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1. INTRODUCTION AND SUMMARY,

Let (Xi,Yi), i=1l, ..., n be independent identically distributed pairs of positive
random variables with distribution functions F(t) = P(Xi €t) and G(t) = P(Yi < t). Suppose
that X, and Y, are independent for each i. In the random censorship model the X's
represent survival times and the Y's represent censoring times; the observations consist
of (Zi,é‘i), i=1l, ..., n, where Zi=mn(XiYi) and cSi= I(xisYi).

The most commonly used estimate of F is the Kaplan-Meier estimator defined by
a n-i F )
(1)st

where 2(1) sz(z) $...5% Z(n) denote the ordered values of Zl’ ZZ’ e Zn, and d(i) is

the § corresponding to Z(i). Note that this version of the Kaplan-Meier estimator is
strictly positive on [Z(n) ,®) if the last observation is censored and is therefore
slightly different from the version which is always 0 on [Z(n) ,®), originally proposed
by Kaplan and Meier (1958); see Wellner (1985) for a discussion.

An important problem in survival analysis is to estimate the pth quantile of F

defined by Epa inf{t: F(t) 2p}. The natural estimate of Ep is

Epsinf{t: £(t) 2p} . (1.2)

The purpose of this paper is three-fold. First, in Section 2 we show how the
theory of counting processes, martingales and stochastic integration can be used to

obtain in a simple way the following result.

THEOREM L.  Suppose that the following conditions hold for p ¢ (0,1).

(i) F is continuous and G(Ep) < 1.

(ii) F has a positive derivative at Ep.

Then -

. P-F(&))

.= § + ——7———2— + R ,
F (Ep)




teh
gt

1 P
- Since né(F(Ep)- p) converges in distribution to a normal random variable with mean 0
‘."’.‘
K N and variance
1 £
a-p° f P 4 (1.4)
" o (1-6(w)2(1-F(w)
K

1 ~
(see, e.g. Gill, 1983) "heorem 1 immediately yields that né(Ep-Ep) is asymptotically

normal with mean 0 and variance

[ 1-P ﬂip dF(u) . (1.5)
)
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2 F(E (1-G(w)) Z(1-F (@)
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B We remark that (1.3) is neither new nor the strongest version of this result. Aly,
'.'\'i
Csérgo and Horvath (1985) obtained under more restrictive conditions than those given
U
i -3 1 1
'l': in Theorem 1, a uniform (in p) rate of convergence for Rn P of 0(n ‘(logn)/2 (log log n)“),
]

TE !
23

as n+= (see Proposition 3.1 of Section 3 in the present paper for a statement of this

'O.n~

7 result)., Aly et al. (1985) assume in addition to the conditions given in Theorem 1
:tk: that G is continuous and that F is twice differentiable at Ep in order to obtain for

Re
s
;:5; fixed p their rate of convergence for R b’ Therefore, Theorem 1 is of interest
3 . . . . o

because of its simple proof and because its assumptions are less restrictive than those
s
-;.: of Aly et al. (1985).

.-:'

:;5 Our second purpose is to prove the asymptotic independence of the estimates of
M

quantiles in the competing risks problem; this is done in Section 3. The competing
b
:?;: risks problem arises in medical follow-up studies and in industrial life testing when

\\'.:-

,:} the failure of an individual can be classified into one of m mutually exclusive classes,
,‘ ‘4'

T referred to as ''risks'; see Gail (1975)., Consider a sample of n individuals each of

"/

‘} whom can incur a failure by any one of m risks. Let xij’ i=1, ..., n, j=1, ..., m

;1_"

-?tj denote the lifelength of individual i if risk j is the sole cause of failure. Let Fj

.-

- denote the distribution of xij' Assume that xil’ ceey Xim are independent, and that
‘(2: the vectors (xil""’xim) i=1l, ..., n are indeper-“en’. Since the life of individual
M o : : : :

b i is terminated by the earliest occurring cause of failure, one observes only the
- u"

( )-"

A sequence t(Zi,ﬁij), j=1,...,m,i=1,...,n}, where Z, = min(X;;,...,%X; ) and dij = I(‘i=‘ij)'
..':::
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Thus, Gij indicates whether risk j was the cause of death (Gij =1) or not (5ij= 0}.

