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On the Existence and Uniqueness of Invariant Measure
for Continuous Time Markov Processes
by

Lukasz Stettner®

Abstract
In this paper various conditions which guarantee the existence of

unique invariant measure are formulated.
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1. Introduction

Let (E,6) be a locally compact, separable state space endowed with a Borel o-field
§. We consider a standard, nonterminating Markov process X = (Q, F, F, x,, 6, P,
P,) on (E,8) (for definitions see [5] and [13]). If we want to apply any limit theorems
to process X we have to impose first the assumptions for which there exists a unique

finite or o-finite invariant measure g, i.c., a measure satisfying

def
Vaoeg WA) = uP(A) == j‘E P,(x, € A)(dx) for t > 0.
A\
\J
In the paper we attempt to find fairly general conditions under which the

2

existence and uniqueness of invariant measure is guaranteed. The obtained results are

new or generalize at least slightly known, The author introduces a terminology: weak,
T
strong Harns, strong recurrence. Thg Sections 2—aad—3, concern general standard
4—

processes. &3 Section 4 we; restrict: ou(;clw; to Feller or strong Feller standard

ail to

processes. Three cxamplcsr considered ia—Section—% illustrate possible “unpleasant™”

ire
situations wg can meet in general theory. .

2. Weak Harris Condition
The studies of invariant measures for continuous time Markov processes can be

reduced to discrete time case with the transition operator
def ,%® ¢
U(x,A) == j‘o e*P X, (x)dt for A € ¢,
since from Proposition 2.1 [2] we have

Lemma 1. A measure g is invariant for semigroup (P,),3, if and only if it is invariant
for U, ie., puU = o

The operator U and its powers satisfy the following identity

s WLy Tt e T o 0 AN

X P T IR R TR PP PP
’ a = A7 * AN - T
.. IQ\’-“.-‘. RS ..\\'*-'.IV WG R -‘..!_:"n’. 8. "0, ,'! W% 3 ‘l”‘i. s \'. AY, " g '. '. P} "L -3 X2 p %) yas




- .

e o ”
e Y™

-

B gha . s

. e

() Vaer UgmA) == [7 Pagy(aode = T UN(xA)

since one can calculate

n-1

n = ® -~
) Ux,A) = [ e P

P, (x)dt.

Definition 1. If there exists a probability measure m such that
3) Viee M(A)> 02V, g Uyx,A) = =

then X is called weak Harris.
Comparing (3) with (1) we see that under (3) the operator U satisfies a discrete

weak Harris condition, i.e., there exists a probability measure m such that
4) Vieg m(A) > 0>V, EZ U%(x,A) = =,
We will need an improvement of the Harris theorem [9] due to Foguel [6].

Proposition 1. Suppose there exists a probability measure m on a separable space (E,¢)

such that for a Markov transition operator P
(5) VAeam(A)>0=>V€E£ P(x,A) > 0.

Then there exists a o-finite subinvariant measure p ie., V, ¢ MP(A) € p(A). Moreover
m is absolutely continuous with respect to g, what we denote m << 4
The following lemma provides a sufficient condition for a subinvariant measure g

to be invariant.

Lemma 2. Suppose g is subinvariant and for some B ¢ &, u(B) < =

x

© Vg I PUxB)=-=.
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Then u is invariant.
. Proof. We have

4 E- 0 ¢ <u—up, £ P(.B)> = uP(B) - WPNH(B) ¢ WB) < =
n=
Letting N = « we obtain g = puP.
Now we can adopt Proposition 1 and Lemma 2 to weak Harris processes, taking

o into account (4).

S Corollary 1. For weak Harris process there exists an invariant measure p and
PRA m <<

g Nevertheless Proposition 1 and Corollary 1 say nothing about the uniqueness of
;s"z ’ invariant measure g The rcmainigg part of Section 2 will prove that under (3) there
3« exists in fact unique invariant measure.

