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1. INTRODUCTION

This report summarizes the work associated with the evaluation of

the time and temperature-dependent response of unidirectional fiber

reinforced composite structures and structural elements. An examination of

this response is of fundamental importance in understanding the behavior of

fiber composite structures subjected to an environment which includes severe

temperature variations. The proposed large orbiting space structures, e.g.

solar electric power stations, communication satellites with large antennae,

etc., are examples of structures which will undergo severe temperature

cycling. Thus, the utilization of graphite/polymer composites in these

designs requires that the thermo-mechanical response of structural elements

composed of such materials be investigated.

The carbon fiber/polymeric matrix composites are known to exhibit

time dependent, or viscoelastic behavior. In addition, the time dependent

characteristics are modified by the temperature environment experienced by

* the material, so that a thermoviscoelastic representation must be used. In

particular, a thermorheologically complex material (TCM) model of the

matrix, and thus the unidirectional fiber composite, has been employed here.

The objectives of the current efforts in the thermoviscoelastic

analysis of fiber reinforced composite structures were threefold. Initially,

attention was focused at developing the form and parameters of the

thermorheologically complex constitutive relations for unidirectional fiber

composites of the polymeric matrix type. Following the successful

characterization of the effective constitutive relations, the response of

unidirectional TCM composite structural elements to simultaneous sinusoidal

temperature and mechanical loads was determined, in order to investigate the

existence of complex moduli/compliances in this situation. Finally,

temperature-dependent eigensolutions, and dynamic analyses of transient load

-* and temperature conditions, on some simple composite structures were

performed, with the purpose of investigating the extent and sources of

damped response in the TCM composite structures.
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2. THERMOVISCOELASTIC CONSTITUTIVE RELATIONS

2.1. DEVELOPMENT OF EFFECTIVE THERMOVISCOELASTIC EQUATIONS

The effective constitutive equations for unidirectional composites

are dependent on the mechanical behavior of the individual composite

constituents. In this work, the fibers were represented as transversely

isotropic and linearly elastic, temperature dependent elements. The matrix

material surrounding the fibers was taken as isotropic. The deviatoric or

shear components of the matrix response were assumed to be linear

viscoelastic and thermorheologically complex. The dilational components

have been considered to be elastic and temperature dependent. Note that

this characterization of matrix behavior as elastic in dilatation and

viscoelastic in shear is consistent with the typically assumed response in

three-dimensional viscoelastic stress analysis [1].

The development of the effective constitutive equations was performed

by assuming that the form of the composite stress-strain equations in all

deformation modes (dilational and deviatoric) was identical to the form of

the matrix constitutive equation in shear. For typical fiber volume

fractions, this is a reasonable assumption. The most simple form of a

thermorheologically complex viscoelastic stress-strain equation was used;

this is one which includes a horizontal shift, representing time-temperature

equivalence, and a single vertical shift for modeling the temperature

dependence of the initial modulus. This is a slight variation of the

thermorheologically complex equation proposed by Schapery [2].

The form of the thermorheologically complex viscoelastic material

model representing the matrix material in shear is given by the symbolic

equation:

2eij - g 0 sij (2.1.1)

which represents the more complete form

2eij(t) - g(O)V(4) sij(t) + bg( ) si(O) + ft Ag( ') at' t' (2.1.2)
ii 1J 3j 0+at,

2
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where

eijsij - the deviatoric strain and stress respectively,

g(0) - the instantaneous shear creep compliance,

g( ) - the time dependent shear creep compliance,

V(O) - a vertical shift factor, and

0(t) - temperature.

Also, the parameter represents the reduced time and is given by the

equation

V (t) - oh[O(u)]du (2.1.3)i0
where

h(O) - a horizontal shift factor.

Note that the temperature dependence of the stress-strain equation

is represented by the horizontal and vertical shift factors. The reduced

time allows the viscoelastic response at any temperature to be obtained from

a master response at reference temperature through a horizontal shift along

the time axis. The role of the vertical shift factor is to model the

temperature dependence of the initial compliance. Note that in isothermal,

temperature independent viscoelasticity, both the horizontal and vertical

shift factors are unity. Further background into the development of the TCM

constitutive equations may be found in Schapery [2].

With respect to the thermoviscoelastic unidirectional fiber

composite, since the matrix material is transversely isotropic, and because

of the random nature of fiber placement, the composite is statistically

transversely isotropic. Its effective thermoviscoelastic constitutive

3
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relations may be written using the simplified notation of equation (2.1.1)

as

11 - S1 0 a11 + S12 0 22 2 0a33+ "L

22 " 12 @  11 + $22 0 022 + S23 0 3 3 
+  r 4

33 - 12 0 1 2 
+ 23 0 22 + $22 -W a33 + aT

2 1 2 - $44 a 012

2f13 - S44 a 13

* -

2c23 - S5 5  a 23

Where

S.. - the effective creep compliances, and

aL, aT - the effective compliances for the longitudinal and transverse

coefficients of thermal expansion.

