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Summary

A nonlinear finite element analysis procedure already developed for

planar mechanisms is being modified to handle complex mechanisms with sliding

masses and mechanisms operating at relatively high speeds. Progress is also

being made in developing a suitable nonlinear finite element analysis

procedure for three-dimensional mechanisms. In both cases the analysis takes

into account the effects of geometric and material nonlinearities, vibrational

effects and coupling of deformations. In the optimal design area, a new

algorithm has been developed for finding the minimum of a sum-of-squares

objective function subject to general nonlinear constraints. The solution of

preliminary examples indicate good results in terms of the total number of

objective function evaluations to obtain an optimal design. Complete details

of these investigations are included in the Appendix. To meet the

extraordinary computational needs of this project, a separate research VAX

11/785 Computer and peripheral equipment were made available through a DoD

research grant. The National Science Foundation also provided funds for some

additional equipment as well as computational time on a supercomputer.

Research Objectives

The objective of this research is to develop a nonlinear finite element

dynamic analysis procedure for planar as well as spatial mechanisms that are

frequently used in space structures. Included in the nonlinear analysis are

the effects of curvature-displacement nonlinearity, nonlinearity due to

extension or stretching (both caused by large aeforationo, material

nonlinearity as well as combinations of these. In addition to the nonlinear

analysis, an efficient optimal design method is to be developed to handle
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objective functions composed of combinations of rigid body and deformation

displacements involving geometric design variables as well as cross-sectional

sizes of the members of the mechanisms subject to limitations on stresses and

deformations. During the present reporting period it was proposed to:

1) Extend the nonlinear analysis procedure developed for two-dimensional

mechanisms to three-dimensional mechanisms

2) Apply the optimization technique developed to simple mechanism problems

Significant Accomplishments

A major portion of the research during the reporting period was directed

towards achieving these research objectives. Considerable progress has been

made in both of these areas. A summary of significant accomplishments is

presented below with complete details of the work included in the Appendix.

A non-linear finite element analysis procedure has already been developed

for planar mechanisms to handle geometric and material nonlinearities.

Complete details of the work are available in a paper entitled. "Finite

Element Nonlinear Vibrational Analysis of Planar Mechanisms" by D. W. Tennant,

K. D. Willmert and M. Sathyamoortby presented at the ASME Winter Annual

Meeting in Miami Beach, Florida in November 1985 and published in the Special

Issue of Material Nonlinearity in Vibration Problems. The results of this

investigation clearly indicate the need to include the nonlinearities in the

dynamic analysis of mechanisms. There are. however, a number of difficulties

in extending this approach to problems of mechanisms with sliding masses and

mechanisms operating at relatively high speeds. To overcome these

difficulties, the nonlinear analysis procedure is being modified to handle

more complex planar mechanisms. Considerable progress has been made in

modifying the already developed nonlinear analysis procedure and the required
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computer programs for planar mechanism analysis. Numerical results for

complicated cases of planar mechanisms, however, are still not available. It

is expected that new results will be available for presentation at the

AFOSR-SES (Society of Engineering Science) meeting to be held at the State

University of New York at Buffalo in August 1986. Research is also in

progress to develop a nonlinear finite element analysis procedure for

three-dimensional mechanisms. The formulation of these problems includes the

effects of material and geometric nonlinearities due to large deformations.

and vibrational effects of members. A complete report on this will be sent to

AFOSR as soon as results are available for some example problems.

The mathematical optimization techniques currently available for solving

optimal design problems all require several iterations to obtain the best

design. Some methods involve a large number of iterations, with each

iteration requiring numerous analyses. These methods are adequate if the

design problem is small, since computational times are relatively

insignificant. However for large design problems, or ones in which a complex

nonlinear analysis is required, it is extremely important that the

optimization technique be very efficient, particularly in terms of the number

of analyses required. In a paper entitled, "The Gauss Optimization Method For

Problems With General Nonlinear Constraints" by T. E. Potter. K. D. Willmert.

and M. Sathyamoorthy (presented at the 22nd Annual Meeting of the Society of

Engineering Science held at the Pennsylvania State University. University

Park, Pennsylvania. October 1985). a new algorithm is developed for finding

the minimum of a sum-of-squares objective function subject to general

nonlinear constraints. The solution of preliminary examples indicate good

results in terms of the total number of objective function evaluations

required by the algorithm to obtain an optimal design. The optimization

techniques developed in this research, as extensions of the Gauss method to
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handle various types of constraints, reduce the number of analyses required to

obtain an optimal design thereby reducing the computational time

significantly. This method is now being used to solve additional example

problems.

Because of the very complex nonlinear analysis required. which must be

repeated many times during the optimization process, a considerable amount of

computer time is needed for this research. To meet these needs, a proposal

entitled "Laboratory for Graphical Analysis of Nonlinear Deformations in

Dynamic Structural-Mechanical Systems" was submitted to DoD under the DoD -

University Instrumentation Program to purchase a separate research computer

for this project. This resulted in a grant (No. AFOSR-85-0103) of $101,567.

Although the original proposal called for the purchase of a VAX 11/730. a very

careful and thorough search for the best computer (with the available funds)

resulted in the purchase of a much larger and faster VAX 11/785. Digital

Equipment Corporation offered a sizable reduction in cost of its VAX 11/785

computer under the DEC Educational Discount Program. Because of this

reduction and because of additional cost sharing by Clarkson University's

School of Engineering, it was possible to purchase the VAX 11/785 at no

additional cost to DoD.
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Computer Equipment Purchased Through DoD-URIP Grant and Other Sources