3‘5‘!\ Let us start with the following:

X Corollary 2. The measures U"(x,-), k = 1,2, ., and Uy(x,-) are equivalent, i, UX(x, )

::&. << Ugy(x,-) << UX(x,-).
Proof. Indeed, from (2),
w Voee UNK,A) > 0 € Ug(x,A) > 0.

The next two lemmas are partially adapted from Lemma 1 and 2 of [2].

ey Lemma 3. Suppose B is an invariant set and v is an invariant measure. Then under

i 3)

o ©) m(B°) = WB°) = 0.

T AT Tt “J‘* (RS TR
N

Ly ] 3 RCRERCN! ’ . ; o P e, o~ .-‘. .‘
WSLALATRA L YT Ko RISt AR SO LR DA AN SO ORI O AR L 'e’l':.l'm. O



“£ .
- -
- -

RERELL

Fas xSy

St
L
.ﬂ.!‘l:;, ,

- <\
2 ] ]
ERAPER NN IR MM

Proof. If m(B°) > 0, then from (3), Uy(x,B) = « for x ¢ B and B cannot be invariant.

Thus m(B€) = 0. Since B is invariable XB(X)PJ(X) € P(fxg)(x) for x € E, and any

nonnegative bounded measurable f. Therefore

[ PEx)15(x)Udx) € [ Pyfxp(x)Udx)) = AEXp) |

def

and measure 7(A) o= WA N B) is subinvariant for (P),3, and then also for U. From
Lemma 2 the measure 7 is invariant. Since Vv is invariant, also M(A) = WA\B) is
invariant. But m(B) > 0 and from (3) and Corollary 2, U(x,B) > 0 for all x ¢ E and

n(U(-,B)) = N(B) = 0. This means =0, and finally v = n, WB°) = 0.

Lemma 4. Under (3) cach invariant measure u is absolutely continuous with respect to

mU.

Proof. Suppose mU(A) = 0. Then U(x,A) = 0 m a.e.. From Corollary 2 also Uy(x,A) =
0 m ae.. The set T = {x: Uyx,A) = 0} is invariant. In fact, if x € I, then Uyx,A) =
E, 4 Xp(x)ds + E(U(x,A)) = 0 and U(x,A) = 0 P, as. Since U(x,A) is P, as. right

continuous, then P_{3,, U(x,A) > 0} = 0. Now from Lemma 3, u(rc) = 0. Thus

KA) = #U(A) = [ UxA(dx) + [ Ux,A)u(dx) = 0.

We summarize the obtained results.

Corollary 3. For any invariant measure g we have

(8) m << § <<'mU.

Proof. If m(A) > 0, then from (3) and Corollary 2, U(x,A) > 0 for each x ¢ E.
Therefore for any invariant measure g we have p(A) = uw(U(A)) > 0. The relation

g << mU follows from Lemma 4.

A A I S b e ey by e
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To simplify notations we put mU £&& X\, We would like to consider U as a linear

operator on Lg()). But we have to know first that U is then well defined.

Lemma 5. If f,n are bounded measurable and f (x) -0 as n =~ =, ) a.e, then also Uf -~

0, ) ae.

Proof. It is enough to consider f (x) nonnegative. Let X = {x: f (x) / 0} By
assumption XM£X) = mU(E) = 0. Therefore U(x,£) = 0 m a.e. and using Corollary 2,

U?(x,2) = 0 m a.c. . But this means U(x,2) = 0, mU = X a.e. Thus

Ukf) = UfXp) + URE%,0) € lIf_lux,o + U(x,f,X o)
First term is equal to 0, ) a.e., while the second converges to 0 from the definition of
the set £. This means U(x,f,) = 0, X a.c.

The next lemma tells that the operator U satisfies discrete weak Harris condition

with measure m replaced by X\

Lemma 6. If (3) is satisfied, then

(%) Vot MA)> 03V o L UP(x,A) ==,

Proof. If mU(A) > 0, then m({x: U(x,A) > 0}) > 0, and there exists & > 0 such that
m({x: U(x,A) 3 8}) > 0. Put B = {x: U(x,A) 3 §).

