPB, V,

0(ii) To get the expression for X' consider

S.:: V * • (Eq. 4-13b) ==>

V- Au.- i,,VJ B, . X, V? B.v. + X. V1 B, v,

From Lemma 1,

(AVI -X.B.V 1 ), - X, V? 6.v.

(B, V Al - X. .v V, XV B.,.

(A, -X.= x vB V( Bx,, (4-15)

Since v, and the columns of Vi form a basis, v, can be expressed as:

v,- av, + VI X (4-16)

where a is a scalar and z is a vector. Therefore,

(B, V1 ) v, - V1 B,(v, + V, z)

= a V1 B, v, + Vj B, Vz

= (Vi B, V, )z (4-17)

..

,'.

r','. .'... . . .. . . . . . . . .' . . . . . . . . . . . . . . . . .... .-.". . . . . . . . . . . . . . . .." ". . ..," "" " 
r

-" ' - " " - '- ' I-I -
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Substitution of the expression of Eq. 4-17 into Eq. 4-15 yields

(A1-x. I )(V1 *Bv)z - X. V 1 B o'.

,. z - x, [(Al - X, IX V1 *B, V1 )-' V1 Bv, . (4-18)
,.

Also consider

-'- (Eq. 4-13c) = >

vAv. = V. v,*B. u + X, v.*B. v. + X, vBo V,

+ 2(Xv*,v. + X v.+ XoB. V'

(Av, - X. B, v, )"V. - . v.B. v. + X. v*,B. V,

+ 21 .*. , v.v* j.+ X.B.*j

v,- * ,B, v, = X* v,*, vp +2(p,*Bpv. + X. voBJ + pv,*B, v) (41)

Finally, substitution of the expressions of X, ;.and z into Eq. 4-19 yields

"" (v,* B . v ) = - . ,* . u p + 2 X , v ,* B . )2

+ 2X 2( V I 0,,u. )*[(X, I - A.)(V1 OB V, )]1-'(1 V .b,)

QED

Remark

Note that the assumption that 1 = 0 is a regular point does not cause any problem. This is so

because X(t ) is analytic and (t ) (' (t) ) must be continuous and X,(X', ) can still be computed by tak-

ing the limit of )(f ) ( (1)) as t -0.

Define a(t) = X'~t), I , = a(0), a,= - O) and o =' (0), then one has the expression for '0,d a

which are given in the following corollary.

4-,

4.
o.

.............................................................

"., '' -':k <A ' -; ,; .', '' ,;;i : :":":.a -',_ ..: ---,. -,- .-- ..: -.-,--.-.--...-..-..: ...

- • 4 ~4 - p
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Corollary 3

2f v**B ,,
2 v .* B v. + 3a(2

2 Vo*B vo 2 v.*BV,

2 V*B. v. I-A 1 )(V* B. Vi )-'(V 1* Al ,

Proof

Let

t2..

0,(t ) , - 2 + t (2, ' , + .... (# . 2(). .= ()..

2

(a) a,'

(b) 2c, o. =

and

(c) 2a, + 2- X,

From (b) aad Theorem 2(i),

,. v*B 'V, 2 v.*B v

From (c) and Theorem 2(ii),
- .~(. -24

I v,*Bo v, V,*! o Bp,,= v, .' iB + 2o,.2( 2 ) + 2a, v
v B. vo V,*B. u, V,*B, v,

S 5 ~Voe.°l V )2}
I(,. I-A, )( v B, v1 )[, ( v1  B,.) _ -T=(

.......................... % . .. ~ . . . . . . . .



119

I{ v.,' h,. )2 2a! .I.- +- o. + ____ - -(V 1  By.,)
2 - V*B, 2, vo*B, v, v,*B, v,

[(X. It-AIt )()V- B V, [(V v. .

QED

For 'I > 1JR211., define Xu('7) '= the maximum eigenvalue of (GEP) at a given -i and

The following two theorems are the main results of this section. First, X, and a. are shown to

be strictly monotonically decreasing in -1.

Theorem 4

Consider the (GEPI) as given above. Then

(i) X. is continuous in -'.

(ii) a,,.. is continuous in -r.

Proof

Let t -- - r and B(9) -= 2j + 2t W + (71 -TRR). The theorem follows immediately

from the analyticity of eigenvalues with respect to I.

Theorem 5

Consider the (GEPI) as given above. Then

(i) X is strictly monotonically decreasing in -1.

(ii) o. is strictly monotonically decreasing in -'.

............-.-.. '.' -..-...--.-.......-........
_s " .. . . .I. -, ."-. . . . . . . . . . . . . . . ..]bW 

: - L
,, ,a- -,,llll I d " li
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Proof

Assume y > I R 211. is given.

To prove (i), let t - - and B2t)- t2 1 2 ( 1-TRR),

d . Bt = 271

From Theorem 2-(i),

7...- vest0
V*B, v, <

Therefore, X,,, is strictly monotonically decreasing with respect to 9 and hence, r.

To prove (ii), define t the same way as in the proof of (i). From Corollary 3-(i),

- U, V,

v,*B, v,

Therefore, a,. is strictly monotonically decreasing with respect to -y.

Convexity is established next.

Theorem $

Consider the (GEPI) as given above. Then

(i) X. is convex in -Y.

(ii) a. is convex in -f.

Proof

The proofs will be given in a similar way to those in Theorems 4 and 5.

To establish (i) note that

:!d
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). 2f and B - 21.

Since

(v 2y -. ( (v. )2
-V*y )8VV V, Vv BV.B V. + 2 - -2v,*v* + 2(23)2  

(8,B*v v**B vVo*B, v, V.*1, v. - V-B. v,

> 7V,*V > v,*B, v,

-- > 8v,*v, - 2 v°*B, v, > 0

If X,0 is the maximum eigenvalue , then X, > 0. It follows that X. is convex in -1.

To prove (ii) note that From Corollary 3-(ii),

L'B 3 V vBv, )2 2a.
- v 1*B, v, 2 v,*B, v, ,*B, v.i

(X, I -Al )(Vi* B, V1 )I-( V1 I ,*

Since

m"Vo*Bo v, 3 v, Byv, v°*v°B, + - ( -B )2 " (67.. - 2v,*B, . ) > 0
vB, v, v*B. v, v.*B. v.

If X, is the maximum eigenvalue at I -w0, ° > 0. Therefore, a,, is convex in -1.

QED

Remrk

The idea of using generalized eigenvalue formulation (GEF) in this section is similar to that in

Helton's broadband matching problem (H21 although the motivation here is completely different.

Although the function a,. is unknown, the properties shown in Theorems 4 to 6 have provided

some useful information about o,, that can be used to obtain fast convergence of the -,-iteration. A

detailed study of convergence rates is not given here, however some guidelines will be presented which

P7.
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show how the properties of a.. can be used to find a next guess for -/. One additional property of a.,. is

useful in this regard and will be presented in the next theorem.

,' Define o. (a) - 2 ~ where c - o.( )(?- )" for some > = I R2 11I)-Dein a.' ( y,) -

Theorem 7

Let a and am, be defined as above. Then

00i a.,7 - a.~ ('7,y) if -1 - T.

