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The asymptotic properties of extensions of the type of distributed or
deccntralized stochastic approximation proposed i‘n——{—l*]Larc developed. Such
algorithms have numerous potential applications in decentralized estimation,

detection and adaptive control, or in decentralized Monte Carlo simulation

for system optimization (where they can exploit the possibilities of parallel

processing). The structure involves several

isolated processors (recursive
algorithms) who communicate to each other asynchronously and at random

intervals. The asymptotic (small gain) properties are derived. The

communication intervals need not be strictly bounded and they and the

system noise can depend on the (communicating) system state. State space

constraints are also handled. In many applications, the dynamical terms are

merely indicator functions,

or have other types of discontinuities. The

‘typical” such case is also treated, as is the case where there is noise in the

communication. The linear stochastic differential equation satisfied by the

(interpolated) asymptotic normalized error sequence is derived, and issued to

compare alternative

algorithms and communication

strategies.  Weak

convergence methods provide the basic tools.
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1. Introduction

,:0"‘0 In [1], [2), Tsitsiklis proposed a very interesting model for a
'l.'l
:::::‘ . decentralized  (distributed) recursive algorithm of the stochastic
VY

approximation (SA) type, with only asynchronous communications between

:E: the separate processors, and developed a scheme for proving w.p.l
: convergence. That work appears to be the first of its type - for the
w decentralized SA problem. Such distributed algorithms are of rapidly
.;" growing interest. Various potential applications in adaptive control,
NG

,2 estimation and in communcation networks were proposed; e.g., several
08

'?:?!' processors might do an identification of the parameters of an identical
j.ﬁj linear system (but with different inputs) and occasionally (asynchronously)
T

rﬁ{ share their latest estimates, or several processors might do monte carlo
T ' simulations of the SA type to locate the minimum of a regression function,
2‘» and occasionaly share their estimates. There are two main purposes for
z&. algorithms of the type discussed here and in [l) to exploit the
R opportunities provided by parallel processing for monte-carlo methods of
;"E:E:: system optimization or evaluation; situations in which there are physically
E::':'c‘ separate systems (estimators, trackers, controllers) which act on or follow
hL¥ essentially the same physical system - and which occasionally communicate
:: to take advantage of the ‘others’ information.

b "._‘

::::: The assumptions in [1] were fairly strong with respect to the great
¥,

“ . variety of potential applications, and the method of analysis required
_4.’*'.'\: numcrous detailed estimates. We analyze essentially the same algorithm here.
S

':::E: In addition to getting the basic convergence results, our methods can handle
RS,

Y
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the constrained (projected) algorithm, the case where the communication
intervals and noise depend on the state, the general rate of convergence
problem, and the case where there is communication noise. Instead of
letting the ‘gain’ parameter go to zero as n = = (as frequently done in
classical SA) we keep it a constant, and work with convergence in the sense
of weak convergence. There are several reasons for this. First, when
working with practical systems the chosen gains almost never go to zero,
since one usually wants an algorithm that can track slow changes and is
robust with respect to large bursts of noise. Our method can be adapted to
get weak and even w.p.]1 convergence when the gains do go to zero, and we
comment on this in Section 8. Even if the gains do go to zero, w.p.l
convergence is not much more useful or interesting than weak convergence.
Weak convergence methods locate the points where the process spends most
time (asymptotically), and as time goes to « , an increasing (to one)
proportion of time is spent arbitrarily close to such points. Then, onc can
often use the powerful ‘large deviations’ methods to show, under very broad
conditions, that ultimate escape from a small neighborhood of such points is
impossible (when the gains go to zero) [3], [4]. Alternatively, once the weak
convergence methods have located the ‘stable points’, perturbed Liapunov
methods such as that in [10] can often be used to get w.p.l convergence.
One of the key questions in the analysis of any algorithm is the rate of
convergence (the asymptotic normalized variance), and the analysis of the
‘rate’ is almost always donc via weak convergence methods. General

background and applications in many areas are in [6] to [8) Wcak
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convergence methods are also much easier to use than the standard w.p.l
oriented methods; in many cases, a valid result can be obtained almost by
inspection. This and the wide variety of problems which can be handled
make it a more widely useful tool than ‘w.p.l’ methods. The symbol = is
used to denote weak convergence, and some definitions and properties of
this convergence are stated in the Appendix 1.

The methods used here are quite efficient. Problems with potentially
unbounded intercommunication intervals (e.g.,, where the interval is
geometrically distributed) can be handled. We can also treat important cases
where the dynamics are discontinuous or where the communication intervals
and system noise depend on the system state, or where there are state space
constraints. The case of discontinuous dynamics is of considerable
importance in applications: often an estimate increases or decreases by a
fixed amount ¢ - depending simply on whether a certain event occurred or
not. Similarly, for state dependent communication times; a processor might
want to communicate if either a given amount of time has passed since the
last communication or if the state of the processor has changed by more than
a given amount. In many applications (e.g., the decentralized form of the
automata routing problem in [5]) the noise is naturally state dependent.

A theory of ‘rate of convergence' is also developed, which allows an
objective comparison among alternative algorithms. Using this, in Sections 6

and 7, we comment on and compare the behavior of the algorithm with the

centralized and various ‘deterministically’ decentralized forms, in order to
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get a better understanding of its behavior, and to see what are the preferable
communication strategies. We can also allow ‘noise’ in the communication,
such as might be the case if the processors were physically separated and -
communicated via a noisy radio link. See Section 7.

The basic algorithm will be described next. Section 2 contains a
‘technical’ estimate which will be useful in the sequel. Section 3 deals with
the basic weak convergence result in the function spaces D[0,*) or C[0,®) (sec
Appendix for the definitions), and shows that a suitable continuous time
interpolation X€(-) of the iterates {X,) converges weakly to the solution of a
certain ODE as the gain parameter ¢ - 0. The state dependent noise/inter-
communication time case and the discontinuous dynamics case are also
treated there. Section 4 concerns a ‘projection’ algorithm to handle state
space constraints. Herz, the limit satisfies a ‘projected” ODE. The
asymptotics of X‘(t€+~) are dealt with in Section 5, where te ~=as e~ 0.
This yields the ultimately desired result concerning the location of the
iterates for large n and small €. Finally, the rate of convergence and
comparison with a centralized processor is developed in Sec.ion 6 and 7. A
discussion of some of the probable advantages and uses of the algorithm
appears in Section 7. Section 8 contains a comment on the case where ¢ is
replaced by ¢ - 0.

The basic algorithm., We assume that there are q parallel processors, -
each with a state variable of dimension r. Let X; denote the state of

processor i at time n and define X = (X:, ey X;). The symbol X generally

denotes a gr-vector which we partition as X = (X1, .., X9, where each X' is
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an r-vector. The ‘observation’ of processor i at time n is bi(Xi‘,zin), where {L
is the ‘noise’. Write §_ = (&, .., £9), ¢ = (&}, ., &9, and B(X,t) = (b'(X,¢}),
. BYXIEY). Write bi(XLE) = (bi(XLED, .., bi(XLth), the by(-) being scalar
valued. (All the above vectors are column vectors.) For vectors X! in Ef, we
often write simply x.

Let (A} be a sequence of (possibly random) qr x qr matrices, where A

can be written in the form
all(n) ot aql(n)

a4(n) - - - ag(n)

where each aU.(n) is a diagonal r x r matrix with non-negative entries and
}:iaij(n) = I the identity matrix in EF, Euclidean r-space (i.e., the ’matrix
valued’ rows of A are ‘convexifying’). Suppose that there is a scalar «, > 0
such that a; 2 «1 and, for i # j, either aij(n) = 0 or else aij(n) 2 ol

The algorithm is

Xix+1 =L aji(n)x'lj'x + ebl()<lr:’§irx)
(1.1) j
Xn+l = Aan + eB(Xn,ﬁn).

At time n, processor i (i = 1,..,q) decides whether or not to communicate the
current value of its state to any other processor and takes an obscrvation
bi(X:‘,iin). If there is no communication to processor i, then we set a;(n) = 1
and aji(n) = 0 for j # i, and the iteration (for processor i at time n) is of the

standard SA type: X!

_ i irywi pi , ot
ntl = X, + €b(X,E)) If therc are any communications

to processor i from some processors j # i at time n, then for such
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communicating processors j, aji(n) 2 a1 and the updated state XinJrI for
processor i is a convex combination of X! and of the states XJ
communicated to it, added to its own SA increment eb(X!,tl). The
requirement that either (for j # i) aji(n) > ol or aji(n) = 0 simply means that
if processor j communicates to processor i at time n, processor i can choose
to ignore the communication, but if it incorporates the received Xf] into its
own state, it must do so in a ‘non-trivial’ way. For notational simplicity, we
omit the symbol for the e-dependence of X .