Note that the bars over the strains and stresses indicate average strains

and stresses in the composite.

The complete set of effective creep compliance parameters include

4



S. (0) - the effective instantaneous creep compliances,
ii

AS. *(t) - the effective time dependent creep compliances,
ij

h ij (0) - the effective horizontal shifts, and

Vij (0) - the effective vertical shifts.

Thus, unlike the case with elastic materials in which effective moduli or

compliances are determined from the constant response to a constant

mechanical or thermal input, a series of isothermal creep tests must be

performed in each mode of deformation, to determine the time and temperature

dependence for the entire set of effective creep compliances of the

composite constitutive equations.

Consider first the case of longitudinal shear. The effective

stress-strain equation is given by

2e 1 2 (t) = $44(0) V44(C)12 (t) + AS44(O)a12 (0) (2.1.5)

+ iA _, d 1 2 (t')+ J AS4 4 ( ) dt'
0

where

Su *
- -u h4 4[ ](r)]dr (2.1.6)

°0

Suppose we simulate an isothermal creep test in which

SI. 5



o1 2(t) - H(t)Oo

(2.1.7)

(t) -(t)o

where H(t) is the heavy-side (unit) step function defined such that

H(t) 0 t < 0 (2.1.8)

4 The stress-strain equation (2.1.5) gives

- * * * *

2 1 2 (t) - S44 (0)V4 4( o)o. + AS4 4 (h4 4( o).t)ao (2.1.9)

The shift functions h44( ) and V4 4( ) are defined so that

Sh4 4 (OR) - V44(OR) 1 1 (2.1.10)

- where R is the reference temperature. In this way, by performing the

isothermal creep test at 4'- the creep function S4 (t) is determined:

4"c .. 2E 1 ( t, OR

S44 (0) + AS 44
( t)  "R) (2.1.11)

At t-0, AS44 (0) -0 by definition, so that

6
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S4(0) - -a,~R (2.1.12)

and for t'o0we find

AS44 t 2 l2(t.OR) 21 1e2(O,0R) (2.1.13)

Now, the isothermal creep test at 0 - can be used to determine both

h*()and V * (0) as follows. At t -0 we get

2 44200) - * (2.1.14)

which provides the vertical shift V( 0 ) This leaves the horizontal shift

has the only other unknown. At some other time during the creep

test, e.g. t - ,we get

A 2c 1 2 (t,00)-2c 1 2(0,00)

A44(440).t) a AS- ( 4 (2.1.15)

~0 *0

from which

h4  ~~ A 4 / (2.1.16)

Thus, by performing a series of isothermal creep tests at a range of

temperatures, both h 44~ and V 44~ can then be determined.

7
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Consider now the case of applied longitudinal stress coupled with a

uniform temperature distribution, with all other stresses zero. Again

simulating an isothermal creep test, we apply the loads

a1 1(t) - H(t)aL

(2.1.17)

O(t) - H(t)o°

in which case from the stress-strain relations (2.1.4) we have the two

equations

-* * * *
SI(O)V ()L+ASIl(0)L+aL(t,O ).0 (2.1.18)

(t,o) - I(0)VI2(0o)aL+ASI2(0)=L+aL(t,4o)-_o (2.1.19)

Now define

^ ,

eii(t,4O) - (to)-ai(to)-00 (i-1,2) (2.1.20)

where aI - L and a2  a aT , and the subscript i is not summed. Then from

(2.1.18), at - we get

• II(0,0R )

S11 (0) - e L (2.1.21)

and

8



AS 1 1 (t) a i ~ i (2.1.22)

Then at 0 0 0

v (11u(03*0) (2.1.23)

and at some other time t _-t

* A A A

A e1 1 (t, 0)-C 1 1 (0,0 -0~ ~~i) (..4
AS 1 1(h 1 1(o*).t) a CLAS(.24

from which

* A

h 1 1 (00) - C1 1 t (2.1.25)

From (2.1.19)

-1220) a ) (2.1.26)

and

AS, * (t) - 22 (t, R )-C22(010R) (2.1.27)12 aL

9



A

22(0,0 )V 12(00) - * (2. .28
S12(O L

and at some other time t -t

A A A

h ) SA) - 2 2 (t,0 )-C2 2 (0, 0) 
(

AS12 (h12 (o.t a L -AS12( 12) (2.1.29)

from which

h- 12/t (2.1.30)

Now consider the case of an applied transverse isotropic stress

a T a 22 a 33 (2.1.31)

coupled with a uniform temperature distribution, with all other stresses

zero. Again simulating an isothermal creep test, we apply the loads

22 (t) - 3 3 (t) - H(t)aT

(2.1.32)

