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Abstract

The asymptotic properties of extensions of the type of distributed or

decentralized stochastic approximation proposed i~nfl are developed. Such

algorithms have numerous potential applications in decentralized estimation,

detection and adaptive control, or in decentralized Monte Carlo simulation

for system optimization (where they can exploit the possibilities of parallel

processing). The structure involves several isolated processors (recursive

algorithms) who communicate to each other asynchronously and at random

intervals. The asymptotic (small gain) properties are derived. The

communication intervals need not be strictly bounded and they and the

system noise can depend on the (communicating) system state. State space

constraints are also handled. In many applications, the dynamical terms arc

merely indicator functions, or have other types of discontinuities. The

'typical'~ such case is also treated, as is (he case where there is noise in the

communication. The linear stochastic differential equation satisfied by the

(interpolated) asymptotic normalized error sequence is derived, and issued to

compare alternative algorithms and communication strategies. Weak

convergence methods provide the basic tools.
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I. Introduction

In [1], [2], Tsitsiklis proposed a very interesting model for a

decentralized (distributed) recursive algorithm of the stochastic

approximation (SA) type, with only asynchronous communications between

the separate processors, and developed a scheme for proving w.p.1

convergence. That work appears to be the first of its type - for the

decentralized SA problem. Such distributed algorithms are of rapidly

growing interest. Various potential applications in adaptive control,

estimation and in communcation networks were proposed; e.g., several

processors might do an identification of the parameters of an identical

linear system (but with different inputs) and occasionally (asynchronously)

r?.. share their latest estimates, or several processors might do monte carlo

simulations of the SA type to locate the minimum of a regression function,

and occasionaly share their estimates. There are two main purposes for

algorithms of the type discussed here and in [1]: to exploit the

opportunities provided by parallel processing for monte-carlo methods of

system optimization or evaluation; situations in which there are physically

separate systems (estimators, trackers, controllers) which act on or follow

essentially the same physical system - and which occasionally communicate

to take advantage of the 'others' information.

The assumptions in [1] were fairly strong with respect to the great

variety of potential applications, and the method of analysis required

numerous detailed estimates. We analyze essentially the same algorithm here.

In addition to getting the basic convergence results, our methods can handle

%L
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the constrained (projected) algorithm, the case where the communication

intervals and noise depend on the state, the general rate of convergence

problem, and the case where there is communication noise. instead of

letting the 'gain' parameter go to zero as n - - (as frequently done in

classical SA) we keep it a constant, and work with convergence in the scnse

of weak convergence. There are several reasons for this. First, when

working with practical systems the chosen gains almost never go to zero,

since one usually wants an algorithm that can track slow changes and is

robust with respect to large bursts of noise. Our method can be adapted to

get weak and even w.p.l convergence when the gains do go to zero, and we

comment on this in Section 8. Even if the gains do go to zero, w.p.l

convergence is not much more useful or interesting than weak convergence.

Weak convergence methods locate the points where the process spends most

time (asymptotically), and as time goes to ,an increasing (to one)

proportion of time is spent arbitrarily close to such points. Then, one can

often use the powerful 'large deviations' methods to show, under very broad

conditions, that ultimate escape from a small neighborhood of such points is

* impossible (when the gains go to zero) [3], [4]. Alternatively, once the weak

convergence methods have located the 'stable points', perturbed Liapunov

methods such as that in [10] can often be used to get w.p.l conv'ergence.

One of the key questions in the analysis of any algorithm is the rate of

convergence (the asymptotic normalized variance), and the analysis of the

'rate' is almost always done via weak convergence methods. General

background and applications in many areas are in [6] to [8]. Weak

jib.
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convergence methods are also much easier to use than the standard w.p.l

oriented methods; in many cases, a valid result can be obtained almost by

inspection. This and the wide variety of problems which can be handled

make it a more widely useful tool than 'w.p.1' methods. The symbol 0~ is

used to denote weak convergence, and some definitions and properties of

this convergence are stated in the Appendix 1.

The methods used here are quite efficient. Problems with potentially

unbounded intercommunication intervals (e.g., where the interval is

geometrically distributed) can be handled. We can also treat important cases

where the dynamics are discontinuous or where the communication intervals

and system noise depend on the system state, or where there are state space

constraints. The case of discontinuous dynamics is of considerable

importance in applications: often an estimate increases or decreases by a

fixed amount e - depending simply on whether a certain event occurred or

not. Similarly, for state dependent communication times; a processor might

want to communicate if either a given amount of time has passed since the

last communication or if the state of the processor has changed by more than

a given amount. In many applications (e.g., the decentralized form of the

automata routing problem in [5]) the noise is naturally state dependent.

A theory of 'rate of convergence' is also developed, which allows an

objective comparison among alternative algorithms. Using this, in Sections 6

and 7, we comment on and compare the behavior of the algorithm with the

centralized and various 'deterministically' decentralized forms, in order to
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get a better understanding of its behavior, and to see what are the preferable

communication strategies. We can also allow 'noise' in the communication,

such as might be the case if the processors were physically separated and

communicated via a noisy radio link. See Section 7.

The basic algorithm will be described next. Section 2 contains a

'technical' estimate which will be useful in the sequel. Section 3 deals with

the basic weak convergence result in the function spaces D[O, *) or C[O,w) (see

Appendix for the definitions), and shows that a suitable continuous time

interpolation X(-) of the iterates {X,) converges weakly to the solution of a

certain ODE as the gain parameter e -, 0. The state dependent noise/inter-

communication time case and the discontinuous dynamics case are also

treated there. Section 4 concerns a 'projection' algorithm to handle state

space constraints. Here, the limit satisfies a 'projected' ODE. The

asymptotics of XE(t,+.) are dealt with in Section 5, where t. -C as E -* 0.

This yields the ultimately desired result concerning the location of the

iterates for large n and small E. Finally, the rate of convergence and

comparison with a centralized processor is developed in SeLion 6 and 7. A

discussion of some of the probable advantages and uses of the algorithm

appears in Section 7. Section 8 contains a comment on the case where E is

replaced by En - 0.

The basic algorithm. We assume that there are q parallel processors,

each with a state variable of dimension r. Let X I denote the state of

processor i at time n and define X n = (X ., X). The symbol X generally

k., denotes a qr-vector which we partition as X = (X', .... Xq), where each X' is
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an r-vector. The 'observation' of processor i at time n is b'(X'i,), where

is the 'noise'. Write n = (tl, ..., q) = (t, ... , q), and B(X,t) = (b'(X',t'),

bq(Xq,tq)). Write bi(X', t) = (b'(Xi,) ..., b(X i t)), the bk(.) being scalar

valued. (All the above vectors are column vectors.) For vectors X i in E', we

often write simply x.

Let {An} be a sequence of (possibly random) qr x qr matrices, where A

can be written in the form

a 1(n) • aqi(n)
An = I

[a q(n) . . aqq(n)

where each aij(n) is a diagonal r x r matrix with non-negative entries and

Jiai,(n) = 'r the identity matrix in E r, Euclidean r-space (i.e., the 'matrix

valued' rows of An are 'convexifying'). Suppose that there is a scalar a > 0

such that ai ) aI r and, for i 0 j, either aij(n) = 0 or else aij(n) ). %1 r.

The algorithm is

Xn =E a..(n)XJ + Eb'(nn)(1) n+1 j aji

Xn+1 = AnX n + EB(Xn,t).

At time n, processor i (i = 1,...,q) decides whether or not to communicate the

current value of its state to any other processor and takes an observation

b'(X i , t'). If there is no communication to processor i, then we set aii(n) =

and a.(n) = 0 for j 0 i, and the iteration (for processor i at time n) is of the

standard SA type: X' =V + Eb(X',,). If there are any communicationsn+1 nn

to processor i from some processors j ; i at time n, then for such

,i*

d"
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communicating processors j, aji(n) ) aolr and the updated state Xi+1 for

processor i is a convex combination of X' and of the states XJ
n n

communicated to it, added to its own SA increment Eb'(Xn,kn). The

requirement that either (for j 0 i) aji(n) ) aoIr or aji(n) = 0 simply means that

if processor j communicates to processor i at time n, processor i can choose

to ignore the communication, but if it incorporates the received Xi into its
n

own state, it must do so in a 'non-trivial' way. For notational simplicity, we

omit the symbol for the E-dependence of X n.