Note that for each j, we can estimate Fj by

F.ey=1- T[] ( n-i )03 , (1.6)
] Z(i)st n-i1+l

o-os PR ) . .
where 2(1)5 Z(z)s Z(n) are the ordered values of Zl’ Zz, s Zn and 6(1)3 are

the corresponding values of Glj’ sz, sees snj‘

The pth quantile of F; may be estimated by

Ej,p = inf{t: Fj(t)2p} . (1.7)

We combine the Bahadur representation of quantiles given by Aly, et al. (1985) and a
weak convergence result of Aalen (1976) to show in a simple argument that when suitably
normalized, the vector (gl,p”"’ém,p) converges in distribution to a vector of inde-
pendent Gaussian processes,

Finally, in Section 4 we use the ideas in the proof of Theorem 1 to study the

quantile estimates that arise in the reliability model introduced by Doss, Freitag,

and Proschan (1986).

2. A REPRESENTATION FOR QUANTILES OF THE KAPLAN-MEIER ESTIMATOR

An account of the theory of counting processes, martingales, and stochastic
integration used in this section is given in Chapter 18 of Lipster and Shiryayev (1978)
and in Chapter 2 of Gill (1980). A very accessible exposition of this theory is pro-
vided in Anderson and Borgan (1984). Throughout the paper we adopt the convention
that g-=0; xAy denotes min(x,y), and if H is a distribution function then A(t) = 1 - H(t).

The following processes are needed to give (F(t) - F(t A Z(n)))/ﬁ(tA Z(n)) a stochastic

integral representation which we will use to prove our results.

J(t) = I(Z(n) 2 t) (2.1)
n
Vi) = ) I(Z, z2t) (2.2)
i=1
n
N(e) = ] I(Z;<t, 6.=1) (2.3)
i=1




; t V(s)
) A(t) = = d F(s) (2.4)
'S ( é F(s)

M(t) = N(t) - A(t) (2.5)

Our proof of Theorem 1 will require the following two results taken from the

& literature.
1 PROPOSITION 2.1 Suppose F is continuous. Then
9

o F(t) - F(tAZ, ) 2

B ; -

X (i) - )’ E(s=) JCS) sy (2.6)

) F(tAZ,) (0,13 F(s) V(s)

{
g, for t20, where F(s-) = lim 1- B(s), and
K, u4s
K )
) |

[ 2 (‘ 2

' ] 2 - -I
L (1) {|| n* ggs—)’v‘g—(-)sl aM(s)| - o’ W dAGs), Fy |5 telo,T]
i S S S s

. (0,t] (0,t]
%,

) is a martingale, where Ft is the completion of the o-field generated by

: o(1(Z,ss, 6;=1), I(Z;ss, 6;=0); 1sisn, sst) and T>0 is such that F(T) < 1.

PROOF. The identity (2.6) is given in Lemma 3.2.1 Part (iv) of Gill (1980), and also

v

: in Theorem 3.1 of Aalen and Johansen (1978).

: To prove Part (ii), we note that it follows from Corollary 3.1.1 of Gill (1980)

b)

R

' that {(M(t), Ft) ; te(0,T]} is a martingale with quadratic variation process <M>(t) = A(t).
h Let f(s) = (F(s-) J(s))/(F(s) V(s)). Since f is predictable, the integral

o
1 f f(s) dM(s) is a martingale with quadratic variation process f £2(s) d<M>(s),

v (0,tl] (0,t]

and Part (ii)} follows (see p. 268 of Lipster and Shiryayev, 1978 or p. 10 of Gill, 1980;
L)
W cf. also the paragraph preceding («+.1.11) page 55 of Gill, 1980).
3
;f PROPOSITION 2.2 Let (Vn}m and {Wn}cn ! be two sequences of random variables satistving
n=1 n=
b
" the following conditions.

