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FOREWORD

The investigation reported herein is part of the research project at

The Ohio State University, Columbus, Ohio supported by the Air Force Of-

fice of Scientific Research Grant 83-00-55. Lt. Col. Lawrence D. Hok-

anson is the Program Manager. The present report documents part of the

work done from February 1, 1984 to January 31, 1985. At The Ohio State

University, the project is supervised by Dr. Ranbir S. Sandhu, Pro-

fessor, Department of Civil Engineering.
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ABSTRACT

Variational Principles for dynamics of the fluid-saturated porous me-

dia are derived assuming that + is linear elastic and deformation is

small. Starting with basic mathematical concepts related to the inverse

problem of calculus of variation and following the methodology proposed

by Sandhu for coupled problems, general variatonal principles for the

problem are developed. Complementary as well as direct formulation are

discussed with reference to finite element approximation. Discontinu-

ities i.n the field variables, the approximation space and the excitation

are allowed for. Extensions of the variational principles to relax

smoothness requirements on certain field variables are introduced along

with some specializations. C 'V

- iii -
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SECTION I

INTRODUCTION

Direct methods of obtaining approximations to solutions of boundary

value problems often rely on variational formulations. Finite element

procedures for numerical solution of various engineering problems are

also based on variational principles. For linear operators many inves-

tigators studied the subject in an inner product space. Tonti [1] noted

that the self-adjointness of an operator depends on the given bilinear

map. A given operator may be non-self adjoint with respect to one bili-

near mapping but self-adjoint with respect to another. Following Tonti ,

Magri [2] showed that for every linear operator there is an infinity-of

bilinear mappings with respect to which it is self-adjoint. Guntin

[3,4] used convolution product as a bilinear mapping for initial-bound-

ary value problems. Sandhu and Pister [5,6] extended the application of

this bilinear mapping to linear coupled initial-boundary value problems

using a generalization of Mikhlin's basic theorem [7].

Mikhlin [7] assumed homogeneous boundary conditions in stating the

variational principle so that a self-adjoint operator was symmetric

[10]. The conventional procedure to treat nonhomogeneous boundary condi-

tions has been to find the particular solution for the nonhomogeneous

boundary conditions and use change of the field variable to homogenize

the boundary conditions. This approach, though theoretically elegant, is

-1
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cumbersome in implementation of direct methods. Gurtin [3,4] introduced

nonhomogeneous boundary terms explicitly into the governing function.

Nickell and Sackman [8] and Sandhu and Pister [6] followed Gurtin's ap-

proach. In the context of application of finite element method, Prager

[9] included, in the variational formulation, jump discontinuities which

may exist across interelement boundaries. This development assumes spe-

cial significance in case continuity of approximating functions cannot

be ensured up to the desired degree. Sandhu and Salaam [10] examined

the general case of linear operators with nonhomogeneous boundary condi-

tions and internal jump discontinuities based on extension of Mikhlin's

theorem. By introducing the concept of boundary operators consistent

with the field operators, a systematic procedure to obtain variational

principles for linear coupled problem was developed. In line with this

- approach, Sandhu [11] presented a comprehensive treatment on the varia-

tional principles for soil consolidation using convolution product as

the bilinear mapping.

Ghaboussi and Wilson [12] derived a variational principle for the dy-

namic analysis of saturated porous elastic soil. Biot's equations of mo-

tion [14] were restated in integral form through Laplace transformation

followed by rearrangement of terms and inversion. The general procedure

followed Sandhu and Pister [13,14]. Herrera and Bielak L15] pointed out

that the equivalent variational formulation could be written without

transforming the field equations and, instead, using Tonti's approach

[16]. Ghaboussi's [12] treatment of the boundary conditions was incom-

plete. The motivation for the present work stems from the need to write

A~Z"
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the boundary conditions in a consistent fashion and to develop a system-

atic procedure for variational formulation governing dynamics of fluid-

* saturated linear porous media. Both direct and complementary formulation

of field equation are studied following Sandhu's approach. In chapter

II, some mathematical concepts and definitions basic to the development 41

of variational principles are introduced. Biot's field equations for dy-

namics of fluid-saturated linear elastic porous media are given in Chap-

ter III. Integral form of the equations is the same as used by Ghaboussi

and Wilson [121. In Chapter IV, general variational principles for the

problem are developed following Sandhu and Salaam [10] and Sandhu [111.

The governing functional for the operator equations explicitly includes

the initial conditions, the nonhomogeneous boundary conditions as well

as any internal jump discontinuities. As an alternative procedure, com-

plementary formulation of the problem is presented. Extended variation-

al formulations based on self-adjointness of the operator matrix are in-

troduced along with several specializations. These should be useful as

the starting points for alternative approachs to finite element formula-

tion.

1*
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SECTION II

MATHEMATICAL PRELIMINARIES

2.1 BOUNDARY VALUE PROBLEM

Consider a boundary value problem

A(u) = f on R (1)

C(u) = g on OR (2)

where R is an open connected region in an Euclidean space. bR is the

boundary of R and R its closure. We suppose that the field operator A

and the boundary operator C are bounded and defined such that

.. A W WR  V R

.C W W R > V V OR

VR, V bR are linear vector spaces defined on the regions indicated by the

subscripts and WR, WbR are dense subsets in VR, V OR, respectively. Thro-

ughout, A and C are assumed to be linear so that

A (a u + v) = a A(u) + OA(v) V u,vEWR 3)

and C (a u + ov) = a C(u) + 0C(v) V u,vEWOR (4)

-4-
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5

where a, 0 are arbitrary scalars.

