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FOREWORD

The investigation reported herein is part of the research project at
The Ohio State University, Columbus, Ohio supported by the Air Force 0f-
fice of Scientific Research Grant 83-00-55. Lt. Col. Lawrence D. Hok-
anson is the Program Manager. The present report documents part of the
work done from February 1, 1984 to January 31, 1985. At The Ohio State
University, the project is supervised by Dr. Ranbir S. Sandhu, Pro-

fessor, Department of Civil Engineering.
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Variational Principles forhdyqamics of the fluid-saturated porous me-
sSovs
’ EE dia are derived assuming that td is linear elastic and deformation is

small, Starting with basic mathematical concepts related to the inverse

problem of calculus of variation and following the methodology proposed

by Sandhu for coupled problems, general variatonal principles for the

problem are developed. Complementary as well as direct formulation are

discussed with reference to finite element approximation. Discontinu-

jties in the field variables, the approximation space and the excitation

L

are allowed for. Extensions of the variational principles to relax

smoothness requirements on certain field variables are introduced along
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SECTION I

INTRODUCTION

Direct methods of obtaining approximations to solutions of boundary
value problems often rely on variational formulations. Finite element
procedures for numerical solution of various engineering problems are
also based on variational principles. For linear operators many inves-
tigators studied the subject in an inner product space. Tonti [1] noted
that the self-adjointness of an operator depends on the given bilinear
map. A given operator may be non-self adjoint with respect to one bili-
near mapping but self-adjoint with respect to another. Following Tonti;,
Magri [2] showed that for every linear operator there is an infinity-of
bilinear mappings with respect to which it is self-adjoint. Guntin
[3,4] wused convolution product as a bilinear mapping for initial-bound-
ary value problems. Sandhu and Pister [5,6] extended the application of
this bilinear mapping to linear coupled initial-boundary value problems

using a generalization of Mikhlin's basic theorem [7].

Mikhlin [7] assumed homogeneous boundary conditions in stating the
variational principle so that a self-adjoint operator was symmetric
[10]. The conventional procedure to treat nonhomogeneous boundary condi-
tions has been to find the particular solution for the nonhomogeneous

boundary conditions and use change of the field variable to homogenize

the boundary conditions. This approach, though theoretically elegant, is
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cumbersome in implementation of direct methods. Gurtin (3,4] introduced
nonhomogeneous boundary terms explicitly into the governing function.
Nickell and Sackman [8] and Sandhu and Pister [6] followed Gurtin's ap-
proach. In the context of application of finite element method, Prager
[9] included, in the variational formulation, jump discontinuities which
may exist across interelement boundaries. This development assumes spe-
cial significance in case continuity of approximating functions cannot
be ensured up to the desired degree. Sandhu and Salaam [10] examined
the general case of linear operaters with nonhomogeneous boundary condi-
tions and internal jump discontinuities based on extension of Mikhlin's
theorem. By introducing the concept of boundary operators consistent
with the field operators, a systematic procedure to obtain variational
principles for linear coupled problem was developed. In line with this
approach, Sandhu [11] presented a comprehensive treatment on the varia-
tional principles for soil consolidation using convolution product as

the bilinear mapping.

Ghaboussi and Wilson [12] derived a variational principle for the dy-
namic analysis of saturated porous elastic soil. Biot's equations of mo-
tion [14] were restated in integral form through Laplace transformation
followed by rearrangement of terms and inversion. The general procedure
followed Sandhu and Pister [13,14]. Herrera and Bielak [15] pointed out
that the equivalent variational formulation could be written without
transforming the field equations and, instead, wusing Tonti's approach
L16]. Ghaboussi's [12] treatment of the boundary conditions was incom-

plete. The motivation for the present work stems from the need to write
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the boundary conditions in a consistent fashion and to develop a system-
atic procedure for variational formulation governing dynamics of fluid-
saturated linear porous media. Both direct and complementary formulation
of field equation are studied following Sandhu's approach. In chapter
IT, some mathematical concepts and definitions basic to the development
of variational principles are introduced. Biot's field equations for dy-
namics of fluid-saturated linear elastic porous media are given in Chap-
ter III. Integral form of the equations is the same as used by Ghaboussi
and Wilson [12]. In Chapter IV, general variational principles for the
problem are developed following Sandhu and Salaam [10] and Sandhu [11].
The governing functional for the operator equations explicitly includes
the initial conditions, the nonhomogeneous boundary conditions as well
as any internal jump discontinuities. As an alternative procedure, com-
plementary formulation of the problem is presented. Extended variation-
al formulations based on self-adjointness of the operator matrix are in-
troduced along with several specializations. These should be useful as

the starting points for alternative approachs to finite element formula-

tion.
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SECTION II
MATHEMATICAL PRELIMINARIES

2.1  BOUNDARY VALUE PROBLEM

Consider aAboundary value problem
A(u) = f onR (1)
C{u) =g on?dR (2)
where R is an open connected region in an Euclidean space. DR is the

boundary of R and R its closure. We suppose that the field operator A

and the boundary operator C are bounded and defined such that

VR’ va are linear vector spaces defined on the regions indicated by the
subscripts and wR, NDR are dense subsets in VR’ VDR’ respectively. Thro-

ughout, A and C are assumed to be Tinear so that

CEac—wd

e~y o~y

A (au+8v) = aAlu) +BA(v) V¥ u,ve Wy (3)
e
[ and C (au +Bv) = ) +BC(v) Vu,vewbR (4)
::'-; -4-
-
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where a, B are arbitrary scalars.