L2 %l
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’,‘:?'!'
o _
{5‘1 (i) For all >0 there is a A (depending on o) such that P( [wni>x) <o (2.7)
X!
g for all n.
(i
(ii) For all k and € >0,
P
'::: lim P(VnSk, wn2k¢e)=0 and lim P(Vn2k+e, wnsk)=0 (2.8)
.:‘;‘: n-+e n-ee
Bk
iﬂgﬂ Then V_ - W 0 in probability as n>=.
e
! PROOF: See Ghosh (1971).
3
7,
kg? PROOF OF THEOREM 1. We note that the assumption F‘(&p)> 0 implies that Ep is the unique
he
number satisfying F(Ep) =p, Forany t 20 and any n define
\‘ig"
: :I:'p Zt’n =n [F(Ep+;g) - F(Ep* ;g) ]/F (Ep), and 1
Pt \
N
- W =n(p- F(£))/F"(€)
20N -
o . n p p p
9%
tﬁﬁ Note that 5 s A .
.;,.', - < = —_— = < .
foy {n (Ep Ep) t} {psF(sp+n,/2)} {zt,n tn} , (2.9)
s where 3% ¢
L) = —_ . »
= t =n {F(£p+n%) PHET(E) ~t (2.10)
-\.jz
3f& by definition of the derivative., In (2.9) the first equality follows from the definition
h; of Ep given by (1.2). Suppose we can show for fixed t 20 that
X »
S . .y
-.;: zt,n"wn" 0 in probability. (2.11)
oy L o
.iﬁ Letting Vn:=n4(£p- Ep), it would then follow from (2.9) and (2.10) that (2.8) holds for

the sequences {Vn} and {wn}. Since Wn is asymptotically normal (see e.g. Theorem 4.2.2

of Gill, 1980) condition (2.7) is satisfied, and the theorem follows from Proposition

2.2,

It remains to prove (2.11). Algebraic manipulations yield that

( 2
% F(g) ]
Z - W = ﬂn—— F + t - F W _.__L
P P (2.12)
2 t Y 3
F(g_+-) F(§_)
F(5p+—t;) —r - _F
n* + F(z
F(Ep —-r/z-) F(,p)
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B> The first product term on the right side of (2.12) converges to 0O in probability by the
-GS

A consistency of the Kaplan-Meier estimate at Ep (see e.g. F8ldes, Rejtd, and Winter,

& 1980) and the definition of the derivative.

D"

'f: We now proceed to show that the second product term on the right side of (2.12)

%

'f converges to 0 in probability. For fixed t, there exists N (depending on t) such

o that for n2N, F(£p+%§- ) <1. Thus, for n2N, by Propositiou 2.1, the second product
' n

—‘, term on the right side of (2.12) is equal to
'.
W nt . t F(s-) J(s)
* - ey e, ) J Ry )
p n (& ’Ep* 7] (s} V(s)
A P n (2.13)
- ( 5 t 2 t _I
- E — E 2 2
d Corm) PR ] Fe))  FGe) ]
) i Ty t TIEG) ?CEPAZ )
F(sp " F((sp + ;g) A Z(n))J P (n)
d
:_ It is clear that under the assumptions of the theorem, the probability that the quantity
%
inside the brackets in (2.13) is not O converges to O (exponentially fast) as n-+w,
[\
We now show that the first term in (2.13) converges to O in probability. Let
3 :
N € >0 be such that F(£p+ €) <1, and G(Ep-o- €) <1, By the strong uniform consistency of
)
the Kaplan-Meier estimate (see Foldes, Rejtd, and Winter, 1980),
’q]
- sup I F(s) 1| +0 a.s. (2.14)
o 0sssg +¢ | F(s)
¢ P
,,- It follows from the Glivenko-Cantelli Theorem and (2.14) that
' N 2
& : % B(s-) J(s)
>, lim s n* Ol dA(s
".‘ n-bmup J(_ £ t ][ F(S) V(s ( )
> —
f 20 M
n
(2.15)
CY En*E
. p 1
. < [ — — d F(s) a.s. ,
: H(s) F(s)
Vo p
.‘ where H(s) = P(Z1 >s). Note that H(s) is bounded away from 0 on (—:p, ip+e] .
s
W
xJ
L
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o Since ¢ was arbitrary, (2.15) implies that
o
o - 2
. -
" . n? E(s2) JS) a5y > 0 in probability. (2.16)
(e80T F8) ves)
\ﬁ\" p p ’/2
Fo n
'h\-:
': ¥ We now apply Lenglart's inequality (Lenglart, 1977; for a statement, see Theorem 2.4.2
s of Gill, 1980) to the martingale of Proposition 2.1, Part (ii) to conclude that
)
- K F(s-) J(s)
O] n E(S') (s dM(s) | = O in probabiliity.
oy t F(s) V(s
(EP,EP “'-—,/- ] s