(iii) am,.(-Y) > a. ('f,-) if -' > T

Proof

C

1 C- -)7

a, . EN- OF"
(2 9 2 72 -o2

d7

From Corollary 3,

*1 - 7V**V,

V.*(.72J - T"'tR1)v

where v, is the (generalized) eigenvector corresponding to

d - I00v,,
V, (-Y2 1 - Trf. )V,

Since

(72-)1 < 72 - TRfR,

-------------------------------------------------------------------------------------
.'q~%*

* .. . . ..-
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"=-> (12 -02) > v,,(9 - TR ')V.

Sd- (In o.) < 0 (4-20)
d -f

Since o'(11) " o, (-,-), Eq.(4-20) implies that

IG(oa) : ln(a,"j i f >

and

ln(',) < In(om) if 1<

The theorem follows immediately.

QED

The importance of Theorem 7 can be seen from Figure 4-1. Suppose that at one step in the -

iteration, we have evaluated a., at 11 and -1. from previous iterations, and want to make a new guess

for -1. Assume that 0 < -yj < -s such that Ou ('j ) > 1 and o( ) < 1. From Theorem 7, we know

immediately that -1 < -1 < -.. Since a... is a convex function in -1, must lie below the line seg-

ment (denoted by F(i()) connecting the points (i' ,o (-rJ) and (y ,o. (i, )). In addition, by Theorem

7, a. will lie above the function o. (t ,-Y) - when -1 > -.(72_ )11

Suppose that - ' and -yj' are the points where F(i7' ) I 1 and a,, (-y ,y ) = 1. We can con-

clude immediately that -,t << 7 . . The next guess for -f is narrowed considerably over what

would be known on the basis of continuity, convexity, and monotonicity alone. Thus it is clearly possible

to obtain a scheme for picking the next guess for - that will provide rapid convergence to the optimal.

Further consideration of convergence rates is beyond the scope of this report.

Remark

-A . "

' -~ ~ ~ . "; ' :"" """



. ...-....- . . .. . .

124

The -1-iteration can be viewed as the problem of finding the zero crossing of the function

('(y) - 1).

0.

-- I ' 1 I I , yC,--- CM

Figure 4-1. y-iteration

The following two theorems give the conditions for which the optimal norm -t, is achieved.

Define F (-y) R R(-y'l - R2R2

- Theorem 8

Assume -> IIR2 11.. Then

'%

'min I iF (y) - 11 1 ifand only if -=
Q E RH

.-.. ... -. .. ... .-.-.., -, ....-.-., . ..-. ... -....:-..-,....-,. ,- ............................- ,.-,.....-...--......-......--...--.,......
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Proof

(Necessity):

If IIHr( }3)I - I but 1 -1, then 3 must be greater than y, (since -y, is the minimum norm).

From Theorem 5, IIH,,(;)II is strictly monotonically decreasing with respect to -1. Therefore,

> .> IlH r(,y.)Il > IIH F<i I -

This contradicts the definition of -1,. Hence, = 7.

(Sufficiency):

If '7 -y . but I IHrlI < 1, by continuity and monotonicity, E e, > 0 such that

IIHr( )I 1 (where =- f.)

This is impossible since 7, is the minimal achievable norm.

• " IiH~c I =- I.

QED

Theorem 9

Assume y I IR 211,,,. Then min I IF(T-I - 1 < 1 if and only it -, -.
Q EN

Proof

(Necessity)

I JH .n} 11 I implies -- > y,. Together with the lower bound (Theorem 4.1.2) -. IIR.j I.,

therefore, -y,.

(Sufficiency)

This is obvious from the Theorem 4.1.1.

--.

' _ . " 2 , -. .- " -, " ", - " - " -. ' - " . " -, " .. -," , . " . - - - - ' ," - , ' " - ." -. -. ' - . -' - ...-. - . . . - , ' ' ' '-... . " .-' - -
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I IIR 211 and IIHr7)11< 1 ifand 5lyit -y,.

QED

'

.,

..
-V
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4.3 Am Example

In this section, a simple example with a single parameter is constructed to illustrate various proper-

ties in the -y-iteration. An exact optimal solution will be derived in detail.

Consider the following 2-block problem:

8-1
-y. - min [a>0

Q E RH= 1IoO 41

Let Qbe the optimal solution which achieves the minimum norm. Using the formula in Section 3,

where V-1 (,12 1 ).
-8-4 8-+

1+a

Assume G (--LM1)ustabjj + and consider the following best approximation

problem:

min d1 ~D
E RH.

It is not difficult to solve this problem. The minimum norm is

min JG Q jJ-= 1 ( +o(4-22)

and the optimal solution is

I 1 +a
Q = -7-( (4-23)

............................................... + V ..
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* ComDutatlon of the minimum norm 'r.:

Of course, in order to have Eq. 4-22 make sense, the Hankel norm of G must be less than or equal

to 1. Therefore, it is reasonable to assume + 1 and solve for Y. Once -Y is found, sub.
+ V7.7

stitution of it into Eqs. 4-22 and 4.23 leads to the optimal solution and minimum achievable norm of Eq.

4-21.

Let

I ( 1+4

2 +V"':i

I+a - 2( + V-1)

(1+ -a )-2-1 -= V7 7

Taking square on both sides and collecting the terms with same power in -1 yields

4(1 4 )y 2 -4(1+a )I + [4+(I+a )9 0 (4-24)

There are three cases to consider.

- Cue 1: a =-- 1

In this case, Eq. 4-24 is simply a linear equation and has solution -= 1. Therefore,

- I=

It a #1, Eq. (4)is a quadratic equi.tion and the conditions such that a positive real solution exists

are:

4(l+a) > 0 a >1
8(1-aj

and

. W.. . . .
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Therefore,

+1 M-1

=~ -Y {+ T8i~ +~'T vr'y= I+ -1+V' 2_ (4-25)
2 + - $+a + 4

Substituting the optimal -y, into Eq. 4-25 separately,

"" (I+a)o +2a
a(i) <1 : - - ((4-26)

(ia) I=1 : Q. -- 1. (4-27)

____ -___ (4-2-8)
-.. (iii) ,,> 1 : , = - "______+4

where -y, - 1 [-l + a 2

2(a-1) NV aV+I

Remarks

The significance of this example can be stated as follows:

(i) From Eq. 4-22, the Hankel norm of G is a convex function of -r. This can be verified by comput-

ing its second derivative with respect to -Y and showing that it is always greater than zero.

(ii) If 0 < a < 1, then -y, I IR 2 11. This means that the lower bound in Theorem 4.1.2 is tight.