I. VAX 11/785 COMPUTER HARDWARE

1. VAX 11/780 Packaged System Including: $102.750

(A) VAX 11/780 CPU

(B) 2-Mbytes ECC MOS (64-K chip) Memory

(C) H9652 UNIBUS Expansion Cabinet with BAll-K and DD11-DK

(D) VAX/VMS License and Warranty

2. TU80 9 Track Streaming Tape Drive with Cabinet 8,800

3. RUA81 456 Mbyte Fixed Disk 19.600

4. 2-Mbytes of Additional Memory 81100

5. FP780 Floating Point Accelerator 8.960

6. Two DMF32-LP Communication Interfaces 5.250

7. 780 to 785 Upgrade Kit 80,000

8. 25 ft. RS232 Sync Cable 95

9. Two 300/1200/2400 Baud Telephone Modems 1.060

10. Installation N/C

11. Insurance and Transportation 1.817

12. Miscellaneous - Installation of Power. Phone

Lines, Terminal Lines. etc. 1,756

Total Computer Hardware Cost $238,188

II. COMPUTER DISPLAY TERMINAL

1. Tektronix M4115B Computer Display Terminal $19,950

2. Option Ni: Warranty-Plus 1.025

3. Option 2B: Additional 512 Kbytes RAM 4.600

4. Option 23: Additional Four Planes of Display Memory 6,000

5. Option 09: 4695 Color Copier Interface 500

6. Option 42: Single Flexible Disk 1.700
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7. Display Stand 750

8. Software Package 1,000

9. 4695 Color Graphic Copier 1.595

10. Option 42: Warranty-Plus 430

11. 4926 10 Mbyte Hard Disk 4.200

12. Option NI: Warranty-Plus 210

13. Shipping 371

Total Display Terminal Cost $42,331

III. SOFTWARE FOR VAX 11/785 COMPUTER

1. VMS Operating System N/C

2. FORTRAN License 5,170

3. DECNET Communication Software 2,950

4. IGL Graphics Software 2,677

5. PSI Access Software 1,850

Total Software Cost $12,647

IV. TOTAL HARDWARE & SOFTWARE COSTS $293,166

The total value of the equipment and software is $293,166. Discounts and

contributions from Digital Equipment Corporation. Tektronix, Clarkson

University's College of Engineering and the Department of Mechanical and

Industrial Engineering total $191,599. Thus, the total -,ost of the hardware and

software to DoD remained at $101,567 as originally proposed. It should be noted

that the capabilities of the VAX 11/785 system, including the Tektronix 4115

graphic terminal, are enormous compared to the originally proposed VAX 11/730.

The VAX 11/785 system is 5 times faster than the VAX 11/730. has 4 Mbytes of

memory (compared to only 1 Mbyte of memory for VAX 11/730). 456 Mbyte of disk
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space (compared to 121 Mbyte of disk space) a total of 16 terminal lines, and a

9 track streaming tape drive (no tape drive was included in the original VAX

11/730 system).

Hardware and software were also purchased to tie the VAX 11/785 into

Clarkson's campus-wide computer network. The physical link is through the

University's VAX 11/780. but this is tied to the other computers on campus.

which is linked to other universities though BITNET. This tie in of the VAX

11/785 allows the users of this research computer access to many of the other

facilities of the university, such as high speed printers. digital plotters.

laser printers, etc. It also allows researchers with terminal connected to the

other computers on campus to sign on to the VAX 11/785 as though they were

directly connected.

The Tektronix 4115B computer display terminal, which is connected to the

VAX 11/785 computer, has recently been expanded to improve its capabilities.

Both a 3-dimensional wire frame and a shaded surface option have been added.

These options allow the terminal to locally manipulate 3-dimensional objects.

such as rotating them in 3-dimensional space, removing hidden lines, drawing

nhaded surfaces, etc. These expansions result in this terminal being equivalent

to a Tektronix 4129 terminal, which is the most recent high-end terminal

introduced by Tektronix. The total cost of these options was $16,475, which was

made possible through contributions from Gleason Foundation, Proctor and Gamble.

Tektronix, Corning Glass Works as well as the University's School of

Engineering.

A recent grant from the National Science Foundation (Grant No.

DMC-8500627). with M. Sathyamoorthy and K.D. Willmert as principal

investigators, has included funds totaling $10,715 for the further expansion of

the graphic facilities. A Tektronix 4692 color graphics copier has been

purchased and a Tektronix 4107 low resolution graphic terminal is anticipated as
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a result of this grant. These purchases should complement the high resolution

Tektronix 4115B terminal obtained through the DoD-University Research

Instrumentation Program. In addition to these equipment funds, this NSF grant

provides, as part of its Cooperative Program on the use of supercomputers,

twenty-five hours of CPU time on a Cray X-MP supercomputer.

A summary of funding sources including the 1984-85 DoD-URIP Grant to

purchase the VAX 11/785 research computer and other associated equipment

(including upgrades) is given below:

DoD - University Research Instrumentation Program $101,567

Digital Equipment Corporation Contribution 120,852

Tektronix Discount and Contribution 11.110

National Science Foundation 10.715

Clarkson University's College of Engineering Contribution 56.999

Department of Mechanical & Industrial Engineering 3.176

Clarkson's Educational Resource Center 3,300

Gleason Foundation 7,000

Proctor and Gamble 5,300

Corning Glass Works 337

TOTAL $320,356

As a result of contributions from all of these sources, the total value of

the equipment within this laboratory exceeds $300,000 for an investment of only

slightly over $100,000 from DoD.
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Publications
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1. M. Sathyamoorthy and K.D. Willmert. "Nonlinear Analysis and Design of

Flexible Mechanisms," Presented at the Third Forum on Large Space
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4. D.W. Tennant. K.D. Willmert, and M. Sathyamoorthy, "Finite Element Nonlinear
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November 1985. pp. 79-89.
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10



Professional Personnel

1. K.D. Willmert, Professor of Mechanical and Industrial Engineering. Project

Supervisor.

2. M. Sathyamoorthy, Associate Professor of Mechanical and Industrial

Engineering, Project Supervisor.

3. T.E. Potter, Currently a Ph.D. student in Mechanical and Industrial

Engineering working on optimization methods applicable to large mechanism

design problems.

4. E.B. Kear III, Currently a Ph.D. student in Mechanical and Industrial

Engineering working on nonlinear analysis techniques for deformation

analysis of two and three-dimensional mechanisms.

5. M. El Sawy. Currently a Ph.D. student (supported by Egyptian Government) in

Mechanical and Industrial Engineering working on nonlinear analysis

techniques for deformation of three-dimensional mechanisms.

6. B. Whispell. Currently an M.S. student (partially supported by Alcoa

Foundation) in Mechanical and Industrial Engineering working on computer

graphics for display of three-dimensional mechanisms undergoing

deformations.

II



APPENDIX

Paper No. 1 - D.W. Tennant. K.D. Willmert. and M. Sathyamoorthy. "Finite Element

Nonlinear Vibrational Analysis of Planar Mechanisms." Published in

Material Nonlinearity in Vibration Problems. AMD - Vol. 71. ASME.

November 1985. pp. 79-89.