. n’

i
b4

( This completes the proof of the theorem. -
i, N The proof of Theorem 1 generalizes the method used by Ghosh (1971) to the case
P of censored data.
:._-\ L a

i} To estimate the expression for the asymptotic variance of né(gp- ap) given by (1.3),
_i? we may estimate the term (1 -p)z/(F‘(&;p))2 and the integral term separately. Under

the conditions of Theorem 1, the proposition in Section 2 of Hall and Wellner (1980)

Z Sti)

(n-i+1) (n-1)

S P

implieé that n is a consistent estimate of the integral in

CE Ay

_ii (1.5 i:Z(i)Ssp

'2 If we assume in addition to the conditions of Theorem 1 that F is continuously
f%g differsntiable in a neighborhood of Ep’ then Theorem 4.1.2 of Ramlau-Hansen (1983)
ES implies that F‘(Ep)/?(ép) may be consistently estimated by a suitable kernel type of

estimator; one such estimator is described in Section 5 of Ramlau-Hansen (1983).

E?G Note that since Ep is unknown, it must be replaced by %p in the estimate of
ui F‘(Ep)/?(ip). Thus, the asymptotic variance of n%(ép- ip) can be consistently esti-
= mated, enabling the construction of asymptotic confidence intervals for ip.
:i% We remark that for small samples the confidence intervals for ip based on the
;;§ above method are not appropriate. Several methods have been prorosed for setting sm.ll
; sample confidence limits for 5%; see Slud, Bvar, and Green {1284 and the refer2nces
‘jh cited therein,.
'
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3. WEAK CONVERGENCE OF THE QUANTILES OF THE KAPLAN-MEIER ESTIMATORS IN THE COMPETING

RISKS PROBLEM.

In this section we use the representation éj(p)= Ej(p)+(p-ﬁj(gj(p)))/F;(Ej(p))+Rj n(p)
to obtain in a simple way the asymptotic distribution of (El(p), cees ém(p)). In the
sequel we use the notation Ej(p) rather than Ej p when the quantiles of ﬁj are viewed as

?

a process; similarly for Ej(p). Let Gj denote the distribution of min.Xk. The following
k=j
proposition due to Aly et al. (1985) gives the strongest known result concerning the

remainder process Rj n
H

.

PROPOSITION 3.1. Suppose that the following conditions hold.

(1) Fj and Gj are continuous.
(ii) Fj is twice differentiable on (tj’Tj)’ where tj= sup{x: Fj(x)=0}
and Tj = inf{x: Fj {(x)=1}.
(iii) fj(t)= F{Tt) is positive on (tj,Tj).

(iv) For some P* ¢ [0,1] we have

sup  plEI(E.(PNI/ (£, (5, (P))2 <=
OSpSp* 1] J ]

(v) 0 < lim £ (t) <=,
t+tj

Then, if Py <p* and Gj(gj(po)) <1, we have as n+=

VA

Ogggpole,n(p)l = O(n'%(log nj? (log lOgl])Z) a.s.
PROOF. See Corollary 4.1 of Aly et al. (1985).

For s >0, let D[0,s] be the space of all real valued functions defined on [0,s:
that are right continuous and have left limits, with the Skorohod metric topology, and

let Dm[O,s] denote the product metric space.

THEOREM 2, Suppose that the following conditions hold for each j=1,
(1) Fj is continuous.

