
RD-Af75 043 RDA COMPILER VALIDATION SUMMARY REPORT: TELELOGIC Ii
TELESOFT ODA VERSION 37 SUN 2-129(U)
INDUSTRIERNLRGEN-SETRIESSGESELLSCHRFT M B H OTTOBRUNN

UNCLASSIFIED (GERMANY F R) 64 APR 86 F/G 9/2IEEEEEEEEEEl

EEEEEEEEEEEEEElllllEEllllllIIllllllllllll

1145 11.2.5

~2.0

' 4111 11111 - .

- 11111 11111

MICROCOPY RESOLUTION TEST CHART

NATJONAI RURLAU OF STANDARDS 19(3 A

.4f

(When Data Entered)

A175 043 NTATION PAGE
12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (anO-ubtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler validation Summary Report: April 1986 to April 1987
Tel-iLOGIC Telesoft Ada, Version 3.7 _
Sun 2-120 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
IABG m.b.h., Dept. SZT :,
Einsteinstrasse 20
D 8012 Ottobrunn

9. PERFORMING ORGANIZATION AND ADORE", 10. PROGRAM ELEMENT, PROJECT, TASK % ,. %

IABG M.B.H., Dept. SZT AREA & WORK UNIT NUMBERS % %

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Programming Office 04 April 86
United States Department of Defense 13. NUMBER U PAGES
Washington, D.C. 20301-3081 42

14. MONITORING AGENCY NAME & ADDRE SS(If different from Controlling Office) 15. SECURITY CLASS (of this report) r

IABG m.b.h., Dept. SZT UNCLASSIFIED
Einsteinstrasse 20 I5a. RH FICATION/DOWNGRADING

D 8012 Ottobrunn N/A "

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

..'

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED .. ,

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD- " " :
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number) ... ,...

See Attached.

gf ILE: CO2Y
"'. ' .''4..

DO (J,, 1473 EDITION OF I NOV 65 IS OBSOLETE

I JAM 73 S/N 0102-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

,° , "" " . , -" *" -* ,* -" " " " " " ," °" -" -" - * - " - " " " --- "* * " "" -" ." -" - "" -" -" -" ". " . . ." *". -' -"

- - - - 4 -. - -. - - -. i

Ada OMPIER VLIDAION UMMAY REORT

TeeSI

4.eotAa Vrin31

'gu 2-12

Competio ofOn-Ste alidtio : 1,Accssio.Fo

NTI 'RA

DTIC TA4.

Just",f i4-

Prepaed By

TeaeJoft AdaogVrsio 3.7ic
UnitedSu 2-te20rmetofDfes

Wahntn D.C.

AN6-04-21T HEris E JPASOI

Ada s a regsteedPraredar By:e nte tae

D ~ ~ ~ 8 801 1t1run~.~~

-2-

Ada Compiler Validation Summary Report:

Compiler Name: TeleSoft Ada, Version 3.7

Host Computer Target Computer
Sun 2-120 Sun 2-120

under under
Sun 2.0 Sun 2.0

Testing Completed Using ACVC 1.7

This report has been reviewed and approved:

IABG m.b.H., Dept SZT &
Dr. Helmut Hummel
IABG, Dept SZT
Einsteinstrasse
D-8012 Ottobrunn

V

Ada Validation Office (AVO)
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria, VA

7.-

Ada Joint Program Office (AJPO)
Virginia L. Castor ,
Director
Washington, D.C.

A

Ada is a registered trademark of the United States
Government (Ada Joint Program Office)

.

V -.

3

EXECUTIVE SUMMARY

The Validation Summary Report presents the results and con-
clusions of testing performed on the TeleSoft Ada, Version
3.7. Standardized tests serve as input to an Ada compiler,
producing results which are evaluated by the validation
team. This summary briefly states the highlights of the
TeleSoftAda, Version 3.7, validation.

On-site testing was performed 86-04-11 through 86-04-21 at
Nynshamn under the auspices of the IABG m.b.H., Dept SZT
(AVF), according to Ada Validation Office policies and pro-
cedures. The TeleSoft Ada, Version 3.7, is hosted on Sun
2-120 operating under Sun 2.0. The suite of tests known as
the Ada Compiler Validation Capability (ACVC), Version 1.7,
was used. The ACVC is used to validate conformance of a
compiler to ANSI/'IL-STD-1B15A Ada. The purpose of testing
is to ensure that a compiler properly implements legal
language constructs and that it identifies and rejects ille-
gal language constructs. The testing also identifies
behavior that is implementation dependent but permitted by
the Ada Standard. Six classes of tests are used. These
tests are designed to perform checks at compile time, at
link time, or during execution.

The results of validation are summarized in the following
table.

RESULT TEST CLASS TOTAL

A B C D E L

Passed 66 821 1023 17 9 21 1957

Failed 0 0 0 0 0 0 0

Inapplicable 2 3 297 0 2 2 306

Anomalous 0 0 0 0 0 0 0

Withdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

Tests found to contain errors were withdrawn from Version
1.7 of the Ada Compiler Validation Capability (ACVC). When
validation was completed, the tests listed in Chapter 2.2

had been withdrawn.

One additional test had been withdrawn when prevalidation
was completed. This is taken into account in the final
tables.

-P

- -,-

44

Some tests demonstrate that language features are not sup-
ported by an implementation. For this implementation the
tests determined the following.

* SHORT INTEGER is not supported:
B52004E-AB.DEP B55BO9D-AB.DEP B8600]CR-AB.DEP
C34001D-B.DEP C5SBO7B-AB.DEP

* LONG INTEGER is supported:
B52004D-AB.DEP B5SB09C-AB.DEP B86001CS-AB.DEP
C3400]E-B.DEP C55B07A-AB.DEP

" SHORT FLOAT is not supported:
B86001CP-AB.DEP C3400]F-B.DEP C35702A-AB.DEP

" LONGFLOAT is not supported:

B86001CQ-AB.DEP C34001G-B.DEP C35702B-AB.DEP

• Representation specifications for noncontiguous
enumeration representations are not allowed:

C55B1 6A-AB DEP
B86001DT-AB . TST

The only predefined numeric types are 1NTEGER,
FLOAT, LONG IN TEGER:

" The package SYSTEI is used by package TEXT 10:

C86001F-B • DEP

" The 'SIZE clause is not supported:

C87B62A-B. DEP

" The 'STORAGE SIZE clause is not supported:

C87B62B-B. DEP

* The 'SMALL clause is not supported:

C87B62C-B.DEP

* Generic subroutine declarations and bodies cannot
be compiled in separate compilation units:

CA] 01 2A-B. DEP

• Generic package bodies cannot be compiled in separate
compilation files:

CA2009C-B. DEP

-- - -

-5-

. Generic subprogram bodies cannot be compiled in

separate compilation files:

CA2009F-B. DEP

• Pragma IINLINE is not supported for procedures:

LA3004A-AB.ADA CA3004E-B.ADA
El 3004C-B.ADA

* Pragma INLINE is not supported for functions:

LA3004B-AB .ADA CA3004F-B .ADA
EA3004D-B.ADA

M Mode INFILE is supported (for sequential I/O):

CE2]02D-B.ADA

M Mode OUTFILE is supported (for sequential I/O):

CE21 02E-B.ADA

* Mode INOUT FILE is supported (for direct I/'0):

CE2102F-B.ADA

* Mode RESET and DELETE are supported
(for sequential and direct I/O):

CE2102G-B.ADA

. Mode INFILE is supported (for direct I/O):

*" CE2102I-B.ADA

M Mode OUTFILE is supported (for direct I/O):

CE21 02J-B.ADA

a. . Dynamic creation and deletion of files are
all owed:

CE2l06A-B.DEP CE31IOA-B.ADA

N More than one internal file can be associated
with the same external file:

-a -

CE2107B-B.ADA CE2]07C-B.ADA
CE2107D-B.ADA CE211lD-B.ADA
CE31]IB-B.ADA CE311]C-B.ADA
CE3114B-B.ADA

".

' Instantiation of package SEQUENTIAL !0 with

P

I. .

-6

unconstrained array types is not allowed:

CE2201D-B.DEP

, Instantiation of package SEQUENTIAL 10 with
unconstrained record types with discriminants
is not allowed:

CE2201 E-B. DEP

• Dynamic creation and resetting of files is supported:

CE221 OA-B.ADA

. Instantiation of package DIRECTIO with unconstrained
array types and unconstrained types with discriminants
is not supported:

CE240ID-B.DEP

. An external file associated with more than one internal
file can be reset:

CE3115A-B.DEP

. Illegal filenames can exist:

* CE2102C-B.DEP

ACVC Version 1.7 was taken on-site via magnetic tape to
Nyngshamn. The tape was loaded, and all tests, except for
the executable tests which make use of a floating point pre-
cision greater than SYSTEM.MAX DIGITS, were compiled on Sun
2-120. Class A, C, D, and E tests were executed on Sun 2-
120.

* On completion of testing, all results were analyzed for
failed Class A, C, D, or E programs, and all Class B and L
compilation results were individually analyzed.

The ACVC, Version 1.7, contains 2279 tests of which 1957
were applicable to TeleSoftAda, Version 3.7. No anomalies
were found in the testing of this compiler. Testing demon-
strated that all applicable tests were passed by this com-

* piler and conformed to the Ada Standard. The AVF concluded
that the results show acceptable compliance to ANSI/MIL-
STD-1815A Ada.

-- 7

'I TABLE OF CONTENTS

CHAPTER I INTRODUCTION 8

1.1 PURPOSE OF THIS VALIDATION SU111ARY REPORT 8
1.2 USE OF THIS VALIDATION SUMMARY REPORT 9
1 . 3 REFERENCES 9
1.4 DEFINITION OF TERMS 10
1.5 CONFIGURATION 11

CHAPTER 2 TEST RESULTS 12

2.1 ACVC TEST CLASSES 12
2.1.1 Class A Tests 13
2.1.2 Class B Tests 14
2.1.3 Class C Tests 15
2.1.4 Class D Tests 16
2.1.5 Class E Tests 17
2.1.6 Class L Tests 18
2.1.7 Support Units 19
2.2 WITHDRAWN TESTS 20
2.3 INAPPLICABLE TESTS 2
2.4 INPLENENTATION CHARACTERISTICS 23

CHAPTER 3 COMPILER ANOMALIES AND NONCONFORIANCES 27

3.1 ANOMALIES 27
3.2 NONCONFORMANCES 27

CHAPTER 4 ADDITIONAL TESTING INFORMATION 23

4.1 PRE-VALIDATION 28

4.2 TEST SITE 23
4.3 TEST TAPE INFORMATION 28
4.4 TESTING LOGISTICS 28
4.5 TESTING DURATION 33

CHAPTER 5 SUMMARY AND CONCLUSIONS 34

APPENDIX A COMPLIANCE STATELMENT 35

APPENDIX B TEST PARAMIETERS 39

- APPENDIX C COMIMAND SCRIPTS 40

4. _:,a '.

CHAPTER 1

INTRODUCTION

The Validation Summary Report describes how an Ada compiler
conforms to the language standard. This report explains all
technical terms used within and thoroughly reports the Ada
Compiler Validation Capability (ACVC) test results. Ada
compilers must be written according to the language specifi-
cation as given in the ANSI/MIL-STD-1815A Ada. All
imolementation-defined features must be included for the
compiler to conform to the Standard. Following the guide-
lines of the Standard ensures continuity between compilers.
That is, the entire Standard must be implemented, and noth-
ing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform to the Stan-
dard, it must be understood that some differences do exist
between implementations. ANSI/NIIL-STD-i8]5A permits some
implementation dependencies, e.g., the maximum length of
identifiers, the maximum values of integer types, etc.
These implementation-dependent features limit the portabil-
ity of programs between compilers. Other differences
between compilers are due to limitations imposed on a com-
piler by the operating system and by the hardware. All of
these dependencies are given in the report.

Validation summary reports are written according to a stand-
ardized format. Compiler users can, therefore, more easily
compare the reports from several compilers when selecting a
compiler for a given task. The validation report can be
completed mostly from the test results produced during vali-
dation testing. Additional testing information is given at
the end of the report and states problems and details which
are unique for a specific compiler. The format of the vali-
dation report limits variance between reports, enhances rea-
dability of the report, and accelerates report readiness.

I INTRODUCTION

1.1 Purpose of this Validation Summary Report

The Validation Summary Report documents the results of the
testing performed on an Ada compiler. Testing was carried
out for the following purposes:

To identify any language constructs supported by the
translator that do not conform to the Ada Standard

7 2

-"N .. ' N .

