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degrees-of-freedom in frictional sliding. It is found chat the inherent nonsymmecry
of the coupling between normal and tangential degrees of freedom on the interface
may lead to unstable steady sliding equilibria. It is also found that such instabi-
lities and consequent high:-frequency normal oscillations may lead to low-frequency

sizKsli7 mctions Dr p:zie.tlv smooth sliding motions at apparent values
o' the coefficient o' ne~ friction that are lower than the coefficient of
static friction. N~meri-cal st,.iies on the influence of various governing para-

ets on. these behavi,_.rs -are oeetd
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FOREWORD

u This report summarizes research obtained on Contract F-49620

84-C-0024 on Computational Methods for Nonlinear Dynamics Problems in

Solid and Structural Mechanics. The report particularly focuses on

Models of Dynamic Frictional Phenomena in Metallic Structures. The

original research objectives of this project were:

1.) Develop analytical models for contact mechanics problems involving
large deformations, rotations, large strains, and thermomechanical inter-
actions, with due consideration of frictional resistance.

2.) Conduct preliminary studies of simple quasi-static problems
with the characteristics listed above.

3.) Investigate dynamic friction mechanisms, their role in heat
generation, and the resulting thermomechanical response. Examine role
of thermomechanical effects in damage processes such as fatigue and wear.

4.) Conduct preliminary modeling studies of lubrication effects
in structural dynamics.

5.) Conduct parameter studies of new static and dynamic friction
models of large amplitude structural dynamics problems.

6.) Apply new static and dynamic models to the study of the mechanics
of structural damping, metal forming, dynamic contact (impact problems)
and elasto-plasticity. Correlate results with available experimental
data wherever feasible.

All of these objectives have been accomplished.

The work led to the following technical articles:

1. Oden, J.T. and Martins, J.A.C. [1984], "Models and Computational Methods
for Dynamic Friction Phenomena", Comp. Meth. Appl'd Mech. Engrg., vol.
52, pp. 527-634

2. Martins, J.A.C. and Oden, T.L. [19831, "A Numerical Analysis of a Class
of Problems in Elastodynamics with Friction", Comp. Meth. Appl'd. Mech.

Engrg., vol. 40, pp. 327-360

3. Oden, J.T. and Martins, J.A.C. [1984], "New Inteface Models of Dynamic
Friction Effects in Nonlinear Structural Dynamics", Proceedings of AIAA
25th Structures, Structural Dynamics & Materials Conference and AIAA

Dynamics Specialists Conference, Palm Springs, California, May, 1984

(iv)I
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4. Rabier, P.J., Oden, J.T., Martins, J.A.C. and Campos, L.T. [1986],
"Existence and Local Uniqueness of Solutions to Contact Problems in
Elasticity with Nonlinear Friction Laws", Int. J. Eng. Sc. [to appear]

5. Martins, J.A.C. and Oden, J.T. [1986], "Existence and Uniqueness Results
for Dynamic Contact Problems with Nonlinear Normal and Friction Interface

Laws", J. Nonlin. Analysis [to appear]

6. Rabier, P.J. and Oden, J.T. [1986], "Part I. Preliminaries and Formulation
of a Variation Inequality, J. Nonlin. Analysis [in review]

7. Rabier, P.J. and Oden. J.T. [1986], "Part II. Existence and Uniqueness

Theorem", J. Nonlin. Analysis [in review]

8. Oden, J.T. and Martins, J.A.C. [1985], "New Models and Theories of
Dynamic Friction", Developments in Mechanics, Vol. 13, Proceedings of
the 19th Midwestern Mechanics Conference, Columbus, Ohio, Ed. Popelar,

'S- C.H.

9. Martins, J.A.C. and Oden, J.T. [1985], "Interface Models, Variational
Principles and Numerical Solutions for Dynamic Friction Problems, In:

Mechanics of Material Interfaces, Ed. Selvadurai, A.P.S. and Voyiadjis,
G., Elsevier Science Publishers, Amsterdam, NL

The following personnel worked on the project:

Principal Investigator and Project Manager: Dr. J. Tinsley Oden

Senior Research Engineers: Dr. J.M. Bass, Dr. T.H. Miller

Graduate Research Engineers: Mr. C. Berry, Mr. J.A.C. Martins,
Mr. K.T. Hsieh, Mr. P. Devloo

Senior Scientific Consultants: Dr. E.B. Becker, Dr. N. Kikuchi,

Dr. P.J. Rabier.
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CHAPTER 1

INTRODUCTION

, 1.1 Motivation

R1.ative stiding motion between dry or poorZy eubticated

bodies a ftequently accompanied by noisy and ttoubl esome vibt.t4ons.

If the sound generated by the friction-induced oscillations of

Rviolin strings may be the delight of all music lovers, the sound

of a long piece of chalk sliding on a board, the ringing of a wine

glass when a moistened finger is run around its rim, the squeak

of the ill-lubricated hinges of a slowly opening door or the squealing

of vehicle brakes give a better idea of how undesirable the noise

generated by frictional oscillations may be. In industrial environ-

ments, friction-induced oscillations may be a serious problem.

The precise positioning of tables of machine tools is fundamental

for the accuracy of the work performed with them. However, it

may be severely prejudiced by the intermittency of its sliding

motion, particularly at the low speeds employed during final position-

ing adjustments. Such stick-sl ip motions (a designation coined

by Bowden and Leben [1939]) have a saw-tooth wave form consisting

of successive periods of repose and sudden sliding (see Figs.

1.1.1 and 1.1.2) and are the typical friction-induced oscillations

observed at small sliding speeds. In other applications, violent

friction-induced oscillations may lead to surface damage and failure

of machine components.

!1
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'4
Most experimental studies on friction and wear have been

concerned with finding qualitative and/or quantitative relationships

between friction and wear data and various governing parameters

and conditions, namely: the properties of bulk and surface layer

materials, the roughness of the surfaces in contact, the stress

levels, the sliding speed, the temperature, the environment, the

properties of the lubricants and the lubrication conditions. The

correlations found in those experimental works are usually assumed

to be intrinsic characteristics of the interfaces tested for the

ranges of parameters and conditions considered and, frequently,

they are used in the design of operating machinery. Difficulties

on the reproducibility of friction data with different experimental

apparati under otherwise similar conditions, and dependence of

the results of wear tests on the dynamic properties of the equipment

have been occasionally mentioned in the literature (Barwell [1959],

Soda et al [1975], Kato et al [1982], Madakson [1983]). However,

these effects have received comparatively little attention. Recent

experimental results by Rice et al [1982] and Aronov et al [1983

1984] show, in a striking manner, the effect that the change of

stiffness properties of an experimental apparatus may have on the

wear results. It should be noted that, for some experimental apparati

and with appropriate vibration measurement instrumentation,the correla-

tion between stiffness changes, friction-induced oscillations and

wear results may be clear (Aronov et al [1984]); in other circumstances,

particularly when the oscillations do not produce an audible noise

p



5

(Rice et al. [1982]), it may be rather difficult even to suspect of

those effects. Equally striking are the observations reported by

Tolstoi [1967] on the effect of external normal damping on the measur-

able values of the coefficients of static and kinetic friction: suffi-

ciently strong normal damping of the free normal microvibrations

of a slider can increase significantly the static friction, eliminate

apparent decreases of kinetic friction with the increasein sliding

velocity, i.e., it can eliminate all the frequently observed or

assumed distinctions between static and kinetic friction. It is

thus clear that no cotrrect intetpretation o6 experimental 6rction

and wear data i. possAible, no reliable prediction o6 6iction and

wezr in opeating machinety can be done, without a good knowledge

on the dynamic properties o6 the equipment involved and a good

underztanding o6 the oscillations that are Zikely to accompany

mos6t sltiding motion.I
1.2 Objectives, outline and major contributions

The objective or the research summarizea vn tnts report

i the development o6 modeZs and computational method4 6orL the

4. study o6 dynamic 6iction phenomena involving the dAy contact of

meta/Lic bodies. Special emphasis is given here to the following

topi cs: :10

(1) The study of phenomenological interface constitutive laws

capable of modelling realistic normal and tangential contact condi-

tions.

U-
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(ii) The formulation of dynamic contact problems incorporating

appropriate interface laws.

(iii) The numerical study of friction-induced oscillations at

small sliding speeds, in particular the occurrence of stick-slip

oscillations.

It is well known that no engineering surfaces are perfectly

flat, no matter how precise the machining process used to produce

an apparently flat finish. Under magnification one observes that

all polished surfaces have undulations that form hills and valleys,

the dimensions of which are large in comparison with molecular

dimensions. Furthermore, the surface layers (contaminants, adsorbed

j materials, oxides, work-hardened layers) which cover most exposed

metallic surfaces and which meet in actual contact processes, do

not have the same mechanical properties as the underlying bulk

materials. It i there6ore natural in developing continuum mechanc.s

models 6or contact probiems, to as.sgn to the nterfjace a Separate

sttucture chAactetized by phenomenolog cai Ztaw& independent o) the

contitutive equations that cha actetize the patent bulk materLias.

Toward assessing what features these interface models should

exhibit, a review and critique of a substantial body of experimental

literature on this subject has been done and is presented elsewhere
I%

(Oden and Martins [1985]). In Chapter 2 of this report the

major conclusions of that study are summarized as a basis for the

interface model introduced in the final section of the same chapter.

That interace model incotpoates a consttCtive Ltv f,.t the noLai

i=.
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defo'rabbi&y oi the Znterface and Coulomb',s &uv oj 'tcttcn. Contrary

to classical assumptions used in the study of friction-induced

Soscillations, no di~tinctcn between coefcients of static and

kinetc fiZctLon and no dependence oJ the Zatter on the s6tding

speed is cons>Ldeted tn thk' worL.

¢, The use of separate constitutive assumptions for the interface

behavior has not been frequent in continuum mechanics formulations

involving the dry contact between solid bodies (for a recent inter-

esting exception and related topics see Felder [1985] and the refer-

ences therein) Usually, unilateral contact conditions are adopted

which simply assert that, when two deformable bodies are pressed

together, no mutual penetration of the bodies occurs. In other words,

the compressed interface is assumed to have no normal compliance.

Thie approach has led to serious mathematical difficulties,

particularly in the formulation of dynamic contact problems. To

date, no general theory of existence is available for these problems

even in the frictionless case. Many of the unresolved mathematical

difficulties can be traced to the requirement of an unilateral

(non-compliant) contact constraint. In fact, these unilateral

dynamic contact problems are a particular case of general classes

of evolution problems governed by second-order (in time) partial

differential equations and subjected to unilateral constraints

on the unknown displacement field itself as opposed to constraints

on the time derivative of the displacement. Regularization (penali-

zation) techniques and monotonicity arguments, used successfully in thE

i.
•
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case of constraints on the time derivative of the unknown function, do

not, in general, yield the desired results when the constraint is on

the function itself b..cause, in this case, the corresponding multi-

valued operator is not monotone. Perhaps not surprisingly, t wiU be

shown, in the initial sections of Chapter 3, that, by tak.ng 6.tno ac-

count the normal compliance of the 4&tet ace, the essekrtkal difficutu

in the 6omulation of physicaly rea tc and mathematicaCay wele

posed dynamLc contact problem is 'temoved.

Throughout most of this work, one question will be central:

,what conditions may determine the occurrence of a smooth steady-slid-

ing or an intermittent stick-slip motion? By steady-sliding it

is meant, (recall Fig. 1.1.1(b)) the preservation of the static equi-

librium position of the body (slider) in frictional contact with

the moving foundation. When stick-slip oscillations occur, the

body does not stay in such an equilibrium position, although, at the

conclusion of the stick portion of each cycle, one would expect it to

be in a state very close to equilibrium. It is therefore natural to

ask if such steady-sliding equilibrium positions exist, if they

are unique and if they are dynamically stable. In an attempt to

answer these questions, the elastostatics problem corresponding to

the steady-sliding configuration and an appropriate eigenvaiue problem

are formulated in the final sections of Chapter 3. There u &p,

that, oz sujfrZe'tey smaU coejc -cceYts, oj tLc.cu!oi , ZpplLCd

tc9 the seadu-56&din p'tobZeni has Locaz u iii-cjue V7

;,*



The continuum mechanics problems formulated in Chapter 3 are

not easy to solve. The use of numerical techniques to obtain

approximate solutions will certainly be the only alternative available

to study the complex situations of interest. However, the number

of degrees-of-freedom required to produce acceptable finite-dimensional

models and the associated computational effort appear to be excessive

for the preliminary, essentially qualitative studies that are needed

to evaluate the interface laws adopted in Chapter 2. A simple mecnani-

cal system, not unlike many seen in friction experiments, that has

sufficient degrees-of-freedom to capture qualitatively the dynamic

friction behavior observed experimentally at low speeds, is a simple

V rigid body in plane motion. In Chapter 4, the same interface laws

adopted in the continuum case are also assumed to hold on the contact

interface of the rigid body. The influence Df various physical

and geometric parameters on the dynamic behavior of tie rigid body

P is studied in the same chapter. There it is shown that, -

Zu ZavtLge coeJ3'k'.envL o' jt~ctlcon and a ~U vais

t h et patameteLs nvoved, s eady- sA ii t.s durtamtcu . n5aoUe.

The dynamlic C'"tabiZity o' steady-s&c*db ng e br.'ii < a

L, I the inhetent non-symmetty oj the i- ccon ... . ',

uovetning equatoro and Lt may occut even wehei ta' i

k.net.Lc rction is a nsuned to be equae to -he cec~ ett : W~to sq

4"k fton. In the same chapter it is also numerically snown that.

5u4 f<Ct entty macil 4tLung uelocctu, tan e~ta st.,:s ao r',

,recall Fig. 1.1.1) the (-aS : tan , tnadu Lt , rau ?. .

,I A
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Zow-f.equency stick-si p osc.LJation; jot sufL C e ii. t

dtiving veLocity, Or fot rsuff cinty lagtLqe tangencai .4 e o

dnpfng, "appa.Lrently smooth" sliding motkons at avetage appatent

vaues of the coeffic ent o6 kinetic ficvion smae nt th , the &
tat4c one can be obsetved; and,aga'n, aU ths ma; happein .chcki

the true coejficient of kinetic ftrction is equaZ to the coeff4cee,tt

In Chapter 5, numerical techniques for the study of dynamic

friction phenomena are presented. Standard finite element methods

are used to obtain finite-dimensional approximations to tne continuum

mechanics problems formulated in Chapter 3. The multivalued Coulomb

friction law is approximated by using a regularization technique.

It is an immediate consequence of the theorems proved in Chapter

3 that the semi-disctete finite-eZement approximtons of the tequlat-

Zzed dynamic ri ction probems converge, in approprLiaeey .eak
." opologiez, to the soilution o6 the contcnuum non-. equlat _ed dunamc

J'tfr tkon prtobZem, when the tegu iztton patametet ten& so ze,

and the dmen5on o6 the fn e-eeme t space t e nds to' anf~z-ty. Full 7:

discretization of the governing equations is achieved by employing

techniques commonly used in structural dynamics computations:

the Newmark method and the central-diffarence technique. The

same time-discretization techniques are also used in the computations

of Chaoter 4 with the rigid-body models. In the final sections

of Chapter 5, various numerical examples demonstrate the feasibility

Uof the techniques proposed and show that otstab&.tu 5_d y-

'4"

rI
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a.ding and stick-slip motions may aZso occur and be numericaZly

studied in the case of deformable bodies.

In Chapter 6, a summary and the major conclusions of this
work are presented. Suggestions for further research are also ad-
vanced. It has also been noted that the mathematical theory of
contact and friction with Coulomb's law of friction is incomplete
and unsatisfactory. The details of a mathematical theory of dynamic
friction have now been established, and these are discussed in

Chapter 4. There remains the study of open questions of existence
and uniqueness of solutions of the Signorini problem for elasto-
statics with friction and the associated mathematical details needed

to make such a theory complete and self consistent. Some particular
results that are not readily reduced from the dynamics theory of

Chapter 3 are developed in an Appendix to this report. In particular,
the Signorini problem of contact of an elastic body with friction
is resolved by special methods in this Appendix.

Major contributions to this study are the following:

(i) A model of interface response for the study of dynamic

friction problems involving the dry contact of metallic

bodies;

(ii) Formulation of dynamic contact problems and proof of

existence and uniqueness of solutions to these problems;

(iii) Formulation of a steady sliding equilibrium problem and

proof of existence and local uniqueness of the solution

to this problem;

(iv) Numerical techniques and algorithms for the study of

dynamic friction problems;

(v) Numerical results and parametric studies on the stability

of steady-sliding, on the occurrence of stick-slip oscil-

lations and on apparent reductions of the coefficient

of kinetic friction.

I

A"
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CHAPTER 2

PHYSICAL ASPECTS OF DYNAMIC FRICTION

A MODEL OF INTERFACE BEHAVIOR

2.1 The classic laws of friction and the origin of frictional resist-

ance - A brief review

When two metallic bodies in contact are subjected to applied

forces which tend to produce relative sliding motion, friction

stresses develop on the interface that tend to oppose that motion.

In the following only the resultants of the stresses on

the contact surface will be considered: L the no~-mal force

and the friction force. The metallic bodies are considered

jessentially as rigid bodies with a well-defined tangential relative

velocity vT For consistency with usual continuum mechanics

Vconventions employed later, a negative normal force is associated
Ln

with the compression of the interface.

According to Moore [1975], the classic laws of friction,

as they evolved from early studies in the past centuries, are the

following:

(i) The friction force (at the onset of sliding and during

sliding) is proportional to the normal contact force,

The coefficient of proportionality, ,is known as the

coefficient of friction. Often two values of are quoted:

the coefficient of static friction, 'OS which applies to the

12
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onset of sliding and the coefficient of kinetic friction, k

which prevails during sliding motion.

(ii) The coefficient of friction is independent of the

apparent area of contact.

(iii) The static coefficient is greater than the kinetic

coefficient.

(iv) The coefficient of kinetic friction is independent

of the sliding velocity.

Another important characteristic of the friction force

is the following (Rabinowicz [1965]):

(v) When tangential motion occurs, the friction force

acts in the same direction of the relative velocity but in opposite

b sense,

-T n IVTI (2.1.2)

The first two laws, usually known as the Amontons laws

of friction, are generally observed to hold for gross motions

of effectively rigid bodies. However, we notice that deviations

from the first law have been reported at various circumstances:

Van increase of the coefficient of friction for light loads (Bowden

and Tabor [1964]), or an increase of friction for loads greater

than a fairly well defined value which corresponds to the breaking

of the oxide films on the surface (Bowden and Tabor [1964]) or

yet a decrease of the friction coefficient for very high loads

when the true area of contact approaches the magnitude of the

apparent area of contact and bulk plastic deformation of the bodies in

d a of the L in
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contact occurs (Bay and Wanheim [1976]).

The third and fourth laws deserve a more detailed discussion

since they are intimately associated with the occurrence of stick-

slip and other friction-induced oscillations. That discussion

is postponed to Sections 2.2 and 2.3.

According to Rabinowicz [1965], the fifth property above

has been essentially confirmed by experiment: for surfaces without

pronounced directional properties, the instantaneous friction

force may fluctuate by a degree or so from its assigned direction,

changing direction continuously and in random fashion as sliding

I? proceeds.

Detailed historical accounts and thorough discussions of

the theories proposed by early researchers to explain the origins

of frictional resistence can be found in the books of Bowden and

Tabor [1964], Dowson [1979] and Kragelskii [1965, 1982].

The adhesion-plowing theory of Bowden and Tabor (reviewed

in Bowden and Tabor [1950, 1964] and Tabor [1972, 1975, 1981])

has been the most widely accepted in recent decades among the

researchers of solid contact phenomena.

In that theory, the interfacial friction between metallic

bodies is attributed essentially to two causes: the 6ormation

and shearing o6 metallic junctions between the sut6ace aspvLt4es

and the plastic de6omation o6 the 5ofter surface by hard asperities.

As a consequence, the friction coefficient can be given as the

sum of two components resulting from each of the above effects,

Ij
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= :u Up , (2.1.3)

where a results from the adhesion (welding) and -P results

from the plastic deformation (plowing).

According to Bowden and Tabor [1964], when two clean metal

bodies are put in contact, plastic flow at the tips of the asperities

and local welding between opposing asperities occur. The true

area of contact (A ) is then proportional to the normal load,
r

Ar = iZnI/H (2.1.4)

Here H is the hardness of the softer of the contacting materials

Under plausible assumptions on the relative.strength of the interface

and the undeformed material in the hinterland, it is shown that

the adhesion component of the coefficient of friction is given

by

ua  = t/H , (2.1.5)

where T denotes the shear strength of the softer of the contacting

materials.

The Amontons laws of friction are then verified: the friction

force is proportional to the normal load and independent of the

apparent area of contact.