2.2 BILINEAR MAPPING
A bilinear mapping B : WxV¥ —> S, where W, V, S are linear vector
spaces, for given welW, véV, is defined as a function to assign an ele-

ment in S corresponding to an ordered pair (w,v). B is said to be bili-

near if
Bla W)+ BW,, v) = aB(wl,v) +BB(w2,v) (5)
Blw, o vy +8v,) = aBlw,v;) +8B(w,v,) (6)

where a, B are scalars. We shall use the notation

Balw,v) = <w,v>p (7)

B is said to be nondegenerate if

W,v>p =0 ¥ welW if andonly if v=10 (8)

For W =V, B is symmetric if

<w,v>R = <V’W>R (9)




2.3  SELF-ADJOINT OPERATOR
Let A: V —> W be an operator on the linear vector space V defined on
spatial region R. Operator A* is said to be adjoint of A with respect to

a bilinear mapping < , R ¢ WXxW-— S if
W AV>, = *
W,AV>p = <v,A w>p + Dyp(v,w) (10)
for all weW and vev, Here, DbR(V’W) represents quantities associated
, with the boundary ®R of R, If A = A*, then A is said to be self-adjoint.
In particular, a self-adjoint operator A on V is symmetric with respect
to the bilinear mapping if V = W and

W,AV>p = <y, Awdp (11)

2.4  GATEAUX DIFFERENTIAL OF A FUNCTION

N The Gateaux differential of a continuous function F : V — S is de-
fined as
1
AVF(u) = 1im ~— [F(u+ Av) - F(u)] (12)
A0 A

provided the 1imit exists. v is referred to as the ‘path' and A is a
scalar. We note that for u,veV, ut AvéV., Equation (12) can be equiva-

lently written as

) ‘,.::

e

o

d -

AVF(u) = — F{u+ Av) (13) s
da A=0

R B T i T Y LAY .
: LOPTA T
RS .&Mi U,"j' AR s
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2.5 BASIC VARIATIONAL PRINCIPLE ;'

o

ii For the boundary value problem given by (1) with homogeneous boundary -
' condition, Mikhlin [7] showed that for self-adjoint, positive definite f
b

SB operator A, the unique solution u, minimizes the functional :¢
B

g Q(u) = <Au,u>p - 2<u, f>p (14) 0,
B 3
where < | >R denotes inner product over the separable space of square -

EE integrable functions. Conversely, u, which minimizes the functional (14) ?
is the solution of the problem (1). a

ES Taking Gateaux differential of (14), T
; 1 :
& A Q) = Tim —[<A(u + Av),u +Av> = 2<u +Av,f> - <Au,w> + 2<u,f>] 3
. A-0 A g
b :
= <Au,v> + <Av,u> -2<v,f> &)

T o
1)_._ . P'
= 2<v,Au-f> =0 (15) &

¢
,

In writing (15) we have only assumed linearity and self-adjointness of A

&} with respect to the bilinear mapping and the symmetry of the bilinear ti
) mapping. The Gateaux differential evidently vanishes at the solution U, :
Sy such that Au - f = 0. For the vanishing of the Gateaux differential at :E
,:, u = Uy to imply Auo-f = 0, the bilinear mapping has to be nondegenerate. %E
b
To prove the minimization property, the bilinear mapping has to be into
E} the real line and the operator must be positive. However, in general, it El
- is only necessary to use vanishing of the Gateaux differential as equiv- i‘
i; alent to (1) being satisfied. i
3 ]
il
’ d
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& SECTION III
FIELD EQUATIONS FOR DYNAMICS OF FLUID-SATURATED POROUS

& SOILS

3.1 PRELIMINARIES

In this section, field equations for dynamics of fluid-saturated lin-

G |

ear elastic porous media are stated following Biot [13,14]. The domain

of definition of all functions is the cartesian product Rx[0, =), where

(252

R is the closure of the spatial region R and [0, ) is the positive time

Ea o
Low

interval. The soil skeleton is assumed to be linear elastic. Integral

1

form of the field equations is obtained by Laplace transformation of the

Biot's equatins of motion followed by inversion. Throughout, standard

-

indicial notation 1is used. The Latin indices take on range of values

P

.

1,2,3 and summation on repeated indices is implied. A superposed dot in-

dicates time derivative.

=== I

3.2 DIFFERENTIAL FORM OF FIELD EQUATIONS

(a) Dynamic Equilibrium

: |

[

Biot's equations of motion for the binary mixture of fluid and solid

[ 4

. are [14);

M Tij,j *Pby = Ply + Py, (16)

. T+ Py = Ryl * (Py/f s + (1/K)W; (17)

-
" -8 -
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W Ay vty

g e =

ZZ B

where z%j' bi’ Uj, w; are, respectively, components of the total stress

tensor, the body force vector per unit volume of the mixture, the solid

Fa
*

displacement vector and the relative displacement of the fluid with res-

pect to the solid. 7 is the pore pressure. P is the mixture density and

%

PZ is the mass of fluid per unit volume of the mixture.

(b) Kinematics

For small displacement, the strain-displacement relations are;

=2 RO

eij = u(i,j) = 1/2 (u,i’j + uj,i) (18)

=

£ =w, . (19)

i, i

oo

where eij are components of the symmetric strain tensor of solid and &

is the rate of volume change of the fiuid per unit volume of the solid.

(c) Constitutive Equations

For linear elastic fluid-saturated soil, Biot [14] proposed the con-

am

stitutive equations

P o

Tij = Eijar e * aM By (@dyy epq +§) (20)

o8

o

M (a8, e +¢&) (21)

7

The inverse relationships are;

‘l.v.?

2

§ =mw(l/M + « Ci k1 81 aij) - “ijkl 811 z.j (23)

AN T

—
A A A,
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Eg Here, Eijk1 and Cijkl are, respectively, components of the elasticity

II and compliance tensors of the elastic solid, a 1is the compressibility

of the solid and M that of the fluid.

(d) Boundary Conditions

ug(x,t) = G,(x,t) on S x [0,)
E& 1
wi(l’t) W

w.(x,t) on 52 x [0,%)
& ' (24)

;0%
Tij(ting = Ti(x,t) = T,(x,t)  on s3 x [0, )

B‘ ol L;J N

m(x,thn, = T(x,t)  on 5, x [0,)

o)
a"s e

The first two in (24) are the displacement boundary conditions and the

~

last two the traction boundary conditions. n; are the components of the

unit outward normal to dR and ?i are components of the prescribed tract-

2

jon in i-th direction. Each of {51,53} and {52,84} consists of disjoint

;:_ﬁ

complementary subsets of dR.

(e) Initial Conditions

The initial conditions for the problem are

vA 2R W8

P u (530) = uo(é)
R
o (x,0) = ﬁo(x)
& (25)
e

w (x,0) = w (x)

o
f.‘.r_'.f".f -

‘ -.:_-.“ PRt S G
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W (x,0) = W (x)

The equations (16) through (25) completely define the initial-boundary

value problem of small motion of fluid-saturated porous media.