- 9 - - .? . . %'.-

-9

To identify any unsupported language constructs required
by the Ada Standard

To describe the implementation-dependent behavior allowed

by the Ada Standard

Testing of this compiler was conducted by IABG m.b.H., Dept
SZT according to policies and procedures established by the
Ada Validation Office (AVO). Testing was conducted from
86-04-11 through 86-04-21 at Nynashamn.

1.2 Use of this Validation Summary Report

Consistent with the national laws of the originating coun-
try, the Ada Validation Office may make full and free public
disclosure of this report. In the United States, this is
provided in accordance with the "Freedom of Information Act"
(5 U.S.C. #552). The results of this validation apply only
to the computers, operating systems, and compiler versions
identified in this report.

The organizations represented on the signature page of this
report do not represent or warrant that any statement or
statements set forth in this report are accurate or com-
olete, or that the subject compiler has no nonconformances
to the Ada Standard other than those presented. This reDort

rot intended for the purpose of publicizing the findings
,ummarized hereir

)uest ors regarling this report or the va anion tests
should be dire2ted to:

Ada Validation Office
Institute for Defense Analyses
1301 N. Beauregard
Alexandria VA 22311
U.S.A.

and to:
IABG m.b.H., Dept SZT
Einsteinstrasse 20
D-8012 Ottobrunn
Federal Republic of Germany

- 1.3 REFEREUCES

I. Reference Manual for the Ada Programming Language,
ANSI/M1IL-STD-1815A,

2. Ada Validation Organization: Policies and
Procedures, MITRE Corporation, Jun 1982

-.,' ..'' '- '-" -.', '. ""-"""- '. -,, -. ", , ". .., .- ---.." .-. -- ._ .. -: ,.

-10-

3. Ada Compiler Validation Implementer's
Guide, SofTech, Inc., Dec 2984.

1.4 DEFINITION OF TERMS

Anomaly A test result that, given pre-validation
analysis, is not expected during formal vali-
dation but is judged allowable under the cir-
cumstances.

ACVC The Ada Compiler Validation Capability. A set
of programs that evaluates the conformance of
a compiler to the Ada language specification,
ANSI/1IIL-STD-] 8] 5A.

Ada Standard ANSI/MIL-STD-1815A, February 1993.

Applicant The agency requesting validation.

AVF The IABG m.b.H., Dept SZT. In the context of
this report, the AVF is responsible for con-
ducting compiler validations according to
established policies and procedures.

AVO The Ada Validation Office. In the context of
this report, the AVO is responsible for set-
ting policies and procedures for compiler
validations.

Compiler A processor for the Ada language. In the con-
text of this report, a compiler is any
language processor, including cross-compilers,
translators, and interpreters.

Failed test A test for which the compiler generates a
result that demonstrates nonconformance to the
Ada Standard.

Host The computer on which the compiler resides.

Inapplicable A test that uses features of the language that
test a compiler is not required to support or may

legitimately support in a way other than the
one expected by the test.

Passed test A test for which a compiler generates the
expected result.

Target The computer for which a compiler generates
code.

N=

M2- 11 -

Test A program that evaluates the conformance of a
compiler to a language specification. In the
context of this report, the term is used to
designate a single ACVC test. The text of a
program may be the text of one or more compi-
lations.

Withdrawn A test that has an invalid test objective,
test fails to meet its test objective, or contains

illegal use of the language.

1.5 Configuration

The candidate compilation system for this validation was
tested under the configuration:

Compiler: TeleSoft Ada, Version 3.7

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Two M1achines: Sun 2-120

Operating System: Sun 2.0
Nemory Size: 3 MB
Disk System: Sun 2.0

Target Computer:

Same as host computer

The two SUN computers are connected to a disk system, a
VAX/UNIX, and a tape drive via Ethernet. One of the two SUN
computers acts as a file server for both SUN computers. The
VAX/UUIX system was used for printing of results only.

A4.

.~%I, - WIN -

- 12 -

CHAPTER 2

TEST RESULTS

N.)

2.1 ACVC Test Classes

Conformance to ANSI/MIL-STD-1815A is measured using the Ada
Compiler Validation Capability (ACVC). The ACVC contains
both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. Legal programs are compiled
and executed while illegal programs are just compiled. Sup-
port packages are used to report the results of the legal
programs. A compiler must correctly process each of the
tests in the suite and demonstrate conformance to the Ada
Standard by either meeting the pass criteria given for the
test or by showing that the test is inapplicable to the
implementation. Tests that are found to contain errors are
withdrawn from the ACVC. The results of validation testing
are summarized in the following table:

RESULT TEST CLASS TOTAL

A B C D E L

Passed 66 821 1023 17 9 21 1957

Failed 0 0 0 0 0 0 0

Inapplicable 2 3 297 0 2 2 306

Anomalous 0 0 0 0 0 0 0

Withdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 11 23 2279

A total of 1993 tests were processed during this validation
attempt, including 7 passed tests for the report package, 28
not applicable tests and I test withdrawn after 86-02-04.
The 15 tests in Version 1.7 withdrawn until 86-02-04 were
not processed, nor were 278 Class C tests that were inappli-
cable because they use floating point types having digits
that exceed the maximum value for the implementation. All
other tests were processed.

Some conventions are followed in the ACVC to ensure that the
tests are reasonably portable without modification. For
example, the tests make use of only the basic 55 character
set, contain lines with a maximum length of 72 characters,
use small numeric values, and place features that may not be
supported in separate tests. However, some tests contain
values that require the test to be customized according to
implementation-specific values. The values used for this
validation are listed in Appendix B.

..........

-13-

2.1.1 Class A Tests

Class A tests check that legal Ada programs can be success-
fully compiled and executed. However, no checks are per-
formed during execution to see if the test objective has
been met. For example, a Class A test checks that reserved
words of another language (other than those already reserved
in the Ada language) are not treated as reserved words by an
Ada compiler. A Class A test is passed if no errors are
detected at compile time and the program executes to produce
a message indicating that it has passed. If a Class A test
cannot be compiled and executed because of its size, then
the test is split into a set of smaller subtests that can be
processed. No splits were required.