In [1), the algorithm was slightly more complex, since the dimensions of
the X! were not necessarily the same and a somewhat more complicated block
structure of A~ was used. But, with no additional mathematical work
(although with a more complex notation), such extensions can readily be

incorporated into our framework. It should be clecar from the development,

that many related algorithms and conditions can be treated by essentially

identical methods.
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2. Somc Prcparatory Estimatcs
This section is devoted to obtaining the rate of convergence of the
product A ..A _as n ~ . We use the assumption

C2.1. Let 1-‘n be_an increasing sequence of o-algebras such that Fn measurces

{X,1€n, §, A, 1<n}. There are a scalar Py > 0 and integer m, such that

(2.1) Pr {processor i communicates to processor j on [n,n+my)} 2 p,
n

for all n and 1,}, and i # j.

Remark. In [1}, it was assumed that there is an mj such that p; = 1.

0
(C2.1) covers the case where at each instant each processor flips a coin to
decide whether to communicate or not. More generally, there often is a

process (Kn} such that {A, ¢,

i’

1 <, X, i ¢ n}is Markov, and A is a
component of A . With this model, if F_ denotes the minimal o-algebra

which mecasures {A,, §, i <n, X,, i € n}, then (C2.1) covers many interesting

i’
cases wherc the inter-communication intervals are not bounded a priori --
and might be ‘state’ dependent. The condition scems to be unrestrictive.

For n 2 k, define &(nlk) = An...Ak and set ¥(nln+l) = Iqr, the identity

matrix in E9".

Lemma 2.1. Assume (C2.1) and the conditions on {A } in_ Section I

Then ¢, = lim ®(nlk) exists w.p.l and for each i ¢ r, all the rows i, i+r, ..,

i+qr—t of &, are equal. Also

(2.1a) E|d(nlk) — ol - 0 gecometrically as n —k = =,

(2.1b) EFk|®(nlk) — &l ~ 0 geometrically as n —k =~ =,
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uniformly in k and w (w.p.1). Also Ep &nlk) converges to ¢ geometricallv,
n

S . . ’
:::: uniformly in w, k, as n = .
B
O . . . . .
:3:, Remark. The fact that the limit &, exists is almost obvious if we look at -
N Q“
i the {A } as transition matrices for a Markov chain.
\‘: ‘_ Proof. The proofs of (2.1a) and (2.1b) are essentially the same and only
¥
N -
i “ (2.1a) will be proved. We will evaluate E|®(nlk) — ol by a slight variation of
et the proof of [I, Lemma 5.2.1}. Owing to the block diagonal structure of the
’&_‘ A_, in calculating the product &nlk), the r sets of rows (i, i+r, ..., i+qr-r), i €
K->
}_.‘, r, do not interact and we can (and will) let r = 1 without loss of generality.
s
Ye.fs The geometric convergence of &nlk) to ¢, was proved in [1, Lemma 5.2.1]
-: when py = 1 (sec remark below (2.4)). By (C2.1), there are «; > 0 and an
AT
: increasing sequence of random times {Ni} such that the components of
,5'...
W ¢(N2i+1|N2i) are all 2 «. This and the convergence result for Pg =1 implies ’
o that &(n|k) converges w.p.l to some matrix do.asn ==, All the rows of such
e
j.; a limit must be equal, and the entries of each row must sum to unity. Let
..F .-
N o (1), .., ¢k(q) denote the scalar elements of any row of ®,. and let the
x:,i‘ vectors vy, .., v, span E, and define ¢ = (1, 1, .., 1). Define c(x) = @, (i)x
»,
{ K
"'.-,.“j where x = (xl, vy xq). Both e and x are column vectors. Then b x = c(x)e.
e d
i All norms here and elsewhere are in the £ sense.
For a matrix M,
s
) :\M:‘
R IM| = sup [Mx| € I [Mv].
B4 {x[:l
Al
-:-!“ n
o Thus, we need only show, for any vector x, that E|®(nlk)x — c(x)e] = O
W
'} j" geometrically. Define x(nlk) = ®nlk)x. Let c(njk) denote the minimum valuc
Wit
Nty
2
* L]
ey
‘?i_t {
‘(!
A lz.
RN
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9.
of the components of x(n(k). We can write x(nlk) = y(nlk) + c(nlk)e, where all

the components of y(n|k) are non-negative and
(2.2) E|®(nlk)x — c(x)e| € Ely(nlk)l + Elc(x) — c(nlk)l.
By the ‘convexification’ properties of the A,

(2.33)  y(n + 1k)| € |y(nlk)|

(2.3b) ¢(nlk) € c(n + 11k) € c(nlk) + ly(nik))

By (C2.1), there is an «; > 0 such that w.p. p, (conditioned on F ) all the
elements of &n + mgyn) are 3 «, This, together with the ‘convexification’

property of the A implies that
(2.4) Ely(n + mk)| € (1 — ayp )Ely(n[k)l.

(If p, = 1, then drop the E in (2.4), and (2.3), (2.4) yield w.p.]l convergence.)
The asserted geometric convergence is a consequence of (2.3), (2.4) and the
w.p.l convergence of &n|k) (hence of ¢(nlk) to c(x)). The last sentence of the

theorem follows by a similar argument. Q.E.D.

Remark on Other Cases. One can readily work with the case where all’

of the processors do not necessarily communicate with each other. We
comment only on one special case. Let processors 1, .., q, communicate to
each other but not to the other processors, and let processors ql+l, ey Qs

communicate only to processors I, .., q, but not to each other. Then &(n|k)

converges geometrically to a matrix ®, which takes the form
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3. Convergence: The Limit ODE

Nonstate Dependent {A,§ ). We will work with several sets of
assumptions. First, the basic convergence theorem will be proved when
the sequences {A } and {{ } are non state-dependent and independent of
cach other, and then the restrictions will be weakened. Let E_ denote

expectation, conditioned on X, i €n, A, §,1<n} We will use subsets

P
of the following assumptions. Theorem 3.1 is the basic weak convergence
theorem, from which most other results will follow. The conditions do
not seem to be restrictive.

(C3.1) {A,) and (§,} arc independent of each other.

(C3.2) B(X,8) = B,(X,f) + B,(X)%, where the B(-) are continuous, (B(-,{),

uniformly in E), {Ek} is a sequence of bounded random variables and (~Ek) is

a sequence with zero mean and bounded 4th moment.

(C3.3) There is a continuous function E(X) = (Bl(Xl), - gq(Xq)) such_that

EB(X,§) - B(X) =0, EZ_ -0

in probability for each X, as n -k = =,

(C3.4) There are a_matrix ® and a sequence m, = such that em, = 6 -

0 and

n

1 +m,-1 —| €
El—— e E ¢ —¢| =~ 0, wmiformly in n.
m,

- Remark and Definition. Under the conditions of Lemma 2.1, & must

B¢ have the form

A\

SR I O PR FC IR I T TRRVIDRIEAE P TR
' ARNEN - | s
e, F .
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where the 6i are diagonal matrices with diagonal denoted by (611, d>.lr)

and Zjaji = 1. For any vector X we have the form &X = (y, ... y) and

¢ X = (¥, - V¥,) for some y and y, in E'. Let & denote the row of r x

r matrices [51, ¢q]. Let l_3(x) denote I_B(x,x,...x), and B(x,{) dcnote

B(x,Xx,...,£).

C3.5. The ODE (3.1) has a unique solution for each initial condition.

> .
|

L= 6,0Yx) + ..+ 6 b%x)
(3.1) : = & B(x)

x, = ¢, bkx)+ ... + 6,03 (x)
C3.3'., There are a continuous ﬁ(-) and m, = « such that em, =8, = 0
and

I n - —
— "R B(X, 1) SBX)
me n

in probability for each X, uniformly in n.

C3.4'. There is a matrix & such that, asn—k -,

E[E,$ - & ~ 0.
Let n. be a sequence tending to « and such that V?ne -+ 0, and, for n 2

€’

sup P(I®k + n k) — &, 3 €?) ¢ €2
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There is such a sequence, by Lemma 2.1. In fact, we can use n, = O(log 1/¢).

Define
€ nf»l
X, = <!=»(n€|0))(0 + € ¢k+lB(Xk,Ek)
0

and for t 3 0 define X€(-) by X&(t) = X_ for t € [(n—n¢)e, (n—n +1)e). Write
X€() = (X€(), .., X&9.)). It will turn out that, for any initial
conditions Xio. the vectors Xin, i € q, rapidly come close together (due to the
communication and convexification). This leads to an (asymptotic in €)
jump in the process XWE] at t = 0. For this reason, we start X€(.) slightly
away (n. steps) from the origin of the {X } process.

Theorem 3.1. Assume (C2.1), the conditions on {A } in Section I, and

(C3.1), (C3.2), (C3.5) and either (C3.3), (C3.4) or (C3.3'), (C34'). Then XE€()
is tight in D[0,*) and converges weaklyv to a process X(-) = (x(:), .., x(-)),
where x(-) satisfies (3.1) with initial condition x,, and X(0) = lim X§ = (x,,
. xo).

Proof. Part 1. The proofs are essentially the same for the pairs (C3.3),
(C3.4) and (C3.3"). (C3.4') and we work only with the first pair., We often
use Schwarz’ inequality and the inequality (for a > 0), Einlk) — &|'** <

constant - E{®(nlk) — &, without specific mention. Iterating (1.1) and letting n

2 n, yields

X

n -1
Hn 00X, + ¢ L Hnlk+DBX,L) + € I onlk+DB(X,.,)
€

n+1

32
(3:2) X5+ e £ 0, BX)t) + edf + [$(010) - MO,
€
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where

o5 = S(0(nlk+1) = 6, ,1BX,8).

