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A Note on Merton's "Optimum Consumption and Portfolio Rules

in a Continuous-Time Model"

Suresh Sethi and Michael Taksar

1. INTRODUCTION

In the area of consumption and portfolio problem in continuous

time, Merton [2] is the most widely cited paper. It is an

important paper because of its many significant contributions.

Among these was the provision of explicit solutions for utility

functions in the HARA family specified in equation (43)*of Merton-i

r 2],- These solutions in the form of lengthy formulas were

simply stated without any derivation. Perhaps, because of this,

some errors went undetected. While some minor errors were

corrected in Merton E3], the purpose of this note is to delineate

the subfamily of HARA utility functions for which the explicit

A solution obtained in Section 6 of Mertons c/are correct and the

remaining subfamily for which they are not. In Merton's notation,

the HARA family is given by

V(C) = 1 - C + n (43M)
Y 1 -Y

with B > 0, y + 1, n > 0 when y < 1, and n > 0 when y > 1.1 Now,

more specifically, the solutions in Section 6 of Merton [2] are

correct only when V'(0) - -, i.e., when y < 1 and n - 0. On the

1Equation (43M) refers to equation (43) in Merton [2]. Hereafter,
we shall refer to equations in Merton [2] by their numbers
followed by the letter "M".

'Up



2

other hand, when V'(0) < , i.e., when n > 0, the solutions

obtained in Section 6 of (2] violate the feasibility conditions

W(t) > 0, 0 < t < T and C(t) 1- 0, 0 < t < T, where W(t) is the

wealth and C(t) is the rate of consumption at time t. These

conditions are specified in Merton [4] and, we believe, are also

assumed in [2], although not explicitly stated there. We remark

that the condition W(T) > 0 is not violated.

2. FEASIBILITY VIOLATIONS

The solution for the value function J(W,t) obtained in

equation (47) of Merton [2] and corrected in Merton [3) has a

printing error, which requires the replacement of the term P -6v

in the denominator by P - yv We reproduce this solution

137~ ~ ~ -Y e-Tt ) n ler Tt
J(w,t) = O _( + (47M)

as the starting point for this note.

If we substitute n - 0 in (47 M), it provides us with the

correct value function for the HARA sases with y < 1.2

Furthermore,

lrn ePt 1- -Y -Y Y
3(W) = T= J - [i] (1)

gives the infinite horizon value function in current value terms

for HARA cases with Y < 1 and n - 0. To prevent this solution

2Note, as has already been indicated in Section 1, that for Y > 1,
the value n- 0 is not admissible [2].
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from blowing up, it appears that we should have P - Yv > 0. This

growth condition agrees with the condition (14.4) derived in [1),

and it is weaker than (41) imposed in [4).

2.1 HARA CASES WITH n > 0 AND Y < 1

For these cases, we note that there is no finite consumption

satiation level and remind that V (O.) < -.

Using (47M) as the optimal value function, Merton obtains

the wealth equation (54M). From this, he derives equations (55M)

and (56M), which because they contain some minor errors, are

rewritten here as:

+ (-r) 2 dt + dz (55M)fX L1-(Tt) 62a

and

(a--r)r) 1--rle-(Tt
X(t) =X(O) exp{- + _ t + r dz.6 Y2l -e -uT

tL 25 2a I 6 ~0 (56M)where i = (P - yv)/6 and
X(t) = W(t) + (1-Y) n e -r(T-t)I

Thus, X(t) is a geometric Brownian motion. It is, therefore

obvious that X(t), t > 0 can be arbitrarily close to zero with

a positive probability. Thus for n > 0, there is a positive

probability that W(t) S 0, or for that matter, W(t) < 0, for some



-4-

t c(0,T).
3

We have now shown that while J(W,t) given in (47M) solves

the H-J-B equation "44M), it is not the value function. In

fact its computation, since W(t) could fall to zero, would

require an additional boundary condition, say, the specification

of the behavior of the function J(W,t), tc[O,T] in the neighborhood

of the line W - 0 in addition to J(W,T) - 0 already imposed in

[2].4 Moreover, it would require additional machinery to deal

with the possibility of the boundary consumption.

The value functions J(W) for general concave utility func-

tions, including the HARA cases with n > 0 andy < 1, have already

been obtained by Karatzas, Lehoczky, Sethi and Shreve [1] when

the horizon is infinite. When V' (0) < -, which is the case with

n > 0, there are three cases depending on the value of P stipulated

in the boundary condition J(0) - P. In what follows, we let

3Note that C* (t) ~e- 11X(t) , given by (48M), becomes negative

when X(t) is close to zero. Moreover, for some values of the
parameters, C*(W,t) expressed also by (48M) becomes negative even
for small positive wealth levels. Specifically, for p < r, there
exists a W(t) > 0 for every t < T, such that C*(W(t),t) < 0. For

* example, with p - 0.20; r - 0.16, (a - r) 2 /2o 2 - 0.05, (therefore,
- .14),y 0.5, 8 - 1, t - T - 1, and W(t) - 1, we have

C*(l,T-I) - 0.26.

