
D -A175 809 ADA COMPILER VALIDATION SUMMARY REPORT, SYSTEAN KCG 1/
SYSTEAM-GERMAN MOD 515 SIEMENS 7526(U)

I INDUSTRIEANLAGEN-BETRIEBSGESELLSCHAFT M 8 H OTTORRUNN
UNLSIID (GRAYFR

E6hJUN86 hE G9/2hE

EhEE~EEEhE

M32 2 2

111111.2511J14

L

L A lIIl2.

Ill Il 1.4 1.U 6

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1963 A

4% % %'A.-% ,%

A '~~- ~ 1 75 009 ~(When Data Entered) _______________

AD-A175 009 :ENTATION PAGEENTAT I O PAG EBEFORE COU,.LETEI,,, FORM,

12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Ada Compiler Validation Summary Report: June 1986 to June 1987
SYSTEAM KG
SYSTEAM-GERMAN MoD S1.5 Siemens 7.536 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(S)
IABG m.b.h., Dept. SZT
Einsteinstrasse 20
D 8012 Ottobrunn

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

IABG M.B.H., Dept. SZT AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Programming Office 6 June 1986
United States Depar :ment of Defense 13. NUMBER OF PAGES
Washington, D.C. 'J301-3081 42

14. MONITORING AGENCY NAME & ADDRE SS(lf different from Controlling Office) 15. SECURITY CLASS (of this report)
IABG m.b.h., Dept. SZT UNCLASSIFIED
Einsteinstrasse 20 1Sa. RE jFICATION/DOWNGRADING

D 8012 Ottobrunn N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If different from Report)

UNCLASSIFIED

C 18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See Attached.

DO 1473 EDITION OF I NOV 65 IS OBSOLETE

I JAM 73 S/N OOZ-LF-014-6601 UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada* COMPILER VALIDATION SUMMARY REPORT:
SYSTEAM KG

SYSTEAM-German MoD S1.5
Siemens 7.536

Completion of On-Site Validation: Accession For

86-06-24 NTIS GRA&I
DTIC TAB
Unannounced El
Justification

By

Distribution/
PreparedAvailability Codes

IABG m.b.H., Dept SZT
Einsteinstrasse 20 ~Avail and/or

D 8012 Ottobrunn Dist Special

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C.

Ada is a registered trademark of the United States

Government (Ada Joint Program Office)

86 12 11 08. 86 4854
_ %l % ~ m ,a - . . -

-2-

Ada Compiler Validation Summary Report:

Compiler Name: SYSTEAM-German MoD S1.5

Host Computer Target Computer
Siemens 7.536 Siemens 7.536

under under
BS2000 V7.5 BS2000 V7.5

Testing Completed 86-06-24 Using ACVC 1.7

This report has been reviewed and approved:

Ada Validation Facility
IABG m.b.H., Dept SZT
Dr. H. Hummel
IABG, Dept SZT
Einsteinstrasse
D 8012 Ottobrunn

Ada Validation Office (AVO)
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria, VA

Ada Jint Program Office (AJPO)
Virginia L. Castor
Director
Washington, D.C.

*

Ada is a registered trademark of the United States
Government (Ada Joint Program Office)

.. .. .

S-3-

EXECUTIVE SUMMARY

The Validation Summary Report presents the results and con-
clusions of testing performed on the SYSTEAM-German MoD S1.5
compiler. Standardized tests serve as input to an Ada com-

V piler, producing result, which are evaluated by the valida-
tion team. This summary briefly states the highlights of
the SYSTEAM-German MoD S1.5 validation.

On-site testing was performed 86-06-04 through 86-06-24 at
D-8012 Ottobrunn under the auspices of the IABG m.b.H., Dept
SZT (AVF), according to Ada Validation Office policies and
procedures. The SYSTEAM-German MoD S1.5 is hosted on Sie-
mens 7.536 operating under BS2000 V7.5. The suite of tests
known as the Ada Compiler Validation Capability (ACVC), Ver-
sion 1.7, was used. The ACVC is used to validate confor-
mance of a compiler to ANSI/MIL-STD-1815A Ada. The purpose
of testing is to ensure that a compiler properly implements
legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies
behavior that is implementation dependent but permitted by
the Ada Standard. Six classes of tests are used. These
tests are designed to perform checks at compile time, at
link time, or during execution.

The results of validation are summarized in the followinq
table.

RESULT TEST CLASS TOTAL

A B C D E L

Passed 68 811 1118 17 9 21 2044

Failed 0 0 0 0 0 0 0

Inapplicable 0 13 202 0 2 2 219

Anomalous 0 0 0 0 0 0 0

Withdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 i1 23 2279

Tests found to contain errors were withdrawn from Version
1.7 of the Ada Compiler Validation Capability (ACVC). When
validation was completed, the tests listed in Chapter 2.2
had been withdrawn.

Some tests demonstrate that language features are not sup-
ported by an implementation. For this implementation the
tests determined the following.

-4-

"SHORTINTEGER is not supported:

B52004E-AB.DEP B55B09D-AB.DEP B86001CR-AB-DEP
C34001D-B.DEP C55B07B-AB.DEP

" LONG-INTEGER is not supported:

B52004D-AB.DEP B55B09C-AB.DEP B8600lCS-AB.DEP
C34001E-B.DEP C55BO7A-A.B.DEP

" SHORTFLOAT is not supported:

B8600lCP-AB.DEP C34001F-B.DEP C35702A-AB.DEP

" LONGFLOAT is not supported:

B86001CQ-AB.DEP C34001G-B.DEP C35702B-AB.DEP

" Representation specifications for noncontiguous

enumeration representations are allowed:

C55B16A-AB. DEP

.No integer type other than INTEGER,
SHORTINTEGER, AND LONG INTEGER is supported:

B8600lDT-AB. DEP

"The package SYSTEM is used by package TEXT 10:

C8600 iF-B. DEP

" The 'SIZE clause is supported:

C87B62A-B .DEP

" The 'STORAGESIZE clause is supported:

C87B62B.DEP

" The 'SM.ALL clause is supported:

C87B62C-B .DEP

- - . Generic unit specifications and bodies can be
* compiled in separate compilations

* CAlO12A-B .DEP

CA2009C-B DEP
CA200F-B. DEP

-5-

. Pragma INLINE is not supported for procedures:

LA3004A-AB .ADA EA3004C-B.ADA CA3004E-B.ADA

. Pragma INLINE is not supported for functions:

LA3004B-AB.ADA EA3004D-B.ADA CA3004F-B.ADA

. Mode INFILE is supported (for sequential I/O):

CE2102D-B ADA

. Mode OUTFILE is supported (for sequential I/0):

CE2lO2E-B .ADA

. Mode INOUTFILE is supported (for direct I/O):

CE 210 2F-B.ADA

. Mode RESET and DELETE are supported

(for sequential and direct I/O):

CE2lO2G-B .ADA

. Mode INFILE is supported (for direct I/0):

CE2102I-B.ADA

. 'Mode OUTFILE is supported (for direct I/0):

CE2lO2J-B. ADA

. Dynamic creation and deletion of files are allowed:

CE2lO6A-B.ADA CE3lIOA-B.DEP

. No more than one internal file can be associated

with the same external file, except for reading:

CE2lO7B-B.ADA CE21O7C-B.ADA CE2lllD-B.ADA
4CE31l4B-B.ADA CE3lllB-B.ADA CE31l1C-B .ADA

. More than one internal file can be associated

with the some external file for reading:

CE2107A-B.ADA CE2lO7F-B.ADA CE3l1lA-B.ADA

. Instantiation of package SEQUENTIAL 10 with
unconstrained array types is allowed:

CE220 iD-B. DEP

-6-

Instantiation of package SEQUENTIAL 10 with
unconstrained record types with discriminants is
allowed:

CE2201E-B.DEP

Dynamic creation and resetting of files is supported:

CE2210A-B.ADA

Instantiation of package DIRECT 10 with
unconstrained array types and unconstrained
types with discriminants is supported:

CE2401D-B.DEP

An external file associated with more than one
internal file cannot be reset:

CE3115A-B.ADA

Illegal filenames can exist:

CE2102C-B.DEP

Discriminant constraints are not allowed before
full type declaration:

C48006B-B.ADA B74207A-B.ADA
B37004A-B.ADA BC3503A-B.ADA

AB38105B-AB.ADA

Execution of library tests is discountinued after
termination of the main program (see AI-00399):

C94004A-B.ADA
C94004B-B.ADA
C94004C-B.ADA

ACVC Version 1.7 was present on-site on magnetic tape at D-
8012 Ottobrunn. The tape was loaded, and all tests, except
for the executable tests which make use of a floating point
precision greater than SYSTEM.MAX DIGITS, were compiled on
Siemens 7.536. Class A, C, D, and E tests were executed on
Siemens 7.536.

On completion of testing, all results were analyzed for
failed Class A, C, D, or E programs, and all Class B and L
compilation results were individually analyzed.

The ACVC, Version 1.7, contains 2279 tests of which 2044
were applicable to SYSTEAM-German MoD S1.5. No anomalies
were found in the testing of this compiler. Testing demon-
strated that all applicable tests were passed by this

7

compiler and conformed to the Ada Standard. The AVF con-
cluded that the results show acceptable compliance to
ANSI/MIL-STD-1815A Ada.

4

I

'VN

-8-

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT 9
1.2 USE OF THIS VALIDATION SUMMARY REPORT 10

1.3 REFERENCES 0................................10
1.4 DEFINITION OF TERMS1.......................1

1.5 CONFIGURATION 12

CHAPTER 2 TEST RESULTS

2.1 ACVC TEST CLASSES 13
2.1.1 Class A Tests 14
2.1.2 Class B Tests 15
2.1.3 Class C Tests 16
2.1.4 Class D Tests 17
2.1.5 Class E Tests 18
2.1.6 Class L Tests 19
2.1.7 Support Units 20
2.2 WITHDRAWN TESTS 21
2.3 INAPPLICABLE TESTS 22
2.4 IMPLEMENTATION CHARACTERISTICS 24

CHAPTER 3 COMPILER ANOMALIES AND NONCONFORMANCES

3.1 ANOIALIES 27
3.2 NONCONFORMANCES 27

CHAPTER 4 ADDITIONAL TESTING INFORMATION

4.1 PRE-VALIDATION 28
4.2 TEST SITE 28
4.3 TEST TAPE INFORMATION 28
4.4 TESTING LOGISTICS 28
4.5 TESTING DURATION 28

CHAPTER 5 SUMMARY AND CONCLUSIONS 30

APPENDIX A COMPLIANCE STATEMENT 31

APPENDIX B TEST PARAMETERS 38

APPENDIX C COMI4AND SCRIPTS 41

.

..

-9-

| I

CHAPTER 1

INTRODUCTION

"he Validation Summary Report describes how an Ada compiler
conforms to the language standard. This report explains all
technical terms used within and thoroughly reports the Ada
Compiler Validation Capability (ACVC) test results. Ada
compilers must be written according to the language specifi-
cation as given in the ANSI/MIL-STD-1815A Ada. All
implementation-defined features must be included for the
compiler to conform to the Standard. Following the guide-
lines of the Standard ensures continuity between compilers.
That is, the entire Standard must be implemented, and noth-
ing can be implemented that is not in the Standard.

Even though all validated Ada compilers conform to the Stan-
dard, it must be understood that some differences do exist
between implementations. ANSI/MIL-STD-1815A permits some
implementation dependencies, e.g., the maximum length of
identifiers, the maximum values of integer types, etc.
These implementation-dependent features limit the portabil-
ity of programs between compilers. Other differences
between compilers are due to limitations imposed on a com-
.piler by the operating system and by the hardware. All! of
these dependencies are given in the report.

Validation summary reports are written according to a stand-
ardized format. Compiler users can, therefore, more easily

-compare the reports from several compilers when selecting a
compiler for a given task. The validation report can be
completed mostly from the test results produced during vali-
dation testing. Additional testing information is given at
the end of the report and states problems and details which
are unique for a specific compiler. The format of the vali-
dation report limits variance between reports, enhances rea-
dability of the report, and accelerates report readiness.