For most materials, -u is of the order of 0.2H so that,

for this simplified model, u a z 0.2. However, for clean metals

enormous values of u may be obtained and even for metals in

air U may be of the order unity. According to the same authors,

this discrepancy can be overcome if the plastic jancti q, qtowth (the

increase of true area of contact) due to combined normal and tangen-

Uk
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tial loading of the asperities is considered. In the amended

theory the junction growth is restricted by the presence of weak

contaminant layers on the interface so that In the end: for 'CtZU

cZean surfaces of very ductile materials infinitely large values

of are predicted; a very small amount of weakening of the
a

interface reduces l- to reasonable values of the order unity;
a

ii and for vety weak (contaminated) surfaces, such as when a good

lubricant or a thin layer of a softer material is present, a

is given again by an expression of the form (2.1.5) with T denoting

now the shear strength of the weak contaminant.

We wish to point out that this theory not only gives an

explanation for the Amontors laws of friction, but also allows

for interpretations of the other classic laws. Following arguments

of Rabinowicz [1951, 1965] the static friction is often greater

than the kinetic because the strength of the junctions would

increase with the time of stationary contact (we will discuss

this point in Section 2.2.2); the weak dependence of the friction

force on the sliding velocity would be a consequence of the small

rate dependence of the strengths of most solids; the opposite

directions of friction and sliding velocity would be a consequence

of the isotropy of the plastically deforming material on the contact.

We also point out that all the theory is based on the propor-

tionality Ar n (c.f. (2.1.4)). Archard [1957] and Greenwood

and Williamson [1966], among others, have shown that the assumption

of plastic deformation of the asperities is not essential to obtain

-S.
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this proportionality. Consequently, the Amontons laws can also

be explained in a similar manner when the deformation of the asperi-

ties is elastic. On the other hand, deviations from the proportional-

ity Ar ' 1Znl lead to deviations from the Amontons laws.

The plowing component (L ) of the friction can be estimated
p

using, for example, the simplified model of a hard conical asperity

grooving on a softer surface. It can be shown that, for the usually

small slopes of the asperities, the plowing component of friction

is negligible unless the adhesion is small.

Despite the wide acceptance of the adhesion-plowing theory

and its effectiveness in explaining the basic laws of friction,

several serious criticisms (e.g. Bikerman [1976]) have been offered

and some alternative theories have been proposed, especially in

recent years. These alternative theories have been developed

by authors who are especially concerned with the evoZution o6 the 6Zc-

tion fotce duing proZonged sliding and with the intetact4Lon between

frictiion and the wear damage of the suAfacez. The mechanisms advanced

by these new theories to explain the origin of friction involve

q the interlocking effects of the roughness, adhesion effects, and

plastic deformation effects - plowing by hard asperities and entrapped

wear particles and deformation of the asperities and of the subsurface

layers (see e.g. Rigney and Hirth [1979], Heilmann and Rigney

[1981], Kuhlmann-Wilsdorf [1981], Suh and Sin [1981]).

2.2 Static and and kinetic friction. Stick-slip motion.

2.2.1 Introduction. Historical Background.

'I.
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The distinctcon between the cue)'J4cterts vi s Lz c aid

k~netI'c ft~ctiuon has been mentioned in the literature for centuries,

at least since the work of Euler [1750]. That distinction was

also a major topic of Coulomb's [1785] detailed experimental study.

Coulomb's work is, in addition, the first major reference dealing

with the Zncrease o6 the coefficient of stxt4-*c iriction wth <ncteas-

ing times o6 tepos6e (stationary contact before the initiation

of sliding). Indeed, for certain combinations of materials and

surface conditions, Coulomb observed distinctions between static

and kinetic friction, dependence of the kinetic friction on the

sliding velocity and dependence of the static friction on the

time of repose. However, fot drty meta-to-meta- ite't6aces all

those distinctions ork varLiationi wete absent ot negligible.

Shortly after Coulomb's work, Vince [1785] also observed

that, for a variety of hard materials, the coefficient of kinetic

friction was independent of sliding speeds. Through the nineteenth

century , various authors confirmed the observations of Coulomb

for dry metallic interfaces with regard to both the coefficients

of static and kinetic friction: Rennie [1829], Morin [1832-35],

Hirn [1854], Jenkin and Ewing [1877].

Other authors, however, had different views: Kimball [1877a,b]

and Conti [1875] proposed, on the basis of their experiments with

• various dry or lubricated surfaces that, in general, the coefficient

of kinetic friction would be small and increasing with sliding

velocity at low velocities, then at some velocity (dependent on

W!,
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the materials and the normal pressure) it would achieve a maximum

after which it would decrease with the increase of speed. But

also, from Conti's experiments, it was clear that such variations

were smaller for the case of dry interfaces.

As noted by Kragelskii [1965], the early experiments on

kinetic friction were done at relatively small sliding speeds:

Coulomb did not exceed 2.5 m/s; Rennie, 2.56 m/s, Morin, 4 m/s

and Jenkin and Ewing 0.003 m/s. The application of dry friction

in the brakes of railway carriages prompted the study of frictional

sliding at higher velocities. For sliding speeds in the range

I - 25 m/s, approximately, Poiree [1852], Bochet [1861] and Galton

[1878] observed decreases of the coefficient of friction with

the increase of sliding velocity, consistent vith the results

of Kimball and Conti. For sufficiently high sliding speeds it

is thus clear that decreases of kinetic friction with increasing

speeds may indeed occur in the dry sliding of metallic bodies.

Kragelskii [1965, 1982] provides various practical formulae for

this situation and explains it as being the result of material
.4

softening due to the high temperatures generated on the contact

neighborhood.

However, for the small velocity range that we are mostly

interested in, the situation is not so clear. Conflicting results

obtained with various lubrication conditions and the absence of

a clear understanding or the distinction between dry and lubricated

-ir sliding added much to the confusion established during the second

% 4 * r
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half of the past century on the velocity dependence of the coefficient

of friction. Unfortunately, the fundamental advances on the theory

and applications of lubrication by the turn of the century (1880's

to 1910's - see Dowson [1979]) apparently were not accompanied

by corresponding advances on the knowledge of dry friction at

small velocities.

Well into the twentieth century Bowden and Leben [1939]

and Bowden and Tabor [1939], while studying the nature of kinetic

friction between dry metallic surfaces, observed that the friction

force was not constant during sliding: typical saw-tooth stick-slip

oscillations occurred when the metals in contact were not similar;

large very irregular but more slow fluctuations occurred when

the surfaces in contact were of the same metal.

The need to eliminate or atenuate stick-slip motions in

various practical applications has originated the publication

of a large number of studies on the subject during the past fifty

years. These studies have provided most of the recent information

on dry sliding friction at small speeds. The papers by Bell and

Burdekin [1969-70], Antoniou, Cameron and Gentle [1976], Richardson

and Nolle [1976] and Oden and Martins [1985] provide surveys of

related aspects of the friction literature and additional references.

Soon it was realized that the stick-slip motion was a relaxa-

tion oscillation which was influenced not only oy the nature of

the surfaces in contact but also, in a fundamental manner, by

the dyramic properties \stiffness, inertia, damping ... of the

a.'
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experimental apparatus.

In experiments carried out, using either especially designed

apparati or slightly modified machine tool tables and slideways,

it has been observed that the amplitude of the stick-slip motion

decreases when:

a the driving velocity iT increases (see Fig. 2.2.1)

b) the damping coefficient C increases (Brockley et al

[1967])

* (c) the spring stiffness K increases (see Fig. 2.2.1)

1. d) the mass M of the slider decreases (Kato and Matsubaya-

- shi [1970]).

It has also been observed that the frequency of the stick-slip

motion increases with the increase of the driving velocity and

that the maximum value of this frequency approaches the undamped

natural frequency of the system (Figs. 2.2.2 and 2.2.3) although

Jin some cases the oscillation stops at a level well below that

natural frequency.

Kaidanovskii and Khaikin [1933] and Blok [1940] pointed

out that such oscillations might occur if the friction force decreased

when the sliding velocity increases, a condition that may lead

to an overall negative damping in the sliding system. The dectease of

the coeffcient of f, Liron wih the knctease of sl''ng vedocLy

according to some continuous or discontinuous law, has been thus

one of the most common assumptions in the studies of stick-slip

A motion. The other major assumption used in the literature is the

*V



* E

-VD

4J

0

3c

6-J

0 -

-JL

(nv)~~~ el!IW %q-o~ -



23

~200

102

a SO LI.N RMAL LOAD

I.__Qjj , _ _, _ _0

& o't- - ' 000 1

Fiou f22. varios ortikli frqunyoahdris. eo

Natural frequencies of tihe system: tangential mode 150

.Hz; normal mode ~200 Hz. Uniubricated. (Dokos F1045]1).

[I

b-00
"

CL 100
,' , " , . - - - . . . . - 4" J' -" ." ." . . .. " ' .. . . ,0 - . ,

- • ,'N , , • " ' " " " -' ' - " " 1 ' , " " ., " " .' ' " • " • " " . " - ; - - -" • " - . " - - .



0

-4 pIe
'4,

U N. - -~

a C.)
a.
U,

0
No -I-

0

'4'.

- "44

S .--.-

-~ S

'4..- - _

'4. I

-"'44

'4%'

4"
_______________________________________________________ 0 "4

N 00

(Z~.j) A~u~nbej~ dqs-~!jS

4...'.

p.
4-

p



M

25U
increase o4 the coe6ficient of static friction with the time of

stationaty contact (Ishlinskii and Kragelskii [1944]). In Fig. 2.2.4,

we summarize some of the most representative assumptions used

in the study of stick-slip oscillations.

At this point a question arises: if, as noted previously,

most early researchers of frictional sliding with dry metallic

bodies could not find significant dependence of the kinetic friction

on the sliding speed at small speeds, or significant dependence

of the static friction on the time of stationary contact, then

what are the additional experimental results that support the use

of such assumptions in the analyses of stick-slip motions?

i
2.2.2 Time dependence or rate dependence of the coefficient of static

friction.

Consider a slider resting on a surface with no macroscopic

sliding motion relative to the surface and the friction force

IT increasing at a constant rate I T / IIZn I until gross sliding

occurs. Under these conditions it can be observed that the value

Ws of cP = IT/lIn I at which the macroscopic sliding occurs increases

with the decrease of the rate (;P) of application of the tangential

force (see Fig. 2.2.5). Observations of this kind can be done

in the course of stick-slip oscillations: smaller driving velocities

imply smaller rates of application of the tangential force and,

consequently, the friction force at the onset of sliding becomes

larger.

I
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ts (linear scale)

() Variation of swith time of stationary contact (t). r a
survey of the various analytical expressions used in te literature
see Richardson and Nolle C1976]).

(a) (b) (C)

sliding sliding sliding
velocity velocity velocity

(d) (e)

slidin slidig
ve ocity velocity

A' parabolic I" parabolic

M1 (g)

sliding sliding
velocty velocity

(11) Variation of ;K with sliding velocity.

Figure 2.2.4. Models of the variation of the friction coefficier.
(11a) Blok F1940]; (I) & (!I!) lsn insKii and Krace-
skii r194d]; (I) & (Mb) Deriaguin et al [:19 ]; 71;
(I1c) Brockley et al Fd 3eMe -
1,lie) Bell at al [196 -70 ; :f) Banerj"ee
Mlg) Bo and Pavelescj 1382].
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Fiure 2.2.5. Rate dependence of the static coefficient of friction.
S1 And S2 are the points at which qross slidinq initi-
ates; co and 02 are the rates of increase of the tangen-

tial force coefficients (p and D2; ts, and ts2 are the

times of stationary contact; 10sl and us2 are the static

coefficients of friction.
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As seen in Fig. 2.2.5, smaller rates Q correspond also

to larger times of stationary contact (t s). This led to the classical

statement: the coefficient of static friction (L) increases with
5

the time of stationary contact (t s). And this also led to a physical

interpretation analogous to the one used to explain coefficients

of static friction larger than coefficients of kinetic friction

(recall Section 2.1): the strength of the contact junctions would

increase with the time of stationary contact. Expressions proposed

by several authors for this "time dependence of the coefficient

of static friction" can be found in a survey paper by Richardson

and Nolle [1976] and have been used in the analysis of stick-slip

motions. See also Brockley and Davis [1968] and Kato and Matsubayashi

[1970] for specific mechanisms proposed to explain the contact

strengthening.

However, the experimental work of several authors suggests

that these interpretations were not correct.

Simkins [1967] carried out experiments to observe the micro-

displacements of a slider before gross-sliding. He found that

higher rates of loading inevitably led to macroscopic sliding

at lower force levels. However, in other experiments designed

to assess the influence of the time of stationary contact on the

" value of the static coefficient of friction, he could not find

Jil any correlation between the time of stationary contact and the

value obtained for that coefficient.

Johannes, Green and Brockley [1973] (working with lubricated

U
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surfaces) and Richardson and Nolle 1976 (with "quite dry but not

qrease free'surfaces ) carried out experiments in such a manner that

they could vary independently the rate of application of the tangen-

tial force and the time of stationary contact. In those circumstances

they found that the govetning vaiable was the Late of tnctease

o6 the tangential force and not the time of stationay contact.

The dependence of U on p obtained by Richardson and
s

Nolle is such that, jot suf'6cienty smati Zoad tates, the coel'iccent

06 static tction is constant and equa to a value which i the

"suatly quoted coe66icient of static 6rction. Fo't large Zoading

'tates the coe66cient o6 static 6riction tends to be cons6tant

and equal to a vaue which i, uaUy intepteted a6 the coeficient

i o6 kinetic 6tiction, although comparative measurements have rarely

been made.

- As a consequence of their observations, Richardson and

Nolle [1976] suggest that empirical expressions of as a function

of t should be recast as W s as a function of . Although

such a program appears feasible, the implications of those experiment-

al findings are more profound than that solution suggests: if

the coefficient of static friction is not affected by the time

of stationary contact, all the classical interpretations in terms

of an increase of the strength of the junctions with time will

no longer be valid. What is then the mechanism responsible for

the "rate dependence" of the static friction? Although it has

been suggested (Bhushan [1980]) that the strain rate dependence6

No!A
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of the metal strengths should be taken into account in this context,

to our knowledge no detailed explanation has been advanced and

the whole subject appears to be far from settled (in this respect

see also Tudor and Bo [19821).

2.2.3. The steady -state coefficient of kinetic friction.

For hard on soft metal combinations (steel on indium and

I A .steel on lead) coefficients of friction increasing with sliding

velocity in the ranges 10-10 to 10-4 cm/s and 10"I0 to 10-8 cm/s,

respectively, were obtained by Burwell and Rabinowicz [1953].

These increasing portions of the - vT  curves are attributed

by Rabinowicz [1965], Kragelskii [1965] and Tolstoi [1967] to

the creep deformation of the interface asperities. Burwell and

Rabinowicz [1953] point out that, for harder metals, such as aluminum

copper, steel, etc., it is probable that an initial increasing

branch of the L - vT curve also exists. The difficulty to provide

additional experimental evidence of this, at velocities of the

order 10-9 cm/s, is obviously extraordinary. In any case, since

those velocities are so small, it can be concluded, following

Bowden and Tabor [1964],that the frictional behaviot o6 o'rdinay engi-

neeting metal6 at toom temperactuAe Z6 reasonably weU explained

in tetms o6 their plastic properttes withowt introducing the patt

played by creep.

a-,

A On the other hand, despite the frequent allusions to coeffi-

cients of friction decreasing with sliding velocity, most of the

experimental steady-sliding results of that type available in

!% 'C' 'a
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the literature apply to lubricated surfaces. A reason for this,

in addition to the obvious importance of the lubricated case,

is the difficulty in obtaining, with dry metallic interfaces and

most of the experimental apparati, a smooth steady-sliding (without

stick-slip oscillations) at low sliding speeds (Heyman, Rabinowicz

and Rightmire [1955]). Despite these difficulties some steady-state

decreasing friction-velocity curves are reported in the works

of Rabinowicz [1965] (a small negative slope for titanium on titanium

-7 2in the range 10 to 10 cm/s, larger slopes for steel on steel

in the range 10- 3 to 102 cm/s), Bell and Burdekin [1969-70b] (cast-

iron on cast-iron for speeds smaller than 2.54 cm/s down to a non-

specified speed). For the same hard on soft metal combinations

mentioned above, but for larger speeds (> 10-3 cm/s), Burwell and

Rabinowicz [1953] also obtained w -vT decreasing curves. In another

paper, Heyman, Rabinowicz and Rightmire [1955] concluded that

the limited data obtained by them at that time suggested that,

for most metals, the coefficient of friction was affected very
-j"1-4 1-6

little as the speed varied in the range 10 to 10 cm/s. Rabinowicz

[1965] states that for hard metal combinations decreasing u -vT

V curves are typically found but he emphasizes the smallness of

the slopes of those curves when u is plotted against the logarithm

of the speed.

2.2.4. The coefficient of kinetic friction during the slip phase

of stick-slip motions.

Whatever the steady-state friction-velocity curve is or

%
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is believed to be, it soon became clear that during the slip portion

of the stick-slip cycles the friction force would not follow the

path predicted by such a curve. Instead, experimental results

show that the friction force follows a loop - the friction force

during the acceleration portion of the sliding is in general distinct

from the friction force during the deceleration.

Unfortunately, the various experimental observations of

these cycles are not conclusive: different material combinations

and different experimental apparati originate loops with distinct

shapes and orientations (Sampson et al [1943], Hunt et al F1965],

Bell and Burdekin [1969-70], Antoniou et al [1976] and, even for

the same materials and the same experimental apparatus, changes

on the driving velocity or dynamic properties of the apparatus

affect radically the resulting loops (see the experimental results

of Bell and Burdekin [1969-70] reproduced in Fig. 2.2.6).

Those experimental observations, particularly those in

Fig. 2.2.6, suggest that the friction-velocity plots obtained

in the course of stick-slip motions are not an intrinsic property

of the surfaces in contact - they are greatly affected by all

the dynamic variables involved in each particular experimental

set up.

Rather than assume a simpl6ied reZationship between the

fiction 6otce and the 6yiding velocity, ftom which the experimental

evidence will deviate often, an acceptabZe theory of stick-6Zip

motion wiV have to expZain, in a unified mannet, the complex

relationship between the friction f orce and the Ziding velocitu

q
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and at' .tet actots that ate ssociated w4Ch the f- lp

'1et2:, \e.g. the rate dependence of the static friction).

2.2.5. Memory-dependent friction.

Some authors have attempted to give unified interpretations

of various phenomena observed at low sliding speeds on the basis

(,f friction laws that allow for a dependence of the friction stresses

on the previous sliding history.

Various experimental observations with metals suggested

to Rabinowicz [1958] that the friction force would be determined

not only by the instantaneous sliding conditions but by the sliding

history of a preceeding critical distance (of the order 10-3 cm

j for various metallic surfaces). This critical distance concept

was employed by the same author with the purpose of: explaining

clockwise loops described by the friction force during the sliding

portion of stick-slip cycles; correlating the steady-state friction

-sliding speed curves [uK = UK(VT)] with the static friction-time

of stationary contact curves [,s = IS(t s)]; explaining the transition

from stick-slip motion to smooth steady-sliding.

Although Rabinowicz [1958] provided some promising comparisons

between the predictions of his model and experimental results,

IN the absence of a detailed analytical or numerical study on the

behaviors predicted by his model precludes a -efinitive conclusion

on its validity. Furthermore, experimental results published

after Rabinowicz's paper raise some new difficulties: How to explain

ithe counterclockwise loops of the friction coefficient observed

!p
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by Antoniou et al. [1976]? How to surmount the questions raised

(recall Section 2.2.2) on the validity of the major physical basis

for Rabinowicz s correlation between the us(t s) and KVT curves,

i.e., the increase of the strength of the junctions with the time

of contact?

More elaborate models which also take into account memory

effects in frictional phenomena, have been advanced in recent

years by Ruina [1980, 1983], Rice and Ruina [1983]. Gu et al. [1983]

and some promising results and simulations of geological fault

V" slip phenomena based on these models have been presented (Tse

and Rice [1984]). A brief summary and discussion of this current

field of research can be found in Oden and Martins [1985]. To

our knowledge, an experimental study on the applicability of these

models to metal surfaces has not been done yet.

2.3. The importance of the normal degree of freedom in sliding

friction.

Substantially different ideas were advanced mainly by some

Russian authors: initially Kudinov [1958] for lubricated contacts

and later Tolstoi [1967] for dry contacts. Tolstoi observed that

the forward movements of a slider during stick-slip motion occur

in strict syncronism with upward normal jumps (Fig. 2.3.1). Observed

decreases of friction during the sliding portions of the stick-slip

motion might be thus the result of a decrease of the average normal

contact force during the sliding and jumping, without the need

zm %Fp :w
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to consider any reduction on the real coefficient of friction.

More detailed observation of these upward jumps revealed that, while

sliding, the body undergoes a normal oscillation, the frequency of

which (of the order of 103 Hz) is consistent with the normal interface

stiffness properties (Fig. 2.3.2).

