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1. Introduction

Let (E,C) be a locally compact, separable state space endowed with a Borel a-field

6. We consider a standard, nonterminating Markov process X - (,, Ft, F, xt, eO, Px,

Pt) on (E,C) (for definitions see [51 and [13]). If we want to apply any limit theorems

to process X we have to impose first the assumptions for which there exists a unique

finite or a-finite invariant measure p, i.e., a measure satisfying

VAE g(A) - ILPt(A) -f f Px(xt E A)g(dx) for t > 0.

In the paper we attempt to find fairly general conditions under which the

existence and uniqueness of invariant measure is guaranteed. The obtained results are

new or generalize at least slightly known. The author introduces a terminology: weak,

strong Harris, strong recurrence. TtrS Sections 2-d3 concern general standard

processes.w Section 4) restrict, ta'elve$_ to Feller or strong Feller standard

processes. Three examples considered ia-Secthyn--5 illustrate possible "unpleasant " -

- 4t

situations wtcan meet in general theory. .

2. Weak Harris Condition

The studies of invariant measures for continuous time Markov processes can be

reduced to discrete time case with the transition operator

It~def ,o~p

U(x,A) == AetPxA(x)dt for A E 6,

since from Proposition 2.1 [2] we have

Lemma 1. A measure gL is invariant for semigroup (Pt)t)o if and only if it is invariant

for U, i.e., uU - M.

The operator U and its powers satisfy the following identity

]t1



def

(1) VAE & Uo(x,A) == PtxA(x)dt = Un(x,A)0o n=1

since one can calculate

- tn-1

(2) Un(xA) e t (n-I)! PtXA(X)dt"

Definition I. If there exists a probability measure m such that

(3) VAE& m(A)> 0 4 VX(E Uo(x,A)-

then X is called weak Harris.

Comparing (3) with (1) we see that under (3) the operator U satisfies a discrete

weak Harris condition, i.e., there exists a probability measure m such that

(4) VAEC m(A)> 0 * VxE.E Un(x,A) -

We will need an improvement of the Harris theorem [9] due to Foguel [6].

Proposition I. Suppose there exists a probability measure m on a separable space (E,&)

such that for a Markov transition operator P

(5) VAE &m(A)> 0*VxE E j pn(x,A) > 0.
n=1

Then there exists a o-finite subinvariant measure gL i.e., VAE& jLP(A) (4 i(A). Moreover

m is absolutely continuous with respect to gt, what we denote m << I.

The following lemma provides a sufficient condition for a subinvariant measure g

to be invariant.

Lemma 2. Suppose gL is subinvariant and for some B c C, gB) <

(6) V " E E pn(xB) "
n=1

2



Then a is invariant.

Proof. We have

0 4 <A-/P, _ pn(.,B)> - gP(B) -PN+i(B) 4 g(B) <
n=1

Letting N - - we obtain a = aP.

Now we can adopt Proposition I and Lemma 2 to weak Harris processes, taking

into account (4).

Corollary 1. For weak Harris process there exists an invariant measure a and

m << P.

Nevertheless Proposition 1 and Corollary I say nothing about the uniqueness of

invariant measure a. The remaining part of Section 2 will prove that under (3) there

exists in fact unique invariant measure.

Let us start with the following:

Corollary 2. The measures Uk(x,.), k - 1,2, ..., and Uo(x,.) are equivalent, i.e., Uk(x,-)

<< Uo(x,.) << Uk(x,.).

Proof. Indeed, from (2),

VAC & Uk(x,A) > 0 44 Uo(x,A) > 0.

The next two lemmas are partially adapted from Lemma 1 and 2 of [2].

Lemma 3. Suppose B is an invariant set and v is an invariant measure. Then under

(3)

(7) m(BC) = v(BC) = 0.

3



Proof. If m(BC) > 0, then from (3), Uo(x,B) - for x i B and B cannot be invariant.

Thus m(Bc) - 0. Since B is invariable XB(x)Ptf(x) 4 Pt(fXB)(x) for x E E, and any

nonnegative bounded measurable f. Therefore

f Ptf(x)lB(x)v(dx) 4 f Pt(fxB(x)v(dx)) = v(fXB)

def
and measure n(A) == v(A A B) is subinvariant for (Pt)tP0 and then also for U. From

Lemma 2 the measure Y? is invariant. Since v is invariant, also iT(A) = v(A\B) is

invariant. But m(B) > 0 and from (3) and Corollary 2, U(x,B) > 0 for all x e E and

T(U(.,B)) = (B) = 0. This means - 0, and finally v = , V(BC) = 0.