3.3 INTEGRAL FORM OF THE FIELD EQUATIONS

For development of variational principles, we need to rewrite the
field equations in the form of convolution product so that the time de-
rivatives are avoided. This can be done through applying Laplace trans-
form and taking inverse after appropriate rearrangement. Following the
procedure originally suggested by Gurtin [3,4], Ghaboussi and Wilson
[12] presented the following results for the Equations (16) through
(25).

(a) Dynamic Equilibrium

Laplace transformation of (16) and (17) followed by inversion gives;

t Tij. 5 * Fi - Puj - Ppw; =0 (26)

t* w1 (1/kws + Gy = Py ug = (Py/f) w; =0 (27)
where

Fi= t*Pby + PLtd;(0) + us(0)] + 92 [tw; (0) + ws(0)] (28)

Gy = t* Poby + Py [t4;(0) + uy(0)] + (Py/f) [tw;(0) + wi(0)]

+ (1/k) tw, (0) (29)
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12

Here, symbol * denotes the convolution product defined as

t
f*g=f f(7) g(t-7) dr {30)
0

b

which satisfies the commutative law, the associative law and the dis-

tributive law.

(b) Kinematics

A

Equations (18) and (19) need to be restated in the form [11,12]

-

<3

t* eij = (1/2) t* (ui,j + uj,i) (31)

| oA

tx & = t* W (32)

XA

(c) Constitutive Equations

34

Equations (20) to (23) must be restated so that the constitutive re-

lations show the dependence of quantities appearing 1in the equilibrium

n'-'-,
“o‘-

equations upon corresponding kinematic quantities in them.

-

Y

..+ &) (34)

* = *
t* = t* M uxsij €

0= |

& ]
€= MM+ o iy 8q Bi5) -t A Cisq 84y Ty (36)
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SECTION IV
VARIATIONAL PRINCIPLES

4.1 PRELIMINARIES

To transform the coupled initial-boundary .value problem of wave equa-
tions for the fluid-saturated porous media into an equivalent variation-
al problem, the set of field variables are regarded as an n-tuple in the
admissible space whose elements are defined in Rx[0,%). A solution of
the mixed problem is, then, an admissible state of the field variables
which satisfies the field equation, the initial conditions and the
boundary conditions to the problem. The linear vector space W consisting

of all admissible states is referred to as the product space, i.e.

W= W X Wy X tevnvinnieenes X W, (37)

where W, is an subspace whose elements represent the admissible state

for an specific field variable us.

Consider operator equations of the coupled boundary value problem

A(u) on R (38)

]
-

C(u) =g on dR {39)

- 13 -

_*.~ ...... s
UL

.....

uuaLauk* ]MMQALAJLJL %

Lo ¢

-




DO TR . -

-

K ots

. *
L4 :'_; '_.

»

&

s
A

(22

'..-’: e

B 2ot 3
«‘u t‘,,i, ., gt\,\‘,u,t';

Lk - ad b lab L ah can ool sad oy o

14

/

in which u is the vector of the field variables and A is an operator

matrix which is self-adjoint in the sense of an appropriate bilinear

mapping. Each element of the operator matrix A may be viewed as a trans-

formation
Aij : Mij —_— Pi (40)
where M1J, P. are, respectively, the domain and the range of Aij which

are both the linear vector spaces on R. The explicit form of the field

equations is

ZA” uj = f (41)
J
:E:Cij uj = gy i=21,2, veveu,n (42)
J
in which n is the number of independent field variables.
Consider a bilinear mapping
< 'y >R . Vi X v1- —— S, i = 1,2,.......0 n (43)

The matrix of operators is self-adjoint with respect to the bilinear

mapping if [17,18]

n n
25<“j'Aji“i>R = <“i’:E:Aij”j>R + DDR(“i’uj) , i=1,2,...n (44)
J J

where As a generalization

DbR(uj’ui) is a quantity associated with dR.

- -

T S o Y .
d‘~»(‘ﬂf-f'.\_~l'.,- ._-‘ _.{‘_ -1‘. \ .(N( . w,(frx""-_"

U,
.,t'o l‘..! l‘|.0 5 ~ "\-*" *“‘- nd Xl !'- e A
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i' of Mikhlin's theorem, the governing function for the operator equation
(38) and (39) is defined as
g Q=Zi:§ (<ughyus = 2F g + <up,Cyus = 28000) (45)
ge For the present problem, we use the bilinear mapping introduced by Gur-
/ tin viz.
")
> 0= *
E <f,90p fR f*g dR (46)
-
! 4.2 CONSISTENT BOUNDARY CONDITIONS AND INTERNAL DISCONTINUITY
. Sandhu [10] pointed out that appropriate boundary terms should be in-
ii cluded in the governing function even 1if they are homogeneous. This is
gg important for certain approximation procedures, e.g. the finite element
method, where the functions of limited smoothness are used. The bound-
!l ary operators must be in a form consistent [10] with the field operator.
Consider the boundary value problem of multi-variables given by (41) and
:_"
k} (42). Referring to (44), Sandhu [17] defined consistency of boundary op-

erators with the field operators to be the property;

n
© Dyglujsuy) = vy, DCisu>pn - Z U3iCiiViopp » 171:2,eeun (47)
b J
7
* In seeking approximation to the exact solution by the finite element
e method, the function space with limited smoothness over the entire do-

Py

mm&*\&m{s‘h .'x. o .\'t\ 2
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main is sometimes used. In order to properly handle this limited

smoothness problem in the variational formulation, Sandhu [11] intro-

e

N
)

duced internal discontinuity conditions in the form;
(Cu)' = ¢ on R, (48)

where a prime denotes the internal jump discontinuity along element bou-

1y dary oRi embedded in the region R. Sandhu and Salaam [10] and Sandhu [11]
gz showed that this condition can be included explicitly in the governing
function.
W)
9
4.3 VARIATIONAL PRINCIPLES FOR DYNAMICS OF FLUID-SATURATED SOILS