(i1} Fj is twice continuously differentiable and has a positive density on

(tj,Tj)-
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' Bl £5(8;(p))|

) (iii) For some p* ¢ (0,1] we have sup >~ <=,

ospsp* (£, (5. (p)))

qe J )
o
[ (iv) 0< lim f£,(t) <= .

e tit,

,“n'\ J

h
.h-

. (v) p, € [0,p*) is such that max F_(&.(p,)) < 1.
s 0 K k*?j 0
¥ 3 Then, as n -+ =,
" (8 -s : > (Uy,...U
4% n El'sl,o-o,gm‘sm) 1,... m)
" weakly in Dm[O,pO], where U,, ..., U are independent mean 0 Gaussian processes with
,.-"j . .

N covariance structure given by

o

" : pl
W (1-p;) (1-py) dw

. Cov (U (py), U pp)) = m
‘S .(E. f.(&. =
2% 383 £ G650 | TR, (6. o) aew)

:.:- 0 k=1 J

:. for 05p15p25p0 .
:'A -
f:j PROOF. It follows from Theorem 10.1 of Aalen (1976) that

LN
:"l‘ r -~ - (3-1)
B . | p=Fy(&(p)) p-F_(& (p))
pt |l mmtt o, (U, (P), ..., U (P)) weakly in Dm[O,pO].

v £186,(m) fa(En(P))

el

j}: The theorem follows from (3.1) and Proposition 3.1.

{} Theorem 2 is of statistical interest because it enables the construction of
" simultaneous confidence intervals for £1(p1), e, Em(pm).

1‘,.‘

l‘\"‘l
[
[j{ We remark that for fixed pe (0,1), if Fj is continuous, F] exists and is posi-

tive at §. , and max F . <1 f j=1, ..., m, then n+w

a , *5.p max Pl FIE *

" - 4.4 i 2 . . . . . . Cy
;?' n (El,p' STTRILY Em,p' Em,p) - (Ul(p),..., U (p)) in distribution. This is easily

’.
et
Py

|
seen by substituting Theorem 1 for Proposition 3.1 in the proof of Theorem 2I. ‘
(

2 ;2‘;"
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4. ESTIMATING THE QUANTILES QOF A COHERENT SYSTEM.

Consider a coherent structure of m independent components. For the sake of

concreteness, we keep in mind the specific example given by Figure 1 below.

@

Figure 1. A coherent system of 3 components.
9

Let F denote the distribution fumction of the lifelength of the structure. Doss,
Freitag, and Proschan (1986) (subsequently referred to as DFP) study the problem of
estimating F under the following model. A sample of n systems, each with the same struc-
ture is available for testing. Each system is continuously observed until it fails.,
“ For every component in each system, either a failure time or a censoring time is recorded.

- A failure time is recorded if the component fails before or at the time of system failure.

.o g

"
.

A censoring time is recorded if the component is still functioning at the time of system

- failure.

»

> DFP propose the following procedure. Let F,, ..., F_ be the distribution functions
- 1 > 'm

y of the lifelengths of the m components. Write

o F(t) = h(F (v), ..., F (¥)) fort=0, (4.1)

g where h: [0,13™ = (0,1] is the reliability function (see Chapter 2 of Barlow and
o
Ay

Proschan, 1981, for details concerning reliability functions). In the example given by

‘%: Figure 1, it is easy to check that

::':: F(t) = Fl(t)tl- (l-Fz(t))CI-FS(t)]

> so that

N h(ul’UZ’UB) = ul[l- (l-uz)(l-us)] for Up, Uy, uge {o,13.

X Let ?l’ e, ?m be the Kaplan-Meier estimates of Fl’ cees ?m' To estimate F, DFP propose
.

\ -~ ~ -~

) F(t) = h(F (t),...,F (t)) (4.2)
s

1)
K

10




as an alternative to the naive estimate given by the proportion of systems still

functioning at time t,

The purpose of this section is to study the estimates of quantiles

e = Bl and &= Bl 0l (4.1)
Before doing so we need to discuss the estimates ﬁj and F.