Lemma 4. Under (3) each invariant measure g is absolutely continuous with respect to

mU.

Proof. Suppose mU(A) = 0. Then U(x,A) = 0 m a.e. . From Corollary 2 also Uo(x,A) =

0 m a.e. . The set r = (x: Uo(x,A) = 0) is invariant. In fact, if x E r, then Uo(x,A) =

Ex fot xA(x.)ds + Ex(U(xt,A)) = 0 and U(xt,A) = 0 Px a.s. Since U(xt,A) is P. a.s. right

continuous, then Px(3, U(xt,A) > 0) = 0. Now from Lemma 3, g(r) = 0. Thus

g(A) = gU(A) = f" U(x,A)g(dx) + fJr U(x,A)g(dx) = 0.

We summarize the obtained results.

Corollary 3. For any invariant measure a we have

(8) m << a << mU.

Proof. If m(A) > 0, then from (3) and Corollary 2, U(x,A) > 0 for each x C E.

Therefore for any invariant measure #L we have u(A) = g(U(A)) > 0. The relation

g << mU follows from Lemma 4.

4



To simplify notations we put MU ILL X. We would like to consider U as a linear

operator on L.)X). But we have to know first that U is then well defined.

Lemma 5. If f, are bounded measurable and fn(x) - 0 as n I,) a.e., then also Ufn

0, X a.e.

Proof. It is enough to consider fn(x) nonnegative. Let 2 - (x: fn(x) 74 0). By

assumption )X(Z) - mU(Z) - 0. Therefore U(x,Z) -0 m a.e. and using Corollary 2,

U2(X, Z) = 0 m a.e. . But this means U(x,Z) - 0, mU - ~a.e. Thus

U(x,fn) = U(x,fnXt) + U(x,fn)xr) ' IlfnIIU(x,') + U(x,fnX )-

First term is equal to 0, X~ a.e., while the second converges to 0 from the definition of

the set Z. This means U(x,fn) - 0, 1~ a.e.

The next lemma tells that the operator U satisfies discrete weak Harris condition

with measure m replaced by X~.

Lemma 6. If (3) is satisf ied, then

(9) VAEC & (A) > 0 o, C n=1 Un(x,A)=

Proof. If niU(A) > 0, then m((x: U(x,A) > 0)) > 0, and there exists 6 > 0 such that

m((x: U(x,A) ), 6)) > 0. Put B - (x: U(x,A) 6)

From (4), j Un(x,B) - -for x e E. Thus
n=1

U1 ~n(x,A) -fE U(y,A)Un(x,dy) ;0 6 f Un(x,dy) - Un(x,B)

and for any x e E, £Un(x,A) - as well.
n=1

5
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The operator U is Markov on L.(X) i.e. positive, linear, and UI = 1. Since wc

want to apply ergodic theory on L.(X) we need two notions associated with so-called

Hopf decomposition of E (see [7]).

Namely consider a family of functions G - (f c L,(g), 0 ( f ( 1, Uf ( f,

limn_.Unf - 0). The set D = sup(xj>o: f E G) is called dissipative part of E, while C

ff E\D is conservativ-.. If C - E, then U is called conservative.

If a family of invariant sets E = (A E C: U(x,A) = xA(x), X a.e.) contains only the

sets that differ from 0 or E on the set of X measure 0, then U is called ergodic.

Lemma 7. Under (3), the operator U is conservative and ergodic.

Proof. From Theorem 1.2.1 [71, D = U Dk, where Dk C Dk+ 1 and E Un(x,Dk) is bounded
n=1

for any k. If X(D) > 0 then there exists k such that X(Di-) > 0. But from (9) this

implies : Un(x,Dk) = , a contradiction, Thus X(D) = 0 and U is conservative.

n=1
Suppose now U(x,A) - xA(x) X a.e. and X(A) > 0. Then using (9) again, E Un(x,A)

n=1

= for x - E, and by Corollary 2, U(x,A) > 0 for each x c E. So xA(x) = 1, X a.e. and

U is ergodic.

We are in position now to prove the main result of this section.

Theorem I. If the semigroup (Pt)t; o satisfies (3), then there exists a unique a-finite

invariant measure u and m << g.

Proof. The existence tollows from Corollary 1. From Lemma 4 any invariant measure

is absolutely continuous with respect to X. Lemmas 5 and 7 tell, that U is a well

defined Markov conservative ergodic operator on L.(X). Therefore we can apply

Theorem 3.4.7 [7], which guarantees the uniqueness of invariant measure.

