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1. INTRODUCTION

This report summarizes the work associated with the evaluation of
the time and temperature-dependent response of unidirectional fiber
reinforced composite structures and structural elements. An examination of
this response is of fundamental importance in understanding the behavior of
fiber composite structures subjected to an environment which includes severe
temperature variations. The proposed large orbiting space structures, e.g.
solar electric power stations, communication satellites with large antennae,
etc., are examples of structures which will undergo severe temperature
cycling. Thus, the utilization of graphite/polymer composites in these
designs requires that the thermo-mechanical response of structural elements
composed of such materials be investigated.

The carbon fiber/polymeric matrix composites are known to exhibit
time dependent, or viscoelastic behavior. 1In addition, the time dependent
characteristics are modified by the temperature environment experienced by
the material, so that a thermoviscoelastic representation must be used. 1In
particular, a thermorheologically complex material (TCM) model of the
matrix, and thus the unidirectional fiber composite, has been employed here.

The objectives of the current efforts in the thermoviscoelastic
analysis of fiber reinforced composite structures were threefold. Initially,
attention was focused at developing the form and parameters of the
thermorheologically complex constitutive relations for unidirectional fiber
composites of the polymeric matrix type. Following the successful
characterization of the effective constitutive relations, the response of
unidirectional TCM composite structural elements to simultaneous sinusoidal
temperature and mechanical loads was determined, in order to investigate the
existence of complex moduli/compliances in this situation. Finally,
temperature-dependent eigensolutions, and dynamic analyses of transient load
and temperature conditions, on some simple composite structures were
performed, with the purpose of investigating the extent and sources of

damped response in the TCM composite structures.
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fﬁt 2. THERMOVISCOELASTIC CONSTITUTIVE RELATIONS

fus 2.1. DEVELOPMENT OF EFFECTIVE THERMOVISCOELASTIC EQUATIONS

!.'\':

¥

)

bh: The effective constitutive equations for unidirectional composites
L)

are dependent on the mechanical behavior of the individual composite

constituents. In this work, the fibers were represented as transversely

é& isotropic and linearly elastic, temperature dependent elements. The matrix
If% material surrounding the fibers was taken as isotropic. The deviatoric or
M shear components of the matrix response were assumed to be linear

o viscoelastic and thermorheologically complex. The dilational components
;5 have been considered to be elastic and temperature dependent. Note that
gﬁ' this characterization of matrix behavior as elastic in dilatation and

Qﬂ viscoelastic in shear is consistent with the typically assumed response in

three-dimensional viscoelastic stress analysis [1].

:: The development of the effective constitutive equations was performed
:; by assuming that the form of the composite stress-strain equations in all
)z' deformation modes (dilational and deviatoric) was identical to the form of
- - the matrix constitutive equation in shear. For typical fiber volume

{T fractions, this is a reasonable assumption. The most simple form of a

\:; thermorheologically complex viscoelastic stress-strain equation was used;
.{% this is one which includes a horizontal shift, representing time-temperature
' equivalence, and a single vertical shift for modeling the temperature

:as dependence of the initial modulus. This is a slight variation of the

S thermorheologically complex equation proposed by Schapery ([2].

;E The form of the thermorheologically complex viscoelastic material
o model representing the matrix material in shear is given by the symbolic
N equation:
::

i 2e,, = g® s.. (2.1.1)
Y . ij ij
“{: which represents the more complete form

o
lﬁ; v asi.(t')

e 2e..(t) = g(O)V($) s..(t) + 8g(€) s,.(0) + [, ag(e-€") ———l—7-dt' (2.1.2)

i} ij ij ot at

w2
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where
,S = the deviatoric strain and stress respectively,

"13°%13

g(0) = the instantaneous shear creep compliance,

g(€) = the time dependent shear creep compliance,
V(¢) = a vertical shift factor, and
¢{t) = temperature.

Also, the parameter £ represents the reduced time and is given by the

equation

£(t) = [Thl4(u)]du (2.1.3)
where

h(¢) = a horizontal shift factor.

Note that the temperature dependence of the stress-strain equation
is represented by the horizontal and vertical shift factors. The reduced
time allows the viscoelastic response at any temperature to be obtained from
a master response at reference temperature through a horizontal shift along
the time axis. The role of the vertical shift factor is to model the
temperature dependence of the initial compliance. Note that in isothermal,
temperature independent viscoelasticity, both the horizontal and vertical
shift factors are unity. Further background into the development of the TCM
constitutive equations may be found in Schapery [2].

With respect to the thermoviscoelastic unidirectional fiber
composite, since the matrix material is transversely isotropic, and because
of the random nature of fiber placement, the composite is statistically

transversely isotropic. Its effective thermoviscoelastic constitutive

W, o A BBl b A . i R I SR R Y
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€

22 12

Where
*
S..
1]
* *
L %t

- *
® 010+ S0 ® 9y + 5, ® 053+ B ¢

- - *
® 010+ Sy @ 09y +5y3 © o33+ @ ¢

- * - -
® all-i- 523 ® %99 +822 ® 934 +a; ® ) (2.1.4)

* -

= the effective creep compliances, and

= the effective compliances for the longitudinal and transverse

coefficients of thermal expansion.