Paper No. 2 - T.E. Potter. K.D. Willmert. and M. Sathyamoorthy, "The Gauss

Optimization Method for Problems with General Nonlinear

Constraints." Paper presented at the 22nd Annual Technical Meeting

of the Society of Engineering Science. The Pennsylvania State

University. October 1985. p. 10.
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FINITE ELEMENT NONLINEAR VIBRATIONAL ANALYSIS OF PLANAR MECHANISMS

0. W. Twamn, K. D. Willmem and M. Ssthymsforthy
Department of Mechanical and Industrial Engineering

Clarkson University
Potsdam, New York

ABSTRACT

A finite element approach is presented in this paper for the nonlinear vi-
brational analysis of planar mechanisms. The analysis takes into account the
effects of material and geometric nonlinearities on the dynamic behavior. The
geometric nonlinearities included in this study are due to stretching of the
neutral axis and the curvature-displacement nonlinearity, both caused by large
deformations. The material nonlinearity is due to a nonlinear stress-strain re-
lationship of the Ramberg-Osgood type. The analysis presented here makes use of
hermite polynomials which ensure compatibility of curvature between elements.
Using a variable correlation table, a global system of nonlinear equations are
derived in terms of the global unknowns and the kinematics of the mechanism. A
harmonic series technique is then used to obtain the steady state solutions to
this system of nonlinear equations. Numerical results are presented for an ex-
ample mechanism and the effects of the nonlinearities are discussed.

INTRODUCTION

The importance of flexibility of linkages on the performance of high speed
minimum-mass mechanisms is well recognized. A considerable amount of research
has been done in this area in the last two decades. While it is desirable to
develop analytical and numerical procedures that enable the design of rigid link
mechanisms and robots to perform a given function with specified reliability, it
is also important to evaluate the effects of flexibility of elastic members on
on tneir performance. It is known that a mechanism designed for operation at
low speeds may not perform satisfactorily at high speeds due to the effects of
large inertia forces and resulting elastic deformations. Thus it becomes
necessary to include in the dynamic analysis of mechanisms, not only the effect
of the rigid body motion, but also the flexibility of the linkages.

Most of the previous investigations in the area of elastic analysis of
mechanisms have been carried Out within the framework of the linear theory [I-
17). However, Viscomi and Ayre (181 used a Galerkin-type nonlinear analysis
procedure to study the vibrations of a slider-crank mechanism. A later work by
Sadler and Sandor [191 used the lumped parameter approach to a nonlinear dynamic
model of an elastLc linkage. The mechanism analyzed in this paper was a general
four-bar linkage and the analytical model included the response coupling associ-
ated with both the transmission of forces at the pin joints and the dependence
of the undeformed notion of a link on the elastic mottog of other links. A
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finite element analysis, with the aid of the piecewise linear method of Martin,

was used by Sevak and McLarnan [201 to carry out the nonlinear analysis of a

mechanism. Further nonlinear work dealing with the vibrations of elastic mecha-

nisms are reported in References 121-231, In a recent investigation, Thompson

and Sung [241 used a variational formulation for the nonlinear finite element
analysis of planar mechanisms considering geometric nonlinearities. Some experi-

mental results were also presented.

This paper is concerned with the nonlinear vibrational analysis of general
planar mechanisms. A finite element method is used which includes the effects of

both geometric and material nonlinearities. The geometric nonlinearities in-

cluded in this study are due to stretching of the neutral axis with partially

constrained ends and a general curvature-displacement relationship, both caused
by large deformations. The material nonlinearity is of the Ramberg-Osgood type

with three parameters to represent the nonlinear stress-strain relationship 125-

271. Additional effects considered are transverse shear and rotatory inertia

and changes in cross-section due to realistically proportioned members. The
governing nonlinear differential equations are derived for each element in terms

of the axial and transverse deformations, rotations, curvatures, and shear defor-

mation angles. These equations are then assembled with the aid of a variable

correlation table and the resulting global system of equations is solved using an

iterative technique based on a harmonic series solution procedure.

FINITE ELEMENT FORMULATION

A finite element method is presented below for the nonlinear analysis of a

general closed looped mechanism. The mechanism can be composed of various com-
binations of simple four bar chains, frame elements, sliders moving on fixed ref-

erences, or sliders moving on rotating links. Each link is divided into one or

more elements with each element having the local coordinate system as shown in
Figure 1. If a slider is present, the masses M

1 
and M

2 
are located at ends 1 and

2, as shown. The length of the element A is constant except for links with
sliders moving along them.

The displacement vector of any point (a) on the element's neutral axis is

given by:

S - (X
I 

cosy + Yl siny + x + u)i + (YI cosy - X1 siny + w)j (I)

where X
I 
and YI are the coordinates of end 1 of the element given by the rigid

body motion. The coordinate x is measured along the element's neutral axis from
I to 2 and y is the angle between the rigid body position and the X-axis. The

axial and transverse displacements of point (a) from the rigid body position are
given by u and w, respectively. This equation takes into account both the rigid
body motion and the elastic displacements and defines the position of any point

along the neutral axis.

Differentiating Equation I with respect to time yields the velocity of any
point (a). The unit vectors I and j move with coordinate system and vary with
time. The angular velocity of any differential line segment on the neutral axis

of the element is given by:

Y,t + W,xt (2)

where Yt is the derivative of y with respect to time and w,xt is the derivative

of the transverse displacement with respect to the local coordinate x and time t.

The kinetic energy due to rotation of the element is giver by:

- I r f AxS,
2 

+ oI1(,t + wxt)2ldx dy
2 

+ MlIS't
2  

+ I N2IStI1. (3)

where O is the mass density and A
x 
and I are the cross sectional area and moment

of inertia of the element respectively. The tprm pl(y,
t 

+ w,xt)2/2 represents
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the effect of rotatory inertia. The kinetic energy due to beam bending associ-

ated with transverse shear 1281 is:

h

K.Eg 1 f f (cl~a,2)dx d 4

2

where a is a measure of the transverse shear angle.

The strain energy for the element is given by:

U = Ifvol f o dc dvol + fyol 1 's dvol (5)

where a, r, .Y, and yxy are the normal stress, normal strain, shear stress and
shear strain, respectively. For a nonlinear material of the Ramberg-Osgood type

[25-27, the relationship between stress and strain is:

o = A E - B em (6)

where A corresponds to Young's modulus E, and grm represents the nonlinear term.