1.1 Purpose of this Validation Summary Report

The Validation Summary Report documents the results of the
testing performed on an Ada compiler. Testing was carried
out for the following purposes:

To identify any language constructs supported by the
translator that do not conform to the Ada Standard

To identify any unsupported language constructs required
by the Ada Standard

4 ~.4

- 10 -

To describe the implementation-dependent behavior allowed
by the Ada Standard

Testing of this compiler was conducted by IABG m.b.H., Dept
SZT according to policies and procedures established by the
Ada Validation Office (AVO). Testing was conducted from 86-
06-04 through 86-06-24 at D-8012 Ottobrunn.

1.2 Use of this Validation Summary Report

Consistent with the national laws of the originating coun-
try, the Ada Validation Office may make full and free public
disclosure of this report. In the United States, this is
provided in accordance with the "Freedom of Information Act"
(5 U.S.C. no 552). The results of this validation apply
only to the computers, operating systems, and compiler ver-
sions identified in this report.

The organizations represented on the signature page of this
report do not represent or warrant that any statement or
statements set forth in this report are accurate or com-
plete, or that the subject compiler has no nonconformances
to the Ada Standard other than those presented. This report
is not intended for the purpose of publicizing the findings
summarized herein.

Questions regarding this report or the validation tests
should be directed to:

Ada Validation Office
Institute for Defense Analyses
1801 N. Beauregard
Alexandria VA 22311

and to:
IABG m.b.H., Dept SZT
Einsteinstrasse
D 8012 Ottobrunn

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, Feb 1983

2. Ada Validation Organization - Policies
and Procedures, Mitre Corporation, Jun 1982

3. Ada Compiler Validation Capability Implementers'
Guide, SofTech, Inc., Dec 1984.

V. low . . ¢ ;:'' ' ""- 5 " " '. .. '

- 11 -

I

1.4 DEFINITION OF TERMS

Anomaly A test result that, given pre-validation
analysis, is not expected during formal vali-
dation but is judged allowable under the cir-
cumstances.

ACVC The Ada Compiler Validation Capability. A set
of programs that evaluates the conformance of
a compiler to the Ada language specification,
ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The IABG m.b.H., Dept SZT. In the context of
this report, the AVF is responsible for con-
ducting compiler validations according to
established policies and procedures.

AVO The Ada Validation Office. In the context of
this report, the AVO is responsible for set-
ting policies and procedures for compiler
validations.

Compiler A processor for the Ada language. In the con-
text of this report, a compiler is any
language processor, including cross-compilers,
translators, and interpreters.

Failed test A test for which the compiler generates a
result that demonstrates nonconformance to the
Ada Standard.

Host The computer on which the compiler resides.

Inapplicable A test that uses features of the language that
test a compiler is not required to support or may

legitimately support in a way other than the
one expected by the test.

Passed test A test for which a compiler generates the
expected result.

Target The computer for which a compiler generates
code.

Test A program that evaluates the conformance of a
compiler to a language specification. In the
context of this report, the term is used to
designate a single ACVC test. The text of a
program may be the text of one or more compi-
lations.

|'.

- 12 -

Withdrawn A test that has an invalid test objective,
test fails to meet its test objective, or contains

illegal use of the language.

1.5 Configuration

The candidate compilation system for this validation was
tested under the configuration:

Compiler: SYSTEAM-German MoD S1.5

Test Suite: Ada Compiler Validation Capability, Version 1.7

Host Computer:

Machine(s): Siemens 7.536

Operating System: BS2000 V7.5
Memory Size: 4 MB
Disk System: Siemens Disk 3470

Target Computer:

Machine(s): Siemens 7.536

Operating System: BS2000 V7.5

Memory Size: 4 MB

Disk System: Siemens Disk 3470

-7

,u:

- 13 -

CHAPTER
2

TEST RESULTS

2.1 ACVC Test Classes

Conformance to ANSI/MIL-STD-1815A is measured using the Ada
Compiler Validation Capability (ACVC). The ACVC contains
both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. Legal programs are compiled
and executed while illegal programs are just compiled. Sup-
port packages are used to report the results of the legal
programs. A compiler must correctly process each of the
tests in the suite and demonstrate conformance to the Ada
Standard by either meeting the pass criteria given for the
test or by showing that the test is inapplicable to the
implementation. Tests that are found to contain errors are
withdrawn from the ACVC. The results of validation testing
are summarized in the following table:

RESULT TEST CLASS TOTAL

A B C D E L

Passed 68 811 1118 17 9 21 2044

Failed 0 0 0 0 0 0 0

inapplicable 0 13 202 0 2 2 219

Anomalous 0 0 0 0 0 0 0

Withdrawn 0 4 12 0 0 0 16

TOTAL 68 828 1332 17 i! 23 2279

A total of 2093 tests were processed during this validation
attempt. 16 withdrawn tests in Version 1.7 were not pro-
cessed, nor were 170 Class C tests that were inapplicable
because they use floating pint types having digits that
exceed the maximum value for the implementation. All other
tests were processed. In addition, 7 tests (class C) for the
report package were processed and passed.

Some conventions are followed in the ACVC to ensure that the
tests are reasonably portable without modification. For
example, the tests make use of only the basic 55 character
set, contain lines with a maximum length of 72 characters,
use small numeric values, and place features that may not be
supported in separate tests. However, some tests contain
values that require the test to be customized according to

implementation-specific values. The values used for this
validation are listed in Appendix B.

- 14 -

2.1.1 Class A Tests

Class A tests check that legal Ada programs can be success-
fully compiled and executed. However, no checks are per-
formed during execution to see if the test objective has
been met. For example, a Class A test checks that reserved
words of another language (other than those already reserved
in the Ada language) are not treated as reserved words by an
Ada compiler. A Class A test is passed if no errors are
detected at compile time and the program executes to produce
a message indicating that it has passed. If a Class A test
cannot be compiled and executed because of its size, then
the test is split into a set of smaller subtests that can be
processed. No splits were required for class A tests.

