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1. INTRODUCTION AND SUMMARY.

Let (Xi,Y.), i=1, ..., n be independent identically distributed pairs of positive

random variables with distribution functions F(t) = P(Xi : t) and G(t) = P(Yi : t). Suppose

that X. and Y. are independent for each i. In the random censorship model the X's
1 1

V represent survival times and the Y's represent censoring times; the observations consist

of (Zid i ) , iml, ..., n, where Zi =min(XiYi) and 6i = I(Xi Yi ).

The most commonly used estimate of F is the Kaplan-Meier estimator defined by

F(t) . 1 - i (n 1 (.
(i)st

where Z ( 7 Z(2) : ... fZ(n) denote the ordered values of ZI, Z2, ..., zn, and 6(i) is

the 6 corresponding to Z Note that this version of the Kaplan-Meier estimator is

strictly positive on CZ (n) " )- if the last observation is censored and is therefore

slightly different from the version which is always 0 on [Z(n),"), originally proposed

by Kaplan and Meier (1958); see Wellner (1985) for a discussion.

An important problem in survival analysis is to estimate the pth quantile of F

defined by p- inf{t: F(t) ap}. The natural estimate of jp is

.&pa inf (t: 9(t) a p} ( 1.2)

The purpose of this paper is three-fold. First, in Section 2 we show how the

theory of coumting processes, martingales and stochastic integration can be used to

obtain in a simple way the following result.

THEOREM 1. Suppose that the following conditions hold for p t (0,1).

(i) F is continuous and G(p) < 1.

(ii) F has a positive derivative at . ,-

P*
Ten (9 1p~(13

P- F( -p " p F(p * n,p  ,(1.3)

,here n R in probability as n
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Since n F( p) - p) converges in distribution to a normal random variable with mean 0

and variance

p)2 f&p dF(u)(1 - , ________.___)_
o (1 - G(u)) 2 (1 - F(u))

(see, e.g. Gill, 1983) heorem 1 immediately yields that n1 (&p- E p) is asymptotically

normal with mean 0 and variance

-p) 1l-G (u)) 1 (1- F(u))

We remark that (1.3) is neither new nor the strongest version of this result. Aly,

Cs5rgo and Horvth (1985) obtained under more restrictive conditions than those given

in Theorem 1, a uniform (in p) rate of convergence for R of 0(n'"(logn)!1 (log log n)4 ),

as n- (see Proposition 3.1 of Section 3 in the present paper for a statement of this

result). Aly et al. (1985) assume in addition to the conditions given in Theorem 1

that G is continuous and that F is twice differentiable at & in order to obtain for
./

fixed p their rate of convergence for Rn. Therefore, Theorem 1 is of interest
n , p

because of its simple proof and because its assumptions are less restrictive than those

of Aly et al. (1985).

Our second purpose is to prove the asymptotic independence of the estimates of

quantiles in the competing risks problem; this is done in Section 3. The competing

risks problem arises in medical follow-up studies and in industrial life testing when

the failure of an individual can be classified into one of m mutually exclusive classes,

referred to as "risks"; see Gail (1975). Consider a sample of n individuals each of

whom can incur a failure by any one of m risks. Let Xij , i= 1, ..., n, j = 1, ... , m

denote the lifelength of individual i if risk j is the sole cause of failure. Let F

denote the distribution of Xi. Assume that Xil, ..., Xim are independent, and that

the vectors (Xi1,..., Xim) i= 1, ..., n are indeper-en', Since the life of individual

i is terminated by the earliest occurring cause of failure, one observes only the

sequence {(Zi,sij), j=1...,m,i~1...,n}, where Zi =min(Xil ,... im and 6ij = I(.i =X ij)

£%*,
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Thus, 6ij indicates whether risk j was the cause of death (6ij = 1) or not (6ij= 0).