A, B and m are constants for the particular material being considered. The above

relationship, Equation 6, is valid only for positive strains. If the strain is

negative, the following expression is used:

S= A c + B (-E)m if c < 0 (7)

The change in sign of the ronlinear term results in the same overall effect on

the stress-strain relationship as for positive strain, i.e. either hardening or
softening depending on the values of B and m.

Using the Ramberg-Osgood relationship, the following expression for the

strain energy is obtained for positive strain E > 0:

h h

(I A E2 B{ A d, - I , 2 _y dx dy (8)

where x is the axial coordinate, y is the transverse coordinate, and Gxy is the

shear modulus. When c < 0 the equation is:

h h~i (IA a - I 
^

U h 2 (-t)0y
1
)dx dy + f f dx dy (9)

--- 0 2 C-y
22

The nonlinear expression for the curvature R of a planar static beam under-
going large deformations is:

I V _xx (10)

(I + w,.2)
3 / 2

Thus the strain is

iV y Y W~xx

xx (II)

(I + w,
5 
)
3
/2

Combining the geometric nonlinearities due to stretching of the neutral axis and

the curvature-displacement nonlinearity, results in the expressions for normal
and shear strain:
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- U, + I D, W. + X12)

, (1 + Db W,2)
3
/2

Yxy - ".x + 0 (13)

Substituting these expressions for strain into the strain energy Equations
(8) and (9) produces, for c , 0 or E < 0:

h
i A 1 I ______

S.E. -h f b (i A (u., + D s. ( D,,2
)2

a- - ( + Db w, 2)3/2

Dk B +u,+1 D.wZ+ . )O+l
2- x(- +~ w+,231

+ Gxy (w,x + o)
2
)dx dy (14,15)

For equation (15) negative sign is applicable in all the terms containing ± signs
and is valid for E < 0. In Equations (12), (14) and (15), Dk, Db and Do are
tracing constants representing the effects of material nonlinearity, geometric
nonlinearity due to curvature, and geometric nonlinearity due to stretching of
neutral axis, respectively. Each tracing constant is equated to unity when that
particular nonlinearity is being considered and is equated to zero when it is
not.

In order to represent realistically proportioned members, changes in cross
section are included. Each element is divided into sections of varying lengths
with constant area. The integrations involved in the element equations are
carried out in a piecewise fashion with the area in each section taken as a con-
stant. This procedure provides a reasonable approximation of variable cross
sectional members without having to resort to large numbers of elements.

The Legrengian function L is defined as

S Nk

L - kl I (K.E.' + K.E-B - S.E)ik (16)

where Nk is the total number of elements in the kth link and S it the number of
links in the mechanism. Substituting Equations (3), (4) and (14) into Equation
(16), the Lagrangian L can be expressed in terms of the displacements u and w,
the shear angle o, and the rigid body motion.

Hermits polynomials are used to approximate u, w, and a in order to satisfy
the boundary conditions of various types of mechanisms easily and to ensure in-
terelement compatibility. The axial deformation u is approximated by s linear
shape function given by

u(x,t) - Ul(t) Nl(x) + U2 (t) N2 (x) (17)

Similarly, fifth degree polynomial shape functions are used to approximate the
transverse deformation V:

V(x,t) - Wl(t) Hll(x) + el(t) 21 (x) + rl(t) R3 1(x)

+ W2 (t) H12(x) + 62 (t) H22(x) + a 2 (t) H32(x) (18)

The shear angle a is also approximated by a fifth degree polynomial in order to
make it compatible with the transverse displacement w. Therefore a Is assumed
to be,

o(x,t) - 01 (t) alI(x) + jl(t) H21(x) + 1 (t) H31(x)

+ 02 (t) H12(x) + i2 (t) H22(x) + 12 (t) R32(x) (19)
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where * and X are the first and second derivatives of a, respectively.
The Hermite polynomials are given by:

NI(x) 1 -e ; N2(x) - • (20)

1li(x) - 1lOe
3 
+ 15e

4 
- 6e

5  
H12 (x) - 10e

3 
- 15e

4 
+ 6e

5

H2 1(x) M i~e - 6e
3 
+ 8e

4 
- 3e

5
) 22(x) - &(-4e

3 
+ 7e

4 
- 3e

5
)

H31 (x) = A
2
(e

2 
- 3e

3 
+ 3e

4 
- e

5
)/2 ; H32 (x) - 6

2
(e

3 
- 2e

4 
+ e

5
)/2 (21)

where, e = x/A.
A transformation of coordinates is now introduced to change from the moving

coordinate system associated with the elements to global coordinates. Only U1 ,
WI, U2 and W2 need to be transformed. The other coordinates are angles or de-
rivatives of angles which are not directional on the X, Y coordinate system used.
The transformations are:

l - 01 cosgl - W1 sin4l U2 - 02 cos0 2 - H2 sing 2

WI -1 sin$l + H1 coasl ;W 2 - 02 sinO 2 + U2 cosg 2  (22)

For pin connections the transformation angles *l and *2 are set equal to -y (the
rigid body angle) which transforms the coordinates back to the global coordi-
nates. For sliders moving on rotating links the transformation becomes more in-
volved. In this case, the deformation of the driver link must be transformed to
correspond to the axial and transverse deformation of the output link (141.

Substituting the expressions from Equation (22) into Equations (17) and
(18), the global coordinates for the system are then:

q [U1 01 el I l l u2 2 ;202 2 i2l
T  

(23)

The Lagrangian function is then written in terms of the transformed element co-
ordinates. Differentiating the Lagrangian with respect to the element coordi-
nates, the following element equations are obtained:

d ------- - 0 (24)
d q't q

In differentiating the expressions for the kinetic and strain energie. in Equa-
tions (3), (4) and (14), it must be remembered that A, which is the upper limit
of integration, is a function of time. The operations carried out in Equation
(24) results in a system of nonlinear element differential equations. Assem-
bling the element matrices for the particular mechanism being solved results in
the global system of equationst

M Q,tt + C Q,t + (Ke + K.) Q F(t) (25)

The N, C, Ke and Kn matrices are all functions of time. The C matrix results
from the kinetic energy of the system. No damping was included in the formula-
tion of the problem. The C Q,t term was found to be small and thus was ignored
in the analysis. The matrix Ke is the linear portion of tie total stiffness
matrix. It is a function of rigid body motion, but is not a function of the
deformations Q. The matrix Kn, however, is the nonlinear portion of the stiff-
ness matrix. It is a function of the deformations Q. Equation (25) is thus a
nonlinear system of differential equations.