The following table shows that all applicable Class A tests
passed:

RESULT CHAPTER
2 3 4 5 6 7 8 9 10 11 12 14 TOTAL

Passed 15 9 0 5 2 12 13 3 0 0 0 7 66

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 0 0 0 0 0 0 0 0 0 0 0 2 2

Anomalous 0 0 0 0 0 0 0 0 0 0 0 0 0

Withdrawn 0 0 0 0 0 0 0 0 0 0 0 0 0

TOTAL 15 9 0 5 2 12 13 3 0 0 0 9 68

J%

4

•
,-

*. a', * """ % " " % % % " " " "% " "" % -" ''' " ' "% ' ' " " - . '' "
"

" ". "

- 14 -

2.1.2 Class B Tests

Class B tests check that a compiler detects illegal language
,d usage. Class B tests are not executable. Each test in this

class is compiled and the resulting compilation listing is
examined manually to verify that every syntax or semantic
error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the
compiler. If one or more errors are not detected, then a
version of the test is created that contains only the
undetected errors. The resulting "split" is compiled and
examined. The splitting process continues until all errors
are detected by the compiler. Splits were required for 11
tests:

B71001E BAI10IC4 BA3013A6
B71001Q BA3006A6M
B71001W BA3006B3
B97101E BA3007B7

BA3008A4
BA3008B5

The following table shows that all applicable Class B tests
passed:

RESULT CHAPTER

2 3 4 5 6 7 8 9 10 11 12 14 TOTAL

Passed 39 86 86 111 73 67 50 87 36 8 160 18 821

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 0 0 0 2 0 0 1 0 0 0 0 0 3

Anomalous 0 0 0 0 0 0 0 0 0 0 0 0 0

Withdrawn 0 0 1 0 0 0 1 0 1 0 1 0 4

TOTAL 39 86 87 113 73 67 52 87 37 8 161 18 828

.. .

- -.-

- 15-

2.1.3 Class C Tests

Class C tests check that legal Ada programs can be correctly
compiled and executed. Each Class C test is self-checking
and produces a PASS/FAIL message indicating the result when
it is executed. If a Class C test cannot be compiled
because it exceeds the compiler's capacity, then the test is
split into smaller subtests until all are compiled and exe-cuted. No splits were required.

The following table shows that all applicable Class C tests
passed: 5,.

4.

RESULT CHAPTER -.

2 3 4 5 6 7 8 9 10 11 12 14 TOTAL

Passed 37 89 162 117 82 18 93 109 39 20 56 201 1023

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 23 120 140 2 0 0 4 0 5 0 0 3 297

Anomalous 0 0 0 0 0 0 0 0 0 0 0 0 0

Withdrawn 0 1 3 0 0 0 0 2 5 0 0 1 12

TOTAL 60 210 305 119 82 18 97 111 49 20 56 205 1332

.°.

'5.

I.

'S.

2."

• ,

-16-

2.1.4 Class D Tests

Class D tests check the compilation and execution capacities
of a compiler. Since there are no requirements placed on a
compiler by the Ada Standard for the number of identifiers
permitted in a compilation, the number of units in a
library, the number of nested loops in a subprogram body,
and so on, a compiler may refuse to compile a Class D test.
Each Class D test is self-checking and produces a PASS/FAIL
message indicating the result when it is executed. If a
Class D test fails to compile because the capacity of the
compiler is exceeded, then the test is classified as inap-
plicable.

The following table shows that all applicable Class D tests
passed:

RESULT CHAPTER
2 3 4 5 6 7 8 9 10 11 12 14 TOTAL

Passed 1 0 4 9 3 0 0 0 0 0 0 0 17

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 0 0 0 0 0 0 0 0 0 0 0 0 0

Anomalous 0 0 0 0 0 0 0 0 0 0 0 0 0

Withdrawn 0 0 0 0 0 0 0 0 0 0 0 0 0

TOTAL 1 0 4 9 3 0 0 0 0 0 0 0 17

Capacities measured by the Class D tests are detailed in
section 2.4, IMPLEMENTATION CHARACTERISTICS.

- 17 -

2.1.5 Class E Tests

Class E tests provide information about the compiler in
those areas in which the Ada Standard permits implementa-
tions to differ. Each Class E test is executable and pro-
duces messages that indicate how the Ada Standard is inter-
preted. However, in some cases the Ada Standard permits a
compiler to detect a condition either at compile time or at
execution time, and thus a Class E test may correctly fail
to execute. A Class E test is passed if it fails to compile
and appropriate error messages are issued, or if it executes
properly and produces a message that it has passed. If a
Class E test cannot be compiled and executed because of its
size, then the test is split into a set of smaller subtests
that can be processed. No splits were required.

The following table shows that all applicable Class E tests
passed:

RESULT CHAPTER
2 3 4 5 6 7 8 9 10 11 12 14 TOTAL

Passed 1 3 2 1 1 0 0 0 0 0 0 1 9

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 0 0 0 0 0 0 0 0 2 0 0 0 2

Anomalous 0 0 0 0 0 0 0 0 0 0 0 0 0

Withdrawn 0 0 0 0 0 0 0 0 0 0 0 0 0

TOTAL 1 3 2 1 1 0 0 0 2 0 0 1 11

Information obtained from the Class E tests is detailed in
section 2.4, IMPLEMENTATION CHARACTERISTICS.

-zp

• . .+ _. ...T _,'
•
- "' . ,+,.".-'-, .,,. -"J-', +-" _.; +.'. .'.'..,. -. . . , .. +.. - .. .,. - - .----..-- ..- •.-

. lll ll l l M is is i s I ll M " ldi ~ ,i ll km -l.k - " - " . - . t " ," ," (" '+m

'--

-18-

2.1.6 Class L Tests

Class L tests check that incomplete or illegal Ada programs
involving multiple, separately compiled units are detected
and not allowed to execute. Class L tests are compiled
separately and execution is attempted. A Class L test
passes if it is rejected at link time and the test does not
execute.

The following table shows that all applicable Class L tests
passed:

RESULT CHAPTER
2 3 4 5 6 7 8 9 10 11 12 14 TOTAL

Passed 0 0 0 0 0 0 0 0 21 0 0 0 21

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 0 0 0 0 0 0 0 0 2 0 0 0 2

Anomalous 0 0 0 0 0 0 0 0 0 0 0 0 0

WJithdrawn 0 0 0 0 0 0 0 0 0 0 0 0 0

TOTAL 0 0 0 0 0 0 0 0 23 0 0 0 23

I.'