Note that for each j, we can estimate F. by

F.(t) = 1 - F n 6 (i)j (1.6)
Z(i) <tn ) '-

where Z(1), Z(2) :5... Z(n) are the ordered values of Zl, Z2 , ... , Zn and 6 ()j are

the corresponding values of 61j, 62j' ... 1nj"

The pth quantile of Fj may be estimated by

=j,p inf{t: F.(t)-p} . (1.7)

We combine the Bahadur representation of quantiles given by Aly, et al. (1985) and a

weak convergence result of Aalen (1976) to show in a simple argument that when suitably

normalized, the vector (Zl p,..., ,p) converges in distribution to a vector of inde-

pendent Gaussian processes.

Finally, in Section 4 we use the ideas in the proof of Theorem 1 to study the

quantile estimates that arise in the reliability model introduced by Doss, Freitag,

and Proschan (1986).

2. A REPRESENTATION FOR QUANTILES OF THE KAPLAN-MEIER ESTIMATOR

An account of the theory of counting processes, martingales, and stochastic

integration used in this section is given in Chapter 18 of Lipster and Shiryayev (1978)

and in Chapter 2 of Gill (1980). A very accessible exposition of this theory is pro-

vided in Anderson and Borgan (1984). Throughout the paper we adopt the convention

0that - =0; xA y denotes min(x,y), and if H is a distribution function then R(t) = I-H(t).

The following processes are needed to give (F(t) - F(t AZ (n)))/P(t A Z(n) a stochastic

integral representation which we will use to prove our results.

J(t) = I(Z(n) e t) (2.1)

n
V(t) = I(Z i 

- t) (2.2)
4. i--i

n
N(t) = Z I(Z i 

< t, 6.: 1) (2.3)
V's i=l
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ACt) =  -(s) dF(s) (2.4)

0 F(s)

M(t) = N(t) - A(t) (2.5)

Our proof of Theorem 1 will require the following two results taken from the

literature.

PROPOSITION 2.1 Suppose F is continuous. Then

(i) (t) - F(tA Z f F(s-) J(s)
(n) dM(s) (2.6)

F(t A Z(n) )  0,t] P(s) V(s)

for t2!0, where P(s-) = lim 1- P(s), and
u+s

2 2

(ii) n t (s -) J(s) dM(s) n- n2 (s-) J(s)I dA(s) Ft  tE [0,T]
0,t] P(s) V(s) j I Ps) v(s) F V t)

is a martingale, where Ft is the completion of the a-field generated by

a(I(Z s, i = 1), I(Zi : s, &i =0); li gn, s t) and T>0 is such that F(T) < 1.

PROOF. The identity (2.6) is given in Lemma 3.2.1 Part (iv) of Gill (1980), and also

in Theorem 3.1 of Aalen and Johansen (1978).

To prove Part (ii), we note that it follows from Corollary 3.1.1 of Gill (1980)

that {(M(t), Ft ); to C0,T]} is a martingale with quadratic variation process <M>(t)= A(t).

Let f(s) = (F(s-) J(s))/(P(s) V(s)). Since f is nredictable, the integral

f f(s) dM(s) is a martingale with quadratic variation process f f2 (s) d<M>(s),
(0,t] (0,t]

and Part (ii) follows (see p. 268 of Lipster and Shiryayev, 1978 or p. 10 of Gill, 1980;

cf. also the paragraph preceding (4.1.11) page 55 of Gill, 1980).

PROPOSITION 2.2 Let (V } and (W } be two sequences of random variables satisfx'ing
n=l n=l

the following conditions.

4



(i) For all a>0 there is a X (depending on c) such that P( lWnI>X)< a (2.7)

for all n.

(ii) For all k and E > 0,

lim P(Vn Sk, Wn  k E)=0 and lim P(Vn k+E, W nsk) =0 (2.8)
n- n n

Then Vn  Wn - 0 in probability as n- .

PROOF: See Ghosh (1971).