O(t) - H(t)O 0

Using the first of the stress-strain relations (2.1.4), the S creep
12

compliance parameters could again be generated, but this will not be

repeated here. From either the second or the third of equations (2.1.4), we

get

10
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T(to 0 S22(0)V22(0o)aT+S23(0)v23(0o)aT

(2.1.33)

+AS )a+Sa+22( 22) T+23( 23) T

At - we have

S2 2 (0)+S 2 3 (0)+AS2 2 (t)+AS2 3 (t) - CT(t,4 R)/T (2.1.34)

At t - 0, AS2 2 (0) - AS2 3 (0) - 0 so that

$22(0)+$23(0) - ET(O,4 R)/aT (2.1.35)

and for t o 0,

. T(t,4,R) T(0~, R) (..6

AS22 (t)+AS2*3(t) - C aIR)T(0R (2.1.36)
2 2  t 2 3~t a UT

For 0 -4o and t - 0,

* * * * A

S22(0)V22(4o)+S23(0)V 2 3 (0o)-CT(0,0o)1aT  (2.1.37)

and at4 0 t- t we get

A A
A A e T ^ T(t, o0)_C T(0,00 )

AS 22 (h22(00o).t)+AS 23(h 23(00o).t) a (2.1.38)

Now, from transverse shear isothermal creep tests we get the equations

1I

,q



s *(0) - s *(0) - s * (0) -23(010 )/a2 (2.1.39)

AS () -&s* (t s* ()-2c 23(tOR) - 2e 23(010R) (..0
S5 5 t -S 22(t -S 2 3(t a23 (..0

For~- and t-0,

s22 (O)V 22 (0 )a 23 k'~ 23\'00o 2c 2 3 (,~ 0 0a 2 3  (2.1.41)

and for t _-t

AA 
2 c 23(t,00)-2c23(010R) (..2

AS22 (h2200woJ 23 (23(00I ) -t a23

From (2.1.35) + (2.1.39),

*1 * (0) - 1/2 { TO~)+ 2c23 (0,0 R)} (2.1.43)

From (2.1.35) - (2.1.39),

s 23 (0) - 1/2 ae(~R -2 23~) (2.1.44)

From (2.1.36) + (2.1.40),

A* {E/cT (t, R )-fT (0,0R)+ 
2c 23(t,OR )-2 c23(O0 0R)

22 OF TI2
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From (2.1.36) - (2.1.40),

AS.(0-1/2 f T(t,'R)'cT(0,0R) 2e23(t,4'R)-2 23(0OR) (2.1.46)
23( aT  a23

From (2.1.37) + (2.1.41),

(A

* 1 ET(O0o) 2c23(0'0R)
V22(0)- 2S + } (2.1.47)

222( o 0 T  
23

and (2.1.37) - (2.1.41) gives,

* 1 T(Oao) 2 c2 3 (0,00)"

23 Oo ) - (2.1.48)2S 23( 0 )  a T  a 23

Then (2.1.38) + (2.1.42) results in

'A A

* f^ T(t+ )T(0100 ) 2f23(t.o0 2 23(0'0o)
S 2(h2(0)t)1/2 { T a 23 (2.1.49)

-AS2 2 (22)

giving

-J h2 2 (0o)-C 2 2/t (2.1.50)

13



From (2.1.38) - (2.1.42) we get

'A*

A Ct / T(t''oCT(0 ' ° 2 2 3 (t,0°)-2c23(0100)
AS 23 (h 23(00 (20 a a 23 (2.1.51)

- 23( 23)

from which

* A

h2 3 (0o)- 2 3/t (2.1.52)

Now consider the case where thermal loads alone act on the composite

cylinder. In the case of a temperature step function rise AO relative to

the reference temperature 0R' the effective longitudinal secant expansion

coefficient aT is defined by eL while the transverse expansion coefficient

aT is defined by the radial surface displacement per unit radius. Thus

aL (tR,) - EL(t)/AO

(2.1.53)

(t,R,A) -T(t)/A

Schapery [2] proposes that for the thermorheologically simple

material (TSM), in the absence of mechanical loads,

-ft a*( L-) d dr (2.1.54)

14
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C2 -ft "*(Y T IAT~ ) d~cr (2.1.55)

where

1Loft h L[O(r) ]dr (2.1.56)

and

T- oft h T[O(r)]d-r (2.1.57)

For the most simple of the TCM forms, it is proposed that for a general

temperature history, again in the absence of applied stress for convenience,

C 1 1 (t) - a (0)V (L)AO( + AOL(YLAO(O)

(2.1.58)

A, + ftAa ( -)ddr
L+ L L dT

22 3 3 (t) - a T(0)V(#)W(t + Aa T(T)AO(O)

(2.1.59)

+ f Aa (T~)dr

For a temperature step function rise

AA43(t) -H(t) AO (2.1.60)

