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§1. Introduction.

Assume that one has a machine whose failure is described by a wear process

x :t 0 which is a positi z non-decreasing Markov process and a random threshold

Y )O independent of x t:t O with failure occuring at time o= inf{t:x t '>Y}.

At any time one can replace the machine by a new one with the same mode of opera-

tion. There is an operating cost f(x) per unit of time and a replacement cost

g(m) if renlacement is done before failure and replacement cost c0  if replace-

ment is done at failure. Note that replacement is always to replace the machine

by a new one. Models of this type have been considered in the reliability

literature by Abdel-Hameed [1], [2], Drosen [5], and Taylor [10].

The stochastic control problem of minimizing the cost is generally called

the Optimal Replacement Problem and has been considered by the above authors in

the case that f is constant. The interest has been in the long run average

cost problem. In this work we will consider,the case of general f(x). We

first view the problem as a discounted cost problem, and as in Robin [8], we

obtain the long run average cost by letting the discount factor go to zero.

The main difference with the work of Robin is that the invariant measure is not

obtianed exponentially fast by the Markov transition probabilities of the

replacement process as time goes to infinity. (See §4).

In Section 2 we state the Long Run Average Cost Optimal Replacement Problem

and deal with a preliminary discounted optimal stopping problem. Section 3

formulates and solves the discounted optimal replacement problem. The replacement

process is introduced in Section 4, the invariant measure is found, and ergodic

results are derived for the linear problem. Section 5 proves the main technical

result and Section 6 contains the main result that the solution to the discounted

problem suitably modified converges to the solution of the long run average

problem.
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§2. Notation, Statement of the Problem, and a Preliminary Stopping Problem.

Let 2 = D(R+ , R+ ) be the space of right continuous functions with left

limits. Here R = [0, -). Let x (,) = w(t) for wc2, F 0 =(x :0< s-<t),
kAt t 5

F O = F , and F, F the universally completed a-fields F0  and F0
00 t

respectively. Let (2, F , x :t)0, P ) be a homogeneous, non-decreasing, non-
St x

negative Markov process with associated semi-group T :tO defined ont

C b(R+ ), the space of bounded real valued continuous functions defined on R

with norm taken to be supremum norm. We assume

(2.1) T t:t >0 is Feller, that is, for feCb(R+)

Ttf cc b (R 
+ ) and T tf+f in supremum norm as t-0.

Let A denote the infinitesimal generator of T t:t)>O and DA  its domain in

Cb (R
+ ). Assume also

(2.2) x :t,>0 is quasi-left continuous, that is if t :n>,1 is ax~tn

sequence of stopping times with T + T, then x T x a.s. PnT n  T x
n

on the set (T< o). See Dynkin [6], Vol. 1 pp. 103.

Let Y be a positive random variable independent of x t:t)0 with a continuous

distribution function G(y). Let G(y) = 1-G(v). Define

o= int{t:x tY}

and let H(t) = P0 (a <t) = P (x t>Y). Assume

(2.3) E0 [a] < and H(0) = 0.

% Let

(2.4) f ,gC b(R + ) f,g 0 and co>0 a constant.

We say -:c2- [0, o is a stopping time with respect to x t :t 0 if (T <t) E F

for all t.

ly I,



Letr

fATX=inf E0 L f(xs)ds+I(T<)g(xT)+l(T >)cC]

E0 [ OAT]

The Long Run Average Optimal Replacement Problem is to find t so that

0 0

E0 [ oA ]

Our first step is to establish a result for a discounted optimal stopping

problem. For the following see Robin (9] or Bensoussan [3]:

Lemma 2.1. For b> -O fixed and a >0, let V b C b (R 
+ ) be the maximal solution

of

UCCb (R+) U(x) <b + g(x) G(x) + c0G(x)

t

then 0

Vb(x) = inf J b(T)
T x

where
rT

Jb(T) = E f e-'S(f(xs)G(xs) + a(b + co)G(x))ds

01

+e- (b+g(x )G(x T ) + c0 G(x ))

Moreover if

Tb = inf{t:Vb (x) = b + g(x t)G(x ) + c 0G(x )}.

then

V (X) = Jb(Tb).
b x b
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Lemma 2.2. (i) For Ob 0 <b 1, Vbo(x) <Vb (x)

0 1(ii) IV b0(X - Vb (x) I < 2 1b 0 - b lI

Proof. (i) If 0b <b I , then jb0 ('r) < Jb 1(T) for any stopping time T.

Hence V (x) <V (x).

(ii) For any T,
T

J (T) - j1() =E ae- as(b 0 -bl)G(xs)ds+e (bo-b)G(xt)
S0

Since G is a distribution function,

Sjb0(b) - 1j(T)l <21b0-b l and therefore
x x0

IVb0(W)-Vbl(X)l <1b<0- b(l"

Lemma 2.3. If H(0) = 0, there exists a b >0 so that

0

Vb (0) < b0.. Vb0

For such a b0 , define inductively

bk = V (0) k> 1
k - I

Then bk +b where b >0. Moreover Vbk(x) +VE(x) in Cb(R+ ) and V (0)=b.

Proof. For any b,-0 take TE 0 to obtain

V b(0) <E0[f'e-as(f(x.)G(x )+a(b+ co)G(xs ))dsl

L-0

Note that

H(t) = P0(a <t=P0(xt >Y) =E0[G(xt)]

and so

.a) = E0 [eal E O ae"as G(x )d

0
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Since H is not point mass at 0, H(a) < 1.

Let

Let z 0 =E ,T f 0 -as (f(x )-G(x s a c 0  G(x ))dsJ

and we have

Vb (0) <z 0 +b H(a).

Select b0  large enough so that

z 0 +b 0 H(a) <b 0

4' Next for such a b. , we have

bl = V b0(0)< b0

and by Lemma 2.2, it follows inductively that

b...'-'-' b1 =V0 (O) Vbk (0) bk -

Define b = limbk9 and let VS(x) be given by Lemma 2.1.

From Lemma 2.2,

aVbd(x) - V (x) I < 2 bk -

andso V bk bV in Cb(R + ) and moreover

blim b = lim V bk (0) =V(0).
k k k b-~ b

We thus have established the following.

aa
Theorem 2.4. Under the assumption (2.1) - (2.4), let Va(x) =%(x), bas

in Lemma 2.3. Then

V a(x) = inf J ((r)
T x

where t
ja(T) = Ef e- (f(xs)-G(x +a(Va(0) +c )G(x ))ds
x s 0 sx f

+ e - a (Va ( 0) +g(x )G(x ) +coG(X ))

. . . % .

... . . . . . . . . . .. A . . . . .
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Moreover if

T= inf{t:V (x ) VC,(0) + g(x )(x )+c 0G (x

then

V ( x)Ji t)
x

Remark 2.1. It will be shown in Section 3 that V a(x) is the maximal solution

of a quasi-variational inequality.

Corollary 2.5. Under the assumption g(0)> >0 and these of Theorem 2.4,

-t>O0 a. s. P 0

Proof. If g(O) > 0 then taking T E0

V a (0) < Va (0) + g (0)

and hence there is a 6 >0 so that if 0 x <6 then

V (x) + C < Va(0) + g(Xx) + 0 Gx

for E> 0 sufficiently small. Hence

>t 1 - inf {t:x(t) >,6/2}

and since x t :t)0- is right continuous, -v6/2 > 0 a.s. P 0

A'.0
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§3. The Discounted Optimal Replacement Problem.