PROOF OF THEOREM 1. We note that the assumption F'(p )> 0 implies that p is the unique

number satisfying F(Ep) p. For any t 0 and any n define
p

Z = nEF( + +) - .) /F( andt* p pt,n n

Wnu n n(p - F( p ))/F( p)

' ,' Note that
{n4 E 5p t}= (p S(p*- }g + (Zt n5 t n  (2.9)

',-?;n! t{ nn

where twhr tn = n(F( +-- )-p}/F'(E) t (2.10)

by definition of the derivative. In (2.9) the first equality follows from the definition

of Ep given by (1.2). Suppose we can show for fixed t> 0 that

Zt, n - Wn - 0 in probability. (2.11)

Letting Vn - p), it would then follow from (2.9) and (2.10) that (2.8) holds forn n(Ep-Ep

the sequences (V n I and W n}. Since Wn is asymptotically normal (see e.g. Theorem 4.2.2

of Gill, 1980) condition (2.7) is satisfied, and the theorem follows from Proposition

2.2.

It remains to prove (2.11). Algebraic manipulations yield that

,'.,5.,', Zt~n  - !qn= F( p + t.)-F gp 1-
t In P nt PJ( P) (2.12)

+2  - -,

PF(p) (p

5
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The first product term on the right side of (2.12) converges to 0 in probability by the

consistency of the Kaplan-Meier estimate at p (see e.g. F6Ides, Rejtd, and Winter,

1980) and the definition of the derivative.

We now proceed to show that the second product term on the right side of (2.12)

converges to 0 in probability. For fixed t, there exists N (depending on t) such
t

that for n>-N, F(& +--) < 1. Thus, for n>-N, by Propositio, 2.1, the second productn

term on the right side of (2.12) is equal to

n f(s-) J(s) dM(s)
F(¢p) p P-)  t 4 (s) V(s)

p pp n(2.13)

t t
P(& 7  F( +-p t) (Cp 2_r) F( p F(&p

n (n) (n)

It is clear that under the assumptions of the theorem, the probability that the quantity

inside the brackets in (2.13) is not 0 converges to 0 (exponentially fast) as n- .

We now show that the first term in (2.13) converges to 0 in probability. Let

E> 0 be such that F( p + e) < 1, and G( p + E) < 1. By the strong uniform consistency of

the Kaplan-Meier estimate (see Foldes, Rejto, and Winter, 1980),

sup =- 1 - 0 a.s. (2.14)
05SS + F_ F(s)

It follows from the Glivenko-Cantelli Theorem and (2.14) that
2

lim sup K s-__d_.)J(S)+,+"~~~ n+"sfp t. " (s) vT dAs

p n !

(2.15)

Sd F(s) a.s.

H(s) F~s)
'p

where H(s) P(:1 >s). Note that P(s) is boumded away from 0 on (, +

6



Since e was arbitrary, (2.15) implies that

,- 2

in '2PS)JS dA(s) -~0 in probability. (2.16)
+ ~ s V(s)jpn'

We now apply Lenglart's inequality (Lenglart, 1977; for a statement, see Theorem 2.4.2

of Gill, 1980) to the martingale of Proposition 2.1, Part (ii) to conclude that

n F(s-) J dM(s) 0 in probability.+ , p t P (s) V(s)

n

This completes the proof of the theorem. 0

The proof of Theorem 1 generalizes the method used by Ghosh (1971) to the case

of censored data.

To estimate the expression for the asymptotic variance of n 2 ( p- p) given by (1.5)
p p29

we may estimate the term (l-p)2 /(F'( p))2 and the integral term separately. Under

the conditions of Theorem 1, the proposition in Section 2 of Hall and Wellner (1980)

implies that n (i) is a consistent estimate of the integral in
IZ - (n-i+l) (n-i)

(1.5). i P

If we assume in addition to the conditions of Theorem 1 that F is continuously

differentiable in a neighborhood of &, then Theorem 4.1.2 of Ramlau-Hansen (1983)

implies that F'( )/F( ) may be consistently estimated by a suitable kernel type of

estimator; one such estimator is described in Section 5 of Ramlau-Hansen (1983).