We note that several authors have also done observations

analogous to these. In their early study Bowden and Tabor [1939]

measured the interface electrical conductance during stick-slip

motion and observed a marked fall of electrical conductance during

the slip phase of the motion (see Figs. 9a and 9b, Plate 26, op.

cit.). More detailed analysis also revealed that during those

N slips the conductance actually oscillated very rapidly with frequen-

cies of the order 105 Hz (see Fig. 10a, Plate 26, op. cit.).

These changes in conductance are attributed by those authors to

corresponding changes in the true area of contact and this indeed

suggests the occurence of normal oscillations of the type observed

by Tolstoi and co-workers. Of course, for clearly distinct experimen-

tal apparati, contact geometries and loads, the frequencies observed

are also very different. Sharp decreases of electrical conductance

during the slip phase of (lubricated) stick-slip motions can also

be found in the work of Johannes et al [1973]. Direct measurements

of the separation of unlubricated and lubricated surfaces during

stick-slip moton were also done by Bo and Pavelescu [1982] and

by Tudor and Bo [1982], respectively. Other experimental evidence,

although less conclusive, of the influence of the normal degree

'46.

p .'. > i J i - -. . 'm iI W; ' '; 
-

, '.'.,.. ¢ .:', ." .- ' " - " ... .• "



NeI

c-E

(A 0i
0-J

a LM

(A (-

CD

to so ?n

- - -



i
39

of freedom on stick-slip motions was presented by Antoniou, Cameron

and Gentle [1976] and by Elder and Eiss [1969].

Specially important was the experimental observation by

Tolstoi that external damping of the normal free microvibrations

of a slider could eliminate the decrease of friction force with

the increase of sliding velocity. No quantitative distinction

between static and kinetic friction could be observed in those

circumstances. Furthermore, when normal damping was introduced,

with no change on the driving velocity, during a run that showed

stick-slip oscillations, it was observed that the oscillations

ceased and that the value of the coefficient of friction for the . .

subsequent smooth sliding was even greater than the maximum values

obtained at the end of the stick periods of the stick-slip motion.

The responsibility of the freedom of normal displacement for both

the falling T - vT relation and the stick-slip motion was corrobo-

rated in another manner: sufficiently heavy tangential damping

alone could indeed suppress the stick-slip oscillations but it

failed to affect the negative slope of the IT - vT curve.

From these (and other) observations Tolstoi concludes that

oscillations normal to the contact surface play a key role in

both "static" and "kinetic" friction.

With respect to static tiction, apparent reductions of the

measurable static coefficient at any rate of application of the

tangential force, would be the result ofmicroseisms of amplitudes

0.1 to 10 m commonly observed on the earth crust (cf. Coulomb
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" [1956])

With respect to kinetcc 6i'ctLion, Tolstoi and co-workers

have proposed the following mechanisms to explain apparent coeffi-

cients of kinetic friction lower than the static one:

(I) Asymmetry o6 normal contact oscitlations (Tolstoi [1967])

- An increase in the speed of the slider increases upward components

of the impulses exerted on the slider asperities as they collide

Lwith those of the underlying surface; this increases the amplitude

of the normal natural vibrations of the slider which are governed

by the contact stiffness and mass of the slider; due to the nonlinear-

ity of the normal force-penetration relationship (see Section

2.4), the normal vibrations of the slider are highly asymmetric

and, consequently, an increase of the amplitude of the oscillation

decreases the mean level of penetration during sliding; hence,

the average area of contact decreases and, as a result, the friction

force also decreases. This mechanism provides thus an explanation

for apparent decreases o6 kinetic 6rictiton with ncreasing sid4ing

,speeds.

V (II) High-6requency 4tick-slip motions (Budanov, Kudinov and

Tolstoi [1980]) - Oscillations in normal contact force induce

similar oscillations on the maximum instantaneously available

friction force so that during each cycle of normal oscillation

the slider will alternately stick and slide; since the frequency

of the normal oscillation is high, its amplitude small and the

average sliding velocity of the body also small, the motion of

I
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the body will be recorded as an apparently smooth sliding; furthermore

the ratio between friction and normal force for the short periods

of sticking is smaller than the coefficient of static friction,

so that, in average, an apparent coefficient of kinetic friction

results which is smaller than the true static one; also, for larger

average sliding speeds, the average time of stick of the successive

stick-slip cycles will be smaller, so that the aveage apparLent coef-

6icient o6 6tiction will incteae with the aveage sZ d.Cng veoczty.

As might be expected, the influence of normal oscillations

on friction phenomena is not exclusive of the stick-slip motion.

For various experimental observations on this respect we refer

j to the works of Tolstoi [1967], Godfrey [1967], Lenkiewicz [19691,

Soom and Kim [1983a, b] and Aronov et al [1983, 1984].

The experimental evidence collected in this section leads

us to the conclusion that an apptoptiate mode2 fout Zidng friction

mut incoprpoate physicaUy teaonabte notmal contact 4Ztetiace

conditions.

The stiffness properties of compressed metallic surfaces

are summarized in the next section.

2.4. The normal stiffness of metallic interfaces.

Theoretical models and experimental results for the normal

deformability of rough metallic surfaces are available in the
literature. For the theoretical developments we refer to the

survey papers of Archard [1974], Thomas [1975] and Whitehouse

m
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[1980]. More recent references are the papers by Greenwood [1984]

and by Greenwood, Johnson and Matsubara [1984]. For the experimental

work we refer to the survey papers of Back, Burdekin and Cowley

[1973] and Woo and Thomas [1980].

The more elaborate theoretical models are based on a statisti-

cal description of the surface topography and incorporate suitable

assumptions on the mechanical behavior of the interface asperities:

elastic, plastic, elasto-plastic, work-hardening, etc.

Comparing the predictions of the theoretical models with

the available experimental results, some broad conclusions on the

behavior of quasistatically compressed metallic surfaces can be

a drawn. We summarize them as follows (for additional details see

Oden and Martins [1985]):

On the mode o6 de6otmation o6 metal surfaces:

(i) The essential factors affecting the mode of deformation

of a rough surface are the material properties and the surface

finish. The normal load is expected to have little effect on

the mode of deformation of the surface.

(ii) For most engineering materials and surface finishes,

the initial contact of the surfaces is expected to be plastic

even at light loads.

(iii) The repeated loading-unloading-reloading of the metal

surfaces, as in normal sliding or in metallurgical polishing,

produces changes in the shape of the asperities, which lead to

a subsequent elastic deformation, provided that severe wear is

%
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prevented during the process of sliding.

On the 4t6 o6 comp'te,6ed 'touJgh 6uA'ac.:

(iv) At small penetrating approaches (large separations)

the stiffness of rough surfaces becomes vanishingly small.

(v) The stiffness of a surface is inversely proportional

to its roughness.

(vi) The normal load increases roughly as an exponential

function of the penetrating approach (the separation decreases

proportionally to the increase of the logarithm of the load).

(vii) For light loads, because of (iv), the normal load

is closely proportional to a power, in the range 1/0.5 to 1/0.3,

of the penetrating approach.

Andrew, Cockburn and Waring [1967-68] studied the dynamic

response of the annular interfaces of several mild steel discs

compressed together with some preload when subjected to a normal

harmonic force. They observed that the interface normal stiffness

depended linearly on the normal preload, which is consistent with

(vi) above. This and other more qualitative information collected

in Oden and Martins [1985] suggests that the normal stiffness

properties summarized above also hold in dynamic situations which

do not involve significant sliding. The experimental observations

of Tolstoi and co-workers mentioned earlier also suggest that

the same happens for situations involving frictional sliding.

.1Y
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2.5. A model of interface response

The interface between contacting bodies is a hypothetical
Nmedium of vanishing thicknzss, the mechanical response of which

depends upon the various geometrical and physical properties of

the surfaces in contact. For the class of problems addressed here,

we wish to characterize the response of such an interface to normal

and tangential deformations in a way consistent with the experimental

observations summarized above.

Consider a continuous material body B, in contact with

another material body B over a contact surface FC C; . The contact

surface r C represents the boundary of the parent bulk material

of which the body B is composed. One can regard it as parallel

to a surface representing the average surface height of the asperities

of the physical body B. We suppose that T has a well defined

exterior normal vector n

For simplicity of presentation, but with easy generalization,

we assume that the body B1  is rigid and ideally flat. In the

spirit of Fig. 1.1.1(b), we also assume that the body B1 does not

move on the direction of n, but that it can move with some prescribed

velocity 6T parallel to C

We suppose that the actual interface (asperities, oxideI

film, adsorbed gas, work-hardened material, etc.) is initially

of thickness t, as shown in Fig. 2.5. 1. The initial gap g between

normal vector n ,between the highest asperities of the body anBsdfnda h itneaogtedrcino h
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i, ,and the flat surface of BI in the reference (undeformed) configura-

tion. The interface thickness after deformation is denoted by

t in Fig. 2.5.1 and the actual displacement of TC in the direction

of n is u = u • n . Thus, the approach of the material contact- n - -

surfaces is

r a = to 0 t =(u n -g)+ (2.5.1)

where = max{O,.}

On the other hand, if u u -" n denotes the tangential

velocity of the points on rc  then the relative sliding velocity

between bodies B and B1 is equal to UT - TC  Here ()denotes

partial differentiation with respect to time 9t ( ).

Denoting by an and UT the normal and tangential (frictional)

stresses on r C, respectively, the constitutive relations for the

interface adopted here are the following:

Normal interface response
mn 'Zn •,

a -n = cn[(un-g)+] -+ bn[(un-g) +] un (2.5.2)

Friction conditions

n Ug => 2T

mT

01! T1cTlCT (Un-g)+ ] T

.Ikand m T(2 .5 .3 )

->g =>)T =>]XO C -

Un~g IZTI <CT[ (Un-g)+] :" T-YT :

." q ,and

QTI = CT[(Ung)+] -  T-T -T

Here cn, mn, bn, ;,nl CT' mT are material parameters characterizing



the interface and are to be determined experimentally.

The following remarks provide an explanation and interpreta-

tion of these relations:

1. The interface constitutive equation (2.5.2) combines a

nonlinear power-law elastic contribution, e=-cn[(un-g) +] n, withn n

a nonlinear dissipative component given by K = Ug) + ]i un.

We incorporate these nonlinear boundary effects in our model instead

of a classical non-penetration unilateral contact condition because:

S(i) For metallic bodies the deformation of the contact

N, interface may be of an order of magnitude comparable with the

- bulk linear elastic deformation of the contacting bodies (Back,

j Burdekin and Cowley [1974], Villanueva-Leal and Hinduja [1984]).

(ii) The experimental results of Andrew, Cockburn and Waring

[1967-68] (Section 2.4) and those of Tolstoi and other authors

(Section 2.3) strongly suggest that physically reasonable normal

contact conditions have to be used in dynamic problems.

2 The form of the nonlinearly elastic contribution e~n

is consistent with the experimental observations outlined earlier

for the case of interfaces subjected to low nominal pressures

n < 5 MPa) characteristic of sliding interfaces (recall (iv)n

and (vii) in Section 2.4):

don
a) d. 0 (a=(u -g)+). a) da }a:On,-

m
b) e an with 2 ' mn n 3.33I

Tables with experimental values of the constants cn and

Um
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m for several combinations of materials and surface finishes

can be found in Back, Burdekin and Cowley [1973]. Finite element

computations of static contact problems using such power-law normal

interface constitutive equations have been done earlier by Back,

Burdekin and Cowley [1974] and Villanueva-Leal and Hinduja [1984].

3. The nonlinear dissipative term anis designed to model,

only in an approximate manner, the hysteresis loops that result

from the actual elasto-plastic behavior of the interface asperities.

Indeed, the constitutive equation (2.5.2) allows for the approximation

', of loading paths of the form presented in Fig. 2.5.2(a) by loops

of the form in Fig. 2.5.2(b). Thornley et al [1965] obtained

experimentally loops of the type depicted in Fig. 2.5.2(a) when

the surfaces were allowed to unload completely, that is to say,

when some, even small, tangential reorientation of the surfaces

was allowed. The idea of a similar approximation was proposed

by Hunt and Crossley [1975] for vibroimpact phenomena involving

macroscopic Hertzian contacts. For small energy losses, the correla-

tion between the damping coefficient bn and the energy loss per

cycle of contact is readily obtainable (Hunt and Crossley [1975]).

4. The friction law (2.5.3) is a slightly generalized

local form of the classical dry friction laws (recall 2.1.1, 2).

That law allows for possible deviations from the Amontons laws

(recall Section 2.1), i.e., a possible dependence of the coefficient

of friction (U) on the normal stress according to

V N
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k. mT = (and Co with a mT/mn1 and C = CT/Cn
n T.nT-

if the normal dissipative effects are negligible (bn 0). If

mn (and again bn 0 0) the usual Coulomb's law of friction is re-

covered with i = CT/Cn

5. In using the friction law (2.5.3) we assume that there

exists no distinction between coefficients of static and kinetic

friction and no variation of the latter with the sliding speed.

This means that creep or thermal softening effects will not be

taken into account in the present study. We do these assumptions

because:

(i) The experimental observations of Tolstoi and co-workers

summarized in Section 2.3 clearly suggest that at small sliding

speeds those distinctions or variations are not intrinsic properties

of the interfaces. A

(ii) Occurrence of friction-induced oscillations even for

sliding speeds in regions where the slope of the -v T curve is

positive have already been observed ( Yokoi and Nakai [1979]).

Furthermore, instability of steady-sliding and occurrence of self-

excited oscillations with some systems that have two or more degrees-

of-freedom and particular geometric configurations have been explained

without recourse to the classical assumption of a decreasing -vT

curve (Shobert [1957], Spurr [1961-62], Jarvis [1963-64], Earles

and Lee [1976], Earles and Badi [1984], Aronov et al [1984]).

We wish thus to study now much of the frictional behaviors

observed at low speeds can be explained and numerically simulated

U -A
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without those classical assumptions.

6. Dissipative effects on a metallic interface are associated

with plastic deformation of the interface asperities. Of course,

such plastic deformation involves both tangential and normal motions

coupled in a complex manner (recall Section 2.1) which we cannot

expect to reproduce in detail with the dissipative terms in (2.5.2,

3). Related to this is also the fact that the friction law (2.5.3)

does not take into account preliminary (plastic) tangential micro-

di spl acements known to occur before gross-sliding (Courtney-Pratt

and Eisner [1957]). We believe however that these approximations

are acceptable because we are not interested in studying the details

of small quasistatic evolutions of the bodies involved, but rather

gross motions and oscillations for which the major contributions

of the interface are its nonlinear elasticity and its tangential

frictional dissipation, with a comparatively much smaller contribution

of the normal dissipation. In this context we remark that in

all the calculations done by Tolstoi and co-workers to analyze

their experimental results, only the two major contributions mentioned

__above were taken into account, although, of course, those authors

were perfectly aware of the existence of the normal dissipation.

7. The constitutive assumptions (2.5.2, 3) are not completely

consistent with some aspects of the work of Tolstoi and co-workers:

(i) The nonlinearly elastic contribution in (2.5.2) is

not of the form experimentally observed by those authors for the

surfaces and loads they worked with, but it can be shown (see
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Martins and Oden [1986]) that, within the range of validity of

our model, (2.5.2) leads to normal microvibrations with frequencies

close to those considered by Tolstoi as typical: 103Hz.

(ii) In their work, theze authot did not prLopose a de

Iz t c constitutive Zaw forL ftLctonalZ sl4Z'dng. Instead they postu-

lated a time -averaged behavior consistent with their observations

and the asymmetry mechanism (I) in Section 2.3. Our phenomenological

law (2.5.3) is not consistent with that mechanism (see Martins

and Oden [1986]). However (see Chapter 4), we will be able to

model their high-frequency stick-slip mechanism (II) and also

other effects that are attributed by those authors to their mechanism

(I).

8. Finally, we observe that no time or rate dependence

of the static friction are considered with the law (2.5.3). Conse-

quences of this on our results will be analyzed and, much in the

spirit of Tolstoi's ideas on the apparent reductions of static

friction, a preliminary study on the effect of external perturbations

on the measurable static friction will be done in Chapter 4.

.-
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CHAPTER 3

CONTINUUM MECHANICS MODELS

13.1 Preliminary remarks. Orientation.

In Chapter 1 we observed that no general theory of existence

is available to date for continuum mechanics problems involving

the unilateral (non-compliant) dynamic contact of deformable bodies,

even in the frictionless case. Furthermore, in finite-dimensional

situations, examples of non-existence and non-uniqueness of solutions

are known for both frictionless and frictional cases (see, e.g.,

Schatzman [1978], Carriero and Pascali [1980], Ldtstedt [1984]

and Jean and Pratt [1985]). Sufficient conditions for existence

and/or uniqueness in finite dimensional problems have been proved

for frictionless situations by Schatzman [1978], Carriero and

Pascali [1980, 1982], Ldtstedt [1982], Buttazo and Percivale [1981,

1983], Degiovani [1984], Percivale [1985], and for frictional

situations by Ldtstedt [1984] and Jean and Pratt [1985]. For

*the reasons indicated in Chapter 1, easy extensions of these results

to infinite dimensions have not been possible. However, several

works have been published that provide important results for particu-

lar cases or related problems: the unilateral contact of strings

with continuous or discrete obstacles (Amerio and Prouse [1975],

Amerio [1976, 1977], Citrini [1975a, 1975b, 1977], Schatzman [1980a,

1980b], Bamberger and Schatzman [1983], Burridge et al [1982]),

a wave problem in a half-space with a unilateral constraint at

53
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the boundary (Lebeau and Schatzman [1984]) and, recently, the

unilateral contact of an axially deforming rod with an obstacle

at one of its ends (Schatzman and Bercovier [1985]); and the important

work of Duvaut and Lions [1976] on dynamic or quasistatic evolution

problems involving linearly elastic or viscoelastic bodies subjected

to Coulomb's friction on a part of the boundary where the normal

stresses are prescribed.

It is our objective in Sections 3.2 to 3.4 to formulate

dynamic problems in continuum mechanics involving the contact

interface laws adopted in Chapter 2 and to show that these problems

do have a unique solution. In Section 3.2, we present formal

statements of the problems to be studied. In Section 3.3 we establish

the variational statements which govern a class of dynamic friction-

less contact problems involving linearly elastic bodies and a

class of dynamic frictional contact problems involving linearly

viscoelastic bodies. In Section 3.4 we prove the existence and

uniqueness of solutions for these classes of problems.

The techniques used in the proofs are now classical: Faedo-

Galerkin approximations, regularization technique, compactness

and monotonicity arguments. Indeed, in the frictionless case,

we encounter a second order hyperbolic semilinear differential

equation, the essential distinguishing feature relatively to other

equations treated in the literature (e.g., Lions [1969], Reed

[1976]) being the fact that the nonlinearity arises on the boundary.

The existence proof given here employs essentially the strategy

.. .
~ *1'~'~' ~ '~3
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of the proof of Theorem 1.1 in Lions [1969, pp. 8-14]. When friction

is taken into account, we are led to a variational inequality

which is similar in several respects to those studied earlier

by Duvaut and Lions [1976]. Here we extend their results to a

case in which the normal and frictional stresses on the contact

boundary depend nonlinearly on the normal interface deformation.

In Sections 3.5 to 3.7 we study a steady-sliding problem

in elastostatics, again with the interface laws of Chapter 2 holding

on the contact boundary. With the applied forces and the (non-zero)

driving velocity (recall Fig. 1.1.1(b)) both given independent

of time, the steady-sliding positions are the singular points

* for the autonomous case of the dynamic friction problem studied

in Sections 3.2 to 3.4.

The static friction problem that has received most attention

in the mathematics and continuum mechanics literature is the Signorini

problem with friction. In both the Signorini and the steady-sliding

problems the actual contact surface is unknown a priori. But,

while in the Signorini problem the actual regions of stick and

slip and the direction of the tangential stresses are also unknown,

.' in the steady-sliding problem it is a priori known that all the

contact region must be sliding and that the direction of the tangen-

tial stresses must be opposite to the known direction of relative

sliding.

The question of the existence of solutions to the general

Signorini problem with friction was put forth as an open problem

"
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by Duvaut and Lions [1976]. Duvaut [1982] pointed out that a

mollification of the contact pressure would provide sufficient

regularity for the establishment of existence of solutions to

Signorini-type problems, and this led to several studies of non-local

friction laws and the establishment of a mathematical theory for

these problems: Demkowicz and Oden [1982], Oden and Pires [1983], Vl
Pires [1982], Pires and Oden [1983]. Recently, Necas, Jarusek

and Haslinger [1980] and Jaruvek [1983] have shown that even without

mollification and without the regularity needed to write a variational

statement, existence of solutions to Signorini's problems with
C..

friction could also be proved. In all the developments, uniqueness

of solutions has been proved only for sufficiently small coefficients

of friction.

In Section 3.5 a formal statement of the steady-sliding

problem is presented and in Section 3.6 the equivalence between

classical and variational statements of the problem is proved.

The existence and uniqueness of solutions to the problem are studied

in Section 3.7. There, both existence and uniqueness are proved

only for sufficiently small data: small applied forces or small

coefficients of friction..