Let xt :t > 0  and k k >1i be independent copies of x :t -O and Y.t t"

Define

ak= inft:x k>Y k
k t

Let f, g and c satisfy (2.4). Suppose Tk :k-1 are stopping times

respectively with respect to F k:t>O the universal completion of o(x k:s<t)

and assume for all n k= c a.s. P. We use the notation

T= (T 1 , T"2 ... ) and refer to T as replacement times. Define

-a0 f e s I -a ClATI gxi ClT

+ 1" (TE n e f - x )dse r+c

n = 2 t =AI(ffl

"r er<c) c au~LnA-rn(g(xtn ) + an)]

k
Here it is assumed that P0 (x -0)=1 for all k. Let

aV = int Jo( )

T
A

We seek T so that

Va =5' 'T)

0  0

This we refer to as the Discounted Optimal Replacement Problem.

Define
/" " °l^'rl-s I e-c ajA^ ' 1 (Va + g(x I.l l

4-

-J - - - - -e 1 . . . .0"TiSC <

-r . ,),c o I(. 0

!: ,:',., + a1))].

'U

V k...,
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Lemma 3.1. V inf J (1 )
0 1

Proof. Let T=(l, - . be any replacement sequence.

By independence letting T= (T2 , 3 ... )

)= I 1-as 1 +e-Co1AT1'3'c±(.-+g )I(

( e f(x )ds+ I ( '(')+g(x 1

10
+CI> l)]> J (toi)

Therefore

V >inf jo _  d

For c >0 choose T and T so that

Ja(Ti)dg andJ ( ) Vo + Ea

Let T = (-,T'T) then

V < o (To'< Jo (-1)+ E< d + 2 E:.0 1

Since c was arbitrary, we have equality.

In what follow x :t )>0 and Y wil be generic copies of the wear processt

and the random threshold and a=inf{t:x t>Y). Note (2.3) insures a<-
* t

a.s. Po

Lemma 3.2. for any stopping time T with respect to F t:t;0 on the set

(T < )

PO (a< T IF ) = P o(x T>YjF ) = G(xT

and P (o> IF ) = P (x <YIF) G(x T).

On the set (T = -),

- P (Ca <, F ) = I and P (0 >T!F) = 0.

• 0 T 0 %
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Proof. First note that by the independence of x :tO and Y, and the
t

assumption that x :t O is pathwise non-decreasing, for any fixed t.
t

Po(<tFt) p (x )Y I F ) G(x)

00 t t t

For any t an F :t >O stopping time, define• t

k/n on (k-1/n<T<k/n) = Ak/n
n

Since Ak/n £Fk/n, on the set ( n<

P0 (o< IF ) = Po(o. k/nFk,/n)IAk

= ~(xk/)~l G(T)
SnAk/n

n

P-o= P G(7F (oot )IF )
n T 0 T

n1

n TI

I uir Eo[Po(< nIFT )IF ]n n

: =lira Eo[G(N T )IF ] G(x T

The last follows since Tn4T and x t:t>0 is right continuous.

On the set (r=) there is nothing to show.

Lemma 3.3. Let f and g be bounded and continuous and a> 0. Then for any

stopping time T with respect to F :t> O.
t

(i) E e-Sf = E e f(x )G(x )ds]
00

.-.- -=4
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(ii) E -0 o[e AT g(xT)I(T Q)] E C-aTg(x )G(X J

(iii) E [e A 1 ) Eo aTG(x) + ae-S G(xs)ds

Proof. (M) By Lemma 3.2

P(xs <YIF) Y F (xs)

and so on the set (s<-)

P(xs < YF) = S(x )

* Hence
TAO - e sf(x )I ds

0 s s (x s < y)

0 0

E of e- aS f(xs) (xs d

(ii) This follows directly from Lemma 3.2.

(i) Note that

0

Since x :t>,0 is pathwise non-decreasing,=, t

a e - as I yd = e-as I y)dS

s . ~ > Y) Y) (x > Y
i 0 s0s

The rest is Lemma 3.2.~T

Lemma 3.4. = inf E e-aS +a(V +c )G(x ))ds
0 T 00 0 s

+-aT (V0 +g(x )G(x )+c G(x

0 T T 0 T

Proof. This is immediate from Lemma 3.1 and Lemma 3.3.

Theorem 3.5. Suppose g(o) >0 and (2.1)-(2.4) are satisfied. Let V a(x) be

i..-..-. . . . . . . . . . . . '.*.
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the maximal solution of U(x)<U(O)

(3.1) U E Cb(Re) U(x) <U(0) +g(x)G(x) +c0 G(x) and

U(x) 4 eatT U(x) + - [fz+a(U(O) + c0)G ](x)ds

then

(3.2) V (x) - inf J a (T) and
T x

with ,,inflt:Va(x )Va(O) + g(xt)G(x t ) + CG(xt)A

(3.3) Va(x) a W ( )
X

Moreover

(3.4) V a(0) - inf ( )
pT Ok

and if T- (Tit 2...) where tk is defined the same as t above except x k
k t

replaces xt, then

(3.5) Va (0) = Joa( T).
0

Proof. Let V a(x) be as in Theorem 2.4. By Lemma 2.1, V a(x) solves (3.1).

Moreover (3.2) and (3.3) are consequences of Theorem 2.4. Also Lemmas 3.1 and

3.4 prove (3.4). What is left is to show (3.5) and Va(x) is the maximal

solution of (3.1).

Let U(x) b. any solution of (3.1) and I be any stopping time. By the

'Markov property,
-at fe-aSf

U(x )+ e f(x s)(xs + a(U(0) + cG(x s))ds

is a submartingale. Hence t
-atAt0 -asf

SU(x) E e U ) e (f(x )G(x )

+ a(U(0) + C)G(x ))ds]

V. . % " - 1 -- ,
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Bv (2.2) letting t--,

(3.6) U(x) Ex  U(xe-aS(f (xs)G(xs) + a(U(O) + c)G(xs))ds

<Ex [f0e-aSf (xs) (Xs) + a(U(O) + Co)G(xs)ds

+ e-aT (U(O) + g(x T)(x ) + coG( x ) )]

If we can show U(O) 4 Va(O) then

U (X) 4 a(T) and so U(x) < Va(x)

By (3.6) and Lemma 3.3

CAT

as-aAT(3.7) U(O) <E e-Sf(x )ds + e - a  (U(O ) + g(x )I + I
o0

71f T '71ST,2,..) Is any replacement sequence, then using (3.7) inductively,

after n steps we have

(3.8) U(O) <E °  e f(x)ds+e-IOAT1 (g(l ) l o>+ CI l)

"0

n j-1 o. AT
S e Ae- f(x )ds

j-2 Zl S

+lej jj nx )I() ~ 1 rI ~~Ae(

B(2.3) since the oa 's are independent, and .zJ= for all nas

0
v.'* ~ I.I '*1~n
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To obtain (3.5), repeat the above argument using V(O) and T. At each

step we have equality and so (3.8) is an equality. Corollary 2.5 assures that

ZTumo a.s. Po, and so Va(O) jO( )
0

'JK

*1.*
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§4. The Replacement Process.
k y k =in :xk yk}

Let xt:t>O and Y be as in Section 3 and as before kinft k "
k

Assume that P0 (x0 0 for all k) = 1 and define ao - 0 .  Let

(4.1) zt k on the set ik
t E - t < -

1-.0 t 0

We refer to z t:t;O as the replacement process. Let H(t) be as in (2.3).