For the purposes of the weak convergence proof, we can assume (w.l.o.g.)
that {X,} is bounded by simply truncating the dynamical terms; i.e,, changing
B(-,¢) so that it is zero for large |X|. If the theorem is true for each such
truncation, then by the uniqueness assumption (C3.5), it is true as stated.
Henceforth we assume this boundedness.

Part 2. Next, we show that supe’nEl«b:ls < « . All norms are in the 24
sense. We have

ES® < constant- I E|¥nli+1)—d,

L),

|d‘>(n|j+l)—<1>j [®(njk+1)-

+l il k1l

By Holder’s inequality, the summand is bounded above by

EYV2[&(nli+1)-0,, |

[1+E3/4E 4 ES/ ‘|fj|‘E3/ 45,14

112V 0(nfj+ 1), 12 EV 20(nlk+1)~0, , 112

kel

By (C3.2) and the geometric convergence in Lemma 2.1 and the boundedness
of &(n|i) and ®, there is a d € [0,1) such that this term is bounded above by
(constant) d™id"-id"¥  Thus supe’nEchJrfl3 < ® . From this and (3.2) (and the
truncation of B(-,-))

- 2,.2
S i =X <

and {IX ., = X,|/e, n 2 n,, €} is uniformly integrable. Thus, {X€(.)} is tight

€’

in D[0,®) and all limit paths are Lipschitz continuous (in t).
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Part 3. We fix and work with a weakly convergent subsequence of

{(X€(-)), also indexed by €, and with limit denoted by X(:). Skorokod

imbedding (see Appendix) will be used where useful, without spccific

mention. Thus, we can assume, where needed, that X€(-) = X(-) uniformly
on bounded time intervals, w.p.l.

We will show, for each real valued function f(-) with compact support

and continuous second derivatives, that the M) defined by

(33) M) = f(X(1) ~ £(X(0)) - I; £x(X(s)® BX(s))ds

is a (continuous) martingale. Since MJ(-) is a Lipschitz continuous
martingale (since X(-) is Lipschitz continuous), it is a constant. Thus, since
M{0) = 0, we have M(t) = 0 or, equivalently, X =o 1_3(X). By the propertics
of & for each i ¢ r, the i, i+r, .., i+qr — r rows of ® are equal. Thus all
r-vector components of the limit X(-) must be equal, i.e., X(-) is of the form
(x(-), ..., x(-)), for x(t) ¢ E*. This and X = o _B(X) implies that x(.) satisfies
(3.1).

We need only show the martingale property. To do this, we need only
show that for any integer p and continuous bounded h(-) and t,$t,1¢p, s

> 0,
(3.4)  Eh(X(t), i € pI(X(t+s) = £(X(t)) - j:“f;((X(u))B B(X(u))du] = 0.

To simplify the notation (and w.lo.g.), let t and s be integral multiples

of em 5, (see (C3.4) for the definition of m.) and define the index sct IS

€

={nifm, +n, €n<im +m,+n.} By Taylor’s Theorem and (3.2),




\

5.!\ 's
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f(XE _ € - € — €
(X7 (t+s)) = ((X(1)) tsnsi<c+.[f(x!"‘e+me+“e) f(xlme“‘e)]
(3.5) ]
- '
=€ zsns§<z+.f"(x‘5e+ne) k§1§ d>k+lB(Xk,£k) + error terms,

where the error term is of the order of the sum of (all norms are in the 2,
sensc)

|2
€
€ + n€|0) - ¢(ne|0)||xola

€ 2 €
€ % |wgm€+n€|, € % Iw!m€+n ) €,
%l@(nme + m

L X1 + 157,

where the sums are over all 2 such that t ¢ 26, <t +s and k is summed

over t € ek -en. <t +s. The mean values of the error terms go to zero as e

= 0.
By (3.5),
lim Eh(XE(t), i € p)f(XE(t+s)) — £(XE(1)] =
(3.6) €

. e .
hem Eh(X®(t),1 ¢ p)[e L <06 Z(t f (X fm,+n, )Z €t‘leB(Xk,ik)]
We now rearrange the terms in a more convenient way. Define
1

B = — z & . B(X,,
2 m, kel kr1BX ety

and define the function B€(.) by

RE
BEé(t) = f! (x,,m +ng )E ﬂm€+n€Bﬂ for 26, <t <28, + &,

Since Xe(ti), i €p, is measurabie on the c-algebra Fo 4n.» for 28 . 2t (3.6)
ethe

can be rewritten as

£ 9. “
..\_ﬂnn_x -I"J“ \‘\-“ﬂ. LIRS

I ttn ihat) o
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- € : 1y € RE
hem Eh(X (ti), 1 €p) [s€ t52§€<t+sfx(xnm€+n€)82]

XY (37) 8
s = lim En(X“(t), i < p) " Bé(udu.

G If

iy € - =

o (3.8) B€(u) = f(X(u))® B(X(u))

¢ in probability for almost all u, then the second limit in (3.7) would be
. t+s - -

Y Eh(X(t), i ¢ p)_[t £ 1(X(u))® B(X(u))du.

Using this and take limits in (3.6) yields the desired result (3.4), and we will
be done. Thus, we need only show (3.8).
i Fix u and for ¢ > 0, define 2, by u ¢ [2,6,, 2,6, + §,). Then we need

¥
:ﬁ to show that

1 P - =

(39)  — Lo Ep oo (XX09,BX 0t = (X ()0 BX(u),
€ 2

€

By (C3.2) (and the truncation), we can replace the X, in (3.9) by X, m +n
€€ €

without changing the limit. Using this and the independence assumption

(C3.1), we can rewrite (3.9) as

1

3.10 — L, X E ¢ E B(X ,

( ) m, kﬂie X( !em€+n€) R€m€+n€ k+1 !eme+ne ( ll€m€+ne gk)
I + error term,
Y
Y
.-. where the error term goes to zero in the mean. By the convergence of X€(:)
(.

. to X(-) and using 2.8, ~ u, and (C3.3), (C3.4), we gct that (3.10) converges in

‘{f the mean to the right side of (3.9) as ¢ = 0 and the proof is concluded. (The
%
\
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‘intermediate’ details in the last part of the proof are very similar to those in
the ‘centralized’ case. See [8, Chapter 5.2] or [9].). Q.E.D.

State Dependent (A} and {§,} and/or Discontinuous Dynamics. The statc

dependent ‘communication’ and noise i1s most convenicntly modeled by a
‘Markov' dependence. This will allow {A } and {{ } to depend on the state in
a variety of ways: A ~can depend (statistically) on recent events or on
changes in the X,-sequence greater than a given magnitude over some time
interval, or on time elapsed since recent communications or on the ‘levels’ of
recent communications (i.e., the degree of ‘convexification’ or incorporation
of rcceived data into ones own estimate can depend on the nature of or
timing of recent receptions, transmissions, etc.). To be precise, we supposc
that there is a bounded sequence of random variables {~An} such that A is a

component of ;‘n and, for each € > 0, (X, A §.0) is a Markcv process

n-1’
with a homogeneous transition function. The A'n can incorporate other data;
e.g., time elapsed since last reception, transmission, e¢tc. The case where some
components of B(.,-) are merely indicator functions (hence, not continuous
functions) is of particular importance in applications. Such
‘Markovianizations’ seem to be quite natural for many problems. It might be
hard to explicitly evaluate the ODE’s here, but the character of the results is
clear and precisely what is wanted.

Example. For one example of the appearance of state dependent noise,
se¢ the ‘routing’ problem in [5]. In that example, inputs to a service or
communication system occur at random, and the service times are random

(correlated or not). The parameter x (the state) determines the probability

TreTTY T YW W v T
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that incoming events are routed along particular channels. The effective
noise is a consequence of the queue length or occupancy level of each
channel; it’s statistics are dependent on the routing parameter. A Markov
dependence model was appropriate there. The routing paramecter at timc n
increased or decreased by € -- depending on whether or not certain cvents
occured at time #; hence the dynamics were discontinuous. The model used
in this section includes ‘decentralized’ generalizations of such problems.
Assume that the marginal one-step transition function is of the product

(conditionally independent) form, for some P. and Py

(3.11)  P{A, € By, &, € BJX,Aj b0} = Po{A, € BX ,AjJPy(§, € B IX .8,

(C denotes ‘communication’, N denotes ‘noise’). The P, and Py will not
depend on €. We can allow some ¢-dependence -- but, in many applications,
€ is merely a step size parameter and does not affect the distribution of the
AL Xn or §_ other than via the values of the X, (esg., as in the above
example). The product from (3.11) is a natural generalization of (C3.1).
Here the noise and intercommunication intervals are independent, conditional

on the state. For each fixed X, the P, and Py in (3.11) can be considered to

be one-step transition functions for ‘fixed X’ Markov chains which we
denote by {Xn(X)). {£,(X)). Let PC{K,n,~|X) and Py{&n, X} denote the

associated n-step transition functions. Then PC{K,1,~|X} = P{A, ¢ "Xo =

A X}, etc. Let E)C( and E)Ié denote the associated expectations.
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Several assumptions will now be given, followed by some remarks

:' concerning extensions. The assumptions are phrased so as to cover many
: potentiul applications.