The following table shows that all applicable Class A tests
I passed:

RESULT CHAPTER
2 3 4 5 6 7 8 9 10 11 12 14 TOTAL

.---

I Passed 15 9 0 5 2 12 13 3 0 0 0 9 68

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 0 0 0 0 0 0 0 0 0 0 0 0 0

Anomalous 0 0 0 0 0 0 0 0 0 0 0 0 0

Withdrawn 0 0 0 0 0 0 0 0 0 0 0 0 0

TOTAL 15 9 0 5 2 12 13 3 0 0 0 9 68

4,

- 15--

2.1.2 Class B Tests

Class B tests check that a compiler detects illegal language
usage. Class B tests are not executable. Each test in this
class is compiled and the resulting compilation listing is
examined manually to verify that every syntax or semantic
error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the
compiler. If one or more errors are not detected, then a
version of the test is created that contains only the
undetected errors. The resulting "split" is compiled and

examined. The splitting process continues until all errors
are detected by the compiler. Splits were required for 3
tests:

B22003A B23004A B97101E

The following table shows that all applicable Class B tests
passed:

RESULT CHAPTER
. 2 3 4 5 6 7 8 9 10 11 12 14 TOTAL

Passed 39 84 86 109 73 66 46 87 36 8 159 18 811

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 0 2 0 4 0 1 5 0 0 0 1 0 13

Anomalous 0 0 0 0 0 0 0 0 0 0 0 0 0

Withdrawn 0 0 1 0 0 0 1 0 1 0 1 0 4

TOTAL 39 86 87 113 73 67 52 87 37 8 161 18 828

"%

-5.

.u . ** -.

- 16 -

2.1.3 Class C Tests

Class C tests check that legal Ada programs can be correctly
compiled and executed. Each Class C test is self-checking
and produces a PASS/FAIL message indicating the result when
it is executed. If a Class C test cannot be compiled
because it exceeds the compiler's capacity, then the test is
split into smaller subtests until all are compiled and exe-
cuted. No splits were required for class C tests:

The following table shows that all applicable Class C tests
passed:

RESULT CHPTER
2 3 4 5 6 7 8 9 10 11 12 14 TOTAL

Passed 39 133 215 117 82 18 96 108 42 20 56 192 1118

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 21 76 87 2 0 0 1 1 2 0 0 12 202

Anomalous 0 0 0 0 0 0 0 0 0 0 0 0 0

Withdrawn 0 1 3 0 0 0 0 2 5 0 0 1 12

TOTAL 60 210 305 119 82 18 97 111 49 20 56 205 1332

- 17 -

2.1.4 Class D Tests

Class D tests check the compilation and execution capacities
of a compiler. Since there are no requirements placed on a
compiler by the Ada Standard for the number of identifiers
permitted in a compilation, the number of units in a
library, the number of nested loops in a subprogram body,
and so on, a compiler may refuse to compile a Class D test.
Each Class D test is self-checking and produces a PASS/FAIL
message indicating the result when it is executed. If a
Class D test fails to compile because the capacity of the
compiler is exceeded, then the test is classified as inap-
plicable.

The following table shows that all applicable Class D tests
passed:

RESULT CHAPTER
2 3 4 5 6 7 8 9 10 11 12 14 TOTAL

--- ---- -----

Passed 1 0 4 9 3 0 0 0 0 0 0 0 17

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 0 0 0 0 0 0 0 0 0 0 0 0 0

Anomalous 0 0 0 0 0 0 0 0 0 0 0 0 0

Withdrawn 0 0 0 0 0 0 0 0 0 0 0 0 0

TOTAL 1 0 4 9 3 0 0 0 0 0 0 0 17

Capacities measured by the Class D tests are detailed in
section 2.4, I2PLEM.E.ATION CHARACTERISTICS.

.P.

. -i.

- 18 -

2.1.5 Class E Tests

Class E tests provide information about the compiler in
those areas in which the Ada Standard permits implementa-
tions to differ. Each Class E test is executable and pro-
duces messages that indicate how the Ada Standard is inter-
preted. However, in some cases the Ada Standard permits a
compiler to detect a condition either at compile time or at
execution time, and thus a Class E test may correctly fail
to execute. A Class E test is passed if it fails to compile
and appropriate error messages are issued, or if it executes
properly and produces a message that it has passed. If a
Class E test cannot be compiled and executed because of its
size, then the test is split into a set of smaller subtests
that can be processed. No splits were required for class E
tests:

The following table shows that all applicable Class E tests
passed:

RESULT CHAPTER
2 3 4 5 6 7 8 9 10 i 12 14 TOTAL

Passed 1 3 2 1 1 0 0 0 0 0 0 . 9

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 0 0 0 0 0 0 0 0 2 0 0 0 2

Anomalous 0 0 0 0 0 0 0 0 0 0 0 C 0

Withdrawn 0 0 0 0 0 0 0 0 0 0 0 0 0

TOTAL 1 3 2 1 1 0 0 0 2 0 0 1 11

Information obtained from the Class E tests is detailed in
section 2.4, !:.IPLEIMENTATION CHARACTERISTICS.

- 19-

2.1.6 Class L Tests

Class L tests check that incomplete or illegal Ada programs
involving multiple, separately compiled units are detected
and not allowed to execute. Class L tests are compiled
separately and execution is attempted. A Class L test
passes if it is rejected at link time and the test does not
execute.

The following table shows that all applicable Class L tests
passed:

RESULT CHAPTER
2 3 4 5 6 7 8 9 10 11 12 14 TOTAL

Passed 0 0 0 0 0 0 0 0 21 0 0 0 21

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 0 0 0 0 0 0 0 0 2 0 0 0 2

Anomalous 0 0 0 0 0 0 0 0 0 0 0 0 0
Withdrawn 0 0 0 0 0 0 0 0 0 0 0 0 0

TOTAL 0 0 0 0 0 0 0 0 23 0 0 0 23

- 20 -

2.1.7 Support Units

Three packages support the self-checking features of Class C
tests: REPORT, CHECK FILE, and VAR STRINGS. The REPORT pack-

, age provides the mechanism by which executable tests report
* results. It also provides a set of identity functions that
' are used to defeat some compiler optimization strategies to

cause computations to be made by the target computer instead
of the by the compiler on the host computer. The CHECK FILE
package is used to check the contents of text files wrItten
by some of the Class C tests for Chapter 14 of the Ada Stan-
dard. The VAR STRINGS package defines types and subprograms
;or manipulatIng varying-length character strings. The
operation of these three packages is checked by a set of
executable tests. These tests produce messages that are
examined manually to verify that the packages are operating
correctly. If these packages are not operating correctly,
then validation is not attempted.