The technique used in the proof of existence for the steady-

sliding problem is similar to the one used by Oden and Pires [1983]

to prove existence of solution to a Signorini problem with non-local

friction. Both proofs are based on some version of the Schauder

rfixed point theorem: if T is a compact mapping of a nonempty closed

I Ub
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bounded convex set K of a Banach space V into itself then T has

a fixed point in K The essential difference is that in Oden

and Pires [1983] the compactness of T results from the compactness

of a smoothing operator used in the non-local friction law adopted,

while here the compactness of T results from the compactness of

the trace operator.

Finally, in Section 3.8 an eigenvalue problem is formulated

which is intended to give information on the stability of the

small (formally) linearized oscillations of the body about the

steady-sliding equilibrium position.

3.2. Formal statement of the dynamic contact problems.

Let S2 C RN(N = 2 or 3) be an open bounded domain representing

the interior of the body. The sufficiently smooth (e.g. Lipschitz

continuous) boundary r of E2 contains three open subsets Fo, FF

and rC (see Fig. 3.2.1) such that,

r =Ur r nr, F 0 if Ot# 

meas (r - r ) 0

a,B E {D,F,C}

Points (particles) in f with cartesian coordinates xi ,

I% iN, relative to a fixed coordinate frame are denoted by x(=(xlx 2 ,

XN and the volume measure by dx. Points on 7 with cartesian

coordinates si, 1 i N, relative to the same coordinate frame,

are denoted by s and the surface measure by ds.
6 m
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U

Fiqure 3.2.1. Geometry and notation for the continuum mechanics models
of contact and sliding phenomena.

I
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We assume that the components a,,, 1 i ,j N, of the Cauchy

stress tensor depend linearly on the gradients of the displacements

and their time derivatives according to the following viscoelastic

constitutive equation:

CT .(u) = Ak, l  1<i,j,k,l N . (3.2.1),- iu. Aijkl Uk,l + ijkl k .

Here u=(ul,u2 ... UN)= u(xlt) is the vector field of displacements,

the components of which are sufficiently smooth functions of position

(x) and time (t) and Aijkl = Aijkl(X) and Cijkl = C ijkl(x) denote

the usual elasticity and viscosity coefficients, respectively.

In (3.2.1) and throughout this work, ( ) denotes partial differen-

tiation with respect to x 1 and the usual summation convention

is used.

We suppose that body forces with components of force per

unit volume bi=bi(x,t), li < N , act in the body. Displacements

Up = D(s,t), l i<N , are prescribed on r and tractions ti=t

1 iS N, are prescribed on F We also suppose that the body may
come in contact along the (candidate) contact surface rc with

a foundation which slides by the material contact surface with

a velocity U U -(s,t) (the driving velocity) tangent to rc;

g = g(s) denotes the normal gap between the body and the foundation

measured in the undeformed configuration u=O; cn=cn(S), cTc=T(S),

bn=b n(s), mn , mT and Z n denote the material parameters in the

interface constitutive equations (2.5.2,3); in those equations

the normal stress on 7C is given by na n(u) = ij (u)nin. and

n n~. ~ ~ N."
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the components of the tangential stress vector oT on rC are

given by aTi : a(U) ij(u)nj-n (u)ni , 1<i,jN (x)

denotes the mass density of the material of which the body is

composed.

With the above notations, the class of dynamics problems

studied here is governed, for a time interval [O,T] by the following

system of equations and conditions:

Linear Momentum Equations

pa. - .i(u) b. in Q x(O,T) (3.2.2)

where the c. satisfy the constitutive equations (3.2.1).

bBoundary Conditions

DDui. U. on r±x (O,T) (3.2.3)

a ij(u)n. = ti on rF x (0,T) (3.2.4)

The contact interface conditions (2.5.2,3) hold

on r C x(O,T) (3.2.5)

Initial Conditions

u(x,O) = Uo(X x Q (3.2.6)t:(xx)

3.3. Variational formulations for the dynamic contact problems.

In Section 3.4 we study questions of existence and uniqueness

of solution for the general class of problems (3.2.2-6) in the

following cases:

jp



i

61

(1) with no viscous damping and no friction; . (3.3.1)

(2) with viscous damping and friction.

In the present section, we specify minimum regularity require-

ments for the dependence of various functions on the space variables,

we indicate various assumptions on the data, and we introduce

the definitions of various spaces and forms which will be used

in the variational statements to be established in the end of

the section. Further restrictions on the functions involved (in

particular, the regularity of their time dependence) will be needed

later and will be specified in the statements of the Theorems

in Section 3.4.

t For simplicity of presentation, we shall assume hereafter

that,

meas (rD) > O (3.3.2)

UiD 0 , 1 iSN (3.3.3)

o 1- I(3.3.4)

bn - 0. (3.3.5)

Denoting by HI(Q ) the usual Sobolev space of functions

with L2-derivatives in & , it is well known that values on I for

a function in H ( ) can be interpreted as tne values of its O(F)

image through the linear, continuous, surjective trace map ( cf

Kufner et al [1977]). With such interpretation holding hereafter,

we define the Hilbert space

V : {v _(HI( ))N: v : 0 a.e. on fD}

I.p .
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endowed with the usual (H(12)N_ norm denoted by j~l.The topologi-

cal dual of V i s denoted by V , < , > denotes dual ity pai ring

on V'x V and I I -11,denotes the VW-norm.

We denote by H the usual (L (Q)) -Hilbert space and(.)

and I. will denote the usual (L 2( Q)) -_inner product and norm,

respecti vely.

We assume that the elasticity coefficients satisfy the

following conditions (with 1 i,j,k,%N),

A ijkl :C (Q2)

Niklx Ajkj) lk(x) = klij(x) a.e. xe (3.3.6)

for every symmetric matrix [A. .IERN

In case (2) of (3.3.1), the coefficients C ijkl are assumed to

satisfy the following conditions (also with 1Ui,j,k,lN),

Cijkl 72

Cijkl (x) % Cikl(x) = Cijlk(x) Cklij(x) a.e. x Q (3.3.7)

r O > 0 C (x) j Ai Ai Ai a. e. xC£
C 'ijkl( )Ak C iji

for every symmetric matrix [A.. RNX

It follows from these assumptions that the bilinear forms,

a:VxV -~R,c :VxV - R defined by

a(w,v) A . wv. dx, w, v E V
- ~ ijkl k,l1i,j r.i2

%
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C(W,V) 5 j C.jl v j dx,

~ijkl K,1 i,j ,~ v E V2

are continuous and V-elliptic, i.e.,

3 Ma, Mc, c , % > 0 such that Vw, vE V

la(w,v) <MaI1 w 1llvl l c(w,vl Mc  l1w'1 !!v ll (3.3.8)

a(v'v)>aa11 v112  , c(v,v)>ac 11v 112  (3.3.9)

We assume that

is mn, m T ( <4
S3 if N=3

and we denote by q the number q4l+m n. in case (1) of (3.3.1),

or q : 1 + max {mn,mT}, in case (2) of (3.3.1). If follows that.

for these values of q, the space H (r) is continuously embedded

in Lq (r) (c.f. Kufner et al [1977]); q' denotes the H6lder conjugate

exponent of q, i.e., q' = q/(q-1).

Following standard notations, we denote by b(t) and t(t)

the functions x - b(x,t) and s - t(s,t), respectively, and we assumeq )N
that b(t) C H, and t(t) E (L'( FC)). We can thus define f(t)

EV' such that,

<f(t),v>:f b(t). v dx + f t(t). v ds, veV
r

We further assume that

SCn,CTE L (Tc) Cn, cT > 0 a.e. on fC, gE Lq(F c)

and that there exists a function (t) such that

.....
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(n(t) 0 DT't) ~(t) a.e. on UC

Finally, we define nonlinear maps P:V - V' and j:VxV R such that

m
<P(w),v > Cn[(Wn-g)+] nv ds w,vE V

(w,v)= f CT[(wn-g)] IVTIds , w,vE V

Pc
From a mechanical point of view, the space V denotes the

space of admissible displacements (and velocities in case (2)

of (3.3.1)) at all times t E [0,T] . The bilinear forms a(.,.)

and c(.,.) represent virtual work (or power) due to elastic and

viscous deformation, respectively; <f(t),. represents virtual

work (or power) of the external applied forces; <P(.),-> represents

virtual work (or power) due to the normal compliance of the interface

and j(.,.) represents virtual power due to frictional sliding.

Remark 3.3.1. Assumptions (3.3.2-4) are by no means essential

and are used only to simplify the proofs in Section 3.4.

If I0 = , assumptions (3.3.6,7) lead to the following
estimates

tVX 
> 0 , 3 ca 'cc > 0 such that,

a(v,v) + XIv12> ac c(v,v) + Xv 2>c lv 2  (3.3.10)

which should replace (3.3.9). All the estimates derived from

(3.3.9) in the proofs below can be derived also from (3.3.10),

although the details are lengthier.

-0 A-
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If U D  0 in particular, if the prescribed displacements

are time dependent, the regularity of such dependence requires

special attention. The treatment of *he prescribed velocities

6C
UT and the assumptions on in Theorem 3.4.2 are typical of this.

If 1 E 1 but p L (P2) with 0 (x) > o0(= constant) > 0 a.e.

xE , the usual (L2(2))N -inner product should be replaced by

the equivalent weighted inner product f (x)wjvj dx, w,v E H.--

Remark 3.3.2. Additional boundary terms corresponding to

the deformation of linear springs on a part of r could also be
~easily incorporated in the formulation. See 0den and Martins -

[1985] and Rabier, Martins, Oden and Campos [1986]. -

It is now simple to show, in a 6o'uman manner, that, for

each of the cases in (3.3.1) any solution of (3.2.2-5) satisfies

a variational statement which we shall use in the definitions'

of the problems below:

Problem I (no viscous damping and no friction). Find a

function t - u(t) of [0,T] - V such that

<U(t),v> + a(u(t),v) + <P(u(t)),v> = <f(t),v>-/v E V, (3.3.11)

with the initial conditions,

P-

IThese definitions are obviously still incomplete since regulari-

ty with respect to time and regularity of the initial conditions has

not yet been specified.

i
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U u(O) 5,

Problem 2 (viscous damping and friction). Find a function

t * u(t) of [O,T] V such that

<u(t),v - i(t)> + a(u (t),v - u(t)) + c(6(t),v - u(t)

+ <PNu(t)),v - u t) + j(u(t),v - (t) j(u(t),u(t) - w

> <f(t),v - u(t)> V vE V , (3.3.13)

with the initial conditions (3.3.12).

Remark 3.3.3. Details of the calculations leading to the

variational statements (3.3.11) and (3.3.13) are well known and

we refer the reader to, e.g., Duvaut and Lions [1976] or Demkowicz

and Oden [1982] for similar calculations. Here we only observe

that the variational inequality (3.3.13) is a result of the nondiffer-

entiability of the frictional functional j(.,.) with respect to

the second argument (velocity). In this context we observe that

the friction conditions (2.5.3) on Ic imply that, for every v V,

+T + 0 ,

on rc×(O,T)

and this produces the inequality sign in (3.3.13). -

.0.9

! -P
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Remark 3.3.4. Denoting by A € L(V,V') and C E L(V,V'), the

operators

<Aw,v> = a(w,v), <Cw,v> = c(w,v), V w,V C V

the statements (3.3.11) and (3.3.13) can be expressed, respectively,

in the equivalent operator forms,

G(t) + Au(t) + P(u(t)) = f(t) in V

G(t) + Au(t) + Cu(t) + P(u(t)) + 32j(u(t), u(t) - (t)) 3

f(t) in V'

where 3 2j(u(t), L(t)- $(t)) denotes the partial subdifferential

of j with respect to the second argument (velocity) at (u(t),

t(t)-;(t)) E VxV (note that j is convex with respect to the velocity

argument). [ ."

3.4. Existence and uniqueness results for dynamic contact

problems

Theorem 3.4.1: In addition to the assumptions listed in

the preceding sections, let

<4cif N=2
lnjm3 if N=3 (.1

q : +m n, n
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[hence f , ~ L2(O,T;V')] t 2 OT(~~F)N 342

u1 C H.'

Then, there exists a unique solution for Problem 1 such that

Proof: We first prove the exiztence o6 4otutiom . Let 1jw 1 00.

be a sequence of functions such that,

wcV V i; (3.4.5)

W1, .. are linearly independent V m,

and span the subspace Vm of V ;(3.4.6)

V = U.. V .(3.4.7)

rn 1 m

PolmLet us consider the following Faedc-Gaitki~n apptoxination Of

Find a function ur m Q [0,T]J- RN in the form

m
u m(x, t) U m U(t)Wi(X) (3.4.8)

I
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such that

(0]m(t),v) + a(u m (t),V) + <P(U M(t)) V> <f(t),VV VV-, 349

with the initial conditions

Um()= = aii~.uin~smcs (3.4.10)

*rii)=M m Bm- in H asm- a

From the theory of systems of ordinary differential equations,

it is known that a solution for (3.4.9,10) exists in an interval

* 0,tm]. We proceed to obtain a p L4uo'.u etiat' on the solution that )

ultimately will show that tm = T

Letting v=u (t) in (3.4.9), it follows that

d [1m 2 1 m mm

Tt [21~ (t)j + _Ta (u (t), u (t)) + p(u (t))]

< f(t), Tt>(3.4.11)

where p: V .~ R denotes the energy associated with the normal deforma-

tion of the interface,

p(v) = I c [(v-g)4  n+ ds , ve V
- n rc n ng)

Integrating (3.4.11) in time from 0 to t, integrating by

parts its right-hand side, using the continuity and V-ellipticity

properties (3.3.8,9) of a(.,.) and Young's inequality, we obtain
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2 + cta lum(t)II 2

Sturn(O) 2 + Ma t m(o) 12 + C1 ImCnIr Ium (o)-gq q r
22 t c2 t 2

1f( t) I + 5 Hium(t)II 2 +1 If( )II dT +j II um(T i 2d T

where the 6 i(i=1,2 ....) denote arbitrary positive constants and

the C.(i=1,2, ) denote positive constants kndependent 06 m. Now,
12

choosing 61 such that 61<ta' observing that f,f,E L2(0,T;V ') implies

that f E C0([0,T];V'), and taking into account the boundedness

of um(0) and um(0) implied by the initial conditions (3.4.10), it

follows that
t Ui

m 2 2 m 2 2 l' 1 tI 2
Iu (t)2 +Ilum (t)Ii < C2 + C3 f ( T + ( ()I I )dT

0
Application of the Gronwall inequality then leads to the desired

estimate,

I om(t)I2 + llum(t)l 2 < C4

i.e.,

uE bounded set of L(0,T;V) ; (3.4.12)

uE bounded set of L (0,T;H) ; (3.4.13)

and also,

n n-g) ] bounded set of L'(0,T;Lq'(rC)) (3.4.14)

With these estimates, we are now in position to take the &imit

a,6 m .

First we observe that (3.4.12-14) imply that there exists a

I

U ; . ,
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m m
subsequence of m, also denoted u , such that

u u weak star in L7(0,T;V) , (3.4.15)

rm 6 u weak star in L'(0,T;H), (3.4.16)
m m

Cn[(un-g)] n. X weak star in L (O,T;L q (rc)). (3.4.17)
m

In order to show that X = cn[(un-g)+ ] n, we first observe that

(3.4.12, 13) imply that

urm E bounded set of (HI(2x(O,T)) )N

Since the trace map is compact from Hl(2l x(O,T)) to L2 (p (O,T)), it

mm
follows that (by extracting a subsequence of u again denoted by um),

m 2 X  N
u , u strongly in L L(x(O,T)) and a.e. on rx(O,T)

and then,

m m
Sn[(U cg)+1 Cn [(un-g)]na.e. on rcx(O,T). (3.4.18)

On the other hand, (3.4.14) imples that

Cn[(U-g)] n bounded set of Lq'(cx(O,T)). (3.4.19)

From (3.4.18) and (3.4.19) it follows (c.f. Lions [1969], Lemma 1.3,

pp.12, 13]) that cnE(um-g)+] n _C[(Ung)]n weakly in Lq (rcx(O,T)).

m m
Since (3.4.17) also implies that cn[(un-g)+] n , X weakly in Lq (rC

(O,T)), the uniqueness of weak limits implies that, in fact, X
m
m n[(Un-)+] n and

mn n[)( 9weak star in L (O,T;L q'(FC )

(3.4.20)

,
*- 4
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Let now v in (3.4.9) be equal to w., with j fixed and m>j, i..e.

(dw) + a(u , w i ) <Pu (Urn) =<~ f, w(3.4.21)

From (3.4.15) Adld (3.4.16) it follows that, as m -

a(u , w.)- a(u, w.) weak star in LO'(0,T) (3.4.22)

(Um ) (.~ .)weak star in L7(0,T) (3.4.23)

and then

(dld m dt d -j

=< G, w>in VF(0,T) (3.4.24)

and, from (3.4.20),

<P(u m), w,> -~ <P(u) ,w: weak star in L0'(0,T).

We can conclude from (3.4.21) that

It follows from (3.4.7) that (3.3.11) holds in D' (0, T) .

Furthermore, since u E Lao (0,T;V), we have Au C f~ (0, T; V) and

P(u) F L" 0,T;V') and, since f, iC L 2 (0, T; V we also have f~

(0,r;V'). We can thus conclude that uE L7(0,T;V ) and that (3.3.11)

holds for a.e. t F[0,T].

Finally, we have to prove that u and i satisfy the initial

conditions (3.3.12).

weakl in .. 1H and o (3.4.1 ) it follows that , als U () - u wekl

Froml (3..5 and o (3.4.1) it follows that , 0) -~ u (kl

-0I
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in H. The uniqueness of weak limits implies then that (3.3.12)I is

satisfied.

On the other hand, from (3.4.24) and (3.4.4)3 it follows

that < rm, wj> d, w.> weak star in L (O,T). This, together

with (3.4.23) implies that <um(O), w> - <u (0), w.> and, since
from (3.4.10), <u*m(o), wqj> p ' j, it follows that < (0),
w'> <Uwj> V j> 1. The density property (3.4.7) finally implies

that (3.3.12) 2 holds. This concludes the existence proof.

We now prove the n~quene,64 of solution. Let u and u+w, both

satisfying (3.4.4), be two solutions of Problem 1, for the same

data and with assumptions (3.4.1-3) in force. Writing the variational

statement (3.3.11) for u+w and u and subtracting the resulting

equations , we obtain

<;(t),v> + a(w(t),v) + <P(u(t) + w(t)) - P(u(t)),v> = 0

V vEV

i.e.,

;4 + Aw + P(u+w) P(u) = 0 in Lf2(O,T;V') (3.4.25)

with the initial conditions

w(O) = i(O) = 0 (3.4.26)

10 Alternatively, we can put (3.4.25,26) in the form of a

first order differential equation:

xf E L(O,T;VxH)

X(.) = F(X(.),.) in L-(O,T;HxV') (3.4.27)

X(0) 0 in VxH
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where F :(VxH)x[O,T] *HxV is given by,I

F([W,Z],t) =Z - AW + P(u(t)) - P(V(t) +W]

V[W, K] C VxH, for a. e.t. C [0,1T].

We then need to show that for any given u E LO(0,T;V) thea

only solution of (3.4.27) is the trivial solution (0,0].

We can also put (3.4.27) in the integral equation form,

t

X(t) I F(X(T),T) dt. (3.4.28)

Since ;X(t) F. VxH C HxV we can compute lI (t)IIHxV and we have,

t

I ( I xV I ( -r T) H .0

I But,

I Z(T)~ + 11I-Ak(T) P(u(T) + w(T) + P(U(Tr)I

+s t II I(un(T) n_ [(u n(T) 4 w n(T )_g)+] Ijv vnIdsJ

v#AO
and

m -1r-
m[(u()g _ n (T + W ( n,

n nu()gnI + lun () n (T g I IMn- Iw (-r)I

Since both u and u+w exist in L7(0,T;V), we have

r r

II F
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In-I mn-I
I mnlu (t)-gI + Un ( )+Wn ( )-gn I 1w (T)II qf

C2lw(T)I lvl (3.4.29)

and then

IjF(X(T),T)IIHxV , <  jz(T) + C1 I  w(T)lI + C211w(T)II< C3 1FX(T)IIHxV' .