Note that the bars over the strains and stresses indicate average strains

and stresses in the composite.

The complete set of effective creep compliance parameters include
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(0) = the effective instantaneous creep compliances,
AS. .(t) = the effective time dependent creep compliances,
h..(¢) = the effective horizontal shifts, and

V..(¢) = the effective vertical shifts.

Thus, unlike the case with elastic materials in which effective moduli or
compliances are determined from the constant response to a constant
mechanical or thermal input, a series of isothermal creep tests must be
performed in each mode of deformation, to determine the time and temperature
dependence for the entire set of effective creep compliances of the
composite constitutive equations.

Consider first the case of longitudinal shear. The effective

stress-strain equation is given by

2212(t> = SAZ(O) V42(¢)512(t) + ASAZ(E)GIZ(O) (2.1.5)

do, (t')
+ fi ASAZ(E-E')——lit, dt’
(o]

where

£ = 6w = [Y by, (6(n)]dr (2.1.6)

Suppose we simulate an isothermal creep test in which




612(c) = H(t)o,

(2.1.7)

¢(t) = H(t)¢,

where H(t) is the heavy-side (unit) step function defined such that

t <0
H(t) = { ¢ t e (2.1.8)
The stress-strain equation (2.1.5) gives
R * * * *
2e12(t) - 544(0)V44(¢°)0° + Asaa(h44(¢°)'t)“° (2.1.9)

The shift functions h42(¢) and V&Z(¢) are defined so that

* *
by, ($g) = V., (8p) = 1 (2.1.10)

where ¢R is the reference temperature. In this way, by performing the

isothermal creep test at ¢ = ¢ the creep function S (t) is determined:

44

2e,,(t,¢,)
* * 12 R
Saa(O) + Asaa(t) - (2.1.11)

To

At t=0, AS ) = 0 by definition, so that

44 (0

-

x, e
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:Lsifj 2212(01¢R)

* :
844(0) - (2.1.12)

O,
155 and for t » 0 we find

v 2e.,(t,d.) - 2¢,,(0,¢.)
;Mg 8s,, () = —2—F 12 "R (2.1.13)

G

Now, the isothermal creep test at ¢ = ¢° can be used to determine both

N * *
ﬁf: h44(¢) and V44(¢) as follows. At t = 0 we get

26150.4)

*

. v, (¢ ) =
44 "o *

: S&A(O).ao

(2.1.14)

*
which provides the vertical shift V44(¢0). This leaves the horizontal shift

*
4y h4a(¢o) as the only other unknown. At some other time during the creep

A

test, e.g. t = t, we get

A 28 (6.4 )-281.(0,4)
* * 12 12
ik 83, (h,,(8,)8) = > o, .

*
= 85,,(¢,,) (2.1.15)

L=t

» a»
‘l

—.d"‘
LA

from which

!

* "
haa(¢o) - faa/t (2.1.16)

oox, 4y ]
"""’l.

>

Thus, by performing a series of isothermal creep tests at a range of

* *
temperatures, both haa(¢) and V&A(¢) can then be determined.

e
-
A




Consider now the case of applied longitudinal stress coupled with a
uniform temperature distribution, with all other stresses zero. Again '

simulating an isothermal creep test, we apply the loads
oll(t) - H(t)aL

(2.1.17)

$(t) = H(t)$,

in which case from the stress-strain relations (2.1.4) we have the two

equations

- * * * *
ell(t,¢°) - Sll(O)Vn(¢o)aL+Asll(E)aL+aL(t,¢°)qu° (2.1.18)
: S, (0)V, x ¥ 9
€0p(E:8,) = §15(0)V (8 Yo +85,,(E)o +a, (€6 )+ (2.1.19)
Now define
A - * .
€;1(68) = €;;(t,8 )-a;(t, ¢ )¢, (i=1,2) (2.1.20)
* * * *
where ap =op and a, = ap and the subscript i is not summed. Then from

(2.1.18), at ¢ = ¢R we get

% ell(o’¢R)
811(0) - _—“;ZT—_— (2.1.21)

and




€,(t,6,)-€,,(0,4,) ,
AS ¥(py - LL—R__11 "R’ (2.1.22)
11 a
Then at ¢ = ¢°,
% €,,(0,¢ )
V11(8,) - l—o- (2.1.23)
Sll(o)aL
and at some other time t = t,
* * A cll(t'¢o)"€11(0,¢°) *
8511(hyy (85)-0) = ot = 85,1 (€19) (2.1.24)
from which
hy} c 2.1.2
11(8,) = €11/t (2.1.25)
From (2.1.19)
. €5 (0,85)
$19(0) - T (2.1.26)
and
€y n(t,9,)-€,,(0,4.)
AS, Y (t) - 22 R 22 'R (2.1.27)
12 a
At ¢ = ¢,
9
A A Ay Oy T e et T AT T D M T




€,,(0,¢ ) '
v1;(¢ y = 229 (2.1.28)