An applicant is permitted to substitute the body of package
REPORT with an equivalent one if for some reason the origi-
nal version provided by the ACVC cannot be executed on the
target computer. Package REPORT was modified for this vali-
dation in order to print an identifying message as well as
date and time of execution.

All support package specifications and bodies were compiled
and were demonstrated to be operating correctly.

-e-

- 21 -

2.2 Withdrawn Tests

Some tests are withdrawn from the ACVC because they dc not
conform to the Ada Standard. When testing was performed,
the following 16 tests had been withdrawn for the reason.
indicated:

C35904A: The elaboration of subtype declarations SFX3 I, SFX4
ma, raise NIUMERICERROR vs. CONSTRAINTERROR.

C41404A: The values of 'LAST and 'LENGTH in the "if" statements
from line 74 to the end of the test are incorrect

C4G0O0A: This test requires that the evaluation of default
initial values not occur if an exception is raised by an
allocator. However, the LMC has ruled that such a
requirement is incorrect (AI-00397).

34AOIOC: The obiect declaration in line 18 follows a subprogram
body o thi same declarative part.

C4ACI4A: The number declarations in lines 19-22 are not
correct, because conversions are not static.

383AO60 The Ada Standard 0.3(17) and AI-00330 permit the label
LAD EI.'fUMERAL of line 80 to be considered a homograph oF
the enumeration literal in line 25.

C9 0,0.5A. At line 40, "/=" for tyoe PACK. BIG INT is not visible
,ithout a "use" clause for package-PACK.

C=CACA This test assumes that allocated task TTI wrill run prior to
the main program, and thus assign SPYNUMD the "a!ue checked
trn by the main program; however, such an execution order it
not required by the Ada Standard, so the test is erroneous

CAIOOJD This test requires all of the legal compilation units
of a file containina some illegal units to be compiled
and executed. But according to AI-00255 such a File may
be rejected as a whole.

OAC'001E The Ada Standard 10.2(5) states that "sim le names
oF all subunits that have the same ancestor librar 4 unit
must be distinct identifiers. " This test checks for the
above condition when stubs are declared; but it is not
clear that the check must be made then, as opposed to
when the subunit is compiled.

CA3005A..D (4 tests): There exists no valid elaboration order

for these tests.

Y3204C: The file 3C3204C4 should contain the body For PC3204CO
--as indicated in line 25 of DC3204C3M.

CE2107E TEMPHASNAME must be given an initial value of TRUE.

, -

-22-

2.3 Inapplicable Tests

N/A-Tests count reason

C24113L Y 14
C35705L Y 14
C35706L Y 14

*C35707L Y 14
C33708L Y 14 Value of $Digits exceeds
C35802L Y 14 SYSTEM-MAX DIGITS
C45241L Y 14 (170 testsT
C45321L Y 14
C45421L Y 14
C45424L Y 14
C451L Z1
C45621L Z 15
C45621L .. Z 15--- - -- -- -- - -- -- -- - -- -- -

C24113E .. K 7 Source lines longer than
80 characters

C34001D .. G 4 The implementation does
C35702A B 2 not support SHORTINTEGER,
B52004D E 2 LONG-INTEGER, other INTEGER
B55B09C D 2 types, SHORTFLOAT, or
C55B07A B 2 LONGFLOAT
B86001CP.. S 4

C86001F 1 package SYSTEM is used
by package TEXT_10

CA3004E F 2 pragma INLINE is not
LA3004A B 2 supported

- -

-23 -

N,'A-Tests count reason

CE2107B D 3
CE2110B 1 one internal file
CE2111D 1 can be associated with
CE2111H I more than one external
CE3111B E 4 file only for reading
CE3114B 1
CE3115A 1.

B86001IDT 1 the only predefined numeric
types are integer and float

96005B 1 no duration'base values

outside type duration exist

EA3004C .. D 2 pragma inline has no effect

C48006B 1 discriminanz constraints
B37004A 1 are not allowed before
B38105B 1 full type declaration
B74207A 1
BC3503A 1

total count 219

-24 -

2.4 Implementation Characteristics

One of the purposes of validation is to determine the
behavior of a compiler in those areas of the Ada Standard
that permit implementations to differ. Class D and E tests
specifically check for such implementation differences.
n owever, inapplicable tests in other classes also character-
ize an implementation. This compiler is characterized by
the following interpretations of the Ada Standard:

Non-graphic characters.

Non-graphic characters are defined in the ASCII char-
acter set but are not permitted in Ada programs, even
within character strings. The compiler correctly
recognizes these characters as illegal in Ada compila-
tions. The characters are not printed in the output
listing but are contained in the protocol files on
disk.

Capacities.

The compiler correctly processes compilations contain-
ing loop statements nested to 65 levels, block state-
ments nested to 65 levels, procedures nested to i7
levels, and 723 variables.

* Universal integer calculations.

An implementation is allowed to reject universal
integer calculations having values that exceedSYSTEM.MAX INT. This implementation does not reject

such calculations and processes them correctly.

Predefined types.

This implementation does not support numeric tvyes
other than INTEGER and FLOAT.

Based literals.

An implementation is allowed to resect a based literal
w2.th value exceeding SYSTI-I.lMAX INT during compilation
or it may raise NUMERIC ERROR during execution. T-his
compiler raises NUMERIC_ERROR during execution.

Array types.

An implementation is allowed to raise NUMERIC ERROR
for an array having a 'LENGTH that exceeds
STANDARD. INTEGER'LAST and/or SYSTEN.MAXINT. Vhen an
array type is declared with an index range exceeding
•NTEGER values and with a component that is a null
DOCLEAN array, this compiler raises NUNERIC ERROR when

)•

- 25 -

the type is declared.

When an array type is declared with an index range
exceeding SYSTEM.MAX INT values and with a component
that is a null BOOLEAN array, this compiler raises
NUMERICERROR when on object of this type is declared.

A packed BOOLEAN array of length INTEGER'LAST+3 raises

NUMERICERROR when the array objects are declared. A
packed two-dimensional BOOLEAN array with
INTEGER'LAST+3 components raises NUMERICERROR when
the array objects are declared.

A null array with one dimension of length exceeding
INTEGER'LAST raises NUMERICERROR when the array type
is declared.