RM We have thus

t

iIX_ t)IIV CfZ 'HxV'

whi ch, when we appl y GronwallI's i nequal ity, all1ows us to concl ude

that

X = 0 in L7(0,T;HxV'), hence in L (0,T;VxH)

This concludes the proof of the theorem. 0

Remark 3.4.1. The uniqueness of solutions obtained in

Theorem 3.4.1 implies (by using a simple contradiction argument)

that the whote quence u 06 the solutions o6 the finite dimensional

problem (3.4.8-10) (and not only some subsequence of it) converges,

in the weak senme o6 (3.4.15,16) to the soZution u o6 Ptoblem I. M

Turning now to Problem 2, we have:

Theorem 3.4.2.2 In addition to the assumptions listed in Sec-

tions 3.2 and 3.3, let

I mn ,mT [<+oo if N=2 (3.4.30)
<3 if N=3

Sq 1 + maX~m n mT
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b E L2 (O,T;H) N 1
t E L2 (O,T;(L q' (C ) ) N(3.4.31)

[hence fE L2(O,T;V')] J

3 C V, 3 E)_H2 (0,T) such that D(x,t) = @-(x)-G (t)

a.e. (x,t) C x ×(O,T) (3.4.32)

ZO ~(3.4.33)

Then, there exists a unique solution to Problem 2, such that

u E L(O,T;V)

E: CO L(0,T;H) nl L2 (0,T;V) (3.4.34)
a C L2 (0,T;V ' )

Proof: We start by proving unLquenuz. Let u and u be two

solutions of Problem 2, both satisfying (3.4.34), for the same data

and with hypotheses (3.4.30-3.4.33) in force. Writing the variational

U statement (3.3.13), successively for u and u, taking v equal

to u2(t) in the first statement andequal to u1 (t) in the second and

adding the resulting inequalities, we obtain,

id 21 d [cj(t)j + a(w(t),w(t))] + c( (t), (t))

2

~<<p(u2(t)) - p(u1(t)), Wt>

2Assumptions (3.4.31-33) and conclusions (3.4.34) are very similar to

those in Duvaut and Lions [1976, Theorem 6.1 bis, p. 167]. Assumption
(3.4.32), together with previous assumptions on in Section 3.3, re-a quires n:O a.e. on rC and ;=6c a.e. on 1cx(OT).

T oU
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"v + j(u1(t), 2(t) _ ;(t)) _ j(u1(t), l(t) _ ;(t))"U
+ j(u2 (t), u1(t) _ ;(t)) - j(u2 (t), 2(t) -;(t))

where w = u - u and w(O) : w(O) : 0 . Integration of this equation

in time from 0 to t leads to the estimate

t1 fj- 2 11.1.)1 2  4.9 IT) ,T 2 rfr

2" fL ' c 1a(u 2' (T )-9) n_ IN I ,)g n -r)

c  2 m n

t 2 _[u1m T
+ 2 fIcTn[(u (T)-g)+] [(u (r)-g)] (T )I ds &

c t
Using an estimation of the type in (3.4.29) and Young's inequality

we obtain

I <t~j 2 + IIw(t)l 2  < (I T f12 + IIw2T)ll2 d

0

p from which the uniqueness follows. [7

In order to prove the existence of a solution for Problem 2,

we shall first introduce a family of (convex and G~teaux differenti-

able with respect to the velocity argument) approximations of

the friction functional j , depending on a real parameter c >0.

Accordingly, a regularized version of Problem 2 will be introduced

and the questions of existence and uniqueness for this auxiliary

problem will be studied. Only after this we shall complete the

%
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proof of Theorem 3.4.2 by showing that, as the regularization

parameter -* 0, the solutions of the approximate problems converge,

in an appropriate sense, to the solution of the original Problem 2.

NLet us first consider a family of functions T :R R depending

on a real parameter E >0, satisfying the following conditions (suffi-

cient for our purposes),

M y C CI(RNR) V E >0 (3.4 35)(i) '£C(N,)V~

(ii) 0 < (v)<fvj > 0, V ve RN  (3.4.36)

S(iii) T (G)w+(1-O)v) < O )+(- Ev (3.4.37)

e > 0, V (w,v)E RN RN, V ® [0,11

(iv) 3DI > 0 such that V E >0, V (w,v) E RNxRN

IT, (w)( I 0111v (3.4.38)

(v) -3 D > 0 such that V E > 0, V v E RN,

IT IE (V)- viI1< D2E (3.4.39)

where T (w)(v) denotes the directional derivative of T at w on the

direction of v and J.! denotes here the euclidean norm of a vector

in RN

We now define a family of regularized friction functionals

i I
Wenwdfn aiyo eulrzdfito ucinl
mmi

I r W W- , - ...,
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j VxV - R, depending on the parameter E>O

m
j(w,v) = cT[(Wn-g)] Tp (v ) ds, wv C V

which, as a result of (3.4.35-38), are well-defined, and convex and

Gateaux-differentiable with respect to the second argument. The

partial Gateaux-derivative of j with respect to the second argument

at (w,v)E VxV in the direction of z c V is given by

N4 m
<J (w,v),z> f c T (VT)(ZT)dS w,vz E V

E F "E:n- )+ ~T T '

With the above definitions we study now the regularized

version of Problem 2.

Problem 2 (viscous damping and regularized friction). Find

a function t u(t) of [0,T] - V such that,

<6 (t),v) + a(u (t),v) + c( *(tl,v)

+ <P(u (t)),v> + <JE(% (t), E(t) ;(t)),v> (3.4.40)

< <f(t),v> V v E V

with the initial conditions,

u (0) = u
-E -O (3.4.41)

Lemma 3.4.1. Let the hypotheses of Theorem 3.4.2 hold. Then,

there exists a unique solution to Problem 2 , such that

u C L(0,T;V)
-E:

E. L-(O,T;H) ") L2 (O,T;V) (3.4.42)

E E L2 (0,T;V)J

-i-
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Proof. Again with the assumptions (3.4.5-7), but choosing

now w1 = (recall (3.4.32)), we consider the Faedo-Galetkicn app-ox-

maiO tL6 for Problem 2

Find a function u m:-[O,T] - RN in the form (3.4.8) such that,

(6m (t),v) + a(um (t)'v) + c(um(t)'v) 13 3
" +<((um(t)),v> £ <J(u(t .

St,u (t) - (t)),v>(3.4.43)

: <f(t),v> V v E:

with the initial conditions,

m(0) = uo 0 strongly in V as m
(3.4.44)

~m um  ustrongly in H as mu (0) = ~

Letting v = fm(t) - (t) in (3.4.43) we proceed to obtain
C m

a priori estimates on the solution u- . First we obtain,LM. 2 1 a +P W
d-- u t(t)2 + a(u m (t)'u m(t)) + p(u m(t))]

+ C bm(t),*m (t)) + -J (u (t),U (t) - (t)),u m (t)- i;(t)y'
-E -E - -

= <f(t),um(t) - ;(t)> + (im(t),;(t)) + a(um (t),;(t)) +

+ c(O(t) (t)

Integrating this equation from 0 to t, integrating by parts the

term (UmE(t), (t)), observing that <J (w,v),v > 0 V w,v G V and

following steps similar to the previous proof, we finally obtain

p
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rn 2 in 2 +t m ~2
(t) + Il~tl If fu E(T)Il dT

tC

SC1 + C2 .f (l1(T) 12 + 11 M(T)l 12 ) dT

We have then

mE bounded set of L (O,T;V) (3.4.45)

uEE bounded set of L (0,T;H)f" L2(O,T;V) (3.4.46)

m- m C

Cn[(uEng)+] nk-bounded set of L (O,T;L q (rC)) (3.4.47)

CT[(Unmg)+] E bounded set of L (O,T;L q (C , (3.4.48)

with all the bounds i.ndependen~t o6 m and E. It follows that a

subsequence of um~, again denoted um , exists such that as m -c,

uu u weak star in L7(O,T;V) (3.4.49)~€ -C

m u weak star in L (O,T;H) and weakly in L2(O,T;V)(3.4.50)

-E -E:

and, using the compactnzz arguments used earlier,

cn[(U -g)+] n cn[ ( n weak star in
n 6nueng
E" -g )+ ] T  l~En g) Lm T ; "

"° C~T[ (umn T[Un) +]  L OT '(C))

It turns out, however, that we can obtain, and we shall need

later, stronger results. In fact, introducing the spaces,

W (H (I) : v = 0 a.e. on rD}

G= [yC (Lq(r)) : v = 0 a.e. on I"D

it follows from (3.4.49,50) that, in particular,
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u* u weakly in L2(O,T;W)

Z u weakly in L (O,T;G).

Since W C G with compact iinjection, it follo-w.s from Lions [1969, Theo-

rem 5.1, pp. 58-59] that um u strongly in L2(O,T;G) and, consequent-

ly,

n - UEn strongly in L2(0,T;L

From this and (3.4.47,48) it results thatm mn1

cn[(Umng)+ n cnUu ng) ] n strongly in
T Em L2(O,T;Lq (rq)) (3.4.52)

CT[(umn-g + ]  *T[(UEn-g) + ]

Let now v in (3.4.43) be equal to wj, with j fixed and m>j. From

(3.4.49-51) it follows, after taking the limit as m-co and using

arguments similar to those in the proof of Theorem 3.4.1, that

<0,v . a(uc,v) . c(G,v) + <P(u),v> + <XEv> = <f'v>

in L2 (O,T) V v e V (3.4.53)

with u , satisfying the initial conditions (3.4.41) and i satisfy-
E-C -E

ing (3.4.42)3.

In order to conclude the existence proof, we have to show

that in fact XE = Jc (u ,-$) in L2 (O,T;V'). We do this by

using a monotonricty argument of the type, e.g., in Duvaut and Lions

l[1976, Theorems 5.1, 5.2, pp. 55,56] and Lions [1969, Theorem.6.1,

Y pp. 222-226]. The monotonicity of J with respect to the second

argument (velocity) implies that

T M * m 2
0 S Xm = (JE(uCm-) - J (u ,- -), u-">dtV PE L (0,T;V).

.EI

-!
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But, from (3.4.43) it follows that,

O Xm  -I.mI~(T) 12 _ 1 a(um(T),um(T)) - p(um(T))
2< _E.m 12 2 m 0  (m o

+ + IuE(O) I a(um(O), m(O)) + p(,(O))

T

+.f [< f,6> - c(umm )]dt (3454)
0 E -E

T

-~

taking into account the initial conditions (3.4.44), the strong

convergence property (3.4.52) and the weak upper semi-continuity

i of various terms, we obtain

40 < lim sup Xm

i~-2 1 - - +p%

+ -I + a(uo,Uo) +P%

T

0 ~
-Jj~~ " To> '  dt

_ f.T<j (u ,c-$), i - c> dt

0 C E: ~ E ~

E -E -E E

iOn the other hand, integrating (3.4.53) from 0 to T, with v s t(t),

we have

i~ I . 2cc

-u (T)I - a(u (T),u (T)) - p(u (T))

I

+ i 2 1 -
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12 + a(7-0,Z' + p(UO)

2 1 [ 2e - 0T+ [<f,j > - c(j ,j ]dt =

= J <Xe, > dto0
and then, V EL 2(O,T;V)

T0 S <XE: -Je(uc,£o- , o dt.

0 ~ ~

We can conclude ( cf. Duvaut and Lions [1976, p. 56]) that X E

JE (u,-E ;) in L2(0,T;V'), as desired. This concludes the proof

of existence.

The uniquenez proof follows steps similar to those in Theorem

(3.4.2) and is omitted. -

Remark 3.4.2. The step in the above proof that extends

earlier results in Duvaut and Lions [1976, Theorem 6.1 bz , p.167]

applicable for viscoelastic bodies with pruckibed normal stte.6,6 uon

the frictional (regularized Coulomb's law) contact surface to

the present situation, in which the normal intfeace taw (2.5.2)

holds, is precisely the one that requires the strong convergence

(3.4.52). In fact, the passage from (3.4.54) to (3.4.55) relies

on the fact that

lim < (urn -> dt
m 0 -E ~- ~%.~ ~

T M T Cmlim I f CT(u m -g)+] ' T T)(mT-T]dS dt
m.i o rc 4E- n- E T-T T-
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T mT "
: c T1(UEn-g)+] [ '( T - T I -T)]ds dt

0 arc

T
<J (U u cp-), u -dt

E -E -- -E
mT  mT 2  '

because cT[(umn-g)+] c T[(UEn-g)+] strongly in L (O,T;L C))

and Y(T-)( T-r) 6 -weakly in L2(OT;Lq(7

Continuation of the Proof of Theorem 3.4.2. (ExZ4tence

o6 Aotution).

Applying to the regularized equation (3.4.40) the same

procedures used earlier with its finite dimensional approximation

(3.4.43), we conclude that the bounds (3.4.45-48) also hold for u

In addition, since

'(t = -Au -EE{t :-u(t) - C(t )  P(2E(t)) J(ut,(t t)

+ f(t) in V

it follows that

U bounded set of L2 (0,T;V')-C

We can conclude that a subsequence of u again denoted by uY exists

such that, as E - 0,

u - u weak star in L7(0,T;V)
2 ~1(3.4.56)

ti weak star in L (O,T;H) and weakly in L2(O,T;V
-C e

U -E U weakly in L (0,T;V')
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U u strongly in L2 (0,T;Lq(rC))

mn m
Cn[(UEn-g)+ ] n. cn(un-g)+ ]  weak star in

m Tm T  L-(O,T;L q'(F C) ) and (3.4.57)

CT[(U n + T n C[(Un-g)+]  strongly in
L 2(O,T;Lq,( (C)H.

We shall now take the ZLmnit a6 E*0. Taking v in (3.4.40)

equal to v(t)-u (t), with v E L2(O,T;V) arbitrary, and integrating

from 0 to T, it follows that

T
-q, . [<U ,v> + a(u ,v) + c(b ,v) +

0 -E~:~ ~ -E

+ <P(u ),v> + j (u ,v -'v )- <f,v>] dt

T
L > +~~t a(u EtE )> +c(ti ,t + (P(u -Et > + _E (u t

1+ a(u (T),u E: (T)) + p(uC (T)) (3.4.58)

1l -1 a(U,Uo) -

T T
+ I c( )dt + .f j (u, J - ') dt

0 - 0

Computing now lim of the left-hand side of the above inequality
E-CO

and lim inf of the right-hand side, we obtain
E 0

f [<U,v> + a(u,v) + c(L,v) + <P(u),.y> + j(y,y-) -f,v>]dt
0

2 11 I(ThI + ~.a(u(T),u(T)) + p(u(T))

1 21

Wia( )

"'%% " " % '% ' % °, " -''" "'''. ";'-'' ". " '' ' "". " %"%'% %" ." %"" ' .',"%" ' ''' -'''.%" .' 'r S.
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T T
+ f c(u,u)dt + I j(u, i-i)] dt

0 0

I [(<i,v-6> + a(u,v-6) +, c(6,v-6)

0

+ <P(u),v-i6) + j(u,v- ) - ju6$]d

j (f,v-i6>dt V v C_ L (0,T;V)

0
from which it follows that (3.3.13) holds for a.e. t C [0,T],

Vv 11z V (cf. Duvaut and Lions [1976, pp. 57,58]).

Remark 3.4A. In a manner similar to Remark 3.4.2, the

passage to the limit on the right-hand side of (3.4.58) relies

on the strong convergence property (3.4.57). In fact,

T
lrn inf f j (u ,u -'$)dt

C-- 0 E -E --

lim T [( m T - M(flg~ T} (i~ ~d dt

+ lmf5 ~[u g) ]{'I (T -Us) - .U1sd

+ lim in I. m Ti(ug T 6CU ds dt Id

0 r c

>< j T, ( -g+ J )dtd d
0

Icp

Sw -$d

p0
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mT mT  ,
because: cT(Un-g)] c[(U-g) strongly in L(O,T;L (fC))

and due to (3.4.36), y E(ETT-UT is bounded in L2(O,T;Lqc));
mT

CT[(Un TE L'(,T;L q  (FC)) and, due to (3.4.39), (Y T-C -
TI n- + LI  

T-

UcT-U T  0 in L (0,T;L (fC )); and, finally, the functional

T 2
V , f (ptjTtI ds dt of L 2(O,T;V) -) R, with (P = cTLu T~

0orc
given in L2 (O,T;Lq'(Fc)) is convex and continuous, hence weakly lower

semicontinuous.

The passage to the limit on the left hand-side of (3.4.58)

does not require the strong convergence property mentioned earlier:

T
limr jE (uv ) dt

T MT C
-lim f If cTC(ue,-g)+] T E(-vTUT) ds dt
E-0 0,. r 0

T mT

0 rc

0
mT mT srbecause CT[(U n-g)+ ]  c CT[(Un-g)+] weak star in LOO(O,T;L q (7 c))and

.CL Lq  - -

due to (3.4.39), T (YT- q ) - T- T' strongly in Ll(O,T;L (?C)). ._

Remark 3.4.4. We emohasize the key role played by the

viscous damping in the proof of Theorem 3.4.2. It is the viscous

!AN4
~1
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damping that guarantees the strong convergences (3.4.52) and (3.4.57).

Such a situation should be expected from the beginning since our

methods are the same of Duvaut and Lions [1976] and those authors

exposed in Theorem 5.7, pp. 156-162 (op. cit.), the difficulties

in obtaining a priori estimates in the presence of frictional

contributions dependent on velocities on the boundary of the domain.

Those authors were able to show existence and uniqueness of solution

with p4escribed time dependent normal forces on the contact boundary

only when viscous damping effects were taken into account (Theorem

6.1 bi6 , p. 167, op. cit.). For a linearly elastic material, only

the case of p L'r~ibed time independet normal forces on the contact

surface was successfully studied (Theorem 5.7, pp. 156-162, op. cit.).

Remark 3.4.5. With the same arguments of Remark 3.4.1,

it results that the whole sequence um ( cf. Lemma 3.4.1) converges

to u in the weak sense of (3.4.49,50) and the whole sequence

u ( cf. Theorem 3.4.2) converges to u in the weak sense of (3.4.56).

Without further effort (by just using the comoactness results

of Lions [1969, Theorem 5.1, pp. 58-59]), some additional strong

convergence results for the finite dimensional regularized solutions

m as m E , £ - 0 can be stated. We have, in particular,
m ,

((k) u() strongly in LP (0,T;(H N(s))
""E E

with 1<p< and 01 arbitrary. -IiI
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3.5. Formal statement of the steady-sliding problem.

Let us assume that the prescribed displacements (U ) and

the forces (b,t) applied to the body considered in the previous

sections are independent of time and that the driving velocity

(UTC) is also independent of time and different from zero everywhere

on FC. We denote by n the unit vector field parallel to the driving

velocity at each point of r The equations governing the steady-C.

sliding equilibrium positions (uO) are obtained from (3.2.2-5)

by simply setting u = 0. We have thus:

Equilibrium Equations

a oij(Uo),j  + b i  0 in Li (3.5.1)

where the ij satisfy the constitutive equations (3.2.1) with, of

course,u 0

Boundary Conditions

UD  on- (3.5.2)""Uoi = Ui o

Jij(Uo)n : t on 1- (3.5.3)

m
-: (U ) C [(U -g) n on (3.5.4)
n n-0 n On +

Mi

T(u CT[(Ung) on C 3.5.5)

cT[ u0 Oc.

C..

m'
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3.6. Variational formulation for the steady sliding problem.

All the assumptions, notations and definitions introduced

in Sections 3.2 and 3.3 that are relevant for the present problem

are kept in force hereafter. For clarity we enumerate them:

the smoothness (Lipschitz continuity) of the domain p and the

decomposition of the boundary ; the simplifying assumptions (3.3.2)

and (3.3.3); the definitions and notations associated with the

spaces V and H; the assumptions (3.3.6) on the elasticity coefficients;

the definition of the bilinear form a( , ); the assumptions 11

-' mn,mT if N=2, and lmn,mT 3 if N=3; the notations q=1+maxm,mT'.

and q' = q/(q-1); the assumptions on b and t and the definition

of f (eliminating, of course, their time dependence); the assumptiors

on cn, cT and g; and the definition of the nonlinear map P.

In addition, we denote by . the following open subset of 7

Z = int(r - rD) .

From Section 3.4 we recall the definitions of the spaces

W C (HO(r))N := =0 a.e. on 7O}

q NN

G = { E (Lq()) N :r =0 a.e. on 7D}"

As a closed subspace of (H(r ))N, the space W is a Hilbert space.

A possible choice for the Hilbertian norm on W is

. W = inf{flvII: v = on Ft, E W
2cV2
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I
The topological dual of W will be aenoted by W' and the duality

pairing in W'xW will be denoted by < , >W" For the values of

q indicated above the space W is continuously embedded in G, which

in turn is canonically isomorphic to the space (Lq(Z))N, the topologi-

co h N It is also well-known that, for

the above values of q, the space Hi(7) is dense in Lq(7). Similarly,

%the space W i s dense in (Lq)) a similar result obtained using

a system of local charts is mentioned in H~nlich and Nauman [1978,

Lemma 1.4, pp. 212-213] when q:2. The embedding of W in (Lq(7))N

is compact for all the values of q mentioned above except for the

limit case q=4, N=3 (cf . Kufner et al. [1977]), i.e., except

when max n mmT} =3 and N=3. The compactness of this embedding

was already used in the proof of Theorem 3.4.2.

