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1. Introduction

Many problems associated with stochastic processes in continuous

time cannot be solved exactly by analytical methods. The essential

reason for this lies, in the author's opinion, in the fact that these

stochastic processes, even over a finite time interva-l, consist of a

non-denumerable infinity of dependent variables. It is on account of

this that ever since the advent of the modern computer, researchers using

stochastic processes have resorted to simulation to obtain the results

they required.

However, in spite of the widespread use of simulation, there has been

an extraordinary dearth of theoretical work in this area.

While the fundamental principles of simulation of continuous-time

stochastic processes were formulated by Rice (1954), the standard exposit-

ion of the simulation approach based on the spectrum has been given by

Shinozuka and Jan (1972) and Yang (1972,1973).

Since then, there have been swift developments in the area of simulat-

ion of Markov-type and queueing stochastic processes, which are used

extensively in Operations Research. See for instance the special issue

of "Operations Research", Vol. 31, No. 6 (Nov. 1983), dedicated to simulat-

ion.

S r- . - ., . . . . .
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On the other hand there have been only a few scattered papers on

simulation of continuous-time stochastic-processes based on the spectrum,

the most easily accessible of which are B(I1 and Bukoveczky (1976),

Mihailov (1978) and Malyshev and Palagin (1981). See also B'ly and Cacko

(1982) and Kropac (1981).

All proposed simulation schemes rely on approximating the stochastic

process by a function of a finite number n of random variables. This

is almost invariably justified by showing that the approximation converges

in some sense to the original stochastic process as n tends to infinity.

However, this type of justification gives no indication of the size

of the error committed when n is taken to be a comparatively small number.

In many applications the size of this error is not very crucial, because

the original process is not known with a high precision anyway.

But in the application addressed to in this paper, namely the numerical

calculation of a distribution function, given an exact formula for the

spectrum, it is of fundamental importance to know the size of the error.

In this paper, two new ideas are put forward to obtain a computational

technique which is more efficient than those previously proposed, and for

which exact bounds for the error can be evaluated.

The first idea can be applied to any stationary Gaussian process X(t)

with given spectral density f(x) and consists in representing the process

over a finite interval by a finite trigonometric polynomial in such a way

that the error committed can be exactly bounded.
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The second idea relates to the calculation of the distribution

function of the maximum. The finite trigonometric approximation is used

to simulate the process. The maximum functional is then split up into

two independent components. The distribution of one component is cal-

culated exactly, while that of the other is obtained from the simulation.

The two components are then combined, yielding a high precision estimate

for the distribution of the maximum.

The germ of the last idea is to be found in Deak (1980), but its

application to the calculation of the distribution of the maximum of a

stochastic process was given independently by the author in Hasofer (1982).

See also Moran (1984).

The importance of using well-defined bounds for the approximation

error is further highlighted by the results given in Lyon (1970), where it

is shown that approximations which might be satisfactory for low levels

might be completely useless for studying the behaviour of the stochastic

process at high levels.

1. 2. Construction of approximating polynomial

In Hasofer (1982), it is shown that, over a finite interval (-T, +T),

a real, zero-mean, Gaussian stationary stochastic process X(t) with

spectral density f(A) can be approximated by a finite random trigonomet-

ric sum WN(t), in the sense that there exist two stochastic processes

WN(t) and Y(_t)., such that X(t) + Y(t) and WN(t) + WN(t) are
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identical in probability law on (-T, +T), Using the symbol d for

equality in probability law, we have X(t) + Y(t) = WN(t) + WN(t). More-

over X(t), Y(t), WNCt) and WN(t) may be chosen so as to be independent.

Through a judicious choice of T and the terms of WN(t), the two

processes WN (t and Y(t) can be made to be very "small", thus allowing

WN(t) to approximate X(t).

The procedure for constructing WN(t), WN(t) and Y(t) is as follows:

(a) Let R(t) e eitXf(X)dx .............. (1)

be the covariance function of X(t). Expand R(t) in a Fourier

series over (_-2T, + 2T), in the form

R(t) O cos
n=o n 2

n 2 T

Let a2  max (0, n ), b max (0, -a n).

nn

5'

(b) Choose a minimal subset of integers, N, such that

a 2  a2,
nFN n ncN n

where N is the complement of N in the set of non-negative

integers.