15
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we obtain the strains

- A 11(t - ~(2.1.61)

fT W - C2 2 (t) - e 3 (it) - a (O)V ()+A(t )AO (2.1.62)

At t -0, Aa (0) - AcT (0) - 0 by definition, so

C 1(0) fTO
a ij0)VL(O) - -AO ~T (O)v T(O) - ATO) (2.1.63)

We now define an arbitrary temperature 4, - 4'R as the effective thermal

expansion coefficients' reference temperature. Since AO, - 0 at the

reference temperature defined for the composite effective mechanical creep

compliances, some other temperature would be more convenient to use for the

composite effective thermal expansion coefficients. Since

V * L(R VT(O' ~ hL(a~a h(O,~ 1 (2.1.64)

there results

aL*(0u) - 101~ 4'Rcz4,R (2.1.65)

and similarly

a -0 ET(O R) (2.1.66)

Then at temperature 4' 4' ,the vertical shifts are computed:

0 Ra'

16



V - .1(00) VTT(0, ) (2.1.67)L L*(0)60 TT(0)AOL() T

where A- - R'

Again considering OR2

f {Q*(0) + Aa*(t)} AO

(2.1.68)

T(t) - {cT(O) + AaT(t) AO

from which the effective delta compliances are defined:

.*() 1 (tORa) .
AL~t AO "L(0

(2.1.69)

AaT(t) - A4 " q T(0)

A

Then, at - o and t - t d 0,

^ . *

A fl(t,0o)-aL(0)VL( o ) -
AaL(hL(Oo)'t) - aL;L

(2.1.70)

VA
* * *

A C(t) - aT()VT(o) .
AnT(hT( o)-t) -

17



from which

h L(O) - L/t (2.1.71)

and

* A

hT( O ) - T/t (2.1.72)

2.2. LITERATURE SURVEY OF THERMOVISCOELASTIC MATERIAL PROPERTIES

As part of this work, an extensive literature search was conducted

in an effort to determine realistic material properties of

thermoviscoelastic solids, in particular those typically employed as epoxy

matrices in composites. Several papers, e.g. [3-8], were found which

provided some or all of the material parameters for a thermorheologically

simple characterization of typical matrix material. However, very little

data exists for thermorheologically complex viscoelastic epoxies.

A number of papers [9-13] and a private communication [14] were

obtained which provided useful data on thermorheologically complex epoxy

matrices. All of the papers [9-13] used a characterization scheme which

fitted the data to a semi-empirical model first developed by Schapery [15]

for nonlinear isothermal viscoelasticity. The data in all of these papers,

first reported in [9] and [10], was modified for use in the work reported

here, as described in a previous report [16].

The matrix thermoviscoelastic data used in this study, including the

time-dependent matrix shear creep compliance, the matrix shear horizontal

shift arid vertical shift, are included in Figures 2.1, 2.2 and 2.3,

respectively. The fiber elastic properties and the matrix properties at

reference temperature are listed in Table 1.

2.3. EVALUATION OF EFFECTIVE THERMOVISCOELASTIC PARAMETERS

Note that in the equations of Section 2.1, the stresses and

temperatures are applied, and the composite or average strains are assumed

18
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to be known so that the effective compliance parameters may be calculated.

The analytical tools available for generating average strains in composite

cylinders involving transversely isotropic fibers and an isotropic matrix

include the composite cylinder assemblage (CCA) model and the analysis of a

periodic hexagonal array [17]. The details regarding the analysis for

average strains in a composite cylinder composed of transversely isotropic

temperature-dependent elastic fibers and a thermorheologically complex

viscoelastic matrix were developed in the Phase I portion of this effort

[16]. Average strains due to thermal expansion and axisymmetric mechanical

loadings were examined with the composite cylinder assemblage model, while

transverse loading effects were analyzed using a finite element model of a

periodic hexagonal array.

%Numerical simulations of the series of isothermal creep tests

described in Section 2.1 were performed in each mode of deformation, to

determine the complete set of effective creep compliance parameters of the

composite constitutive equations. Figures 2.1 through 2.3 show the time

dependent creep compliance, horizontal shift and vertical shift,

respectively, for the composite axial deformation compliance. Since this

deformation mode is largely dominated by the elastic fibers, the creep
compliance (Figure 2.1) is several orders of magnitude less than that of the

matrix shear creep compliance. This fiber dominance also manifests itself

in the shifts (Figures 2.2 and 2.3) through a much more shallow slope in the

composite shift curves than in the matrix shift curves. Figures 2.4 through

2.6 show the time dependent creep compliance, horizontal shift and vertical

shift, respectively, for the composite axial shear compliance. Since in
4.,

this mode, the matrix participation is dominant, the composite parameters

are much closer to the matrix values.