In assigning one-dimensional array types, the entire

expression is evaluated before CONSTRAINT ERROR israised when checking whether the expression's subtype

is comptaible with the target's subtype. In assigning
two-dimensional array types, the entire expression is
not evaluated before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is compati-
ble with the target's subtype. In assigning record
types with discriminants, the entire expression is
evaluated before CONSTRAINT ERROR is raised when
checking whether the expression's subtype is compati-

K;: ble with the target's subtype.

Discriminated types.

An incompletely declared type with discriminants may
not be used in an access type definition and con-
strained either there or in later subtype indications.

Aggregates.

When evaluating the choices of a multi-dimensional
aggregate all choices are evaluated before checking
against the index type.

When evaluating an aggregate containing subaggregates,
all choices are evaluated before being checked for
identical bounds.

Functions.

The declaraticn of a parameterless function with the
same profile as an enumeration literal in the same
immediate scope is allowed by the implementation.

.
;'J'., " 9 • "* "'" " ""

' "
'z "." .t..-..". .".. .".""... .,. . ..,-..."... ..".-."." -. .".,." "." "

- 26 -

* Representation clauses.

'SMALL length clauses are supported.

Enumeration representation clauses are supported.

. Generics.

When given a separately compiled generic declaration,
some illegal instantiations, and a body, compiler
rejects the body because of the instantiations.

* Package CALENDAR.

TIME OF and SPLIT are inverses when SECONDS is a non-
model number.

* Pragmas.

Pragma INLINE is not supported for procedures. It is
not supported for functions.

Input/output.

Package SEQUENTIAL IO can be instantiated with uncon-
strained array types and record types with discrim-
inants. Package DIRECT IO can be instantiated with
unconstrained array types and record types with
discriminants without defaults. A form parameter is
needed in the case of DIRECTIO and unconstrained
array types.

More than one internal file can be associated with
each external file for sequential I/O, direct I/O, and
text I/O for reading only. An external file associ-
ated with more than one internal file cannot be
deleted.

An existing text file can be opened in OUT FILE mode,
can be created in OUT FILE mode, and can be created in
IN FILE mode.

Dynamic creation and resetting of a sequential file is
allowed.

Temporary sequential files are given a name. Tem-
porary direct files are given a name. Temporary text
files given names are deleted when they are closed.

Temporary text files have a name. Temporary textfiles
are deleted when closed.

27 -

CHAPTER 3

Compiler Anomalies and Nonconformances

3.1 Anomalies

An anomaly is a test result that, given the pre-validation
analysis, was not expected during formal validation but
which is judged allowable by the AVF and the AVO under the
circumstances of the validation. No anomalies were detected
in this validation attempt.

3.2 Nonconformances

Any discrepancy between expected test results and actual
test results is considered to be a nonconformance. No non-
conformances were detected in this validation attempt.

- 28 -

CHAPTER 4

ADDITIONAL TESTING INFORMATION

4.1 Pre-Validation

Prior to validation, a set of test results for ACVC 1.7 pro-
duced by the SYSTEAM-German MoD S1.5 compiler was submitted
to IABG m.b.H., Dept SZT by the applicant for ore-validation
review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests.

4.2 Test Site

Tests were compiled and executed at IABG in Ottobrunn on the
AVF's Siemens 7.536 computer.

4.3 Test Tape Information

The original tapes containing ACVC version 1.7 as received
from the AVO were read by the validation team. The withdrawn
tests were deleted (except for one whose result was ignored)
and the tests which make use of implementation dependent
parameters were customized.

4.4 Testing Logistics

Once all tests had been loaded to disk, processing was begun
using command scripts provided by the AVF. Samples of the
text of these scripts are given in Appendix C.

The compiler supports various options that control its
operation. The options used for testing are evident from
the example in Appendix C. The B-tests were run with the
additional compiler option LIST=>OV, which produces a full
compilation protocol including error messages.

First a project library REPLIB was prepared to contain the
report package. Then a number of batch jobs were initiated,
one at a time, to process the tests. Each job for executable
tests created a new project library with REPLIB as parent
library. Test results were written to system files in con-
catenated form. These files were written on tape in backup
format and archived.

4.5 Testing Duration

The ACVC has not been desioned for use in measuring compiler
performance. However, information about the length of time
needed to test the compiler may characterize compiler

/ ..

.. _ , ._4 - 18 . . -. -. - .-. _-. . -. " . . . ' . . _ . - - - - - . . . ' . - , L e. , -

- 29 -

performance in processing a large number of programs.

Testing started at 86-06-04 and was completed on 86-06-24.
The machine idled for about 100 hours because of power dis-
turbances.

4:;: - 30-

CHAPTER 5

SUMJ4ARY AND CONCLUSIONS

The IABG m.b.H., Dept SZT identified 2093 of the 2279 tests
in Version 1.7 of the Ada Compiler Validation Capability to

- be processed during the validation of SYSTEAM-German MoD
S1.5. Because of test errors, 16 tests were withdrawn. 219
tests were not applicable, 170 of them because they use
floating point types having digits that exceed the maximum
value for that implementation. The remaining 2044 processed
tests were passed by the compiler.

The IABG m.b.H., Dept SZT concludes that these results
demonstrate acceptable conformance to the Ada Standard.

a-

%

a.

-.

4-

'

a..

- 31 -
"a

APPENDIX A

COMPLIANCE STATEMENT

The only allowed implementation dependencies correspond to
implementation-dependent pragmas and attributes, to certain
machine-dependent conventions as mentioned in Chapter 13 of
MIL-STD-1815A, and to certain allowed restrictions on
representation clauses. The implementation-dependent charac-
teristics of the SYSTEAM-German MoD S1.5 are described in
the following sections which discuss topics one through
eight as stated in Appendix F of the Ada Language Reference
Manual (AUSI/MIL-STD-1815A).

a.

J

a,.

- 32 -

(1i) Implementation-Dependent Pragmas

INTERFACE

Takes ASSEMBLER ,subprogram name as argument(s).
This pragma is allowed at the place of declarative items.
This pragma specifies that an object module generated
by the system assembler is supplied for the subprogram.

SUPPRESS-ALL

Takes no argument. This pragma is allowed at
the place of the start of a compilation.
This pragma specifies that all checks which may
raise CONSTRAINT ERROR at runtime are suppressed.

(2) Implementation-Dependent Attributes

HEAPADDRESS The value of this attribute is of type ADDRESS.