V%
"

+ + , ,+, +~~~~~~~. . ... . . .. ,... . . .,. w.. ... . . ..- j ..- '--.,. -. - . . . +. ,..
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CcI Then

WN(t) = ncN an (Yn cos n7t + W sinn

N nEt nsn2Tn n2T

WN(t) = _a (V cos n t + Wn  sin E2T
nNn (n 2T n2T

Y(t) = bnV(V cos 2T + W in T
n n 2T n 2n

where the {Vn }  and the {Wn ) are sequences of independent

Gaussian random variables with zero mean and unit variance.

The notion of "smallness" in this context refers to the two coefficients

o and 02 defined for the process Z(t) by

2ao = Var [Z(t)]

2
anda = Var WZ(t)]

since Pr{max JZ(t)I>x}<2{l- (X/o)} + (2Ta2 /a o)exp[-k(x
2 h2]

-T_<t<sT02 00

...(2)

L where 4(x) is the standard normal cumulative distribution function and

the right-hand side of equation (2) is an increasing function of both c.

and 02, for x > 02 (see Hasofer 1982).

-..-..
,a, .. .'. ',., .,-. '.',- ..-,.. - .,. . '- . .. -. . ... ,. . .o. ,.. .. ,.. ... .,..,..,. ., . ". .. ",,. ... .., -. -. -. . .. ,,, - ,. ,. ..,. -. . , ,,
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It is to be noted that by taking N sufficiently large, W'(t)

can be made as small as required, while this is not the case with Y(t).

The process Y(t) is derived from the negative coefficients of

the Fourier expansion of R(t) over the finite interval (-2T, +2T).

It is well known that, as T - -, the Fourier series tends to the corres-

ponding Fourier integral with non-negative integrand. Thus, Y(t) can

be made as small as required, by taking T sufficiently large.

As an example of the application of the above idea, one can approximate

the distribution of the maximum of X(t) over (-T, +T) by that of

WN(t) as follows:

Let Mx = max X(t)

Ml = max WN(t)

U(t) = Y(t) + WN(t)

M = max IU(t)I

where the maximum is taken over all values of t in (-T, +T).

It is then easy to establish the following inequality, which holds for

every k.

P(M >X+2k) -2P(M>k) _ P(M >X) P(Ml>x-2k) +2P(M>k)

(see Hasofer (1982)).
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Clearly the error depends on P(M > k), which in turn is bounded as

in (2). Thus a measure of the error is the magnitude of the two coefficients

Var [U(t)] =  b 2 + i-a 2

n n neN n

r2 2 2 2 2
..and Var [U'(t}] = - (In bn + I nan).

4T nnN

3. Relation to discrete approximation of distributions

Looking at the spectrum of the process X(t), which has been assumed to

be continuous (equation (1)), and that of the process WN(t), which is

discrete, when WN(t) is continued to (.-o, +w) by periodicity, we see that

the approximation developed will produce (apart from a scale factor) a dis-

crete approximation to the absolutely continuous probability density function

f(x)/R(O).

Such approximations have been shown to be very useful in many practical

problems, for example in the evaluation of moments of functions of random

variables. (See e.g. the much quoted paper of Rosenlueth (1975)). The proced-

ure described in principle in Section 2 and detailed in the sequel provides

a simple algorithm for obtaining a discrete approximation with many optimal

properties which can be derived from the optimality properties of Fourier

polynomials.

, .',..
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4. Optimal property of the proposed representation

Let W*(t) be another approximation to X(t), with covariance *1
function R*(t). Expanding R*(t) in a Fourier Series over the interval '

(-2T, +2T), we have, say

R*(t) B Co na
n 5 2T

n=O0 
+

For simplicity let us write en for cos(nrt/2T), x for max(O,x) and

x" for -min(O,x).

Then c CO
R(t) = Lanen - a- en

n=0  n=On n

and R*(t) : en - n en.n onn  n=Onn

It follows that

+ (n+ ~ )en (:- n- n 'R + xe = R*(t) + J. - e

= R*(t) + j(L- 3 n) e (a 3 ne

or

+ : + +
R(t) + je nen  =(C n -3n n = R*(t) + n(a -n) en.