2.2 BILINEAR MAPPING

A A bilinear mapping B :WxV ->S, where W, V, S are linear vector

spaces, for given w EW, vC-V, is defined as a function to assign an ele-

ment in S corresponding to an ordered pair (w,v). B is said to be bili-

* near if

B~ 1  O~w2, v) = a B(w1 ,v) +'eB(w 2,v)(5

B(w, ot v 1 + V)= oaB(,v1)+O~ (6)

where a, jS are scalars. We shall use the notation

B R(w,v) = <w ,v> R (7)

B is said to be nondegenerate if

<W,V> R =0 V, w EW if and only if v= 0 (8)

For W =V, B is symmetric if

<,>R <v ,W> R(9

.4
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2.3 SELF-ADJOINT OPERATOR

Let A: V --> W be an operator on the linear vector space V defined on

spatial region R. Operator A is said to be adjoint of A with respect to

a bilinear mapping <, >R : W x W --> S if

<w,Av>R = <v,A w>R + DR(V,W) (10)

for all w W and vEV. Here, DbR(V,W) represents quantities associated

with the boundary bR of R. If A = A , then A is said to be self-adjoint.

In particular, a self-adjoint operator A on V is symmetric with respect

to the bilinear mapping if V W and

<w,Av>R = <v,Aw>R (I1i

2.4 GATEAUX DIFFERENTIAL OF A FUNCTION

The Gateaux differential of a continuous function F : V -- S is de-

fined as

1

A F(u) = lim - [F(u+ Av) - F(u)] (12)
v AO0

provided the limit exists. v is referred to as the 'path' and A is a

scalar. We note that for u,vCV, u+XvEV. Equation (12) can be equiva-

lently written as
I-,

d
AvF(u) - F(u+ Av) (13)

dA - -
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2.5 BASIC VARIATIONAL PRINCIPLE

M For the boundary value problem given by (1) with homogeneous boundary

condition, Mikhlin [7] showed that for self-adjoint, positive definite

operator A, the unique solution u0 minimizes the functional

fl(u) = <Au,u>R - 2<u,f>R (14)

where < , >R denotes inner product over the separable space of square

integrable functions. Conversely, u0 which minimizes the functional (14)

is the solution of the problem (1).

Taking Gateaux differential of (14),

1

Av1(u) = lim -[<A(u + Xv),u +Av> - 2<u +Xv,f> - <Au,u> + 2<u,f>]
A-0

= <Au,v> + <Av,u> -2<v,f>

= 2<v,Au-f> = 0 (15)

In writing (15) we have only assumed linearity and self-adjointness of A

with respect to the bilinear mapping and the symmetry of the bilinear

mapping. The Gateaux differential evidently vanishes at the solution uo

such that Au0 - f = 0. For the vanishing of the Gateaux differential at

u = uo to imply Auo-f = 0, the bilinear mapping has to be nondegenerate.

To prove the minimization property, the bilinear mapping has to be into

the real line and the operator must be positive. However, in general, it

is only necessary to use vanishing of the Gateaux differential as equiv-

alent to (1) being satisfied.

"I-



SECTION III

FIELD EQUATIONS FOR DYNAMICS OF FLUID-SATURATED POROUS
SOILS

3.1 PRELIMINARIES

In this section, field equations for dynamics of fluid-saturated lin-

ear elastic porous media are stated following Biot [13,14]. The domain

of definition of all functions is the cartesian product Rx[O,-), where

R is the closure of the spatial region R and [O,oo) is the positive time

interval. The soil skeleton is assumed to be linear elastic. Integral

form of the field equations is obtained by Laplace transformation of the

Biot's equatins of motion followed by inversion. Throughout, standard

indicial notation is used. The Latin indices take on range of values

1,2,3 and summation on repeated indices is implied. A superposed dot in-

dicates time derivative.

3.2 DIFFERENTIAL FORM OF FIELD EQUATIONS

(a) Dynamic Equilibrium

,Biot's equations of motion for the binary mixture of fluid and solid

are [14];

+ij,j +  Pbi =  i + P2 i (16)

7 i+P 2bi P2i + (P2 /f)wi + (1/k) i (17)

-8-
h1
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where Zip bi, ui, wi are, respectively, components of the total stress

tensor, the body force vector per unit volume of the mixture, the solid

displacement vector and the relative displacement of the fluid with res-

pect to the solid. ?r is the pore pressure. P is the mixture density and

P2 is the mass of fluid per unit volume of the mixture.

(b) Kinematics

For small displacement, the strain-displacement relations are;

eij = u (i,j) = 1/2 (ui, j + uj, i ) (18)

W ij (19)

where e are components of the symmetric strain tensor of solid and

is the rate of volume change of the fluid per unit volume of the solid.

(c) Constitutive Equations

For linear elastic fluid-saturated soil, Biot [14] proposed the con-

stitutive equations

3ij = Eijkl ekl + oM Iij (a kl ekl ) (20)

7' M (CX 8j eij + ) (21)

The inverse relationships are;

eij Cijkl ( kl - aif kl) (22)

=77(I/M+ a2 Cijlkl kl 8ij) -a Cijkl akl Zj (23)

"-€ , € €, '." -. .-. - 2€.". - - " '.. - --... '' ., ' ' ".''''-"'' ,''''' ' ""5''', v"t
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Here, Eijkl and Cijkl are, respectively, components of the elasticity

and compliance tensors of the elastic solid, a is the compressibility

of the solid and M that of the fluid.

(d) Boundary Conditions

ui(x,t) = i(x,t) on S x [0, )

wi(xt) = Qi(x't) on S x [0,oo)1'12(24)

= T(x,t) = Qi(x,t) on S x [0,=)

7r(x,t)n i -- i(x, t) on S x [0,')

The first two in (24) are the displacement boundary conditions and the

last two the traction boundary conditions. ni are the components of the

unit outward normal to OR and Ti are components of the prescribed tract-

ion in i-th direction. Each of 1$'31 and IS2,S41 consists of disjoint

complementary subsets of bR.