Finally, we introduce the nonlinear operator J :V - V

such that
mT

<J(w) 'v) : -" cT[(W g)] T 1 T ds w,v V
7c

V Here <J ("), > represents virtual work of the friction stresses
r

on vC. The unitary tangential field n is assumed to satisfy

N 2S[ s]= 1 a.e. s
(s) iI=I

N
.(s) ni(s) = 0 a.e. s C

i=1

zL%"°' .*%"% -" '• , " .,%", % " -- .% "%" " °'% ' • ., , ... --, .% -...."-%-%-% I
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With the above definitions and notations established, we

can now state a weak formulation for the steady-sliding problem

(3.5.1-5):

Problem 3 (steady-sliding). Find a function uo: V such that

a(uo,v) + <P(uo),v> + <Jn(uO),V> = <f,v> V v E V. (3.6.1)

We now show in what sense the solutions of the variational

problem (3.5.1) can be interpreted for the solutions to problem

(3.5.1-5). Our approach here relies on a generalized Green's formula,

given below in Lemma 3.6.1. In what follows, D ( ) denotes the

space of indefinitely differentiable functions with compact support

in Q equipped with the usual inductive limit topology and by D'(:)

i its topological dual, the space of distributions over 2 We

introduce the operator

div q: V - ('(f2)) N

.,[divcF (v)]i = cyij(v),j = (EijklVk, l ) ,j  I l i,j,k,l% N. (3.6.2)

In addition, let V denote the subspace of V defined by

V= v E V : div G(v) E H} . (3.6.3)

Lemma 3.6.1. (Genetalized GrEeen's 6otmula). There is a unique

linear mapping

verifying

[( Ii : ij()nJ on Z

Law i3_ I
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for every w E V such that aij(w) = Eijklwk,l E C , 1 si,j,k,l<N,

and

a(w,v) + (div a(w),v) = < (w),v>W  , (3.6.4)

for every pair (w,v) V x V

Proof: The proof of this result follows standard arguments

and is omitted. See, e.g., Showalter [1979, Theorems III.2.C

and III.3.A, pp. 55-58] or Kikuchi and Oden [1986, Theorems 5.8

and 5.9] for the proofs of similar or more general propositions. Lr

Theorem 3.6.1. An element u0 f- V is a solution of Problem

3, if and only if

M (i) 0  V and

div a(uo) + b : 0 a.e. in 2 (3.6.5)

(ii) (uO )  (Lq'())N and

=(U 0 t a.e. on rF  (3.6.6)

m
(,'(U ))n : C[(Uon.g)] n a.e. on FC (3.6.7)

mT

.(r(Uo))T  = cT[(uon-g)+] n a.e. on rC. (3.6.8)

Proof: Let uO E V be a solution of the variational problem (3.

6.1) and let v E. (D(-))NC V. Since all the boundary terms vanish for

such a choice of v, we have

a(uo,v) b • v dx

i.e.,

U
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a ij(Uo)Vi j  dx :f biv i  dx

NAs the above relation holds for every v 6 (D( 2))N, it is equivalent to

";" )N
-div a(uo) = b in (D( )N

which proves (i). Next, as we have just seen that u0 6 V3 , the

generalized Green's formula of Lemma 3.6.1, the definitions of

f, P and J and the variational statement (3.6.1) yield

-f(div (Uo) ) . dx + <T(Uo), v>W

-b , v dx + t. vds

m mT
+ + {C[(Uog)+] n V + cT[(U.u-g)+] VT * ds

for every element v E V. With (3.6.5) and since the trace map

is onto from V to W, this reduces to

for every & E W, where W . (L'(Z))N is (uniquely) defined by

t on rF
)+] M= n mT

"CnrrUong n + CT[(uOn-g+l)+ n on IC "

From the density of the space W in the space (Lq( ))N, it follows

that 7T(Uo) can be uniquely extended (by , ) as a linear continuous

form on (Lq(z))N . Hence, 7(uo) = 6 (Lq ())N . Boundary conditions

(3.6.6) - (3.6.8) are immediate from this result.

To prove that conditions (i) and (ii) of Theorem 3.6.1

4/1!

I|



96U
imply uO E V and u0 is a solution to the variational problem (3.6.1),

we need only to reverse the steps of the above proof. -

3.7. Existence and uniqueness of steady-sliding equilibrium

solutions.

Toward the study of the questions of existence and uniqueness

of solutions to Problem 3, we first consider the following auxilliary

problem:

Problem 3. Find a function G F V such that

a(u,v) + <P(u),v> = <f,v> " T •T ds, V v F V (3.7.1)
Frc

where the data satisfies:

SE,( c))N . n 0 a.e. on (3.7.2)

ST is the space of the tangential stresses on FC and is

a reflexive Banach space. The norm of a function in ST is the
( Lq ' ( rC )) N-norm:

N q' d} I/q ' L q'(r )) N

q' rc: {i=1 r
' Fc~

Sufficient conditions for existence and uniquess of solution

to Problem 3 are recorded in the following

Lemma 3.7.1. Let (3.7.2) and all the assumptions in Section

3.6 hold. Then:

(i) There exists a unique solution to Problem .

1 .4 (ii) The map B: ST  V which associates with each ;T( ST

II
" %.~ 

i.a 
~ ** * * ~ ~ * ~ * % , ~ * ~ , * 4. ~ ~

4' = "
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the solution F - V of (3.7.1) is Lipschitz continuous

in the sense that, there exist L>O, only dependent on the

domain and the other (fixed) data for Problem 3, such

that

IIB( )-B(-IT) H < LH-;t--STIIq,r cV (^T'Z^T) ST x ST (3.7.3)

Proof: Exitence and niqueneas can be proved by using wel l-

known results from the Theory of Optimization or the Theory of

Monotone Operators. In order to apply a result of the latter,

we recast the variational statement (3.7.1) in the equivalent

operator form

A(u) f in V (3.7.4)

where AdefA + P:V V' (recall Section 3.3), i.e.,

<A(w),v> = a(w,v) +<P(w),v> V(w,v) E V x V

and, for given f E V' and aTE.ST,f EV' is defined by

- <fv> = <f, v> + T ' v ds v e v.

C

Sufficient conditions for existence and uniqueness of solutions

to the operator equation (3.7.4) are the following ( cf. Lions

[1969, pp. 171-173]): boundedness, hemicontinuity, coercivity

and strict monotonicity of the operator A.

In the present problem the boundedn-ss of A results from

the boundedness of A and the estimate

<P(w),v> < C Ic nl (flwlKI ilg q ) n iv V (v,w) . V x V,
C ~

.4'

...I%' W. " " ". ., -" -- - ...'- w ..-..-." -" -" -' - -' . -."
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which implies the boundedness of P. In the above, C denotes a

sufficiently large constant independent of w and v. The continuity

(hence hem.continuity) of A results from the continuity of A and

the estimate

<P(w)-P(z),v>

clicnl , [max~lJjwj,llzlj}+1lg1lq,r ]  n w- l v l

V(v,w,z) E V3

which implies the continuity of P. In the above,C is a constant

independent of v, w and z . The strong monotonicity (hence stict mono-

.toni..ity and cOeCrcivity) of A results from the V-ellipticity property

(3.3.9) of a(.,.) and the monotonicity of P, i.e.,

(A(w)-A(z), w-z>

m m
g)]n L(zrlg 2 j( da(w-z, w-z) + I C n 1 n(+ )+1 n} nZ)ds

0" IaIIW-Z11

This completes the proof of the assertion (i).

In order to prove the Lip.chitz con tinui.ty (3.7.3) of the

r map B, let Q = B(-T) and B(tT) be the solutions of Problem

3 for T E S ana T E- S respectively, and with the other dataT T -T T'
fixed. Writing the variational statement (3.7.1) successively

for u and z , subtracting the resulting equations and choosing

v = u-z, we obtain

a(u-z, u-z) + <P(u) P(z), u-z>
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p
.= T iT- (-T _2T- ) ds

crI
The monotonicity of the operator P, the V-ellipticity (3.3.9)

of a(. ,. ) and the continuity of the trace map lead to desired

result (3.7.3) with L = C/(a , where C denotes here the trace

map continuity constant. This completes the proof of the lemma.

Theorem 3.7.1. In addition to the assumptions listed in

Section 3.6, let

1<+m ' if N=21 < m n (

n <3  if N=3 (3.7.5)

q 1 + max{mn,mT}

3w* C V such that w*. n = g a.e. on C . (3.7.6)

Then there'exists a constant C C(,Z c,m, mT) such that if, in ad-

di tion,

al__ , (Hlf 11. M lw" < T-

a M < C (3.7.7)
a t

then there exists a strictly positive number R : R(2,Z ,rC,mn,mT,

IcT !,r , Ii 11Ma, ag f 11) such that, in the set

T !L~ c 11_*11 al1aK Iv { E V : 11 v-w*1l RI (3.7.8)

there exists a unique solution to Problem 3.

i

Sv



0

100S
Proof: In order to prove existence of soZution6 we first define

the map p :(Lq(Z)) N  ST, given by

= CT[( n g) ]  T , E (Lq(E)) N

where we have extended CT, g and n by zero on Z- FC" This map

assigns to each displacement field on the boundary the corresponding

tangential stresses on r C , according to (3.5.5). The continuity

of the map C0 follows from the estimate:

mm q, 1/q.

i=1( g)+ Ic{[jf-gn q
,-"~ ~ Z ; ] ICT{[( n-g)+] -(n-g+ }il ds

i~ c

C < IcT'l, Fc I[( n-g) + ]  [ (n-g )+]mT q/mT Zm T /

i :.. c T c { (I'n-gil q-1 + TJngl) -n
< 1c- 11 +kq91,Z 1 1

Sc /q' mmT/q ,TmT/T ./q,,< c 11cT1Jl F max{ I I n-g9 l' 'C ' qZ: I - Irn- r Iq '

4.-

where and C are arbitrary elements of ( N and the c's denote

various constants independent of and

Let K be the bounded, cZosed, convex subset of the Banach

space V, defined by (3.7.8). We denote by T the mapping T:K -

V which results from the following composition

T= B o o Y

where 7 : K (Lq( N is the restriction of the trace map y to the

J

U,
2 ":
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set K; Rg(T) ST is the restriction to the range of 7 of

the map (P defined above; and B- : Rg( ) V is the restriction

to the range of q of the map B defined in Lemma 3.7.1.

Since the maps B and Q are continuous and the trace map

Y is compact (note that inn, mT < 3 and q < 4 if N=3) then the

map T is compact.

In order to apply the Schauder's fixed point theorem (see,

e.g., Oden [1986]) in the existence proof, we need now to show

that a constant C exists such that, if (3.7.7) holds, then we can find

R > 0 such that, wiLn K given by (3.7.8), T(K) C K, i.e.,

IT(u*)-w*l I-R V u E K (3.7.9)

where w is an element of V satisfying (3.7.6).

Let u be an arbitrary element of K and let u = T(u

From the definition of the maps B, (o and Y and from the

variational statement (3.7.1),it follows that

. mT
a(u,v) + <P(u),v> = <f,v> + f CT[(un-g)+ ]

T n • vT ds

c

for every v e. V. Letting v = u-w and adding and subtracting

a(w*, u-w*) we obtain

• . mn(.':a(u-w, u-w )+ Cn[(Un-g)+] (un- g) ds

~ ~ I,
c

." ~* * *

= (, w-u) + <f, u-w >

S mT
+ cT L(un -g) + ]  r'~ (UT-wT ds

c

S l,
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Using the V-ellipticity property (3.3.9) and continuity (3.3.8)

,- mn

of a(.,.) and the fact that [(y)+] y z 0 for every y E R , we obtain

11u-w *I 1 CAliU -w_ 1mT + 8 u * . K . (3.7.10)

Here we used the notations

A 11 CT ,rc
C~a (3.7.11)

I1fII. + M 11w* I
5-O a-

and C C(,, fCmnmT) is a constant.

For reasons that will become clear later, we introduce

j another constant C0 satisfying

C1  C . (3.7.12)

Clearly, we also have

L u-wAI +B C0  u E K (3.7.13)

Denoting x :I u*-w*ll a sufficient condition for (3. 7.9) to hold,

with some R > 0 , is then

CoAx mT+B R V x 6 [0,R]. (3.7.14)

We study now what conditions on A and B are sufficient

for this inequality to hold.

The trivial case A=O ([CT 1c 0) leads to the condition

RZ B which can always be satisfied by some R 0.

In the case A > 0, we consider first the particular case

I



103

" 1. In this case, a sufficient condition for (3.7.14) to hold isT

A ( 1/C0

The constant C in (3.7.7) can thus be chosen as

C = 1/C0  (3.7.15)

and the radius R in (3.7.8) can be any number satisfying

COAR + B< R (3.7.16)

i.e., R a B /(-CoA). In the case mT>l, sufficient conditions

for (3.7.14) to hold can be interpreted geometrically as follows

(see Fig. 3.7.1): the curve y=Co xmT+ 8 must intersect the line y=x.

The condition for the existence of such an intersection is

mT
C Ax T + B x
00 0

dx (C0A x M T +B:i

d mT

i.e., the point (x0 , CoA xo + B) at which the tangent to the curve y
m

C0A x T + B is parallel to the line y=x, must be below or on

the line y=x. An easy calculation leads to the following condition

on A and B

.9 mT-  (mT  1) T

mTT -

The constant C in (3.7.7) can thus be chosen as

(m T -) m T
C [(mT-1) /mT  ] "(1/CO) , (3.7.17)

I
• ¢''' ''W ''''"" ".-e -. ' -. ' ; . . - " .,* , "-.- '_. .'. -'. -"... , ."-"-' """"" " ',''
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and the admissable values for R in (3.7.8) are R E [R ,R ],

with Rmin and R denoting the x (or y) coordinates of the pointsmax

of intersection (see Fig. 3.7.1), and Rmax being always strictly

positive. Equivalently, the admissable values of R satisfy the

inequality
? mT

CA R + B < R (3.7.18)

We have thus proved that, if condition (3.7.7) is satisfied,

there exists a set K that is nonemp.ty and such that T(K)C K. The

Schauder's fixed point theorem implies then that there exists

a u C K such that-0

So = T(uo) = B(W(y(uo)))

i.e., (3.6.1) holds. This completes the proof of existence.

We now prove that for sufficiently small data (condition

(3.7.7) with an appropriate choice of the constant C) the solutions

to Problem 3 are unqique in the set K where existence was just proved.

Let Ul, u_ . K be two solutions of Problem 3. Taking u0 in

(3.6.1) successively equal to uI and u2 , subtracting the resulting

equations and letting v = u - u2 we obtain

a(u1 - 2' - u2) + <P(ul)-P(u2 ), u121 ]
+ <J (u )-d (u2) 1 u u2 0

Using the monotonicity of the operator P, the V-ellipticity of

a(., .), the definition of the operator J and an estimation of

V,

I '
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the type in (3.4.29) , we obtain

C2 2 all 
(3.7.19)

(UlW mT' 1 + Hu -w ~I mT-  1
+ 2 rn JI2

where C2 = 2(q,, r mn,mT) is a constant. Since both u and u2

are elements of K, it results that

imT-1

(I - C2 A R )IHu1-u211 2 < 0

In the trivial case A=0 ( ' CT- = 0) this immediately

implies uniqueness of solution (consistent with Lemma 3.7.1).

If AO, we have from (3.7.16) or (3.7.18)

R mT -  - R ) <1

and then,

C2 (1-< 
0

from which the uniqueness follows if CO satisfies:

C2  < CO  (3.7.20)

We can thus conclude that the constant C in (3.7.7) sufficient

to have exi&5tence and uniquene5s o soZutC'on 4n the set K is

I/C0  if mT T1.[ ~(mT -I)( T ) im mT ("

T 'mT
[T-i ](l/C0) if mTl

where C0 satisfies simultaneously (3.7.12) and (3.7.20), i.e.,

:N

".

. ,.,-:..:-..-,...-..::..,.....?.: ,:..:,; .,:.. .. ,:.,. ; ..... :..,-- .. .. N .,.. . .--,x .¢- < , .. :...- . z.a Ir
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C2 < CO I
and CI and C2 denote the constants in the estimates (3.7.10) and

(3.7.19). This concludes the proof of the theorem. I
Remark 3.7.1. Sufficient (not necessary) conditions for

(3.7.6) to hold are the following:

SE C ' 1 and 
(3.7.21)

g = { H (F)IJ=O a.e. on FD} (3.7.22)

Under condition (3.7.21), the normal trace of any function v

V belongs to Wn

Yn(v) def y(v) .11 E Wn

n nand y h maps V o nto Wn (see HOnlich and Nauman [1978, Lemma 1.5,

page 213]). Consequently, for any g satisfying (3.7.22) there

exists a w I V satisfying (3.7.6).

Remark 3.7.2. No assumption on the sign of the initial

gap g was made in the above. The conclusions are thus valid both
in the case of positive gaps (initially separated bodies) or negative

gaps (prescribed indentations of the elastic body by the "foundation").

However, in order to be guaranteed of the existence of steady-

sliding solutions, the size of the admissable gaps is restricted

by the assumption (3.7.7) that involves the norm of w* V such

that w n : g a.e. on rC (3.7.6).

V'
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Here, we remark that if g O a.e. on F C, no restriction

on the size of g is needed to obtain an existence and uniqueness

result similar to Theorem 3.7.1. In fact, we only have to observe

that for given y>O and m>1, and every x E R

"(x-y)m x > 0

[(x-y)+]M< I x Im

r Consequently, by taking v in (3.7.1) equal to u (instead of u-w)

we obtain (instead of (3.7.10))

*mT

.IIu s CIA IIu*II + 8'

with
I~fl

B' =
a

Also, the estimate (3.7.19) can be simplified to

uC c T II .-2rc, 1 1u~ I 2 2 2'a

-. mT-  , mT- i 2"u + 11u2 ) Iu1-u21I

With steps similar to those in the proof of Theorem 3.7.1, with

assumption (3.7.7) being simplified to

iiii"' { (If %\mT-i llflSIICT 11.,rrT < C ,

a \ta/

and with no need to assume (3.7.6), it follows that a unique solution

to Problem 3 exists in the set

i..
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.. K = I{v V: I v1I -R I . F-

Remark 3.7.3. Similar existence and local uniqueness results

are proved in Rabier, Martins, Oden, and Campos [1986] using the

Implicit Function Theorem. Since compactness is not required in

the proofs, those results apply also to the limit case maximn mTf=3

with N=3. Since it is assumed that g>O on FC, no restrictions

on the size of the initial gap are required, which is consistent

with Remark 3.7.2 above. Since differentiability is required in

the proofs, those results do not apply to the limit case min{mn,mTj=1.

Otherwise, the assumptions in that work are similar to those here,

particularly: small applied forces (f) and arbitrary friction

(CT), or small friction and arbitrary forces. In the first of

these cases it is shown that the assumption of smallness of the

forces can be partially relaxed: only the smallness of the action of

f on elements of V with non-vanishing normal traces on C is required.

3.8. An eigenvalue problem.

We are interested here in the analysis of the dynamic

stability of the steady sliding equilibrium positions uO. We

restrict ourselves to two dimensional problems (N=2) and we assume

.mn,mT>l. A natural idea is to study the behavior of a linearized

version of (3.3.13) for the displacement-velocity pairs in a small i

neighborhood of (u0 ,O)_ VxV. As in Section 3.5,we assume that b, t,

and U are independent of time and that UT is different from zero

everywhere on r C" Coni.dering only vetoc&tkes that cAe 6uffkciently

-A".
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:::utaA and rnatktht .the 'tetative 6tidiLng vetocity on r ; nowhete

adJn are continuously differentiable in V, we are led to the

6oP~matetq linearized version of (3.3.13):

( (t),v) + c( (t),v) + a(w(t),v)

+ (DP(u0) *w(t),v> + (DJ n (U) w(t)3 V> = 0 V VE V

where DP(u0) E L(V,V') and DJ~ - E L(V,V') denote the derivatives of

P and J n, respectively, at u 0 E V.

Working now with the complex numbers field, we define the

.6e6quwitineGa/ forms:

ao(zv) f A Z v.l .klV dx

r Kn Zn nds.r KTn Zn vnd

COZV =ZQ i kl lVi' dx

for every z and v in the space V (now a space of complex functions).

Here, superimposed bars denote complex conjugation, v,= T -r on F F
K ndenotes the linearized normal stiffness of the foundation. at. the

2equilibrium posiiton u 0 and K Tn denotes the coupling stiffness.coef-

ficient between normal displacements and tangential stresses,

also at the equilibrium position u0 , i.e.,
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K n = n C n[(Uon-g) ]  n

m _

KTn -mT CT[(uon-g)+ ]

Assuming solutions of the form w(x,t) W(x) eX t we are led to the

nonsymmetric eigenvalue problem:

Problem 4. Find XE C for which there exists WEV, WO such

1that

ao(W,v) + X Co(W,v) + X2(W,v) = 0 v _V (3.8.1)

Here the H-inner product is now (z,v) f zi vi dx , u,v -- H

Remark 3.8.1. Sufficient conditions for the above 6otmaZ pro-

cedure to be rigorous require additional study. In the (finite

dimensional) rigid body case to be presented in the next chapter a

similar linearization procedure is rigorous. Occurrence of some

eigenvalues of (3.8.1) with positive real parts suggests instability

of the steady-sliding equilibrium, and occurrence of negative

real parts for all the eigenvalues of (3.8.1) suggests a stable

steady-sliding equilibrium.
.