: (C3.6) EX[A_.A |A, = A] = F_(A,X) is continuous in (A,X).

(C3.7) For each bounded and continuous functions f,(-), i = 1.2,
; [1,(6)PR(8,1,dEX) and [f,(APL(A,1,dA X) are continuous in (§,X) and
" (A.X) respectively.

! (C3.8) {&,} is bounded.
: (C3.9) For_each X of the form X = (x,x,.,x), let the pair of processcs
. {RH(X),EH(X)} associated with the n-step transition function
A Pc{x,n,lX}PN({,n,-IX} have a unique invariant measure and which is of the
? product form PE{-}PR{-}.
(C3.10) [B(X,t)P(%,1,d%,X} is continuous in (X,8).
b Remark. Since the two fixed X-processes are independent, the product
; form in (3.9) will hold if the processes are aperiodic. Under the conditions
'. of Lemma 2.1, the Fn(X,X) in (C3.6) converge geometrically (uniformly in
/ K\) to a function ¢(K,X), which must be continuous under (C3.6). By the
‘ discussion associated with Theorem 3.1, we sec that 4>(2,X) has the form

:.. 6(AX) - - - 8. AX)]  [&AX)
; R - | =

: 6, (AX) - - - 6 (AX) &A,X)

o

where 5i(r\,X) is a diagonal (rxr) matrix. Write Ei(K,X) = diag[?éil(;h.\’).

8, (A.X)].
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If X takes the form X = (x,x,...x) for x ¢ Ef, we simply might writc x

for X.

(C3.11Y The ODE (3.12) has a unique solution for _each initial condition

(analogous to (3.1) -- the A and E are simply averaged out with respect to the

invariant mcasure)

J(AOPE(dA} [ bi(x,E)PR(dE)

x; = [ &,
j 2 R
52 : = &(x(u)B(x(u))
x, = I [ (AX)PYA) [ bi(x,t)Py(dE)
J
wherc
v = [&AX)PLAA), B(x) = [ B(x,0)PLdL).
Write
&’(x)
5()() = 4
&’(x)

Under (C3.7), (C3.9) and (C3.10), the right side of (3.12) is continuous.
Rcmarks on thce Assumptions. In many applications, A takes only a
finite numbcer of values. Then the appropriate topology is the discrete
topology and the K-continuity required in (C3.6) and (C3.7) always holds --
since then all functions of K are continuous. The 1-step smoothing
assumption in (C3.10) can be replaced by a k-step smoothing assumption --
and Theorem 3.2 will still hold. Since MK.X) is continuous (see above

remark), a ¢ -analog of (C3.10) 1s not needed. In (3.12) we are simply

averaging the dvnamics with respect to the invariant measures. If the
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invarian® measure is not unique, then the right side of (3.12) is set valued
and P; and Pé range over all the invariant measures. We usc (C3.8) here to
avoid some details. Extensions to cover typical unbounded (% } cases arc
possible via essentially the same method. To see how this might be done, see
the proof for the ‘centralized’ case in [8, Chapter 5.3] or in [9].

Theorem 3.2. Assume (C2.1), the conditions on {A,) in Section [, (C3.2)

(without the E component) and (C3.6) to (C3.10). Then {X€(-)} is tight in

D[0,~) and converges weaklv to X(:) = (x(-), .., x{-)), where x(-) satisfies

(3.12) and X(0) = (x(0), ..., x(0)) = & X,

Proof. {X®(.)} is tight and all limits are Lipschitz continuous for
the same reasons as in Theorem 3.1. Let ¢ index a weakly convergent
subsequence with limit denoted by X(-). As in Theorem 3.1, X(.) has
the form X(:) = (x(‘), .., x(-)). Owing to the Markov assumption, E,
denotes conditioning on (Xk,ik_l,xk_l). By the method of proof of
Theorem 3.1, we need only show that the left side of (3.9) converges in
probability to f)'((X(u))E(X(u))_B(X(u)) for X(u) of the form X(u) = (x(u),
wy X(u)). The fx term does not play an important role and we discard it
henceforth.

We use the ‘truncation’ method and notation discussed in Theorem 3.1.

Thus, we can suppose that B(-,-) and (X} are bounded. For each v, rewrite

{3.9) as (using the conditional independence implied by (3.11))




KN

[}

(1A
¥
¥

-23-

‘
- 1

€ =

N . H® = m, k}e:lg Emele+n€E d51(1-1 kB(Xk’zk)

W (3.13) | ¢

) o €

R " m kz:le Em€!€+n€Ek(Ak+V U Ak+l) EkB(xk’E‘k) + Qv

A\ € |

4% €

where E|Q{f ~ 0 uniformly in ¢, as v = @, by Lemma 2.].

‘i

Y

E: We next estimate Ek+1Ak+v"'Ak+1' All norms are in the £, sense.
g: Since the (X} and (Kn} lie in a compact set, the function of 8X defined
L)
. by

)
:

o 8,(18XI) = sup [F(A,X) - F(AX + 8X)|
o\ AX

. can be supposed to go to zero as |8X| = 0. We have EA = Fl(Kn_l,xn) =
W - -

:‘ - F(A X ) + AI(An pXp.pX,) where J8(A X LJXDI € 8 (X — XD
W
:1. Next we can write En WAAL = En_l(EnAn)An_l n 1 l(Alrl 1,Xn_l)An_] +

' 1( o Xn.1 XA ;- Note that

.l

}

ﬂ el

v (3.14) E GFiA X DA, = 2“\\ »X = E¢ ! Aoy

'

O

which is just the expectation for the 2-step fixed X-process with X fixed at
K . .
'z X,.;- Using this and |A | = I, we have
A
;. (3.15) E AA = 2(Ah 9 X, _g) + €rror terms,
where

" : Jerror terms| = I(FZ(An X)) ~ F(A X )+ 8 (An X XA
“~
Yy € B,(1X, ;- X D+ 80X, - X D).
&
:: Continuing in this way, we get
W
[)
%
L
IR

¢

P d

T J“I-r'."
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2 €.V
(3.15)  E. A A F (A X,) + Tf )

k+10k+v - Dkl T

0'::“1" where

Y ITEV ¢ ¥ 80X X

l.ﬁ"_:' =1 V+k-il)

Vik-i+1
€

and E|T§'VI = 0 for each v, uniformly in k, owing to the convergence of the

S X€(-).

Putting the estimate (3.i6) into (3.13) yields that

l

€ v
HY = — Z¢ E, g sn FUAeXB(X,00)

2

€
|
€ L,

(3.17)

+Q€+l—— r. E TEVB(X,,8,)

\% m, keli me.ﬂ€+nE k k* 2k’

3
The last two right hand terms in (3.17) go to zero in mean as € - 0 and
then v - « | and can be neglected. The sequence FV(K,X) converges
uniformly to the continuous function MZ,X) as v - « Thus, the limit
(as ¢ = 0, v = =) of the first term on the right side of (3.16) is the same
if ¢(K,X) replaces FV(K,X).

Now, we are in a position to use the result of [8, Chapter 5.3] or [9]). By
the arguments (for the Markov model) in either of these references (which,

when adapted to our current situation, requires the continuity of &(.,.), and

(C3.7), (C3.8), (€3.10)) and the fact that X€(-) = X(-), we have

Eme 2 ethe ¢(Ak’xk)B(xk’ik)

(3.18) . .
~ [ &(AX(u)B(X(v), Hm*™) (dAdy), -
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where m¥(-) is an invariant measure for the process {Kn(X),En(X)}. Since
X(u) = (x(u), .., x(u)), the uniqueness and product form of the invariant
measure in (C3.9) yields that mx(dxdﬁ) = P’é(dX)-P’rf,(dt,). Thus the right side

of (3.18) equals

(x(w)Bx(w) = [ ®(Ax(u)PFdA)- [ B(x(u),e)PL)d ),

and the proof is concluded. Q.E.D.
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..\ 4. State Space Constraintss A Projcction Algorithm .
2 In many applications, it is desired to confine the iterates to a

! compact set L, and if they ever leave L, the algorithm will project them

:: back onto L. Such algorithms are ubiquitous in applications, even if not

’J explicitly defined or assumed; e.g., the ambiguous notion of ‘monitoring’

3

! in adaptive control which implicitly assumes some sort of projection. We¢

\- treat two special but useful, cases.

: Assumptions and Problem Formulation

:_ (C4.1) Let g(x), i ¢ o be real valued continuously differentiable

< functions on E' and define L = {x: g(x) € 0, i ¢ o} Let L be boundcd.

: convex, and the closure of its interior. Also (w.lo.g) assume that the

[

3 gradient g (x) is not zero if g,(x) = 0. )
7 Let nL(y) denote the (unique) closest point on L to yv ¢ Ef. We usc

3 the projected form of algorithm (1.1):

4

K Mn+l = Anxn + eb(xn’zn)

. 4.1

o xin+1 = nL(;(:'x-H)’ i<aq

'= Thus, each processor projects independently and the constraint set is thc

XN samc for each. We now set the problem up so that previous results can be

..