(iii) If 0 < a < 1, then the optimal solution is not unique. Recently, Professor Bruce Francis showed

a family of optimal solutions which includes the one given in Eq. 4-26 1F61. However, if a > 1, it

can be shown that the optimal solution (Eqs. 4-27 and 4-28) is unique

_.,

"- . . . .. . . . , . ., -.-.. . . , " . '-- '- "- - , - . - . - -" ' p'' '''' ',i- .- i - . ' . -. ' ' '."- '. -" ,
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'-'4. (ii) 14(++) -a4141-o2)14l++)1 _ 0 + *5 -4 > 0

:, . C&se 2: a > 1

It is easy to see that (i) and (ii) are satisfied automatically in this case. Hence, in (4) will have a real:.,

positive solution if a > I and the solution is

a. '7 - 1
lye+( 2+-(a-1

Case3: a < I

In this case, Eq. (4) has no positive real solution. But observe that if 0 < a < 1

11 1+o )<1x v-i>-
< V,..2 V'7 + a -1 a

1 1

where a -- - I [. Therefore, the smallest possible value of - is simply

• 1

To summarize,

(i) a<a 1 -
a

a4

(ii) a 1 -

(iii) 0 >1I : = 2(u-1)+

* Recovery of the otimal solution:

Note that

"

-' - ' - . . . .- a%
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CHAPTER 5

OPTIMAL STATE-SPACE SOLUTIONS OF

GENERAL DISTANCE PROBLEMS

In this chapter, the general distance problem is treated in the context of the real-rational transfer

function matrix (R(s) E RL2,) where H,, of the half-plane instead of the unit disc is used. Both two-

block and four-block problems are considered separately. Since any real-rational transfer function matrix

has a finite-dimensional state-space representation, it is shown that the corresponding GDP can be solved

using attractive state-space methods involving only standard real matrix operations.

Recall that the GDP can be simplified to an equivalent best approximation problem if the value of

-1 is chosen properly (Theorems 3.4.1 and 3.4.4) where the spectral factor of the para-Hermitian matrix

with the form (721 - GG ) (or (-yI - GG')) is used. Since the stability of G does not affect the result

of the spectral factorization, i.e., the poles of G in the open rhp will be replaced by their counterpart in

the open 1hp , it would be convenient to assume G E RH . If this is not the case, a coprime factoriza-

tion of G with inner denominator can always be found and the numerator matrix can be used in place of

G. This particular coprime factorization is presented in Section 5.1 which involves finding the stabilizing

solution of an ARE. Since the constant term in this ARE is identically zero, the stabilizing solution can

be obtained more efficiently by a "modified" Schur method which is no more than finding the Schur

decomposition and solving a set of linear equations. This is discussed i,4 Section 5.2. In Section 5.3, the

state-space formula of spectral factors (t21 - G*G )" and (9yI - GG *)"' is derived. Once the GDP is

simplified to the corresponding best approximation problem, Glover's algorithm JG2] can be applied to

find the solution which is reviewed in Section 5.4. Finally, combining the state-space formula of factoriza-

tions and the best approximation mentioned in Sections 5.1 through 5.4, the optimal solution for the

GDP is obtained in terms of the "closed-form" state-space realization.

.4

.. . . . . . ..n . .

" " "'-'''. '''...-.'"' ," .".. .".. . .- , -. -" ' -" .4" - .,,,"","- -'. . ..''''. ... . ',.. ' .- ,-'''',.-.''''
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5.1 Coprlme Factorizatlons with Inner Denominator

In this section, the coprime factorization with inner denominator will be developed. Explicit state-

space realizations will be given which involves solving an algebraic Riccati equation. Without loss of gen-

erality, it is assumed that G B] E RP × and the realization is minimal.ktffD

. . Theorem 1

Consider G E R P . Then there exists a rcf G NM- such that M E RHX M  is inner if

and only if G has no poles on the j w-axis. A particular realization is

[ [C F I; E --- {+Px f-)
N ~ +DF II 0

where

F = - BrX

and

X = Ric > 0.

Proof

(Sufficiency):

Assume G has no poles on the j -axis, therefore, Re[X, (A)J 0. It is known that the

rcf G NM - can be obtained using state-feedback gain F such that (A +BF) is a stability matrix

where M and N have the realization as in Eq. 5-1. Since M is required to be inner, the following two

equations must be satisfied for some X (Lemma 2.3.3):

BrX + F = 0 [5-4(

r and

.. ,- . -.. oi
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.d
(A+BF) T X + X(A+BF) + FrF -0.(5)

Note that

(Eq. 5-4) -. F - - BrX

(Eq. 5-5) A rX - XBB r X + XA - XBB X + XBB X = 0

- A TX + XA - XBBrX=O. (5-6)

Eq. 5-6 is an algebraic Riccati equation. Since (A ,B) is a controiiable pair and RefX, (A)] 34 0, Eq. 5-6

has a unique stabilizing solution X > 0.

(Necessity):

GG = NM -(NM-) NM-'(M- )*N = NN.

Since N E RH,, GG* has no poles on the j waxis. Therefore, G has no poles on the jw-axxs.

QED

Similar results for the Icf can be established easily by duality.

Corolry 2

There exists a lcf G = A -11 such that Al E RHOOXP is inner if and only if G has no poles on

the j w-axis. A particular realization is

[~ 1 - [A+HC H B+HD] R~XPm 57

where

H = -YCr (5-8)

and

r = Ric A -A > 0. (5-9)

* . .. * . * . . .
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- Remarks

(i) The minimality condition on G is not necessary and can be weaken to that the pair (A B)

((C ,A )) is stabilizable (detectable) and Re[X, (A )J 4 0 in Theorem 1 (Corollary 2).

(ii) Note that the constant term in the ARE (Eq. 5-6) is identically zero. Although Eq. 5-6 can be

solved by the existing algorithms, for example, the Schur method in [L.11, a simpler and more

* efficient algorithm will be presented in the next section far this class of ARE.
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5.2 A Lyapunov Approach for Obtaining the Inner Denominator

In Section 5.1, the coprime factorization with inner denominator is obtained where an ARE is

required to be solved. In this section, a more efficient algorithm will be developed by taking advantage of

the block upper triangular structure of the associated Hamiltonian matrix (Eq. 5-3 or 5-9). The computa-

tion involved is much simpler compared to that in the general Schur method where the Schur reduction of

a 2n X 2n matrix is required IL11. The idea of invariant subspace corresponding to the eigenvalues in the

open Mhp will be used. Without loss of generality, only the right coprime case is treated here.

Consider the Hamiltonian matrix which arises in the rcf with inner denominator,

A 10 -A r I

where Re[X, (A 34 0, i = 1,2 ........ n and the pair (A ,B) is stabilizable. The algorithm is composed of

the following steps:

StenI

Find the upper Real Schur Form of Am such that the eigenvalues with negative real parts appears

first, i.e.,

UrAU - A, A.

where A, and - A. are stable matrices and U - u. U. is an orthogonal matrix. Note that

the columns of U, are the Schur vectors corresponding to the eigenvalues with negative real parts.

p 0]Apply the similarity traDsforMm~Ion T 0 U T to AM :
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A. A., -B, Brt -B. B.T'

UrAU -UrBBrU 0 A, -BB r -B. B r

TlAl T -' 0 -UrAruJ U0 0 -A r  0

0 0 -A, r,  -A.T

where B, - U,rB and B,= UrB.

*'1

Solve the Lyapunov equation:

A, Z + ZAr = B,B. ($.0)

Since the eigenvalues of A, are in the open rhp, Eq. 5-10 has a unique solution Z. From the

assumption of the stabilizability of (A B ), the pair (A, ,B, ) must be controllable. Therefore, Z > 0

is concluded from the Lyapunov stability theorem.