From (4), Zl U™(x,B) = = for x ¢ E. Thus
n=

Ulta(x,A) = IE U(y,A)U%x,dy) » & j‘B U%(x,dy) = 68U"(x,B)

POV W ERPRIRERRES S WSS

s

[ ]
and for any x ¢ E, }.‘.l U%(x,A) = = as well.
n=
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The operator U is Markov on Lg()\) i.e. positive, linear, and Ul = 1, Since we

want to apply ergodic theory on Lo()\) we need two notions associated with so-called
Hopf decomposition of E (see [7]).

Namely consider a family of functions G = {f ¢ Lop), 0 € f < 1, Uf € f,
lim ,oU" = 0). The set D = sup{X,, f ¢ G) is called dissipative part of E, while C
= E\D is conservativ:. If C = E, then U is called conservative.

If a family of invariant sets £ = {A ¢ & U(x,A) = X,(x), M a.e.} contains only the

sets that differ from @ or E on the set of ) measure 0, then U is called ergodic.
Lemma 7. Under (3), the operator U is conservative and ergodic.

Proof. From Theorem 1.2.1 [7), D =n§1Dk, where D, CD, , and L U%(x,D,) is bounded
for any k. If XMD) > 0 then there exists k such that MDp) > 0. But from (9) this
implies EU“(x,Dk) = o 3 contradiction, Thus \(D) = 0 and U is conservative.

Su;:;sc now U(x,A) = X,(x) ) a.c. and XMA) > 0. Then using (9) again, negl U™(x,A)
= o for x € E, and by Corollary 2, U(x,A) > 0 for each x € E. So X,(x) = 1, X a.e. and

U is ergodic.

We are in position now to prove the main result of this section.

Theorem 1. If the semigroup (P,),;, satisfies (3), then there exists a unique o-finite

invariant measure g and m << g

Proof. The existence 1o0llows from Corollary 1. From Lemma 4 any invariant measure
is absolutely continuous with respect to \. Lemmas 5 and 7 tell, that U is a well
defined Markov conservative ergodic operator on Lg()). Therefore we can apply
Theorem 3.4.7 [7]), which guarantees the uniqueness of invariant measure.

Similarly an analogous result can be proved for discrete time Markov processes.
Since to the best of the author’s knowledge such result seems to be unknown (see [14],

[15]), we formulate and point out the only changes in the proof.
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Theorem 1'. If the transition operator P(x,-) of a discrete time Markov process

satisfies condition:

There exists a probability measure m such that
(10)  Vyeg m(A)>03V,ep L PUXA)=e
n=

then there exists unique o-finite invariant measure g and m << g&

Proof. Consider the operator U = Zl ($)"P". Then
n=

and (10) can be reformulated
(1) Vpeg m(A)> 03 Ve I UP(x,A) = =
n= ’

The operators Uk are Markov and for cach x € E, the measures fJ'“(x,-) and I_Jo(x,-) are
equivalent.
Finally g is P invariant if and only if U is invariant. The remaining steps of the

proof are exactly the same as in the proof of Theorem 1.
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) 3. Strong Harris Condition
. In this section we will recall first so-called Harris condition which we call strong
Harris comparing with its weak version from Section 2.

o Definition 2. If there exists a probability measure m such that )
ot (12) Vieg m(A) >0V, Px{ Io Xa(x,)ds = -} = |

‘! then the continuous time Markov process is called strong Harris. Analogously for

") discrete time Markov process with transition operator P(x,-) if
«®
XX (13) Vaieg Mm(A) > 03 Ve Px{ R XA(x,) = w}g 1

then discrete strong Harris condition is satisfied.