*
] O

e,y A
e and at some other time t = t,

2 Uy A A A

Y e e (6.8 )60 (0.6)
A x % 22€:45)-€25(0. 45
i:':b Aslz(hlz (¢°)'t) -

*
ASlz(Elz) (2.1.29)

L

W from which
. . A
e hy3(8) = &1/t (2.1.30)

™ Now consider the case of an applied transverse isotropic stress
18

1‘&‘ aT - 022 - 033 (2131)

- .

o] coupled with a uniform temperature distribution, with all other stresses

zero. Again simulating an isothermal creep test, we apply the loads
.“‘0; &zz(t) - ‘-733(t) - H(t)aT
oV (2.1.32)

Y $(t) = H(D)$

*
ey Using the first of the stress-strain relations (2.1.4), the 512

W compliance parameters could again be generated, but this will not be

creep

f;§ repeated here. From either the second or the third of equations (2.1.4), we
b, 7

929 get

*

iﬁ%‘ | 10
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At ¢ = ¢R we have

and for t = O,

Y For ¢ = ¢o and t = 0,

A

* *
S99 (£95)0+85,3(£54) 0

% *
At t = 0, 85,5 (0) = 85,4 (0) = 0 so that

E FRCE18) = SO oS SO Do

4 82;(0)+52;(0)+A82;(t)+A52§(t) - Ep(t.dg) /oy

S5 (0)45,3(0) = &x(0,4p) /0

% * * -
M) Aszz(t)+Asz3(t)

and at ¢ = ¢o , t = t we get

s

- 4™ s ‘- Y . ‘. " “m
o L. S P S N A
A ST Wl oSS

2! * h * A * h
ASZZ( 22(¢°)'t)+A523( 23(¢°)°t) -

ET(tv¢R) -ET(O‘

4g)

o7

A S0 (00Vos (8 145,53 (0)Vy 5 (8 )=€1(0,,) /0

A eT(t'¢0)-ET(0,¢O)

11

...........
.............

91

-------

M

(2.1.33)

(2.1.34)

(2.1.35)

(2.1.36)

(2.1.37)

(2.1.38)

' Now, from transverse shear isothermal creep tests we get the equations

]




* * * -
S 2(0) = S,5(0) - $,3(0) = 2&,,(0,42)/0,, (2.1.39)
:‘(
X2 - -
) 2e,,(t,¢,) - 2¢,,(0,4,)
y * ook ok 2e9a(E.dg 23(0. ¢
! DS (t) = 85,5 (t) - 85,3(C) o (2.1.40)
é For ¢ = ¢, and t = 0,
)
* * * * -
.
¢
k and for t = t,
" A A
* A A 2¢,,(t,¢ )-2€,,(0,4,)
* * * *

4 85,5 (hoy(4) +t) -AS, 5 (hy3 (4 ) ot) = —22 e 23 RO (9.1.42)
) . 23
4
ﬂ
] From (2.1.35) + (2.1.39),
X
3
? €n(0,4.) 2e,,(0,4,)

S)5(0) = 172 { TR, 23R (2.1.43)
N o
.{ T 023
)
)
R From (2.1.35) - (2.1.39),
) en(0,6.)  26,2(0,6.)
Y € N € ’
: 5,3(0) = 172 {-1T—R~ 2R (2.1.44)

[+4 g
3 T 23
[}
5 From (2.1.36) + (2.1.40),
y
3
en(t, ) -€(0,6.) 2€,,(t,$,)-2€,,(0,4,)
‘ 85,5 (t)=1/2 {——F—T—=R 23 "RT 23 'R (5.1.45)
9 923
w
12
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From (2.1.36) - (2.1.40),

ET(C'¢B)-ET(0’¢R)

i 2223(t’¢&)'2223(01¢R)

*
AS. ¥ (t)=1/2 (2.1.46)
23 aT 023
From (2.1.37) + (2.1.41),
(0,0 ) 2€,,(0,4,)
Vyr($ )= =% 1 I "o ,_23 'R (2.1.47)
25,,(8,) op 923
and (2.1.37) - (2.1.41) gives,
€.(0,06.) 2e,.(0,4)
V3 (4,) = L I o 23 0 (2.1.48)
. 25,4(4,,) op 993
Then (2.1.38) + (2.1.42) results in
A €.(t,¢ )-e.(0,6 ), 2e,,(t.¢ )-2¢,,(0,¢4 )
S*(h *(¢ yet)=1/2 T o) T o'+ 23 o) 23 (o) (2.1.49)
22722 %0 o g
T 23
S *
=8855(£5,)
giving
hoy A 2.1.50
22(#5)=¢ 5,/ (2159
13
1‘. f:' gml‘il, , ?,\9!1 !::.'.:.?'.'...‘ ) - -. ~ ' ' |.° ¥ ‘r- r 'f‘:,:#.:f ,‘_.r_:.-;.-.;(;-:;w_;w_;f{.‘.;. ......