For BCR+, Borel, by Lemma 3.2 and the independence of xtk:tO and Yk

C k- i k EB xk  yk)

't =  E°~ t gx-x 
I  - k(u

k1-0 at 1

k 0

S f Pt -u(Odz)G(z)R(du)

where H (k ) W is the k-fold convolution of H(t), R(t)= ZHk)(t) . and

0

Pt(O,dz) -P 0(xt cdz). It is standard from renewal theory (see Feller [7]),

that R(t) <-.

Suppose G(x) < 1. Considerations of x for which G(x)- 1 are not

necessary because z t :t)>0 never reaches x. Define Yx by defining '.r

' y>x

P(Yx<y) fP(Y<y YX) G(Y)-G(x) = G (v)

x T(x) X

We use the notation Px, to stand for the condition
P 0 -x , i>2 - . akeyx,(V

P . X, k-O, k>2) - 1. Take Y to have distribution G (y) and main-

tain the usual independence.

S. ~ ~ ~ ~ ~ ~ ~ ~ ~ A 1(2-.....,- ......---



15

Define

a W inf{t:x' y1}
S "t x

Let zt:t;O be as in .(4.1) except that a,1mx.

Define H X(t)-P x(a x<t). By a slight modification of Lemma 3.2,

(4.2) P (z £B)-P (x1 eB x Y1 Y 1
x t P 0x'O B, xxO k- k)

+ k-ixo o t, Xtk_.1 cB, X < k

k-2 t o 0 F, Ote

W [I(X )G x )  E Eo[IB(X )G(x )]H *H(k-2 ) (du)

xE [B (xGt ) k2 0 B t-n t-u x
ik= 2"0

f (x~dy)9-(Y) +J J1 t-u (O~dy)0y)H *R(du).

B '6(X) 0O B

where P t(x,dy) - x(xt e dy).

To establish the Markov property, first note that

(4.3) P(x cAx <Y(x +t)=E [IA(X)(Gx(X+ t) G(xs))

(3 PX A' x) s Gx )
Ex A ( x) (XS t)]

i xIA(s G(x)

-* (x,dy) --Y)H (t).
A G(x) Y

Let

0 o (z t c dy) = t (O,dy) - Pt_u(0,dy)G(v)R(du)

and 0(y) t

Px (Zt c dy) = Pt(x,dv) +f Pt-u0',dv)C(y)Hx*R(du)

0

lIl
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The Markov property for z t:t >0 will follow if we establish

Now P x(z sc A,z s tB) -Bf xd~ yd)

1 11
(4.4) P x(x s CA,x s<Y x, x s L B, <Y)

* uTfP(x.dy) fP t y.dz) G-~t)

A B Gy

ufp(x~dy) 13y ft (Y~dz) G(z)

Afp G (x) BG(x)

By (4.3) we have

(4.5) P P(x 1 cA,x 1<Y 1 J ls + t,x-j - B~x +t j -1 Yj)

ttj 1-0 t-0

- ~ P(x~dy) jjY ftPt- (0,dz)U(z)H y*H'Q-2)(du)

j =2 A u(X) 0 Bs

A G(x) t-u

Also
ko kk k 1-

(4.6) P. bla < mOcAx k

=0 t=0

%xk -1CBXk <Y
X+tk..~ s B + t k-

t-0 t =0

If psu=dyGy fp [Sfz f (y) H *H (k-2)(du)

k-2 ~0~A BG(z)X

I I G(z)
=1 f U (O~dy)G(y) A (yd ' : H x*R(du).

Jfo sf B G (Y)
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Again by (4.2)
ck- 1

(4.7) P a <-oS,xk, c A, x k-I1< Yx
k-2 j-k+1'e0

o fo

k=2~ o--- H*~ 2 (u

tx

(0f fu0d)(~ I y *R d)~) * -,-)(du)

0 B

P (z c A,z+ c )cf , -1 cA

e=o
Xk kk a.stX

t ot oe o

s' (x,dy)- pt Yd1 Gz + Ptu(~zGZHy*R(du)
JS 0(x)) 4 ft(Od(ZH,

p (ody)~v) p (~dz)+ p (O~z)Gz)H*R(du) H *R(du)=f fPS-U(0tY)( f tYd)ff-(uz) zH X
0QA fB0B

=f fq(x~dy)q (ydz)
A B

Next let
t

S tf(x) -E x[f(z )] T t(Cf)(x)+f Tt-( f)(0)H *R(ds)
G (x) f
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For f E Cb( + ). since G(x) is assumed continuous and Tt :t>0 is Feller

T t(G f)(x) c Cb(R +)

Moreover

H (t) =E (G (X ) is continuous in x and therefore the family

of distributors {H (t):xR + ) is continuous in distribution in x. Sincex

T (Gf)(0) is zcontinuous in s and H *R(t) is continuous in t,t-s x

(t+

STts (Gf)(0)Hx *R(ds) is continuous in x and so S tf Cb(R+).

0

To show that S t:t,>O is strongly continuous we assume

(4.8) Ge DA and AG(x) is continuous and bounded.
0(x)

Note that

4.9 T t-s(E) (0)Hx*R(ds) E E[Gx t)

so
i St f(x) - f(x) I  T Itf (x) f f(x) I +21 f 11T tG x(W

From (4.8) by Dynkins formula t

0 < T Gx) (Tt G(x)-G(x)) - T AG(x)
G(x) C(x)

< tl !

and therefore

Stf - f < lT f -f1 + 2!If IIAG I! t
G

and we have strong continuity.

To comoute the infinitesimal generator, observe that

(- W . S f(x) - f(x)
Afix)- lim t

t -0 t
t

I T (Gf)((x)x) + f (v)H*R(du)

i + - . f 0 - ,,, - --

.t-0 0~4 0 v '-~.<...~ '. . .-. ~
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Pointwise then
lim 1 Tt (Gf)(x) -G(x)f(x) - A(Gf)(x)

t-*o 0(x) t 0(x)

and t .tSlim I (O~dy)G(ylf (y)Hx*R(du) -f lim p (,dy)G(y) (f (y)-f (0))Hx*R(du)
t -0 t f t-u xt - 0 Pft-u (0

0
t

-. (4.10) + f(0) lim I (0 .., t_-0 -t f -

Cleariy the first term on the right of (4.10) goes to 0 and by (4.9)

t
lim I * (,dy)i(y)H ,R(du) lim I Tt G(x) - G(x)

t0 t f t-u x t-O-(X) t
0

AG(x)

0(X)

Therefore pointwise
(4.11) Af(x) A(Gf)(x) + f(0) AG(x)

-d(x) G(x)