Similarly an analogous result can be proved for discrete time Markov processes.

Since to the best of the author's knowledge such result seems to be unknown (see [14],

[15]), we formulate and point out the only changes in the proof.

6
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Theorem 1'. If the transition operator P(x,.) of a discrete time Markov process

satisfies condition:

There exists a probability measure m such that

(10) VA( &m(A) > 0 * VEE E pn(x,A)=
n=1

then there exists unique o-finite invariant measure g and m << u.

Proof. Consider the operator U £ (l)Dpn. Then
n=1 

2

- def I *
U =E UT'=n E Pn

n=1 2 n=1

and (10) can be reformulated

(11) VAE &m(A) > O VxE E U[n(x,A)= .
n=l

The operators Uk are Markov and for each x c E, the measures Uk(x,.) and Uo(x,-) are

equivalent.

Finally g is P invariant if and only if U is invariant. The remaining steps of the

proof are exactly the same as in the proof of Theorem 1.

7
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3. Strong Harris Condition

In this section we will recall first so-called Harris condition which we call strong

Harris comparing with its weak version from Section 2.

Definition 2. If there exists a probability measure m such that

(12) VXA& m(A) > 0 * VxE P. f' XA(X.)ds ")= I

then the continuous time Markov process is called strong Harris. Analogously for

discrete time Markov process with transition operator P(x,.) if

(13) VAE &m(A)>0* VE E Px XA(Xn) I

then discrete strong Harris condition is satisfied.
To get an unique invariant measure it is imposed usually either (12) for

continuous time Markov processes ([2]) or (13) for discrete time Markov processes ([9],

[14], [15]). Since strong Harris process is also weak Harris we can formulate a

Corollary of Theorem 1.

Corollary 4. Under (12) in continuous time or (13) in discrete time case, there exists a

unique invariant measure i and m << I

Below, we consider several situations in which strong Harris condition is satisfied.

Define first the most natural topology for standard Markov processes, so called fine

topology.

Definition 3. A Borel set A is a fine neighborhood of x (denote A c O(x)) if Px[OA >

0] - 1, where aA = TAc, and for any B c 9, T B = inf(t > 0, x t c B). If VxEA , A Of(x),

then A is finely open and we denote A E Of

The family of open sets in original topology of (E,C) will be denoted by 0 and its

basis at point x by O(x).

--II 08



Definition 4. A point x E E is finely strongly recurrent for standard Markov process

X if and only if

def
(14) VyEE VAEO x) L(y,A) -= PY(9t2o , xt e A) = 1.

A point x E E is called strongly recurrent if

(15) VyEE VAEO(x) L(yA) - 1.

The next lemma provides an equivalent characterization of finely strongly and

strongly recurrent points.

Lemma 8. A point x is finely strongly recurrent if and only if

(16) VyEE VACO(x) Q(y,A) d=e Py(U: l_"-_M' XA(Xt(W)) = 1) =

Similarly a point x is strongly recurrent if and only if

(17) VyE- VAIO(x) Q(y,A) = 1.

Proof. It suffices to show (14) 4 (16) and (15) 4 (17). We will prove the first

implication since the proof of the second is a particular case of the first one. Let for

A e Of(x)

T-N _ inf(s > N, x3 e A)

If for each N, T N < , P a.s., then Q(y,A) = I. Suppose there exists N such that P (TN
A y A

= ") > 0. Then E[PX N(TN= -)] > 0 what contradicts (14) since Pz(TA = 1) = 1 -

L(z,A) - 0 for any z e E.

Now we can formulate sufficient assumptions for strong Harris condition to be

satisfied.

Proposition 2. Suppose there exists a probability measure m such that

9



(18) VA(Of m(A) > 0 * ,E Q(y,A) - 1

then a continuous strong Harris condition with measure ) = mU is satisfied.

Proof. Let B E C. Denote A, = ft xB(x.)ds. If ,(B) > 0, then fEU(x,B)m(dx) > 0 and

because of Corollary 2, Pm(A. > 0) > 0. Therefore there exists c,6 > 0 such that for T,

= inf(s > 0: As > E), m((x: Px(TE < -) > 5) > 0. Since

def
UT(X) == Px(TE <e)

is excessive, then the set (x: uT (X) > 6) is finely open and we can apply (18). But

from Lemma 2a [1], UT,(Xt) -0 on (TE= -) as t- -, Py a.s. for y E E. Thus for each

y E E, P (T -)= 0. Define T 1 = TE Tn+i - Tn + TE oO e By induction PY(TE <

=1 for y E E, and since ATn ne, then

P oxB(x.)ds =

for y e E.