This leads to the representation

X(t) + Y(t) + Y*(t) d W*(t) + z*(t),

where Y*(t) has covariance functicn PCn- 3+ e and Z*(t) has co-

variance function (c 3) enn n n
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Measuring the discrepancy between X(t) and W*(t) as in the

previous section, we see that both coefficients

Var[Y(t) + Y*(t) + Z*(t)]

Var[Y(t) + Y*I(t) + Z*(t)]

are minimized by choosing sn = n , which implies that W*(t) has the

same distribution as WN(t) + W (t). Finally a standard least squares

argument shows that the trigonometric polynomial of order N which gives

the smallest error as defined above is indeed WN(t).

5. Some practical formulae for evaluation of
the coefficients and the remainder terms

For the purpose of determining the appropriate set N, as well as the

value of T, it is best to start with the spectral density function f(x)

of X(t). This is an even function of x and

RCt) cos(xt)f(x) dx.

The Fourier coefficients of R(t) in (-2T, +2T) are given by

a 2T
0 2 T f R(t)dt

I 12T nt
n I R(t) cos T dt (n o),

and these can be rewritten as

a sin 2xT Tf(x)dx

0 J 2xT
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= 2xT-n sin(2XT+nr) f (n o).
n s (2xT-n) -(2xT+n) ]

This last formula can be rewritten more conveniently as

(_,n jOD4XT sin 2xT xd> (n>o(3
-- (4x2T2-n2 2 ) d (

One of the most interesting cases is that of a "narrow band" stochastic

processes, where f(X) is of the form

f(A) = h( 0 ) + h( o

and h(x) is a density function with mass concentrated in a neighbourhood

of the origin.

Formula (3) can then be rewritten as

On = (_l)n 4XT sin 2xT h(z)dz, n > o

nc (4xTnT2_n 2 )

with X = Cz + X0

a+C sin 2xT
and 2T h(z)dz,

with A as above. J

.- I
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To choose appropriate values for N and T, we notice that the

distance between the angular velocities of two successive terms such as

an and an+l is r/2T. Suppose that most of the mass of the spectral

density function on the positive axis is concentrated in the interval

(Ao-ko,x0+ka), where k is some real positive number. We now attempt
I0

to approximate f(x) by means of 2 M+l masses equidistantly placed on

the interval (Xo-ko,X,+ka). We must then have

2ka - m
2M 2T

or 2T = -am
ko

The middle index N will then be given by

2Tx 0 FAN= LviLki

where [ ] denotes as usual the integral part, and the set of indices chosen

for I will be

N0-M, N0-M+l, ..., N0+M.

It will then be necessary to check that the values of an obtained are not

negative. Any negative coefficients will have to be removed. The values

of a0 and a2 for any of the three processes WN(t), WI(t), Y(t) will be

given by

0 n

2 = T2 I
02 4T2 n4

F , , ..-' -. -' o , ' -' ...-' .P. - - . . . -. ... - %- .. . .. . . . . . . .*
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where the summation extends over the appropriate set of indices.

In practice, provided f(Mx decays sufficiently fast as X ,

only a comparatively small number of coefficients will be necessary to
2 an

adequately represent the covariance function, and then ao and a2

can be evaluated for each of the three processes by using only the small

set of non-negligible coefficients.

6. A numerical example

As an example of the application of the above methods, we consider a

narrow-band process with the spectral density function

I Xo"  O+ _1

f = , [ (__-) + 0(-)

where € is the density function of the standard normal distribution

We choose the following parameters

S= 15 15

a = 2

We then choose 2T = I and k = 5, which gives us M = 2Tka/r 10. The

index corresponding to X0 will then be N 0 2To/ - 15.

Ilk''W , - " -. - .. "" .- . " " - " -" w ' - " - '- . ''"""". """ " -* ' '" "- ".
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Applying the above formulae, with numerical integration performed

by Simpson's rule over a z-interval of (-7, +7) with 500 intervals,

we obtain the coefficients for WN(t) given in Table 1.