With respect to suprevaum norm on Cb(R ) we establish the following: Under

the condition (4.8), fED- if and only if Gf c D and - is bounded andA

continuous. We first note that
t

(4.12) - pt (O,dy)G(y)f(y)Hx*R(du) -f(0) AG(x)"* t (x)

t

T (G(f- f(0))(0)H *R(du) + if(0) 1 Tt G(0)H*R(du) AG(x)
-x t (x)

From (4.8), (4.9) and Dynkin's formula, for t small enough

t
I~ - T (G(f - f(0)) (0)H *R(du)h sup IT G(f - f(I H *R (t)

tX f"0< t t x
, s0

s I1 (E G(x t) - G(x)E1
0< su T< f ) t x t

G(x)

< T ((f- f(0))! C AG 0.
V.C

04?st

..............................................................
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M!oreover by (4.8), (4.9) and Dynkin's formula again,

t

0 Rd AG(x)

dt. t-u x G (x)

T G(x) -G(x) AG(x)

G(x)t G(x)

. 1 . ~A {ds+ t-[IfT( _ ds.I

Now the first term zosto 0 and for the second,-

t _
I 1 AG_ 11) T!-C

< -- -lds- T ,

t<rAG f_ G G ft

\ _--- - -/s ds0 G

and so ,, have uniform convergence for the left hand side of (4.12).

' Next if fo D-, then by (4.11) and the fact that we have uniform conver-

A A

:ece if (T. 12)

t It (Gf) -Gf) -AGfI 1 < it(Gf) -Gf - AGf

tG 0

-tt

1 Sf- / AG(x)"

S A +j Tt u(Gf)(0) Hx*R(du) - f(0) Gx

0
and so haveunifrm (Tfor thef) eft= 0

Nex t iff -, the by(.1 n h atta ehv nfr ovr

A§f
*., That is bounded follows from (4.11).

-t AG f

Conversely if f D and A is bounded to show

.4 t

IT ( (Gf)-Gf -A(Gf) - .40..1~ C
4A~f

Covrey f(, cDAad sbude oso

.% •
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This is so since t

(Gf) -Cf ,f T Af A(. ds
T A(-1f) --, s

G G 0
t

+ p a r) I , T(C) -G latter follows al5 if.I

G t Jf
(4.13). 0 G

To surn erize, we have established:

Theorer 4.1. Assume the conditions (2.1) and (4.8). Let

k-I k

Zt = x t _k-1 on the set Og < t < Z C;. "

C g=O'~

Then z :t>O is a strong Markov process and has transition probabilities given

tv

by G0ft

a (x,dy) = Pt(x,dy) _ + ,'dy)+G(y)H.*R(dU)
G(x) t-u

0

Moreover the associated semigroup S t:t>0 acting on Cb (R i; strongly

continuous and Feller

Further letting Af denote the infinitesimal generator then f c D- if
A

and only if Gf eD A  and G is bounded. Lastly

-x A(Gf)(x) AG(x)
Af(x) -- + f(O)

C(x) C(x)

Theorem 4.2. Suppose (2.1), (4.13) and

(4.14) E [j <- for all x.

Then z :tCO has a unique invariant orobability measure n %-ien b-
-~ t af ][fJ Cc

H(.\) = 0fIA(xt)dt = E f I (xt)G(xt)dt

0~ E 0 If )(x t Cdt

..

%



Proof. First note that by Lemma 3.3, the two representations of I are
nftx1 1 k

cquivalent. Recall the notation - 1 = O = inf~t: 'y and c, = inf{t: >

.. Sine 7. :k 1 are independent as well as xk)dt:k 1 and for k , are

. ,),0resp ectivel: identically distributed with means

kX 0d :kL- adfotJac

0

Ean&f (x k )d = E0 [f f(xt)G(xt)dtj k >2

C'
0+

we i'e by the Strong Law of Large Number for f E C (R)
b

t I E f(xk)ds

,t- 1 f(z )ds lim n k= s

t-~ t S

n
1 k

E ± t

Ee n c L! is an invariance measure.

If !]is anv, other invariant measure, then for f E Cb(T.+

S(z) )f f f(xr d ads. = f, f z.
z 0

Therefore by ]LebeSqUe DomAinated Convergence

f(z) :i I if ) (dz)ds

f 1:i7a 1 fivrn ds f 7a s urW

e-zI+

If I sayote nain' 'iu" he o C(
• " 7 < . -' . . ° .' ' . . ' ' ' .' 2 " . -"7 . - .' . -- " , .' - " ' * , . . .- g , ' -" ' ' " ' " - . " " . " . .¢ " - - " - " - ; ' " ' ' " - - '" . . - '
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Remark 4.1. In the work of Robin [81 it is required that

Px(zt ' )-fI(F) (Be > 0

and as a consequence

Stg(x) - [(g) <B I£It 
> 0

where

[(g) = f(x) H'(dx).

For our case we have only that

ft

limS _ig(x)du f(g) .t - 0 t "

Since zt:tO is periodic, we will not even have pointwise convergence.

Let f E Cb(R + ) and u (x) be the unique solution of Au -f().b a

It is standard that

(4.15) U (x) = e q t(x,dv)f(y).

-f= (f) 0

oo[ ~x~

0

Theorem, 4.3. Under the assumption (2.1), (4.8) and the assumption

E [ G(x )as

4.16) E 0= <C independent of x,X . C (x)

(4.17) P (N < ) = I for all t and x, and

%x t

".,

-.-. <..€



24

lir x a.s. P for all x.
t -). CO x

(i) arn au (x) =

(ii) Let v (x) =u(x)-u (0). Then

lim v a(x) = V(x) uniformly on compact sets where
a -+0a

£ fjf Mfx) sf)G(x,)dsj

G(x)

and v is the unique solution of

-AV = f- f with v(O) =0.

Proof. From (4.2) and (4.15)

U a W E x[C -at fx)G(x ')At"% G(x) fx
0

t

+ feaf [ xs)G(X x j ) Hx*R(ds)dt.

0 0

Bv (4.16) E [f (x dtJ

E e tf xx)G(x)dtl( < 0

0 0 C(x)

and so

urn lia -- ( )dt 0

Next by the convolution property of Laplace transforms,

e. 4
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t

f e -  f E f(x G_ s)(xt - sd Hx*R(ds)dt

-f e-tE G(x t)f(xt )]dtH e-tR(dt)

Let

x (a)=f e- t H (dt) and note that H (Ca) --1 as a-0.

0

Since COf
e-at R(dt) = 1 where ii(a) = e-atH(dt)

0 0

we have

lrn 1 -(a) E M= E[(fG(xt~df- showing (i).
a-0 o

0

For (ii), note that

(0) =- E°  f)ef(xt)dt -ia

0

Therefore

(4.18) uCc(X) -u a(0) G~)E Ef e Gt(xtfMx td tj

+ E 0C- (x t (x t)f(xdt

It is enough to establish the uniforr. convergence on comDact set for f O,

the general case easily follows.