The derivation of the finite element Equation (25) is based on the assump-
tion of positive strains c. If the strain is negative t similar derivation is
possible, based on Equation (15) for the strain energy rather than Equation
(14). The only difference in the resulting Equation (25) is in the stiffness
matrix. Wherever an cm-I occurs in the original formulption, it becomes (.)m-l
for negative strains. All other negative signs resulting from the introduction
of -c cancels out in the differentiations required. Thus in order to handle both
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positive and negative strains the terms involving m-l in the stiffness matrix

were replaced by IcIm
'
l.

In order to solve the nonlinear system of Equation (25), an iterative ap-

proach was used. First the equations were solved using the linear terms only,
i.e. the K

n 
matrix was ignored. This was accomplished by setting all of the

tracing constants 
t
b, Do and Dk equal to zero. The solution Q for the linear

equations was then used to determine values for the nonlinear stiffness matrix

Ko
. 

Equation (25) was then solved again for new values of Q, and the process re-
peated. Experience showed that this procedure converged in from 3 to 5 itera-

tions. To solve Equation (25) for Q(t), for particular K., a harmonic series

solution method was used similar to that of Bahgat and Willmert (14]. This ap-
proach overcomes problems with stability, due to the time varying nature of the

matrices, that sometimes result from an eigenvalue technique. The steady state

solution is obtained without adding artificial damping. The solution, without

the C Ot term, is given by:

N
Q(t) - nYo (K - n

2 
w
2
N)-I (An cos nut + B5 sin nut) (26)

where w is the input crank speed, and An and Bn are solutions to the linear equa-

tions:

N N-1

F(tk) = n to in .. su.tk + n Bo n sin nt k  
; k ( 0,1..27)

where Bo is set equal to zero. The values of tk are the times at 2N equal time

increments per revolution of the input crank given by:

tk - r for k - 0,1...,2N-1 (28)

Computational experience indicates that a fairly accurate solution is obtained

using only a few terms in Equation (26). As the number of terms increases the

components of the matrix (K - n
2 
w2M) grow and thus the inverse (K - n

2 
u2M)'I

becomes small. The summation can therefore be truncated to reduce computational

time.

The stress in the links is calculated by evaluating the strains from Equa-
tion (12). The stress can then be determined at any point in an element using
Equations (6) and (7). To find the maximum stress in an element the maximum

strain must be found. Setting the first derivative of Equation (12) to zero and
solving the resulting expression, the position of the maximum strain is deter-
mined. Once the location is known, the maximum strain and stress can be evalu-

ated.
The above formulation is based on the use of the shear angle a, which is ap-

propriate particularly for short members. For long slender links this quantity

is not required. The elimination of a reduces the size of the problem consider-
ably since the nodal deformations a,, ;1. A

1
, Q2, 02 and A

2 
would no longer be

present. For long slender members:

a = - w,x / (29)

Using this expression, the equation for strain energy (14) for positive shear E

reduces to:

h
2 A 1 1 w2 Y Wx 2

S.E. f f b fl A (ux + i D w,2 w, )2
- x (I + Db W,

2

2 
)/

0~ yw,Dk B (u,+1 Dw2 xx m+1
m2 ( (I + D

b 
w,

2
)3/2

A similar expression exists for negative strain. The kinetic energy also changes

if a is not present. The energy associated with transverse shear, Equation (4),
is eliminated and thus Equation (3) represents the total kinetic energy of the
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element. Using a procedure similar to the method outlined above, vibrational
equations of the same form as Equation (25) can be obtained, but they will be
smaller in size. However, nonlinear terms still exist in the stiffness matrix
due to the material and geometric nonlinearities. The method of solution is thus
identical to that outlined earlier.

EXAMPLE PROBLEMS

The following example is presented to illustrate the method of solution.
The nonlinearities due to neutral axis stretching, and complex curvature-dis-
placement and stress-strain relationships are all considered. A four-bar link-
age, as shown in Figure 2, is used as the example with all of the members flexi-
ble and made of the same material. The data for the mechanism is; Length of
input crank (AS) - 5.0 in, Length of coupler (BC) - 11.0 in, Length of rocker
(CD) - 10.5 in, Fixed distance (AD) - 10.0 in, Cross section of links a rec-
tangular, Height of rectangle - 1.0 in, and Width of rectangle - 0.25 in. The
position of the input crank is zero degrees at t - 0 and the direction of rota-
tion is counterclockwise. The mechanism is divided into three elements with each
link in the mechanism taken as an element. The boundary conditions are that only
moment and shear terms exist for the input crank's driven end (A). For the pin
connections between links, there are deformations, rotations and shear terms, and
for the rocker's fixed point there are only rotation and shear terms.

First, the deformations in the mechanism were determined with the shear
angle a present. In this case the crank link was rotated at 100 rad/sec. The
material properties, approximating aluminum, were as follows: A - 10.87x10

6

lb/in
2
, B = 0.8387xi0li lb/in

2
, m - 3.0, and Mass density - 0.0002536

lb-sec
2
/in

4
. Three separate procedures were used to obtain numerical results.

First the problem was solved using the linear analysis method of Bahgat and
Willmert [141, with E - A. Next the method of this paper was used with the trac-
ing constants equal to zero. Thus a linear analysis was obtained. Finally the
method was applied with all tracing constants equal to one, i.e. a full nonlinear
analysis. A representative deformation U as a function of crank position is
shown in Figure 3. This is the horizontal deformation of the free end of the
crank link. As can be seen, the three curves are very similar. The effect of
the shear angle a is to increase the deformation slightly. For this slow speed
the linear and nonlinear analyses were almost identical.

The same problem was solved again at a higher speed of 200 rad/sec. The re-
sulting deformation U1 is shown in Figure 4. As can be seen, high frequency
oscillations started to appear, with greater separation between the three analy-
ses. At even higher speed these oscillations became more predominant to the
point of instabilities in the motion at very high speeds.