Corollary 5. If x is finely strongly recurrent, then a strong Harris condition with

measure Ux,.) is satisfied.

Proof. Put m = S(x), Dirac measure at x, then taking into account (16) we obtain

(18).

Corollary 6. Assume x is strongly recurrent and any excessive function is l.s.c. at x.

Then the process X is strong Harris with measure U(x,.).

Proof. Consider m - 6Ix). Then (18) holds for any open set. Define similarly as in

the proof of Proposition 2 the additive

10



functional At. 1,6 > 0 and excessive function UT(y). Since uT (y) is I.s.c. at x, there

exists an open set C i O(x) such that PY(T 4 < )> 5 for y i C. Since Q(z,C) - 1 for

each z E E, then using the same arguments as in the proof of Proposition 2 we obtain

P(Tf < - I for z E E, and finally strong Harris condition (12).

Corollary 7. If for some A > 0, the process XA - (xA) satisfies discrete strong Harris

condition (13), then the continuous time process X - (xt)t) o also satisfies strong Harris

condition (12).

Proof. The fact that XA satisfies (13) implies (18) and then (12).

Remark 1. An inverse result to Corollary 7 can be obtained under an additional

assumption that X - (xt);oo is regular Harris. Let g be the unique invariant measure

associated with X and P,(x,.) denotes a singular part from the decomposition of

P,(x,.) with respect to 1. If limt.. Pl(x,E) - 0 for each x e E, then X is called regular

Harris. Every strong Feller Harris process is regular. For proofs and details see [4].

11



4. Feller Markov Processes

Throughout this section almost everywhere we will assume at least that standard

Markov process X is Feller, i.e., the semigroup (Pt)to associated with X transforms the

space of all continuous bounded functions C into C.

Let us generalize first two existence theorems due to Foguel [8] and Lin [12].

Theorem 2. Let X be Feller Markov and K a compact set. Then either

[ f I P.xK(x)dsI "0 as t-'Io

or there exists an invariant probability measure l.

Proof. In Foguel [8], Section 4, one can find an identical result formulated for

strongly continuous on C semigroup (Pt)t)o" The analysis of proof shows that in fact

only Feller property was applied.

Theorem 3. Assume X is Feller Markov and there exists a continuous nonnegative,

with compact support function g such that

(19) U~g(x) - J' Psg(x)ds - - for x E E.

Then there exists an invariant a-finite measure 1.

Proof. We follow again Foguel [8]. The proof for discrete time case of Section 5 [7]

can be easily adapted to continuous time Feller processes, or we can consider discrete

time Feller process with the transition operator U(x,-) for which Theorem 5.3 [8] can

be exactly applied.

Theorems 2 and 3 do not provide any information about possible uniqueness of

invariant measure. To obtain this we have to assume more. In Section 3 we presented

several uniqueness assumptions which led to Harris condition. Below we formulate an

uniqueness result exploiting different arguments.

12



Proposition 3. Suppose the assumptions of Theorem 3 are satisfied and moreover the

measures U(x,.) for x E E are equivalent. Then there exists a unique o-finite

invariant measure.

Proof. Since U(x,.), x e E are equivalent, for fixed i put m(.) - U(i,.). An analysis

of the proofs of Lemmas 3 and 4 shows that they still hold for m defined above.

Thus from Corollary 3, for any invariant measure p, m << g << mU _ U2(i',.). But m

is equivalent to U2(1,.) (Corollary 2). Therefore any invariant measure is equivalent

to m. Let iq, g2 be a-finite invariant measures such that u,(g) - g2(g), and f1, f 2

denote their densities with respect to measure m. Then the measure (A, - '2)+ is well

defined as a measure with density (fI - f 2)+, and one can easily see (au -/g)+ 4 (g, -

iL2)+Pr for any r 0 0. Now

0 4 <(91 - a2)+Pr - (u1 - 92)' P~g ds>

(t+r Pig ds - jr Pig ds g, f t+r P g ds(2) (IL 92 )+ ft F-t

a rg,(g) < -

Letting t -, from (19) we obtain (L - 2)+ - (L - a2)+Pr i.e., the measure (g - I2)+

is invariant. Then also (L - I2)- is invariant, and (g - I2)+, (IL - 92) form a pair of

singular invariant measures. Since all invariant measures are equivalent to m, and

IL(g) - g2(g), this can happen only when g, - g2.