1 E) f atCf d] G(X) [. f t

0  0

,4v., ,,_.,,.,,.% _..-,-< .- ,.-.--..--.., -. . ... . .J .'Y .. ..> ;....'..- .. >/ ;'. < .. .i i.?.,

_Ir ,,, r' , ." , ' ,n . ' . 'r ' " .,." , " "_ _ " _ -_ -' _ ' " " -' / -, '- '" ' " " ' ' '
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which is bounded by (4.16). Next

lim EU e G(xt)f(xt)dt -
cc-0 o 1 - H(a)

For the other part of the second term in (4.18),

N"E x- e (~ G(x) )dt - (x

x (a) 0

aG(x)

W. E [.efOat ExtJ E [ f G(x t)dt]

,G(:) G(x)

Therefore, uniformly on compact sets CO

Ex G(x -f)di

lim u (x)-u (0) 
f

a- 0 G(x)

To show that

-AV(x) = f(x) - f

first note that v(0)= 0 and so by Theorem 4.1 it is enough to show

-A(G v )(.x) = C(x)(f (x) -f .

Note that by the Markov property

G ." (x)v E --- Ex  (xs ) (f(x) -Tf)ds

:'"[fG(x )(f(x)-f)ds + G(x )(f(x )-fds

L" tE' X j G(xs ) (f(Xs -Ods + G(-,t)v(x t

,:'
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And so

T Gv- -v ft
t v G - )-- I T G(f-f)-G(f-f)'ds-0.t G(f- f) f Td s

4 0

To show uniqueness, suppose v1 and v2  are two solutions of

-AV= f-f, v(0) =0. Let w= I -v Then A, = 0 and since w(O) 0 we

must have AG,=0. By Dynkin's formula

C( )w(x) = E [G(x t)w(x t)]  for all t

and by (4.18) it follows that

lim E [G(x )w(x t)]=0 i.e. w(x)=0 for all x.
t -). x t

It is well known that a necessary condition that Av=-f have a solution

is that 1l(f) =0. See Robin [8].

Theorem 4.4. Under the assumption (2.1), (4.8), (4.16) and (4.17) a necessary

and sufficient condition that

(4.19) Av =-f

have a solution is that fl(f) = 0.

Moreover if n(f) =0, then any two solution cf (4.19) differ by a constant.

Proof. Ve need only prove the sufficiency. Suppose Av -f. Then by

Theorem 4.1

Av = -,f - v(0)AG.

Therefore by Dynkin's formula
t

v(0) Eo[ G ( xt) -- f G(xs)f(xxs()ds+ 0)(x
0

C-n
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Letting t- - (4.17)

00

v(O E [ f G(x sfMx )ds]I + v(O),

that is fl(f) =0.

Next suppose v and v2 are two solutions of

Av= - f.

Then by Theorem 4.1

A G(vI-v) = -(v -v 2 ) [0 AG

and so by Dynkin's formula again

) ~ ~~G(x) (v Wx)- v2(x)) = Ex[G(x t ) (V (xt ) - v2 (Xt) M

+(v 1 - v2 ) (0) Ex [f AG(x)dsj

Thus by (4.17)

G(x)(v 1 (x)-v 2 (x))= lim Ex[G(xt)-G(x)](v I- v2)(0)

or

v (x) - v 2 (x) v1 (0) - v 2 ( 0 ).
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§5. Asymptotics of a Stopping Problem.

Assume that

(5.1) f,4 CCb(R + ) with f, p>O

and consider the stopping problem

(5.2) u(x) = inf J (T)
xT

where

J T) = Ex [ f(xs)ds + t(x )I(,<_)

0

Define for a >0

n JcL(T) = Ex [f f d(xs)dS + e-aT (x,

and

S(5.3) u (x) = inf J a(T).

See Bensoussan [3] or Robin [9] for the following:

Theorem 5.1. Under the assumption (2.1), (2.2) and (5.1)
(i) u is the maximal element of the set of functions h cC b(R+ )

t
h< e- t T th + f e-aS T sf ds h <

(ii) OL = inf{t:u (xt) = P(xt )} is optimal, is

u (x) = JC(i ).
09 x a

(iii) For c > 0, define

Ja' O£ (V') = E etexp - ds (f + (x ))dt
x x C s C t

where 0 <V < I and V c F :t >0. Let
t t t

w (x) = inf jaE,(V)
OLg C x
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Then w is the unique solution in Cb(R+) of

e- tT [f l(w - )]dt
f t C c'E
0

and moreover if I (x P> (x
a1 W t t

Ot 9 w t t )

then

W (x) =J (V).

(iv) w 4v as e-0 uniformly on compact sets.
CE a

Suppose we have the additional condition

S(5.4) f (x) > 0 .

Remark 5.1. For the consideration of (5.1), under (5.3), we can restrict our

attention to stopping times T so that

E xT

since by taking T-0, we obtain and for any stopping time

T E [ T Ja(T).
x x

For the following see Robin [8], Theorem 3.1 and Remark 3.3:

Theorem 5.2. Under (2.1), (2.2), (5.1) and (5.4)

(i) u is the maximal element of the set of funcetions
0 t

h c Cb(R + ) h <Tth + T fds h<

(ii) t = inf{t:u(xt) = 4(xt)) is optimal, i.e.

u(x) = J (- )

(iii) u t u uniformly on compact sets as a-o0

(iv) Let r-> 0 and

w (x) = inf JC(V)
V x

A -o
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where f' +
Jx()=x  exp - f VsS (f (xt + I Vt* (x t )d t

and 0V 1I, Vt  F t:t O. Then w is the unique solution in C b(R+ ) of

t

w =Tw + T (f- I (w - + )ds

0

and ift I w (x))tx)

t

0 w (xt ) < t(xt

then

w(x)=(J ().C x

(v) w t w uniformly on compact sets.

(vi) w E: u uniformly on compact sets.

Define for a> 0

Jx (r) [f= Ex  G(xtMxt)dt + e ]G(x )(x T

0

where f and i satisfy (5.1) and (5.4) and G(x) is a continuous distribution

function as before. Let

J x(-r) =E x  G(x t)f(x t)dt + G(x T) (x r T]

0

Under the assumption (4.17), it is consistant to define

,(x )(x)= 0 on the set ( =).

Hence under (4.16), J (T)< for any stopping time T and moreover by

quasi-left continuity, see (2.2)

(5.5) lim J (TAt) =J (T) and lir J (TAt) =Ja (-).
t x x t x x

%
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Let

u(x) = inf J (-) and u (x) = inf J (1).
T x ( x

We wish to establish the following generalization of Theorem 5.2:

Theorem 5.3. Under (2.1), (2.2), (4.16), (4.17), (5.1), and (5.4)

(i) u is the maximal element of the set of functions

h hcCb(R+), hT th + f Ts(Gf)ds h <G .

0

(ii) t=inf{t: u(xt ) =G(x t) (xt)} is optimal, i.e.

u(x) = J (t)
x

(iii) u c u uniformly on compact sets.

The proof will follow after a series of lemmas. Let

i X =ExI Gx t )vn f x (t )dt + (x ) (x )r

0

and

u (x)= inf Jn()

Lemma 5.4. u cCb (R+) and u (x) -u(x).

Proof. Note that by (5.4) and Remark 5.1

un (x) = inf{J (T): E [T <

Since for any T with E [T] <-

nJn(T) + J (-r)
x x

it follows that

u (x) u(x) u(x) >u(x).