Coefficients beyond n = 35 were negligible, and there were no

significant negative coefficients, so that Y(t) in this case was neg-
2 2 2

ligible. The values of 0 and 2 for X(t) were co 1 and

2 2

2 2 + 222n = 2260,
°2 o

while the corresponding values for WN(t) were

o2 = 8.58 x TO7
0

and o2 = 4.98 x TO

showing that the approximation obtained with twenty coefficients is high.

:.44

'4,.-.

,."

55 "

[ 55,-

.5
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TABLE 1

Fourier Coefficients for W N(t)

n C = a2aa 2
n nn n

5 7.43 x 1-715 0.199

6 7.99 x 10- 6 16 0.176

7 6.69 x 10- 17 0.121

8 4.36 x 10- 18 6.48 x 10-2

9 2.22 x10- 19 2.69 x 10-2

10 8.76 x 10- 20 8.76 x103

11 2.70 x 10-2  21 2.22 x 10-

12 6.48 x 10-2 22 4.36 x 10-

13 0.121 23 6.69 x 10-

14 0.176 24 7.99 x 10-6
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7. Calculation of P(M1 > x)

It was pointed out in Hasofer (1982) that the distribution of the

maximum of WN(tl can be calculated directly by means of a multiple

integral. If there are k elements in N, the multiple integral extends

over the 2k-dimensional ball of unit radius.

To perform the integration, however, one cannot use efficiently any

deterministic method. As was pointed out by Davis and Rabinowitz (1975),

the Monte Carlo method is the preferred approach for integration in spaces

of large dimensions.

'1 In the light of the preceding paragraph, one can recast the problem in

a purely probabilistic framework, as follows:

We have

W (t) = an(V cosn!t + W nt,
N nCN n n 2T n s 2n--T).

n2 2

Write R2 1N(V 2 + W2 ). Then R2 has clearly a chi-squared dist-

ribution of order 2k. We now note that R is independent of the random

variables

V W
A n B n
An R' n= R

[-,- --
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We thus have

W N(t) =R T N(t).

Where TN(t) I ~a (A~ cos!T-t- + B s in -- )
N ncN n n 2T n 2T

a It follows that

M max W N(t) =RM 1

where M = max T N(t).
-T~t5+T

It finally follows that

P(M1 > X) P(RM > x)

E LP[R>~ M*] E p 2 x

which is the same as the formula given at the bottom of p. 341 in Hasofer

(1982), since R 2/2 has a Gamma(k) distribution.

We now propose the following procedure for practical calculation of

P(M1 > x):

(i) Generate 2nk independent standard normal random variables

V(i), W(i) 0i 1$ ... I SI; and calculate
n n

RMi (~ i) n ]l/, 2

* . ,N 

n
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(ii) Find the maximum Ml(i) of the trigonometric polynomial

Ti )(t) a N connzVi + W(i) .nirt,
N Rcos n n 2T n-T

(iii) Estimate P(M1 > x) by

A I *(i)
PCMl > x) = .P(R > - M )

1 I

A
8. Properties of the estimator P

A

(1) Clearly P is an unbiased estimator of P(Ml > x) since

E(P) E [P(R > X(:j) E P(R > x. IM
i=l 1M

A
(2) For large n , P , tends to be normally distributed, on account

of the central limit theorem.

A

(3) The variance of P can easily be estimated. Let

P P(R > I )
'i

Then an unbiased estimator of the variance of Pi is

2 A1
S(Pi) =Ti-l (Pi - P)2

A

./ and the corresponding unbiased estimator of the variance of P is

S(P )

% 
% % o I
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By taking a sufficiently large number of simulations, the variance

of the estimator can be made as small as required.

The technique of separating out R and using its exact distribution

amountsto a "control-variable" variance reduction technique in Monte-

Carlo integration. See e.g. Rubinstein (1981).

9. Some numerical results

The technique described in the preceding section was applied to the

trigonometric polynomial given in Section 5, and the following results

were obtained.

(1) M

Mean: 0.327

Standard deviation: 0.077

(2) Tail of Ml

x PK,> X)x P(M1 , x)Pi)

4 1.82 x l0-3  1.8 X lO- 2

5 9.68 106 2.03 x 10

6 2.917 X 10 6.22 x 10 8

(3) Number of simulations required.