F »
é 4.3.1 Fieid Equations
. Equations (26) through (36) in self-adjoint matrix form are;
S
! A(u) = f on R x [0,») (49)
p;.: Here,
e

(¢ P, 0 -L 0 0]
[ ]
r
; p,  B/frx1K) -2 0 0 0
7 am
>
-~ 0 +& 0 0 0 ~t*
' om
KL A= (50)
. L 0 0 0 -t* 0
0 0 0 -t* P traM,
;_.;:' 0 0 ~t* 0 tra M, tM

b o g e e AN T T T A AN A T NS R e S St e S e T e N
RS A ORS ~ N e_r%;~ SRS AR A N A AT AR R e R A AN AR
Mf\a.)‘ 1.5.\.&.&.‘;“ e T A o S s I T o NS o Y T e e I o e L e T T
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where
L=1(1/2) t* (5, 9 +5 9 (51)
m ak km a1
- 2
P = t* (Eijk1 + a° M Sij 8k1) (52)
(U Frn
wh Gm
8 0
u = k and f = ’ (53)
Tij 0
ek] 0
'3 0

Elements of A satisfy self-adjointness in the sense of Equation (44},
The operators on the diagonal are symmetric and the off-diagonal opera-
tors constitute adjoint pairs with respect to the bilinear mapping (46).

Consistent boundary conditions for the Equations (49) are

e = t%x
t ugn; t ugng o on Sy X [0,0)

-t* w.n,

~N
-t*
i t* w;n,  onS, x [0,)

. (54)
t*mwn; = t*mwn, on S3 x [0,x )

A
* - *
t Zanj t Ti on S, x [0, =)




%

L g

o |

A

(g8

.’{

p.'. .

18
Consistent form of the internal jump discontinuities is
-tk T
t (”i"j) t* (gl)i"j on Sp; x [0, )
-t* =l
t* (win;) t* 92 on S,: x [0,)
{(55)
* v
t (1Tn1-) t* g3n1. on Sg; X [0,o)

t* ('z'_’ijnj)' = t*x g4n1. on Sz; X [0,%)

Here, surfaces Sli’ 521, S3i and S4i are embedded in the interior of R.
Operators in the self-adjoint operator matrix equation (49) have the

following relationships;

* = -
<t ui,j’ ,Z:"I'J')R <t*u1-, t—ij,j>R

*
+ <t uins, t§j>51 + <t*u,, Z’ijnj>s4

* )

<t*w. . = - W, .
tw1’7",1>R <t w1,1’7T>R

*
+ <t Wing,m>e + <t*w1.,7rn1.>S
2 3
+ <t*(w.n1) yMog  + <thwy, (TYni) >s (57)

! 2i 3

In writing (56) and (57) we assume that < , >R can be evaluated as the

sum of quantities evaluated over subregions of R such that all the sur-

faces Sli’ Spis S3y, S44 are contained in the union of the boundaries of

these subregions.

rFr
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4.3.2 A General Variational Principle 2
For the operator equations (49), we define the governing function, .

following (45) as;
1

Py
- * — * . . »
PuiUdp + 2<PMWLL U = <SEX T Supp < p + 1 k)”1’”1>R 5
N\ 8

Q(u)

- * R . - * LITI . vy
<t TiWi>p * <t Wi T p 2<t .f,1r>R + <t uj 3 T’iJ>R 5

2

- * . \]
2<t e.ij, t.i\])R + <t*(Eijk] + CI M 8.‘J~ Sk]) ek'la e-ij>R r'

* X
+ 2<t*a M Sijeij’£>R + <t*M f"f)R f\

= 2¢ug,Fap - 2<wy,6p g

- *(w. -
<m,t (wi 2"1‘)"1‘>S b

- < Ty trlug-2uging ) o

J 1

' R

* - { -
* oW, t (mr 277)"1'>S3 * <ug, tX T‘ij"j 2T1')>S4

It

[
| 3 A

(A AT
o :

- <T..ot*((usn;)'-2(g Yon.)> - <, t*((w;n;)-2g )>
iJ i 113511. i 2521.

e ~

+ <w, t*((7rn1-)'-293n1.)>53i * <ug, t*((’{_’ijnj)'—294n1.)>s4i (58) :.

The Gateaux differential of this function along v = {ui’wi’ ”’fij’gij’a

LR ]
¢, 5, JE

v T

is;

. Yo
'S

PR
i

i

5

pu, + Pzwi - t*z'ij,j - 2F1'>R

N A
T3

'y

T

[ I A
PP SRR b L Y s
it el

)

=
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= =z ’
+ * - t* g -
T, twy g -t E>p + <, tW; t*&>p

' + <. try. . - tre.. .., t*u. . - t*E..
) TU,tth teU>R+<rw,tu1’J % ¢ "\-S

2
-y -t*
+ <@, ., -t Tij + t* (E1Jk1+ a M81J8k])ek] + aMSiJ.§>R "

- 2
-t
+ <eys, -t rij + t*(Eij 1t a Mo, 8k'l)ek'l + oMy, §>R

+ <E, -t*m+ t* aM sklekl + t* M§>R

+ <€, “t*T+ t* a M .o+t ME> Y
¢ T oM G F ¢+t ME >y o
o

- <T.., t*(u.n. - 2u°n. - wy
t13’ t*{uyny 2“1".])>S1 <t13’ t II1"J>Sl o)

- <7, t*(wn, -2wn)> - <, t*w,n,> 7.
i 2 TS, it

+ <w., t*( 27AT )>e + <W.. t*7n.> r';
(RARLAL Bl TS ER A O W

- <u *( 7 * "y
U, t ’L'”-nj - 2T1-)>54 +<uy, t Zij"j>s4 2

» -y

— 292

- <T.., t*((u.n.)'- N, - .. Y
TU’ t ((uInJ) 2(91)1n‘])>511‘ <t13 t*(T, n; ) >511 3

- <TF, t* . - ' BNy
<T, t ((”i"i) 29 >g - <m, t*(W.n;)'>¢ p
2 2] 21 a)»‘\

Y

+ W, t*((Tn)'-2g no)>e + Wy, tY(Tn) D o
¥,

+ <q. * > + < * .
i t ((TU j 2(g ng) Sas us, t (’l:’1J j >S41‘ (59)

"n\-s

o~
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e

Using equations (56) and (57), the Gateaux differential can be rewritten ,f::'.
as; Y
R

0

>

- D - - e
8y

"

3

.‘

' .'