. Now Theorem 5.4 applies to u (x) and so for any stopping time t with 1- fTi <

% %
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u W< j(x ) T)
x

Letting n- -

u(x)<Jx (-r) and so u(x) u(x),

i.e. u(x) =u(x).

Leto V ds

( = (G(x )V) f(x + Ev G (x (x Od
x x -t n t F_ t t

0C'a at 1/o S
j (V) E  e-te- G(x ) f(x + 1 G(x ) (xt)dt

0

and co t V ]fsS
J (V)x E Ex f -/ G(xt Mxt) +  tWG(xt),(xt)dt

0

where

V c F :t)0 with 0 <V < I. Definet tt

u (x) inf JE;n(V) u (x)=inf J5 ' (V), and u (x)= inf J c(V).
c,n V x ' ' V x ' V x

Lemma 5.5.

(i) u CC (R+) and u (x) + u (x)
s,n b ( ,n

(ii) uEa(x) C Cb(R+) and u (x) + u (x)

(iii) u W is the unique non-negative solution in Cb(R+) of

u = T u + f T (Gf- I/c(u -- +s

and if
- 1 u (x (x ),(x t )

-, :V 
u (xtt 0 <C(x ) x (xt)
Eet t t

then ii (x) J (V).
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Proof. We first claim

u (x) =inf{JE(V): Vtdt= a.s. P }

00 0

Suppose P (f V dt < >0 and let 6>0. It is enough to show that there is

a V :t >0 so that
t

OD

0 Vdt = a.s. P and

0

JC(V) C J,(V) + 6
x x

j (V) <Ex G(xt)dt ( ff + 1/e(Ip(() <o

0

there is a T so if T>T.
0 0

(5 r - /CJO Vsds
(5.6) E e(G(x t)f(x t ) + I/s v )(xt)dt < 6/2

Not that (4.17) implies that

lim Ex[(x) ] 0
t -

and so there is a T so that if T>T I

E xG(XT)] < 6/211 I1

For T,>-T VT1, define

V t T
t1 t>T

% Now f Vds

0 t
T V ds

(V) + E [ e-/ (xt)f(xt ) + I/tV G(x )i(x )dt

x x t t t t t]

T
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ft
Mo reov e r j f d s 1 d s

E e- 1/  0 G(xt )f(xt )dt E e 0 (x t)f(x t)dt

T t T T
and Lds -) ds

l fe o I/E -vt( Yxt)d 1 E~-' G(x ) < 612]

T

Also by (5.6) t

E e 0 d i /

T

and thus

J C(M <,J, (V) + 6.

To show (i), note that if P (fvdt > 0 then

0

(5.1) and (5.4) imply
I'd

Jen (V)) /n E O e dt

Also for Vtt

.C ,J ~ (V) <E/n I1fl! + pI<

and hence

00
~u fx V n J'( )  dt = a.s. PJ

*' Now note that if P (f U'dt = = then

x x

and so u (x) 4 u (x) where u (x) > u (x).
E ,n E: C C

Since
u (x) < J'n(V)
E,n x
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and for Vt:t)>O with Px ( tdt I by (5.7)

Cb(R+ )

we have uC (x) = u (x). That u E C (R

follows since Theorem 5.2 (iv) applies.

For (ii) first note that J C(V) <- for all V :tO
x t

and

J (UV) t j,(V) as a-*O. Hence
x x

u E- - u W.

Bv taking V 1 we see that
t

u (x u C(x) G W x [f e M£tfx ) + 1/6 p(x t))dt]

<G(X) (Jf-I' +!I))

and so

(5.8) lira u (x) = 0.

By Theorem 5.1
t

Ot t-Ot +
%I !- ' u .t(x) = e-Tt au (x)+ - 1I/(u Ea-G*) )(x)ds

and so
tt£"'€'"'~ u(x) = Ttu (x) + 0 fT(Gf- 1/r (u a-G4)+) (x)ds

For any V :t 0 integrating by parts yields

V ds pt I V du
eu )/ u C ,(x )fC,(x + I1/E: ! u(x

-- ( - +
- 1c~i GOn (x )ds

E S

., , . , ._ . , .. < .. ._ . . . i . . ., . . -.. - -..e-: : 7 1 : -: : -: : : :: -: : : : :
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is a martingale. Taking

0 u (xt ) < G(x )(x )

Ct t

2 1 u )(xt >G(xt )P(xt)
f~t t t0

yields f ds t f udU

(=E. e, s 0 (x)) + eU G f(xs) + 1/EU G(x M(x )ds

and bv (4.17) and (5.8) it follows by letting t- - that

u (x)= J () and so u (x)= u(x).

Vhat is left to prove in (iii) is to show the uniqueness. If w C b(R)

is any non-negative solution of

t

w = T w +f T (Gf - lc(w - G)+)dsC t sC4

then as above for any V :t >O
.% t

L V s t 1/ U du

(5.9) w w(x) = E e- I /  w(x t ) + e )f(x )

+ 1/EV w (x - /E(w -G0+(xs)dS%< s E: s

-' Taking U 1- yields
t

*. - i e S -

,:nd letting t- - we obtain

f.l-Ow (x) < I e / G(x (x xt)+ 1/EG(x )4")(x )dt
EA. t t C tJ

0

G (X)(C! f +

0 le..... , . . . . ... V ,.. , - . -
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Thus lim w (x)=0.
x.+

From (5.9) it follows for any V
t  s

~ ds f.t/ fVudu~
wxVs)t + e d(Xs)f(x )+ 1/s G(Xs )4(x )ds

and letting t- - yields by (4.17)

w (x) J (V).
C x

Lastly letting

0 W C(x t ) <G(x )(x t )

V =
t

w (x t ) G(x ) ( x t )

it follows that

w (x)=J (V) and we have uniqueness.

Remark 5.2. Note that Lemmas 5.4 and 5.5 are valid for the case when G(x)t(x) is

replaced by

(5.10) (x) =Ex I e-BSG(xs )(xs)ds]

since

Lemma 5.6. u (x) +u(x) as C- 0.E

Proof. An argument due to Menaldi (see [3] or [4]) shows that for C> 0

ui + as C-0.

Hence Lemma 5.5 yields u + as c0.
J
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Define

-r = n f t : u E ( x t ) ( d ~

Lemma 5.5 implies that

u (xW= E LxI ) + ft G(x)f(x )ds

0

Since on .rV E

u (x t ) <G(x )p(x t), we have

lim u ) = 0.
t -* O tATE

Because of quasi-left continuity ca (r <-)

'.1
, lim u (xtA Li u (x ( x M¢xT

t 0 c tAT C T C T

and we have

u (X)Jx (T ) u(x).

Let (x) be as in (.10). Define w and w(x) by substituting

in place of Z in the definitions of u and u. The above nroof again yieldsS

w w.