In [I], the algorithm was slightly more complex, since the dimensions of

the X' were not necessarily the same and a somewhat more complicated block
structure of A was used. But, with no additional mathematical work

n

(although with a more complex notation), such extensions can readily be

incorporated into our framework. It should be clear from the development,

that many related algorithms and conditions can be treated by essentially

identical methods.

iW
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2. Some Preparatory Estimates

This section is devoted to obtaining the rate of convergence of the

product An...Ak as n - - . We use the assumption

C2.1. Let F n be an increasing sequence of a-algebras such that Fn measures

(X i, i < n, Ei, Ail i < n}. There are a scalar po > 0 and integer m o such that

(2.1) PF (processor i communicates to processor j on [n,n+mo)} > Po
n

for all n and i,j, and i j.

Remark. In [1], it was assumed that there is an m. such that po = 1.

(C2.1) covers the case where at each instant each processor flips a coin to

decide whether to communicate or not. More generally, there often is a

process (An) such that (Ail ki, i < n, Xi, i , n) is Markov, and An is a

component of A . With this model, if F denotes the minimal a-algebran rn

which measures (Ail ki, i < n, Xi, i < n}, then (C2.1) covers many interesting

cases where the inter-communication intervals are not bounded a priori --

and might be 'state' dependent. The condition seems to be unrestrictive.

For n ) k, define D(nlk) = An...Ak and set 4(nln+l) = Iqr , the identity

matrix in Eqr

Lemma 2.1. Assume (C2.1) and the conditions on (An} in Section 1.

Then Dk = limnl(njk) exists w.p.1 and for each i , r, all the rows i, i+r.

i+qr-r of Dk are equal. Also

(2.1a) EI (njk) - 0 - 0 geometrically as n - k -

-'.#" (2.lb) EF I (nlk) - l-' 0 geometrically as n - k -"k1

(,0 ga

... 1. . 7-
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uniformly in k and w (w.p.l). Also EFnO(nlk) converges to 0 k geometrically,

uniformly in wo, k, U n - **

Remark. The fact that the limit 0k exists is almost obvious if we look at

the (An) as transition matrices for a Markov chain.

Proof. The proofs of (2.1a) and (2.1b) are essentially the same and only

(2.1a) will be proved. We will evaluate EI0(nik) - OkI by a slight variation of

the proof of [1, Lemma 5.2.1]. Owing to the block diagonal structure of the

An, in calculating the product 4(njk), the r sets of rows (i, i+r, ..., i+qr-r), i ,

r, do not interact and we can (and will) let r = I without loss of generality.

The geometric convergence of 4(nlk) to (V was proved in [1, Lemma 5.2.1]

when po = 1 (see remark below (2.4)). By (C2.1), there are a, > 0 and an

increasing sequence of random times {Ni) such that the components of

0(N 2i+llN 2i) are all ) cx. This and the convergence result for po = I implies

that 0(nlk) converges w.p.l to some matrix 0 k' as n - - . All the rows of such

a limit must be equal, and the entries of each row must sum to unity. Let

Ok(1)' .... Ik(q) denote the scalar elements of any row of Dk' and let the

vectors v, -, v span E q, and define e = (1, 1, ... , I). Define c(x) = Ek(i)xi

where x .(x,..., x ) Both e and x are column vectors. Then 4kx = c(x)e.

All norms here and elsewhere are in the I sense.

For a matrix M,

IMI = sup IMxI < E IMvi[.

Thus, we need only show, for any vector x, that EIcP(nlk)x - c(x)el - 0

geometrically. Define x(nlk) = 4(nlk)x. Let c(nlk) denote the minimum value

16 L
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of the components of x(nlk). We can write x(nlk) = y(nlk) + c(nlk)e, where all

the components of y(nlk) are non-negative and

(2.2) EI(nlk)x - c(x)el 4 Ely(nlk)l + EIc(x) - c(nlk)l.

By the 'convexification' properties of the An,

(2.3a) ly(n + llk)l ( ly(nlk)l

(2.3b) c(nlk) 4, c(n + Ilk) 4 c(nlk) + ly(nlk)l.

By (C2.1), there is an ao > 0 such that w.p. po (conditioned on F) all the

elements of 0(n + moln) are ao. This, together with the 'convexification'

property of the A n implies that

(2.4) Ely(n + molk)l 4 (1 - aop)Ely(nlk)l.

(If po = 1, then drop the E in (2.4), and (2.3), (2.4) yield w.p.l convergence.)

The asserted geometric convergence is a consequence of (2.3), (2.4) and the

w.p.l convergence of 4(nlk) (hence of c(nlk) to c(x)). The last sentence of the

theorem follows by a similar argument. Q.E.D.

Remark on Other Cases. One can readily work with the case where all'

of the processors do not necessarily communicate with each other. We

comment only on one special case. Let processors 1, ..., q, communicate to

each other but not to the other processors, and let processors q1+l, ..., q,

communicate only to processors 1, ..., q, but not to each other. Then 4V(nlk)

converges geometrically to a matrix (Pk which takes the form

' N .
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Mql+l,1 q

(P 0 Mk Mk
kql+l'ql qql

Ir 0

0 I

T

The i, i+r, .... rows of the upper right hand block are not necessarily equal.
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3. Convergence: The Limit ODE

Nonstate Devendent {Antn} We will work with several sets of

assumptions. First, the basic convergence theorem will be proved when

the sequences {Ad} and (td are non state-dependent and independent of

each other, and then the restrictions will be weakened. Let Ek denote

expectation, conditioned on {Xi, i 4 n, Ai, ki, i < n). We will use subsets

of the following assumptions. Theorem 3.1 is the basic weak convergence

theorem, from which most other results will follow. The conditions do

not seem to be restrictive.

(C3.1) (Ak) and {W are independent of each other.

(C3.2) B(X,k) = Bo(Xt) + B(X)k, where the Bi(-) are continuous, (B(-,k),

uniformly in ), ( ) is a seauence of bounded random variables and {"k} is

a sequence with zero mean and bounded 4th moment.

(C3.3) There is a continuous function B(X) - (b1 (X1), ..., bq(Xq)) such that

EkB(X,t n) - B(X) - 0, n  0

in probability for each X, as n - k -. =

(C3.4) There are a matrix 0 and a seauence mE -* such that Em,

0 and

E Y En~k - 0 0, uniformly in n.M E  n

Remark and Definition. Under the conditions of Lemma 2.1, i must

have the form

~I
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weethe Oiare diagonal matrices with diagonal denoted by (Oil,.Oir)

and E i ~I. For any vector X we have the form O~X =(y, ... , y) and

0 kX = (1k. Yk for some y and ki n E'. L et 0 denote the row of r x

r matrices [OP.*... 0q]. Lut B(x) denote B(x,x,...x), and B(x,k) dcnotc

B(x,x,., .

C3.5. The ODE (3.1) has a unigue solution for each initial condition.

X= O11bl(x) + + + l

(3.1) 0 B(x).

C3.3'1. There are a continuous B(-) and, m, - such that Em E 6
E -

and

i~~ ~~ n+EE XE X
m E n

in probability for each X, uniformly in n.

C3.4 1. There is a matrix 0 such that, qj n - k

EIE k~ - 0

Let n ebe a sequence tending to - and such that /TWn,- 0, and, for n

n.,

sup P(I''k + n~lk) 2) 4 2.
k Ok
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There is such a sequence, by Lemma 2.1. In fact, we can use n. = O(log 1/E).

Define

E n -1

X 0 = 0(nE1O)X o + E ) k+1B(Xk,kk)
0

and for t ) 0 define XE(-) by X'(t) = X n for t E [(n-n,)e, (n-n 6 +l)E). Writc

XE(.) = (XE, (.) ... E xlq(.)). It will turn out that, for any initial

conditions X'. the vectors Xi, i 4 q, rapidly come close together (due to the

communication and convexification). This leads to an (asymptotic in 6)

jump in the process Xlt/. ] at t = 0. For this reason, we start XE(-) slightly

away (n6 steps) from the origin of the (X d process.

Theorem 3.1. Assume (C2.1), the conditions on {An} in Section 1, and

(C3.1), (C3.2), (C3.5) and either (C3.3), (C3.4) 2r (C3.3'), (C3.4'). Then XE(-)

is tight in D[O,*) and converges weakly to a orocess X(-) = (x(.), ..., x(.)),

where x(.) satisfies (3.1) with initial condition xo, and X(O) = limEX (x o ,

S.., X0 ).

Proof. Part I. The proofs are essentially the same for the pairs (C3.3),

(C3.4) and (C3.3'). (C3.4') and we work only with the first pair. We often

use Schwarz' inequality and the inequality (for a ) 0), Ell(nlk) -0kl I+ a <

constant .E11>(nlk) - 0 k"l without specific mention. Iterating (1.1) and letting n

n. yields

n -1

Xn+ 1 = 0(n, I0)X, + 6 0 4(nlk+l)B(Xk,t k ) + E E n(nlk+l)B(Xk,[k)
0 nE

(3.2) = X E + E t k+lB(Xk,k) + EOn + [(nlO) 4(nEIO)]X o ,
n

.,-
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where

n= 0[(nlk+l) - 'k+l]B(Xktk).