(e) Initial Conditions

The initial conditions for the problem are

u (x,u) : Uo(x)

6 (x,0) = 0 (X)

w. w(25)

: w (x,O) = wo( X)

i I
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~ (x,O) (X)

The equations (16) through (25) completely define the initial-boundary

value problem of small motion of fluid-saturated porous media.

3.3 INTEGRAL FORM OF THE FIELD EQUATIONS

For development of variational principles, we need to rewrite the

field equations in the form of convolution product so that the time de-

rivatives are avoided. This can be done through applying Laplace trans-

form and taking inverse after appropriate rearrangement. Following the

procedure originally suggested by Gurtin [3,4], Ghaboussi and Wilson

[12] presented the following results for the Equations (16) through

(25).

(a) Dynamic Equilibrium

Laplace transformation of (16) and (17) followed by inversion gives;

t* +ij,j Fi - pui - P2wi = 0 (26)

t* ,i - 1 * (i/k)w i + Gi - P2 ui " (P2/f) wi = 0 (27)

where

Fi = t* Pbi + P[tal(O) + ui(O)] + P [ti(O) + wi(O)] (28)2

Gi = t* P2bi + P2 [ti(O) + ui(O)] + (P2/f) [t~i(O) + wi(O)]

+ (1/k) twi(0) (29)

1
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Here, symbol * denotes the convolution product defined as

f * g t f( r) g(t- T) dr (30)

[which satisfies the commutative law, the associative law and the dis-

tributive law.

(b) Kinematics

Equations (18) and (19) need to be restated in the form [11,12]

t* e i = (1/2) t* (uij + uj, i ) (31)

t* ' = t* wi i  (32)

(c) Constitutive Equations

Equations (20) to (23) must be restated so that the constitutive re-

lations show the dependence of quantities appearing in the equilibrium

equations upon corresponding kinematic quantities in them.p
t* ij = t* Eijkl ekl + t* ccM 8ij (M Sklekl +') (33)

t*Tr = t* M (c(8ij eij +) (34)

t* eij = t* Cijkl (kl - a7rkl (35)

t* = t*Tr(1/M + a2 Cijkl Sk aij) - t* Cijkl 8 kl T:ij (36)

1/
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SECTION IV

VARIATIONAL PRINCIPLES

4.1 PRELIMINARIES

To transform the coupled initial-boundary.value problem of wave equa-

tions for the fluid-saturated porous media into an equivalent variation-

al problem, the set of field variables are regarded as an n-tuple in the

admissible space whose elements are defined in Rx[O, ). A solution of

the mixed problem is, then, an admissible state of the field variables

which satisfies the field equation, the initial conditions and the

boundary conditions to the problem. The linear vector space W consisting

of all admissible states is referred to as the product space, i.e.

W =  W1  x W2  x .............. x Wn (37)

where w. is an subspace whose elements represent the admissible state

for an specific field variable ui.

Consider operator equations of the coupled boundary value problem

A(u) = f on R (38)

-- on OR %39)

13-
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in which u is the vector of the field variables and A is an operator

matrix which is self-adjoint in the sense of an appropriate bilinear

mapping. Each element of the operator matrix A may be viewed as a trans-

formation

Aij : Mi3 - Pi (40)

where Mij, Pi are, respectively, the domain and the range of Aij which

are both the linear vector spaces on R. The explicit form of the field

equations is

Aij uj =fi (41)

IC = gi, 1 = 1,2 ..... n (42)

in which n is the number of independent field variables.

Consider a bilinear mapping

< ' >R : V i X V i  -- > S, i =  1,2 ......... n (43)

The matrix of operators is self-adjoint with respect to the bilinear

mapping if [17,18]

n n

>-<ujAjiUi>R = <ui, IA ijuj>R + DbR(ui,U j ) , i=1,2,...n (44)
j J

where Db R(uj,U i ) is a quantity associated with bR. As a generalization

lN
w" .~~~b "' i" v ".%. %" Jw"<- % ", '€w .. # "- 4 . '.
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3 of Mikhlin's theorem, the governing function for the operator equation

(38) and (39) is defined as

(= . ijuj - 2fi>R + <ui'Cijuj - 2gi>bR) (45)

For the present problem, we use the bilinear mapping introduced by Gur-

tin viz.

<fg> =f f*g dR (46)
R R

4.2 CONSISTENT BOUNDARY CONDITIONS AND INTERNAL DISCONTINUITY

Sandhu [10] pointed out that appropriate boundary terms should be in-

cluded in the governing function even if they are homogeneous. This is

important for certain approximation procedures, e.g. the finite element

method, where the functions of limited smoothness are used. The bound-

ary operators must be in a form consistent [101 with the field operator.

Consider the boundary value problem of multi-variables given by (41) and

(42). Referring to (44), Sandhu [17] defined consistency of boundary op-

erators with the field operators to be the property;

n n

D bR(uiU) <vi, ' i j u j >R - Y-<ujCjivi>6R I i=1,2,...,n (47)
j J

In seeking approximation to the exact solution by the finite element

method, the function space with limited smoothness over the entire do-

I!
A ~ ~'~. ~~.. C .C p

4 } '
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main is sometimes used. In order to properly handle this limited

smoothness problem in the variational formulation, Sandhu [11] intro-

duced internal discontinuity conditions in the form;

(Cu)' = g on bRi  (48)

where a prime denotes the internal jump discontinuity along element bou-

dary oRi embedded in the region R. Sandhu and Salaam [10] and Sandhu [11]

showed that this condition can be included explicitly in the governing

function.