-19-

2.1.7 Support Units

Three packages support the self-checking features of Class C
tests: REPORT, CHECK FILE, and VAR STRINGS. The REPORT pack-i
age provides the mechanism by which executable tests report
results. It also provides a set of identity functions that
are used to defeat some compiler optimization strategies to
cause computations to be made by the target computer instead
of the by the compiler on the host computer. The CHECK FILE
package is used to check the contents of text files written
by some of the Class C tests for Chapter 14 of the Ada Stan-
dard. The VAR STRINGS package defines types and subprograms
for manipulating varying-length character strings. The
operation of these three packages is checked by a set of
executable tests. These tests produce messages that are
examined manually to verify that the packages are operating
correctly. If these packages are not operating correctly,
then validation is not attempted.

An applicant is permitted to substitute the body of package
REPORT with an equivalent one if for some reason the origi-
nal version provided by the ACVC cannot be executed on the
target computer. Package REPORT was modified for this vali-
dation in order to print the date and time of execution.

All support package specifications and bodies were compiled
and were demonstrated to be operating correctly.

.4.

- 20 -

2.2 Withdrawn Tests

Some tests are withdrawn from the ACVC because they do not
conform to the Ada Standard. When preparing the tape for on
site validation 15 tests had been withdrawn. W/hen testing
was performed another test had been withdrawn (C940ACA).
Therefore, it was run as will but its result was ignored. In
total, 16 tests had been withdrawn for the reasons indi-
cated:

C3Q04A: The elaboration of subtype declarations SFX3 , SF.4
%ay raise NUMERICERROR vs. CONSTRAINTERROR.

C414C.4A The values oF 'LAST and 'LENGTH in the "if" statements
from line 74 to the end of the test are incorrect.

C42008A: This test requires that the evaluation of default
initial values not occur if an exception is raised by an
allocator. However, the LMC has ruled that such a
requirement is incorrect (AI-00397).

34AOlOC: The wbject declaration in line 18 follows a subprogram
a- body or the same declarative part.

C4AO14A The number declarations in lines 19-22 are not
correct, because conversions are not static.

3...A_6B. The Ada Standard 8.3(171 and AI-00330 permit the label
LAD ENUMERAL of line 80 to be considered a homograph o
'he-enumeration literal in line 25.

Cq2005A; At line 40, "/=" for type PACK. BIG INT is not visible
without a "use" clause for package-PACK

C?40ACA This test assumes that allocated task TTI will run prior to
the main program, and thus assign SPYNUMB the value checked
for by the main program; however, such an execution order iz
not required by the Ada Standard, so the test is erroneous.

•AJO 33'- This test requires all of the legal compilatiot units
of a file containina some illegal units to be compiled
and executed. But aciording to AI-00255 such a File ma4
be rejected as a whole.

%42001E: The Ada Standard 10.2(5) states that "simple names
of all subunits that have the same ancestor library unit
must be distinct identifiers." This test checks For the
above condition when stubs are declared; but it is not
clear that the check must be made then, as opposed to
when the subunit is compiled.

-- CA3005A..D (4 tests) There exists no valid elaboration order

for these tests.

Y3C204C- The file 1C3204C4 should contain the body for BC2204CO
--as indicated in line 25 of OC3204C3M.

CE2107E TEMPHASNAME must be given an initial value of TRUE.

a',

% .:,, e,,- .-. " . . -...j .."• " " .'. " .'- ' .'- . -.- . .. *-'. a..'_''' ,N.'N.'." ". . ' "." ".- ", " ","- .-" . .

-21-

2.3 Inapplicable Tests

Some tests do not apply to all compilers because they make
use of features that a compiler is not required by the Ada
Standard to support. Others may depend on the result of
another test that is either inapplicable or withdrawn. For
this validation attempt, 306 tests were inapplicable for the
reasons indicated:

The testname indications ending in C-Y, respectively C-Z
cover a number of 23, respectively 24 tests.

AE2101C Instantiation of I/O package with unconstrained
array type not allowed

AE2101H Instantiation of I/O package with unconstrained
array type not allowed

B52004E type SHORT INTEGER not supported
B55B09D type SHORT INTEGER not supported
B8600IDT no valid macro expansion possible
C24113C-Y Digits 7 - 29
C34001D type SHORT INTEGER not supported
C34001F type SHORT FLOAT not supported

C34001G type LONG FLOAT not supported
C35702A type SHORT FLOAT not supported
C35702B type LONG FLOAT not supported
C35705C-Y Digits 7 29
C35706C-Y Digits 7 - 29
C35707C-Y Digits 7 - 29
C35708C-Y Digits 7 - 29
C35802C-Y Digits 7 - 29
C45241C-Y Digits 7 - 29
C45321C-Y Digits 7 - 29
C45421C-Y Digits 7 - 29
C45424C-Y Digits 7 - 29
C45521C-Z Digits 7 - 30
C45621C-Z Digits 7 - 30
C55B07B type SHORT INTEGER not supported
C55B16A No representation clause for noncontiguous

enumeration types
C86001F package TEXT 10 uses package SYSTEM
C87B62A Representation clause 'SIZE not supported
T87B62B Representation clause 'STORAGE SIZE not supported
C87B62C Representation clause 'SMALL not supported
CA1]2A Separately compiled generic specifications and

bodies not allowed
CA2009C Separately compiled generic specifications and

bodies not allowed
CA2009F Separately compiled generic specifications and

bodies not allowed
CA3004E Inline pragmas ignored
CA3004F Inline pragmas ignored
CE2201D Instantiation of I/O package with unconstrained

array type not allowed

* " z•. ~ ~ ~

- 22 -

CE2201E Instantiation of I/O package with unconstrained
array type not allowed

CE2401D Instantiation of I/O package with unconstrained
array type not allowed

EA3004C Inline pragmas ignored
EA3004D Inline pragmas ignored
LA3004A Inline pragmas ignored
LA3004B Inline pragmas ignored

t1
%"

.5

r...

'oS

Aq

4
,

.1I

-23-

2.4 Implementation Characteristics

One of the purposes of validation is to determine the
behavior of a compiler in those areas of the Ada Standard
that permit implementations to differ. Class D and E tests
specifically check for such implementation differences.
However, inapplicable tests in other classes also character-
ize an implementation. This compiler is characterized by
the following interpretations of the Ada Standard:

Non-graphic characters.

Non-graphic characters are defined in the ASCII char-
acter set but are not permitted in Ada programs, even
within character strings. The compiler correctly
recognizes these characters as illegal in Ada compila-
tions. The characters are contained in the output
listing but are not visible if printed except for some
of the format effectors which have a visible effect.

Capacities.