From (2.1.38) - (2.1.42) we get

CT(t'¢O)-€T(0’¢0) ) 2E23(t1¢°)'2223(0;¢0)

(4

* * ~
A823(h23(¢0)-t)-1/2 (2.1.51)

T %23

S *
= 8593(&y3)
from which

ho £

Now consider the case where thermal loads alone act on the composite
cylinder. 1In the case of a temperature step function rise A¢ relative to

the reference temperature ¢R’ the effective longitudinal secant expansion

*
coefficient o, is defined by ¢

T while the transverse expansion coefficient

L

*
[0

T is defined by the radial surface displacement per unit radius. Thus

oy (t, 4y, 08) = & (t)/A$

(2.1.53)
* -
ap(t,dp,08) = i (€)/0$

Schapery (2] proposes that for the thermorheologically simple

material (TSM), in the absence of mechanical loads,

ey =" are gy L g (2.1.54)
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Eypmigg=f* a;(sT-sT)géﬁflldr (2.1.55)

where

€1=oJ " BI8(r)]dr (2.1.56)
and

€= oJ° bplg(r)]dr (2.1.57)

For the most simple cf the TCM forms, it is proposed that for a general

temperature history, again in the absence of applied stress for convenience,

e11() = o] (V] ($)ad(t) + da) (£,)4$(0)

(2.1.58)
+ [aag (e -6 )%0%0r
o+
- - * * *
€p(t) = E33(t) = an(0IVI($)4(E) + Bag(£,)84(0)
(2.1.59)
t X " dad
+ 7 dap(6p-60)7 5,4
o+
For a temperature step function rise
Ag(t) = H(t) A¢ (2.1.60)
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we obtain the strains

I é,(0) = {a:(O)V:(¢)+Aaz(EL)}A¢ (2.1.61)

ex(t) = Eyy () = &5,(E) = {a;(O)V;(qS)H&a;(ET)}A:;S (2.1.62)

*i At t = 0, Aa: (0) = Aa; (0) = 0 by definition, so

” ) €11(0) €2 (0)
o ar (V] ($) = L3 ap(0IVp(4) = 33 (2.1.63)

O We now define an arbitrary temperature ¢ = ¢Ra as the effective thermal

expansion coefficients’ reference temperature. Since A¢ = 0 at the
reference temperature defined for the composite effective mechanical creep
$§ compliances, some other temperature would be more convenient to use for the

) composite effective thermal expansion coefficients. Since

}

" * * * *

3 Vi (#p) = Vp#g) = Br(op ) =hp(dp ) =1  (2.1.64)
there results

~ X0y - 100:%gg) €110 4gy)
, L ¢ PRa”?R

(2.1.65)

o and similarly

A% ¢ (0,8 )
a;(O) - T Ra

(2.1.66)
SOt ¢Ra-¢R

32N
‘1ﬁ‘ Then at temperature ¢o » ¢Ra’ the vertical shifts are computed:
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2 €..(0,¢ ) € (0,4 )
‘ Vi(g,) - g Vi) = =
Lo T a;(O)A¢

- (2.1.67)

where Ad = ¢° - ¢R'

Again considering ¢Ra’

:Rs MOE {a;(O) + Aa:(t)} A

W (2.1.68)

R in(t) = {ar0) + aer(e)} a¢
' T T T
from which the effective delta compliances are defined:

8 £t dg )
03 day (6) = —H— R o (0)

b (2.1.69)

et b))

*
AaT(t) - Ao

- a;(O)

" Then, at ¢ = ¢o and t = t = O,

- ~ * *
Sl a €.,(t,¢ )-a (0)V_ (¢ )
‘by Aa:(hz(¢o)'t) _ 11 o) A¢L L' 70" _ Aa;(EL)

(2.1.70)

T * *
A Ep(t4) - ag(OVI(8)
Bag(hy(8y)ee) = =1 _ saj(e)
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from which

. R
hL(¢°) - eL/c (2.1.71)

and

2.2. LITERATURE SURVEY OF THERMOVISCOELASTIC MATERIAL PROPERTIES

As part of this work, an extensive literature search was conducted
in an effort to determine realistic material properties of
thermoviscoelastic solids, in particular those typically employed as epoxy
matrices in composites. Several papers, e.g. [3-8], were found which
provided some or all of the material parameters for a thermorheologically
simple characterization of typical matrix material. However, very little
data exists for thermorheologically complex viscoelastic epoxies.

A number of papers [9-13] and a private communication [14] were
obtained which provided useful data on thermorheologically complex epoxy
matrices. All of the papers [9-13] used a characterization scheme which
fitted the data to a semi-empirical model first developed by Schapery [15]
for nonlinear isothermal viscoelasticity. The data in all of these papers,
first reported in [9] and [10], was modified for use in the work reported
here, as described in a previous report [16].

The matrix thermoviscoelastic data used in this study, including the
time-dependent matrix shear creep compliance, the matrix shear horizontal
shift and vertical shift, are included in Figures 2.1, 2.2 and 2.3,
respectively. The fiber elastic properties and the matrix properties at

reference temperature are listed in Table 1.
2.3. EVALUATION OF EFFECTIVE THERMOVISCOELASTIC PARAMETERS

Note that in the equations of Section 2.1, the stresses and

temperatures are applied, and the composite or average strains are assumed




”

ANANLE

to be known so that the effective compliance parameters may be calculated.