RN

R Av e, i



¢ & 21
£ _ ?,
\ + 2<w,, Pu; + (— + 1*-—-)w - t* . - G
i i , 1 i“R
- . f k
\ _ _ )
- H2CW, thwy - O+ 2<T g, thyy g - they g
-} - *
* 2@, Ty ¢ P (Ey gt @ MOy By deyy ¢ aMDy € >

& +2¢E, -tAme tr aM § e, + tH ME >
| % - 2<-.. *(u.n, - >
% T1J,t(u1nJ un) s,
: - 2<7, t*(w.n, - w;n,)>
: @, i ii 52
N % + 24H,, t*(7rnj "7”‘1')>S3
J + 2<u,, t*(T.:.n; - T.)»>
K i i 7 i'’s,
S _
| . - 2<T‘ij’ t*((uinj) ‘(g ).inj)>s .
f a 1 11
{ - 2<7r, t*({w.n.,)'-g >

+ 2<W1., t*((7rn )'-g n, )>S
3 3i

! + 2<u,, t*((T..n:)'-(g In. 0> (60)
; i i3 J g 1 541.
; 2:
' - The Gateaux differential vanishes if and only if all the field equations
- along with the boundary conditions (54) and the jump conditions (55) are

a satisfied because of linearity and nondegeneracy of bilinear mapping

I..'

~ (46). Hence, vanishing ofAﬁ(v) for all veW implies satisfaction of
: N (49), (54) and (55).
y
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4.3.3 Extended Variational Principles
Equations (56) and (57) relate pairs of operators in the operator ma-
trix (49). These relations may be used to eliminate either of the ele-
ments in each pair of the function Q(u) in (58). Eight alternative forms
can be obtained by using either or both relations. Elimination of an op-
erator Aij from the function implies that state of variable u; needs not

J

be in the domain Mi of Aij‘ Where Aij are differential operators, this

J
results in relaxing the requirement of smoothness in uj thereby extend-

ing the space of admissible states. In the context of finite element
method, it is clear that the extension of the admissible space provides

greater freedom in selection of approximation function. In the follow-

ing, the possible extensions are explicitly stated.

Using (56) to eliminate Q:ij j from (58),
P 1
Ql =< Pui,u.i>R + 2< Pwi,u.i>R + <(— + 1*_)wi,wi>R
2 f k
- CER T wp t <UW 4, T - 2<tx &, Moy + 2<t"fu1-’j,’t1.j>R
2
- * *
2¢tres s, Tyop + t(Egj + @ M85 8y) g, €55
+ 2<t*a M aijeij,bR + <M ELE >y

= 2<t.ij,t*(u.i'u.i)nj>s - <77',t*(w.i-2Qi)n_i>S

1 2

A A
+ <W,i, t*(”‘Z”)ni>s3 - 2<u.i, t*T.i>S4

- 2<tij,t*((u1n\])'-(91)1nj)>511 - <77,t*((w1-n1-)'-292)>521

. Ve

a_a

.- M

A 5
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+ Wy, t*((7rn,) -293n1)>s3i - 2y, t* 94"1 S4; (61)

In (61) the stress components need not be differentiable. Using (56) to

eliminate, alternatively, uy j? (58) gives
ﬂb 1

+ <=+ 1 *=)w,
f k

Q, Pus,up + 2<p2w1., >p - 2<t* TIJ $oY7R %R

- *
SEE I W <ty g, Top - 2t E,m>

»1° R

2
2<t¥e; 5, TiPp * tH(Eqgn * @ M85 8,7) ey, €557

2<t*a M 6. .e,

]J 1J’ £>R + <t*M£s£>R

2<u F1> 2<w ,G >R

R

Fal
t*u.n.>

<T. . i

Vs

A
Wi, tX(W-27 )N+ 2<u,, t*(tung 1, I

S4

2<T ..,t*(g ).n> - <m,t*({w;n;)'-2g >
ij 1 V3 Sli i 2 S

2i

Wi, t*((mn;)'-2g n;)>s t*((T (62)

+ 2<u,,
3 1

"] '94"i)>3

3i 4i

in which the displacement uy need not be differentiable. Elimination of

w; s by (57) from (58) gives
F% 1
= - * -— f .
93 PULL UL+ 2<P Wa, U - <t Tij YRt <=+ )w1,w R
2! f k
- * -
2<t Wi>p 2<tx ¢, > * <t*u j"tij>R
2
- * *
2<t <e1.j,’t_‘1.j>R + <t (Eijkl +a M 61.J. Bk]) 1> &i5’R
e e A N ey e T D o v
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+

2<t*a M 813313’5>R + <M £, €0

2<u F1>R 2<w G1>R

1J,t (u =24, )n>1+:z<7r1:wni 52

+

2w, t*(Tr-77)n1->S3 + <us, ("CUnJ 2T P Sy

=

t*((u n; ) 2(9 ) n. )>S + 2<T ,t*g >s
11 2 V21

l."’.";

+

2<w,, t*((7rn1.)‘-g3n1.)>s3i + <uy, t*((TU"J)I Zg4n1.)>s41_ (63)

Here, Ws need not be differentiable. In the same way m; can be dropped

RS

out by using (57), yielding

= 2
Q4 = <pu.i, R + 2<p2w ui R - <t*tl.ij J’u >R + <(—f + 1*_k )w-l':wi>R

ks

* 2t LTy - 2¢t* £, > + <tru,

i,i? i, ’L’ij>R

2
FCtH(Eggy t o M85 8q) e, 857

*
2<t*e; 5, Tis™r

*
2<t*a M 81Je1J,f>R + <M €€ >

i
+

a.

B = 2<uy,Foop = 2¢wy,Gp
- ~ A
5- - <Tij’t*(ui-2ui)nj>sl - 2<7T,t*(w1--w1-)ni>sz
- A
- 2w, t*?rn1.>S3 +ocug, t(T505m 27 P Sy

<Tjzotllugng)'= 209 ynghg = 2Tt wgng) =g 1>

IS5 2 S2i ‘

E -2 <., t*g n>.  + <., t*U(T, n)'Zgn)>
i 31531. i ij’j 541.