~ used. :

Define p, = (p}, ... p%), where pl = [)(’;H_1 - Xin+1]/€ and definc ¢S = ¢f +

n

Y Iol®(nlk+1) = & ,1p,. Then for n 2 n. (n, was defined below (C3.4'))
)
)
K
!
)
“

4

)

‘U
3
»
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B
Ay
. . Xpoy = Xg + € > O B(X ) + € £ O 1Py * €Yy
L n n
8 (4.2) € €
)
\L, + [®(n|0) - qnelo)]xos
i where
3 n_-1
: X&=M™nl0) X, + ¢ fo &, 1B(X,.8,) + o).
2
"' The two cases which we treat are covered by the two following assumptions.
o
. (C4.2) The matrices aij(n) in A take the form aij(n) = “ij(“)]r where a.u.(n) 15
;)
:j a scalar valued random_variable and Ziaij(n) = 1.
L .
Under (C4.2) each of the scalar components ‘communicated’ from a
. processor j to processor i are incorporated the same way into the updated
“~
": estimates of processor i.
‘e
3 (C4.2') There ar¢ bounded g; and g, such that L = {x: g, € x; € g,, i €r}
Definitions. For a vector field h(-) in E’, define the projection onto L
«\.{ by (for x € L) a(x,h(x)) = limp_[n (x + &h(x)) — x]/A By the convexity of L,
DN
x‘ the limit is unique. Define the convex cone
‘.'.
1,9,
: Cix)=4{y:yv= % x..x,x.;o},
,, (x) { y € S00 Bix(X) N
:" where A(x) is the sct of constraints {i: g(x) = 0} (the active constraints
. at x). Note that pl ¢ —C(X! ). Write A p = (ZL .. Z3). where Z! ¢ E"
»
.-] Under (C42), each Z, is a convex combination of vectors in the
A {(Xfl+l), j € g We will see bclow that the same property holds under
e
- (C4.21"), Similarly for A, or & replacing A .
[}
T
‘ ;
3
%
4‘."
e
%
hC
i
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The theorem is stated under the conditions of Theorem 3.1, but there is

an analogous result under the conditions of Theorem 3.2

Theorem 4.1. Assume the conditions of Theorem 3.1, (C4.1) and either
(C4.2) or (C4.2’). Let the solution to (4.3) (the projected form of (3.1)) be
unique. Then {X¢(-)} converges weakly to X(-), where X(-) = (x(-), ..., x(-))
and
(43) x = m(x,dB(x)).

Equivalently
(3.4) = $B(x) + V(x).
where v(x(1)) € ~C(x(t)) (for almost all t). Also X(0) = &)X, = (x(0), ..., x(0)).
if \Z) € L.
Proof. Only (4.4) will be proved, since (4.4) implies (4.3). No

truncation (see Thecorem 3.1) is needed here since Xin € L, a compact sct.

Define the process R€(-) by

RE(t) = ¢ & ¢, .,p, for te[(n—n,)e, (n—n +1)e)

€

{analogous to the definition of X€(-) above Theorem 3.1). All norms below

arc in the 2, scnse. For Xin € L, the q r-vector components of A X, are all

in L under either (C4.2) or (C4.2'). Thus |p:| ¢ IB(X,8 ). Hence, the proof

of uniform integrability of {'d:f‘} and (p5) is the same as that for {y5} given

in Theorem 3.1. Thus (X€(-),R€(-)} is tight and all weak limits arc

Lipschitz continuous. Henceforth, we fix and work with a wcakly

convcergent subscquence, also indexed by €, and with limit (X(-).R(-)).
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As in Theorem 3.1, for i € q, the i, i+r, .., i+rq-t rows of ¢, arc equal.

~_H._E Then so are the same components of ¢k+lB(Xk,£k) and of d>k+lpk. Thus (as in
:\’ —_—
xi\ Theorem 3.1) X(-) = (x(-), =, X(-)) and R(-) = (R(-), .., R(-)), wherc x(t) and
S
Mg R(t) are in Ef, and
i 3 L e .
i (4.5) x = ®B(x) + R (1).
b
."‘.::' .
) Obviously x(t) ¢ L. Thus, we need only show that R(t) ¢ —C(x(t)) for almost
"‘ all t.
s
\‘i\ . € €.1 , € q . . .
-.;x Write X€(-) = (X&€1(-), .., X®9(.)). Let x(t) be in the interior of L for t
)
LAY
N M € [t,,t,] with t;, < t,. Then, by the weak convergence (i.e., convergence of all
e

X€4() to x(-)) the X&i(t), i € q, are strictly interior to L on [t t,] with a
:J probbility which tends to unity as € = 0. Thus, for small ¢, the cones

e C(X&H), i € q, t; ¢

€t gty will be empty with a probability which tends to
unity as € = 0. Thus R(t) = 0 for t, €t <t,

-::'-' We need now only consider the case where x(t) is on the boundary of
- L for t e [ttt < t, Skorohod imbedding will be used (se¢
;0' Appendix), so that we can assume that the convergence is with
Ro o probability one on each bounded time interval. Note that C(x) is an

R, upper semicontinuous function of x in the scnse that if x_ = x, then
-]
oo (4.6) Cx)on kU C(xn).
n =n

(g Let (g, (x(D). .., Jx(©) = (v;, ., v,) be the gradient vectors of the
1

i
a

\f active constraints at x = x(t), and let CB denote the convex cone formed

s;,:.:[ by the vectors in a B-ncighborhood of (v, .., v,).
LY

l\'a
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A

°d .‘ ------ .
“ [N ” l“ e .; {‘J‘J‘,Jv -\-\.-', oV a
AT :JJ'J'J'-J'-'.J.J'. o - o e .i
u‘;i.li 3& ,‘mh. h AR % N AV'JL.;*A'JJJ.LA.L&J:@I.J-K.An’b(d JA.-(LG.{M o] ‘F"\ o {hlv ¢ (‘ I



2

o

Ay Ay
Y o Xl

P -
(4

‘ol

,._,,
]

b f’-‘f‘.‘-‘-’

AL A, A

« Sl
'

P o, X A

RLLLR

-30-
By the weak convergence (i.e., the convergence of all X€i(.) to x(-)) and
(4.6), for each B8 > 0 and ¥ > 0, there are B, > 0 and ¢, > 0 such that for € ¢

€1,

(4.7) P{pi‘ € —CB, i €q, all k such that le(k-n )t € B} 2 1- 7,

ie, for e(k—n.) close enough to t, the pik are in a ‘small ncighborhood’ of
—C(x(t)) with a probability close to unity.

Now, assume (C4.2). Then, ecach of the g r-vector components of
P, 1Pk is also in such a ‘small neighborhood’ with a probability close to
unity, for e(k-n¢) close to t. This implies that R(t) € —=C(x(t)), for almost all
t.

Write x(t) = (x,(t), ..., x (t)). Assume {C4.2'), and let €(k—n.) be close to
t. Then C(x(t)) is particularly simple. Write pi = (pf(l, vy pf;') where the pf(i
are scalar valued. If x,(t) = g,; (the lower limit) then (using the weak
convergence) X€(-) ? (x(-), .., x(-)), the pf(i must be (asymptotically in ¢) 2 0
for all j, with a probability arbitrarily close to unity. Similarly, if x(t) = g,
(the upper limit), then (asymptotically in €) the p{(i must be € 0 for all j. By
the properties of ¢k+1, the same property must hold for the respective
components (i, i+r, i+2r, ...) of P 1P

The conclusion follows from this last remark, since if x = (X), o x)s

= 1 € = 1 )
where v, = g,., 1 €1, X, =8,, T, <i €r,and g,; <X, <g,, r,<i<r, then we
have that —C(x) is the collection of vectors whose first r, components are

nonnegative, the next r, — r are zcro.

2 are nonpositive and the last r — r

1 2

Q.E.D.
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5. The Asymptotics of X€(-) for Large t and Small ¢

Weak convergence in D[0,®) or in C[0,») basically gives information
on the locations and/or distribution of X€(-) for small €, and for t
confined to some large -- but still bounded interval. See, e.g., the
discussion of the topology of these spaces in the Appendix. It is
important to have a convergence result which is valid uniformly in
(large) t for small €, and such a result is readily available by appropriate
modifications of the previous results. One usually requires that the ODE
satisfied by the limit processes is stable, hence we¢ assume

(C5.1) Let (3.1) (or (3.12) for the state dependent {A.8,} case) have a unigue

stable (in_the s¢nse of Liapunov) point 8 which s globally attracting.

Let t, = = as ¢ = 0. Quite generally, if (C5.1) (and the conditions of
Theorems 3.1 or 3.2) holds, then X‘(tE + ) converges wcakly to a constant
process ;{(~), where ;((t) = (0, .., 8). This is preciscly the desired asvmptotic
result, since it says (roughly) that if the algorithm is ‘stable’ then, after a
fixed ‘transient period’ (independent of €), the X'€(-) arc arbitrarily closc to
8 in the sense of weak convergence.