To get an unique invariant measure it is imposed usually either (12) for
continuous time Markov processes ([2]) or (13) for discrete time Markov processes ([9],
[14], [15])). Since strong Harris process is also weak Harris we can formulate a

Corollary of Theorem 1.

m: Corollary 4. Under (12) in continuous time or (13) in discrete time case, there exists a
unique invariant measure g and m << @

“w Below, we consider several situations in which strong Harris condition is satisfied.
\ Define first the most natural topology for standard Markov processes, so called fine

Py topology.

;- Definition 3. A Borel set A is a fine neighborhood of x (denote A € O(x)) if P o, >
0] = 1, where o, = T,¢, and for any B ¢ §, Ty = inf(t > 0, x, € B). If V_.,, A € O(x),
o then A is finely open and we denote A ¢ O, )
; A The family of open sets in original topology of (E,8) will be denoted by O and its

o basis at point x by O(x).

SN Wil s’\é. W _i",:\‘».fﬂ'ﬂa‘_}';&l‘vi“’.\‘«”.‘;,\“;u“- N GO0
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Definition 4. A point x ¢ E is finely strongly recurrent for standard Markov process

X if and only if

def
(14)  VYyep Yaeom LOWA) == PyB50, x, € A} = 1.

A point x € E is called strongly recurrent if

(15) VYEE VAEO(X) L(y,A) = ],

The next lemma provides an equivalent characterization of finely strongly and
strongly recurrent points.

Lemma 8. A point x is finely strongly recurrent if and only if
def -_—
(16)  Vyeg Yacogn QUY-A) == Pyfur fim x,(x,@) = 1} = L.

Similarly a point x is strongly recurrent if and only if

(17) VyeE VAGO(X) Q(y,A) = l-

Proof. It suffices to show (14) ® (16) and (15) ® (17). We will prove the first
implication since the proof of the second is a particular case of the first one. Let for

A € O(fx)
TY = inf(s > N, x, € A)

If for each N, T’x < %, Py a.s., then Q(y,A) = 1. Suppose there exists N such that Py(T’:
= «} 5> 0. Then l'-:v[l’x N{TN- =}] > 0 what contradicts (14) since P,(T, = «} = 1 -
L(z,A) = 0 for any z ¢ E.

Now we can formulate sufficient assumptions for strong Harris conditfon to be

satisfied.

Proposition 2. Suppose there exists a probability measure m such that




OO
1998
r‘t—
o
.;'!;E (18)  Vaeo m(A)> 03V, g Qy,A) = 1
%;‘)
‘ vzl’
' then a continuous strong Harris condition with measure » = mU is satisfied.
ny '.\
-
s Proof. Let B ¢ & Denote A, = [} xg(x)ds. If X(B) > 0, then [pU(x,B)m(dx) > 0 and
[ D]
My
:“_Jef because of Corollary 2, P_(As > 0) > 0. Therefore there exists €,6 > 0 such that for T
‘,q;;r = inf{s > 0: A, > €}, m({x: P{T, < «} > 8) > 0. Since
i o
A
3;:"' def
KX Up (x) == P (T, < =)
r'l;¢: €
o is excessive, then the set (x: uTe(x) > 6} is finely open and we can apply (18). But
\
‘:E% from Lemma 2a [1), uTe(xt) ~0on (T, ==}ast~ = Py as. for y € E. Thus for each
W
Q?g: y ¢ E, Py(TG = ®) = 0. Define T, = T, Tn+l =T, +Te¢ o eTn' By induction P’,('I'€ <
- =) =1 for y® ¢ E, and since A.rni ne, then
Oy
: .
3 PY{Io Xg(x,)ds = °} =]
.‘| \
: for y ¢ E.
gt
b
i
3
e Corollary 5. If x is finely strongly recurrent, then a strong Harris condition with
E A
hotn
}.!' measure U x,-) is satisfied.
i
.::::‘ Proof. Put m = s{x}, Dirac measure at x, then taking into account (16) we obtain
I."
\..l
i (18).
‘,:’::" Corollary 6. Assume x is strongly recurrent and any excessive function is ls.c. at x.
l'r, !
:Ig" Then the process X is strong Harris with measure U(x,-).
4.':'2‘
o Proof. Consider m = sm. Then (18) holds for any open set. Define similarly as in
ey
l.. ..
::::: the proof of Proposition 2 the additive -
R
S
RX
.“*”t
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functional A,, ¢,6 > 0 and excessive function u.r‘(y). Since u.re(y) is ls.c. at x, there
exists an open set C ¢ O(x) such that P,,(Te <*) > 86 fory e C. Since Q(z,C) = 1 for
each z ¢ E, then using the same arguments as in the proof of Proposition 2 we obtain