The revised form of the analysis equations was considered next, i.e. the
form without the snear angle a. Here a crank speed of 150 rad/sec was used. A
comparison was made of the effects of the various nonlinearities on the deforma-
tions and stresses as compared to the linear analysis. Figures 5 and 6 show a
comparison of the linear and nonlinear deformations U2 (the horizontal deforma-
tion of the free end of the output link) caused separately by geometric and
material nonlinearities. Figures 7 and 8 show the maximum stresses in the con-
necting link of the mechanism. As expected, the material nonlinearity of the
Ramberg-Osgood type results in deformations which are greater in magnitude than
those obtained using a linear elastic model. The maximum stress decreased due to
the presence of the term Bcm substracted from the linear stress expression.

The geometric nonlinearities considered, namely curvature displacement and
stretching of the netral axis, both due to large deformations oroduced mixed
results with deformacions reduced at some points and increased at other points.
The effect of the geometric nonlinearities would be expected to produce a stiff-
ening of the members [281 of the mechanism and thus produce smaller deformations.
The intressed deformations in this case might be due to the fect that the deform-
ations are in relationship to the entire mechanism and not just to an individual
bea" element.

CONCLUSIONS

The nonlinear analysis procedure, using a finite element technique, is an
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effective method of calculating the steady state deformations and stresses in a
mechanism. Significant differences can occur between the linear and nonlinear
approaches. This was particularly true for the stresses in the example consid-
ered in this work. Research is still needed on the overall effect of the shear
angle o, and a more complete picture of the nonlinear terms in the analysis would
be of value. Additional nonlinear effect should also be investigated, such as
the effect on the translations of one link due to large deformations 6f the other
link*.
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THE GAUSS OPTIMIZATION METHOD FOR
PROBLEMS WITH GENERAL NONLINEAR CONSTRAINTS

T. E. Potter, K. D. Willmert and M. Sathyamoorthy

Mechanical and Industrial Engineering Department
Clarkson University
Potsdam, NY 13676

ABSTRACT

A new algorithm is presented for finding the minimum
of a nonnegative objective function subject to general
nonlinear constraints. This algorithm, based of Gauss'
method for unconstrained problems, is developed as as
extension to the Gauss constrained technique for linear
constraints. The derivation of the algorithm, using a
Lagrange multiplier approach, is based on the-Kuhn-Tucker
conditions so that when the iteration process terminates
these conditions are automatically satisfied. A feasible
design is maintained throughout the iteration process. The
solution of preliminary examples indicate excellent results
in terms of the number of objective function evaluations
required by the algorithm to obtain an optimal design.

INTRODUCTION

The optimal design of many. complex structural and mechanical
systems is hindered by the large computational times involved. Most
currently available optimization techniques require a large number of
analyses to obtain the optimal design. For small problems, or ones
in which the analysis is simple, these methods are adequate; however,
for large problems, or where a time consuming analysis is required,
more efficient optimization methods are needed. The goal of this
research was to develop such methods, particularly techniques
applicable to mechanical mechanism design where the members are
deforming because of high speed motion and large external forces.
Computational times to perform a single analysis are enormous for
problems of this type involving large deformations with nonlinear
material characteristics. Thus the goal of the methods developed was
to reduce the number of analyses, even at the expense of increased
computational effort !n the optimization technique itself, i.e.
additional effort in finding new candidate design points to analyze.
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The methods developed take advantage of the special
characteristics of the optimization problem, similar to the
optimality criterion techniques. This greatly improves their
efficiency. For most mechanism design problems, the objective
function can be formulated as a sum of squared quantities such as
the difference between the desired performance and the actual
performance of the mechanism at specified points during its motion.
Thus the techniques were developed specifically to handle problems
of this type, although the methods are applicable to objective
functions which are general sums of nonnegative quantities, such as
weight. Many mechanism problems have constraints which are only
2inear functions of the design variables. Thus a special method was
developed for problems of this type. Other problems have
constraints which are linear or quadratic, and another method was
developed for this case. Some mechanism design problems have more
general nonlinear constraints. Methods to handle these cases are
currently being developed.

All of the techniques developed in this work have been based
on Gauss' method 11] which is applicable to problems without
constraints. Wilde E2] has shown this method to be particularly
efficient on simple mechanism design problems. The research
presented in this paper has extended this method to handle various
types of constraints common to more complex mechanism design
problems.

FORMULATION

For an unconstrained sum-of-squares objective function

f(x) = 4T4, (1)

where + is a vector of linear or nonlinear functions +I thru 4 in
:(, the Gauss method for calculating the next iteration of the
design variables, xk+l, given a current design, xk, is:

'k+1 = k k- Jc xk J(xk )*(x k) (2)

where

V.x" .V V4I((x) - (3)

It is observed that only first derivatives if the + functions are
required and that the new design point is calculated directly from
the current design without using a step length determination with
associated one dimensional minimization. Himmelblau C1I has shown
this method to be very efficient for unconstrained minimization
problems.
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This technique has been extended to handle linear inequality
constraints of the form

gi(x ' . x - ci 0, i 1,...,M (4)

as well as equality constraints

hi(x) - dix - ei  0, i l,...,L. (5)

In the derivation of theaoptimization method, the 4. functions are
assumed to be linear in x of the form

a + T . (6)

where 3 is a constant matrix. However the resulting technique is
applicable toaproblems in which the *i's are general nonlinear
functions of x.

At iteration k, the L equality constraints and any of the
inequality constraints that are active can be combined and written
in the form

Ta
Bx- C - 0. (7)

If at the next iteration, k+l, the variables x k+1 are at the optimum
design, then the Kuhn-Tucker conditions will be satisfied

Vf(x ) +BX=0 (8)k+ l

Ta
.x - C 0 (9)

and

>--: 0 (10)

where X is the vector of Lagrange multipliers. The gradient of f is
given by

Vf(x) = 234(x). (11)

Expanding *(x) in a Taylor series results in

(x k+ 1 ) - (x k ) + jT[xk+1 - xk] + (higher order terms) (12)

It is noted &hat the higher order terms are equal to zero if * is
linear. If + is not linear then these terms will be neglected and
the expansion is only approximate& If equation (12) is substituted
into equation (111, evaluated at Xk.l the result is

-f ~ 2J + xk Jx~, xkJ (13)
Tsm bk+e sb [t(ik) T[fk+l - 'kun cecdio

This may be substituted Into the first Kuhn-Tucker cndition,



equation (8), and then solved for x k+1

X k+l k - 2 1 J k ) + B 1. (14)

Plugging this equation for x into the second Kuhn-Tucker
condition, equation (9), yiei