Discussion of the Main Idca of the Development. Suppose that the set
(5.1) M= (XE(t),t 20, ¢>0)
is bounded in probability (tight); i.e., for each n > 0 there is a kp < = such
that P{XE¢(t) 3 kp) €1, for all ¢ >0, t 3 0. Then it is easy to show that
Xty + ) 3 X(-). To see this, choose T > 0 and consider a convergent

subsequence of the pair of processes {X‘(te + ) X‘(te—T + )}, with Himit
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denoted by (X(- LX) = (x(-), s X(2); Xp(-)y oy X)) (recall that all the
r-vector components of the limits are equal). We have X(0) = Xp(T). The

value of X 4(0) is unknown -- but all the possible such X(0), over all T and

convergent subsequences, belong to a tight set, with the same n and kp as
above. By this and the stability condition (A5.1) and Theorem 3.1 (or
\ Theorem 3.2), for any & > 0 there is @ Tg < @ such that for T » Tg, X(T) =
(x(T), ..., x4(T)) will be in a &-neighborhood of (8, .., 8) with probability 2
1-8. This yields the desired conclusion, since it implies that X(0) = (8, ..., 6)
w.p.l. Thus, to get the asymptotic (in t and ¢) result, only (5.1) must be
: shown.
Next, consider the projection algorithm of Section 4 and assume (C5.1')
in lieu of (C5.1):
(C5.1'") Let (44) have a unique stable (in_the sense of Liapunov) point 6
which is attracting in L.
Under (C5.1'), (5.1) is automatically bounded and if te »=as e ~ 0 then
' under the additional conditions of Section 4, Xe(tE + ) > 5{(~), where —)_((t) =
(6, .., 8). Some form of projection algorithm is usually used in practical
algorithms, and so the tightness condition on (5.1) is not burdensome.
Sharper Bounds on thc Asymptotic Errors (X:l — 8), for Large en and
, Small e. Under additional ‘stability’ conditions, one can get order of
magnitude estimates for (X"€(1) — 8) for large t and small . We do one case
r. here in preparation for the rate of convergence work in the next section. We

will need:

s v A A *‘ P L RIS S L TP SRR R *-j
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(C5.2) There is a twice continuously differentiable Liapunov_function 0 ¢

V(x)*mﬂc_iV(x)>0f_Q£x#OsuchthatforsomcX>OandK<°°,

V! (x)8B(x) € -\V(x), [V (x)I? € KIV(x) + 1| and V_(-) is bounded.

Define
(5.2) V(X) = %V(xi), for X = (X}, .., X9).

(C5.3) (C32), but where By(X,§) and B/(X) are bounded and have

bounded and continuous X-derivatives (uniformly in &, for B,

(C5.4) There is a constant K such that

B(X,E,) — & BX)|” ¢ K[V(X) + 1],

V{m
EI v EV(d)k+l

for all positive m and w. Similarly for the derivatives By and Ex

replacing B and Bz respectively,

Remark. (C5.4) essentially implies a ‘low’ correlation between data in
the remote past and in the distant future. There is an analogous result to
Theorem 5.1 for the state dependent {A ,§ } case, and for the constrained
casc.

Theorem 5.1. Assume (C5.1) to (C5.4). There is an Ne<e for each small
€ such that
(3.3) EV(X)) = 0(ve), n 2 N

Proof. Wec always assume n 2 n. so that E|®nl|0) - ¢0|a = 0(e?), for any

a > 0. Write
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X, - X, = [®(n]0) - &n-110)]X, + e(¥E - ¥f )

n+1
(5.4)
+e® BX,) + €[® B(X,2)-¢ BX,)
and
E V(X_,,) - V(X,) = €V3(X,) E_[#nl0) - &(n-1]0)]X,
(5.5) + € V(X E (W€ - £ ) + € V(X)) & B(X)

L ——
+ € VX(Xn)En [¢n+lB(Xn,§n) - ® B(X))] + error term

where Elerror term| = 0(e?). By (C5.2) and n 2 n., the expectation of the
first term on the rhs of (5.5) is O(e?)(1 + EV(X ). Write & in the

form

where @ is a r x qr matrix. For n 2 n
(5.6)  IXL - X =0/(e? + 0(e)p,

where E[0_(e?)? = 0(¢*), uniformly in n 2 n.

Using (5.6), rewrite the last two terms on thc right side of (5.5) as.

respectively,

R I TR B U S -

ATA T e Te et T T et T . . . . L - . L . - - . .

N T e T A TP S e e e e FE s RS e
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A —

X € }: \_;(\;‘) o] (Xin) + error term,
LRy i
i‘ (57) -1 . A . A — .
R ¢ TV, (XDE, [&, BXL. t)-&BXL] + error term,
. i

where by (C5.2) Elerror term| = 0(e*)(1 + EV(X)).
L, We now define the perturbations to the Liapunov function.

Define

VE(R) by VE(n) = -e V(X ¥ . We have
- (5.8 E[VS(n) = 0(e)(1 + EV(X)))

(590  E VE&(n+1) - EVE(n) € - EV (X ) - 9 ) + 0(e?) E (I + V(X))).

e .
p. > Define v;f(n)
Fal

~ (5100 Vi&m) =€ I V. (XD E [, BXL.5) - B (X)].

j=n

- By (C5.2) and (C5.4),

-* (5.11)  EIVLE(n)] = 0(e)(I + EV(X))).

; Also,

"y (5.12)  E_VE€ (n+) - Vi€ (n) = - V] (X)) E_ [8,, B(xig) - & BX!)]
+ error term,

where by (C5.4), Elerror term| = 0(e2)(1 + EV(X))).

"‘- ,. l’ '- l. ‘l l.
Baeaela e

- Now, define the perturbed Liapunov function V&(n) = V(X)) + Vi(n) +

s

Vaf(nl and cvaluate En\“(n+H-V€(n)and cancel the terms tev;(xnxwg-
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¢ and £ I VI(XLE [&
J

ps1 BX5,E) - & B(X1)] to get

EnVE(n+l) -Vé€n)=¢€¢ I {’; (X;) B (X';’) + error terms,
(5.13) i

Ejerror term| = 0(¢*)(I + EV(X)).

Using (C5.2) and the bounds on E[V{(n)| and on EIV;-G(n)I, we get
EVE(n+1) - EVE(n) € e L EV(X!) + 0(e?) (I + EV(X,))
i

(5.14)
$ -xe EVE(n) + 0(e?) (1 + EVE(n)).

Hence, for small ¢>0,
(5.15)  EV&(n) € (- 267 VE(n ) + 0Ce).

This together with the bounds on E[Vi(n) and on E|Vi-(n) vyield

Theorem. Q.E.D.
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6. Ratc of Convcrgence: Qualitative Asymptotic Propcertics

The Liapunov function in (C5.2) is often locally quadratic about 8 in
the sense that {’(x) = x'Qx + 0(x®) for Q > 0. If this is true, then Theorem

5.1 implies that (X! - 8)/€!/%, i < q, n 2 N, ¢ > 0) is tight. In this section,

€’

we will suppose that there are ﬁe < « for each small ¢ > 0 so that

1 e —~ . .
(6.1) {)—("/’e_; ,1€q,n 3N, e€> 0] is tight, Eb'(8,¢,) = 0.

Under (6.1), one can apply the methods of the ‘centralized’ case to get a
classical rate of convergence result.

Much information concerning the asymptotic behavior and comparison
with other algorithms can be obtained from such a result. The method and
results will be discussed in an informal way so that the main ideas are clear.
Despite the informality, the conditions needed for the proof will generally
be stated. The proofs follow standard lines in weak convergence theory, and
are not hard. Our aim is to exhibit the asymptotic behavior of the suitably
normalized errors, then specialize them to simple cases where a comparison
can be made with ‘centralized’ forms of the algorithm, so that one can see
the effects and value of the decentralization, and evaluate alternative forms
of communication and algorithms. The discussion is continued in the next
section. Such insights are needed at this stage of development of the

‘decentralized” algorithms, as a guide to futurc developments and are

perhaps more important than a rigorous devclopment along the standard
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lines. We will use the assumption (6.1), the boundedness of B(-,-) in each

:‘0:;\ boundcd X-set and that B(-,§) has a continuous (uniformly in &) derivative, ’
{1 \.;
‘u,,: and EB(X,t) =0.
p X For any R® valued function p(.) = (p}-), ..) of x (or X), let (p(8)),,
:‘i',l." denote the (Jacobian) matrix whose ith row is the x (respectively, X) gradient
¢ . A A
:: I of p'(-). Recall the definitions of 76i and ¢ (above (C3.5)), and of ¢ (in

Theorem 5.1). Define the matrix M = (6 1_3(9))x and suppose that it is stable.

e Let

.‘\P" n+m A A -
Ao LT @m0, < G BE), =M
et e in probability as n = and m = « .
T Define Uf1 = (X, - a)/w/?, where 8 = (6,6, ..., 8). Recall the definition of
R n. given below (C3.4') and that n, can be chosen such that ven, = 0. Given
e, N > 0, we have, forn 2 n, + N,

AN N+n

Us,y = ®nN)US + vE L o(alk+DB(X,.t,)

\
';- - —_ —_ Ae
1ol (6.2) + ve N+§€+1¢k+,B(xk,zk) + Ve JE,

9 = L [o(nik+1) - 0, IB(X,8,).