If one assumes that zero wealth results in bankruptcy and the
problem stops, then one should specify J(0,t), tc[0,T]. One
particular specification

J(Ot) =V(O) [e-Pt e-Pj =i-n ePt eP

is associated with zero consumption from the time of bankruptcy t
to the terminal time T. If, however, one considers a model in
which it is possible to start a "new life" after bankruptcy
(e.g. see [5]), then the required boundary condition would
involve J(0,t) and Jw(0,t), tc[0,T].
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C**(W,t) denote the optimal feedback consumption rate obtained in

ElJ.

For P < V(O)/p, tnere exists a wealth level W(P) > 0 such that

f InO, W £ (0, W (P)
C** (wHt ) _

>o w £ (w(P),-)

and W(t) > 0, almost surely, for all t > 0.

For P c (V(0)/p, P*J, where P* • -im V(C), there exists a
PC-

wealth level W(P) > 0 (except when P - P* in which case W(P*)-O)

such that C**(W,t) has the above form, but the optimal investment

policy gives rise to a positive probability of bankruptcy, i.e., of

W(t) - 0 for some t.

Finally, for P > P*, there exists & > 0 such that

C**(w,t) > &, w C (0,-)

and there is a positive probability of bankruptcy.

An important conclusion, therefore, for the purpose of this

note is that whatever the value of P, there is either a boundary

consumption at low wealth levels or a positive probability of

bankruptcy, or both. This conclusion will also hold for finite

horizon problems.

In view of the above, it is clear that there is no easy way

to fix (47M), (48M) and (49M). More specifically, C*(t) will not

have the form C* - aW + b at least when the boundary consumption

is possible. In the other case, when P > P* or when J (0,t) is

sufficiently large in the finite horizon case, there is no a

priori reason to believe that C*, although an interior solution,
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will have the form C* - aW + b. This implies that Theorems III,

IV and V, based on the assumption of interior consumption and no

bankruptcy are correct only for n - 0.

Before leaving this section, let us try to find a meaning of

the expression obtained in (47M). First we note that (43M) is

defined for C ? -(l - Y )n/0. Also, J(W,t) in (47M) is defined
for W > -(1-y)n [l_-r(T-t)3,
forr w >, t c0,T].

Finally, we know that W(T) - 0, almost surely. It is possible

therefore, to say that J(W,t) in (47M) is the value function for

the fictitious problem, in which consumption is constrained as

C > -(1 - Y)n/8 and the agent's bequest function is:

B(W,T) = if W> 0
-. Iif W > 0

One then solves (44M) with the boundary condition J(W,T) = B(W,T)

and obtains (47M).

We now turn to HARA cases with Y > 1; note that n must be

strictly positive in these cases [2).

2.2 HARA CASES WITH n > 0 AND Y > 1

In these cases, there exists a consumption satiation level

( Y-1) n/8. Feasible consumption levels are given by

0 < C < (Y - l)n/B. (2)

In this consumption range,

V(C) < 0 with V (y- 1)n/0] - 0. (3)

As mentioned in Merton (3], the investor with wealth
W(t) = [ - (T-t)

at time t can ensure with certainty a program of the maximal

level of consumption by simply holding the riskless asset.
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Clearly, the initial wealth W(O) must satisfy

0 < W(O) < w(O) (4)

for the problem to be nontrivial. Thus -W(0) < X(O) < 0 in

(56M). This implies that there is a positive probability that

X(t) < - W(t) for some t e (O,T) and, therefore, that

W(t) - X(t) + W(t) < 0

for some t c (0,T).

Once again, the solution in (47M) does not provide us with a

feasible wealth trajectory and is, therefore, not the value

function.

It is interesting to note that (56M) imply W(t) < W(t), t

[0,T], almost surely. Moreover, (43M) satisfies J(W(t),t) = 0.

We believe that the correct value functions for these problems

should satisfy these properties. Thus, in order to solve the

H-J-B equation (44M), we need only impose J(W,T) = 0 and another

--boundary condition, say, on J(O,t).

The solution of the infinite horizon problems withy> 1 can

be obtained from Karatzas et.al. [1]. We need only to define the

utility function U(C) in the notation of [1] as

U(C) = ,+0 < C < (Y-l)n/8 (5)

0 C > (y-1) n/ (

We note that U(C) satisfies all the conditions imposed in Section

2 of [1) except at C- ( Y- 1) n/B, where we interpret U' = 0 and

U" and U"' as the left-hand derivatives. With this proviso, the

formulas in [1] can be used to obtain the solution for the case

Y> .

'.A,-'- . : . . . ', ., ..; '..\.'. . ,.'
.,
",.: . ; '-''
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3. CONCLUDING REMARKS

By showing that wealth in the solutions obtained in Section

6 of Merton [2] could, when n > 0, become negative with a positive

probability, it is noted that his solution does not provide the

value function for the problem. As a result, Theorems III, IV

and V in Section 6 of [2] are not correct for n > 0. Furthermore,

solutions (70M) and (71M) in Section 7 of (2], based on the

results of Section 6 will not hold for n > 0.

It should be noted before concluding this paper that the

erroneous solutions in Sections 6 and 7 wereobtained because of

the erroneous assumption of the interiority of consumption used

in (19M). Boundary consumption is possible when V'(O) <-. As a

result, (22M), (28M) and (29M) cannot be assumed to hold for all

levels of wealth. This would imply that several other problems

treated in Sections 8 and 9 of [2), that do not satisfy the

condition V'(0) - , should be reexamined.
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