The weak convergence of the Kaplan-Meier estimator to a Gaussian process has been
well-established in the literature (Breslow and Crowley, 1974; Aalen, 1976; Gill, 1983)
under the assumption that the lifelengths and the censoring variables are independent.
In our situation the component lifelengths are censored by the system lifelength, and
the independence condition is clearly violated. We can, however, redefine the censoring
variables to bypass this difficulty. This is easiest to explain in terms of the example
given by Figure 1, Let Xj= lifelength of component j. Consider Component 1, Clearly,
X1 is censored by Y1= XZV Xs, which 7s independent of Xl. Similarly, X2 is censored
by Y2= Xl’ and x3 by Y3= xl. The const?uction is general: for an arbitrary system, Xj
is censored by Yj= lifelength of system if Xj is replaced by =. DFP show that

(i) Xj and Yj are independent,

(ii) The distribution function of Yj is

Gs(t) = 1-h(F (8),..., Fo(), L (), oo, B (e, (4.4)

The main result of DFP can now be stated.

PROPOSITION 4.1 . Suppose that F

12 ces Fm are continuous, and let T satisfy max F.(T) <1,
1sj<m
Then as n+= % o . .
nf(F -F, Fp-Fyy wun, Fo-Fp) = (W, W

1’ )w)

2 m
weakly in D"[0,T], where Wy, ..., W are independent mean 0 Gaussian processes. The

covariance structure of Wj is given by

. J'fl dF, (u)
(1) Cov(W,(t.),W.(t,))) =F.(t,)E.(t,) — 2 for 0st,<t,sT.
il jr2 S SE I 0 Gj(u)(Fj(u))2 1 2
(i1) ni(f-F) W weakly in D(0,T],

11
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where W is a mean 0 Gaussian process with covariance structure given by

m _ - t dF . (u)
Cov(W(e,),H(tx)) = | hy(e)hs(t)) Fi(e)F (e [ 7 ——L 2
j=1 7S 0 Gy (F ()
e J J
[ =
M T where
.:::; hj(t) = 33% CIPPPAN (4.5)
':"‘ (ul,.‘., m)-(F (t),"') m(t)) .
The model being considered is a generalization of the competing risks model, which

'7“ corresponds to a series system of m components. The following result generalizes
& .
AN Theorem 2 to this model.
“!‘b‘

\

-.:i-: PROPOSITION 4.2. Let €j (p) be defined by (4.3), and suppose that the conditions of
L~
?;{ Theorem 2 are satisfied., Then as n—+>

" (g § - (U, U

':.:" n 51-61’ “s ey Em‘gm) ( 1’ ceoy m)
__, weakly in Dm[O,pOJ, where Ul’ cees Um are independent mean zero Gaussian processes.
a
- The covariance structure of Uj is given by
&N =
_“:,--- COV(UJ- (pl): UJ (pz))
N
':3;- pl

R (1-p,)(1-p,) dw

" TGN T GG | 7 T 0SP1EPa=P
NV jLs P L5i641P; G, (g;(w)) (1-w)
W8 3
e 0
2 o
ol where Gj is given by (4.4).
utd
J.
*;’\. PROOF. Substitute Part (i) of Proposition 4.1 for Theorem 10.1 of Aalen (1976) in the
e