- Define

'VT2 0

0 A, -B. B,T + ZA,.r 0
-,'T y1 ' )T2 0 -AI0 0

0 0 -A r A~
% SU

Step 6 o

7 ...
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Form the third similarity transformation T3 as

i Then

,.'4A. -A - A, + A. Z B, Bmr Am -A,,r-B, B~r

0-A: r  0 -X r  (-11
0TTI T T0 A -BBsr ZAu

0 0 0 -A r

Define T T3T2T t, then

1-1 T -1 5 T0

1 0 1  1 0 0 A

00010 0 00

1001 O000

[1,i OIO[ 010
00 10

Note that the left upper n X n matrix in Eq. -11 is stable, therefore, the stabilizing solution X is

- simply

SX -= U 1 UII

r.. 0
r4-"I =, u,]

x. t j ])O Z ]}~'
5." -5L*/
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U. Z u, 1zU." > o.

To summarize the procedure,

(a) Find the upper real Schur form of A such that the eigenvalues with negative real parts appear

first, i.e.,

UTAL, 0 [A . where U (U, U.

(b) Solve the Lyapunov equation:

-A. 
AZ + ZA.Z = UUTBBTrUWT.

() The stabilizing solution is X U (J Z -'U,fr.
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Remarks

(i) The method described here is more efficient because the matrix involved in the Schur reduction

is only a n X n in contrast to 2n X 2n in the general Schur method.

(ii) Since the matrix A. is already in the quasi-upper triangular form, the solution to Eq. 5-10 can

be obtained by simply solving a set of linear equations [B2,G31.

(iii) Z -' can be computed by taking advantage of the symmetry of Z which has order at most n (n

is the dimension of A .).

(iv) If the realization of G(s) is already in the balanced form, then the solution

X = diag( ), where {, } are the second order modes of the unstable subsys-

tem of G(e).

(v) A special case is when the matrix A is completely unstable (i.e., Re[X, (A)) > 0, V i) and (A B)

is controllable, then the ARE

A T X + X4 - XBB r X 0

is equivalent to the following Lyapunov equation

YA r + AY = BB r

Since (A ,B) is controllable and Re[X, (A )1>0 guarantee that Y >0 X = Y is the unique

positive definite stabilizing solution of the ARE.
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6.3 Spectral Factorizations

In this section, without loss of generality, G (s) is assumed to be stable since any G E RL . may be

factored using Corollary 5.1.2 to obtain a stable numerator N such that NN ",m - GOG. The objective

now is to derive a state-space formula for the spectral factor of (9' -G*G ) (or (-?I -GG*)).

Theorem I (Spectral Faetorizatlon)

Assume G(s) E RH'X and -1 > tIG(o)Ir . Then, there exists a M E RH 7 with stable

inverse such that MoM = y - G*G with

[A B1
M - [RoKI RP] (5-12)

where

RD 9f7lI-DTD > 0

K == _RD'(BTXDTC)

and
"4

-[A+BR -1D rC -BR -1B r
x Ric CTr(+DRDIDT)C -(A+BRD-iDrC) r

Proof

Let

r - 2 1 - G G B- r R- A] r ) -1 ) "B ]

Since ' > G II, r(w)>o. The minimality of the realization of G guarantees that (A , B) is

controllable and (-C r C , A ) is observable. Thus, from Corollary 2.3.2, there exists M E RH " and

M -1 E RH, such that r - Mom and a particular realization is

m = -RDK RJ"
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T'e*

°

where

K, = -Rdf(BrX-DrC)

and

R A +BR 1D T C -BR 1Bt

RIc CT(I+DRD rDT)C -(A +BRD-'DrC)J

Since G is stable, it is concluded that M E RH m .

QED

The following corollary is the dual result of Theorem 1.

CoroLlary 2

With the same assumptions as in Theorem 1, then there exists a M4 E RH ×P with stable inverse

such that MAi* - 21 - GGO with

-. D (.13)

where

RD = 21.-DD r > 0

K = _(YCrBrD)f i -'

and

S(A +BD rhiO~ -DIi'
Y - RIC B( +Dr fiTI )B r _(A+BDrtj51C).

Remark

The notation (21 - GG )i" ( (-1 - GG ) ) will be used to denote the spectral factor M(Atf) in

Theorem I (Corollary 2).

- %
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Theorem 3

If G - IIG(u)iI® but -1 > U[G(o)j in Theorem 1, then there exists a M E RHOrn with M-I

analytic in the open rhp such that M*M = 21 - GG with

.M -R Kc RD4]

where

RD - 1-DTD > 0

K, = - R-(BrXDrC)

and X is the unique solution to the ARE

(.4+BR'D T C)T X + X(A+BR5IDrC)-XBRD TBrX + CT(I+DRD-'T)C 0 (5-14)

such that Re[X, (A +BKJ) < 0, V i

Proof

Let

r = 9 - G =G Br(-81-AT)-' I[_ore RIB]

By assumption, r(jw) > 0 and R = f(oo) > 0. Since (A ,B) is controllable, from a theorem of J.C.

Willems [W11, there exists a unique solution X to Eq. 5-14 such that

A + BRD 1DrC - BRD'B r X A + BK,

has no eigenvalues in the open rhp

QED

Corollary 2 can be generalized in a similar way to the case where -y = fG o but -y > FIG(ac)]

such that M- is analytic in the open rap.

. . . . S-S ~5
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5.4 Balanced Realisatlons and Best Approximation Problems

In Section 3.2, it was shown that there exists an optimal solution Q E H. to Eq. 3-14 such that

I JR - Q 11 = I JHR 11. The same equation will be reconsidered in this section for real-rational R. The

idea of balanced realization will play a key role in this problem.

Recall that a stable transfer matrix G (o) with minimal realization [ D is called "balanced" &

there exists a diagonal matrix

E = diag (a,,C 2 ........ 0'. ) -0', -2 ...... > > 0,

such that the following two Lyapunov equations are satisfied:

AE + EA* = -BBT

and

ATE + EA -CrC.

where {a, } are called the "2nd order modes" of the system [M4,P2].

If G (8 ) is completely unstable (i.e., no eigenvalues in the closed lhp ), then G (8) is said to be bal-

anced if G(-a) is. The method for obtaining balanced realization is not unique which can be found in

[E1,L2,M41. Note that balanced realization is also very useful in model-reduction [E1,G2,K7,.

.,

The following lemma shows the relation between the norm of a Hankel operator and the balanced

realization of a completely unstable transfer function matrix G.

Lemma I

*Assume G is real-rational and completely unstable in Eq. 3-14. Then

GIIH =

where a, is the largest "2nd order mode" of G.

. . . . . . .*
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This lemma is very useful, since it relates that the Hankel-norm can be computed easily using state-

space methods. In fact, even if the realization is not balanced, the norm is equal to ,(X Y) where X

and Y are the controllability and observability gramnians respectively and can be computed by solving the

corresponding Lyapunov equations:

AX + XA = BBr

and

ATY + YA CrC.

Now, consider the best approximation for the real-rational case:

= m I R - Q II , R(-u)ERHO. (515)
Q E RM.,

The question is: does Eq. 5-15 have a solution which is also real-rational? The answer is yes and the proof

can be found in [AI,A2,B3,D16,G2.

Theorem 2

If R is real-rational in Eq. 5-15, then there exists a best approximation Q E RHo.