For the purposes of the weak convergence proof, we can assume (w.l.o.g.)

that (Xk} is bounded by simply truncating the dynamical terms; i.e., changing

B( - ) so that it is zero for large JXI. If the theorem is true for each such

truncation, then by the uniqueness assumption (C3.5), it is true as stated.

Henceforth we assume this boundedness.

Part 2.. Next, we show that supe,nEEn13 < . All norms are in the S,

sense. We have

• EI~~~~~~n~E -63 constant- l(l~ )-ill(l~ ) ~l (l~ )-kl
i,j,k

J1 + RilIkk

• By Holder's inequality, the summand is bounded above by

E1/1 2 [I[(nli+ 1 )--i+1 1 2 . E1 / 121(nlj+ 1 )--<'+XI1 2 -E1/1214,(nlk+ 1)--k+ 11]12 .

• 1+F3/41 -l4. E /4 -14 3/41" 14].

By (C3.2) and the geometric convergence in Lemma 2.1 and the boundedness

of D(nli) and Oi, there is a d E [0,1) such that this term is bounded above by

(constant) dn-idn-jdn - k. Thus supnEI0n 13 < From this and (3.2) (and the

truncation of B(.,-))

sup EJX - Xn1'/, 2 <E , n n +1

and X Xn+1 - x nl/E, n n., 6} is uniformly integrable. Thus, {XE(.)) is tight

in D[0,*) and all limit paths are Lipschitz continuous (in t).

% P ,

- ,'5rZ.Z
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Part 3 We fix and work with a weakly convergent subsequence of

(XE(-)}, also indexed by E, and with limit denoted by X(.). Skorokod

imbedding (see Appendix) will be used where useful, without specific

mention. Thus, we can assume, where needed, that XE(.) -. X(-) uniformly

on bounded time intervals, w.p.l.

We will show, for each real valued function f(.) with compact support

and continuous second derivatives, that the M(.) defined by

(3.3) M t) = f(X(t)) - f(X(0)) - fo fx(X(s))D B(X(s))ds

is a (continuous) martingale. Since M/(.) is a Lipschitz continuous

martingale (since X(.) is Lipschitz continuous), it is a constant. Thus, since

M O) = 0, we have Mit) = 0 or, equivalently, X = 0 B(X). By the properties

of 4>k for each i < r, the i, i+r, ..., i+qr - r rows of 4 are equal. Thus all

r-vector components of the limit X(-) must be equal, i.e., X(.) is of the form

(x(.) .... x( .)), for x(t) E Er. This and X = 0 B(X) implies that x(.) satisfies

(3.1).

We need only show the martingale property. To do this, we need only

show that for any integer p and continuous bounded h(.) and ti <' t, i < p, s

> 0,

t+8 - -

(3.4) Eh(X(ti), i < p)[f(X(t+s) - f(X(t)) - f t fk(X(u))D B(X(u))du] = 0.

To simplify the notation (and w.l.o.g.), let t and s be integral multiples

of EmE = bE (see (C3.4) for the definition of mE) and define the index set le

(n: InmE + nE , n < inmE + mE + nE}. By Taylor's Theorem and (3.2),

% 
-
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f(XE(t+s)) - f(XE(t)) - t <[f(Xi +M +n ) - +n

(3.5)

Etn fE 1k+lB(Xk, k) + error terms,
t(16 <t+s 1 E kEIk

where the error term is of the order of the sum of (all norms are in the J,

sense)

E Y rE+nE1, E2  1 E 12, ER M , I Jqm,+n 1,

I 0(im E + mE + nEI0) - 4 (nEIO)I.IXO,
I C E

E E 2(l + 1 12),
k t

where the sums are over all I such that t ( 1B < t + s and k is summed

over t <, Ek -En e < t + s. The mean values of the error terms go to zero as E
' -0.

By (3.5),

lim Eh(XE(ti), i p p)[f(XE(t+s)) - f(XE(t))] =
(3.6) E

lim Eh(XE(ti), i. p)[ tU fX (Xim +n ) F-C'k+lB(Xk, tk).
E t 5 E < t+ 5 E E k I I

We now rearrange the terms in a more convenient way. Define

B EBI E= k E k+lB(Xklk)

and define the function BE(.) by

BE(t) = fX(XE )E f E for I6 '< t < is +X IE+nImE+nE REE

Since XE(ti), i . p, is measurable on the a-algebra Fim E+nE for 16E > t (3.6)

can be rewritten as
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lim Eh(X6 (ti), i < p) 6 X f (X m B 1
E16t41b 6E<t+13 I +n6 E

(3.7)ts (nlir Eh(X 6 (ti), i 4 Of BE(u)du.
E t

If

(3.8) B6(u) i fk(X(u))t B(X(u))

in probability for almost all u, then the second limit in (3.7) would be

p t+ S --(~ u ) - X u ) .Eh(X(ti), i < o f : u ) BX u ) u"t

Using this and take limits in (3.6) yields the desired result (3.4), and we will

be done. Thus, we need only show (3,8).

Fix u and for E > 0, define 16 by u E [I,6E, IE6 E + $e). Then we need

to show that

1 p-
(3.9) I E +nC fX(Xk)'k+,B(Xk,k) -. f1(X(u))(P 13(X(U)).

By (C3.2) (and the truncation), we can replace the X k in (3.9) by X EmE +n

without changing the limit. Using this and the independence assumption

(C3.), we can rewrite (3.9) as

(3.10) - E fx(X1 Im +n )E1IM +n6  k+lE IM +n B(X1IM +nkmE kE E E E nE  +E EE nBXEmE nE k

+ error term,

where the error term goes to zero in the mean. By the convergence of X ()

to X( .) and using i E - u, and (C3.3), (C3.4), we gLt that (3.10) converges in

the mean to the right side of (3.9) as E -. 0 and the proof is concluded. (The

w ~~~ -%.- -- i -
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intermediate' details in the last part of the proof are very similar to those in

the 'centralized' case. See [8, Chapter 5.2] or [9].). Q.E.D.

State Dependent (A n } and {tn } and/or Discontinuous Dynamics. The state

dependent 'communication' and noise is most conveniently modeled by a

'Markov' dependence. This will allow {An) and {n) to depend on the state in

a variety of ways: A can depend (statistically) on recent events or on

changes in the Xn-sequence greater than a given magnitude over some time

interval, or on time elapsed since recent communications or on the 'levels' of

recent communications (i.e., the degree of 'convexification' or incorporation

of rcceived data into ones own estimate can depend on the nature of or

timing of recent receptions, transmissions, etc.). To be precise, we suppose

that there is a bounded sequence of random variables (An) such that An is a

component of A n and, for each E > 0, (X n, "An-i' kn-) is a Markov process

with a homogeneous transition function. The A can incorporate other data:

e.g., time elapsed since last reception, transmission, etc. The case where some

components of B(.,-) are merely indicator functions (hence, not continuous

functions) is of particular importance in applications. Such

'Markovianizations' seem to be quite natural for many problems. It might be

hard to explicitly evaluate the ODE's here, but the character of the results is

clear and precisely what is wanted.

Example. For one example of the appearance of state dependent noise,

see the 'routing' problem in [5]. In that example, inputs to a service or

communication system occur at random, and the service times are random

(correlated or not). The parameter x (the state) determines the probability
.N

,," ,qd' € ." ,. j 4,.,.. . . j * ., .°.° ,, . °... .#..0 , . ,,,* -° ° . " .• -. ° .-. -... . . . . . .. ._.-.... . . . . . . . . . . . ..-. , "... . .... •.. .- .- . ,-
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that incoming events are routed along particular channels. The effective

noise is a consequence of the queue length or occupancy level of each

channel; it's statistics are dependent on the routing parameter. A Markov

dependence model was appropriate there. The routing parameter at time n

increased or decreased by E -- depending on whether or not certain events

occured at time n; hence the dynamics were discontinuous. The model used

in this section includes 'decentralized' generalizations of such problems.

Assume that the marginal one-step transition function is of the product

(conditionally independent) form, for some PC and PN

(3.11) P{AI E B , 6 6 B2IXI,Ao,to) = PC(A E BIXI,Ao}PN({ 1 E BI{Xj, O),

(C denotes 'communication', N denotes 'noise'). The Pc and PN will not

depend on c. We can allow some E-dependence -- but, in many applications,

E is merely a step size parameter and does not affect the distribution of the

A An or t other than via the values of the Xn (e.g., as in the above

example). The product from (3.11) is a natural generalization of (C3.1).