¢
1Oy f of Theorem 2.
] ., proof o eorem -

< The main result of this section gives a Bahadur representation for {_analogous
'\..“-‘ -
}_.{_'j to (1.5), and is useful in obtaining the asymptotic distribution of ip.
s
oo
Ela
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BX
i;' THEQREM 3. Let 0<p<1 and assume the following conditions.
! (1) Fis» ..., F are continuous, with max F.(£)<1.
e m .
: 1sj<m
-
’;: (i1) For each j, Fj has a positive derivative at Ep.
-:\
¥ . Then A
) ’ ) P - F(g))
g =& o R,
&: P p F (Ep) ’
N Y .
O where n Rn o -+ 0 in probability as n+«,
e ?
R
. PROOF. The proof we give is a straightforward modification of the proof of Theorem 1.
;“.. .
;::: Since h is strictly increasing in each of its arguments (see Theorem 1.2 of Barlow
N
‘ and Proschan, 1981) it follows that Ep is the unique number satisfying F(Ep) =p.
e
Furthermore, h is differentiable over [0,1]m (see Lemma 2.1 of DFP), so by the chain
)
N rule F’(é;p) exists and is given by
.»* m
LY F‘ = h F.‘
o (&) -21 5(8p) Fi(E)
J
e where hj is given by (4.5).
v.‘r-.
o For any t20 and any n define
‘*.:
1
. z- = n? t - f t
K, t,a” " [F(Ep“;/’?) CpeZ) | frrey)
JA P
394 W = e - g )
] =n - -
R n Pt S ).
We have {n%(¢ -g)stl = {2 st.}, where t =n’/2 [F(E + )-—T +~t
R p P t,n n*’ n P oz pJ/F‘(Ep)
£
.,
L: (cf, equations (2.9) and (2.10)). As in the proof of Theorem 1, it suffices to show
T that zt,n - W, > 0 in probability,
% Using (4.2) we write
My
o) 1,
' 7 oW s h(Ete s 50) - niE(e ) h(E(s,+ =) -h(EGE ) ] L (4.8)
ce t,n n F‘(_gp) n,/’ n’/? T A, ’ .0
el
o
v..
el 13
Q
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where for economy of notation F(s) and F(s) denote the vectors (Fl(s), e F‘m(s))

and (f-‘l(s), ceoy l-‘m(s)), respectively. We now apply the Mean Value Theorem (see for

example Apostol, 1964, Theorem 6,17) to each of the differences inside the brackets in

é‘ N (4.6): there exist points 4 and a lying on the line segments joining E(sp»ffg) and
' T ?(ip), and F(g +L) and F(§ ), respectively, such that the right side of (4.6) is
.. - - P % - P

;"’?‘;. equal to

“' nli A 2 t 2 - t - \

[T = Vh{a) = |F + - F(& - Yh(a) - | F +=--) - F(§ , (4.7
ﬁ‘i' F (%) [_(Ep nﬂg) E( p)J (a) [_(F.p n,/2) F( p)] (4.7)
e

e where Vh denotes the gradient of h. It is convenient to rewrite (4.7) as
v
. (
B —
o 4 R . 10

e —2 — Uh(3) - F(e_ +—=)-F - FE+) - F

i W (3) l Fle,+ %) - ECg) L_(ap ) - &) J

.".,
%
o (a.9)

%
‘R n -~ = t -
s + vh(3a) - vh(a)) | F(g_ + - F(§ :I .
...::. F‘(E ) ( _( p ;T/;) _( p)
.‘l. _.I p
Do)
:"":'
Since we clearly have 4 - F(Ep) a.s. and a E(Ep), the continuity of Vh (see Lemma

.:::::: 2.1 of DFP) and the differentiability of each Fj at Ep imply that the second term
-:f::: inside the braces in (4.3) converges to 0 in probability. The first term inside the
. A braces in (4.8) converges to O in probability since by (2.11), for each j

3'-:'; \

. Lol . T |
S n’t [:;‘r.(s NI NG )_{ - l—?.(g + Ly - F.ce +_E,,)] + 0 in probability,
b IV g itp _iP % ITP g%
": and the components of Vh are bounded by 1 (see Lemma 2.1 of NFP. This completes

o
'::;’ the proof of Theorem 3.
Wt s
ey

o
A Theorem 3 immediately implies the asymptotic normality of §p.
ey
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~ d
W COROLLARY 4.1, Under the conditions of Theorem 3, n%(sp- gp) - N(O,oz(p)), where

3
m -2 P dF.(u)
.-_:_q gz(p) = —l— EI(E ) F(i ) :
< F*(gp) J-Zl N P—t Gy (W (Pj(tx))z
0

To construct asymptotic confidence intervals for Ep we need to be able to consistently
"y . . : . .

Yot estimate the quantity 3s%(p). An extension of the argument given at the end of Section 2
R shows that this can be done under the additional assumption that for each j, Fj is

oy continuously differentiable in a neighborhood of Ep. Details are omitted.
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