Theorem 3

Assume that Qt is the best approximation in Eq. 5-15, then

(i) if p = I or m - 1, Q~pt is unique and -(G -Q~,t ) is all-pass.

(ii) if p 4 1 and m 34 1, then Q,,t is not unique and

'7t

There are various algorithms available to solve this problem [BI,B3,DI6,G2j. However, the Glover s

algorithm (G21 appears to be the most efficient one so far and will be reviewed next.

J
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Without loss of generality, R is assumed to be strictly proper, completely unstable (the stable part

of R can always be absorbed into Q ) and square (if not square, add rows or columns of zeros). Let

[A B
R = j be a minimal re..ization. Then the optimal Q E RH. can be constructed using the fol-

lowing steps:

St'e. 1

Find a balanced realization of R.

R [l .

Thus both the controllability and observability gramians are diagonal and equal to

where a > E i.e., r multiplicity of a. Partition A, B, and C accordingly as

A = [ A2] , B = B ] , and C 1 C 2]

Choose such that

-BT + oC, = 0 (5-16)

rD - 21. (5-17)

Set

B =- (op2 -E-'(EB2+0.Crb) (5-18)

A - !- + BBr )r (5-19)

and

-.
I " " " ". "5" " " " " " " " " " " " " " " ' " " ' ' " " " ' " " " ' ' " " '

. .-','. .. ,... ,... . . ". . -. ' ,- , ,- . ,..-', ,',% . .- , • . , , . • . . .
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C -C2E + D B2 (&20o)

Let

Then, i s an optimal solution to Eq. 5-15 1G21.

.1,r
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6.5 State-Space Solutions of General Distance Problems

Combining the results from previous sections of this chapter, in this section, the state-space realiza-

tion of the optimal solution of the general distance problem will be derived step-by-step. Although the

formula may not look very simple in its appearance, the implementation is quite straightforward. Once

again, the 2-block problem will be considered first, and the results are then generalized to the 4-block

problem.

(A) State-erace ontimal solutions of the 2-block GDP

Without loss of generality, both R, and R 2 are assumed to be completely unstable with the realiza-

tions

R,= [CD] and R2 ==

where the realization R 2 is minimal. The solution can be found from the following steps:

SteR I (Left coprime factorization with inner denominator) [Corollary 5.1.21

= M'N with = D ERHC

where A = A + HC , B B + HD and H is the observer gain such that A is asymptotically

stable.

Step (Spectral factorization of (-?I-R ?R 2) [Theorem 5.3.11

Find the spectral factor M such that MA' 91" -N'I=N _Y21 - R2R 2.
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I D KC R'

where

RD - 1yI-D T D

K, = - RD'(B TX-D r C)

and

rA +jR5IDTC BR -',dT 1X,'.' [ = RiD r C + R D 'Dr )r

J.. X - R IC Lr (I+DRj oDrl _(, .. -D rC)r

where ILlC (AH) denotes the stabilizing solution of the Riccati equation with the associated Hamil-

. -tonian matrix Aq.

Form

*G R= -

= [ JB] i +[ BK, §RD- 0

A B 1K, B IRD-

0 A +§K, BR 0
- j (5-211

C, D IK, D RD-

• 'te ( Spectral Decomposition

(i) Solve the following Sylvester equation for Z:

-AZ + Z(,i +BK,) -BK. (5-22)

Since both - (A ,) and (A + i3K,) are stable, Eq. 5-22 has a unique solution.

(ii) Conjugating the states in Eq. 5-21 by Tr 0 [1']
".p

. _..[ p.]
. . . . . . .

.* p* *
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A K 0C (B 1 + ZB )R

[C 0D 16K, jRD .
J DLK, - CZZ DDIRo-

I'i ci 0 + IDIK, - CZIDIR- i

G. + G,

where G, is stable and G is completely unstable.

S ( Computation of the Hankel-norm)

Compute the Hankel-norm of Gu (e), called I (), which is equal to (X., W c W0 )I'2 where W, and

W, are the controllability and observability gramians of G, (-o) respectively, i.e., W, and W, are

the solutions of the following two Lyapunov equations

AW, + W, Al - (B,+ZB)RD'(B1 +Zb)r

and

AIrW. + W.A,- C1 C1

respectively.

(a) if f (-y) > 1, it means that the value of -y is too small. A larger -Y should be chosen, and the pro-

cess will restart from Step 2
'/

(b) if f (-I) 1 1, from Theorem 4.2.8, the corresponding j is the minimal achievable norm in (2gdp).

(c) if f (-Y) < 1, From Theorems 4.2.5 and 4.2.9 two cases can occur:

(i) a

and

-. 1 . - . . . . . . . -

. . . . . . . . .

-
4

4- -° . * \ .-- .- - 4 -
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(ii) 7, < '.

Case (i) can happen only when y. = IIR21. It can always be detected by letting -1 IIR2 11. + C.

in the beginning of the iterative process where e. is a very small but positive real number, for example,

e10. If the corresponding f (-) < 1, then 7, must be equal to IJRglII. This special case will be dis-

cussed later in this section. Assume that (ii) is the case, it means that the value of -y is over-estimated.

The value of y should be decreased. Then the process will restart from Step 2

Step ( Best Approximation ) [Section 5.4]

If f (y) = 1, Glover's algorithm which was reviewed in Section 4 can be used to find the best approx-

imation Q o E RH of G . Assume 0 has the following realization:

AQ BQ

QC12 DQJ

(i) Form

G,M D K ClZDRD-j R DW J

= D,K, CIZIDR,? RO'12K, R V"[A + BK, -BK, B

=0 A AJ. -1

D1 K, --D 1 K, D,•

(ii) Conjugating the states in Eq. 5-23 by T ..[ :. then

A A+BK, 0 A1 r B_
G, M [ 0 = C1 ZID1  (5-,24)

DIK-CIZ CZDI



SO

Form

4'M 1Q 1 BQj A B~2

= LCQI D * [RD , IRP]

AQ -BQ RDK, B RP

CQ - DQR0 K, DQb R 2

Note that Eq. 5-24 can be written as

G, M 0 [A =.~K BD]CQ -c~ CIZ D

Therefore, [AQ -BQ RD1 WQDD, ], BI'
Q.- (Q. + GM 0 04 B . (5-25)

CQ -DQ RPK, - CjZ DQ RP + D

If - flR 211. and -t. > F(R2(ool), then Step 1-8 can still be used to find the optimal Q., the

only difference is in Step 2 where the factor M will have zeros on the jw-axis, i.e., A + B K, has no

eigenvalues in the open rhp. Since (A + BK,) does not appear in Eq. 5-25, the corresponding Q, is

still in RH.. If -y. - IIR 2 11 but y. - aR 2(o)1, then M does not have full rank at oc, which is

equivalent to saying that M has no inverse in RLo,. Therefore, the -y-iteration doesn't apply to this par-

ticular problem. Although R 4 oo) can always be perturbed by some c>O and use the method described

here (Step 1-8), there is no theoretical support for this argument. Further research needs to be done in

this special case. Theorem 3.2.2 is therefore proved except the last case.

(B) StAte-space ootlm&l solutions of the 4-block GDP

.%L
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The 4-block case is much more complicated than 2-block case. However, a closed form solution can

still be found. Without loss of generality, R is assumed to be completely unstable (Theorem 2.3.6). Due

to the complexity of the problem, the realization in the first two steps will not be shown which are not

critical in the process.