2.4. VERIFICATION OF EFFECTIVE COMPOSITE CONSTITUTIVE EQUATIONS

The macromechanical response of a composite structural element, as

predicted by the effective constitutive equations and their derived

parameters, was checked against results computed using a micromechanical

model (composite cylinder assemblage) which explicitly included the fiber

and matrix as discrete phases. A slowly varying periodic shear stress was

applied to the composite in the presence of an oscillating temperature. It
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should be noted that even though the composite cylinder assemblage model was

used to generate the parameters of the effective thermoviscoelastic

equations, this model can still be used to verify the equations and their

parameters for arbitrary time varying mechanical and temperature loadings,

since the parameters were generated using a series of isothermal creep

tests.

The simultaneously applied axial stress history and temperature load

are shown in Figures 2.7 and 2.8, respectively. Comparisons of the axial

shear strains and the thermally induced longitudinal and transverse strains

for this loading are shown in Figures 2.9, 2.10 and 2.11 respectively. Note

that essentially identical results for all of the strains were obtained from

the macro- and micromechanical models, thereby verifying both the assumed

form and the individual parameters of the composite constitutive equations.

The significance of the verification, illustrated in Figures 2.9

through 2.11, is that it allows structural analyses involving TCM composites

to be performed in an efficient manner, namely by simply using the effective

constitutive equations. If these equations could not be verified, the

response of the composite element would have to be computed at each time

step by using both the CCA model and the finite element model of the

hexagonal array, both of which require the solution of simultaneous

algebraic equations, just to evaluate the average strain field in the

composite due to the applied mechanical and thermal loads. This would be an

extremely tedious and computationally excessive process for any practical

structural analysis involving TCM composites.
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3. RESPONSE TO SINUSOIDAL TEMPERATURE AND LOAD

In isothermal viscoelasticity, the application of a sinusoidal

stress results in a sinusoidal strain at the same frequency. The

oscillating stress and strain reach their peak values at different times,

i.e. there is a phase shift between stress and strain. This can be seen in

Figures 3.1 and 3.2 which show respectively a sinusoidal axial shear stress

history applied isothermally and the resulting axial shear strain. The

strain response is most conveniently characterized using a complex

compliance, where the real part is the ratio of the strain amplitude to

stress amplitude, and the imaginary part represents the phase shift. At the

frequency of the applied stress shown in Figure 3.1, both the real and

imaginary parts of the complex compliance can be computed using the

information on the peak magnitudes and the time difference between the peaks

shown in Figures 3.1 and 3.2. In the general case, both the real and

imaginary parts are functions of the frequency of the applied stress.

The purpose of analyzing the effects of simultaneous sinusoidal

temperature and load was to determine if a periodic response was obtained

for the composite, and if so, to examine the form of the periodic response.

In particular it was of interest to determine if a complex compliance

existed in this situation.

Several cases were run involving the application of a sinusoidal

shear stress and a sinusoidal temperature at different frequencies. Figure

3.3 shows the resulting axial shear strain for the case where the shear

stress frequency was twice the frequency of the temperature cycle. Figure

3.4 gives the shear strain for the case where the shear stress frequency was

two-thirds the applied temperature frequency, and Figure 3.5 gives the shear

strain when the shear stress frequency is two-fifths the applied temperature

frequency. It is apparent from all of these curves that the steady state

portion of the strain can be decomposed into two sinusoidal components,

whose frequencies are equal to the applied stress frequency and the

temperature frequency. This implies the existence of a two frequency

complex compliance which, from a computational point of view, could be

developed into a powerful tool for performing structural dynamic analysis of

TSM and TCM structures under arbitrary mechanical and thermal loading

conditions.
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4. DYNAMIC ANALYSES OF THERMOVISCOELASTIC COMPOSITE STRUCTURES

4.1. INTRODUCTION

The purpose of this section is to present the results of the effects

of thermoviscoelastic behavior on the damped response of some simple

composite structures. Two separate problems were considered: the free

vibration of a cantilevered unidirectional beam of cylindrical cross-

section, and the response of a simple truss to impulsive mechanical loading

in the presence of isothermal and transient temperature conditions. The

role of shear deformation is demonstrated in the free vibration study, and

the influence of matrix deformation on damped response is shown in the truss

problems.

4.2. FREE FLEXURAL VIBRATIONS OF CANTILEVERED UNIDIRECTIONAL BEAM

As an initial illustration of dynamic analysis of a TCM composite

structure, we consider the case of free flexural vibrations of a

cantilevered beam which is uniaxially reinforced in the beam axis direction.