. P (T, < «} = 1 for z ¢ E, and finally strong Harris condition (12).

Corollary 7. If for some A > 0, the process X, = (x,,) satisfies discrete strong Harris
condition (13), then the continuous time process X = (x,),3, also satisfies strong Harris

condition (12).
Proof. The fact that X, satisfies (13) implies (18) and then (12).

Remark 1. An inverse result to Corollary 7 can be obtained under an additional
assumption that X = (x,),5, is regular Harris. Let g be the unique invariant measure
associated with X and P(x,-) denotes a singular part from the decomposition of
P.(x,-) with respect to . If lim 0 P:(x,E) = 0 for each x ¢ E, then X is called regular

Harris. Every strong Feller Harris process is regular. For proofs and details see [4].

11




4. Feller Markov Processes

N
"‘q‘f: Throughout this section almost everywhere we will assume at least that standard
Markov process X is Feller, i.c., the semigroup (P),;, associated with X transforms the
WY
.:;:«;'y space of all continuous bounded functions C into C.
POy
'::¢ Let us generalize first two existence theorems due to Foguel [8] and Lin [12].
AN
:;,;:; Theorem 2. Let X be Feller Markov and K a compact set. Then cither
g
:'l:‘;’ 1 5t
o
ety sup | =[P xdsl-‘O as t-w
pRn xeb I t Io X(x)
R or there exists an invariant probability measure &
it’gkl
e
@_::.:: Proof. In Foguel [8], Section 4, one can find an identical result formulated for
X
(‘“I
strongly continuous on C semigroup (P,),;, The analysis of proof shows that in fact
‘0 L\
‘.ﬁ“ only Feller property was applied.
;_‘
Wi . . . .
WA Theorem 3. Assume X is Feller Markov and there exists a continuous nonnegative,
Wit with compact support function g such that
W
!p'{.‘
s (19)  Ugg(x) = f Pg(x)ds == for x ¢E.
o,
o Then there exists an invariant o-finite measure
VN
:Z-f:;: Proof. We follow again Foguel [8). The proof for discrete time case of Section 5 [7]
) '1.0‘
) can be casily adapted to continuous time Feller processes, or we can consider discrete
g
;:1' time Feller process with the transition operator U(x,-) for which Theorem 5.3 [8] can
3
"3:: be exactly applied.
N : . : .
' Theorems 2 and 3 do not provide any information about possible uniqueness of .
f’:::::‘ invariant measure. To obtain this we have to assume more. In Section 3 we presented
s
G
T several uniqueness assumptions which led to Harris condition. Below we formulate an
i
4

uniqueness result exploiting different arguments.

12
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Proposition 3. Suppose the assumptions of Theorem 3 are satisfied and moreover the
measures U(x,-) for x ¢ E are equivalent. Then there exists a unique o-finite

invariant measure.

Proof. Since U(x,-), x € E are equivalent, for fixed X put m(-) = U(X,-). An analysis

of the proofs of Lemmas 3 and 4 shows that they still hold for m defined above.