A

Suppose we require a coefficient of variation of 5% for P. Then

the number of simulations required turns out to be:

x

4 40,000

5 175,900

- V ; " " . ...", ... -'". . . . . , . . . . .182,700 ,. .

- ' " ,P. , P.- ... . .. , . ., ... - ' . A / . .. . . .. -. . . .' -" ." .J-K-, -. .. , . .-.-.- , - . ., - . -
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These numbers are well within the capabilities of an average computer.

(4) Computer time per simulation

The simulation was carried out both on a large main frame computer (Control

Data Cyber) and on a small personal computer (IBM PC XT). The average time per

simulation for the main frame was 1.2 seconds, while the average time for

the IBM PC was 18 seconds.

However, there was no difficulty in obtaining a large number of simulations

on the PC, since it could be left running over week-ends, and for each week-end

about 10,000 simulations could be accumulated.

10. Advantage of the above technique

One might think that with the above large number of simulations, it might

not be necessary to go through all the steps of Section 8. One might be tempted
4o

to simulate WN(t) directly and estimate the tail probabilities of MI directly

from its histogram. To appreciate the large gain effected by the procedure of

Section 8, it is only necessary to calculate the number of simulations necessary

to achieve the same coefficient of variation as in Section 9, namely 5%, by

direct simulation.

A

The variance of the estimator p of a probability from a histogram is given by

52(A) = p(l-p)

where Q is the number of simulations. From this formula we obtain

x* (400)
p

4 220,000

5 4.13 lO7

6 1.4 lOll
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11. Approximation to the distribution

of the maximum of X.t)

As mentioned above the following inequality holds

P(M >x+2k)-2P(M>k)<P(Mx>x)_P(M >x-2k)+2P(M>k).

Thus we can approximate the distribution of the tail of the maximum of

X(t) over (-T, +T) by the distribution of the tail of the maximum of

WN(t), calculated in Section 6.

The term P(M > k) can be bounded by using formula (2).

Suppose we take k = 0.005. It then turns out that .

P(M > k) < l0 - 5 .

Choose x = 3. It then turns out that

P(M > 3.01) = 0.0624

P(M1  > 2.99) = 0.0653 .

Thus

0.0624 < P(Mx  > 3) - 0.0654

corresponding to a margin of error of ± 3%.

LAW,
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12. The modulus of variation of TN(t)

One of the great advantages of the trigonometric polynomial representat-

,4, ion is that upper bounds for the variability of the approximation can be •*

easly obtained. The approach will be illustrated by the calculation of Ml

he';. based on the maximum of a finite set of values of t.

Let
M 1  = max TN(ti)

where the t. form a mesh of span A in (-T, + T).1+

Let to  be the value of t for which TN(t) reaches M1 , and let

ti  o - ti+ 1 .

Now at tO  we must have dTNIdt = 0 with probability one. However

21
- QT(0)+(t 2 - t0) 2 Nt'

TN(t) T T(t) + (t t) t +T W

where t1  - t t 0*

Thus
(t. - t)2

TN(tO) - (t 0 [-T N (t')]

i'. -'!i**

and since obviously TN(ti) M < TN(tO)K iIN
we have

* ** 2
IM.M 1  < 1M

where M max - TN (t)I
t

- -'.

[*.... .
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2 2 n7t si n_,_tBut -TN (t) = ( 2 n a(Acos- + Bn

T nEN nc s2T nsin-r)

so that

max Tr < nat M TN (t1 (i) n)2 /2 +B

0 t NN n n n

nn N

< f )( na2)I

using Schwarz's inequality and the fact that (A2 + B2)= 1

n nnEN

In this way we can choose the span L in advance so as to make the

error in calculating M1  as small as required.

13. Comparison with the moving average approach

The most popular simulation technique used in recent times has been the

moving average approach (see e.g. Journel (1974, Bily and Bukoveczky (1976)

and Journel and Huijbregts (1978)). A brief (and somewhat improved) presentat-

ion follows.