: &
‘ f

w4 " LI ST SR WP W

. \‘ R ',1‘} &14.’ "f-'y"\."r’ ‘“f', . ,m-a,"nrn. ‘4.“‘.;"'- " TN " 4-"(" vy "'ﬂn-"‘f‘-'&"-"\""p:f‘ . . v,
*, ~ k w8 .‘,t ~ oA -%*"-' ' X4 ‘-(“'""(.’.' ..e. ; ‘ e, ,..,. " ., n 'l ,!

(64)




ML Aal e e Sar e oot e

25

In (64) the fluid pressure is not required to be differentiable. As can
be seen from (61) to (64), both the differential operators in an adjoint
pair cannot be removed at the same time. Use of (56) and (57), however,

eliminates the differentiability of two field variables from (58). Elim-

inating Tij j and ™5 from (58), we have
Q ¥ :
= < *
5 T Pup R T 2P MU+ (T Ty

* - *
+2<thwy g, op - 2<t §,m>p + 2<t*uy 5, Ti™n

~2<t*e,

2
jj0 Tig?r ¥ <t (Eygqt aM By 8q) g, o5

ij’R

Cal
Efr + 2<t*a M sijeij’ §>R + <t*M f,f>R

- 2 Fyop - 2wg,65p

A
2< Tij’t*(ui'ui )nj>sl - 2< n,t*(wi-Qi )n1.>Sz

- * 17 - 7
2cw,, t ”"1"33 2<u,, t*Ti)>s4

7 R
9

2<Tfij,t*((uinj)'-(gl)inj)>s - 2<7r,t*((w1.n1.)'-92)>S

li 2i

- 2<w., t*g n,> - 2<u,, t*g n.)> (65)
i 31 534 i 41 S44

d

In (65), the total stress field and the fluid pressure need not be diff-

erentiable. Elimination of u, . and 7 ; from (58) gives

i,
Ej Q % :
= - * . — K e . .
- 6 = PUUPR T 2PN UPR - St T el < 2Tl k)w1’w1>R
* - *
ﬁ Po<ttwy G, T - 2<t £,

...............

- Nt TN T ORI SIPRIG I EUE R ait
\1*\.[i{sﬂ.(}w\}czc\:-‘.\‘v.\.."»',- -
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where uj and 7r need not be differentiable. Eliminating .. . and w,

13,J 1,1
from (58),
P, 1
Q7 = <Pu7-,ui>R + 2<p2wi,u.i>R + <(_f + 1 —k)w yWe >R
- 24N T W - 2¢t*x £, Mo + 2<t*uy TR
2
- *
2¢<t¥ey 5, Tydp + <tH(Egjq+ oM 8yy §y) g, ey
*
+ 2<t*a M 513913 Eop + <M &, € 0p
- 2<us,Fa>p - 24w, .60

<+

-+

+

T e
- -
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2
2<t*e » Ty PR + <t*(E; st a M<S1J k1)ek1, & i’R

*
2<t*a M 81Jeu f>R + <t*M f,f>R

2<uy,Fi>p = 2wy,647p

~ A
2< Tij,t*uinj>sl - 2< ”,t*(wi'wi )n1->s

2

A
2<w,, 'c*'rrn1.>S3 + 2<uy, t*('ru"J -7, ) Sy

2<T. ., t*(g )in>e - 2<m,t*((w;n;)'-g >
1327 79 110078 AT %7 Sy
(66)

2¢w;, t*g + 2<uy, (T, PN -g n;)>

N.
3" S3; S4i

* A "
2<T1.J.,t (u ui)"j>31 + 2<m,t wi"i>52

2¢ * T > T
We, tX(T-)n, S " 2<uy, t T1'>S4

+ 2<r,t*g >

2< T, 4, e ugn ) ' =(g ) yn D> S
1 i 2 S2i

ij




P_i by
B 27 -3
g
+ 2<w., t*((mn;)'-gn.)»> - 2<u,, t*g n.)> (67) a4
i 1 1030 Sy i 41 34
73
8-’: which does not require the total stress and the relative displacement of ¢
fluid to be differentiable. Using (56) and (57) to eliminate Ui j and v
& L (58) is :2
4
B Q 2 v
= - — b S
g = PUUPR F 2P WU = Ty gaup (= Iy wep 3
2 f k :
Mot
ﬁ - <t* 77 §oWiR - 2<t*f,1r>R :
)
R - 2ae 1, ETI :
- 2tre i Typdp t By t @ k) &1 &ii%R b
- N R
t':l + 2<t*a M 813e1j’£>R + <t*M f,§>R 2
ﬁ - 2<u F1>R 2<w G i’R .
A A h
,-.’ + 2< .‘-j,t*u,inj>s + 2< ”,t*win,i)S “ .
n 1 2 .
b y
A ‘e
+ 2., t(T-T)no>e ¢ 2<us, T, "3 -T ) >,
i i S3 i 4
N
- + 2<T .., t* N> + 2< *q > -3
Tigtla Jings  * 2Mt0 s, R
[-f N
»
- + 2<w1., t*((1rn )'-g n, Pt 2<u]., t*((’t ‘-g n. )>S (68) '
37934 4 4i
' Here, the solid displacement and the relative displacement of fluid need 2
o) -
4 not be differentiable. 4y
A ) P
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N .‘
v N
' ..l

tats



. _'-'_\.'\

= 7

Te's

1 4
-

A

AR ENE 0L ‘r~ : 1‘\ .\..’ ., « T "’ . .:-\'.."-t' .‘_'":'-'."‘\-c’.'w' '1'.- 5
QMM . m '(.:.,h;xu‘ﬂx {xhﬁmﬁ. AL.'&.A.;..MJ‘L‘L e T e e e

4,3.3 Specializations

If the admissible state is constrained to satisfy some field equa-
tions and/or the boundary conditions, certain specialized forms of the
variational principle are reatized. This procedure is used to reduce the
number of free variables in the governing function. Also, certain as-
sumptions in the spatial or temporal variation of some of the variables
lead to approximate theories. In the context of direct methods of ap-
proximation the constraints assumed in the specia]i;ation must be satis-
fied by admissible states. If it is difficult to satisfy the con-
straints, such specialization of the variational formulation will not be
useful in practice. Some specializations of the extended variational

stated in the previous section are presented below.