. N-+-ne

N Define (forn 2 N + n.)

=
m
1]
<
m

14
)
b=}

¥ e BB
N+ng+1 Kt .8
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Let N 3 N,. For t 3 0, definc the process US(-) by U¢(t) = U¢ for t ¢
[e(n-N-n,), e(n—-N-n.+1)) and define WE(-) similarly from {W}. By Taylor's

Theorcm and the definition of n,

€
Un+l

o U + 0_(eHUE + 0 (n vE) + O(vOPE
(6.3)

€ € €
+ e N&H (&, 1B(B,E)UE + WE + o(e) Ni“ oquU ),

where E[0 (e))* = 0(e*) since n > n,, and E|6n(n€¢?)| = 0(n.ve). Also
( k+1B(ei ))x denotes the matrix whose rows are the X-gradients of the
components of ¢k+l B(X’Ek) evaluated at X = (6,86,...).

In order to study the weak convergence of U€(.), we can truncate the
dynamics (as in Theorem 3.1) if {Uf} is not bounded: wherever US appears
in (6.3), we simply replace it by Ufq_(Uy), where q_(u) = 1 for |u| € m, and
is a smooth function with compact support. We get the weak convergence
with use of a,. and then fet m - = . The uniqueness of the solution to the
limit equation (6.9) below guarantees that the procedure works. For
notational simplicity -- we simply suppose that Ujﬁ}is bounded. Suppose
that (W€(-)) is tight and has continuous limits. Then, this also holds for
{U%(-)). Also, the second, third, fourth and last terms on the right side of
(6.3) disappear in the limit. The limit of any convergent subsequence

satisfies
(64) U = UO) + [ (@ B8),Us)ds + W),

where W(-) is the limit of (W€(-)).
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The Limits of {W€(-)}. Under broad conditionc W(-) is a Wiener process
with covariance

(6.5) t L Ed B(8,5,)B'(6,;)¢],

where the expectation in (6.5) is to be interpreted in the ergodic sense:
. 1 min
lim — "E B0, B(6,%,,)B'(8,8)0), .

m m )=n

We now give some conditions under which W(-) is the asserted Wicner

process. Let

(6.6) E|“+g’l¢k+13(e,gk) ! < Constant - m?.

then {W€(-)} is tight and all limits are continuous [6]. If
6.7) ’"*g'l 8, , B(8,8,)/vin

converges in distribution to a normal random variable (with mean zero) as n

= <and m - « then W(-) is a Gaussian process. If, for t, €t

(6.8)  E[WE(t,) — WE(eNIWE(ty) — WE(t)]' = 0,

then the increments of the limit W(:.) are orthogonal and the limit is a
(nonstandard) Wiener process. The proofs follow standard lines in weak
convergence theory [6]. The properties (6.6), (6.8) hold if the {A} is
independent of the {¢,) and the dependence among the §, decreases fast
enough as the time difference increases. Henceforth we assume that W(.) is

the zero mean Wiener process with covariance (6.5).

-
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L For the same reasons that the X(-) of Section 3 took the form X(-)

. S (x(-)y .., x(-)) for x(t) € Ef, we have U(:) = (u(-), .., u(-)) and W(.)

A (w(-), .., W(-)). Then (6.4) reduces to

et (6.9) du = Mu dt + dw.

‘,,,;\ The covariance of w(l) can be obtained from (6.5): Writing
¢1(.k), SR d’q.(k)

e 8K, - 80

where the ¢,(k) are diagonal, (6.5) reduces to

‘F.u' ]

[aL) _ © q . . q . .

RS (6.10) covw(l)=R= T E[Z¢i(k+l)b‘(9,£;t)] [Z¢i(k+l)b‘(9,§;()] .
-® 1 1

59 If N = = fast enough as € = 0, then the limit u(-) is the stationary solution to

o (6.9).

& The stationary covariance

6.11) J’O eMt ReM'tqy,

- Xy
P EOEFE

W
o of (6.9) is a standard measure of the ‘rate of convergence' or asymptotic
“j quality of the algorithm, and can be used as a basis of comparison among
o
)‘.: alternative algorithms.

X

!A

A Special Case. We specialize to a simple case in order to get some

-

E-{fj.: insight into thc asymptotic behavior. Let {8} be independent of (A, } with i
T ‘ o |
e (¢ i €q, k = 1,2, ) mutually independent with cov bi(8,¢}) =R, Then |

caAT

.

e
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q n+m
(6.12)  cov w(l) = Llim L T &(KR(K).
1 ™ n

A Scalar System. Let r = 1. Then ¢i(k) and Ei are scalars and
£ -1=1om.

Let bi(-,-) = b(-,-) and R, = R not depend on i. Then (6.9) becomes (b (8) <

0)
(6.13)  du = b (8)u dt + opdw,

where w(-) is a standard Wiener process and (where by the expectation E, we

mean the ergodic mean in (6.12))
=R L Edfn).

The stationary variance of u(-) is of)/2|6x(e)| = varp,.
Comparison with a ‘Centralized’ Algorithm. Define the following
centralized algorithm, under the scalar system assumptions of the above

paragraph

(6.14)  Z ., =Z +€b(Z ), (&, n=12, .} iid

n

Define V= (Z_ - 8)/ve and define vE(.) by vE(t) = V_on [ne, ne+e). If t,
-+ » fast enough as € - 0, then under appropriate conditions [8] ve(t€+.) >

v(-) where

(6.15)  dv = b (8)v dt + vR dw.

----------
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The stationary variance of (6.15) is R/2|Bx(9)| = var.. Since

var
—2D - g $¢2(n) < I,
varc 1

the decentralized algorithm yields an improvement. The infima of the ratio
occurs when the E¢>;"(n), 1 € q, are all equal, an unattainable case (to which
we can come close -- see Section 7). In this limit, 1/q = varp/varg.

A fairer comparison accounts for the fact that the decentralized
algorithm uses a total of g observations per iterate. Usiug the same number

in the centralized algorithm (6.14) we rewrite it as

- € - i i . .
(6.16) Z ,, =2Z + a% B(Z,,8), (€ i¢aq, n=12.)iid

n

Define {’f] and Vv€(-) as the V§ and vé(.) were defined, but based on (Zn}.

Under appropriate conditions ;e(t€+‘) > ;( -) where
(6.17)  dV = b (8)V dt + vR/q dw,

with stationary covariance R/2q|bx(8)| = var g and
(6.18)  varp/var,o = a L Eeln) 2 1.

The ratio (6.18) can be used to decide on the proper tradeoff between the
asymptotic error and the communication policy. Reasons why the
decentralized algorithm might be preferable are discussed in the next section.

Analogous results are, of course, obtainable for the general vector case.
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7. Asymptotic Properties: Discussion and Comparison

Independent (A ). We evaluate varp/var, under the conditions of the
last subsection of Section 6, where ¢ = 2 and the {A} arc iid. In
particular, let ¢ € [0,1), and let the processors act independently, with p
= probability i1 communicates to j # i at time n. With no
communication (probability (1 - p)z), A = L if 2 communicates to 1 --
but not conversely (probability p(1 — p)), then

I-~c ¢
A = = Azl,
0 1

If 1 communicates to 2 (but not conversely), then
1 0

A = = Al2
c l—

If both communicate to each other, then
I ¢ o
An = c 11— - A
Refer to Table 1. The optimum value of the ratio of the variances is
unity, a value closely approximated by small c¢. Clearly a larger p is
desirable. As ¢ = 0, the ratio improves -- but the size of the wf} would
increase. This implies that onc must wait longer for the stationary
variance to be a good indicator of the actual performance (the effects of
the communication are realized more slowly). Similarly, for small p. But,

in all cases, the average performance is much better than that for the

centralized algorithm (6.14).
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i ) P .05 25 .5
-; 1 1.036 1.13 1312
139
g 3 1.016 1.10 1.26
AL
.7 1.008 1.04 1.13
&
‘\'!
\, Table 1. Values for 2varp/var =varp/vary
i
!
2
[ L
A Decterministic Communication Scheme. We retain the assumptions of
)
A . ..
-: M the last subscction, except for those on the communications. Let m and m,
)
¢ . . . .
'o:' be integers with m; € m/2.  Processor 2 communicates to 1 each m units of
¥
9
time, and | communicates to 2 m, units of time later. We use AlZ AU
3
B> % (when m, # 0) and A® (when m, = 0). For m, = 0, (2varp/varg) = I, for all
o
AN
v 0 <1 <c For m, # 0, we have Table 2.
T -
~.’¢ c 2 varp/varg
& >
Y
;..: 1 1.0028
o 3 1.03
; .5 1.11
X
.
ﬁg Table 2. 2 varp/varg = varp/var,
,,._1‘
by
The values of m and m, appear only in the values of d)s, which increases as
N
7, . .
: m and m, increase. The values of varp/var,. are substantially worse when
4
3 processor | communicates to processor 2 more often than the reverse
- . communication rate, for deterministic communication times. This suggests
:3,:: that a relatively balanced communication strategy is better and that a
LS
X
‘,
)
'
R ¢
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processor should ‘respond’ as soon as possible after it rececives a ’message’
from another processor.