Thus from Corollary 3, for any invariant measure g, m << g << mU = U%(X,-). But m
is equivalent to U%(X,-) (Corollary 2). Therefore any invariant measure is equivalent
to m. Let g, u, be o-finite invariant measures such that u,(g) = u,(8), and f,, f,
denote their densities with respect to measure m. Then the measure (n, - u2)+ is well
defined as a measure with density (f, — f,)*, and one can easily see (g, — u2)+ € (n, -

u)*P, for any r » 0. Now
¢
0 € <(u, — u)*P, — (1, — u)*, fo P,g ds>

t+ r t+
(20) = (i, — 1)t It ’ Pg ds — Io Pgds €y, j't ! P,g ds

=ru,(g) <=.

Letting t ~ =, from (19) we obtain (1, = u)* = (1, — u)*P, i, the measure (g, — u,)*
is invariant. Then also (uy, — up)” is invariant, and (n, = u,)*, (1, = #y)” form a pair of
singular invariant measures. Since all invariant measures are equivalent to m, and
#)(8) = uy(g), this can happen only when p; = p,.

In the above proof the Feller property of X and the continuity of g was only
important to guarantee the existence of an invariant measure. Therefore we have the

following corollary:

Corollary 8. If for standard Markov process X with semigroup (P,),;, there exists a

nonnegative bounded measurable function g with compact support such that Ugg(x) =
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» for x € E, and the measures U(x,-) for x ¢ E are equivalent, then there exists at

most one o-finite invariant measure.

There is a large family of standard Markov processes with semigroup (P,),3,
transforming the space of bounded measurable functions into C. We call such
processes strong Feller Markov. The next proposition generalizes an existence and
uniqueness result for continuous strong Feller processes due to Khasminskii [11] to

right continuous strong Feller processes.
Proposition 4. Suppose X is strong Feller Markov such that

(21) the semigroup (P,),;, transforms the space of continuous

functions vanishing at infinity C, into C,
def
(22) VAEO V¢>o'er Px{XA(xt)} == p(xat$A) >0

(23) there exists a compact recurrent set K, i.c.,

Vg PATg <=} = 1.

x

Then there exists a unique o-finite invariant measure.

Proof. Let L = {x ¢ E, p(x,K) € R}, where p denote a metric compatible with topology
of (E,8) in which every closed ball is compact. We will prove first that for a
sufficiently large R and fixed a > 0 there exists 6 > 0 such that ini‘xexP,‘(cxL > a) » 5.

In fact, from Proposition 1 [18], because of (21)

ilelg P (o € a) = i‘e’ﬁ P, [o%‘.’?. p(x,.x) > R] -0 asR~e=,

Define now the following sequence of Markov times

14




‘!::"1
’ T =T T, =Ty + 0,0 a‘rl' w Tap=Tapyt o0 eTzn-l’
. ) Tonp1 =T + T © e.rn y e
.;‘ll - For each x ¢ E, if T, is finite, then also Ty, , is P, as. finite.
! Let forn = 1,2, ..,
.,v S, = {w Tp(W) = Ty, 1(W) > 8, Ty (W) < =)
ot Then
"y
"
24 PIS |F =P o, > a] - ?
, 24) 50 | Fry ] "T,n_l[ R : i
.‘l\o
R
o From generalized Borel Cantelli lema
(-] [
o g 25 r =& L PIS | F = P as.
;.'I ( ) n=1 xsn n=1 x[ n I ,:rzn-ll x
™
M
g'.i -
)
st Therefore if T, _, < = for each n € N, then from (24), (25),
0 (26) T “ P_ as
:v:: R xsn : < 8S. .
R
t)
:’
But if T, ; = @ for some¢ n ¢ N, the process X remains in L forever. Thus for any
i‘,‘t‘ continuous function g with compact support, equal 1 on L, we have Uyg(x) = = for all
xs
“::: x ¢ E.
#
The proof will be finished if we show that measures U(x,-), x € E are equivalent,
]
i since then we can apply Proposition 3.
‘: For B ¢ & put I = {x: p(t,x,B) > 0) for some t > 0. Since p(t,x,B) is x-continuous,
;‘.
v then T is open and from (22) for anys > 0, y € E, p(s,y,[) = p(s + ¢, y, B) > 0. Because
T
;_:;.:' B and t were chosen arbitrarily, for any set B € §, we have either p(s,x,B) > 0 for s >
s
Ay
ZZ?:, 0, x € E or p(s,x,B) = 0 for all s > 0, x ¢ E. But then of course the measures U(x, '), x
g ¢ E are equivalent. The proof of Proposition 4 is finished.
ot
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The remaining part of this section is devoted to standard Markov processes with
semigroup (P,),;, satisfying (21).