- 33 -

(3) Package SYSTEM

The specification for package SYSTEM is

package SYSTEM is

type ADDRESS is private;
type NAME is (siemens bs2000);

SYSTEM NAME : constant NAME := siemens-bs2000;
STORAGE UNIT : constant 8;
MEMORYSIZE : constant 5*2:1:E20; -- 5MB

-- System-Dependent Named Numbers:

MIN INT : constant : -2 147 483 648;
MAX INT : constant 2 147 483_647;
MAX DIGITS constant 15;
MAX MANTISSA constant 51;
FINE DELTA : constant 2:1.0:E-30;
TICK constant : 2:1.0:E-14;

-- Other System-Dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 255;

type UNIVERSAL INTEGER is range
MIN INT .. MAX INT;

subtype EXTERNAL ADDRESS is STRING;
type ADDRESS RANGE is range

0 .. 2:T:E24-1;
function CONVERTADDRESS (ADDR: EXTERNALADDRESS)

return ADDRESS;
function CONVERTADDRESS (ADDR: ADDRESS)

return EXTERNAL ADDRESS;
function CONVERT ADDRESS (ADDR: ADDRESSRAN;GE)

return ADDRESS;
function CONVERTADDRESS (ADDR: ADDRESS)

return ADDRESS RANGE;
function "+" (ADDR: ADDRESS-

OFFSET:INTEGER)
return ADDRESS;

private
type ADDRESS is access BOOLEAN;

end SYSTEM;

%

- 34 -

(4) Representation Clause Restrictions

Representation clauses specify how the types of the
language are to be mapped onto the underlying machine.
The following are restrictions on representation
clauses.

for t'size use static expression

For integer, enumeration and fixed point type t, 16,
24 and 32 are allowed as value of static expression
depending on the range and the 'small of t. For access
types t, only 32 is allowed as value of
static_expression. For floating point types t, only 64
is allowed as value of staticexpression.

For record and array types, the value of
staticexpression must match the size computed by the
compiler. This means that the type mapping for records
and arrays cannot be influenced by a 'size rep.spec.

for 'small use static expression

For the value of the staticexpression only a power oC
two, i.e. 2.0**k for some integer k, is allovred.

for accesstype' storage size use expression.
for task type storage size use expression

There is no restriction concerning the value of expres-
sion. I

Address Clause -"

Is implemented for objects only.

(5) Conventions

[]

-35-

There are no implementation-generated names denoting
implementation-dependent components.

(6) Address Clauses

The following are conventions that define the interpre-
tation of expressions that appear in address clauses,
including those for interrupts.

The object starts at the given address. For objects
accessed by a descriptor, the descriptor starts at the
given address.

An object for which an address specification is given
must not require an initialization.

(7) Unchecked Conversions

The following are restrictions on unchecked conver-
sions, including those depending on the respective
sizes of objects of the source and target.

If TARGET'SIZE > SOURCE'SIZE results will be unpredict-
able.

A"

-36-

(8) Input-Output Packages

The following are implementation-dependent characteris-
tics of the input-output packages.

SEQUENTIAL 10 Package

type FILE TYPE is limited private; -- integer

procedure CREATE (...); function MODE (...
procedure OPEN (...); function NAME (...

procedure CLOSE (...); function FORM C ...

procedure DELETE (...); function IS OPE; C ...

procedure RESET (...); function ENDOFFILE (...

procedure READ (...

procedure WRITE (...

DIRECT 10 Package

type COUNT is range 0 .. 2_147_483_647;

TEXT 10 Package

type COUNT is range 0 2_147483647;

subtype FIELD is INTEGER range 0 .. 255;

LOW LZVEL 10

type DEVICE TYPE is (NULL DEVICE);
type DATA TYPE is record null; end record;
procedure SENID CONTROL (DEVICE : DEVICE TYPE;

DATA : in out DATA TYPE);
procedure RECEIVE CONTROL (DEVICE : DEVICE TYPE;

DATA : in out DATA TYPE);

4i -4"

- 37 -

a

(9) Package STANDARD

type INTEGER is range -2_147_483_648 .. 2_147_483_647;

type FLOAT is digits 15
range -16:0.FFFF FFFF FFFF FF:E+63

... 16:0.FFFFFFFFFFFFFF:E+637

type DURATION is delta 2:1.0:E-14
range -131 072.0

131071.999938_964_843 75;

(10) File Names

File names make use of the following conventions and
restrictions.

They must be BS2000-file-names, max. 54 characters
long,upper case letters. At most 15 user-defined files
may be open at a time.

(11) Other Characteristics

Tne maximum source program line length is 80.

The program library may contain at most 2 000 units.
One compilation unit may import at most 63 units
directly.

.

.4j

N.

38-

APPENDIX B

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-
dependent values, such as the maximum length of an input

'. line and invalid file names. A test that makes use of such
values is identified by the extension .TST in its file name.
Actual values to be substituted are identified by names that
beain with a dollar sign. A value is substituted for each
of these names before the test is run. The values used for
this validation are given below.

$,AX IN LEN 80
Maximum input line length
pDermztted by the implementation.

.SIG IDDI string (1 . 80)
identifier of size MAX IN LEN (I .. 79 => 'A,
with varying last character. 80 => '1'

Z string (I .. 80)
Identifier of size MAX IN LEN (1 . 79 => 'A',
with varying last character. 80 => '2'

$31GID3 string (I .. 80)
-eifier of size "1AX IN LEN (1 .. 40 =) 'A',
with varying middle character. 41 => '1',

42 80 => 'A'

$BG ID4 string (I .. 80)
Identifier of size 1AX IN LEN (1 .. 40 => 'A',
with varying middle character. 41 => '2',

42 . 80 => 'A'

-- '

- 39-

$NEG BASED INT 16:FFFFFFFE:
A based integer literal whose
highest order non-zero bit
falls in the sign bit

* position of the representation
for SYSTE24.MAX INT.

$BIG INT LIT string (1 .. 80)
An integer literal of value 298 (1 .. 77 => '0',
with enough leading zeroes so 78 . 80 => "298")
that it is MAXIN LEN characters
long.

SBLG REAL LIT string (I .. 80)
real literal that can be (1 . . 74 => '0',

eiher of floating or fixed 75 . . 30 => "69.OEl")
point type, has value 690.0, and
has enough leading zeroes to be
MAX IN LEN characters long.