4.3 VARIATIONAL PRINCIPLES FOR DYNAMICS OF FLUID-SATURATED SOILS

4.3.1 Field Equations

Equations (26) through (36) in self-adjoint matrix form are;

A(u) = f on R x [0, ) (49)

Here,

P '2 0 -L 0 0

P2 P2/f+1*(1/k -t* 0 0 0

8m

0-t 0 0 0 0 -t

am

A= (50)
L-00" -t* 0

0 0 0 -t* P t*(48 i

"J 0 0 -t* 0 t*a M l t*MA .Vk1



17

where

L =(1/2) t* + a (51)

ImOk km (51)

P t* (EMijkl + a' M 8ij )kl (52)

Ur Fm Fm

Wm Gm

U and f= (53)
Zi j 0

0
eki 0

Elements of A satisfy self-adjointness in the sense of Equation (44).

The operators on the diagonal are symmetric and the off-diagonal opera-

tors constitute adjoint pairs with respect to the bilinear mapping (46).

C-4 Consistent boundary conditions for the Equations (49) are

-t* = -t* uin j  on SI x [0, )

-t* win i = -t wn on S 2 x [0,0)

^ (54)

t*7Trn t*7rn. on Sx [0. )

At* j nj : t*Ti  on S4 x [0, O)

.q ~U.'

m 'p

IT;-;;.,: .: '-:' -.> : . :';; .---.;-.:...-: ';. ---.-.:-.":, ..' :.".:.--,-'.-
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j Consistent form of the internal jump discontinuities is

-t* (uin j  -t* (g )inj on Sli x [0,)0

1 1 *

-t* (win i)' = -t* 2 on x [O,

(55)
t* (7Tni)' = t* g ni  on S3i x [0,3)3

t* ( Zjnj)' = t* g ni  on s4i x [ox

4, 4Here, surfaces Sli , S2i , S3i and S4i are embedded in the interior of R.

Operators in the self-adjoint operator matrix equation (49) have the

following relationships;

<t*'+ Zij>, : - <"u, Zijj'R

':+ <t*uinj, ti> + <t*u i, ZijjS
J 1  n>4

t*(u+ <t*ui, (ijnj) > (56)
<t*(uinj) ' ij i'S 4 i

<twi fi>R = <twi, i ,7r >R

+ <t*w ini,7r>S + <twi,7rni>S
2 3

+ <t*(wi ni) 'r> + <t*wi' (ni >  (57)-~2i S3i

In writing (56) and (57) we assume that < > R can be evaluated as the

sum of quantities evaluated over subregions of R such that all the sur-

faces Sli, S2i, S3i , S4i are contained in the union of the boundaries of

these subregions.

l
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4.3.2 A General Variational Principle

For the operator equations (49), we define the governing function,

following (45) as;

p2  1
Mlu) =<Pui,u >R + 2<P~~u> - R+<-+I~ w. .>

77.w...+ t*. 4' - 2<t* e, WX + 13' 1

<t* ,iV1>R 1'w,1 7R ''R <tju Iij.>R

2
-
2<t*eiJ i> + <t*(E +aMSel 3I

+ 2 t~a m ij'eij' Ie>R + <Ei*1M , >R

-2<u F, > R- 2w'

<jj t* (u.--2 u.)n.> -<n', t*(w.-2.)
1j I i 1 1 1-2 L ni>S

+ <w1 , t*( 7r- 27rjni >~ + <u.,t' rn-T)

-<Z* .t*((u.n.)'-2(g ).nj)> -<7' t*((W n.)-2q )>

+ <w., t*((77.n.)'-2g n. )> S + <u., t*(( Z..n.)D-2g ni) (58)
1' 1 31 S3 i~ 3 4 0i

The Gateaux differential of this function along v [U w

is;

A Vliu) =<i. Pui + P 2wi t* Z ,ij - 2Fi >R

<u i + P2'. 1 -21 '-3,j>R

+ <~,~u '+ 2 + )w- t* 7r'. 2G > -

i ~i+ f k 1 ,1 i R

1'i 2 d f 1*k 1-i t ,ri>R
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+ < f, t~w~ -' t* > R + < 7r, t~iv- -' t* >R

+ <t..i, thu. . - t*e. .>R + <'r ., t*-u .~ - t* . >
13 13 13R 13 1,3 j R

+ 13'j tC +t( ijkl4 a Maljakl )ekl + " ie>

2-
+ <e. ., -*' + t*(Ei jkl+ a Maijak 1 )'k 1 + o'Ma

+ <6 , -t*~T+ t* a ,M 8kei+t

<. ,t~ M kle6kl + t*M >R

- <Z , t*(uin. 2u n )> -<t.,,, t*tin.>S

- < Tr t*(w n1  2 ̂  n.)> - <7r, tlini>S1 1 - 2 1 S 2

A
+<Up, t*(t1 n - 2 T i ) >S3 + <Uj, t*Tni>

+<Ui. t*(7tin)- 2 n)>S + <w, t*(#inj>

+<Ti t*((. .n )'-2(g )n )> +<u.i, t*( nj)'S4

Using equations (56) and (57), the Gateaux differential can be rewritten

A v u) Nd2iil Pui p2wi t*'rij 1 - Fi>R



+ 2<wi, Pui  + ( 2 + *- -)w i - t* - G21

f k 1 i R

+ 20r, t*w . - t* 6> R + 2<t t*ui  - t*eij> R+ 2< , t*i~ i  2< .it ,j

+ 2 <giUS -t*ei j + t*(Eijkl+ CE M8ijakl)ekl + aXM S ije >R

+ 2<., -t*7+ t* aM 8klekl + t* M >R

- 2<ij, t*(uin j  uin j )
- S>1

- 2<i, t*(w ini - w ini )>

+ 2<i;i  t*(7rnj -7rni)>

+ 2<i , t*(ijnj - Ti )>S4

JO - 2<Vij, t*((uinj)'(g ).nj)>

- 2<7r, t*((wini)'-g >

+ 2<; i  t*((7rni)'-g3 ni)>: 31 S3 i

+ 2<U i , t*((.ijnj)'-(g )ni)> (60)

The Gateaux differential vanishes if and only if all the field equations

along with the boundary conditions k54) and the jump conditions (55) are

satisfied because of linearity and nondegeneracy of bilinear mapping

(46). Hence, vanishing ofAP(v) for all vEW implies satisfaction of

(49), (54) and (55).