The solution can be found from the following steps:

Sitep I

(i) Find factors S - (91' - R 20R ) and S-(~-? R 2R )

Note that S and § need not be spectral factors. See the Remark (ii) after Theorem 4.1.3.

(ii) Form L = R 12 S-' and L -R -.R 1 .

(i) Find the ref with inner denominator for L,

L - NL MC .

(ii) Find the lef with inner denominator for L

L - M N

Assume that NL, and Ni have the following minimal realizations:

' [A I B1[ A 2 JB2
NL [CIDI and NL V C2D 2 j

Ste 3 Spectral factorization

(i) Using Theorem 4.1.1, Band the spectral factor M such that

4'7'
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where

[A 1 I . , P
M - ,1 D

(ii) Find the spectral factor Ai such that

* Ai j -NN£ = I-LL

where

[A B

For simplicity, the expressions for Kc, K 1 , RD and i? D will not be written down explicitly.

Stp

(i) Form the linear fractional transformation

-1F,(1R R 11 +

•7 7 7Assume that

Fl(±LR,-LR=) GC + G, [AB, 1+ B,]

L D,

where G, is stable and G. is completely unstable.
-.

Form the product

- - M-G,,A -

[AI -iK 1 C I K1  [Am Bj [A, +B2K, B2 RD]
-:i ,- c 1  1-I/2 * LCJIo J * K, R 0 " J

,0D

k''a
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Step 8 (Spectral decomposition)

with

A,+ KfC, BK -ZABURD" I

1, 0 A 2 + B2 K, B2RD IA

fi R5'C, L I~C1 Z1 +Cj, Z2  0

and

where

(i) ZI is the unique solution of the following Sylvester equation:

(A 1 +K I C)Zl - ZIA, + KIC.= 0.

(ii) Z2 is the unique solution of the following Sylvester equation:

A. Z2 - Z4A 2 +B 2 K) + BKc 0.

Step (Best approximation

Find the best approximation of R, i.e.,

1(7) - wn R. Qf~
.E RH ,, - (5-26)

Using Glover's algorithm, (-t) can be computed before the best approximation of G is found. If

f (,y) > 1, it means that the value of - is too small. A larger -y should be chosen, and the process

will restart from Step 1.

If f (-y) is much smaller than 1, in general, this implies that the value of -' is over-estimated and a

smaller value for -y should be used. It is desired that -, is equal or as close as possible to 1. How-

ever, this is not true for every case.

". "".
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1f 4-1, then the optimal solution to Eq. 5-23 is Q with the following realization:

S AQIBQ]

Therefore, Q.-Q*+ , is the best approximation of R Correspondingly,

Q, - M(q 1 +M'G,fi-)M - MQ7,f + G,

(i) Form

Q. Q + R,

AQ I Q ] A I + KC, - ZIB.K, B R-I

+ D0 A 2 +B2K, .
ICQ7RDo I 1 ,f R5 CIZI+C.)Z2  D

A I +K, C, 0 - Z1 B.K, B D /

0 AQ 0 EQ

0 0 A2 + B2K, B 2RD" 2

R5Cl CQ RD2 CIZI+C.V 2  DQ

(ii) Form

A,+ Kf, 0 - Z1 B. K, -ZIB. RD- /2

[A, K, D12 0 Aq 0 B [ A2  B2
c' IC A 0 0 A, + BK, B2,R0  - ROMIK. Rv0

1

IGj vC, CQP Rfii-vc'Z1+c.)Z3 D9

A1  -K1 C, K, R DCq -K1 (C1 Z1+C Z 2 KI § D~qRD"K. K, §,2Dq RD112

0 A, KCC 0 -ZIB. K, ZIB. K, -ZB
0 0 Aq 0 -BQ RD11K, B vl

= 0 0 0 A 2 +82K, - B2K, B2

0 0 0 0 A 2  J
C, C, .~C (C1 Z 1+C.)Z 2 RD'qRD"K, I fiL2Q R0'I'



* Conjugating the states in the above realization by

T 0 0010 0
0 0 0 1 -1
0 0 00 1

Then

A, 0 -K,§'?JCQ -K,(C 1 Z,+C.)Z2 -ZIB.K, -KI (CIZI+C.)Z2 - 1 DK-KD-Z

0 A 1 .KlC1  0 - Z1 B. K, 0 -ZB.
0 0 Aq 0 - Bg R1".K, BQ Rp1l

= 0 0 0 A, + BK, 0 0
0 0 0 0 A2  B2

C1  0 R~~~j~q (C1Z1*C,)Z 2  ((' 1 Z 1+C)Z 2 -R~R~~R'D~

A, -KRAW C K!f(CIZI+C.)Z 2.KDK - 1 DQZB

0 AQ - BQ RDVK BQ RD/

= 0 0 A 2  B2
.- e C DRA (CIZI+C)V 2 R DQ R "K, Ii DQ R

Tbherefore,

Q.-MQ, M + G

A, 0 0 0 B.

0 A1I KIi R4'YCQ -K,(CIZ I+ CZ 2-KI DQ K, .K, DQ ZIB

ME 0 0 .
4 Q -BQR "K, BQRD

0 0 0 A 2  B2
C8 C1  RA'

2
CQ (C~+ Z- R DQ R "K, D, + R 'VQR 2

D CIZI CZ



CHAPTER 6

NUMERICAL ASPECTS OF

H 2 AND H00 OPTIMIZATION PROBLEMS

In this chapter, the H 2 and H,,, optimal control problems are summarized using a unified general

4 framework. In addition, numerical aspects of the algorithms and the issue of model-reduction are also dis-

cussed.

Section 6.1 recapitulates the key steps required to solve the H2 and Hc, optimal control problems

for finite-dimensional linear time-invariant systems. One of the major contributions of this work is the

development of a complete state-space approach to obtain the optimal solution. The implementation of

the algorithms is straightforward involving only standard matrix operations and linear algebra techniques.

In Section 6.2, some numerical aspects of the algorithms are discussed. Since the H. synthesis results in

a high-order optimal controller, and because of computational and other practical limitations, it is desir-

able that some form of model-reduction be used. In particular, it is shown in Section 6.3 that model.

reduction can be used in the H,, synthesis procedure to obtain a lower order (suboptimal) controller with

a priori bounds on the degree of suboptimality.
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6.1 Summary of 112 and H. Optimal Control

This section is a recapitulation of the results developed in the previous chapters to give a complete

algorithm for solving H 2 and H. optimal control problems. The key steps are summarized as follows:

Step 1I Parsaetrlsatlon

Find I so that the substitution K -F, (J ,Q ) yields

FI(P,K) = F(P,Fj(J,Q))

= FI(T,Q)

- T= 1 + T 12 QT 21

with the additional requirement that T E RH,, and

F, (P ,K ) internally stable

if and only if Q E RH,.

This parametrizes all stabilizing Ks in terms of a stable Q E H,, in addition to providing an affine

parametrization of all (internally) stable F, (P,K). This "Youla parametrization" [DS,Y2] is

developed in Section 2.2. In particular, explicit formula for J and Tj's are derived using the

observer-based stabilization method (Eqs. 2-33 and 2-34).