As mentioned above, the purpose of the investigation is to compare vibration

damping due to matrix thermoviscoelasticity on the basis of the usual theory

which neglects the effect of shear, and on the basis of the more refined

Timoshenko theory which takes into account shear as well as rotatory

inertia. Recall that the loss tangent is defined as the ratio of the

imaginary part of the complex modulus to its real part. For isotropic

materials, in which the complex Young's modulus loss tangent and the complex

shear modulus loss tangent are of the same order, the added effect of shear

and rotatory inertia is small for vibration modes of low order and for long

beams. In the present case, however, where the axial Young's modulus loss

tangent is by an order of magnitude smaller than that of the axial shear

modulus, the situation is quite different as will be shown.

Considering only the effect of flexure, by the correspondence

principle for viscoelastic vibrations [18], the differential equation for

the transverse deflection y of a freely vibrating beam is
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E (w)I 4 + pA - 0 (4.2.1)
A( x4 at2

where

-R I
E A(w) EA(w) + iEA(w) - complex axial Young's modulus,

I - moment of inertia

A - area of the cross section

p - density.

By the conventional separation of variables method, the solution to

the governing partial differential equation (4.2.1) is given by

y(x,t) -(A I sin ax + A2 cos ax + A 3 sinh ax + A4 cosh ax)e
i ~t  (4.2.2)

with

4 -A2/-A
a - pAw EAI (4.2.3)

where the constants A. are evaluated from boundary conditions on a

cantilevered beam

y(0,t) - 0

y'(O,t) - 0

(4.2.4)

M(L,t) - EAIy"(L,t)-O

V(L,t) - EAIy"'(Lt) - 0
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Substituting the solution given by (4.2.2) into the homogeneous boundary

conditions, by requiring a non-trivial solution for at least one of the

constants, leads to the frequency equation

I + cos aL cosh aL - 0 (4.2.5)

The solution to this transcendental equation will be represented as a nL so

that the beam natural frequencies may be obtained from the solution of

- a 2(.A()I/pA)1 /2  (4.2.6)n n An

Note that in the elastic case, the natural frequencies are obtained by

simply evaluating the right hand side of (4.2.6). However in the

viscoelastic case, since EA is a function of frequency, equation (4.2.6) is

nonlinear in frequency and thus the real and imaginary parts must be

obtained in an iterative fashion.

The time varying portion of the solution takes the form

i) t i Rt -WItn n n (4.2.7)

Thus the real part of each natural frequency represents the oscillatory

component and the imaginary part is the attenuation, a measure of the

damping introduced by the viscoelastic matrix material.

Next the same beam is considered in Timoshenko fashion, with shear

and rotatory inertia. Again using the correspondence principle, the coupled

equations for the total deflection y and bending slope 0 are given by

Timoshenko [19] as

a~ b + Ad~ -]A -PI~ 2 0 (4.2.8)
A ax 2 + ax at-
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2 r 2
pA - a kx - 0 (4.2.9)

where the new constants are

R I
GA(L() - GA(w) + iGA(w) - the axial complex shear modulus, and

k - a numerical shape factor for the cross section.

Following the development first shown in Huang [20], we eliminate 4 or y
from equations (4.2.8) and (4.2.9) and obtain the two uncoupled differential

equations in y and 0

-4 y2 [ EA I4Y 21 4y

EAI  +pA - II I + 4-0 (4.2.10)
ax4  at2  kGA ax2 at 2  kA at4

I a 2  PI 1 + EA 2t2 k2A 4  0 (4.2.11)

A 4 +x 4 at2- ax 2at OA at4

Introducing the nondimensional parameter 9 - x/L and assuming solutions to
be of the form

y - YeiOt

(4.2.12)

equations (4.2.8) to (4.2.11) take the form

-2 ,, (- 2r2S2)* + Y'/L - 0 (4.2.13)
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yt, + Sgy- L*' - 0 (4.2.14)

Y +b (r 2+S )Y",-b 2(1-b r S 2)Y _ 0 (4.2.15)

* IV 2 (r 2 + 2 )*.-g 2(l-S2 r 2 2)* _ 0 (4.2.16)

where

-2 _M L4-2 (4.2.17)
ElA

r2 _ I/AL 2  (4.2.18)

-2 _ EA /kA A L 2(4.2. 19)

and the primes for Y and 'k' represent differentiation with respect to 6.

At the clamped end of the beam we have the boundary conditions

~-0

* (4.2.20)

Y- 0

and at the free end we have

(4.2.21)

-y *1 - 0

The solutions to (4.2.15) and (4.2.16) can be found as
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Y - C1cosh BG + C2 sinh Sad + C3 cos 60 + C4 sin UO (4.2.22

f- C 5 cosh b0 + C6 sinh bg0 + C7 cos 648 + C8 sin b60 (4.2.23)

where

, - -,+(r 2 + 2 )+[( 12-2)2 + 4/j2]1 / 2  1/2 (4.2.24)

Note that only half of the constants in equations (4.2.22) and

(4.2.23) are independent. The constants C5 through C8 may be related to C1

through C4 using equations (4.2.13) or (4.2.14).