Remark 3.8.2. The continuous differentiability of the

operators P and J can be proved directly using estimations of the

type used in earlier sections of this chapter or using general
results on the differentiability of functions in LP-spaces (see

Rabier, Martins, Oden and Campos [1986]). -

0kP "

Z. '
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CHAPTER 4

A RIGID BODY MODEL

4.1. Governing Equations.

We consider here a rigid block (see Figure 4.1.1) with P

dimensions LxHxB, weight W, mass M, moment of inertia with respect

to the axis through the mass center I=(L2+H 2)/12, restrained by a

horizontal arm with elastic stiffness K (>O) and damping coefficient .

C( 0), and sliding with friction on a surface which moves with

a prescribed tangential velocity UC The block is supposed to
x

have plane motion, the correspcnding degrees-of-freedom being: the

tangential and normal (penetrating) displacements of the center

j of mass G(ux and uy. respectively) and the rotation (us), as depicted

in Fig. 4.1.1. The %ota.t4Lon u0  " 4sumed to be smaiZ so that sin u_

tan UY u, and cos u -l. Along the flat candidate contact surface C

the contact laws (2.5.2,3) are assumed to hold. In view of the

geometry of the present problem, and assuming zero initial gap,

it follows from the normal contact equation (2.5.2) that the vector
of generalized forces associated with the normal stresses on

9P satisfies, at each time t,

- (t) P(u(t)) + Q(u(t),u(t))

where u(t)=[u (t),uy(t), u (t)] 6 R3 is the vector of generalized

displacements at time t, and fr

112
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IG

Figure 4.1.1. Geometry and degrees-of-freedom of a rigid block sliding
with friction on a moving foundation.
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On the other hand, from the friction law (2.5.3) it follows that

the vector of generalized forces Tassociated with the friction

astresses on rC satisfies at each time t

i -[T~(t)E J~u(t),u(t) - t)

"-' where
33l L2mT(w,v) w = BcT sgn(Vw -y v (w [ -XW) ] dx(4.1.3)

3 3L 1 t

• R E sgn(w) I ,D + 0

On th For this system the motion t l [O,T] u(t) f R3 has thus

h to satisfy, for a.e. t, the following differential inclusion:

M ie(t) o C sa (t) + K u(t)

+ P(u(t)) + Q(u(t), (t)) (4.1.4)

+ d(u(t), u(t) - $(t)) 3 F

and, at t=O, the initial conditions
{) (4.

"~~~ ~ E [0Tu () x o,0° : s

:,,*'; *t ? , ," , ?.;, ; ; ' .;',..y.:.;. --.... '.-;-..-.-:-:-',.- .0.'
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3
Here M, C, KER3 xR3 denote the symmetxc mass, linear damping and lin-

ear stiffness matrices and F(t)e R3 denotes the vector of applied

forces at time t. The matrix M is pos.tive de6uinte and the matrices

C and K are positive semi-de6inite. The form of these matrices and

vector in the present problem is

MOO r [M 0 00

M = OMO I ; C x 0 0] K l x a0 1 ; F(t) W ) .(4.1.6)
L oo 0 o L o o0oJ 0

The problem defined by (4.1.4,5) is the rigid body analog

of Problem 2 in the previous chapter.

For given FE R and E R -{Oj, both independent of time,

the rigid body analog of Problem 3 consists of finding u0  R
3  satis-

fying (set uu:0 in (4.1.4)):

K u + ) + J (u ) = F (4.1.7)

where

3_ def 11 L2mT (,
wCR J (w e=-BcT c 0 [ (w -xw ) ] dx(=J(w,O-)) (4.1.8)

S/ -L/2+

and

de77f sgn(U )= U CI 9C 0
*x x x x

Remark 4.1.1. For every vEN (0) =-vSR 3:IvR" + V-vi<5=

uCl/max(l, H/2), we have Ivx+(H/2 )v0 l I C so that sgn(v x+(H/)v-

U ) sgn(-U )=-n , and V (w,v)E R3xN (0) J(w,v - $ ) J (w), i.e.
x x -

for (w,v) in a sufficiently small neighborhood in the phase space R3x

%o in sa in

at ,-
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R3 of the equilibrium position (uo,0), J(w,v-$) is single valued I
and independent of v (velocity). For mn,mT,l n>

1  it results that
P(.) Q(., -), J(.) are continuously differentiable in a sufficiently

small neighborhood of the equilibrium position.

In a sufficiently small neighborhood of the equilibrium

position (uo,O) the differential inclusion reduces to the equxt4ion

M " + C t + K u + P(u) + Q(u,u) + J (u) = F (4.1.8)

With mn,mT,ln > 1 and taking w(t)=u(t)-u we obtain the linearized e-

quation

M +c C + K~ W (4.1.9)

where

C defl C +cQ (uO', - = 2) -} (4 .1 .10 )

, def K+KP(uo+ KQ~u') d
ZKKPu +K ,P K(

and, for (w,v) in a small neighborhood of (UoO) _ R3xR3,

Z 3w

Q(w)def (w)
K(w,v) w Q(w,v) C (w) Qw -(w,v)

0 if v=O (4.1.11)

S MJ (w)

? J(w,v),

-. .- *
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The rigid body analog of Problem 4 consists thus of seeking

x C , WC C , W 0 such that

[K0 + x CO + X2 M = . (4.1.12)

4.2. Steady-sliding equilibrium and linear stability analysis.

..J. 4.2.1. Nondimensional form of the equations.

Assuming, for definiteness, UC > 0 (n=+l) and introducing thenondimen-x

sional variables

u = Ux/X U = Uy/Y ,u. = u L/Y , (4.2.1)

with

X = W/Kx , (4.2.2)
1i/mn

Y = (W/cnBL) n (4.2.3)
n

the equilibrium equations (4.1.7) become

UxOL : f " Ix (Uyou 0) (4.2.4)

PP (-yO  1 (4.2.5)

;"P f'h iJ
l 0 ( 0uy 0 ) ( U x(ayO'(5) = 0 (4.2.6)

where we introduced the nondimensional parameters:

f T m (4.2.7)

n

h H (4.2.8)

p

,MW

;a, "iis
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and the functions

2 J + mT

~m (Wy O ' R2 -I (Wy,® [(Wyw )+n d

(WyW2) P I2 ) +i mn. ,l(W R Iy,w y9 ) : w _J (Y- w 0)+] -d

The parameter governin9 the steady-,sLiding equilibrLium prob-

e.m arte thus the powers mn and mT , the frtiction paLametvr f and the

geometic paoamete h.

With respect to the eigenvalue problem (4.1.12),we observe

that in the present case K -K -CyoC xo =M =0, so that theyxo= OxO CyxO E)xO= yx ex

characteristic equation for (4.1.12) decouples into

K + x C + X 2 M = 0 (4.2.9)x x x

det(K0 + * C* + *) 0 . (4.2.10)

Here, the superscript * on a matrix denotes the submatrix associated

.9 with the normal and rotational degrees-of-freedom.
From (4.2.9) it is clear that the eigenvalues associated

with the tangential motion are always imaginary (Cx=0) or have

negative real parts (Cx>0).

In order to study the stability of normal and rotational
I,'N

motions, it is convenient to use the nondimensional variables

O and (see (4.2.1) above) and the nondimensional eigenvalues

" * l(4.2.11)

,Y,

%"

.~ 4.



119

where yO denotes the frequency of the free normal oscillation

of the block for the linearized normal stiffness at the (frictionless)

equilibrium position u u y0 /Y=1. i.e.,

r n-i 1
-yO = (mn cn B L Y /M) (4.2.12)

The characteristic equation (4.2.10) becomes then

" i mn-- [1 2 fmTh + mT- o 07 d-det' Cao( )]nL_ 2td - -- :_ [a( Ij - id

~k".?. 13)

n F I 27 71 02
+ 2A [a 2 d A! ( 1+h : 0

where we have used the notation a0 ( )( u y0  - uc®o)+ and we have

introduced the interface normal damping parameter

Wb ~ 'n+1/2)/mn-I.,,.- Z /M bn W -
2Vm (Zn+1/2)/mn

n cnn n~n

It is clear from (4.2.13) that the parameters that gov&.rt the

b&near stability of the steady-siding aLe the power in, mrT and

I n the iti-ton par7ameter f , the normal damp4'nq paiamete. zn'

and the geometric p ametvt h. It is also clear that the cort,%ibut4on
, of the frictkional testance t~o ,the eigenvaiue p~toblem (4.2.13) i,5

a nonsymmettc matrix.