.l

rn
i d
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4.3.3 Extended Variational Principles

Equations (56) and (57) relate pairs of operators in the operator ma-

trix (49). These relations may be used to eliminate either of the ele-

ments in each pair of the function f(u) in (58). Eight alternative forms

can be obtained by using either or both relations. Elimination of an op-

erator Ai from the function implies that state of variable u. needs not

be in the domain M of Aij. Where Ai are differential operators, this

results in relaxing the requirement of smoothness in uj thereby extend-

ing the space of admissible states. In the context of finite element

method, it is clear that the extension of the admissible space provides

greater freedom in selection of approximation function. In the follow-

ing, the possible extensions are explicitly stated.

Using (56) to eliminate tij,j from (58),

1= < Pui ui>R + 
2 <Pwi,ui>R + <(p2 + i1 )w

i ,w i>R

i'iR2 f k ,W>

- <t* 7Tr iwi>R + <t*w i i,>R - 2<t*,7Tr>R + 2<t*ui,j, tij>R

2-2<t*e , 'ij>R + <t*(Eijkl + " M ai kl) ekl, eij>R

+ 2<t*c(M 8ijeij,6> R + <t*M,>R

- 2<uiF i> R - 2<wiGi> R

- 2< i .t*(ui_i)nJS I  <7,t. (wi 2 i)n i>S

+ <wi, t*(7T-27r)n i  - 2<ui, t*Ti>S4

-2< ij't*((uinj)'"(g )inj )>S - <rt*((wini)'-2g )>S
I3 1 'S11 i 2 2i

',p

MI
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+ <w1, t*((7rn4)'2g 3ni )> si- 2<u., t~ i>S (61)

In (61) the stress components need not be differentiable. Using (56) to

eliminate, alternatively, ui1 j, (58) gives

2 <Pu iui>R + 2<pw. ,u. > R- 2<t*o V.1, Ui > R + p(2 + 11wi' >R

2 11Rf k h

~<t V 'wi > R + <t*i,i' r>>R -2<t*,7r> R

2
-2<t*e.j 'T> >R + <t*(Eijkl +aM 6i 6kl ekl, eij>R

+ 2<t*oaM 8.jij .e.. + tM >

C'. -2<ui' i > R - 2< i ,G. R

+ 2<T -t*u'n > - < T, t* (w 2w.)ni >
Ij I ijS 1  1 1 iS2

+ <w., t'*(7r-2fi')n > + 2<ui., t*tjn.-T.)
1 S 33 i 4

+ 2<'rij t*(g 1) ini>Si - < 7r t*( (w ) -2 2)>S i

+<w., t*((7rni)'-2g 3ni)> si+ 2<u., t*(('ijn)'g 4 i>SO (2

in which the displacement u.i need not be differentiable. Elimination of

w i by (57) from (58) gives

1 Pu'U 1 R + 2 <p wiui>R - <t~ti ,U.>R + <"2 + 1)iw>
<P.u>2 1 31f k h

-2<t* 7riwi>R -2<tf 4 ~7r>R + (t*U i,j,ltij>R

-
2 <te~ Zilij>R + <t*(E ijkl + a2 M j 8kl) eki, eij>R

"'5I



24

5+ 2<t*a M Sijeij)4 'R + tMee>

-2<uiF i> R - 2<w, i>R

,.Jj t*(ui- 2uj)nj>s 1 + Art

+ 1'i, *(7-7)n 1>S3 + <uik, t*(Tjnj-2Tji)> S

-<^Cijj~t*((uin.)'-2(g ) in.i)> Si + 2<7T,t*g 2> i

2 <w, t*((7rn 1)'1g 3n )> s3i + <u1 , t*((t. .n.)'-2g 4n1 )>5s~ (63)

Here, w1 need not be differentiable. In the same way 7r can be dropped

[9 out by using (57), yielding

f4=<PuiUi>R + 2<P wiui>R - <tti~liR+ p(2 + 1 )iw

2 f k

+ 2<t w1 i 7r >R-<t''7R + <t~UJZi>

2
- <t*e ljZlj>R + <t*(Eijkl + " M 8ij 8kl) ekl, eij> R

+ 2<t*a M 8..ei. e> >R + tM >

-2<uiF i> R - 2<w1, Gi> R

<- <t. t*(u -2ui1On i>5  - 2< 7r t* w )ni> S2

A

- 2<wi, t*7Tn 1 > S3 <ui, t*(Zinj2 >S

- <t'. ~t*((uin.i)' 2(g I).in J > 5  - 2<7T,t*((wn.)' g2 > i

-2 <wi, t*g 3ni > si+ <u1, t*((V .in.)'-2g 4n. > ~ (64)

3 iM6 .0i ''O ' iS4 1, -J
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In (64) the fluid pressure is not required to be differentiable. As can

be seen from (61) to (64), both the differential operators in an adjoint Ile

pair cannot be removed at the same time. Use of (56) and (57), however,

eliminates the differentiability of two field variables from (58). Elim-

inating *Zij,j and ii from (58), we have

15 '<P ui ui>R + 2<p wi,ui> R + <(P
2 + )wi'wi >R

+ 2<t*wii'r >R" 2<t* 'r > + 2<t*ui j,'ij>R -g

-2<t*e iij > R + <t*(Eijkl + o 6M 8ij 8kl) ekl, eij>R

+ 2<t*a M 8ijeij , e>R + <t*M ee >R

- 2<ui1,1 > R - 2<wiG 1 > R

- 2<r ij,t*(ui-i)n j>S  2<7T,t*(wi- i )ni >S

- 2<wi, t ni> 3 - 2<ui, t*Ti )>S41S3 1 1 i1 1 2 > 2 i ( 5

- 2<^C ijt*((uinj)'-(g )inj)>Sli - 2<7rt*((wini)'-g2)>S2i

- 2<w i , t*g ni> - 2 <ui, t*g n i  (65)