Here the noise and intercommunication intervals are independent, conditional

on the state. For each fixed X, the P and P in (3.11) can be considered to

be one-step transition functions for 'fixed X' Markov chains which we
denote by (An(X)). (kn(X)). Let Pc{5A,n,.IX) and PN{k,n,.IX) denote the

associated n-step transition functions. Then P,{A,I,-IX) = Pc(A 1  -IAo =

A,X), etc. Let EX and EX denote the associated expectations.
C N
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Several assumptions will now be given, followed by some remarks

concerning extensions. The assumptions are phrased so as to cover many

potcntiul applications.

(C3.6) EX[An...AIIA0 = A] Fn(A,X) is continuous in(,x).

(C3.7) For each bounded and continuous functions fi( .), i = 1.2.

ffl(tlPN(t,I,d tIX) and ff 2(AI)Pc(A,I,dAIX) are continuous in ( ,X) and

(A,X) respectivelv.

(C3.8) {(} is bounded.

(C3.9) For each X of the form X - (x,x,...,x), let the pair of processes

(An(X),kn(X)} associated with the n-step transition function

PC{(A,n,.IX)PN( ,n,.IX} have a unique invariant measure and which is of the

product form Pl{-)P'{-}.
C -

(C3.10) fB(X,k 1 )P({,l,dt1 IX } is continuous in (X,k).

Remark. Since the two fixed X-processes are independent, the product

form in (3.9) will hold if the processes are aperiodic. Under the conditions

of Lemma 2.1, the Fn(A,X) in (C3.6) converge geometrically (uniformly in

A,X) to a function C( ,X), which must be continuous under (C3.6). By the

discussion associated with Theorem 3.1, we see that c(A,X) has the form

= =

OIAX .O(,) ((A,X)

wkhere O(A,X) is a diagonal (rxr) matrix. Write 01(A,X) =diag[-, 1(A,X).

I .-.. .
ajdJ 4* t ' ~ "*'."* .' .'~4.
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If X takes the form X = (x,x,....x) for x E Er, we simply might write x

for X.

(C3.11) Thc ODE (3.12) has a uniquc solution for each initial condition

(analogous to (3.1) -- the A and " are simply averaged out with respect to the

invariant measure)

x, = " i(A,x)P'( d A) J bi(x, ,j)Px(d ti)I. - .. .- ,

(3.12) := Dx(u)B(x(u))
Xr~ ~(A = " rx) P ' } A bj(x,tj)P'(d ,j)

Xr E O C r

where

(x) = r (Ax)P-(dA), B(x) J B(x,,)P'(d,).

Write

$(x)

-(x =()

Under (C3.7), (C3.9) and (C3.10), the right side of (3.12) is continuous.

Remarks on the Assumptions. In many applications, A takes only a

finite number of values. Then the appropriate topology is the discrete

topology and the A-continuity required in (C3.6) and (C3.7) always holds --

since then all functions of A are continuous. The ]-step smoothing

assumption in (C3.10) can be replaced by a k-step smoothing assumption --

and Theorem 3.2 will still hold. Since V(A,X) is continuous (see above

remark), a (D -analog of (C3.10) is not needed. In (3.12) we arc simply

averaging the dynamics with respect to the invariant measures. If the

Ai

- . - .~ - ... . . . .
S'v-,-.-. . . .
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invariant measure is not unique, then the right side of (3.12) is set valued

and P' and P' range over all the invariant measures. We use (C3.8) here to

avoid some details. Extensions to cover typical unbounded {n) cases are

possible via essentially the same method. To see how this might be done, see

the proof for the 'centralized' case in [8, Chapter 5.3] or in [9].

Theorem 3.2. Assume (C2.1), the conditions on (An) in Section 1, (C3.2)

(without the k comnonent) and (C3.6) to (C3.10). Then {X"(.)) is tight in

D[O,-) and converges weakly to X(-) = (x(.), ..., x(.)), where x(-) satisfies

(3.12) and X(O) = (x(O), ..., x(O)) = 4X o.

Proof. (XE(.)} is tight and all limits are Lipschitz continuous for

the same reasons as in Theorem 3.1. Let E index a weakly convergent

subsequence with limit denoted by X(.). As in Theorem 3.1, X(.) has

the form X(-) = (x(.), ..., x(.)). Owing to the Markov assumption, Ek

denotes conditioning on (Xk, kl,Akl). By the method of proof of

Theorem 3.1, we need only show that the left side of (3.9) converges in

probability to fk(X(u))D(X(u))B(X(u)) for X(u) of the form X(u) = (x(u),

.... x(u)). The f term does not play an important role and we discard it

henceforth.

We use the 'truncation' method and notation discussed in Theorem 3.1.

Thus, we can suppose that B(.,.) and (Xn} are bounded. For each v, rewrite

(3.9) as (using the conditional independence implied by (3.11))

...1 ."-.' -
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E
H E  E E M I E+n Ekk+lEkB(Xk, k)mE kEIIE E

Im : kC EmE I +n, k(Ak+V "" k+l) k(Xkltk) +  V

where EIQI - 0 uniformly in c, as v -. c, by Lemma 2.1.

We next estimate Ek+IAk+v...A k+1. All norms are in the I. sense.

Since the (Xn) and (An) lie in a compact set, the function of SX defined

by

6i(15XI) = sup IFi(A,X) - F i(',X + 5X)I

X,X

can be supposed to go to zero as IXI -. 0. We have EnA n = F ( 1 ,Xn) =

F(An_I,Xn_1 ) + a 1(An- 1,Xn-1,Xn) where IA(An- 1,X n-,X n)l 6 1(lXn - Xn-1I).

Next we can write EnIAnAn_ = En 1 (EnAn)An 1 - En.FI(An.,X. 1)An. +

AI(An-lXn-lXn)A n-r  Note that

(3.14) E 1F 1(A. ,Xn.)A n.I F2(A. 2,Xn. 1) = Ecn-' AnAn 1

which is just the expectation for the 2-step fixed X-process with X fixed at

X n- Using this and IAnI = 1, we have

(3.15) En 1 AnA. 1 = F2(A 2,Xn 2) + error terms,

where

Jerror termsj = I(F 2(A 2,xn.1) - F2(A , 2 ,Xn. 2 )) + AI(An_1,Xn_,Xn)An-1 1

5 2(IXn 1 - Xn. 2 ) + B1(IX n  Xn-1)•

Continuing in this way, we get

. ... " " ' " "' . "" 4 ,. ' -or , . , , ' . . , . - ' " , -- R6- .7. , .
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(3.15) Ek+iAk+v . . . Ak+l = Fv(A k,Xk) + TE 'V

where

jT',VI < i(IXV+k-i+l - XV+k-iJ)
i=1

and EIT"vI E 0 for each v, uniformly in k, owing to the convergence of the

xI(.).

Putting the estimate (3.16) into (3.13) yields that

H _ 1 E. E + F(Ak'Xk)B(Xktk)
mE kEI EmEEnE

Q m kEI M E +n, k 'VB(Xktk)"
E

The last two right hand terms in (3.17) go to zero in mean as E -. 0 and

then v -. * , and can be neglected. The sequence Fv(A,X) converges

uniformly to the continuous function V(A,X) as v - a. Thus, the limit

(as E -'0, v of the first term on the right side of (3.16) is the same

if O(A,X) replaces Fv(A,X).

Now, we are in a position to use the result of [8, Chapter 5.3] or [9]. By

the arguments (for the Markov model) in either of these references (which.

.. when adapted to our current situation, requires the continuity of ¢(,), and

(C3.7), (C3.8), (C3.10)) and the fact that XE(.) -" X(.), we have

- E E (AkXk)B(Xkk)
m E kEIi Ern 2 +n 6

(3.18)-, f (A,X(u))B(X(u), )mx(u) (dAd),

A



-25-

where mx(.) is an invariant measure for the process {An(X),tn(X)). Since

*X(u) (x(u), ..., x(u)), the uniqueness and product form of the invariant

measue in(C3.9) ilsta Xdd) x
measure in (C3.9) yields that mx tu= P-(dA).PN(dt). Thus the right side

of (3.18) equals

D(x(u))B(x(u)) = f 0)(Ax(u))Px(u)(dA) " f B(x(u), )Px(u)(dk),

and the proof is concluded. Q.E.D.