T_ a T[T] 1 ra - lBTxk- C - B T2JJT [ 2 J*(xk) + B1] - 0. (15)

If the samt set of cygstraints that are active at x k+ were also
active at xk, then B x - C 0 0. Using this result, equation (15)
can be solved for X as

[ 1
B [ 2 3 JT]- BT[23T]-2(xk).(

X I B- 21 B J.( (16)

Substituting this back into equation (14) and simplifying yields an
iterative expression for x +1 which will give the optimum solution
if the constraints that are active at the optimum point (iteration
k+) are active at iteration k:

X x -II J -( ). (

This expression is equivalent to that derived by Paradis and
Willmert £3] using a Gradient Projection method as the foundation.
The technique converges to the optimal design in one iteration if
the objective function, f, is quadratic and the starting point is on
the constraints which are active at the optimal design. If f is not
quadratic, the technique can still be applied, but it will
generally require several iterations to reach the optimal design.
When the technique terminates, the Kuhn-Tucker conditions will be
satisfied independent of the form of the objective function.

Paradis and Willmert demonstrated the efficiency of this method
by solving several examples. One example presented was the optimal
design of a four-bar mechanism to generate a desired coupler point
path. The Gauss constrained technique was compared with the
Davidon-Fletcher-Powell method using an interior penalty function
approach to handle constraints. Using four different starting
points, the Gauss constrained method required from 23 to 33
objective function evaluations whereas the Davidon-Fletcher-Powell
method required from 209 to 622. While not all starting points
yielded the same optimal design, both method% reached the same local
minimum from each starting point. Other examples also showed
considerable improvement over existing methods.

The Gauss method has also been extended to include quadratic
inequality constraints or quadratic approximations to higher order
nonlinear constraints. In this work the constraints are assumed to
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have the form

g ( ) x- x .x + ix - C. S 0, i - 1,...9,M. (18)

If at iteration k+1 there are r active constraints (r S M), the
Kuhn-Tucker conditions will be

Vf(Xk+l) + jl[AjX k+l + BjjX - 0 (19)

1- T + -Ta
2xk+lA jkx + 8x - C 0. 1,i...,r (20)

and

X : 0 (21)

where the summation in equation (19) and the j subscript in equation
(20) r02oer to the set of active constraints only.

Using a derivation similar to that for linear constraints,
substituting the expression for the gradient of f, equation (13),
into the first Kuhn-Tucker condition, equation (19), and solving for
Xk+ 1 produces

-11
Sl.- .i j [1  x -Vf(x (22)

This expression for x +I in terms of X is now substituted into the
second Kuhn-Tucker conIdLtion, equation (20), to obtains

-11T
jT+ r ~ [ 2 T_ -Vf j I

21T r -[ . ]

A 4 2 JJ + .lA X I [21 -xk Vf(kk) -

B-s 2JT [-f - J J

- Ci 0O 1 Ml1...,r. (23)

These r nonlinear equations lnaterms of the new unknowns, X thru Xrand the old design variables, x , are solved by an iterative process
for the values of X. thru X . Vhe lambda values are then substituted
into equation (22) which wiTl yield new values for the design
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variables. It is observed that the matrix 2JJ T is the matrix of
second partial derivatives, G, of *he objective function if it is
quadratic. Thus, by replacing 2J in equation (22) and (23), this
technique becomes a modification of the second order method rather
than the Gauss method.

At the optimum design all constraints will either be satisfied
(less than zero) or active (equal to zero) and each active constraint
will have a corresponding lambda whose value is greater than or equal
to zero. If, at some iteration the set of design variables yields a
violated constraint, then obviously the optimum point has not been
reached. In this case, the newly violated constraint will be added
to the set of active constraints and the procedure allowed to
continue. If at some iteration the set of design variables yields
all active or satisfied constraints, but one or more of the active
constraints has a corresponding negative lambda, then the optimum
design has also not been reached. The negative lambda implies that
the iteration process would like to move away from the corresponding
constraint boundary toward the feasible region where the constraint
is satisfied. Thus, the constraint is dropped from the set of active
constraints and the process allowed to continue. If more than one
negative lambda existed, then constraints are dropped one at a time
starting with the constraint with the most negative lambda.

A constraint is added to the set of active constraints if it
should become either active (equal~to zero) or violated (greater than
zero) when the step is taken from x k to x k+l . In the case where a
constraint becomes violated, a line is "drawn" between x k and x k+1
and the actual step is taken to the farthest point along the line so
that no constraints are violated. In effect, this procedure is the
same as stepping back from x k+l toward x until the newly violated
constraint is just active (equal to zeroS. The constraint is then
added to the set of active constraints for the next iteration.

An example problem with quadratic constraints given by Boston,
Willmert and Sathyamoorthy C43 shows this method to be very efficient
when compared to the generalized reduced gradient method (GRG)-. The
problem consisted of finding the optimal design of a four-bar
mechanism (minimizing the coupler point path error with respect to a
given path) subject to several linear constraints on link length and
movability. Additionally, constraints were placed on the crank pin
to limit its location to the intersection of two circular (quadratic)
regions. The program was run for a four by four matrix of problems
which included four different starting points and four different
conditions of the quadratic constraints. For all sixteen runs, the
number of objective function evaluations for this new method ranged
from 8 to 32 (average was 15), while the GRG method required from 303
to 699 (average was 502) evaluations.

The interesting information here is that the solution to this
quadratically constrained four-bar mechanism used no more objective
function evaluations than the linearly constrained four-bar mechanism
example by Paradis and Willmert. While these two examples are
necessarily different, this tendency toward requiring similar numbers



of function evaluations for different classes of problems is very
desirable. The net result is that we now have an optimization
procedure for sum of squared quantities objective functions subject
to linear and quadratic constraints that not only requires relatively
few function evaluations, but seems to be constraint order
independent. Now the need is to determine a method which will also
work for higher order constraints.