In (65), the total stress field and the fluid pressure need not be diff-

erentiable. Elimination of u, and" 7r from (58) gives

= <p >+ 2<pw.+ P
6 = <Pui ui>R 2wilui>R - <t*,ijjui>R +<( f + 1 )wiwi>R

f k >Rk+ <t*wi1 i, 7> - 2<t* ,7T>R '

-N
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2

-2<t*e 13 ij'r>R + <t*(Ejkl +a M 8i 8k1) eki, elj>R

+ ~ ~ 1 13'~ M iej >R + <t*M f >

-
2<uI,F i> R -2<wi, Gi>R

+2<T 'r. t*u" n > si- 2< 7r,t* w )n ) n>

A A
-2<w t* 7Tn > S3+ 2<u.., t*(,. jn.i-T )>

+ 2<Z. . t*(g )inj>S - 2<7,t*((win.)'-g )>s
13 13ii 2 2

2<wi. t*g 3ni> 3 + 2<ui, t*UT. .n)'- 4 1>S (66)

where u and 7r need not be differentiable. Eliminating Irjjand w~

from (58),

+PIUJ> ( 2< Pwilui>R + p( 2  1 i R w
7 <uuiR 2 f kI R

-2<t* 7r~,wi>R -2<t* 1'7 R + 2<t~uijlTij>R

2
~2<t*e. 'j,5i > R + <t*(Eijk+ 0' MI8 j ak) ek ej>R

+ 2<t*a M Si.e.. e >R + <t*M " >R

2<u.' F> - <iG >
- ' R - < 1  R

-2<T .t*(u.-u.)n > + 2<7', t*w"n
ij' 1 1 ,j S i1> 2

+ 2<w, t* (-r ^ 2<ui t*T i> s

3 I
2<T jt*((uin.)'-(g ).n.i)> si + 2<nr,t*g 2> si
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+ 2<wi, t*((7rn.)' 3 n )> -~ 2<i t*g 4n. )> si(7

which does not require the total stress and the relative displacement of

fluid to be differentiable. Using (56) and (57) to eliminate u. . and

wii (58) is

8 = ~ i ~R + <~ 'i >R ij <lui> + < .+ 1*)wiW i > R
2 1 31f k

- <t* 77' .,'Wi > R - 2<t* 67r> R

- 2<~ irj>R+ <t*(Eik +a M' 8i 8 ) ekl, eij>R

+ 2<t*a M 6..e.., e> + <t*M >

-2<ui F > R- 2<wiGi >R

AA
+ 2< iit*u n.> + 2<7T't*w n >

+ 2<w., t*(7 r 7 )n.i>S < i t* ( t. .n.-T.)> S

+ 2<or..,t*(g 1).n.i> S i+2<7r,t*g 2> S2

+ 2<wi t*((,rn.)'-g3ni ~ + 2<ui3 t*((It. .n.i)'-g 4n.i)> 5s~ (68)

Here, the solid displacement and the relative displacement of fluid need

not be differentiable.

d'PhA
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i 4.3.3 Specializations

If the admissible state is constrained to satisfy some field equa-

tions and/or the boundary conditions, certain specialized forms of the

variational principle are realized. This procedure is used to reduce the

number of free variables in the governing function. Also, certain as-

sumptions in the spatial or temporal variation of some of the variables

lead to approximate theories. In the context of direct methods of ap-

proximation the constraints assumed in the specialization must be satis.

fied by admissible states. If it is difficult to satisfy the con-

straints, such specialization of the variational formulation will not be

useful in practice. Some specializations of the extended variational

stated in the previous section are presented below.

For the functional f5 in Equation (65), in which the soil stress and

the fluid pressure need not be differentiable, specialization to satisfy

(49)3 and (49)4, i.e. satisfying identically the kinematic relationships

gives

9 = <Pu.,Ui >R + 2< p2 WiUi>R + <(p2 + k, )wiWi> Rf k

2
+ <t*(Eijkl+ 0 M 6ij 6kl) ekl, eij>R

ii

+ 2<t*a M 6ijeij' >R + <t*M ef>R

-2<ui,Fi>R - 2<wi, Gi>R

- 2<'ij,t*(ui-Gi)nj>S  - 2< ',t*(wi-o iOni>S2

- 2<w-, t*n > 3 2<u, tT )>$4
2w t ni~s3  i S i

d, .,
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-2<C ij,t*((uinji)'-(g 1)in j)> S i - 2<rr,t*((w ini)'-g 2)>S2
i . 13 i 2 S2i

2<w. t*g ni> - 2<u i , t*g n i> (69)

If the field variables over the domain are continuous, the jump discon-

tinuity terms drop out giving the specialization;

p2 + 1* )wi

100 < Puiui>R 'P2 wiui>R + <"k ,wi>R

2
+ <t*(Eijkl+ aM 6ij 8kl) ekl' eij>R

+ 2<t*ct M Sijeij , C>R + <t*M ee>R

F , - 2<u ,FFi>R 2<wi Gi>R
i< i i R'

-2<Z ijt*(u- 1)n - 2<7",t*(wi- ^ )n i >S 2

A A

- 2<wi t*7rn > - 2<ui, t*Ti)>S (70)
1' i 3  ' S4

Further specialization of (70) to the case where displacement boundary

conditions are identically satisfied yields the function governing the

two field formulation proposed by Ghaboussi and Wilson [12] except that

in the present formulation the boundary terms are consistent.