The analytical tools available for generating average strains in composite
cylinders involving transversely isotropic fibers and an isotropic matrix
include the composite cylinder assemblage (CCA) model and the analysis of a
periodic hexagonal array [17]. The details regarding the analysis for
average strains in a composite cylinder composed of transversely isotropic
temperature-dependent elastic fibers and a thermorheologically complex
viscoelastic matrix were developed in the Phase I portion of this effort
(16]. Average strains due to thermal expansion and axisymmetric mechanical
loadings were examined with the composite cylinder assemblage model, while
transverse loading effects were analyzed using a finite element model of a
periodic hexagonal array.

Numerical simulations of the series of isothermal creep tests
described in Section 2.1 were performed in each mode of deformation, to
determine the complete set of effective creep compliance parameters of the
composite constitutive equations. Figures 2.1 through 2.3 show the time
dependent creep compliance, horizontal shift and vertical shift,
respectively, for the composite axial deformation compliance. Since this
deformation mode is largely dominated by the elastic fibers, the creep
compliance (Figure 2.1) is several orders of magnitude less than that of the
matrix shear creep compliance. This fiber dominance also manifests itself
in the shifts (Figures 2.2 and 2.3) through a much more shallow slope in the
composite shift curves than in the matrix shift curves. Figures 2.4 through
2.6 show the time dependent creep compliance, horizontal shift and vertical
shift, respectively, for the composite axial shear compliance. Since in
this mode, the matrix participation is dominant, the composite parameters

are much closer to the matrix values.
2.4. VERIFICATION OF EFFECTIVE COMPOSITE CONSTITUTIVE EQUATIONS

The macromechanical response of a composite structural element, as
predicted by the effective constitutive equations and their derived
parameters, was checked against results computed using a micromechanical
model (composite cylinder assemblage) which explicitly included the fiber
and matrix as discrete phases. A slowly varying periodic shear stress was

applied to the composite in the presence of an oscillating temperature. It
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should be noted that even though the composite cylinder assemblage model was
used to generate the parameters of the effective thermoviscoelastic '
equations, this model can still be used to verify the equations and their
parameters for arbitrary time varying mechanical and temperature loadings,
since the parameters were generated using a series of isothermal creep
tests.

The simultaneously applied axial stress history and temperature load
are shown in Figures 2.7 and 2.8, respectively. Comparisons of the axial
shear strains and the thermally induced longitudinal and transverse strains
for this loading are shown in Figures 2.9, 2.10 and 2.1l respectively. Note
that essentially identical results for all of the strains were obtained from
the macro- and micromechanical models, thereby verifying both the assumed
form and the individual parameters of the composite constitutive equations.

The significance of the verification, illustrated in Figures 2.9
through 2.11, is that it allows structural analyses involving TCM composites
to be performed in an efficient manner, namely by simply using the effective
constitutive equations. If these equations could not be verified, the
response of the composite element would have to be computed at each time
step by using both the CCA model and the finite element model of the
hexagonal array, both of which require the solution of simultaneous
algebraic equations, just to evaluate the average strain field in the
composite due to the applied mechanical and thermal loads. This would be an
extremely tedious and computationally excessive process for any practical

structural analysis involving TCM composites.
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3. 3. RESPONSE TO SINUSOIDAL TEMPERATURE AND LOAD

W In isothermal viscoelasticity, the application of a sinusoidal

stress results in a sinusoidal strain at the same frequency. The

s

oscillating stress and strain reach their peak values at different times,
i.e. there is a phase shift between stress and strain. This can be seen in
\ Figures 3.1 and 3.2 which show respectively a sinusoidal axial shear stress

history applied isothermally and the resulting axial shear strain. The

R

-

strain response is most conveniently characterized using a complex

T

compliance, where the real part is the ratio of the strain amplitude to

3 stress amplitude, and the imaginary part represents the phase shift. At the

frequency of the applied stress shown in Figure 3.1, both the real and

imaginary parts of the complex compliance can be computed using the

-

X information on the peak magnitudes and the time difference between the peaks
shown in Figures 3.1 and 3.2. 1In the general case, both the real and
imaginary parts are functions of the frequency of the applied stress.

The purpose of analyzing the effects of simultaneous sinusoidal
; temperature and load was to determine if a periodic response was obtained

- for the composite, and if so, to examine the form of the periodic response.