It is proved in [17] that if (Py),3o in addition is quasicompact on the space of
bounded measurable functions, then there exists a finite disjoint family of invariant
sets, with each of them is associated a unique invqriant probability measure, and any
invariant measure is a combination of these measures.

Moreover a quasicompactness of (P30 is equivalent to so-called Doeblin
condition satisfied for some A > 0 which tells, that there exists a finite measure m, a

positive integer k and ¢ > 0 such that
(27) Vpee m(B) < ¢ # VieE P(x,p€B)<1—¢

One can easily see that if we impose any condition which guarantees the existence of
unique invariant set, then we automatically obtain the existence and uniqueness of

invariant measure.

Proposition 5. Suppose the semigroup (P)3, of standard Markov process is
quasicompact and satisfies (21). If moreover the measures U(x,-), x ¢ E are

equivalent, then there exists a unique invariant probability measure.

Proof. It suffices to notice that the equivalence of U(x,-) for x ¢ E implies that there

are no disjoint invariant sets.
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5. Examples
We finish the paper with three examples which should explain some assumptions

imposed in the paper as well as difficulties we meet.

Example 1. Consider a continuous version of Horowitz example [10]. Let E = R}, and
u be a measure concentrated on a countable set, that is not contained in a discrete

subgroup of Rl Let X be a right continuous Markov process with semigroup
Pf(x) = e*f(x) + (1 = e[ £(x - y)u(dy).

Following [10] we can show that Lebesgue measure ) is a unique invariant
measure for P, The measures p and ) are singular and invariant sets are of )
measure 0. Moreover X is Feller. Nevertheless it is not weak Harris. In fact, every
weak Harris process, because of Corollary 3 should satisfy the condition (3) with m
replaced by invariant measure. But in our case Uy(x,-) is concentrated on the set of X
measure 0. Thus there are processes possessing unique invariant measure which are

not weak Harris.

Example 2. Consider an example from [3], p. 289. Let E = (0,1) and X be a right

continuous Markov process with the semigroup
1
Pf(x) = e*f(x) + (1 —¢P) Io f(y)dy.

Then X is Feller and (x} € O(x). There are no finely recurrent points, but any point
is strongly recurrent. The functions f(y) = x{x](y) are excessive and are not ls.c.

Thus Corollary 6 cannot be applied. But X is strong Harris, and for m = ) (12) is

, satisfied, and ) is in fact a unique invariant measure.
- Example 3. Let E = [0,1). We will apply the following fact from Lebesgue measure
theory.

17




o, Proposition 6. There exists a measurable set C C [0,1], such that MC) = 1/2 and for

N any open interval I C[0,1]

" MCnID=X\I\C) ! (1)
i = = - .
o 2

:0. The proof is based on filling in the holes in a Cantor set by another smaller
Cantor set. For details see Exercise 5, p. 244 [16].
e Put 3,(B) = M(C i B), 3,(B) = (B \ C)
) \M@B) if xeC
P(x,B) =
.‘. M(B) if xeC
for measurable B C [0,1).

A right continuous process with the semigroup

A Pf(x) = e*f(x) + (1 = e™) j': £(y)P(x,dy)

is Feller Markov. Every point is strongly recurrent and ),, ), are singular invariant

measures for (P4
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