In the above proof the Feller property of X and the continuity of g was only

important to guarantee the existence of an invariant measure. Therefore we have the

following corollary:

Corollary 8. If for standard Markov process X with semigroup (PdoO there exists a

nonnegative bounded measurable function g with compact support such that Uog(x) =

13



for x i E, and the measures U(x,.) for x E E are equivalent, then there exists at

most one a-finite invariant measure.

There is a large family of standard Markov processes with semigroup (Ptto

transforming the space of bounded measurable functions into C. We call such

processes strong Feller Markov. The next proposition generalizes an existence and

uniqueness result for continuous strong Feller processes due to Khasminskii [11] to

right continuous strong Feller processes.

Proposition 4. Suppose X is strong Feller Markov such that

(21) the semigroup (Pt)tto transforms the space of continuous

functions vanishing at infinity CO into CO

def
(22) VAEO Vt>0,xEE Px(XA(xt)) == p(x,t,A) > 0

(23) there exists a compact recurrent set K, i.e.,

VxEE PX(TK < -) = I.

Then there exists a unique a-finite invariant measure.

Proof. Let L - (x e E, p(x,K) 4 R), where p denote a metric compatible with topology

of (E,C) in which every closed ball is compact. We will prove first that for a

sufficiently large R and fixed a > 0 there exists 6 > 0 such that infxEKPX(oL > a) > 6.

In fact, from Proposition 1 [18], because of (21)

u Xasu Psuj p(x.,x)> R] -0 as R

Define now the following sequence of Markov times

14



TI MTKIT M Ti + OL O Iq, ... TsTzfli+ OLOQT2nl

-~+ T2 ft + TK 0 eT 2 .

For each x e E, if TM1 is finite, then also T21+1 is PX a.s. finite.

Let f or n - 1,2, ..

S.- (UT T2U( - T~n 1(W) > a, T 2.I(W) <

Then

(24) P.[Sn I FT~n1 -J T2- [L>a T nI2

From generalized Borel Cantelli lema

(25) E XS iw Px[Sn IFT = Pxa.s.
n=1 n n=1 T. Sn-i

Therefore if T 2n- < -for each n c N, then from (24), (25),

(26) E Xe M! n a.s. .

But if T2n-1  0' for some n e N, the process X remains in L forever. Thus for any

continuous function g with compact support, equal I on L, we have U~g(x) - - for all

x e E.

The proof will be finished if we show that measures U(x,-), x e E are equivalent,

since then we can apply Proposition 3.

For B e & put r - (x: p(t,x,B) > 0) for some t > 0. Since p(t,x,B) is x-continuous,

then r is open and from (22) for any s > 0, y e E. p(s,y,r) - p(s + t, y, B) > 0. Because

B and t were chosen arbitrarily, for any set B e 9, we have either p(s,x,B) > 0 f or s >

0, x e E or p(s,x,B) - 0 for all s > 0, x e E. But then of course the measures U(x, .), x

e E are equivalent. The proof of Proposition 4 is finished.

15



The remaining part of this section is devoted to standard Markov processes with

semigroup (Pt)t) 0 satisfying (21).

It is proved in [17] that if (Pt)t;o in addition is quasicompact on the space of

bounded measurable functions, then there exists a finite disjoint family of invariant

sets, with each of them is associated a unique invariant probability measure, and any

invariant measure is a combination of these measures.

Moreover a quasicompactness of (Pt)t;o is equivalent to so-called Doeblin

condition satisfied for some A > 0 which tells, that there exists a finite measure m, a

positive integer k and E > 0 such that

(27) VBE m(B) < E * Vx E P(Xk& C B) < l-.

One can easily see that if we impose any condition which guarantees the existence of

unique invariant set, then we automatically obtain the existence and uniqueness of

invariant measure.

Proposition 5. Suppose the semigroup (Pt)t),o of standard Markov process is

quasicompact and satisfies (21). If moreover the measures U(x,.), x C E are

equivalent, then there exists a unique invariant probability measure.

Proof. It suffices to notice that the equivalence of U(x,.) for x f E implies that there

are no disjoint invariant sets.

IN



5. Examples

We finish the paper with three examples which should explain some assumptions

imposed in the paper as well as difficulties we meet.

Example 1. Consider a continuous version of Horowitz example [10]. Let E = R1 , and

g be a measure concentrated on a countable set, that is not contained in a discrete

subgroup of R1. Let X be a right continuous Markov process with semigroup

Ptf(x) = e'tf(x) + (1 - et),f f(x - y)g(dy).