The compiler correctly processes compilations contain-
1% ing loop statements nested to 65 levels, block state-

ments nested to 65 levels, procedures nested to 17
levels, and 723 variables.

Universal integer calculations.

An implementation is allowed to reject universal
integer calculations having values that exceed
SYSTEM.MAX INT. This implementation does not reject
such calculations and processes them correctly.

. Universal real calculations.

An implementation is allowed to reject universal real
calculations having values that exceed certain preci-
sions. This implementation does not reject such cal-
culations and processes them correctly.

Predef ined types.

This implementation supports the predafined type
LONG INTEGER. It does not support any other predefined
numeric types except those required by the language.

Based literais.

An implementation is allowed to reject a based literal
with value exceeding SYSTEM.MAX ITN during compilation
or it may raise NUMERIC ERROR during execution. This
compiler raises NUtIERICERROR during execution.

- 24 -

Array types.

An implementation is allowed to raise NUMERIC ERROR
for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MiAX INT. When an
array type is declared with an index -ange exceeding
INTEGER values and with a component that is a null
BOOLEAN array, this compiler does not raise any excep-
tions.

When an array type is declared with an index range
exceeding SYSTEM.MAX INT values and with a component
that is a null BOOLEAN array, this compiler does not
raise any exceptions.

A packed BOOLEAN array of length INTEGER LAST+3 and a
packed two-dimensional BOOLEAN array with
INTEGER LAST+3 components may be declared and used
without raising exceptions.

Null arrays with one dimension of length exceeding
INTEGER'LAST may be declared and assigned without
raising exceptions.

In assigning one-dimensional array types, the entire
expression is evaluated before CONSTRAINT ERROR is
raised when checking whether the expression's subtype
is comptaible with the target's subtype. In assigning
two-dimensional array types, the entire expression is
not evaluated before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is compati-
ble with the target's subtype. In assigning record
types with discriminants, the entire expression is
evaluated before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is compati-
ble with the target's subtype.

Discriminated types.

An incompletely declared type with discriminants may
be used in an access type definition and constrained
either there or in later subtype indications.

Aggregates.

When evaluating the choices of a multi-dimensional
aggregate the order in which choices are evaluated and
index subtype checks are made depends upon the aggre-
gate itself.
When evaluating an aggregate containing subaggregates,

'A

not all choices are evaluated before being checked
for identical bounds.

" -' ' -- " -.. . .-" , : ' . > : ° ° : o > .> > - - -/ - ° A

- 25 -

. . Representation clauses.

'SMALL length clauses are not supported.

Enumeration representation clauses are not supported.

Generics

When given a separately compiled generic declaration
some illegal instantiations and a body, the compiler
rejects the body because it is not in the same compi-
lation as its declaration.

Package CALENDAR.

TIME OF and SPLIT are inverses when SECONDS is a non-
model number.

Pragmas.

Pragma INLINE is not supported for procedures. It is
not supported for functions.

Input/output.

Package SEQUENTIAL 10 cannot be instantiated with
unconstrained array types and record types with
discriminants. Package DIRECT 10 cannot be instan-
tiated with unconstrained array types and record types
with discriminants without defaults.

;'lore than one internal file can be associated with
each external file for sequential I/O for both reading
and writing. An external file associated with more
than one internal file can be deleted.

More than one internal file can be associated with
each external file for direct I/O for both reading and
writing. An external file associated with more than
one internal file can be deleted.

'lore than one internal file can be associated with
each external file for text I/O for both reading and
writing. An external file associated with more than
one internal file can be deleted.

An existing text file can be opened in OUT FILE mode,
can be created in OUT FILE mode, and can be created in
INFILE mode.

Dynamic creation and resetting of a sequential file is
allowed.

21, .. * -......

26 -

Temporary sequential files are given a name. Tem-
porary direct files are given a name. Temporary files
given names are not deleted when they are closed. They
are however deleted when the Ada program that created
them stops execution.

Il-

I

,a.

p

A..q

I'

, ,__ _ - " •. -.. ,.. ._

- 27 -

CHAPTER 3

Compiler Anomalies and Nonconformances

3.1 Anomalies

An anomaly is a test result that, given the pre-validation
analysis, was not expected during formal validation but
which is judged allowable by the AVF and the AVO under the
circumstances of the validation. No anomalies were detected
in this validation attempt.

3.2 Nonconformances

Any discrepancy between expected test results and actual
test results is considered to be a nonconformance. No non-
conformances were detected in this validation attempt.

F %4

1 p1

.3.

,,.

4%* ~ ~4. J.. .:; .. :.:~:~..- yN .:

- 28 -

CHAPTER 4

ADDITIONAL TESTING INFORMATION

4.1 Pre-Validation

Prior to validation, a set of test results for ACVC 1.7 pro-
duced by TeleSoft Ada, Version 3.7, was submitted to IABG
m.b.H., Dept SZT by the applicant for pre-validation review.
Analysis of these results demonstrated that the compiler
successfully passed all applicable tests.

4.2 Test Site

Tests were compiled and executed at Nyn~shamn on two identi-
cal computers.

4.3 Test Tape Information

A test tape containing ACVC Version 1.7 was taken on-site by
the validation team. This tape contained all tests applica-
ble to this validation as well as all tests inapplicable to
this validation. Tests that make use of values that are
specific to the implementation were customized. The test
suite was read from a tape. Files were structured into
directories according to LR11 chapters and test categories.

4.4 Testing Logistics

Once all tests had been loaded to disk, processing was begun
using a test driver routine provided by the applicant. The
test driver, a UNIX shell program, initiates the commands to
compile, link, and execute Ada programs dynamically while
processing the file directory.

The compiler supports various options that control its
operation. The compiler was tested with the following
option settings.

.! d1

- 29 -

Compiler Option Information

Basic Information

The compilation process consists of 5 definite passes or steps:

Front-End:
Language control, translation to intermediate High-Form.

Middle Pass:
Resolution of tasking, translation to intermediate Low Form.

Code Generator:
Generation of native code for the target.

Prelinker:
Generation of elaboration code for main program.

Linker:
The native UNIX linker (1d) is used to link the object modules gen-
erated by the compiler.

Below the switches of the different passes are tabulated. The switches
pertinent to the UNIX linker are however not treated here.