Boston, et al. [4] attempted to apply this method to higher
order problems, but met with mixed results. The problems encountered
seemed to tie in with the higher order constraints rather than with
the higher order objective functions. There are several limitations
implicit in the algorithm which appear to be the source of the
problems encountered. The first limitation has to do with the
application of the constraints, equation (18), to the first
Kuhn-Tucker condition, equation (19). When approximating a higher
order function by a quadratic Taylor series expansion about some
point x0 , not only is the A. matrix a function of xO, but so is the
B. vector and the C. scalar! Thus the constraint approximation,
e4uation (18), should be written as

gi (x) 5x A, + xBi(xO)] T  
- Ci (x0 ) - 0, i = 1,...,M (24)

where

x =x 0 + AX. (25)

As x approaches x0 (or Ax approaches 0) then this approximation
approaches the exact value of the constraint. Thus as the algorithm
progresses along and constraints are added and dropped, the
constraints must be reapproximated at the latest design to keep the_
step size small. This can be achieved by taking the new values of x
as generated by equation (22) and substituting them int2 theaaclual
constraint equations to get improved values for the A (x0 ), B (x0 ),
and C.(x ) terms in equation (24) with respect to the current design
point.

The second limitation involves the second Kuhn-Tucker condition,
equation (?0), which is used to obtain the equation for the new
values of X, equation (23). This is simply the equation for the
active constraints. In the original formulation, an attempt was made
at obtaining a linear approximation in X for this constraint
2quation. This would allow equation (23) to be solved explicitly for
X. However, failing this an iterative procedure was employed to find
the values for X. Now that an iterative process is required there is
no advantage in keeping a quadratic approximation when the actual
constraint will work just as well. Replacing equation (20) with the
active nonlinear constraint equations will remove any errors due to
the approximation process.

The stepping back procedure for violated constraints, described
above, can also be a source of problems. With non-convex programming
problems this procedure may lead to a situation where the algorithm
cannot move away from a non-optimum design. Because the stepping



back procedure assumed a straight line path between the two design

points, it is possible, when backing out of a newly violated

constraint, to move into the violated region of the constraint that

was active at the beginning of the step. The procedure would then

step back still further until all constraints are satisfied. It is

possible to end up with the same set of active constraints as at the

start of the iteration. In this case the next iteration will produce

the same design, which may be non-optimal.

Two alternatives are readily apparent which may solve this

problem. The first one is that when a constraint becomes violated,

repeat the step but include the newly violated constraint in the set

of active constraints. The second alternative is to move to the

point where the constraint is violated, and then iterate from there

without stepping back. Of course, the violated constraint is

added to the set of active constraints. Boston, et.al. C43 looked

into this second alternative to some extent. They reported that it

did not always work. However, it is not clear if it was the "no

stepping back" that was the cause of the problems or if the second

order approximations to the constraints contributed to the problems.

In summary, the Gauss nonlinearly constrained technique is very

effective at solving quadratically constrained problems. No major

difficulties appear to exist which would preclude it from solving

problems with higher order constraints once the modifications

discussed above are implemented. This method with the proposed

modifications is currently the leading candidate as the best method

for solving highly nonlinear mechanism design problems.

RESULTS

A verification of the effectiveness of the Gauss constrained

method applied to problems with quadratic constraints is obtained by

solving the Rosen-Suzuki test problem [53:

minimize F(;) = x2 + x 2 + 2x2 + x4 - 5x - 5 21x + 7x
1 2 3 4 1 . 2 21 3  4

subject to:

g(x) = x 2+X2 + X 2+X 2+ x - x x -x -8SO091 1 2 3 4 1 2 +3 4

g(x) = x 2 + 2x 2+ X2+ 2x 2 x1 - - 10 6 092 1 2 3 4 I-4

2 2 2
93 (x) - 2x 1 2 + *3+2x 1 - x 4 -5 S0

The optimum design for this problem is at x - 10,1,2,-1]

Two versions of the Gauss nonlinearly constrained technique and

the generalized -educed gradient method, identified as GRG. were used

-H



from four different starting points. One version of the Gauss
nonlinearly constrained technique identified as GNLC, uses the
stepping back procedure and requires a feasible starting design and
will always maintain a feasible design. The other version,
identified an GNLC.NS, does not use the stepping back procedure and
has no requirement on the feasibility of the design at any stage of
the optimization. The results are summarized in Table I. It can
easily be seen that the Gauss nonlinearly constrained technique is
much more efficient with respect to number of function evaluations
than the generalized reduced gradient method.

STARTING NUMBER OF FUNCTION
ALGORITHM DESIGN, x 0  ITERATIONS EVALUATIONS

GN.C. NS [00,0,0] 2 3

GC.NS [1,1,1,1] 2 3

GC.NS (2,2,2,2] 2 3

GNLC.NS [0, O, ,O] 3 4

GNLC (0 O, /s, O] 3 4

GNLC (0,05010,] 5 6

GNLC (1,1,1,1] 5 6

GRG [0, O, /F), O] 9 83

GRG (0,0,0,0] 11 106

GRG (1,1,1,1] 11 133

GRG (2,2,2.2] 11 144

Table I: Comparison of Algorithms

CONCLUS IONS

The optimization techniques developed in this research as
extensions of the Gauss method to handle vat ious types of
constraints are effective approaches to reducing the number of
analyses required to obtain an optimal design. As a result, the
computational time for large problems should be reduced
significantly.

-9-



ACKNOWLEDGEMENTS

This research is sponsored by the Air Force Office of Scientific
Research, Air Force Systems Command, USAF, under Grant Numbers
AFOSR-84-0076, and AFOSR-85-0103 and the National Science Foundation
under Grant No. DMC-8500627. The U.S. Government is authorized to
reproduce and distribute reprints for government purposes
notwithstanding any copyright notation theron.

REFERENCES

1. Himmelblau, D. M., "Applied Nonlinear Programming", McGraw-
Hill, New York, 1972.

2. Wilde, D. J., "Error Linearization in the Least-Squares
Design of Function Generating Mechanisms", Progress in
Engineering Optimization-1981, ASME, 1981, pp. 33-37.

3. Paradis, M. 3. and Willmert, K. D., "Optim~l Mechanism Design
Using the Gauss Constrained Method", Trans. of ASME, Journal
of Mechanisms, Transmissions and Automation in Design, Vol.
105, 1983, pp. 187-196.

4. Boston, D. R., Willmert, K. D. and Sathyamoorthy, M.,
"Gauss Nonlinearly Constrained Optimization Method",
Proceedings of the 5th ASCE Engineering Mechanics Division
Specialty Conference, Laramie, WY., 1984, pp. 82-85.

5. Rosen, J. B. and Suzuki, S., "Construction of Nonlinear
Programming Test Problems", Communications of the ACM, Vol. 8,
1965, pp. 113.

-10-





DATE