- -- X.. ,



-26-

4. State Space Constraints: A Projection Algorithm

In many applications, it is desired to confine the iterates to a

compact set L, and if they ever leave L, the algorithm will project them

back onto L. Such algorithms are ubiquitous in applications, even if not

explicitly defined or assumed; e.g., the ambiguous notion of 'monitoring'

in adaptive control which implicitly assumes some sort of projection. We

treat two special but useful, cases.

Assumptions and Problem Formulation

(C4.1) Let gi(x), i , a, be real valued continuously differentiable

functions on E' and define L = (x: gi(x) , 0, i < a). Let L be bounded,

convex, and the closure of its interior. Ail.o (w.l.o.g) assume that the

gradient gix(x) is not zero if gi(x) = 0.

Let n7L(y) denote the (unique) closest point on L to y c E'. We use

the projected form of algorithm (1.1):

Xn+i = AnXn + eb(Xn'kn)

(4.1)

X1 = 7n+i = L(Xrn+l) i , q.

Thus, each processor projects independently and the constraint set is the

same for each. We now set the problem up so that previous results can be

used.

Define P n = (Pi .... pq), where p n = [AX+l - Xn+l]/E and define = +

En[ (nlk+l)-qk+iPk. Then for n nE (nE was defined below (C3.4'))

0 +]k Te o
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0 *k+IB(Xktk) + 'k+lPk + E 4')f(42) n+1 = X 0 +~~~(X, + E~(4.2)n n

+ [(nO) - (nEIO)IX o ,

%%here

X 0(fl, 1) Xo + 6 Dk+l[B(Xk',k) + P k]'

The two cases which we treat are covered by the two following assumptions.

(C4.2) The matrices aij(n) in A n take the form ai.(n) = cij(n)1r where aij(n) is

a scalar valued random variable and iaij(n) = 1.

Under (C4.2) each of the scalar components 'communicated' from a

processor j to processor i are incorporated the same way into the updated

%" estimates of processor i.

(C4.2 ') There are bounded gli arnd g2i such that L = {x: gli " X " g2Xi i , r).

Definitions. For a vector field h(.) in E', define the projection onto L

by (for x E L) 7(x,h(x)) = limA_,fnL(x + Ah(x)) - x]/A. By the convexity of L,

the limit is unique. Define the convex cone

C(x) y = E xigix(X), I ) 0

x E A(x)

where A(x) is the set of constraints (i: gi(x) = 0) (the active constraints
at x). Note that pn e -C(X' ). Write Anp = (Z n .... Zq). where Z' E Er.

Under (C4.2), each Z' is a convex combination of vectors in the
n

--C(Xjn+), j , q. We will see below that the same property holds under

(C4.2 ). Similarly for Ak or 4k replacing A n.

%%
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The theorem is stated under the conditions of Theorem 3.1, but there is

an analogous result under the conditions of Theorem 3.2.

Theorem 4.1. Assume the conditions of Theorem 3.1, (C4.1) and either

(C4.2) or (C4.2'). Let the solution to (4.3) (the proiected form of (3.1)) be

unipuc. Then (X((-)) converges weakly to X(.), where X(.) = (x(.), ..., x(.))

and

(4.3) x = 77(xA,B(x)).

Equivalentlv

(4.4) x = 4B(x) + v(x),

where v(x(t)) E -C(x(t)) (for almost all t). Also X(O) = DoX 0 = (x(0). x(0)).

if Xo E L.
-0

Proof. Only (4.4) will be proved, since (4.4) implies (4.3). No

truncation (see Theorem 3.1) is needed here since X i E L, a compact set.

Define the process RE(.) by

R,(t) = E t 4k+lPk for t E [(n-n,)E, (n-nE+l)E)
n E

(analogous to the definition of X(-) above Theorem 3.1). All norms below

are in the 1. sense. For X i E L, the q r-vector components of AnXn are allnnn

in L under either (C4.2) or (C4.2'). Thus Ip~I < IB(Xn,n)l. Hence, the proof

of uniform integrability of () and (p } is the same as that for ({PE) given

in Theorem 3.1. Thus (XE(.),RE(.)) is tight and all weak limits are

Lipschitz continuous. Henceforth, we fix and work with a weakly

convergent subsequence, also indexed by E, and with limit (X( .),R(.)).

.-.

' S . ,
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As in Theorem 3.1, for i <, q, the i, i+r ..., i+rq-r rows of 4k arc equal.

Then so are the same components of 4k+lB(Xktk) and of (Dk+lPk. Thus (as in

Theorem 3.1) X(-) = (x(.), ..., x(.)) and R(.) = (R(.) ..., R(.)), where x(t) and

R(t) are in Er, and

(4.5) x = DB(x) + R (t).

Obviously x(t) E L. Thus, we need only show that R(t) E -C(x(t)) for almost

all t.

Write Xe(.) = (XE'I(.), .... XEcq(-)). Let x(t) be in the interior of L for t

E [tpt 2 ] with t1 < t2 . Then, by the weak convergence (i.e., convergence of all

XE'i(-) to x(.)) the XE'i(t), i < q, are strictly interior to L on [t1 ,t 2] with a

4 probbility which tends to unity as E -. 0. Thus, for small E, the cones

C(XE,'(t)), i 4 q, ti ,< t < t 2, will be empty with a probability which tends to

unitv asE - 0. Thus R(t) = 0 for t1 < t 2.

We need now only consider the case where x(t) is on the boundary of

L for t e [t1 ,t 2], tI < t2. Skorohod imbedding will be used (see

Appendix), so that we can assume that the convergence is with

probability one on each bounded time interval. Note that C(x) is an

upper semicontinuous function of x in the sense that if xn - x, then

(4.6) C(x) D O U C(xn).
n k=n

Let (gi xX(t)) .... gia(x(t)) (v1, ... Va) be the gradient vectors of the

active constraints at x = x(t), and let C 03 denote the convex cone formed

by the vectors in a B-ntighborhood of (v1 . ..- V.).

?-

% V V4
* P.j%
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By the weak convergence (i.e., the convergence of all X6 '(.) to x(.)) and

(4.6), for each 3 > 0 and 7 > 0, there are 131 > 0 and 61 > 0 such that for

S1'

(4.7) P(p' E -C13, i 4 q, all k such that Ie(k-n,)-t[ < 131) ) I - 7;

i.e., for E(k-n.) close enough to t, the p are in a 'small neighborhood' of

-C(x(t)) with a probability close to unity.

Now, assume (C4.2). Then, each of the q r-vector components of

,Dk+lPk is also in such a 'small neighborhood' with a probability close to

unity, for E(k-n,) close to t. This implies that R(t) E -C(x(t)), for almost all

t.

1,Write x(t) = (x1 (t), ..., I %(t)). Assume (C4.21), and let E(k-n.) be close to

t. Then C(x(t)) is particularly simple. Write pJ = (p . p ) where the p

are scalar valued. If xi(t) = gli (the lower limit) then (using the weak

convergence) XE(.) E (x(.) ... , x(.)), the pJi must be (asymptotically in E) 0

for all j, with a probability arbitrarily close to unity. Similarly, if xi(t) = g 2i

(the upper limit), then (asymptotically in E) the Pk must be < 0 for all j. By

the properties of Ok+1' the same property must hold for the respective

components (i, i+r, i+2r, ... ) of k+lPk

The conclusion follows from this last remark, since if x - (x1 ..... Xr)

where Y, = gli' i 4 r 1 xi = g2i, r, < i 4 r 2 and 91i < Xi < g2i, r2 < ir, then wc

have that -C(x) is the collection of vectors whose first r1 components are

nonnegative, the next r 2 - r, are nonpositive and the last r - r2 are zero.

Q.E.D.

.1.V
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5. The Asymptotics of XE( - ) for Large t and Small c

Weak convergence in D[O,*) or in C[O,*) basically gives information

on the locations and/or distribution of X6(.) for small E, and for t

confined to some large -- but still bounded interval. See, e.g., the

discussion of the topology of these spaces in the Appendix. It is

important to have a convergence result which is valid uniformly in

(large) t for small E, and such a result is readily available by appropriate

modifications of the previous results. One usually requires that the ODE

satisfied by the limit processes is stable, hence we assume

(C5.1) Let (3.1) (or (3.12) for the state dependent (A _, ) case) have a unique

stable (in the sense of Liapunov) oint 6 which is globally attracting.

Let t. -. * as E -. 0. Quite generally, if (C5.1) (and the conditions of

Theorems 3.1 or 3.2) holds, then XE(tE + .) converges weakly to a constant

process X(-), where X(t) = (0 ... , e). This is precisely the desired asymptotic

result, since it says (roughly) that if the algorithm is 'stable' then, after a

fixed 'transient period' (independent of c), the XI(( ) are arbitrarily close to

8 in the sense of weak convergence.