Note that since p is unknown, it must be replaced by p in the estimate of
p

F'(: )/p( ). Thus, the asymptotic variance of n"( p- p) can be consistently esti-
p p p p cnb ossetyet

mated, enabling the construction of asymptotic confidence intervals for p.

We remark that for small samples the confidence intervals for based on the

above method are not anpropriate. Several methods have been proposed for setting sTP11

sample confidence limits for j 7 , see Slud, Byar, and qreen iClS4l and the refernces

cited therein.



3. WEAK CONVERGENCE OF THE QUANTILES OF THE KAPLAN-MEIER ESTIMATORS IN THE COMPETING

RISKS PROBLEM.

In this section we use the representation .(p) = (p) (p-Fj (j(p)))/F;(j(p))ERj n(p)

to obtain in a simple way the asymptotic distribution of (lp), ... (p). In the

sequel we use the notation .(p) rather than j,p when the quantiles of F. are viewed as

a process; similarly for &.(p). Let G.• denote the distribution of min Xk. The following
kzj

proposition due to Aly et al. (1985) gives the strongest known result concerning the

remainder process R. (p).

PROPOSITION 3.1. Suppose that the following conditions hold.

(i) F. and G. are continuous.

(ii) F. is twice differentiable on (tj,Tj), where t. = sup{x: F.(x)=O}

and T =inf{x: F.(x)=l}.

(iii) f.(t) =F It) is positive on (t.,T ).

(iv) For some P* c C0,1] we have

2( p 2 <
SUP pi f( (p)) 1/ (fj p) <

(v) 0 < lim f.(t) <
t+t. 2

2

Then, if pO<p* and G ( j(p 0 )) <1, we have as n-=

.Slp IR. ,(p)I = 0(n- (log n)1 (log logn) -) a.s.

PROOF. See Corollary 4.1 of Aly et al. (1985).

For s > 0, let D[O,s] be the space of all real valued functions defined on [0,s]

that are right continuous and have left limits, with the Skorohod metric topology, and

let DmCO,s] denote the product metric space.

THEOREM 2. Suppose that the following conditions hold for each j = 1, .... m.

(i) F is continuous.2

(ii) F. is twice continuously differentiable and has a positive density on

(t. ,T.)
22
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Pl fjC j (P))

(iii) For some p* E [0,1] we have sup < 0O!5pSp* (fj (p)))]

(iv) 0 < lir f.(t) <
t+t. 3

3

(v) p0 E [O,p*) is such that max Fk( j(Po)) < I
k

Then, as n -,

n (l'. "m )  (Ul'"'uM)

weakly in Dm[O,p0], where U1, ..., U. are independent mean 0 Gaussian processes with

covariance structure given by

Cov(Uj (p 1), U (p2)) = (-pl) :( 2 ) f dfj (j Pl)) fj( j P ) m _
(P2)) j i k (& (w)) (l-w)

0k=1~

for 0<Pl < p 2 5 p0

PROOF. It follows from Theorem 10.1 of Aalen (1976) that

A 
) (3.1)p n - F, (E ( Ip)) p - FM p))

n F.(.p)) pF (%Mr' (Ul(p), .... UM(p)) weakly in Dm[O,Po].

I( I(P])f(mP

.

The theorem follows from (3.1) and Proposition 3.1.

Theorem 2 is of statistical interest because it enables the construction of

simultaneous confidence intervals for (pl). m(Pm)

We remark that for fixed pE (0,1), if F. is continuous, F' exists and is posi-3 J

tive at &p and max Fk(%p) <1 for j = 1, .... m, then as n-

n ( - - - (P) Um(p)) in distribution. This is easilyl,p l p "' '" p ,p (U .. .'y

seen by substituting Theorem 1 for Proposition 3.1 in the proof of Theorem 2.

9



4. ESTIMATING THE QUXNTILES OF A COHERENT SYSTEM.

Consider a coherent structure of m independent components. For the sake of

concreteness, we keep in mind the specific example given by Figure 1 below.