Alternatively, specializing Equation (67) to satisfy the (49)4,p2  1
1 < Pui u> + 2< ' + <(f + *)wi'wi>R

i R P2wili> + f k R

-2<t* 7r,,W>R - 2<t* e, r>R

2
+ <t*(Eijkl+ o'M ij 8kl) ekl' eij>R

in-:.-V*-.'
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+ 2<t*a M ijeij, 6>R + <t*Mee>R

- 2<ui, Fi>R - 2<wiGi>R

1- 2<1'1ij t*(ui-ui)nj>S1 + 2<i,t win i S

+ 2 <wi, t*(7r-T')n > 2<u i t*T >
>S3  , ti4

2<T.ij,t*((uinj)'-(g )inj)> S  + 2<7,t*g >

+ 2<w i t*((7r ni)' -g n )> - 2<ui, t*g ni)> (71)

Furthermore, assuming that the internal discontinuities and the boundary

conditions on S1 and S3 are identically satisfied and eliminating by

using (49)6, 11i gives

12 < Pui'ui>R + 2<P 2 wi,ui>R + <( + l*-)wi'wi>R
f k

- 2<t* 7r i,Wi>R + <t*Eijklekl, eij>R + 2<t*a 8ij e. >

- <t* 7r/M, 7 >R - 2<ui,Fi>R - 2<wi,Gi> R

A A2<Tn,t win> S2 - 2<ui, t*Ti>s4 (72)

-n12 , which is three field formulation, has important meaning in the

context of finite element analysis, since thismixed formulation of u-w-

77' can produce the continuity of the pore pressure which is the physical-

ly important quantity in the analysis of dynamic response of the fluid-

saturated solid. Similar three field formulation can be obtained by

specializing fl1 to satisfy (49)3, (49)4 and (49)6 . Clearly, a large

Ml

I1

" , i % '.;, -.'.-.%< I ' '.i ; , ,';'--;-; '. ..-;--".'. , > -'.';' '--'.; ' .".'-'< -.- ,..5.
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number of other specializations are possible even if they are not listed

here and left to interested readers.

4.4 COMPLEMENTARY FORMULATION

4.4.1 Complementary Form of Field Equations

An alternative procedure to set up the variational principles govern-

ing the problem is to write the operator equations in complementary form

instead of the direct form of equation (49). In writing the equations,

it is assumed that kinematics of the solid and the fluid, i.e. (30) and

(31) are satisfied. The complementary form of field equations is

V P p2  0 -L um F.
P2  M1 _ta -

1 +* 0 wm  Gi2 f k am
,. '=(73)

0 t -  P t*a C. 7r 0
am

L t*a C ijkl ij -t*Cijkl Zij 0

where

q P = -t*(1/M + c2 Cijklkl~ij) (74)

L - i t*. a. a) (75)
2 maj ai

The governing function for the set of equations (73) along with the

boundary conditions and internal jump discontinuity conditions, follow-

ing Sandhu [11], is

IL.

p.

Uq

i . v ; v § ,rJ . t ' V * ''p. '. . .%'2-. .. Q
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J < Pui'ui> R + 2< p2 wiui>R - <t* 'ij,j, ui>R

+ <(P2 + 1 -)
+ f + *)iwi >R - <t* 7ri,Wi>R + <t*wi i,7r>R" f k'

<'*( 1 + W2 Ci a 7rr>R
Mijkl klijJi

+ 2<t* Cijklskl ij,7> R + <t*ui,j,tij>R

- <t*Cijkl rij' kl>R - 2<uiF >R 2<wiRGi>R

- <ijj, t*(ui2i)nj>S - <7T,t*(wi2 )ni >

A A+ <wi , t*(7-27T)ni>s3 + <ui, t*(tijn j-2T i)>S
3 33 iS 4

- <tijt*((uinj)'-2(g )in )>1 - <7r,t*((wini)'- 2 g )>$2 i

+ <wi, t*((rnn)'-2g ni)>S + <ui, t*((Zijnj)'-2g n )>S (76)
S3 j 133~ 4 js

As in direct formulation, it can be shown that the Gateaux differential

of (76) vanishes if and only if the field equations (72), the boundary

conditons (54) and the jump condtions (55).

4.4.2 Extended Complementary Variational Principles

Following the principles and methodology presented in Section 4.3, it

is possible to develop extended variational principles for the comple-

mentary form of the field equations (73) as well. Relations (56) and

(57) can be used to eliminate some of the operators from (76). As a re-

sult, following extensions of (76) are possible.

Use of (56) an (57) to eliminate T'i and 7' ifrom (76) gives

S.
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f k

+ 2<t*a C ijklakl ij'77'>R + 2<t*ui1 3 ij>

-<t*C;Ijkl rij, tkl>R - 2 <ui,Fi>R - 2 <wi,Gi>'R

13' 1jt( u )n >S1 2<77,t*(wi-W'~n>

A A
- 2<w., t*7Tfl ~> - 2<u., t*T.>s

1' 3  '' i 4

- 2t..t*((uin.)'-(g ). n)> <rt(wn)- )>S

- 2<i t*g3ni > - 2<u i. tg ni > S (77)

Here, the stress field and the pore pressure need not be differentiable.

Similarly, elimination of ' j and wjfrom (76) leads to

p2  1
= <P~,UiR 2 2 W,uiR + + I*- )w.