‘éi In particular it was of interest to determine if a complex compliance
i. existed in this situation.
'25 Several cases were run involving the application of a sinusoidal
' shear stress and a sinusoidal temperature at different frequencies. Figure
. 3.3 shows the resulting axial shear strain for the case where the shear
>: stress frequency was twice the frequency of the temperature cycle. Figure
;‘ 3.4 gives the shear strain for the case where the shear stress frequency was
e two-thirds the applied temperature frequency, and Figure 3.5 gives the shear
k] strain when the shear stress frequency is two-fifths the applied temperature
” frequency. It is apparent from all of these curves that the steady state
: portion of the strain can be decomposed into two sinusoidal components,
¥ whose frequencies are equal to the applied stress frequency and the
3 temperature frequency. This implies the existence of a two frequency
f; complex compliance which, from a computational point of view, could be
3 developed into a powerful tool for performing structural dynamic analysis of
": TSM and TCM structures under arbitrary mechanical and thermal loading
- conditions.
o
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4, DYNAMIC ANALYSES OF THERMOVISCOELASTIC COMPOSITE STRUCTURES

4.1. INTRODUCTION

The purpose of this section is to present the results of the effects
of thermoviscoelastic behavior on the damped response of some simple
composite structures. Two separate problems were considered: the free
vibration of a cantilevered unidirectional beam of cylindrical cross-
section, and the response of a simple truss to impulsive mechanical loading
in the presence of isothermal and transient temperature conditions. The
role of shear deformation is demonstrated in the free vibration study, and
the influence of matrix deformation on damped response is shown in the truss

problems.

4.2. FREE FLEXURAL VIBRATIONS OF CANTILEVERED UNIDIRECTIONAL BEAM

As an initial illustration of dynamic analysis of a TCM composite
structure, we consider the case of free flexural vibrations of a
cantilevered beam which is uniaxially reinforced in the beam axis direction.
As mentioned above, the purpose of the investigation is to compare vibration
damping due to matrix thermoviscoelasticity on the basis of the usual theory
which neglects the effect of shear, and on the basis of the more refined
Timoshenko theory which takes into account shear as well as rotatory
inertia. Recall that the loss tangent is defined as the ratio of the
imaginary part of the complex modulus to its real part. For isotropic
materials, in which the complex Young's modulus loss tangent and the complex
shear modulus loss tangent are of the same order, the added effect of shear
and rotatory inertia is small for vibration modes of low order and for long
beams. In the present case, however, where the axial Young’'s modulus loss
tangent is by an order of magnitude smaller than that of the axial shear
modulus, the situation is quite different as will be shown.

Considering only the effect of flexure, by the correspondence
principle for viscoelastic vibrations [18], the differential equation for

the transverse deflection y of a freely vibrating beam is
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E (w)IQ—f +on TX _ 0 4.2.1)
ax at

where
= R I ,
EA(w) - EA(w) + iEA(w) = complex axial Young's modulus,
I = moment of inertia
A = area of the cross section

density.

By the conventional separation of variables method, the solution to

the governing partial differential equation (4.2.1) is given by

y(x,t) = (A1 sin ax + Azcos ax + A3 sinh ax + A4 cosh ax)eiwt (4.2.2)

with

at - pABZ/EAI (4.2.3)

where the constants Ai are evaluated from boundary conditions on a

cantilevered beam
y(0,£) =0

y'(0,t) =0
(4.2.4)

M(L,t) =- EAIy"(L,c)-o

V(L,t) - EAIyM(L,t) -0
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Substituting the solution given by (4.2.2) into the homogeneous boundary
conditions, by requiring a non-trivial solution for at least one of the

constants, leads to the frequency equation
1 + cos aL cosh aL = 0 (4.2.5)

The solution to this transcendental equation will be represented as anL so

that the beam natural frequencies may be obtained from the solution of
~ 2 = 1/2
w, = ay (EA(w)I/pA) (4.2.6)

Note that in the elastic case, the natural frequencies are obtained by

simply evaluating the right hand side of (4.2.6). However in the
viscoelastic case, since EA is a function of frequency, equation (4.2.6) is

nonlinear in frequency and thus the real and imaginary parts must be
obtained in an iterative fashion.

The time varying portion of the solution takes the form

e Nae M ¢ 8 (4.2.7)

Thus the real part of each natural frequency represents the oscillatory
component and the imaginary part is the attenuation, a measure of the
damping introduced by the viscoelastic matrix material.

Next the same beam is considered in Timoshenko fashion, with shear
and rotatory inertia. Again using the correspondence principle, the coupled
equations for the total deflection y and bending slope ¥ are given by
Timoshenko [19] as

2 ay 2
=1 ¥ = . g .,19% _
E,I ax2 + k[ax ¢]AGA pIat2 0 (4.2.8)

24

PRI RS RIS

AN e
y AL‘LII'JLJLJf‘R})LHLJMiMJ&JL

“ﬂ‘*}ﬂi



\ g AL TErTwUwT W W W TR

-0 (4.2.9)

where the new constants are

EA(w) = Gi(w) + iGi(w) = the axial complex shear modulus, and

k = a numerical shape factor for the cross section.