2

Figure 1. A coherent system of 3 components.

9

Let F denote the distribution function of the lifelength of the structure. Doss,

Freitag, and Proschan (1986) (subsequently referred to as DFP) study the problem of

estimating F under the following model. A sample of n systems, each with the same struc-

ture is available for testing. Each system is continuously observed until it fails.

For every component in each system, either a failure time or a censoring time is recorded.

A failure time is recorded if the component fails before or at the time of system failure.

A censoring time is recorded if the component is still functioning at the time of system

failure.

DFP propose the following procedure. Let F, ..., F be the distribution functions

of the lifelengths of the m components. Write

(t) = h(FI(t), ... , Pm(t)) for t >- 0, (4.1)

where h: [0,1 1m - O,i] is the reliability function (see Chapter 2 of Barlow and

Proschan, 1981, for details concerning reliability functions). In the example given by

Figure 1, it is easy to check that

P(t) = P I(t)[Z- (1-PF2(t))(1-F3(t)]

so that
h(ul,u 2,u3) uI[l- (l-u 2 )(l-u 3 )J for ul, u2 , u 3  E0,1

Let FI, ..., F be the Kaplan-Meier estimates of Fl, ... , F To estimate F, DFP propose1'm 1'm

h(' m(t))

I0

e', *e~, ," v - ,3,.'tW %., . , ,,,..- . .. e, .- '- .- ""..""... ' - ,.-,'" '" -,.. "-.-.-. .- g ' ... -e e ' '



as an alternative to the naive estimate given by the proportion of systems still

functioning at time t.

The purpose of this section is to study the estimates of quantiles

S(p) = ~ (p) and =F(p) (O<p<l) .(4.1)

Before doing so we need to discuss the estimates F. and F.3

The weak convergence of the Kaplan-Meier estimator to a Gaussian process has been

well-established in the literature (Breslow and Crowley, 1974; Aalen, 1976; Gill, 1983)

under the assumption that the lifelengths and the censoring variables are independent.

In our situation the component lifelengths are censored by the system lifelength, and

the independence condition is clearly violated. We can, however, redefine the censoring

variables to bypass this difficulty. This is easiest to explain in terms of the example

given by Figure 1. Let X. = lifelength of component j. Consider Component 1. Clearly,

X1 is censored by Y1 1 2 v X3, which is independent of X . Similarly, X2 is censored

by Y2 = X1 , and X.. by Y3
= XI . The construction is general: for an arbitrary system, X.

is censored by Y. = lifelength of system if X. is replaced by -. DFP show that3 J

(i) X. and Y. are independent.
J 3

(ii) The distribution function of Y. isJ

Gji (t) = 1- h(FI ,... Fj l(t), 1, Pj+i(t) , . P., s(t)). (4.4)

The main result of DFP can now be stated.

PROPOSITION 4.1. Suppose that F1, ... , Fm are continuous, and let T satisfy max F.(T) <1.m 1l~j~m -J

Then as n = n2( " -F F2- F ... Fr Fro) - (WI' W2' .... Win)

weakly in D[O,T], where WI , ..., Wm are independent mean 0 Gaussian processes. The

covariance structure of W. is given by3

t dF. (u)
(i) Cov(W.(tI),W (t,)) = .(t 1 )F (t 2 ) f - for O<t <t <T.

0 G.Cu)(F.(u))2  - 2

(ii) n 1 (f - F) -W weakly in D[O,T],

11



where W is a mean 0 Gaussian process with covariance structure given by

M t1  dF. (u)
Cov(W(t1 )'W(t.))= h j=Z (t1)h.(t 2) F.(tl)P1(t 2) f 1 -u) -u)

0 G .(u)(F (u))

where hh (

i jm (Fjt),. (t))

The model being considered is a generalization of the competing risks model, which

corresponds to a series system of m components. The following result generalizes

Theorem 2 to this model.