PuiUi> R+ < > +<(f k ihiR

-2<t*77~', <t*(-.!+ WCijkl~kl aij ) 7rt 7>R

+ 2<t*x Ciklk a Irj7> + 2<t*u. >~

- t*C ijkl Tij, Tkl>R - 2<ui,Fi>R - 2<wi,G > R

-2<T. ,t*(u.-4.)n.i> S1+ 2<7T,t~w~in.> S

A A
+2'<w. t*( 7T.-7T)ni > - 2<u . t*T >

-2<t zjt*((u in .)'-2(g ).nfl.)> S + 2<7T,t~a >
* ij 1 31 ~ Ii 2 52i
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+ 2<wi, t*(( Tni)'-2g3ni)> 3i " 2<u i ' t*gni >s4  (78)

which does not involve derivatives of Tij and wi. Eliminating ui, j  and

q r,i, (76) is

S3= < Pui'ui>R + 2< P2 wi'ui>R - 2<t*t*ijj' Ui>R

+ <(P2 + 1.4)wi'wi> + 2 <t*wi i >

_ <t.(l+ Cjkl~kl.ij)7"r,>R

+ 2<t*a Cijkl kl t'ijT>R

- <t*Cijklt'ij'kl>R - 2 <uiFi>R " 2<wiGi >R

AA

+ 2<'i..t*uin.s - 2<7T,t*(wi-w i)ni>

<i, t*(7r-7r)ni s3 + 2<'ui, t*(Tlijnj-Ti )>S4

+ t*(g )i>Sli - 2<7r t*((win i)-g2 )>2i

- 2<wi, t*g n + 2<ui, t*((t.ijnj)'-g ni)> (79)

in which the solid displacement and the pore pressure need not be diff-

erentiable. Finally, relaxing the differentiability requirements of ui j

and w. from (76) by using (56) and (57), we have

1= < Pui'ui>R + 2< P2 wi'ui>R - 2<t*tij,j' Ui>R

+ <p 2  1 ',

+<(L + 1 )wi ,wi>R - 2<t* 7 R
f k

Um

! 9.
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<t*(L+ a2 C jki l6kl)ij7i" >R

+ 2<t*a Cijklkl Tij,7'>R

<t*Cijkl rij, kl>R - 2<uiFi>R - 2<wi'Gi>R

+ 2<ij,t tuinj>s1 + 2<2r,t*wini>s2

+ 2<wi, t*( 1-)ni >S 3 + 2<ui, t*(rt.jnj-Ti)>S4

+ 2<Z ij,t*(g )inj S + 2<7rt*g >1 >Sli tg2>s2i

+ 2<wi, t*((7ni)'-g3ni)>5 + 2<ui, t*((rijnj)'-g4ni)>S4i  (80)

Derivatives of ui and wi are not involved in (80).

4.4.3 Specializations of Complementary Extended Variational Principles

As in direct formulation, some specializations on the complementary

extended variational principles are possible by requiring that certain

field equations and/or boudary conditions and jump conditions be identi-

cally satisfied. Here, we present some secializations.

If we assume that (73)4 is identically satisfied, J1 results in

2<P 1

S5 < Pui ui>R + 2<P2 wi Ui>R + <f(2 + ii)wi'wi>R
f k

+ 2<t*w .~ ,7r> - <t*(-l+ a' CijklSkl 8 ij)7r,7r>R
M

+ <t*Cijkltrijtkl>R - 2 <ui,Fi>R - 2 <wi,Gi>R

- 2< tij,t*(ui-ui)nj>S  - 2< r,t (wi-w i

13' 11P1 5

Ub
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A A
2<wi, t*7rn i> - 2<ui, t*Ti>S3  1' >S4

2<rij,t*((uinj)'-(gl)inj)>5  - 2< 7,t*((wini)'-g )>

- 2<w i, t*g3ni>s3i - 2<u i, t*g ni 4 (81)

Specializing J1 to satisfy (73)3,

J6= <Puilui>R + 2<P 2 Wi,Ui>R + <(P2 + lI*.)wi,wi>R
f k

+ <t*(--+ oV C ijkl6kl'ij)7,> R + 2<t*uij, Zij>R

- <t*Cijkl ij Ckl>R 2<ui,Fi>R - 2<wi,Gi> R

- 2< Zij t*(ui-ui)n> Sl 2<7r,t*(wi-wi)ni >S2

A A

- 2<w i , t* 7ni>S3 - 2<ui, t*Ti>S4

- 2< Cij,t*((uin.)'-(gl)inj)>S - 2<7r,t*((win i )'-g n< J *i i ii -2 i )> 2i

- 2<wi, t*g ni>s i - 2<u i, t*g ni > (82)
3 3i 4 54i

It is unlikely from the above two specializations that further speciali-

zation on J5 or J6 through requiring the other field equations to be sa-

tisfied would make them simpler. Since, moreover, specializations of the

extended functionals, J1 to J would show little differences, we do not

present every possible specializations.
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SECTION V

DISCUSSION

A systematic development of variational principles for linear elasto-

dynamics of fluid-saturated solids have been presented. Nonhomogeneous

boundary conditions and internal jump discontinuities were explicitly

incorporated in general variational principles. Allowance of jump dis-

continuity terms in variational formulation is meaningful in the context

of direct approximation in finite element spaces, since the space of ap-

proximants may not be sufficiently smooth. Based on the direct and the

complementary formulations, extensions of the variational principles

through elimination of certain field operators and specializations by

restricting some of the field equations and boundary conditions to be

identically satisfied have been proposed. These formulations should

provide a basis for development of approximate solution procedurse and

also approximation theories governing the problem. Fig.1 diagramatical-

ly depicts the possible extensions of the general variational principle

based on the direct formulation. Fig.2 shows the same for the comple-

mentary formulation. In either case the specializations listed in this

report are shown. Evidently, other extended forms could be used as start-

ing points for specialization. In the interests of brevity we desist

from attempting to catalog all the possibilities.

I
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U U
I(Governing Comleenar Fntiona)

Extension Cmlmnay ucoa

Special ization-

Satisfy const.
eqn. for 7r.

J5_

Satisfy const.
eqn. for 7

Fig.2; Family of Complementary Variational Principles
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