Suppose E (r) < - and definex

0 t< T
VT

t
1 t

Then for w and w

J (V,) -J,(.r) =E eI / )(G(x )f(x + I/c (xs))ds- P(x)

x .p
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By the Markov property since Ec A t it follows that

.t

B (x +t)e-t/E - fs/C (A / ) (x )ds

0

is a martingale with respect to G = F . Hence5 S+T

-E bP (x)]E f eS'/' ( -/c%) (x+ )ds]

0

=E f COe t's -- (AipB8  I 1/sEp)(x )ds]

0

Hence

J(V') - J'(-) =E [fe -st-x ix G(x )f(x) -A (xs)dS]
x x x S SSS

< E !f - A*I

For the same reasons as in Lemma 5.4

w(x) = inf{Jx (T) :Ex [T] < -1

and so
w <w <w+4[f-Ap Il

showing w 4 w.

Lastly since

fw - u! V, - _G

and

w u <u - G It is a standard fact from semi-proun theory
E: C

that

urn 'm p =0 and we have u U as F--0.
a --

Lemma 5.7. u 4. u.a

i . . . .. .," '"V "
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Proof. Let w be given by

w (x) = inf Ja (T)a X

where
a--a (U T )

= E [fx eat G(xf(xt )dt+e *P(X)]

and W (x) be defined as u but with B replacing G . Then it follows

as in Lemma 5.6 that 'w -w 1 < -!f -A*p

Hence letting w and w be as in Lemma 5.6,

w <X -W X) w --w 11 + 1w (x) -w (X) I + ! w _ wi

2 -Gij + wx)-w(x)j

Letting a-+0 and then B °°  shows u (x)- u(x). That u (x) U(x) follows

since Ja(a(T) t J (T).
x x

Proof of Theorem 5.3. That u is in the set of solution in (i) follows since

Lemmas 5.4 and 5.7 show uC b(R+ ) and letting a -0 in Theorem 5.1 (i) yields

that t

u < Ttu+ fTs (Gf)ds u< G--.

It is standard that if h(x) is any other solution then

h(x) J (-r) for any stopping time T. Hence u is the maximalX

solution.

What remains to prove is that

T = inf{t:u(x t ) = C(x t(x t)} is optimal.

Let B = {x:ufx) = (x)G(x)}. If x cB, T 0 and there is nothing to nrove.

if x c B, find 1 so that

1(x)+ '< (x)G(x).
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Define

TR = inf{t:x-xl >R}

and

T 6=inf{t:u(xt ) G(xt)p(xt ) - 6}

Since u -u uniformly on compact sets choose E: so for c < E6

sup lu (y) -u(y) I < 6/2.

For s E [0, T6 ATR)

u (x <U(x s)+6/2 <G(x )*(x )-6/2

and so Lemma 5.5 says

:VI' u (x) = E u (x +M
C XI LET 6 AR

0

Letting E-0 T AT]

6 A R_-
u(x) =E u xl A R + G(xs~ M x)dS

Again since u=0 at - and we have quasi-left continuity, we can let R-c

yielding T

(5.11) u(x)= E [u(xT  )+ f G(xs)f(xs)dS .
0

Ls

continuity

S x x- on (t )
T6 T

Thus u(x) G>(x )iP(x) on (T<) and since r<T, r=r on (T< ).S" T T T

Therefore T = T a.s. P. Therefore (5.11) becomes

T f0 su(x) = Ex [u(x ) + G(xs)f(x)ds =J (=

%x
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§6. The Long Run Average Cost Problem.

Let V a(x) be as in Theorem 3.5. Recall that

T

aL -(Is-a(6.1) V (x) =inf E f e G(x )f(x +CL(V (0)+C G(x )ds

0

-CLT )

+ e (V(0)+g(x T)G(x )+c 0 G(x)]

Assume (L.8) and let

i r(x)- AG(x)

G(x)

Since xt:t>-0 and G(x) are both non-decreasing, r(x) >0. Define

(6.2) u (x) =inf E. e-esG(x )(f(x )+cor(xs ) -v(0))dsm cc T XfS S 0

0
-OLT--

+ e G(x )(xr

BvD'.'nk"n's formula
T

o

(I - e- ,)V (0) S a e-LS ds ra(0)

0
Thus

aa

. ( x) = V(X)+ e(0) - C o(X )

0

and 4f -] is optimal for Va  as given by Theorem 3.5, then it is also optimal

k~p t

0for u (: in (6.2).

De fin e E0 [ f G(xs)(f (K) +cor(xs))dsl

(6.4) V- 0



44

Note that
* to0  [ t-(x) fAG(x)ds]

0

which yields by (4.17) by letting t-+W

I = E 0 [ JAG(x s)dsj E 0 [f G(x )r(x )dsj

0 0

Hence1
E G()f(xs)ds +

(6.5) V=

E 0 [fG(x S)ds]

0

Lemma 6.1. 0 <lim aVa(0)(<V.

Proof. Let

(a)-- E [ a e-aS G(x S )ds E [e- ]  where o is given by

0

(2.3). From (6.1), we obtain that

O <,V a(0)<E 0 [fo e-as (x S)f(xS)dS]I + (Va(0) + c 0 (a)

0

0 V 0 0

ot

Since 0im 1 -H(t) =E E(a) =EO G d,

a0 a 0 0 fxSd]

0 lim a Va(O) <

'i ' td kl~ll t'Ni I 
ma

a~ilill dl fddTllf ~ Fa~ '- "!" ", ". . .. ..".". 7" -"": "" "' " " •' "_" 'Czk- •"', At.-,' , ",
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Let

v (xW inf E e CG(x ) (f (x )V~ (0))+ ac C(x )dsj
OL T x s s 0 J

0

+eaT(g(xT)G(x T )+ c0 G(x))

and Ex  G(xs )(f(x s)+ c 0r(xs) -V)ds]

" v0(x) = Gx
" G(x)

Suppose o = sup v 0 (x)

(6.6) V+pr(x)-X,>->0

Theorem 6.1. Under (2.1) - (4.2), (4.8), (4.16), (4.17) and (6.6)

(i) v - v uniformly on compact sets where

v x) ) (f (x X)ds + g(x T)G(xT) + c0G(xT

(ii) - = inf{t:v(x )G(x t)g(x t )+c 0G(x t ) } is optimal,

(iii) v(x) is the maximal element of the set of solutions h of h E C b(R+ )

t

h < T th+ Ts ( ( f - X)G)ds h < Gg + c 0 G.

0

Moreover v(0) 0.

0

: :E 0  G(x s ) ds

%0 L
0

VWL r.

0ft
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T

and E0  f G(xs)f(x s)ds+ G(x T)g(x )+c 0G(x)j

\inf 0

E 0 
0 ( s

2 !,'i = ;:' 0f~xs~ds g(x ) d < ) c l(]

0

AA

:1. = if f(N )ds +g(x )I( < a) +c a ~ )
f s T 0

E 0 A a]

A G

F f f(x )ds+ g( I(T < a) + cIr>_0 Lo sT0

Eo[-r A cF].

Proo .__v Theorem 3.5 and (6.3)

v(,) = u(x) + c(0)+ G

u(x) =)inf E f )(f(Xs) cor(x) - X)ds+G(x

0
5'.e

Ex f ,(Xs)(f (xs)+ cor(Xs)- - ))ds

%IN

0

m V(x) = 0

and v v - p. Note that v(x) 0 and v(O) = - o < . Define

(a (x= u (x) - G(x)v(x) and

w(x) = (x) - G(x)v(x).