For the functional S)s in Equation (65), in which the soil stress and
the fluid pressure need not be differentiable, specialization to satisfy

(49)3 and (49)4, j.e. satisfying identically the kinematic relationships

gives

Pé k

= = *e

Qg <pu1.,u1.>R+2<02w u>R+<( 1:+1 k)w Wioh
2

+ <t* (E]Jk]+ aM 6 5.1) 1> e 3’R

+ 24t M Gy ey, £0p + <M EL 60

- 2<uy,F g - 24w;,6.0p

2¢ T 5, t*luy -0, Iny>
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e
- 2<T. ., t*((u;n.)'-(g ).n.}> - 2<m ,t*((w,;n;)'-g >
" iJ it 1 1 Sli i 2 521 ;
)
i - 2<w;, t*g n,> - 2<u,, t*g n,> (69) :ﬁ
ot EE BT 7T S,y 3
" (%!
:i
]! If the field variables over the domain are continuous, the jump discon- :
W )
tinuity terms drop out giving the specialization; !
1 -
k
Q P, 1
= £ *
10 = < PUjUp * 2<R) W, u>R+<( f+ 1 k)w Wion .
et 2
n} 2 l-q
+* * i
, tt(Eg gt aM 55 8y) g, €57 X
"‘-: 3
& . ¥
+ 2<t*a M 813913 £>p + <t*M §,§'>R
. 5
b _ -
. 2<u1.,F1.>R 2<wi, Gi>R
3 ]
- * -A 'y - —A. 'Y -
i 2¢< t'lJ’t ‘Uf Ui)n‘]>sl 2<7T,t*(w7- W,)n.'>sz 4
3
e - * 7 - i %
g Wy BTN - 2y, BTy (70) 3
®
Further specialization of (70) to the case where displacement boundary e
- conditions are identically satisfied yields the function governing the i
3 .
s two field formulation proposed by Ghaboussi and Wilson [12] except that >
» in the present formulation the boundary terms are consistent. &5
l." -
" Alternatively, specializing Equation (67) to satisfy the (49)4, ';
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+ 2<t*a M aijeij’ Eop + <ML, €

- 2<ui,Fi>R - 2<wi,Gi>R

* -h N
2<‘t}j,t (u; “i)”j>s + 2¢T  trWin >

1 2

+

2 * fr *T
<wi, t (17- )ni>s3 - 2<Ui, t Ti>S4

2<T.

1j’t*((uinj) -(gl)injbS + 2<T ,t*g >

13 2 524

+ 2w, tr((mn;)' =g n)> (71)

3 - 2<uy, t*g n)>

33 41 544
Furthermore, assuming that the internal discontinuities and the boundary
conditions on S1 and 53 are identically satisfied and eliminating & by

using (49)6,9,11 gives

P
) 2
D1y = <Puj,up *+ 2¢P wo,upp + <=+ 1r—w,

- * * *
ZUX T Wop * ST gq0yy, 5 50p * 2t By g e, Ty

- * - -
SEXT/M T - 2¢u Foop - 24w, .60

+ 2<1r,t*w’1?n.> - 2<u (72)

t*T
i
i S2 i

i’ S4

le, which is three field formulation, has important meaning in the
context of finite element analysis, since thismixed formulation of u-w-
r can produce the continuity of the pore pressure which is the physical-

ly important quantity 1in the analysis of dynamic response of the fluid-

saturated solid. Similar three field formulation can be obtained by

specializing (11 to satisfy (49);, (49), and (49)6. Clearly, a large
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number of other specializations are possible even if they are not listed

here and left to interested readers.

4.4 COMPLEMENTARY FORMULATION
4.4.1 Complementary Form of Field Equations

An alternative procedure to set up the variational principles aovern-
ing the problem is to write the operator equations in cqmplementary form
instead of the direct form of equation (49). In writing the equations,
it is assumed that kinematics of the solid and the fluid, i.e. (30) and

(31) are satisfied. The complementary form of field equations is

( r 1
p P, 0 -L ] uml Fi
p 1
p2 2 +]*— -t*-a— 0 W Gi
f k am
5 * > = > (73)
0 t*x— p t*a C.. .8 ' 0
om ijk17k1
where
_ ?
1 a d
L= — t*x§, X +§, &) (75)
2 May 9™ 54

The governing function for the set of equations (73) along with the
boundary conditions and internal jump discontinuity conditions, follow-

ing Sandhu [11], is
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Jo= <Pup,upp + 24Py wyuUp - YTy 5, Uyp
p2 * 1 *

+ k(-;- + l—k-)wi,wi>R - <t 7r’.| R + <t*w, 77>R

i i,i?

+ 2<t*a C.., .8 7r>R+<t*u. R

ijk1%k1 i3 i,j* Sij°R

- *| - -
ik Tigr k1R = 2U4.F 2R - 2M;,G,2p

- <T. o (u-20 )00 = <, t*(w, =20 )n.>

ij? i it S1 i i 32

A
+ <w., t*X(W-2T )n.>. + <u,, t*(‘t 3" -2T )>¢
i i S3 i 4

- <Tij,t*((uinj)"2(g )inJ)>Sl = <779t*((w1'n.i)'-29 )>SZ
1 i T2 22

+ g, t*((Trni)'-Zg3ni)>S + <ug, t*((?f i"; )'-2g n;)> (76)

3 4 1 gy
As in direct formulation, it can be shown that the Gateaux differential
of (76) vanishes if and only if the field equations (72), the boundary

conditons (54) and the jump condtions (55).

4.4.2 Extended Compiementary Variational Principles

Following the principles and methodology presented in Section 4.3, it
is possible to develop extended variational principles for the comple-
mentary form of the field equations (73) as well. Relatjons (56) and
(57) can be used to eliminate some of the operators from (76). As a re-

sult, following extensions of (76) are possible.