StepWs Coprime Factorliation with Inner Numerator

A further reqirement is that T 12 and T= are inner and co-inner with the nonsingular constant

matrix multiple respectively. Methods for obtaining the particular parametrizations which achieve

this are developed in Section 2.3. By appropriate scaling, the new affine parametrization of the

closed-loop transfer matrix becomes

T- Q N 21

where N 12 is inner and N21 is co-inner with realizations shown in Eqs. 2-46 through 2-49.

.......
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Step 2: Unitary Invarlane.

Find the CIFs N, and N 1 so that [N 2 N 1  and IV] are square and inner (also Section 2.3

S(Eqs. 246 through 2-49)). Then pre- and post-multiply by [N 12 N, a-d [ J to yield (E.

252)

rR1, -Q R12 ]I

TI, - N 12 N2 1 jR 21  R ( 2, )

where

R - LRI, R1 =" ts T,, [N2 11
J?2, R~j 1 r

The solutions to the H, and H, optimization differ completely in the following step.

Ste2 3 Projection/Dilation

(A) H 2 optimization:

For a=2, the unique optimal solution for Q is immediate from Eq. 2-4:

Q pt ., PH2(R j,)

(B) H, optimization:

For a-oo, the general distance problem is solved using -- iteration (Chapters 3, 4 and 5). The

iterative procedure is the following:

(i) compute the lower and upper bounds (Section 4.1).

(ii) reduce the GDP to the best approximation (Sections 4.1 and 5.3).
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(iii) find the Hankel norm of the corresponding approximation problem (Section 5.4).

Iterate on (ii) an (iii) using the Properties of -1-iteration (continuity, monotonicity and convexity)

-4.4 until the optimal y (or arbitrarily closed to) is round (Section 4.2).

(iv) derive the state-space formula for Q (Sections 5.4 and 5.5).

The complete state-space procedure for both 2- and 4-block GDPs are shown in Section 5.5.

Steip 4 Recovery at the optimal controller

(i) First, recover Q,~from Q, through Eq. 2-51:

Q,g RD-oP

(ii) The optimal controller K0,, can be recovered easily from the LFT

-,, FI(J.Q,t)

where J is shown as in Eq. 2-33.

- The above steps are also summarized in Figure 6-1.
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S. /

r.

mn, jfFX(K) ltIinurna stabilityI

Parmetizaton

K aF 1(J,Q)

Min T11 + T12QT2 ll

1 VN12*NI2 -
Inin ll11 u-J!N ZIN lie when

a a H- 21.*

2i R11-6 R12

HG. R2 1  RAJ

Projection GDP

.Q.

o",

Figre -1
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6.2 Numerical Considerations

The implementation of the procedure described in Section 6.1 is quite straightforward since at each

step, the state-space formula are also derived in parallel to the theory. Therefore, only standard matrix

operations (addition, subtraction, multiplication, inversion) and the familiar linear algebra techniques

(singular value decomposition, eigenvalue/eigenvector decomposition, Schur decomposition, etc.) are

required essentially. They constitute the nucleus of the entire approach and there are very reliable

software packages available [D6,G1I for this purpose.

Most of algorithms developed require solving some particular algebraic equation at an intermediate

stage. They are ARE, Lyapunov, and Sylvester equations. Therefore, robust algorithms for solving these

equations are extremely critical to a successful implementation. Many reliable algorithms can be found in

the literature, (ror example, [B2,G3,H1,L1,VIJ).

Note that the minimality (or stabilizability/detectability) condition is an important assumption in

most of algorithms (coprime factorization, spectral factorization, etc.). To guarantee this condition, a

simple procedure is recommended here which is closely related to the notion of "balanced" realization

(Section 5.4).

Recall that, far a given stable transfer matrix 6' - [A B1]if the realization is balanced (Section

5.4), it must be minimal. Therefore, minimality can be achieved by "balancing". Although all the

balancing algorithms developed so far require the given realization (before balancing) to be minimal

[L2,M41, they can be modified to handle the non-minimal case by removing the singularity of controllabil-

ity and/or observability gramians. The (balanced) minimal realization can be obtained similarly for the

completely unstable system (see Section 5.4). If the given realization of G has both stable and unstable

eigenvalues (but not on the jw-axis), then G can be expressed as

G - G, + G,

where G, is stable and G. is completely unstable.

r?.1
...................................... ..................................................................
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This can be accomplished using Schur decomposition with eigenvalbie ordering ILl,V1I and solving a set of

linear equations (see Step 4 in Section 5.5(A)). Then, combining the balanced realizations of G, and G.

leads to a minimal realization of G. Since the state matrix of either G, or G. is already in the upper

real Schur form, the Lyapunov equations associated with gramians can be solved almost immediately

IB2,G31.

This technique can be implemented very efficiently and reliably. It does not increase the complexity

of the software since the balanced realization is essential to solve the best approximation problem (Section

5.4). The testing results are very satisfactory.

2%

-?,...,
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6.3 Model Reduction In H. Synthesis

The importance of model reduction in control system design has long been recognized. For practical

implementation, it is desired that the order of the controller can be reduced in a way such that the con-

trolled system still satisfies the performance requirements. Typically, there are two ways to obtain a

lower order controller: reducing the complexity of the plant model and using model reduction in the

design process [EI,G2]. This section considers the latter issue.

High-order optimal controllers are usually derived when using H., optimization. This can be seen

clearly from the state-space formula shown in Section 5.5. Therefore, model reduction is inevitable from a

practical point of view. Recall that the order of the controller K = F, (K,.Q) is generically equal to the

order of Ko, which is the same as the original interconnection structure P, plus the order of Q . Thus a

natural first step in obtaining reduced-order controllers is to consider techniques that result in lower-order

Q 's. Another candidate for model reduction is the R in the GDP, since it is the complexity of R that

affects not only the order of Q but also the computational burden involved in computing Q . The follow-

ing analysis shows how the model reduction can be performed in the GDP with simple L.-norm bounds

on the resulting loss of performance.

Assume that Q 0 is the optimal solution of the GDP:

m rin R-[ ]
hen fPr model reduction, one has the following two results.

(i) Model reduction on R:

Suppose i is a reduced-order model of R, and Q 0,t is the optimal solution of

QE PH II 4 11

Define

- --. .9
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= R - [4' J 00

5-.The question is how much error (-, .) is incurred if the reduced order model R is used in the

GDP. This is found as follows:

< R- - J +hR-h 0

< R - [~i :] * RR0

. - (R- R)+ 11R-II

< 0 -11 1J + JJR fill.

< +. + hh-RI

This inequality shows that the error is no more than 2hhR -- R 11.0.

(ii) Model reduction on Q ,pt:

Suppose that Q ., is a reduced order model of the optimal solution Q . Then

°ol ~~~0 IL,;ooo
- opt 0 R 

pp] 0-
I= R - 1( 0 + 1 000

p,

"5 1 14 - I I o-l1 0

Hi-sop p (32

n'r1_1
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Therefore, model reduction on Q ,, will introduce an error of no more than IQ ,,, - Q app I I=.