Front-End Switches
Name (default) Effect
Error File (+) Error file
ToOutput () List to standard output
Dots (-) Display one dot per line scanned
Comments (-) Pass comments to sematics
Notify (+) Ask user for action at error
Verbose (.) Verbose output
Long_Integers (-) Declare Long Integer when generating

package standard.
32bitIntegers (-) Define type Integer with 32 bits when

generating package standard.
Long_Float (-) Declare Long Float when generating

package standard.
D_Format (-) Define type Long Float with DEC d format

when generating package standard.
Fe Max Pages 1500 Pages in memory
Context 1 Lines of context in errors
Recovery Level 50 Tokens of context in error recovery
Message Level 0 Verboseness of error messages

(to be continued)

.'.. '. £ .. '-. 2 . -. .-. .- -.... ,.- ..-.... , . ,...... ,, ,.,-;,.N-.% . , -- N . N -, . ,, % . . P P "

. -'....;" *. . -j ' - - . ' . * w . . . L. L : ,

- 30 -

Front-End Svitches (continued)
Name (default) Effect

Abort Syntax Count 999 Max # before aborting compiler
Abort-Warning Count 999 Max # before aborting compiler
Abort Semantic Count 999 Max # before aborting compiler
Quit SyntaxCount 999 Max # before aborting compiler
QuitWarningCount 999 Max # before aborting compiler
Quit Semantic Count 999 Max # before aborting compiler
Warnings (+) Display warning messages
Fe Debug Debug set
Console Name "<stdout>:" Name of Console
Console-Form "" Form of Console
Keyboard Name "<stdin>:" Name of Keyboard
Keyboard Form "" Form of Keyboard
Error Name "errors" Name of list file
Error Form "" Form of list file
Table Name "fe_code:ptable" Name of parse table
Table Form loll Form of parse table
Info Name "ainfo" Name of Info file
Info-Form "" Form of Info file
Message-Name "fe code:mfile" Name of error message file
Message Form "" Form of error message file
Liblst Name "liblst" Name of library file
Liblst-Form "" Form of library file
mpp (-) (obsolete)
mpp trix (-) (obsolete)
lock true Controls updating of Ada library
Standard (-) Generate package Standard.
Source Name "" Name of Source file
Source Form "" Form of Source file
Help (-) Display this text

Middle Pass Switches
Name (default) Effect
check (-) Check for MPST Node Already_Exists
debug (-) Turn on debugging output
fe debug "" Turn on debugging output for FE packages
li~lst "liblst" Name of sublibrary list file
maxpages 1000 Virtual space pages (like fe maxpages)
mp_verbose (+) Display version, copyright
standard (-) Compile standard
varc "" Various effects, depending on arguments
write (-) Write LF even if an error occurred

%a

31

Code-Generator Switches

Name (default) Effect
(-) Debug switch, generates debug info

for debugger.
S(-) Generate execution profile

information.
i (+.) Interactive switch, asks action

in case of error.
lu<name> (-) Creates an assemble list with

desired name.
1 (-) Creates an assemble list with

default name (.s).
libn<name> "liblst" Defines the library list file.
mode-<mode> "restore" Determines the mode to open

the library.
n<=name> (-) Creates labels with name <name>lineno for

each line.
n (-) Creates labels with default names

(S<line no>).
o.<name> "<cmpu name>.o" Create an object file with name <name>.
p=<digits> "I0240" Use literal pool of size <digits>.
q (-) Do the job quietly.
r<=word> (-) Produce relative addresses.

Default is absolute.
s (+) Give source info (line no) when reporting

exceptions.
shadow (+) Variable shadowing desired.
slf (-) Check the code generator,

prints SLF-instructions.
stack (-) Suppress checking on stack

expansion for overflow.
t=<name> (-) Source file; listing with source

lines desired.
v-<digits> "1500" Virtual memory pages size.
c (-) Use CHK instr when applicable.
m.<targeting> "mc68000" Choose target machine (MC68k family).

Prelinker Switches
Name (default) Effect
lib=<name> "liblst" Names the library file.
1 (+) Produce link script.
o=<name> "tsamain.o" Names the main object file.
q (-) Do the job quietly.
r (+) Recompile inconsistent units.
v.<digits> "iOo0" Virtual memory pages size.

-7,

'I.l

*"1

S - . ,., , ,.J L'_ _., , - :_ . . / :j : [.

A A At 8 A.. .. .- 77 T.. .. T. .

- 32 -

Options used in compiling ACVC tests:

Front End

-to output No list is generated'
-notify Continue on error
Fe max pages 1500
otliers -default

Middle Pass
+varcwpetz Controls allocation and alignment
-notify Continue on error
maxpages 1500
others -default

Code Gen and Prelinker
-i No assembly list generated (code gen)
-1 No link script generated (prelinker)
-i No interactive execution
-r No recompilation of inconsistent units (prelinker)
v 1500
others -default

-33-

Test were run on two machines simulataneously starting with
the B-Tests. On each machine a batch queue was used. For
each test a new program library was created containing the
standard Ada package and the ACVC support packages and pro-
cedures. The report package was modified in order to print
the date and time of test execution. For each chapter the
compiler listings and the results, if any, were written to
individual files. These files were written on tape in UNIX
dd format and archived.

4.5 Testing Duration

The ACVC has not been designed for use in measuring compiler
performance. However, information about the length of time
needed to test the compiler may characterize compiler per-
formance in processing a large number of programs.

Testing started in the afternoon of 86-04-11 and was corn-
pleted in the morning of 86-04-20. Testing was interrupted
twice for a total of about 20 hours.

o°Ni"

N-

N

% a' . . . " *1' AC .% * . i . - - , . ' , - .%. 2. -. -.

-34-

CHAPTER 5

SUMMARY AND CONCLUSIONS

The IABG m.b.H., Dept SZT, identified 1993 of the 2286 tests
in Version 1.7 of the Ada Compiler Validation Capability to
be processed during the validation of TeleSoft Ada including
7 tests for the report package. Out of the 1993 tests, one
was withdrawn because of test errors (15 tests were with-
drawn previously), 28 were ruled inapplicable, and the other
1964 were passed by the compiler.

The IABG m.b.H., Dept SZT concludes that these results
demonstrate acceptable conformance to the Ada Standard.

IN'

~~* * i ~.- - *-

-35-

APPENDIX A

COMPLIANCE STATEFENT K

The only allowed implementation dependencies correspond to
implementation-dependent pragmas and attributes, to certain
machine-dependent conventions as mentioned in Chapter 13 of
MIL-STD-1815A, and to certain allowed restrictions on
representation classes. The implementation-dependent charac-
teristics of the TeleSoft Ada are described in the following
sections which discuss topics one through eight as stated in
Appendix F of the Ada Language Reference Manual (ANSI/MIL-
STD-1815A)•

S.