Following [10] we can show that Lebesgue measure X is a unique invariant

measure for PV" The measures g and X are singular and invariant sets are of X

measure 0. Moreover X is Feller. Nevertheless it is not weak Harris. In fact, every

weak Harris process, because of Corollary 3 should satisfy the condition (3) with m

replaced by invariant measure. But in our case Uo(x,.) is concentrated on the set of X

measure 0. Thus there are processes possessing unique invariant measure which are

not weak Harris.

Example 2. Consider an example from [3], p. 289. Let E - (0,1) and X be a right

continuous Markov process with the semigroup

Pf (x) - etf(x) + (I -e-t) fl° f(y)dy.

Then X is Feller and (x) E Of(x). There are no finely recurrent points, but any point

is strongly recurrent. The functions f(y) - x{,)(y) are excessive and are not I.s.c.

Thus Corollary 6 cannot be applied. But X is strong Harris, and for m = X (12) is

satisfied, and X is in fact a unique invariant measure.

Example 3. Let E - [0,1]. We will apply the following fact from Lebesgue measure

theory.
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Proposition 6. There exists a measurable set C C [0,11, such that X(C) - 1/2 and for

any open interval I C [0,11

X(C r) I) - )X(I \ C) k -

2

The proof is based on filling in the holes in a Cantor set by another smaller

Cantor set. For details see Exercise 5, p. 244 [16].

Put ),,(B) - )X(C r) B), )X2(B) - X(B \ C)

P(x,B) - IB f

X 2(B) i f x eC

for measurable B C [0, 1].

A right continuous process with the semigroup

P f(x) - eCtf(x) + (1 - e-t) fIfyP~~y

is Feller Markov. Every point is strongly recurrent and X, X are singular invariant

measures for (Pd)10*

181

Aill lilIII II 18



References

[1] Azema, J., Kaplan-Duflo, M., Revuz D., Recurrence fine des
Processus de Markov, Ann. Inst. H. Poincare 2(1966), 185-220.

[2] Azema, J., Kaplan-Duflo, M., Revuz, D., Mesure invariant sur
les classes recurrentes des processus de Markov, Z. Wahrs.
verw. Geb. 8(1967), 157-181.

[3] Azema, J., Dulfo, M., Revuz, D., Proprietes relaties des
processus de Markov recurrents, Z. Wahrs. verw. Geb. 13(1969),
286-314.

[4] Dulfo, M., Revuz, D., Proprietes asymptotiques des probabilites
de transition des processus de Markov recurrents, Ann. Inst. H.
Poincare 5(1969), 233-244.

[5] Dynkin, E. B., Markov Processes, Springer, 1965.

[6] Foguel, S. R., Limit Theorems for Markov Processes, T.A.M.S.
121(1966), 200-209.

[7] Foguel, S. R., Selected topics in the study of Markov operators,
Dept. Math., University of North Carolina, 1979.

[8] Foguel, S. R., The ergodic theory of positive operators on
continuous functions, Ann. Sc. Norm. Sup. Pisa 27(1973),
19-51.

[9] Harris, T. E., The existence of stationary measures for certain
Markov processes, Proc. III Berkeley Symp., vol. II (1956),
113-124.

[10] Horowitz, S., Markov processes on a locally compact space,
Israel J. Math., 7(1969), 311-324.

[11] Khasminskii, R. Z., Ergodic properties of recurrent diffusion
processes and stabilization of the solution to the Cauchy
problem for parabolic equations, Theor. Prob. Appl. 9(1960),
179-196.

[12] Lin, M., Conservative Markov Processes on a Topological
Space, Israel J. Math. 8(1970), 165-186.

[13] Meyer, P. A., Processus de Markov, Lect. Notes in Math. 26,
Springer, 1967.

[14] Orey, S., Limit theorems for Markov chain transition
probabilities, van Nostrand, 1971.

[15] Revuz, D., Markov Chains, North Holland, 1975.

[16] Sikorski, R., Real Functions, PWN Warsaw, 1958.

19



[17] Stettner, L., On the Poisson equation and optimal stopping of
ergodic Markov processes, to appear in Stochastics.

[18] Stettner, L., Zabczyk, J., Optimal stopping for Feller processes,
Preprint IMPAN N 0284, Warsaw, 1983.

20



g

IL

Iv
a-

<4

N

'4

-v

1% "A ~

4 ~