Use of (56) an (57) to eliminate T.. . and 7 .from (76) gives
1Js3J s 1
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. ‘]1 <Puj,u gt 2< P Wit <( . + 1 k)w Wip
2
* - —
+ 2<t Wi T <t " + o C1Jk15k1513)” >0
N
" P2 G0y g5 TR 2t 5 Tz
o - * -
Tk Tigr Tha”r = 2U4Fop - 25,64
A
- 2<t1j,t*(“1‘“1‘)"i>51 ) 2<”’t*("i'"i)"1>52
n A A
o T2y, BTN = 2y, BTy
3 4
j'.: - 2< T *((u, n; )'-(g ) n; o = 2<m,t*(wing) =g 1>
- l'i 2 T2i
> - 2<w,, t*g n> - 2<u,, t*g no> (77)
R LG B 1T T S
i’ Here, the stress field and the pore pressure need not be differentiable.
) Similarly, elimination of ’t”. j and w; . from (76) leads to
:1': ’ s
\n,
P2 1
! Jyp = <PUs U+ 2<P WU ¥ <(—;+ 1*-—k)w Wi2n
EEAAE AT P _M'* o € 5118418:5) T T
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+ 2<wi, t*((7rni)’-293ni)>s3i - 2<ui, t*g"i>54i (78)

which does not involve derivatives of 1:ij and Wie Eliminating Ui and

- *
UpPp + 2¢ Py wi,upp = 2t Ty g, upp
P
+ <(—g

+ 1*-%)wi,wi>R + 2<t*w, ., 7>
f

i,i*" "R

1

*
+ 2% G980 iy ™ 2R

- <ty 50 Tigs Tyr?r - 2U50F 2 = 25,65

+ 2<T.. ,t*xG.;n.>. - 2<Tr , t* (W =W, )n.>
ij i S1 L | 52

A A
- 2w, t*(7r-7r)n1.>S3 + 2<uy, t*(fij"j‘Ti)>s4

+ 2¢U, . tx N - *((w.n. )=
1J,t (gl)’n3>511 2<m ,t ((w1n1) 92)>52i

- 2<w., t*g n>g * 2<u,

s, i» t(Ty4n5) "9, s, (79)
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in which the solid displacement and the pore pressure need not be diff-

erentiable. Finally, relaxing the differentiability requirements of us j

and w; . from (76) by using (56) and (57}, we have

J4 = < fl’ui,u'i>R + 2< Pz wi,ui>R - 2<t*T‘i,j,J" “1‘>R

P2 1 .
- K e - . .
+ < p + 1 k)wi’"i>R 2<t n:1,w1>R
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M ijk1 k17§ 2" 7R }
p
*
v 2<tra Cygg8y Ty Ty
= <y Tigo Tya*p - 2u55F g - 2w5,65% _
=
o A
+ 2< Tij’t*"i"fsl + 2<7”t*w1'"1‘>52 3
1
~ A :
+ 2<wi, t*(?f-')T)n.i>53 + 2<Ui, t*('tijnj'Ti)>s4
+ 2<T.., t* N + *q > )
2Tyt (g )ynys  * 2T, g >5 4
+2<w,, t*((mng)'-g n; 0> + 2<u;, t*((T.ins)'-g n;)> (80) r
i i 31 S, i 13737 9717754 |
Derivatives of u, and w, are not involved in (80). £
N
4.4,3 Specializations of Complementary Extended Variational Principles 3
As in direct formulation, some specializations on the complementary
extended variational principles are possible by requiring that certain 5
field equations and/or boudary conditions and jump conditions be identi- 2
t
cally satisfied. Here, we present some secializations. )
]
If we assume that (73)4 is identically satisfied, J; results in
Py 1 :
= < * N
g = CPUjlpR * 2Ry Wisupp t < TN .
1 2
+ 2<t*wi,i,7r> - <t*(7+ a Cijk18k]8ij)1r’”>R n}

* <tk Tigr Tia’r - 2U4F g - 24,657
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A
- 2<w , tXTn,>

- 2<T g te(ugng) '=(gy )yng)>g = 2<7, t*((wyny) =g )>g

ije i S14 V1T 924

- 2<u;, t*g n; (81)

- 2<W., t*g n;
v 4 i S41

3 i 531 i

Specializing Jl to satisfy (73)3,

P
- 2, .
Jg = PUUPR F 2B W upp T (=t ";"" iR

+ <t*(—-—+ a? c
M

ik Tigr Tar’r = 2UpF g = 25677

118180 g + 2<thuy 5, T

A A
- 2< tij,t*(ui‘ui)nj>sl - 2<7T,t*(wi-w,i)ni>52

*A

A
- 2<w;, t*mn,>
i 1754 » Sq

2< t’ t*((u n; )'- (91) n. )>Sl - 2<m, t*((w;n, )’ -gzn )>Sz
i

(82)

2<w;, t*g n,> - 2<u;

s t*g n
i 3 i 531

i U9,

It is unlikely from the above two specializations that further speciali-
zation on J5 or J6 through requiring the other field equations to be sa-
tisfied would make them simpler. Since, moreover, specializations of the
extended functionals, J1 to J, would show lTittle differences, we do not

present every possible specializations.
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SECTION V

DISCUSSION

A systematic development of variational principles for linear elasto-
dynamics of fluid-saturated solids have been presented. Nonhomogeneous
boundary conditions and internal jump discontinuities were explicitly
incorporated in general variational principles. Allowance of jump dis-
continuity terms in variational formulation is meaningful in the context
of direct approximation in finite element spaces, since the space of ap-
proximants may not be sufficiently smooth. Based on the direct and the
complementary formulations, extensions of the variational principles
through elimination of certain field operators and specializations by
restricting some of the field equations and boundary conditions to be
identically satisfied have been proposed. These formulations should
provide a basis for development of approximate solution procedurse and
also approximation theories governing the problem. Fig.l diagramatical-
ly depicts the possible extensions of the general variational principle
based on the direct formulation. Fig.2 shows the same for the comple-
mentary formulation. In either case the specializations listed in this
report are shown. Evideritly, other extended forms could be used as start-
ing points for specialization. In the interests of brevity we desist

from attempting to catalog all the possibilities.
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