Discussion of the Main Idea of the Development. Suppose that the set

(5.1) M = (Xe(t), t ) 0, E > 0)

is bounded in probability (tight); i.e., for each r7 > 0 there is a kr. < - such

that P{IX'(t)l ) k 7) $ r), for all E > 0, t t 0. Then it is easy to show that

X(tE + .) * X(-). To see this, choose T > 0 and consider a convergent

subsequence of the pair of processes {XE(tE + . X(t -T + )), with limit

a
4
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denoted by (X( .),XT(-)) = (x(.), .... x(.); XT(-), .... XT( .)) (recall that all the

r-vector components of the limits are equal). We have X(O) = XT(T). The

value of XT(O) is unknown -- but all the possible such XT(O), over all T and

convergent subseguences, belong to a tight set, with the same n and kr7 as

above. By this and the stability condition (A5.1) and Theorem 3.1 (or

Theorem 3.2), for any B > 0 there is a TB < - such that for T ) TB, XT(T) =

(XT(T), ..., XT(T)) will be in a -neighborhood of ( ..., 8) with probability >

1-5. This yields the desired conclusion, since it implies that X(0) = (8, ..., 6)

w.p.l. Thus, to get the asymptotic (in t and E) result, only (5.1) must be

shown.

Next, consider the projection algorithm of Section 4 and assume (C5.1')

in lieu of (C5.1):

(C5.1 ') Let (4.4) have a unique stable (in the sense of Liaounov) point e

which is attracting in L.

Under (C5.1 '), (5.1) is automatically bounded and if tE - *O as E -. 0 then

under the additional conditions of Section 4, XE(tE + .) > X(.), where X(t) =

(8 ..., 8). Some form of projection algorithm is usually used in practical

algorithms, and so the tightness condition on (5.1) is not burdensome.

Sharper Bounds on the Asymptotic Errors (X' - 0), for Large En and

Small e. Under additional 'stability' conditions, one can get order of

magnitude estimates for (Xi"(t) - e) for large t and small E. We do one case

here in preparation for the rate of convergence work in the next section. We

will need:

row-'r
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(C5.2) There is a twice continuously differentiable Liavunov function 0

V(x) .and V(x) > 0for x 0such that for somecX >0and K <

V,(x)cB(x) < -XV(X), IV"(X)12 4, KIV(x) + 11 and .(. is bounded.

Define

(5.2) V(X) = -V(X'), for X = (X, I_., X)

(C5.3) (C3.2), but where B0(X,j) and B 1(X) are bounded and have

bounded and continuous X-derivatives (uniformly inl Lor B.).

(C5.4) There is a constant K such that

E v~ E V(Dk+lB(X,tk) - 0 B( X))~ 2 K[V(X) + 1],

for all rpositi-e. mn and v. Similarly for the derivatives Bx and Bx

rcrplacing B and BI resrpectively.

Remark. (C5.4) essentially implies a 'low' correlation between data in

the remote past and in the distant future. There is an analogous result to

Theorem 5.1 for the state dependent (A~n case, and for the constrained

case.

Theorem 5.1. Assume (C5.1) to (C5.4). There is an N E < for each small

E such that

(5.3) EV(X n) = 0(,/T) n ) N.

Proof. We always assume n )n. so that EI4)(nIO) 001Qa = (E 2 ), for any

a > 0. Write
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.- Xn= [(nl0) - 4(n-10)]X o + E(iPW - oE)l

(5.4)

+ E 4B X n ) + E[On+1B(Xn,) - It (Xn)]

and

EnV(Xn+l) - V(Xn) = EVx(X n ) En[4(nl0) - -(n-ll0)]X o
(5.5) + E Vx(X nE ( 0 n n'

)E W - OE1) + Vx(Xn) P B (Xn)

+ E Vx(Xn)E n [Dn+lB(Xn, tn) - D B (Xn)] + error term

where Elerror terml = 0(E 2). By (C5.2) and n >, n , the expectation of the

first term on the rhs of (5.5) is 0(E 2)(1 + EV(Xn)). Write 1n in the

form

n

n

CDn

where n is a r x qr matrix. For n n.,

(5.6) IXin - xJ = 0(E) + 0(n)E,

where EIOn(E 2 )I2 = 0(E 4 ), uniformly in n nE

Using (5.6), rewrite the last two terms on the right side of (5.5) as,

respectively,

.A.
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-V(X)' B (X' ) + error term,

(5.7)

E V V(Xi)E B(X' . n) "  B(Xin)] + error term,
n nl fl Lf+ 1 

l n lf

where by (C5.2) Ejerror terml = 0(E2 )(I + EV(Xn)).

We now define the perturbations to the Liapunov function.

Define

VE(n) by VE(n) = -EVxXn) 1 . We have

(5.8) ElVE (n)l = 0(E)(I + EV(Xn))

(5.9) E VE(n+l) - EVE(n) < -E EVx(Xn)(Pn - ikE_) + 0(E 2) E (1 + V(X)).

Define V'E(n)

(5.10) V E(n) = E E Vx (X') E I B ) - B(Xin) "i
j=n

Bv (C5.2) and (C5.4),

(5,11) EIV iE (n) 0(=E)(1 + EV(Xn)).

Also,

(5.12) E V i'E (n+l) , V, (n) = - Vx (X') E n B(Xi' -

+ error term

where by (C5.4), Elerror terml = 0(E 2 )(1 + EV(Xn)).

Now, define the perturbed Liapunov function VE(n) = V(X ) + VE (n) +

V' E(n), and evaluate E VE(n+1)-V(n) and cancel the terms ±EVx(Xn)( n
2 x n

.- 'A
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'Pn~_1) and ±E E Vx(X'i)En[~n+1 B(XX, y - 0 B(Xi)] to get

4J
SEnVE(n+l) V l (n) i xi x

"-E =x ) 0 B (Xn) + error terms,
(5.13) i

Elerror terml = 0(E ')(I + EV(Xn)).

Using (C5.2) and the bounds on EIVE(n) and on EIV'.E(n), we get
?2

EVE(n+I) - EVE(n) ( XE EV(Xn) + 0(E 2 ) (1 + EV(Xn))

(5.14)
< -XE EVE(n) + 0(6 2) (1 + EVE(n)).

Hence, for small E>O,
*1..*

(5.15) EVE(n) < ( - VXE'n-nE VE(n ) + 0().

This together with the bounds on EIVE(n)l and on EjVi' E(n)l yield thc

Theorem. Q.E.D.

-.,.

.%
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6. Ratc of Convcrgcncc: Qualitativc Asymptotic Propcrtics

The Liapunov function in (C5.2) is often locally quadratic about 0 in

the sense that V(x) = x 'Qx + O(Ix13) for Q > 0. If this is true, then Theorem

5.1 implies that ((Xi - e)/E'/ 2 , i < q, n ) NE, E > 0) is tight. In this section,

we will suppose that there are N. < - for each small e > 0 so that

(6.1) ,Xi < q, n N,, E > 0 is tight, Ebi(,k) =0.

Under (6.1), one can apply the methods of the 'centralized' case to get a

classical rate of convergence result.

Much information concerning the asymptotic behavior and comparison

with other algorithms can be obtained from such a result. The method and

results will be discussed in an informal way so that the main ideas are clear.

Despite the informality, the conditions needed for the proof will generally

be stated. The proofs follow standard lines in weak convergence theory, and

are not hard. Our aim is to exhibit the asymptotic behavior of the suitably

normalized errors, then specialize them to simple cases where a comparison

can be made with 'centralized' forms of the algorithm, so that one can see

the effects and value of the decentralization, and evaluate alternative forms

of communication and algorithms. The discussion is continued in the next

section. Such insights are needed at this stage of development of the

'decentralized' algorithms, as a guide to future developments an1t arc

perhaps more important than a rigorous development along the standard

--
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lines. We will use the assumption (6.1), the boundedness of B(.,.) in each

bounded X-set and that B(.,t) has a continuous (uniformly in t) derivative,

and EB(X, ) - 0.

For any R' valued function p(.) = (pl(.), ...) of x (or X), let (p(B)) x

denote the (Jacobian) matrix whose ith row is the x (respectively, X) gradient

of p'(.). Recall the definitions of ?i and 0 (above (C3.5)), and of On (in

Theorem 5.1). Define the matrix M = (€' B(6)) x and suppose that it is stable.