PROPOSITION 4.2. Let E.(p) be defined by (4.3), and suppose that the conditions of

Theorem 2 are satisfied. Then as n-®

n 1 -Elf ... I m E m M- (ulp ---. U m

mweakly in D C0,p 0], where UI, ..., Um are independent mean zero Gaussian processes.

The covariance structure of Uj is given by

Cov(Uj (pl), Uj(P 2)) -

(I-PI)(1-p 2) f dw for 0Pl Sp 2 p O '
E '( jPl))J fji(Ej(P2 ))  Gj (w)) (1-w) 2

o0

where G. is given by (4.4).

PROOF. Substitute Part (i) of Proposition 4.1 for Theorem 10.1 of Aalen (1976) in the

proof of Theorem 2.

The main result of this section gives a Bahadur representation for p analogous

to (1.5), and is useful in obtaining the asymptotic distribution of .16" I P

12



THEOREM 3. Let 0 < p < 1 and assume the following conditions.

(i) Flo .... F are continuous, with max F( p) <1
lj Sm J

(ii) For each j, F. has a positive derivative at p.

Then,

P p F'(&P) +n,p

where n Rn,p * 0 in probability as n--.

PROOF. The proof we give is a straightforward modification of the proof of Theorem 1.

Since h is strictly increasing in each of its arguments (see Theorem 1.2 of Barlow

and Proschan, 1981) it follows that &p is the unique number satisfying F( p) =p.

Furthermore, h is differentiable over O,l]m (see Lemma 2.1 of DFP), so by the chain

rule F'(& ) exists and is given by
p

m;F'( I lhj Fi%
P j=1 3 j p

where h. is given by (4.5).

For any t -O and any n define

tn = n ( p  + t ( .and

n 
F(nE  

+

We have [nl( ) t} (Z' :,tn  where tn p n2 [ t
p p t ,n n nflF

(c:. equations (2.9) and (2.10)). As in the proof of Theorem 1, it suffices to show

that Z - W' - 0 in probability.
t'n n

Using (4.2) we write

U Zt,n n = F > [h((_ n)) -h(()((p tn ) - h(F(p (4.6)

13



where for economy of notation F(s) and F(s) denote the vectors (FI(s), ... , Fm(s))

and (F1 (s), ... , Fm(s)), respectively. We now apply the Mean Value Theorem (see for

* example Apostol, 1964, Theorem 6.17) to each of the differences inside the brackets in
t

(4.6): there exist points 1 and a lying on the line segments joining F(p +-7-) and
- n 2

and P(&+t ) and F(p ) respectively, such that the right side of (4.6) is
p n

equal to

nk t
n 7 +fF17 () Ea+)F'(&- - Vh(a) * n ) - p) ' (4.)

where Th denotes the gradient of h. It is convenient to rewrite (4.7) as

{ 7h~ h(1) + (&p) - ( - F(P)]

(4.3)

,..'.' F ( 7 (h(.) Vh (a)) +L- P n1 }}
Since we clearly have A - p P( p) a.s. and a - P( ), the continuity of 7h (see Lemma

2.1 of DFP) and the differentiability of each F at p imply that the second term

inside the braces in (4.8) converges to 0 in probability. The first term inside the

braces in (4.8) converges to 0 in probability since by (2.11), for each j

n nP 0 in probability,

and the components of 7h are bounded by 1 (see Lemma 2.1 of UFP . This completes

the proof of Theorem 3.

Theorem 3 immediately implies the asymptotic normality of r*

14



COROLLARY 4.1. Under the conditions of Theorem 3, n( - N(O, 2 p)), where

2 1 m -p 2 dF.(u)
aY (p) - ~ [h

jil (p F(G (u)(P.(u)) 2
0

To construct asymptotic confidence intervals for & we need to be able to consistently

p

estimate the quantity a2 (p). An extension of the argument given at the end of Section 2

shows that this can be done under the additional assumption that for each j, F is

continuously differentiable in a neighborhood of E . Details are omitted.

S,
4

*,5
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