Suppose that model reduction in the H,. synthesis is done by the two steps:

(a) find the reduced-order model R and the solution, Q 0 of the corresponding GDP,

(b) find the reduced-order model, Q Ip, of Q ape"

Then,

R - [h < 21R- I1. + IaIpt,- pp,1100 (6-3)

This error bound can be derived easily by combining the results of (i) and (ii) above.

The above result is very encouraging since if the error bound in Eq. 6-3 is guaranteed to be small in

model reduction, it will not affect the performance too much. Using either the method of truncation of

the balanced realization [EI,G21 or the method of Hankel-norm approximation [G21, the reduced-order

model can be found using reliable algorithms. Furthermore, both methods give the error bounds in terms

of the La, -norm which are computable from th' e the second order modes of the given system (Section 5.4).

A more detailed treatment on this subject can be found elsewhere [EI,G2]. Experience to date has shown

that in many practical problems, both the order of Ii and Q at can be reduced significantly without

c.r'.'. incurring too much error.

..

C.

,'

, .r . .a . , . ,.,L,* J'" " ". .'" -"'. . r" .L ., ' """ " .... ,4 '" "". .S ..' """ * ".,." . 24" /" " ." " "i ' ."" "---* -* '"
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APPENDIX A

LEMMAS

This appendix includes lemmas which were used in proving some of theorems.

Lemma A.1

Assume A, B E L ,,,, then

S[;] 112 :5 2[11[A,

Proof

(i) Left inequality:

By definition,

B WP
S4j: ==-sup [X..(AOA +B'B)]

lilup A +114 B

-'S"t

2 2< iA I 0 + l B i 00

(-.i) Right inequality:

Since

-.-./ ~~~an J,,, -. 'I,"B-1 ,, , .%.t' ,t,1, -",.."" -"."" "" " " "" " "- - -"" '- " - "."""" ' """"' ' """" "" ""''
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I5 11I [1 2T FFT T1 1. 112 1 2
B 4 - -

hA II0 V( [ AI
I1[IB If-] 12 <5 [BJ

QED

Lemma A.2

Proof

(i) Left inequality:

From Lemma A.1,

A B A C 11
C D B D ll i2

= II[A C1110 + IIIB D 111 f

_< [IIA h1= I c~ IIl I1jhl+ IIllIIB hI lI~ I2

- = [nA 11 + 1IB 112 ic 112 + I1 D i11]

"i = ~ II~ jc IIID I1=J

* .(ii) Right inequality:

. . 1 A I1. JIB I1.
[11 C 1I1 I 11 [-IIIIIA I11 i. C 2I11 + IJJ B 11. lID IJj Il i

." _ I[2 I1 A CIIlh + 2 B D 0110c

4

.- .'J. - .. .P .'. . .,,.. -'. '.. t','.-'._'. ' ' J'..'.W'. ..'.-'.--'e-. -.' .'-'r . .." .: .'-. -.'. . .. '- .' * " "-. "..'.
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A2r11A C112+IJ 11]

- ,/[iIlia C lll + IIIB Dllj

DV2_ 1 B 111 2[A ~

,.A B

"2 [C D

QED

Lemmna A.3

Assume A = [X Y ] EL . Then,

T*T 1 - A*A

where

T *r.LC )/2 ol
T- [-Is)*YrX S

S - ( I-YY)4

and

L = ( -YY)-x

Proof

Instead of verifying the equality directly by forming the product T*T which is just the routine

algebra, a different but more informative approach will be used here.

Recall that in the constant positive semi-definite matrix case, a Cholesky factorization can be found

with either lower or upper triangular factors. This fact can be extended to the "block* triangular form.

Therefore, the matrix T can be assumed to have the following block lower triangular form:

* . A-



Then

T T = -Y2 A*A

[w *wvv :*] = y* -x~j yJ Y

S*V = -Y*X

SOS - -Y2 y~y

Therefore,

S -p - * Yy)114

V = (o)I O

and

- 9 -t X*X -*

-Y1 -X[1 Xy(S)Y'I*YO

=.2-Y X[JI Y(- 21 - Y*Y)IYJIX

= 721 Xef + (_tf _ yy.)- yy*IX

-Y 1 1 2 X(,(2f YY*)'X

=Y( 9(L*L)

W -71

QED

The following two lemmas are well-known.

Lemma A.4 (solution of Sylvester Equations)

Consider the Sylvester equation
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AX + XE - C (A-1)

where A E IR"A B E IR' ",Aand C E BR*'" are given matrices. Then, there exists a unique solu-

tion X E IRX" if and only it

ReIX A) + X, (B)I 79O, V i= I....n andj = ....

Remark

In particular, if B = A Eq. A- I is called the "Lyapunov Equation" and the necessary and

sufficient condition for the existence of a unique solution will be that

ReJX, (A) + X, (A 0.O V i,j = ...

Lemma A.6 (Solution of Linear Equations)

Consider the linear equation

A X =B

where A E H"t* and B E R' XA are given matrices.

The following statements are equivalent:

Wi there exists a solution X E HR" X

(ii) the columns or B E Range (A

(iii) rank [ A B ]=rank [A]

(iv) Ker (A T) C Ke (Br)



171

APPENDIX B

ISOMORPHISM BETWEEN

THE HALF-PLANE AND THE UNIT DISC

Define the transformation

5 = L- (...i- (B-i)
7+1 zwl-z

which maps the right half plane (Re(o) 2t 0) onto the unit disc (I z < 1). Therefore, the relation

between a point jw on the imaginary axis and the corresponding point e on the unit circle is, from Eq.

B-i,

13-+ 1,

Also define the functicn

Thisyields de- - 2 du= - tg(jw)12 dw.
W2+ 1

Let T be the ,.nit circle in z-domain and j Ft be the imaginary axis in #-plane. This implies that

the mapping

f b :H2(7 T . H2(j ),

where f (z) f f (a) -+ ,is an isomorphism. Similarly,
1-,t

f" -. tf : H2(T H-..., R)

is an isomorphism; note that if f EH 2(T)±,then f -Oat z oo,so that f 0 ata --i, and

hence Pf is analytic in Re a < 0.

.5..~ -- S S5

-. - . - p
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APPENDIX C

OPERATIONS ON LINEAR SYSTEMS

This appendix describes some of standard operations on linear systems in terms of transfer functions

and their realizations which were used in previous chapters.

1. Caseade

G , - L¢IDI G A 2, B2 l~

G1 G2 - C2* [ 2]

A, BIC2 BI-D2  A 2  0 B2

0 A 2  B2 = BC 2 A, BID2

C , D IC 2 D1 D2  DC 2 C 1 D1 D2

Note: This realization may not be minimal.

2. Change of Variables

Z X. - TZ

y " = Ry

U -4 U = PU

[ ] [A- [ = _1]
* ( TAT-' ITBP' 1

RCT-' RDP -
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3. State Feedback

u -. u + F:

[ B4 ] [1 0] [ -BFl],~~ D _ [+ F I /0 +DFI1I

4. Output Injection

z=Ax+ Bu -- iAz + Bu + Hy

4.'~~ 
D [ I H ~ ] [A; C ; D

S. Transpose (Dual)

G-,.G r

N+ 
AhB] -. (rl Crj.

S. Conjugate

G- G*

[+B A r C T ( r , C r

-"-

] (or

B
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