SEXTENDED ASCII CHARS "abcdefghijklmnopqrstu
A string literal containing all
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character
set.

"Z .. ::: ' ASCII CHAR TYPE (MO M[C [[IULL)

.n enumerated tvne definition
cor a character type whose
ilterals are the identifier
"'CNO, NULL and al1 non-ASCII
characters with printable
graphics.

S LANK S string (1 .. 60)
Blanks of length MAX IN LEN - 20 (1..60 =>

SMAX DIGITS 15
Maximum digits supported for
floating point types.

$INTEGER FIRST -2147483648
The universal integer literal
expression whose value is
INTEGER' FIRST.

$ INTEGER LAST 2147403647
The universal integer literal
expression whose value is
INTEGER'LAST.

$LESS THAN DURATION - 0.0

e".4%

- 40 -

A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST or any value in
the range of DURATION.

$GREATER THAN DURATION 0.0
A univers~l real value that lies
between DURATION'BASE'LAST and
DURATION'LAST or any value in
the range of DURATION.

$LESS THAN DURATION BASEFIRST - 200 000.0
The universal real value that is
less than DURATION'BASE'FIRST.

$GREATER THAN DURATION BASELAST 200_000.0
The unive-sal real value that is
greater than DURATION'BASE'LAST.

$COUNT LAST 2147483647
Value of COUNT'LAST in TEXTIO
package.

SFIELD LAST 255
VaTue of FIELD'LAST in TEXT IO
package.

$FILE NAME WITH BAD CHARS abc! def.dat
An illegal external file name
that either contains invalid
characters or is too long.

$FILE NAIME WITH WILD CARD CHAR abc*def.dat
Ai ex~ernaT file name that
either contains a wild card
cnaracter or is too long.

$ILLEGAL EXTERN "AL FILE NAMEl x$!yz.dat
Illegal external file name.

$ILLEGAL EXTERNTALFILENAME2 string (1 .. 60)
Illegal external file names. (1 60 => 'A')

-41-

APPENDIX C

COMMAND SCRIPTS

/.NZlxtl LOGON
/D0 USYSTEAMi .ADA.DELETELIBLIBRARY2Z
/DO USYSTEAMI *ADA.CREATELISLI2RARYZZ,PARENIT:REPLIe
/AI4EN ,ONz(l)
/D0 OSYSTEAPII.ADA.COMPILE,
/nC OPY.*ZZ C11101A-AD. ADA- L IBRARY 2Z
/00 ASYSTEAMi .ADA.LINKCZ1101AACVC.CZ1 10IALI8RARY -Z

/SYSFILE SYSOUT2 (ACvCRE3 .CZt.EXTEND)

/EXEC ACVC.CZ11OIA
/ERASE ACVC.CZ1101~A
/STEP
/SYSFILE SYSOUT2(PRIMARY)
/WH4EN ON-v(l)
/D0 USYSTEAMl.A(JA.COMPILEt
/MUPY.ZZ.CZ1 1OZA-AB.ADA,LIBRARY2Z

/DO USYSTEAMi .A0A.LINK CZ1 1OZAACVC.CZ1 102A,LIBRARY2Z

/SYSF ILE SYSOUT=(ACVCRES.CZ,EXTENID)
/EXEC ACVC.CZ1102A
/ERASE ACVC.CZ11O2A
/S TEP
/SYSF ILE SYSOU1T (PRINIARY)
/WHEN oON=C1)

/DO aSYSTEAM1.ADA.COMPILE,
/UCOPY.ZZ.CZ1 l03A-6.ADAeLI63RARYlZ

/00 USYSTEAMi .ADA.tIKCZ11O3A,ACVC.CZ1 103A,LI8RARYSZ

/SYSF ILE SY'SOUT=(ACVCRES .CZr.EXTEN0)

/EXEC ACVC.CZ110SA
/ERASE ACVC.CZ1103A
/ S TEP
/SYSF ILE SYSOUT=(PRIMARY)
/WHEN PON2(1)
/DO 3SYSTEAMI.ADA.COMPILEP
/UC0PY.lZ.C112O1A-A9.ADALIIJRARY'Z
/D0 USY3TEAMI1.ADA.LPJKCZ1201A,-ACVC.CZ1201A,LIBRARY'Z
/SYSF ILE SYSOUT=(ACVCRES.CZEXTEND)
/EXEC ACVC.CZ1201A
/ERASE ACVC.CZ1201A
/STEP
/SYSF ILE SYSOUTz (PRIM1ARY)
/WHEN PONz(l)
/00 OSYSTEAMi .ADA. COMPILE,
/ aCOPY.ZZ.CZ1201B-AU;.AOA,L1IBRARY2Z

/DO ASYSTEAMi .A0A.L[NKCZ12018,ACVC.CZ1201BLIBRARYZl
/SYSFILE SYSOUT2 (ACVCRES.CZPEXTEND)
/EXEC ACVC.CZ12O10
/ERASE ACVC.CZ12018
/ 5T EP
/SYSF ILE SYSOUT=(PRIMARY)
/WHEN ,ONx(1)
/00 3SYSTEAMI.ADA.COMPILEo
/nCOPY.ZZ.*C Z I Z0C-AB .ADALISRAPY 21

/D0 USYSTEAM1 i.ADA.LI!K,CZ1201C,ACVC.CZ1201C,LIBRARY2Z
/SYS FILE SY SOUT- (ACVCRES .CZ, EXTEND)
/EXEC ACVC.CZ12U1C
/ERASE ACVC .CZ1 201 C

/STEP
/SYSFILE SYSOUTz(PRI.1ARY)
/WHEN oONw(l)

/00 USYSTEAMI.ADA.COMPILE,
/UCOPY.ZZ.CZ12ZO1O-A9.ADA,LIBRARYzZ
/D0 aSYSTEAMI .AOA.LINKCZ1ZOIDACVC.CZ12010,LIBRARY'l

/SYSF ILE SYSOUTz(ACVCRES.CZEXTEND)

/EXEC ACVC.CZ1?01D
/ERASE ACVC .CZ12O1 0
/ STEP
/SYSF ILE SYSOUT= (PRIMARY)
/LaGOFF

40
0

0