Let

.L nr AAm
m m (k+1B(' 6 ,k))x (0 B(e))X

in probability as n and m --

Define Ue = (Xn - 8 )/,E, where e = (e,e, ..., 0). Recall the definition of

ne given below (C3.4') and that ne can be chosen such that vEnE - 0. Given

N > 0, we have, for n n, + N,

E N+nE
UE = O(nIN)U + v E 0(nlk+l)B(Xk, k)nl+1 N N tk

(6.2) + ,, k+IB(Xk,Ok) +

N+nE +1

On= [4(nlk+l) - Ok+lIB(Xkk)-
N+nE

wE

Define (for n N + n)

.6,~ ~ ~ ~ WE'Eo B(6,
n N+nE +1

<ae

"U.'
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Let N ; NE" For t ) 0, define the process U6(.) by Ue(t) = U6 for t EC n

[E(n-N-ne), E(n-N-nE+l)) and define WE(.) similarly from (We). By Taylor's

Theorem and the definition of ne,

UE =U + + +
n+1 N N n N n E +

(6.3)

+ E '; (Dk+ B(e, k))XUE + We + 0(E) O O(IUI),
N+nE +1 n N+nE +1

where EIO(E 2 )12 = 0(E 4 ) since n ) n , and EIon (n E v)I = 0(ne,/). Also

(k+lB(e,k))X denotes the matrix whose rows are the X-gradients of the

components of Dk+I B(X, k) evaluated at X = (0,e,...).

In order to study the weak convergence of UE(-), we can truncate the

dynamics (as in Theorem 3.1) if (U6) is not bounded: wherever U6 appears

in (6.3), we simply replace it by U q m(U6), where qm(u) = 1 for lul < m, and

is a smooth function with compact support. We get the weak convergence

with use of qm, and then let m - - . The uniqueness of the solution to the

limit equation (6.9) below guarantees that the procedure works. For

notational simplicity -- we simply suppose that (U6) is bounded. Suppose

that (W'e( .)) is tight and has continuous limits. Then, this also holds for

(Ue( )). Also, the second, third, fourth and last terms on the right side of

(6.3) disappear in the limit. The limit of any convergent subsequence

satisfies

(6.4) U(t) = U(O) + f (0 B(e))xU(s)ds + W(t),

where W(-) is the limit of (We(.)).

* .%
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The Limits of (WE(-)). Under broad condition W(.) is a Wiener process

with covariance

S(6.5) t E E(k+ B(8, k)B'(8,ko)(P1,

where the expectation in (6.5) is to be interpreted in the ergodic sense:

lim I M- n EOk B(e, kk+j)B 1('(,j)V'+
m M j=n k+j+ J+1

We now give some conditions under which W(.) is the asserted Wiencr

process. Let

(6.6) E I k+lB(e,k) 14 4 Constant i M2.

then {Wc( .)} is tight and all limits are continuous [6]. If

(6.7) m+l- k g0 , )

converges in distribution to a normal random variable (with mean zero) as n

-. and m then W(.) is a Gaussian process. If, for t 1 4 t2 4 t 3 < t4 '

(6.8) E[W"(t 4 ) - WC(t 3 l][W'(t - W'(tl )1  0,

then the increments of the limit W(-) are orthogonal and the limit is a

(nonstandard) Wiener process. The proofs follow standard lines in weak

convergence theory [6]. The properties (6.6), (6.8) hold if the (Ak) is

independent of the {k} and the dependence among the kk decreases fast

enough as the time difference increases. Henceforth we assume that NV(.) is

the zero mean Wiener process with covariance (6.5).

I1
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For the same reasons that the X(.) of Section 3 took the form X(.) =

(x(.), ..., x(.)) for x(t) E E', we have U(.) = (u(.), ..., u(.)) and W(.) =

-.~ (w(-) ..., w(.)). Then (6.4) reduces to

(6.9) du = Mu dt + dw.

The covariance of w(l) can be obtained from (6.5): Writing

, ':. '. C =  €1k), • • , q(k) ]

L kq(k) j

where the 0i(k) are diagonal, (6.5) reduces to

(6.10) cov w(l) = R= E E [ oi(k+l)b(8,) d .

If N -. fast enough as E -. 0, then the limit u(.) is the stationary solution to

(6.9).

The stationary covariance

(6.11) f eMt ReM'tdt.

of (6.9) is a standard measure of the 'rate of convergence' or asymptotic

quality of the algorithm, and can be used as a basis of comparison among

alternative algorithms.

A Special Case. We specialize to a simple case in order to get some

insight into the asymptotic behavior. Let ({k) be independent of (Ak) with

,. i < q, k = 1,2, ... } mutually independent with cov b'(9,,'k) R i. Then

.tz, %
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q n+m

(6.12) coy w(l) = lim E Oi(k)RiOi(k).
1 m n

A Scalar System. Let r = 1. Then Oi(k) and Oi are scalars and

-O Oi= I= i(k).
1 1

Let bi(-,) = b(.,) and R i = R not depend on i. Then (6.9) becomes (bx(e) <

0)

(6.13) du = bx(e)u dt + oDdw,

where w(.) is a standard Wiener process and (where by the expectation E, we

mean the ergodic mean in (6.12))

02=R EOn) .
1

The stationary variance of u(-) is o2/21b(8)1 =- varD.

Comparison with a 'Centralized' Algorithm. Define the following

centralized algorithm, under the scalar system assumptions of the above

paragraph

(6.14) Zn+1 = Zn + b(Z, (, n = 1,2, ...) i.i.d.

Define V n = (Zn - 6)//e and define vE() by vE(t) = V n on [nE, nE+E). If t

-. fast enough as E -. 0, then under appropriate conditions [8] vE(tE+.) >

v(-) where

(6.15) dv = bX(e)v dt + /Rdw.

L . • " "" ', ,, " IB ' 
'
- ,."" • - ° "" ""," "" r"" L.,,, -,,"- •" ,,"- ,."• ." .""."-. ',,"-. -'.." .", ,.. . .,- ,.. ,, ,,, ,', , .,%," %- ,,.- . .% ,,,,,-'A
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The stationary variance of (6.15) is R/21bx(B)l = var0. Since

var, = E 2(n) < 1,
var c  1

the decentralized algorithm yields an improvement. The infima of the ratio

occurs when the E0(n), i 4 q, are all equal, an unattainable case (to which

we can come close -- see Section 7). In this limit, l/q = varD/var ¢.

A fairer comparison accounts for the fact that the decentralized

algorithm uses a total of q observations per iterate. Usi-ag the same number

in the centralized algorithm (6.14) we rewrite it as

(6.16) Zn+1 = Z n + q 1 b(Zn n), { , i <, q, n = 1,2,...) i.i.d.

Define Ve and -V(.) as the V and v6(.) were defined, but based on (Zn}'
n nd

Under appropriate conditions v((tE+,) > v(.) where

(6.17) d = bX(e) 7 dt + /R/q dw,

with stationary covariance R/2qlbx()I = varqC and

(6.18) varD/varqc = q E0,1n) > 1.
1

The ratio (6.18) can be used to decide on the proper tradeoff between the

asymptotic error and the communication policy. Reasons why the

decentralized algorithm might be preferable are discussed in the next section.

Analogous results are, of course, obtainable for the general vector case.

dK
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7. Asymptotic Properties: Discussion and Comparison

Independent (A.). We evaluate varD/varc under the conditions of the

last subsection of Section 6, where q = 2 and the (An) arc i.i.d. In

- particular, let c E [0,1), and let the processors act independently, with p

* = probability i communicates to j $ i at time n. With no

communication (probability (1 - p) 2 ), An = I; if 2 communicates to I --

but not conversely (probability p(1 - p)), then

. --. c
A - A 2 1,

0 1l

If 1 communicates to 2 (but not conversely), then

[1 0
A 2;

c I -c I =

If both communicate to each other, then

A n = [1= A O.