From the requirement that a non-trivial solution exist for at least

one of the constants, using the appropriate boundary conditions (4.2.20) and

(4.2.21) within (4.2.22) and (4.2.23) we get as a frequency equation

2+b [S2(r 2-2 ) 2+2icosh G& cos b 2rg2)/ sinh ba sin bc - 0 (4.2.25)

As with (4.2.6) above, a nonlinear solution technique must be used on

(4.2.25) to obtain the real and imaginary components of the beam natural

frequencies.

To use the natural frequency equations given above, the effective

complex Young's modulus and the effective complex axial shear modulus for

the unidirectional composite must be known. These were generated in a

manner entirely analogous to that used in Section 2 in generating the

effective creep compliance parameters of the composite. In this case,

however, instead of dealing with "reduced time" as the independent variable

of the time dependent creep compliances, we work with "reduced frequency" as

the abscissa of the complex moduli. As with the creep compliances, the

horizontal shifts are used to compute the reduced frequency for the complex

4 moduli.

As an illustration of the dependence of response on temperature, the

natural frequencies of a fixed-free carbon-epoxy unidirectional tube 40

inches long, 0.01 inch in thickness, and I inch in diameter were obtained by
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solving the frequency equations (4.2.6) and (4.2.25) under isothermal

conditions. As with the earlier examples, T300 fibers were embedded with a

volume fraction of 0.6 within a Hercules 3502 epoxy resin matrix.

Figure 4.1 shows the first mode natural frequencies for the carbon-

epoxy cantilevered beam as a function of temperature. This curve shows that

the real part, or resonant frequency, is essentially independent of

temperature and, in addition, is practically unchanged by the presence of

shear deformation and rotatory inertia. The imaginary or attenuation

component varies considerably with temperature, however, and is strongly

affected by shear deformation. The effects of shear deformation can be

readily seen in Figure 4.2, which shows the envelopes of the first mode

response of both beam models at room temperature. Figure 4.3 shows the

second mode natural frequencies for the beam as a function of temperature.

For the Bernoulli-Euler beam the resonant frequency remains independent of

temperature, but both shear deformation and temperature have an effect on

the second resonant frequency, as can be seen by the difference occurring in

the real components. Shear deformation effects on the imaginary part are

even more pronounced than in the first mode, as can be seen by the increased

spread between the two imaginary components. The result of shear

deformation on the second mode is even more apparent in Figure 4.4, which

shows a significantly shorter decay time for the response of the Timoshenko

beam than for the Bernoulli-Euler beam.

4.3. EFFECT OF TRANSIENT LOADS AND TEMPERATURES ON A SIMPLE COMPOSITE

STRUCTURE

As a second illustration of dynamic analysis of a TCM composite

structure, we consider the case of the simple truss shown in Figure 4.5.

All three truss members are unidirectional carbon-epoxy composite rods,

characterized using TCM behavior. Note from this figure that a zero degree

layup is defined as fibers parallel to the axis of the bar and a 90 degree

layup is defined as fibers perpendicular to the axis of the bar.

To perform the truss dynamic analyses, rod finite elements were

developed using the standard linear displacement field [23] for uniaxial

members composed of thermorheologically complex material. The TCM rod

elements were then incorporated within a finite element code capable of
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performing isothermal natural frequency analysis, as well as static,

thermal, and dynamic stress analysis. The dynamic analyses were performed

in the time domain using the direct integration procedure of Newmark [24] as

outlined by Bathe and Wilson [25].

As a first step towards examining truss response under transient

loading conditions, an eigensolution of the two degree-of-freedom truss was

performed at a temperature of 117 degrees Kelvin above the reference

temperature (303 degrees Kelvin). The mode shapes and natural frequencies

resulting from the eigensolution are given in Figure 4.6. The natural

frequencies for a truss composed entirely of zero degree layup members and a

truss composed entirely of 90 degree layup members are shown in the figure.

The truss was subjected to an impulsive horizontal load 1 kN in

magnitude and one second in duration, and the response was examined for
isothermal as well as transient temperature conditions applied uniformly

over the entire truss. At 117 degrees Kelvin above the reference

temperature, Figure 4.7 shows the vertical displacement at the apex (joint

2) of the truss with zero degree layup members. In this truss, most of the

load is carried by the fibers, so that there is little matrix deformation

occurring during the response. This results in very little damping as shotri

by the insignificant amount of decay occurring in the one minute of response

shown in the figure. For the same loading and at the same temperature, the

vertical displacement at joint 2 of the truss with 90 degree layup members

is shown in Figure 4.8. In addition to the larger response period,

resulLing from 90 degree layup members having smaller stiffness than zero

degree layup members, a substantial amount of decay in the response is

evident from this figure, a direct result of more matrix deformation

occurring in this configuration than in the zero degree layup configuration.