The method simulates a real, zero-mean Gaussian stationary stochastic

process X(t) with given covariance function R(t) at a discrete sample of

points {tn: nE(--, +-} distant 1/2W from each other. Let X(tn) = Xn and

R(t n ) rn . The simulation attempts to represent xn as a moving average of

independent standard normal variables {V ,in the form

Xn  = CV (4)

" 7 , '?:'??¢'? ' g"; ; ¢;Z,"'" >"- . "."." -4"." '&'." :<- + '.'".'-.-' "-"r" ".v"--.-
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where the C are coefficients to be determined. It turns out to ben L

convenient to set

C =C. '-n n

Then rn =E{X = r C r+n

Let now fD(w) = r exp(iwn) (which is necessarily 0 0) be the
n=o

power spectrum of Xn

and let

+cc

C() = Y C exp(iOwn).
n =-con

Then

fD(w) = C(w)CC-w).

However, from the assumption Cn = C n, we conclude that

C(w) = C(-W) = 2 C coscwn.
n=l

It follows that C(w) can be taken as /fD( ), and we then have, from well-

known Fourier results

Tr

c = 7 f cos wn dw, n : 0,1,2,... (5)

With the Cn calculated from (5), Xn given by (4) has a covariance

function exactly equal to that of X(t) at all points tn.

2~ 22

Note that the variance of Xn is given by R(O) = C2 = C2 + 2 C2.n
nm- n=l

.:,, .. ,'-, .... . ,......... ... ... .. : ............-.:.-..... .. .-. ,..... ... ........ ,--..-,..-...... -...
~p .~I
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To obtain an approximation to Xn  involving only a finite number of

random variables we choose a subset of integers N such that

nEN n n n
n N

where N is the complement of N in the set of non-negative integers.

We can then write

X =W +W
n n n

where

adWn: = . CXrEN r n-r

,, and W = _C X
N' n r n-r

rFN

For fixed n, Wn and W are independent. However for n m Wn andn nn

Wm are correlated, unlike the decomposition of trigonometric polynomials.

This approach is in a certain sense the dual of the approach advocated in this

paper, in that the trigonometric polynomial represents the original process

over a finite time interval (-T, +T), resulting in the spectrum being dis-

crete, while in the moving average process the time parameter is discrete,

resulting in a spectrum which is band-limited.

One advantage of the moving average process is that the simulation can be

continued for as long an interval of time as required, making it particularly

suitable for real-time simulation.

On the other hand, the trigonometric polynomial offers the advantage of

an analytical expression in closed form, which makes it eminently suitable

for applications where e.g. differentiation and integration of the process

"'J A
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must be performed. An example of the power of this approach has been given

in Section 12. No similar deterministic error estimation can be performed

with the moving average process.

But the main advantage of the trigonometric polynomial approach lies in

its ability to deal with narrow band processes. A perusal of Section 5 shows

that for fixed T, the number of terms of the polynomial decreases when the
band becomes narrower. On the other hand, when the band becomes narrower, the

covariance function decays more slowly, and more terms are needed in the moving.4

average approach.

This property of the moving average can be illustrated by calculating the

CnS for the example given in Section 5. For points distant 2W, we find

that approximately

C0 = C0 {exp(--on ))cosnp0 ,

where a0 
=  /2o/2W and PO = X 0 /2W.

It is clear that the smaller a, the larger the number of required coefficients.
iN

For example, it we take 2W = 200 (a number which was actually used in

Section 9) and o = 27T, it turns out that we need at least 80 coefficients

(as compared with 20 coefficients for the trigonometric polynomial), and, of

V. course, for each simulation of X(t) for 200 points, we need 200 + (80 x 2)

= 360 simulations of independent standard normal variables, as against onlyJ.

40 for the trigonometric polynomial. It is true that for the trigonometric

polynomial we need to calculate a large number of sine and cosine values, but

these can be efficiently calculated by using Fast Fourier Transform techniques.

A list of approximate values of Cn is given in Table 2 for the values

qiven in the above DaraaraDh.

A" - " " : . , . " ' , " . , - , , ". "
-% - - ft - , t *% f. . " .
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TABLE 2

Moving Average Coefficients for X(t)

C 0  = 0.2238

n cn n c

10 -0.1434 60 2.72 x 10-8

20 -9.856 x 1-970 -0.001 22

30 0.0651 80 3.53 x104

40 -0.0461 90 -8.30 x 10-

50 0.0135 100 -3.70 x 10-8

N pNi1 ,I V
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