Refer to Table 1. The optimum value of the ratio of the variances is

unity, a value closely approximated by small c. Clearly a larger p is

desirable. As c -" 0, the ratio improves -- but the size of the Ip6 would

increase. This implies that one must wait longer for the stationary

variance to be a good indicator of the actual performance (the effects of

the communication are realized more slowly). Similarly, for small p. But,

in all cases, the average performance is much better than that for the

centralized algorithm (6.14).
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c
.05 .25 .5

.1 1.036 1.13 1.312

.3 1.016 1.10 1.26

.7 1.008 1.04 1.13

Table 1. Values for 2 varD/varc varD/var 2C

A Deterministic Communication Scheme. We retain the assumptions of

the last subsection, except for those on the communications. Let m and m
U1

be integers with mI , m/2. Processor 2 communicates to 1 each m units of

time, and 1 communicates to 2 m, units of time later. We use A12, A21

(when m1 * 0) and A° (when m1 = 0). For m1 = 0, (2varD/varc) = 1, for all

'0 < I < c. For m, * 0, we have Table 2.

c 2 varD/varc

.1 1.0028

.3 1.03

.5 1.11

Table 2. 2 varD/ var c = varD/var2C

The values of m and m1 appear only in the values of 06 , which increases as

m and mI increase. The values of varD/var 2c are substantially worse when

processor I communicates to processor 2 more often than the reverse

communication rate, for deterministic communication times. This suggests

that a relatively balanced communication strategy is better and that a

S " " % %, V " " V " - .
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processor should 'respond' as soon as possible after it receives a 'message'

from another processor.

%Discussion. It is clear that the decentralized algorithm takes

advantage of the possibilities of parallel processing, since its variance is

better than that of the classical algorithm (6.14), and can be nearly as

good as that of the fully centralized algorithm (6.16). But there is

another advantage -- which can be considerable. Simulations with

recursive algorithms such as (6.14) indicate that a key problem concerns

the frequently slow recovery from the effects of large 'bursts' of noise;

i.e., from a large 'random' jump in the state value. This effect would

not show up in the asymptotic variance estimates, but is of considerable

i importance in practice, particularly when the algorithm is not in

operation for a very long time. The nature of the 'convexification'

should often reduce the magnitude of this problem, and 'robustify' the

process. In a sense, the decentralized algorithm would perform much

better than the worst of q-identical (but not communicating) processors,

and (in a tracking system, for example) would reduce the chances of any

one processor losing track. In applications to optimization or systems

evaluation by monte-carlo simulation one can use 'variance reduction'

ideas in choosing appropriate correlations among the sets {in n = 1,2 ....

i 4 q. Hopefully this, together with the above 'robustifying' property,

would yield good behavior.

An Example. The following is an example which opens up many new

possibilities. Consider two receivers -- say, digital phase locked loops -- each

q%
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receiving a signal from the same source, but the two being physically

separated. Each must estimate the phase or epoch of the signal pulse (and

perhaps the phase of the carrier). Suppose that the source is much farther

from the receivers than they are to each other, so that more reliable

communication between the receivers is possible. It might be possible to

improve each others estimates by occasional communcations. This

communication would transfer the estimates -- as well as allow the receivers

to improve the mutual synchronization of their clocks or oscillators -- so that

the transferred estimates can be meaningfully used.

Communication Noise. In examples such as the preceeding, one would

normally have communication noise. This is readily incorporated into the

analysis. Write (1.1) as

(7.1) Xn+l - An(Xn + 6n) + EB(Xn'n)

where 6n represents the communication noise. For the algorithm to be useful

at all, this noise should be of an order no larger than E. Then write Bn =

Ebn, and proced as before.

Even if 5 n = O(VE) and EB n = 0, useful results can be obtained. If the

interpolation of

k=o (nlk)Sk

converges weakly to a Wiener process W(.), then we might have XE(.) > X(-):

dX = B (X)dt + dW.

*Us
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Again X(.) takes the form (x(.), ... , x(-)), under appropriate conditions on

dSn.

- An Alternative Algorithm. To get additional insight into the behavior

of decentralized algorithm, we formally compare (1.1) with a reasonablc

alternative. Suppose that the processors communicate and 'convexify' only

the changes in the states since the last communication. In particular, let q =

2 and let (Ti), i = 1,2, denote the comunication times of the two processors,

with i - Ti bounded. Here processor 2 communicates to processor I at

(T, , and similarly for the reverse communication.. We proceed purely

formally, and suppose that the dynamics are smooth and bounded. Define

* . (Xi by X'. Xiand

(7.2) X' =X' +Eb'(X 1 Q) T k n < T'
n+l n nn k k+1'

For a E (0,1/2], set

X 1  
= X + (l-a)E ,bkX'I ) + aT b

1 k T k T k

(7.3)
T2 2  1,2+ aE b(X, n n) + (-a)Eb Xnn

k+1 k k

Owing to the smoothness and boundedness assumptions, there are On(E2) -

and n0(E2 ) a process Xn (XlnXn) satisfying (7.4) and which equals (modulo

O(E2)) (Xl,Xn) and (X 1  X 2 )(at the communication times)

T k k

)V



Il.

-49-

= n + (l-a)Ebl(Xnjn) + aEb(Xnkn) + 01(0)
;, (7.4)

( 7) 1= + aEb1(",Q) + (l-a)Eb 2 (X2,n + 02(E 2).

The 'size' of the 0n depend on the bound on IT' T'1. From this point on,

one can use standard theory for the centralized case to get both the ODE

and the asymptotic normalized variance. Define XE(.) as XE(.) was

defined, and similarly for OE(.). The limit ODE is

A (]-a)b1 (X') + ab (X2  (' 2

(7.5) x = X,
ab'(Xl) + (l-a)b

2
(X 2

)

The limit 0(.) of (0(.)) satisfies

(7.6) dU MU dt + dW

where

co, i,(I) = E

[(l-a)b1 (e,k') + a (~2

L ab'(8,k,) + (1-a)b 2 (9t,2)

M = (~ee))x

and we suppose that M is a stable matrix.

Comparison of the Alternative (7.2), (7.3) with (1.1). We use the special

scalar case of the first subsection of this section, where {,) are i.i.d. and

b(. b2 (.) = b(,,-). Then (again b (9) < 0)

4%%
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r(I-a)(X1) + acb(X 2 )
X

ab(Xl) + ()-a)b(X 2)

dU = b(() dt + dW = MUdt + dW

[(I a)2 + a2 2a(-a) 1
coy W(1) = Eb'(0',i) 2a(1)-a) (1-a) 2 + a2

Let varD2 denote the stationary variance of U(.). As a t 1/2, this

converges to the infimal value, equal to var2C. But at a= 1/2, the matrix M

is singular. Thus, again, there seems to be a trade-off between the 'minimal

asymptotic variance' and the length of time one must wait for the asymptotic

estimates to be valid or, similarly, for the communication to be effective. At

this point, the alternative algorithm does not seem to offer any clear

advantages. It was investigated simply because of the idea that there might

be an advantage in communicating only recent data.

V

Va
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S. Stochastic Approximation With En - 0

The entire development can be repeated if E is replaced by 0 < En - 0,

Ee n = 0 One then gets results of classical stochastic approximation type,

and we only make a few formal comments. We use Xn+ 1 = AnX n +

Enb(Xn kn). Define t = and -) by x(t) = Xn+i

for t E [ti-tn, ti+l-tn). Under the conditions of Theorem 5.1, l i mn EV(X n) <

M. Given either this or the use of the projection algorithm of Section 4, onc

can get the appropriate ODE which characterizes the limit paths. If this

has the appropriate stability properties (as in Section 5), we can show that

XEi(-) => x(.) - . The ODE is the same as that in the previous sections, for

all the same cases.

If EE 2 < , then the idea in [10] can be adapted to get w.p.1 convergence
n

results.

*ItZ



Appendix. Some Rcsults in Wcak Convergence.

For some integer s, let D[O,*) denote the space of E-valued functions

on [0,*) which are right continuous and have left hand limits, with the

Skorohod topology [7, Chapter 2]. This topology is defined as follows. Let A

be the set of strictly increasing Lipschitz continuous functions from [0,-)

onto [0,*). Define the metric

d(x(-),y(-)) = infmax sup log k k It e-TdT(X(')'Y("),X)dT
1 0

where d T(X(-),y(-),) = min(l, sup IX(X(t)rlT) - y(k(t)rT)I).
t

Define {Zn) and (Zc(.)) by Z6 = Z' + EF, Zc(t) = Z" [nE, ne+E). If
n+1 n n'

{Z } is tight and the (Fn} are uniformly integrable, then (ZE(.)) is tight in

D[O, *) and all weak limits are absolutely continuous.

Let ZE(.) Z(.) in D[O,*). By a suitable choice of the probability

space, the weak convergence becomes convergence w.p.I in the metric of

D[O,*) [13, Theorem 3.1.1]. I.e., there is a probability space (fl,B,P) with

processes {ZE(-)}, Z(.) defined on it so that for each Borel set B in D[O,-),

P(Zc(.) E B) = P(Zc(.) e B), P{(-(.) E- B) = P(Z(.) E B) and Z'(.) -, Z(.)

w.p.l in the topology of D[O,*). The use of this representation often

facilitates the analysis and characterization of the limits.

-'.
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