For the same impulsive mechanical load, two other thermal load

conditions were examined for the truss with 90 degree layup members. The

N', response at the reference temperature as well as the response occurring for

the transient temperature condition of AO - 117°K x t (min) were both

examined. For these two load cases, peak responses were between the limits

of the peaks of Figures 4.7 and 4.8. The envelopes of the vertical

displacement response histories for all four cases examined are shown in

Figure 4.9. Not surprisingly, as in the cantilever free vibration problem,
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the amount of damping present in the response is dependent on temperature

and the extent of matrix deformation in the composite members.

As a final truss analysis problem, the response of the truss

composed entirely of zero degree layup members and with the lumped mass at

joint 2 removed, was examined under thermal shock conditions, in the absence

of any mechanical loading. A temperature varying linearly from 80°K to

420°K in 0.5 seconds and held constant at 420°K thereafter was used as the

thermal load applied uniformly to all members of the truss, as shown in

Figure 4.10. The horizontal and vertical displacement histories at joint 2

of the truss are shown in Figures 4.11 and 4.12 respectively. Due to

changes in the displacement and velocity occurring rapidly enough for

inertia forces to be significant, oscillations occur during the entire

response interval examined and, when the temperature becomes constant at 0.5

seconds, the oscillations take place about the displacement reached at that

ime. The stresses in members 1 and 2 are shown in Figures 4.13 and 4.14

respectively. Since joint 2 is unrestrained, these stresses result only
from the oscillations in the displacements occurring at joint 2.

.,

I
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5. DISCUSSION AND RECOMMENDATIONS

The research program detailed in this report has had several

significant results, among them the derivation and verification of the

composite TCM stress-strain equations, and the demonstration of the

significance of temperature and shear deformation on the damped response of

TCM composite structures. From the standpoint of performing dynamic

analysis on space structures composed of carbon fiber/polymeric matrix

composites, the results of applying sinusoidal mechanical and thermal loads

on TCM composite structural elements, and observations concerning the

computations in the forced vibration analysis of the truss structures were

equally important.

As discussed in Section 3, numerical experiments performed indicate

the existence of two frequency complex compliances/moduli for

thermorheologically complex materials. By analogy to isothermal

viscoelastic analysis, this means that for periodic thermal and mechanical

loads, the TCM response will be most conveniently obtained by the

superposition of the effects due to the applied stress frequency components

plus the thermal load frequency components. In other words, for periodic

loads, frequency domain response is more efficient.

The dynamic analyses of the truss structure detailed in Section 4

were accomplished by direct time integration of the differential equations

of motion. At each time step and for each element, the hereditary integrals

must be re-evaluated. In the case of TCM creep compliances represented

using power law forms, this is a computationally intensive task which takes

more and more effort as the duration of response becomes larger and larger.

Consequently for isothermal truss dynamic analyses involving either periodic

or non-periodic loads, the complex frequency response method is far more

computationally efficient. With the development of the two frequency

complex compliances/moduli for TCM members, the complex frequency response

method could be extended to allow the solution of periodic and non-periodic

thermal and mechanical loads to be performed in the frequency domain. In

addition, the versatility gained by using a frequency domain formulation, in

particular the ability to perform stochastic analyses, would enhance the

attractiveness of this approach.
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Table 1. Material Properties

Fiber Properties

EA - 231 GPA

SE T - 22.4 GPa

G A = 22.1 GPa

CT = 8.30 GPa

A = 0.30

c A = -1.33. 4m/m °c

caT = 7.04 um/m~c

v = 0.60

Matrix properties at reference temperature (303-K)

k - 3.58 GPa

g(o) - 0.606 (GPa)1

v' - 0.30

a - 30.0 pm/m°K
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Figure 2.1. Effective Axial Deformation creep compliance for unidirectional
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Figure 2.10. Comparison of Thermally Induced Longitudinal Strains
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Figure 2.11. Comparison of Thermally Induced Transverse Strains
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Figure 3.3. Axial Shear Strain for Ia/T= 1/2
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Figure 3.5. Axial Shear Strain for T /T 5/2
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Figure 4.5. Geometry of Simple Truss Used in Composite Structural

Analyses
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Figure 4.6. Eigensolution of Simple Truss with Zero and 90

Degree Layup Composite Members
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Figure 4.7. Vertical Displacement at Joint 2 Due to Impulsive

Horizontal Load at A = 117*K for Truss with Zero

Degree Layup Members
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Figure 4.8. Vertical Displacement at Joint 2 Due to Impulsive

Horizontal Load at A 1170TK for Truss with 90

Degree Layup Members
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Figure 4.10. Applied Thermal Load on Members of Truss
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Figure 4.11. Horizontal Displacement History at Joint 2 Due to

Thermal Shock Load
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Figure 4.12. Vertical Displacement History at Joint 2 Due to

Thermal Shock Load
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