• auu~oannn u mgliii~lllll ehll~ l l -k . ' , _ c _' , .. . - , ,i .. 1
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B-v Theorems 4.1 and 4.4, v(x) is the unique solution of -Av=f(x) +c 0 r(x) -V

with v(f) = - o and

- A( v)A

-Av= (Gv) + v(O) A_
G G

So

-A(G v)(x) = G(x)(f(x)+c r(x) -V) +v(0)AG(x)
0

Therefore t

e ~ )v(x t ) + f ~ (f(x s ) + c 0r(x s ) --V) +V(0)AG(x ) - aG(x s)V(X s)dS

ii (x~~x) IG(Jse(fXs)Cr(s)+ (0V()AG(xs
0

and
t

AG(x t)v(x t)+ fGx)(f(x )+ c 0r(x )-V)+ v(0) AG(x )ds

0

are both martingales. Hence

w (x)=inf E e-  x ) (V+ p r(x )-cV (0))ds
T Xo s s

0
-(XT-+ e G(x)(g(x - v(x))

By (4.17), lim G(xt ) =0 and by (2.2), xt:t> 0 is quasi-left continuous and sot~ot

for all stopping times T,

E fG(xs)(f(x s)+c 0r(x s)- X)ds+G(x )g(x ) G(x)V(x

0

[f G()V+ p -~ s X + Gx ) Q(g(x T v(

and so0
T

w(x) =int E {G(xs)(V+ Pr( X)ds + G(xWX - V(x

0

Define
T

as- -a-T -)=inf E e (x (V+pr(x ))dse (x )(g(x_) -v(x

3' 0
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4,3

Let a -0 so that by Lemma 6.1,
n

lir an VCn o)n= X
n

"2.' By Theorem 5.3

w (x) w(x) uniformly on compact sets.
nan

!W cn (X Wa(X n vn()1 Ln1 JEX ~ d

n 0"

Since (4.16) say

f xs)ds] < C independent of x

0

lrn 11w Ct- z' 1=0

n - -n n

AlI so

v (x) -,()I I w (x) -w(x)
n n

-W I (x) -w(x) 1
n

p. so () follows for the sequence {x n

Fro-i Theorem 5.3
inf{t:w(x )=G(xt)(g(xt)- V(Xt))}

t t t t~ptima'. It follows that

= inf{t:v(xt) = G(x t)g(x ) + C G(x t)}

is optimal for v. All we need notice is that

v(x) -w(x) +G(x)v(x) + c G(x).

o

inc Q))0 =0, it follows that v(O) =0 and



E f (x )f(xs)ds + G(x)g(x ) + coG(X4

* E0E 0,f G(\=s d 0

0

Thus if for any other subsequence a n-0 with a V n(o)-+X, then repeatingn n

he above argument we see that X = X. Hence (i) and (v) follow. Now (ii)

and (iv) are also done and (v) follows from Lemmas 3.2 and 3.3.

For (iii), we have from Theorem 5.4 that w is the maximal solution of

t
+

eCC (R Z (G(V+r-X))ds <G(g-v)

b,",f t

and

Since
t

G v=T G v fT (G(f+cr - V) + pA)ds

0

* and

t

t

= T tG f T (Gr)ds

0

we see that

v(x) w(x) + G(x)v(x) + c0G(x)

rT w + Ts(G(V+-pr X))ds

0

UT_ t

+ T G v f T (,(f + C0r-V-c)) s

0

t

+ c T G -

t 0

V + T (G(f - X) ls

t f JS

0

-r I
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and

v Cg + c0G.

Now if h is any solution of (iv), then

t

h(xt  + i G(xs)(f(x) - X)ds is a submartingale and so for any

0

stopping time T,

h(x) <Ex [hxtA I) + G(xs ) (f(xs) -X)d

0

tAtrar C)x)fx)-]~sGx )g~

- By (4.17) and (2.2) letting t

h(x) < Ex f (Xs) (f(xs ) -A)ds + G(x )g(x ) + c G(xj.

0

Since T is optimal

h(x) v(x).

Remark .. Pecall that

- = inf{t:v(xt) =G(x )g(xt ) + C G(x)}.
4,t t t 0 t

is-r t , ssum:tion g(0) > 0 since v(0) 0 it follows that

P 0(>0) = .

Remark '.2. Since 0 (0) 0 it follows from Theorems 4.1 and 4.4 that for any

-t :* inl: time T,

0 0  G( t )  (x + G(x )(f(x ) + c r(x ) - )d
S:0 0[x) 0 x)+f 0 -

'I.
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Theorem 6.2. Suppose for UCR open and not containing a neighborhood of 0

that i fc =i nfIt:x( t) U , then P 0 (- < -) > 0. Assume further that G(x) < I

mor all x. Lnder the conditions (2. 1) - (2.4), (4.8) (4. 16), (4. 17) and

C, ( 0, f < then xg(x) < v (x) j If r(x) > 6 > 0 and

{ ×) < / < } # $ th e n X < \ .

3-J

00

P- Pr oov no s e X< V and let -r be optimal. Not that

0.7 (T < co) > 0.

0 I0  Gd(x )(f (x s+ cr(x) ))s+G )(x

0

r i n v sto 1n, t ie t,

'r= 0L G(x)r(x)ds]

[~ 0

. .. - 6.i and (6.8)

O= ~ ~ X i< ~ s(-ds+G (x )(g (x) -vo(X ))F CI )(v 0(x j

u o'ark 6.1 and (6.7)

P0(0 < < o > 0.

()<V(x) } # .
0

r s r(x) > > 0 and {g(x) <v 0(x)} . Since both e and v 0 are

conti.,111 , for > 0 but small enough

i r' :) + <V < (x)} and does not contain a neihhcrhood of the

I 1 n . .)e, f ne

4.,
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T= inf{t:g(x t)+ <v(x t)} and note then that P0 (0 <T <-) >0. Also

since -(x)>O and {v0 (x)>g(x)} #i then p=sup v 0 (X)>0 and Theorem 6.1

applies. Arguing as above

0 <E 0  f (xs)(V - X)ds+G(x )(g(x) -v0(x)

A0
and so

0 6 E [G(x)T Eo[ f G(Xs)(- , that is X <V.

Theorem 6.3.

(i) Under the conditions (2.1)-(2.4), (4.8), (4.16), (4.17) and g(x) >0,

if A=V and r(x) >6 >0 then the do nothing policy is optimal.

(ii) Under the conditions (2.1)-(2.4), (4.8), (4.17) and if

D= sup v 0 (x)=0 and X =V then the do nothing policy is optimal.

Proof. For (i), note that Theorem 6.1 applies and since

'f 

00

E 0  G(Xs)f(xs)ds + c o

E0 KG(x)ds

the do nothing policy is optimal.

For (ii) if p = supvo(x) =0 we have for any stopping time T

E0 G(x) (f(x) - )ds+G(x Tg x ) +coG(x)

()(g (C )v (x
[f0 s~ d+ xTj
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and since

bE 0 [ii-Gx s )(f (x) - )ds] C ~0=

again the do nothing policy is optimal.

,I

*1'l
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