V.°

. *.*-*.*~

! *
-36-

1. Implementation Dependent Pragmas

There is one implementation-defined pragma, COMMENT. It has the form:

pragma COMMENT(<string_literal>);

It may only appear within a compilation unit and has the effect of
embedding the given sequence of characters in the object code of the
compilation unit.

2. Implementation Dependent Attributes

There are no implementation dependent attributes.

3. Specification of Package SYSTEM

PACKAGE System IS A

SUBTYPE Byte is Natural range 0 .. 255;

TYPE Address is ACCESS Integer;
TYPE SubprogramValue is PRIVATE;

TYPE Name IS (TeleSoftAda);

System Name : CONSTANT name :. TeleSoftAda;

Storage Unit : CONSTANT :- 8;
MemorySize : CONSTANT : (2 ** 24) - 1;

-- System-Dependent Named Numbers:

Min Int : CONSTANT :, -(2 ** 31);
Max-Int : CONSTANT := (2 ** 31) - 1;
MaxDigits : CONSTANT := 6;
Max Mantissa : CONSTANT :- 31;
Fine Delta : CONSTANT :- 1.0 / (2 ** (Max-Mantissa - 1));
Tick : CONSTANT := 10.OE-3;

-- Other System-Dependent Declarations

SUBTYPE Priority IS Integer RANGE 0 .. 63;

Max Object Size : CONSTANT :M Max Int;
Max RecordCount : CONSTANT :- Max Int;
Max-Text Io Count : CONSTANT Max-Int 1;
Max-Text-Io-Field : CONSTANT := 1005;

* PRIVATE
TYPE Subprogram Value is

record

." .,. . ., -. " .'. ' ,'. . ,,',,-.. . ,- . ,,. .. '. ' , .',:'. , ,'..,.,,. .-.. .,.. . .,..,. ,.. •.

W .% 777 7-.

37

Proc addr : Address;
Static link : Address;
Global frame : Address;

end record;
END System;

4. Restrictions on Representation Clauses

The compiler supports the following representation clauses:

Length Clauses: for tasks 'STORAGE SIZE (LRM 13.2(C)).
Address Clauses: for objects and entries (LRM 13.5)

5. Implementation dependent naming conventions

There are no implementation-generated names denoting implementation
dependent components.

6. Interpretation of expressions in address clauses

Expressions that appear in address specifications are interpreted as the
first storage unit of the object.

7. Restrictions on Unchecked Conversions

Unchecked conversions are allowed between variables of types (or sub-
types) TI and T2 provided that 1) they have the same static size, 2)
they are not unconstrained array types, and 3) they are not private
(unless they are subtypes of or are derived from type SYSTEM.ADDRESS).

8. I/O Package Characteristics

Instantiations of DIRECT_10 and SEQUENTIAL 10 are supported with the
following exceptions,

o unconstrained array types
o unconstrained types with discriminants without default values.

Calling CREATE with a name of an existing external file does not
raise an exception (the old file is overwritten).

In DIRECTIO the type COUNT is defined as follows:

type COUNT is range 0 .. 16#7FFFFFFF#;

In TEXT 10 the type COUNT is defined as follows:

type COUNT is range 0 .. 16#7FFFFFFD#;

In TEXT I0 the subtype FIELD is defined as follows:

type FIELD is INTEGER range 0 .. 1000;

1

-_r~h

-38-

9. Package standard

-, The package standard used for this compiler corresponds
to the specification given in LRI Appendix C. The imDe-
mentation dependent parts are implemented as follows:

type integer is range -32768..32767;

type longinteger is range -2147483648..2147483647;

type float is digits 6 range

-21,i-. #E128.. 2#Z.1 1.... 1.+128,

24 24

type duration is delta 2?t1#E-14 range -86400..86400.0-

10. File naming conventions

There are no restrictions on file names other than those
imposed by the operating system.

7. %. _.,_J

39

APPENDIX B

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-
dependent values, such as the maximum length of an input
line and invalid file names. A test that makes use of such
values is identified by the extension .TST in its file name.
Actual values to be substituted are identified by names that
begin with a dollar sign. A value is substituted for each
of these names before the test is run. The values used for
this vilidation are given below.

$MAXINLEN 200
$BIGIDI String(1..200) 1-l.199 .>'A',

200 .> 1')

$BIG ID2 String(l..200) :-(1-199 =>'A',
200 .> '2')

$BIGED3 String(l..200) :~(1..100=>',
101 -> '3', 102..200 -> 'A')

$BIG 1D4 String(l..200) :- (1-.100 .> 'A',
101 -> '4', 102-.200 ->'A')

SNEG BASED INT 16#PFFFFPFE#
$TBIGINTLIT String(l..200) :. (l..197 .> '0,,

198. .200 .> "t298"1)
$BIGREALLIT String(l..200) :. (l..194 -T-'0',

195. .200 -> "69.0E1"1)

$ EXTENDEDASCIICHARS "a cdefghijklmnopqrstuvwx
yz!SZ?@[\] '(F

$NON ASCII CHAR TYPE (NON NULL)

$BLANKS String(l..18) (l .. 18 =>

$MAX-DIGITS 6
$ NAME No such numeri type -long in-

teger used

$INTEGER-FIRST -2**31;

$INTEGER LAST 2**31-1;

$MAX tNT 2**31-1;

_LESSTHANDURATION -8 40.

$GREATER THAN DURATION 86 401.0

SLESS THAN DURATION BASE FIRST -131 072.0

$GREATER THAN DURATION BASE LAST 131 072.0

7COUNTLAST 2**31:7,

$FIELD LAST 1000
$FILENAMEWITH BAD CHARS _1

SFILENAMEWITHWILDCARDCHAR Y*

$ILLEGAL EXTERNAL PILE NANMElr "BAD-CHARACTER%/*-"
7ILEGAL EXTERNAL FILE NAME2"M/A

-S4

APPENIDIX C

COMMAND SCRIPTS

Command scripts used for this validation were reviewed by
the validation team, but are not released for publication.

4

- -.---

..a S - -, .2 - .- 2K-.t- It .txt..?

p

.1K
-J

em-

.1*

.4.

.1

V /
.4.

\44