Discussion. It is clear that the decentralized algorithm takes
advantage of the possibilities of parallel processing, since its variance is
better than that of the classical algorithm (6.14), and can be nearly as
good as that of the fully centralized algorithm (6.16). But there is
another advantage -- which can be considerable. Simulations with
recursive algorithms such as (6.14) indicate that a key problem concerns
the frequently slow recovery from the effects of large ‘bursts’ of noisc;
i.e, from a large ‘random’ jump in the state value. This effcct would
not show up in the asymptotic variance estimates, but is of considerable
importance in practice, particularly when the algorithm is not in
operation for a very long time. The nature of the ‘convexification’
should often reduce the magnitude of this problem, and ‘robustify’ the
process. In a sense, the decentralized algorithm would perform much
better than the worst of g-identical (but not communicating) processors,
and (in a tracking system, for example) would reduce the chances of any
one processor losing track. In applications to optimization or systems
evaluation by monte-carlo simulation one can use ‘variance reduction’
ideas in choosing appropriate correlations among the sets {Ein. n =12 .}
i € q. Hopefullv this, together with the above ‘robustifying’ property,
would yield good behavior.

An Example. The following is an example which opens up many ncw

possibilities. Consider two receivers -- say, digital phase locked loops -- each




)
L
.‘a )
23
o
T
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o
WY receiving a signal from the same source, but the two being physically
_.‘_-1. : sepurated. Each must estimate the phase or epoch of the signal pulse (and
5
-]
';x' perhaps the phase of the carrier). Supposc that the source is much farther
ok from the receivers than they are to each other, so that more reliable
P communication between the receivers is possible. It might be possible to
!
i-‘ improve e¢ach others estimates by occasional communcations. This
v
L communication would transfer the estimates -- as well as allow the receivers
< to improve the mutual synchronization of their clocks or oscillators -- so that
' the transferred estimates can be meaningfully used.
: Communication Noisc. In examples such as the preceeding, one would
. normally have communication noise. This is readily incorporated into thc
Ny . .
by analysis. Write (1.1) as
,U
8. -
(7.1) Xpp1 = AX, +8) + €B(X 5 ).
‘:j:: .
\: where 5 represents the communication noise. For the algorithm to be useful
w at all, this noise should be of an order no larger than €. Then write & =
- €6 _, and proced as before.
. - _ -
.;- Even if 5, = O(ve) and E8 = 0, useful results can be obtained. If the
>
-f‘ interpolation of
v -
.\ w
-
: { £ ¢(n|k)8k}
" - .
~ converges weakly to a Wiener process W(-), then we might have X&(-) ® X(-):
5 - -
o dX = & B(X)dt + dW.
‘::
L
“
{w
"2
)]
3
O
o
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0‘ :
s Again X(-) takes the form (x(-), .., x(-)), under appropriate conditions on
S {6}
.,” An Alternative Algorithm. To get additional insight into the behavior
e . . .
ik of decentralized algorithm, we formally compare (1.1) with a recasonable
":-': alternative. Suppose that the processors communicate and ‘convexify’ only
‘Q-".
~:.\_-:. the changes in the states since the last communication. In particular, let q =
o,
. ‘.l .
v 2 and let (T’n}, i = 1,2, denote the comunication times of the two processors,
3{: with |1'in+1 ~ T!| bounded. Here processor 2 communicates to processor | at
)
:‘_} {Trll}. and similarly for the reverse communication. We proceed purely
o
. . .
y formally, and suppose that the dynamics are smooth and bounded. Defince
i (X1} by X' = X! and
._.'.:.. 1‘]( fk
O - i i i pi i i
) (7.2) X, =X+ ebd(XiE,  Then<Ti,).
1
0
Lo For a € (0,1/2}, set
Aona
1 1
L. T -1 T -1
<. 1 w k w
I X1 = XY+ (1-)e 5 biXLEl) + ae " F bA(X2,82)
! Ty+1 Ty T} 1
o (7.3)
X2, =X, +ae T bUXLel 4 (Im)e £ bAXLED).
A Ti+1 Ty 72 2
A
LUl
1R Owing to the smoothness and boundedness assumptions, there arc 0! (e?) =
\' \. n
AN
NS N ALoA .o .
::‘_\. 0(e?) and a process X, = (Xrlj,Xfl) satisfying (7.4) and which equals (modulo -
"&': 2\ (Wl w2 1 2 S :
€%)) (X, X)) and (X Lo X , ) (at the communication times)
] T Tk :
19 N
":-"
o
"
S
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N
A
S
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N
v .
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o X1, = X1+ (1—a0eb (XL e)) + aeb?(X2,E2) + 01(e?)
X2, = X2+ aeb(X1E)) + (1-e)eb¥(X2,E2) + 0%(e?).

The ‘size” of the 0! depend on the bound on (ti_, = Ti|. From this point on, ;

k+1
onc can usc standard thcory for the centralized case to get both the ODE
and thec asvmptotic normalized wvariance. Define $(€(~) as X¢(.) was
defincd, and similarly for U¢(:). The limit ODE is

(1-bi(X1) + ab?(X?)

(7.5) X = _ . = B(X1X?)
abl(X1) + (1—)b¥(X?)

The limit U(-) of (U€(.)} satisfies

A

(7.6) dU = MU dt + dW ,

where

cov W(l) = _i Eg & »
(1-e)b'(8,8)) + ob¥8,£2)

i, = ,
b'(8,¢1) + (1-)b%(8,12)

M

(B(8,8))y

and we suppose that ﬁd is a stable matrix.
Comparison of the Alternative (7.2), (7.3) with (1.1). We use the special
. scalar casc of the first subscction of this section, where (iin} arc i.i.d. and

b(.) = bX-,-) = b(+,-). Then (again b (8) < 0)

~~~~~
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(1-)b(XY) + ab(X?) )
ab(XY) + (1-)b(X?) |
- (1) «

dU = b (8) U dt + dW = MUdt + dw
3 (1) ]

. Co?+ 2o(1-a)
cov W(1) = Eb%8,¢})
2of1—) (1-0)? + of

Let vary, denote the stationary variance of fj(-). As « t 1/2, this
converges to the infimal value, equal to var,.. But at « = 1/2, the matrix M
is singular. Thus, again, there seems to be a trade-off between the ‘minimal
asymptotic variance’ and the length of time one must wait for the asymptotic
estimates to be valid or, similarly, for the communication to be effective. At
this point, the alternative algorithm does not seem to offer any clear
advantages. It was investigated simply because of the idea that there might

be an advantage in communicating only recent data.
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8. Stochastic Approximation With € ~ 0
The entire development can be repeated if € is replaced by 0 < €, ~0
. Zen = ® . One then gets results of classical stochastic approximation typec,
and we only make a few formal comments. We use Xos1 = AX, +
€ b(X_.8). Define t = E07%¢, and (for t 3 0) define X™(-) by X™(t) = X__,
B for t e (t,—t,, tH_l—tn). Under the conditions of Thecorem 5.1, fi_mnEV(Xn) <
= Given either this or the use of the projection algorithm of Section 4, onc
can get the appropriate ODE which characterizes the limit paths. If this
has the appropriate stability properties (as in Section 5), we can show that
X&) > x(-) = 6. The ODE is the same as that in the previous sections, for
all the same cases.
If }:efl < =, then the idea in [10] can be adapted to get w.p.]l convergence

results.
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Appendix. Some Results in Weak Convergence.

For some integer s, let D[C,») denote the space of E®-valued functions
on [0,#) which are right continuous and have left hand limits, with the
Skorohod topology {7, Chapter 2]). This topology is defined as follows. Let A
be the set of strictly increasing Lipschitz continuous functions from [0,®)

onto [0,2). Define the metric

d(x(-),y(-)) = infmax{ sup|log [MHI e Tdo(x(-),y(-),NdT},
AEA 8>t20 s-t o

where dp(x(-),y(-),}) = min (1, su;t) |x(X(t)ﬁT) - y(x(t)ﬂ‘r)l).

Define (Zf) and {Z€(-)) by ZE_ |, = Z§ + €Ff, Z(t) = Z£ [ne, ne+e). If

n+1
(Z§} is tight and the (F¢) are uniformly integrable, then {Z€(-)} is tight in
D{0,») and all weak limits are absolutely continuous.

Let Z%(-)  Z(-) in D[0,). By a suitable choice of the probability
space, the weak convergence becomes convergence w.p.l in the metric of
D[0,») [13, Theorem 3.1.1]. le., there is a probability space (BTB,‘}B) with
processes {~Z€(~)}, i(-) defined on it so that for each Borel set B in DJ[0,«),
P(Z¢(-) € B) = P(Z%(-) € B), P{Z(:) € B) = P(Z(-) € B) and Z&(.) - Z(-)

w.p.l in the topology of D[0,). The use of this representation often

facilitates the analysis and characterization of the limits.
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