Following the development first shown in Huang [20], we eliminate ¢ or y
from equations (4.2.8) and (4.2.9) and obtain the two uncoupled differential

equations in y and ¢

oYy 3%y E, | a% 2, a%y
E,I = + oA —5 - pIll + — Tyt =0 (4.2.10)
ax at kG ax~at kG, dt
A A
- 3%y E, | % ofra%y
EAI 4+pA"‘é‘- pl 1+-: ) + A'O (4.2.11)
ax at kG, | ax’at’ 1, ot

Introducing the nondimensional parameter § = x/L and assuming solutions to

be of the form

y = Yeiwt
(4.2.12)
- d) - \]Ieiwt
o
o
T
El'.d equations (4.2.8) to (4.2.11) take the form
- §2um - (1-6%c%8%w + Y /L = 0 (4.2.13)
Ko
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Yy + 5%8%y - L' =0 (4.2.14)

Y452 (2432 v 52 (1-52e25%)y - 0 4.2.15)
wIV482 (2452952 (1-62r252)y = 0 (4.2.16)

where

52 - 2A_ 1452 4.2.17)
E I
A
r? = 1/aL2 (4.2.18)
$2 - E 1/kat L2 (4.2.19)
A A 2.

and the primes for Y and ¥ represent differentiation with respect to 4.

At the clamped end of the beam we have the boundary conditions

¥ =0
(4.2.20)
Y=0
and at the free end we have
' =0
(4.2.21)
lv_'_
LY ¥ 0

The solutions to (4.2.15) and (4.2.16) can be found as
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Y = C,cosh ba# + C, sinh bad + C, cos BB8 + C, sin BBo (4&.2.22)

1 2 3 4
¥ = Cg cosh bad + Cg sinh bad + C, cos bge + Cg sin bBe (4.2.23;
where
a, B - %5 {-,+(r2+§2)+[(rz-§2)2 + 4/82]1/2} 1/2 (4.2.24)

Note that only half of the constants in equations (4.2.22) and

(4.2.23) are independent. The constants C5 through C

through c, using equations (4.2.13) or (4.2.14).

may be related to C

8 1

From the requirement that a non-trivial solution exist for at least
one of the constants, using the appropriate boundary conditions (4.2.20) and

(4.2.21) within (4.2.22) and (4.2.23) we get as a frequency equation

=, 2 =2
b(r™+S o
= sinh ba sin ba = 0 (4.2.25)
2 252)1/2

2+[~2 2 =2.2
(1-6°r

b"(r"-S7) +2]cosh ba cos Sﬁ -

As with (4.2.6) above, a nonlinear solution technique must be used on
(4.2.25) to obtain the real and imaginary components of the beam natural
frequencies.

To use the natural frequency equations given above, the effective
complex Young's modulus and the effective complex axial shear modulus for
the unidirectional composite must be known. These were generated in a
manner entirely analogous to that used in Section 2 in generating the
effective creep compliance parameters of the composite. In this case,
however, instead of dealing with "reduced time" as the independent variable
of the time dependent creep compliances, we work with "reduced frequency" as
the abscissa of the complex moduli. As with the creep compliances, the
horizontal shifts are used to compute the reduced frequency for the complex
moduli.

As an illustration of the dependence of response on temperature, the
natural frequencies of a fixed-free carbon-epoxy unidirectional tube 40

inches long, 0.0l inch in thickness, and 1 inch in diameter were obtained by
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solving the frequency equations (4.2.6) and (4.2.25) under isothermal
conditions. As with the earlier examples, T300 fibers were embedded with a
volume fraction of 0.6 within a Hercules 3502 epoxy resin matrix.

Figure 4.1 shows the first mode natural frequencies for the carbon-
epoxy cantilevered beam as a function of temperature. This curve shows that
the real part, or resonant frequency, is essentially independent of
temperature and, in addition, is practically unchanged by the presence of
shear deformation and rotatory inertia. The imaginary or attenuation
component varies considerably with temperature, however, and is strongly
affected by shear deformation. The effects of shear deformation can be
readily seen in Figure 4.2, which shows the envelopes of the first mode
response of both beam models at room temperature. Figure 4.3 shows the
second mode natural frequencies for the beam as a function of temperature.
For the Bernoulli-Euler beam the resonant frequency remains independent of
temperature, but both shear deformation and temperature have an effect on
the second resonant frequency, as can be seen by the difference occurring in
the real components. Shear deformation effects on the imaginary part are
even more pronounced than in the first mode, as can be seen by the increased
spread between the two imaginary components. The result of shear
deformation on the second mode is even more apparent in Figure 4.4, which
shows a significantly shorter decay time for the response of the Timoshenko

beam than for the Bernoulli-Euler beam.

4.3. EFFECT OF TRANSIENT LOADS AND TEMPERATURES ON A SIMPLE COMPOSITE
STRUCTURE

As a second illustration of dynamic analysis of a TCM composite
structure, we consider the case of the simple truss shown in Figure 4.5.
All three truss members are unidirectional carbon-epoxy composite rods,
characterized using TCM behavior. Note from this figure that a zero degree
layup is defined as fibers parallel to the axis of the bar and a 90 degree
layup is defined as fibers perpendicular to the axis of the bar.

To perform the truss dynamic analyses, rod finite elements were
developed using the standard linear displacement field [23] for uniaxial
members composed of thermorheologically complex material. The TCM rod

elements were then incorporated within a finite element code capable of
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performing isothermal natural frequency analysis, as well as static,
thermal, and dynamic stress analysis. The dynamic analyses were performed
in the time domain using the direct integration procedure of Newmark [24] as
outlined by Bathe and Wilson [25].

As a first step towards examining truss response under transient
loading conditions, an eigensolution of the two degree-of-freedom truss was
performed at a temperature of 117 degrees Kelvin above the reference
temperature (303 degrees Kelvin). The mode shapes and natural frequencies
resulting from the eigensolution are given in Figure 4.6. The natural
frequencies for a truss composed entirely of zero degree layup members and a
truss composed entirely of 90 degree layup members are shown in the figure.

The truss was subjected to an impulsive horizontal load 1 kN in
magnitude and one second in duration, and the response was examined for
isothermal as well as transient temperature conditions applied uniformly
over the entire truss. At 117 degrees Kelvin above the reference
temperature, Figure 4.7 shows the vertical displacement at the apex (joint
2) of the truss with zero degree layup members. In this truss, most of the
load is carried by the fibers, so that there is little matrix deformation
occurring during the response. This results in very little damping as shown
by the insignificant amount of decay occurring in the one minute of response
shown in the figure. For the same loading and at the same temperature, the
vertical displacement at joint 2 of the truss with 90 degree layup members
is shown in Figure 4.8. In addition to the larger response period,
resulting from 90 degree layup members having smaller stiffness than zero
degree layup members, a substantial amount of decay in the response is
evident from this figure, a direct result of more matrix deformation
occurring in this configuration than in the zero degree layup configuration.

For the same impulsive mechanical load, two other thermal load
conditions were examined for the truss with 90 degree layup members. The
response at the reference temperature as well as the response occurring for
the transient temperature condition of A¢ = 117°K x t (min) were both
examined. For these two load cases, peak responses were between the limits
of the peaks of Figures 4.7 and 4.8. The envelopes of the vertical

displacement response histories for all four cases examined are shown in

Figure 4.9. Not surprisingly, as in the cantilever free vibration problem,
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the amount of damping present in the response is dependent on temperature
and the extent of matrix deformation in the composite members.

As a final truss analysis problem, the response of the truss
composed entirely of zero degree layup members and with the lumped mass at
joint 2 removed, was examined under thermal shock conditions, in the absence
of any mechanical loading. A temperature varying linearly from 80°K to
420°K in 0.5 seconds and held constant at 420°K thereafter was used as the
thermal load applied uniformly to all members of the truss, as shown in
Figure 4.10. The horizontal and vertical displacement histories at joint 2
of the truss are shown in Figures 4.11 and 4.12 respectively. Due to
changes in the displacement and velocity occurring rapidly enough for
inertia forces to be significant, oscillations occur during the entire
response interval examined and, when the temperature becomes constant at 0.5
seconds, the oscillations take place about the displacement reached at that
«ime. The stresses in members 1 and 2 are shown in Figures 4.13 and 4.14
respectively. Since joint 2 is unrestrained, these stresses result only

from the oscillations in the displacements occurring at joint 2.
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S. DISCUSSION AND RECOMMENDATIONS

The research program detailed in this report has had several
significant results, among them the derivation and verification of the
composite TCM stress-strain equations, and the demonstration of the
significance of temperature and shear deformation on the damped response of
TCM composite structures. From the standpoint of performing dynamic
analysis on space structures composed of carbon fiber/polymeric matrix
composites, the results of applying sinusoidal mechanical and thermal loads
on TCM composite structural elements, and observations concerning the
computations in the forced vibration analysis of the truss structures were
equally important.

As discussed in Section 3, numerical experiments performed indicate
the existence of two frequency complex compliances/moduli for
thermorheologically complex materials. By analogy to isothermal
viscoelastic analysis, this means that for periodic thermal and mechanical
loads, the TCM response will be most conveniently obtained by the
superposition of the effects due to the applied stress frequency components

. plus the thermal load frequency components. In other words, for periodic
loads, frequency domain response is more efficient.

The dynamic analyses of the truss structure detailed in Section 4
were accomplished by direct time integration of the differential equations
of motion. At each time step and for each element, the hereditary integrals
must be re-evaluated. In the case of TCM creep compliances represented
using power law forms, this is a computationally intensive task which takes
more and more effort as the duration of response becomes larger and larger.
Consequently for isothermal truss dynamic analyses involving either periodic
or non-periodic loads, the complex frequency response method is far more
computationally efficient. With the development of the two frequency
complex compliances/moduli for TCM members, the complex frequency response
method could be extended to allow the solution of periodic and non-periodic
thermal and mechanical loads to be performed in the frequency domain. In
addition, the versatility gained by using a frequency domain formulation, in
particular the ability to perform stochastic analyses, would enhance the

attractiveness of this approach.
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" Fiber Properties
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L=20m, M= 870 kg, Carbon-Epoxy Truss Members
0° Layup - Fibers Parallel to Axis of Bar
90° Layup - Fibers Perpendicular to Axis of Bar
;r Figure 4.5. Geometry of Simple Truss Used in Composite Structural
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