4.2.2. Numerical results

In order to study numerically the steady-sliding equilibrium

and its linear stability we first select values for m mT and

h and solve the problem (4.2.4-6) for increasing ialues of f in the

~~~~~~~~~~~- ,-' ,''.---- - .. ".-- -- "-.-.-.---.-,----------...-------.------.---,--.. -'
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range [0,7), where f= f(mn,mT,h) denotes the value of f for which

steady sliding equilibrium ceases to be possible due to the tumbling

of the block (for m n=mT it is easy to see that f=I/h=L'H). For each

* of the values of f considered and for some 1 and 2 the eigenvalue %

problem (4.1.12) is then solved numerically. For details on the

numerical computations see Chapter 5. For simplicity, we shall

restrict ourselves in the examples presented here to the particular

situation mn =mTln , hence f-w ; for the study of some cases involving

m nm T see Martins and Oden [1986].

Typical results for the normal (au 0 ) and rotational (u 0 )

equilibrium displacements as the friction parameter is increased

are shown in Figs. 4.2.1 and 4.2.2. It is clear that, as should

be expected, both u yO and uC)ogrow unboundedly as f approaches f.

In Figs. 4.2.3 and 4.2.4 we plot typical evolutions of

the eigenvalues A as the friction parameter f is increased, when

the normal interface damping is zero (Fig. 4.2.3) or different

from zero (Fig. 4.2.4).

It is clear that, in both cases, fot Some %ange of 6, the

nosymmetry of the friction conVtibutionz in (4.2.13) originates

eigenvaae A with posi tve reai paxt, and this implZv the dynamic

(.ntab.Zty of the coresponding 5teady Sliding equ2ibtium positios.

These regions of instability are identified in the (hf)-

parameter plane (Figs. 4.2.5,6) for some values of m =mT l and 2

nTn

Remark 4.2.1. For each hO, the regions of instability in

"- Figs. 4.2.5,6 are delimited from below by the values f, ) at which

°' 9-

?i, ,,.
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1.1

Figure 4.2.3. Orthographic projections (a,b,c) and perspective (d) of
the root curves of the characteristic equation (4.2.13)
for the admissable range of the friction parameter f
[0,1/0.45) with mnmT=2.5, h=0.45 and i=0.00 fixed.

, I!
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0.

-IIA III

Figure 4.2.4. Orthographic projections of the root curves of the char-
acteristic equation (4.2.13) for the admissible rance
of the friction parameter f E [0,1/0.45) with mn =n=
2.5, h=0.45 and 2=0.02 fixed. n T
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a pair of conjugate eigenvalues A starts to have positive real

parts and from above by the values (f2 ) at which such positive

real parts cease to exist. Since our numerical results were obtained

by incrementing the value of f without searching for the exact

values of f1 and f2, these values are represented in Fig. 4.2.5

by the pairs of endpoints of the increments of f at which the

above mentioned transitions occur. For clarity, in Fig. 4.2.6,

the transitional increments' endpoints lying inside the instability

region are omitted.

We also remark that, if some eigenvalue of (4.1.12) has

a zero real part no definitive conclusion on the stability of

the equilibrium solution can be obtained from the eigenvalue problem

(4.1.12). Since we are mostly interested in showing that, for

some range of the parameters involved, steady-sliding is unstable,

we shall not pursue here the study of what happens outside the

region of instability in Figs. 4.2.5,6 when i=O (recall from Fig.

4.2.3 that in those regions the eigenvalues A have zero real parts).

Howeveri6C >0 and b >0 (1>0), the points outside the tegion o4 cnsta-x n
bility in Fig. 4.2.5 correspond to a ymptoticatty stabte 6teady-slZd-

ing pos.tion (all the eigenvalues of (4.1.12) have negative real

parts). Z

4.2.3. Discussion

We observe that the small rotations assumption adopted

in this work (recall Section 4.1) implies that, for f close to

VPt
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f, the results obtained here do not represent the true behavior

of the system, since, for such values of f, large rotations do

occur. We remark that these limitations on the validity of our

results do not affect the fundamental observation of the previous

V, section, i.e., that for some range of f and appropriate values

of the other parameters, steady-sliding is not stable: as seen

in Fig. 4.2.2 and Figs. 4.2.5,6 the transitions on the nature

of the eigenvalues of (4.2.13) occur when the rotations uro are

still very small (note that for L in the range 1 to 100 cm and

Y in the range 0.3 to 10 Lm the rotation u0 o would be in the range

3x10 7uO to 10" u00 rad). Only somewhere above the upper boundary of
00

instability in Figs. 4.2.5,6 the small rotations assumption ceases

to be valid. Furthermore, we believe that, in practice, the geometric

nonlinearity does not play any significant role in block-on-slideway

sliding systems of the type studied in this chapter: it is reasonable

to expect that no one would operate or run an experiment with

such a system allowing for the occurrence of large rotations.

Of course, the same may not be true in other circumstances, namely

with some pin-on-disk friction apparati having very flexible arms

and very small contact regions.

AFrom Fig. 4.2.6 it can be concluded that, when the coeffi-

cient of friction is independent of the normal pressure, the 5peck'jcic

value o6 mn(=mT) 4n the typ.4.cal tange [2,3] does not affect consideta-

bly the boundaries of the regon o6 knstabiiity.

° p

pi
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In Fig. 4.2.5 it can be observed that, for small values

of the geometric parameter h(=H/L), the interface normal damping

increases the value of the friction parameter at which the instability -
initiates, i.e., it reduces the region of instability. However,

it is also clear from the same figure that the normai damping

moves up the upper boundary of the instability region, i.e., it

increases the region of instability. Hence, addition of normal

interface damping in the form adopted here may indeed have a destabil-

izing effect on the steady-sliding equilibrium for some ranges

of values of the parameters involved. Situations of this type,

in which positive viscous "damping" contributions may have a destabil-

izing effect, are common in nonconservative systems. Such effects

were first discovered by Ziegler [1952] and have since been analyzed

by various authors in connection with the study of critical loads

for beams subjected to follower forces, stability of fluid conveying .1

pipes, panel flutter, etc. (see, e.g., the books of Ziegler [1968],

Leipholz [1970], Huseyin [1978] or Guckenheimer and Holmes [1983]).

A detailed discussion of these effects in the present problem

falls outside the scope of this work. Here we only remark that,

with a defotmable block and even wivth no notmal 'CWtiace daimping, the

steady-sliding equilibrium is unstable in the region of the (h-f)-

parameter plane where the destabilizing effects of the normal damping

are more significant (the region above the upper boundary of the

t{tgd bodo instability); see Example 3 in Section 5.5.

I1
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4.3. Low-frequency stick-slip motion and apparent reductions

of kinetic friction.

4.3.1. Nondinensional form of the equations of motion.

We denote by T the nondimensional time

T = Wt (4.3.1)

and we choose w to be the frequency of the free tangential oscillation

of the block, i.e.,

= (Kx/M) . (4.3.2)

Using again the nondimensional displacements u , and u,", defined in
x q

(4.2.1-3), the governing system (4.1.4) becomes

MU"(T) + C ,'(a ) + K U(T)

+ P(U(T)) + Q(L(T), U'(T)) (4.3.3)

+ J(U(T), U'(T) - ) F

where

2 0 1002 1zx 0o_

0 s 0 00 C 2 1 0 0 0 (4.3.4)
0 0 ( )/1 000 0 00

P(W) s [a( )] n 1 d (4.3.5)

(4.3.6)
/2 s3/2 n 0

Q(w,v)= 2 (mn s a ] v 2 $ 1v  d ; (4.3.6)

1
.. -V - %- , - , , %- n Y.
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1 34

= gn + [r a() d (4.3.7)J (w, v) f sgn( x  2 Ovhl 
_ "

(D U up /WX (4.3.8)

F ,(4.3.9)
0

Here a( ) (w- w) , ( ' denotes differentiation with respect

to the nondimensional time T , and, in addition to the parameters

f, h and 2 defined earlier, we have introduced the parameters

K/ W Ni/m n
s = Y/X =- CnB (4.3.10)

C
zx (4.3.11)Zx 1 ,MK x

The parameter s, hereafter called the 6tiffness pAamietet,

measures the stiffness of the tangential spring relatively to

the normal stiffness of the contact. In fact, s can be rewritten

as s=mn(Kx/mnCn B L Ymn-1) where K is the stiffness of the tangentialm-i x

spring and mnCn B L Y n is the (linearized) normal stiffness of the

contact at the frictionless equilibrium position uy0 = /Y=1. Note

that these two stiffnesses are equal when s=mn. The parameter z is

the (usual) tangenPiat damping patametet.
I..'-

The initial conditions (4.1.5) become now

u(O) Z 0 , ( 0 ) -a, (4.3.12)

F'uI

~ ~ - ~ -;
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Finally we observe that, for computational purposes , prob-

lem (4.3.3,12) is regularized using the procedure employed in
Section 3.4. In the present chapter, E denotes the nondimensconai reg-

utarization parameteA [E =(dimensional ) X]. Itmax (&max) denotes the

dimensional (nondimensional) maximum time step for the numerical

integration of the equations of motion (see Chapter 5).

4.3.2. Numerical results and discussion. .

A complete qualitative study of the system (4.1.4,5) is not36

available yet 3 . Here we present several numerical studies designed

to reveal the effect that some of the governing parameters have
-S

on the behavior of the system and, whenever possible, we qualitatively

compare our numerical results with experimental observations.

First we consider briefly what happens when the coefficient

of friction is sufficiently small that the eigenvalues X (equation

4.2.10) are pure imaginary (in the absence of any normal or rotational

damping). In the remainder of the section various situations

are considered which involve coefficients of friction sufficiently

large that some of the eigenvalues A have positive real parts.

The resulting low-frequency stick-slip motions or apparently smooth

sliding motions are then described and the effect of the normal inter-

face damping on these behaviors is pointed out. The dependence

of the stick-slip amplitude and frequency on the driving velocity

and the stiffness parameter is also studied. Finally various cases

3Existence and uniqueness of solution to that problem can, of
course, be proved using tec,niques similar to those used in Section 3.
4. For an outline of the proof see Martins and Oden [1986].

*4.
.5
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are studied for which apparently smooth sliding motions at apparent

coefficients of kinetic friction lower than the coefficient of

static friction are obtained. The corresponding plots of the varia-

tion of the apparent coefficient of kinetic friction with the

A, average sliding velocity are presented and interpreted.

The small friction case. We first consider a case for

which the steady-sliding position corresponds to a point outside

the instability region depicted in Fig. 4.2.5 for 2 = 0. The data

used is the following:

1 2+H2) = 1.242 x 105 Kg cm-

Cx  0.0

Kx  1.11 X 107Kg s - 2

cn : 1013 Kg cm-3"5s-2; mn mT = 2.5; cT : cn; w 0.15

bn:O

L 48.8 cm; H = 30.5 cm; B = 30.5 cm

W :4.5 x 105 Kg cm s - 2

UC 0.08 cm s-1

S0 =Uo; 1 = (0.0, - 0.01 cm s " 1, O.O}t.

Atmax •

Note that this data corresponds to a point (h,f) = (0.625 , 0.15) in

Fig. 4.2.5. The initial conditions indicated above correspond

to a small perturbation of the steady-sliding equilibrium position:

%
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a small normal (upwards) velocity.

In Figs. 4.3.1 and 4.3.2 we show phase plane plots of

the resulting norml and rotational oscillations. Despite the

complexity of the resulting oscillation is ampltUude(for a small ini-

tial perturbation) is smatt and does not grow with time. At all in-

stants the body remains sliding so that the instantaneous ratio

friction force/normal contact force is equal to the coefficient

of friction w=0.15 and, in average, the ratio friction force/normal

load (weight) is also equal to that coefficient. Since the amplitude

of the oscillation is small its effect on the tangential displacement

trace is small (<0.2%) so that the perturbation of the steady-sliding

does not have a significant effect in the present case. Furthermore,

if some damping were taken into account (C x>O, bn>O) this oscillation

would be damped out and the steady-sliding would be essentially

attained after a period of time.

sLow frequency stick-slip motion and apparently smooth

sliding. More interesting situations arise when the data is chosen

such that the steady-sliding equilibrium is unstable. In the

examples studied in the remainder of this section the following

common data has been used

, mh =0.45 (4.3.13)

f =0.6

Ji
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In the computations described next we used, in addition,

the following data

s = 0.01 (4.3.14)

zx = 0.001 (4.3.15)

= 0.01 (4.3.16)

EU '  0.1 (4.3.17)

Xw

2max S1 W 0 (4.3.18)

and various values of the driving velocity U'C  as indicated on

the figures. The initial conditions were the following

* CLX0 
=  XO , aro 2 IYO * Y , -0 U 0

(4.3.19)

where Pu is a small normal displacement perturbation:

P = -0.01 or -0.001 . (4.3.20)

The values of s and zx considered above are "in the small range"

and the initial conditions (4.3.19) correspond to a small normal

perturbation of the steady-sliding equilibrium state.

The following remarks give a summary description and

interpretation of the numerical results obtained for the conditions %

indicated above:

(i) Due to the instability of the normal and rotational

modes, the normal and rotational oscillations grow (see Fig.

4.3.3)

! "~.1~ *1
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(ii) The variation of the normal force on the contact

produces changes in the sliding friction force which in turn produce

a tangential oscillation.

(iii) The tangential oscillation may then become sufficiently

large that, for small values of the driving velocity U'C the points I
of the body on the contact surface attain the velocity U' and the

body sticks for short intervals of time (see Fig. 4.3.4).

(iv) With the growing of the normal oscillation actual

normal jumps of the body may occur (see Fig. 4.3.3).

(v) The repeated periods of adhesion have the result

of decreasing the average value of the friction froce on the contact

and, due to the absence of equilibrium with the restoring force

on the tangential spring, the tangential displacement of the center

of mass decreases (see Figs. 4.3.5 and 4.3.6).

(vi) Then, one of the two following situations may occur:

(a) for vaZuu o6 U'C taAge than Aome cAAuttcai value, thex
normal, rotational and tangential oscillations evolve to what

appears to be a steady oscillation with successive periods of

adhesion and sliding, the average values of the friction force

and of the spring elongation being smaller than those corresponding

to the steady-sliding equilibrium position (see Figs. 4.3.5 and

4.3.7 to 4.3.10).
'Cq

(b) 6o vaLuez o6 U1 Zower than the cvtical vatue, and at a

sufficiently small value of the spring elongation, the normal "

interface damping is able to damp out the normal (and rotational)

W,,R~kMM=
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oscillation (see Fig. 4.3.11) and the body sticks (see Fig. 4.3.6) I,
since the restoring force of the spring is then smaller than the

maximum available friction force.

Thws, monitoring the spring elongation,, a. i6 often

done in friction experiments, cae (a) woutd be perceived "s an

appa,%enty 6mooth 6tiding with a coefficient o6 kinetic friction

smatter than the coefficient o6 static friction and ca~e (b) would

be perceived a4 a (tow-frequency) 6tick-4tip motion.

The role of the normal interface damping. It is clear from

the results presented above that for "small" tangential stiffness

and damping, the size of the driving velocity plays an important

role on the occurrence of low-frequency stick-slip motion or appar-

ently smooth sliding motions. It is also clear that when a low

frequency stick-slip motion occurs the normal oscillation that

accompanies the sliding phase of the stick-slip cycles is damped

out when the spring elongation is close to its minimum. The role

played by the normal interface damping on the qualitative behavior

of the rigid block is made clear in Figs. 4.3.12 and 4.3.13.

The values used in the computations are those indicated in (4.3.13-

15) and (4.3.17-20) but now we fix UIC = 0.01 and we vary 2 as indi-

cated on the figures. In Fig. 4.3.13 it can be observed that,

for very small or null interface normal damping (i=0.002 or z=O.O00)

an apparently smooth sliding motion is obtained. As the interface

normal damping is increased (1=0.005, 0.01, 0.02, 0.05) a low fre-

7 I
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quency stick-slip oscillation is observed. The amplitude of that

oscillation decreases with the increase of 2 as shown in Fig.

4.3.12. The steadiness of the normal oscillation when 2=0.0 and

the intermittency of the normal oscillation when low-frequency

stick-slip motions occur (i=0.01 and i=0.05) is made clear in

Fig. 4.3.13. The decrease of the amplitude of the normal oscillation

when z is increased can also be observed on the same figure.

The phase plane plots of the normal oscillation and of the tangential

oscillation of the points of the block on rC when z=O are shown in

Figs. 4.3.14,15.

From the observations above we conclude that some normal

interface damping is needed for the occurrence of low-frequency

stick-slip motion. In physical terms, this means that 5ome pzastcC

deformation (penetration) o the inerface mu,5t occur at the end

of the 6liding portion/beginning o the stick portion of the 6tick-

alip cyctez and it ia that pla.tic deformation that iz responzibe

6o the damping o the normal osciZlation.

Figure 4.3.13 suggests another comment: the form of the

decay of the normal oscillation at the end of the sliding portion

of the stick-slip cycles reveals in a clear manner the vi-couz nature

of the nonlinear term in equation 4.1.4 that is responsible for

that dissipation. Experimental observations of the same phenomenon

with actual metallic surfaces may suggest more appropriate forms

for that normal dissipative term.
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The effect of the stiffness parameter and the driving

velocity on the amplitude and frequency of the low-frequency stick-

slip motion. In order to study the influence of these parameters,

we fixed the data (4.3.13)(4.3.15,16) and (4.3.19) and we assigned

to s and U'C  various values in the small ranges for which low-

frequency stick-slip motion is observed. In Figs. 4.3.16 and

4.3.17 we plot the amplitudes of the low frequency stick-slip

oscillations against the driving velocities for each of the values

considered for the stiffness parameter. The nondimensional amplitude

6 and the nondimensional driving velocity U'C  are used in the'_A X X

plot of Fig. 4.3.16. In Fig. 4.3.17 different nondimensional

variables are used: the amplitude Aux /s(=Aux/Y) and the driving

velocity U1¢ /vs-(= UC/V gY) where Y is the quantity defined in (4.
X x

2.3) and g(=W/M) denotes here the gravity acceleration. The plots of

Fig. 4.3.17 represent thus the behavior of the dimensional amplitude

au when the changes in s and result from changes in K and 6C
x Ux

respectively, while using the same body and the same contact surface

(the same W, the saine M and the same Y). The decrease of the dimen-

,sionat 6tick-6ip amplitude with the -nctease o6 the tangential stiff-

hnes can be observed in Fig. 4.3.17.

For the range 0.0004< sSO.01 of the stiffness parameter,

the amplitude o6 the tow-frequency stick-stlip motion decreases only

sl6ightly with the increae o6 the driving vetocity,which appears con-

sistent with the small slopes of the amplitude-driving velocity plots

*1
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at small driving velocities, obtained experimentally by several

authors (Rabinowicz [1965], Brockley, Cameron and Potter [1967],

Kato and Matsubiashi [1970]). Also in agreement with some experi-

mental observations (recall e.g. Fig. 2.2.1) the transition 6tom eow-

frequency tick-,slip motion to appaently smooth sliding is abrupt.

For small tangential stiffnesses, the critical driving velocity at.

which that transition occurs is not very dependent on the stiffness:

a small decrease of the dimensional critical speed U with thex
increase of the tangential stiffness is observed in Fig. 4.3.17.

Finally, we observe that the larger stiffness parameters

considered (s=0.025 and s=0.035) correspond to a transition be-

tween the range of values of s for which low frequency stick-slip

oscillations occur at low driving velocities and the range of

values of s for which no low frequency stick-slip motions can

occur at any driving velocity. For these values of s an increase

of the amplitude of the stick-slip motion with the increase of

the sliding velocity can be observed in Fig. 4.3.16, and this

is followed also by an abrupt transition to apparently smooth

sliding motion at some critical driving velocity. Although increases

of amplitude of the stick-slip motion with the driving velocity

are not frequently reported in the literature, we observe that

in some cases such phenomenon has indeed been observed: as an

example we mention the work -f Brockley and Ko [1970],(in particular

see Fig. 13, page 555 of their work for the small velocity range at

which the friction induced oscillation has a saw-tooth wave form).

l'S'

- ''"**z~ ~~v ~ S'
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() In Fig. 4.3.18 a plot of the variation of the nondimensional

stick-slip frequency with the nondimensional driving velocity UPCx

is presented. The nondimensional stick-slip frequency is equal toSS 55S-

the ratio w ss/w where w denotes the dimensional (rad s" ) stick-slip

frequency and w denotes the frequency of the tangential free oscilla-

tion (4.3.2). For the small stiffness parameters (s=0.0004; s=0.0016

and s=0.01) an essentially linear relationzhip between the stick-.tip

6equency and the drivin9 velocity iz obtained which results from the

small dependence of the stick-slip amplitude on the driving speed

(Figs. 4.3.16 and 4.3.17) and which also bears some similarity

with the results of Dokos [1946] (recall Fig. 2.2.2 in Chapter

2). In Fig. 4.3.18 it can be observed that the low-frequency

stick-slip motion ceases when its frequency is still well below

the natural frequency of the tangential motion. Situations of

this type have been reported by Kato and Matsubiashi [1970] but, as

0observed in Chapter 2, it is frequently observed that the low

frequency stick-slip motion persists up to the natural frequency

k of the free tangential motion. At this point it is unclear, if

for some values of the governing parameters, our interface model

and the rigid block considered here may simulate such a be;avior.

See Section 4.4 for further related discussions.

,N The apparent coefficient of kinetic friction-sliding velocity

plots for the apparently smooth sliding motions. For "small"

stiffness and tangential damping parameters and with a small driving

N
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velocity a low frequency stick-slip motion is obtained while,

with a large driving velocity, an apparently smooth sliding results.

It is also known that two means for obtaining experimentally a

smooth sliding at low sliding speeds are: the use of a very stiff

tangential spring or a very strong tangential damping. Here we

show that our model predicts these behaviors.

In Fig. 4.3.19 the tangential displacements obtained

with the data (4.3.13), (4.3.15,16), a "large" stiffness parameter

(s=0.1) and various driving velocities are presented. It can

be seen that these traces consist of a self-excited oscillation

(without the typicaZ .6aw-tooth wave fo'tm) about a constant average

displacement which corresponds to an apparent coefficient of kinetic

friction lower than the coefficient of static friction.

In Fig. 4.3.20 similar results are shown but now the

stiffness parameter has the "small" value s=0.01 while the damping

parameterhas the "large" value Zx=lO,

In Figs. 4.3.21 and 4.3.22 we plot the apparent coefficients

of kinetic friction as a function of the driving velocity (=average

sliding speed) for the three cases of apparently smooth sliding

, that have been considered: small s, small z and large u large-,- ~ ~~ ~ s ml x adabtayX

s, small and arbitrary ; small s, large z and arbitrary U'

In the second case (large s), since the nondimensional amplitude

of the self-excited oscillations is significant for some speeds, we

also indicate those amplitudes on the plot.

%I
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The following remarks provide an explanation for ap-

parent coefficients of kinetic friction that are lower than the

coefficient of (static) friction and some additional comments:

(i) All the low apparent coefficients of kinetic friction

in our computations result from the occurrence of a period of

stick during each period of oscillation of the body (see Figs.

4.3.8-10 and 4.3.24,25). The ratio (friction force/normal contact

force), when the body sticks, is smaller than the coefficient of

friction, so that the time average of the friction force is smaller

than the product of the coefficient of (static) friction and the

time average of the normal contact force (the weight of the body).

Thi6 iz prec Lely the high-frequency 6tick-Wlip mechani6m propo6ed by

Budanov, Kudinov and Tolstoi [1980] (recall Section 2.3).

(ii) If the driving velocity is sufficiently small that

periods of stick are possible during each cycle of oscillation

che following effects can be observed:

(a) The periods of stick occur in the portion of each

cycle for which the normal contact force has larger absolute values

(see Figs. 4.3.9 and 4.3.25)

(b) As should be expected, a discontinuity of the friction

force occurs at the instant of each transition slip to stick (see

Figs. 4.3.9,10 and 4.3.25)

(c) For otherwise similar conditions, larger driving

velocities imply larger self-excited oscillations (compare in

each of Figs. 4.3.7,8 and 4.3.23,24 the results obtained with
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different driving velocities)

(d) Also for otherwise similar conditions, larger driving

velocities imply smaller periods of stick, relatively to the total

period of one oscillation (see Figs. 4.3.9,10 and 4.3.25).

(iii) Increases of apparent coefficient of kinetic friction

with the increase of driving velocity result essentially from

the effect (d) above (see Fig. 4.3.10). This is (with the extra

complexity inherent to having a three degrees-of-freedom system

instead of a two degrees-of-freedom system) what Budanov, Kudinov

and Tolstoi [1980] suggested to explain apparent coefficients

of kinetic friction increaing with the average sliding speed (recall

mechanism (II) in Section 2.3).

(iv) Decreases of apparent coefficient of kinetic friction

with the increase of driving velocity are associated with the

effects (a), (b) and (c) above. Compare in Fig. 4.3.25, for the

two driving velocities considered, the minimum values of the friction

force (sliding phase), the size of the discontinuities in friction

force, and the values of the friction force at the points of maximum

normal force (stick phase).

(v) For asufficiently large driving velocity, no stick

state occurs during the oscillation so that, since we do not take

into account any thermal softening effects, the average coefficient

of kinetic friction is equal to the coefficient of static friction.

(vi) In the case of the large tangential damping (s=0.01,

* zx=10) we can describe our results using precisely the words of

x
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Tolstoi [1967]: "sufficiently heavy damping of tangential vibrations

alone could suppress these vibrations [ the low frequency stick-slip

motions] but failed to affect the negative slope of the friction-

velocity curve." On this respect we note that the decoupling

(4.2.9,10) of the characteristic equation for the eigenvalue problem

(4.1.12) implies that, for the present geometry, the introduction

of heavy external tangential damping does not affect at all the

instability of the steady-sliding. For viscous stabilization

of an unstable steady-sliding sufficiently strong normal and rota-

tional damping are required (see Oden and Martins [1985]). This, of

course, agrees with the observations of Tolstoi summarized in

Section 2.3.

(vii) Fig. 4.3.24 contains an important warning to experi-

mental researchers of sliding friction: a small, apparently negli-

gible oscillation on the tangential displacement trace at the

point where it is being recorded (in our case the center of mass

of the block or the tangential spring) may be the subtle manifesta-

tion of a stick-slip motion on the contact surface. Another mislead-

ing point is the fact that the wave form of the recorded oscillation

may be very different from the typical saw-tooth wave form.

(viii) u-vT plots for apparently smooth sliding motions

obtained with different "experimental apparati" (different s and zx)

may be clearly distinct (see Figs. 4.3.21,22)

(ix) The initially decreasing portions of the u-vT curves

in Figs. 4.3.21 and 4.3.22 are qualitatively similar to those

*4

U:
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experimentally obtained by Rabinowicz [1965, Fig.4.45, page 101] and

by Bell and Burdekin [1969-70b, Fig. 4, page 1078.,.'espectively.

4.4. Apparent reductions of static friction due to normal per-

turbations.

4.4.1. Introduction.

In Section 4.2 we studied the linear stability of the

steady-sliding equilibrium and showed that for some range of the

parameters involved steady-sliding could not be stable: consequences

of this on the dynamic behavior of the slider were shown in Section

4.3. Here we are interested in analyzing the effect of normal

* perturbations on the loading path of the slider -the stick portion

of the stick-slip cycles. In a sense, we should like to determine

some sort of stability statement concerning that loading path:

if a perturbation is introduced while the body sticks, will the

body "recuperate" from such a perturbation and keep stuck until

the tangential displacement attains the value at which the unperturb-

ed system initiates sliding or, on the contrary, will the body

initiate sliding "prematurely" with an apparent coefficient of

static friction lower than the true one? We also want to know

what effect the driving velocity (or, equivalently, the rate of

application of the tangential force) has on the apparent value

of the coefficient of static friction at which the perturbed system

initiates sliding.

N4 N
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4.4.2. Numerical results.

The results reported in this section were obtained with

the common data (4.3.13-16).

First we ran our program with the driving velocity succes-
sively assuming the values U', =2.5xi0 3 , 5x1O 3  Ix10 2  2.5x1O 2

i5x102 , ax10i , 2.5x v , and with the initial conditions uX0 =u-(50
=

-=Ug =0, U -=' =I, i.e., the body initiates its motion stuck
Y1 9i -0 ILL l O~

with the moving surface and no normal perturbation is introduced

either at start-up or during the subsequent motion. In the subse-

quent motion, the body remains stuck until the nondimensional

tangential displacement attains a value of the order of f at which

sliding initiates. More precisely, sliding always initiates at a

value of u somewhat in excess of f, due to the inertia acquired

by the slider during the stick phase: this excess is almost impercep-

tible (- 10- 4) for the smallest driving velocities and clearly

noticeable (102) for the largest velocities considered. For each

, %44 of the driving velocities considered the maximum tangential displace-

ment of the slider L xk =x Uxk) is recorded. Then, for each of the

driving velocities U'c considered, the program is successively run
xk

starting at the time T at which the unperturbed tangential dis-

placement was equal to successively decreasing values ux." =0.575;

0.550; 0.525;... The initial conditions for these successive

runs are the following: the tangential displacement and velocity,

the normal velocity, and the rotational displacment and velocity

(. xi,  'x'k , 'y . , u ki u' i , respectively) are precisely the same

,1

I
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as those of the unperturbed system at the time T ; the normal

displacement is made equal to the unperturbed normal displacement

at T i ( Uy ) plus a perturbation . successively equal to -0.05,yk Y 0

-0.10, -0.15, -0.20. In other words, for each driving velocity U'
C

xk

we introduce, at the time T.. at which the unperturbed tangential dis-

placement was equal to u xi, a normal displacement perturbation PUyj

The numerical results obtained snow that norma petubatioun1

can produce apparent 'reductions o6 the coe6fcient o6 static friction

and that a 6ixed level o6 perturbation has a "detabilizing" effect

K! ~that increases with the ncr'eaze o6 the drivk'ng veZocity, i.e., a cer-

tain amount Pu , of normal perturbation at a fixed ux, is moreYJ YJ

likely to produce a "premature" sliding if the driving velocity

is large than if it is small. We illustrate this in Figs. 4.4.1

and 4.4.2.

In Fig. 4.4.1 we can observe that a normal perturbation

.L .. 0..05 at u V 0.575 is capable of producing a premature sliding

for the larger driving velocities U'c = 5x10 3 , 2.5x1O and 1x10 3,.. xk"

4
but, for U'" =5x1O the system, after short periods of slidingX k

immediately after the perturbation, sticks again and the maximum
• ""max

tangential displacement is essentially equal to the unperturbed uxax

In Fig. 4.4.2 a normal perturbation Pu . =-0.1 at Ux=0.55 produces aYJ 4
"premature" sliding for U'C =ix10-2 , 5xi0 -3 and 25xi0- 3 but, for

xk

U'C=1X10 the body "recuperates" from the perturbation.
xk

Additional qualitative information can be obtained from

the numerical results by searching, for each fixed pair (U ,Pu ),xk yj

.4-.

p
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the minimum value of at which the normal perturbation considered

originates a "premature" sliding. Since actual perturbations

are somehow distributed throughout time, it is reasonable to expect

that the accumulation of the destabilizing effects of the perturba-

tions will produce a "premature" sliding shortly after the above

mentioned minimum of uxi is achieved along the (stick) loading

path. A difficulty however arises: since the unperturbed system has

its maximum tangential displacement at a value x that is not

equal to f and that increases with U, we cannot decide whether "pre-x

mature" sliding of the perturbed system occurs or not by simply

comparing the maximum value of the perturbed tangential displacement

3 with f. In the results reported below we use the following atbitrary

criterion: "premature" sliding occurs if the maximum tangential dis-

Xplacement of the perturbed system (Pumax) is at least 1% smaller than
,xk

the corresponding maximum tangential displacement of the unperturbed

system (Uma x ) for the same driving velocity U',c i.e., if (umax pumax)
xk k 'xk xk

/ Amax 0.01. We also note that, since we only considered perturba-

tions at discrete locations u .=0.575, 0.550, 0.525, ... , to say, for
XA1L

instance, that u. 0.550 is the minimum value of u at which

some perturbation produces "premature" sliding only means that

such perturbation at u. = 0.575 and 0.550 produces "premature"

sliding while the same perturbation at uL. 0.525, 0.500, ... does

not produce "premature" sliding.

With these conventions in mind we summarize the results ob-

tained in Fig. 4.4.3. In addition to observations made earlier we

IlNI
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observe, as might be expected, that Zarge perturbations ptoduce a "pe-

matue" sliding mor'e easily than 6maif ones. We observe also that

sufficiently Zage normal pektutbat onz can produce appatent teduc-

tion6 o6 the coefficent 06 static 6iction even 6or% the s6malest

dtiving velocitie6 conidered.

4.4.3. Discussion.

The previous results, however suggestive they are, should be

analyzed having in mind the admitted limitations of the model used:

preliminary tangential displacements occurring before gross sliding

and the details of the plastic deformation of the interface cannot

be modelled with the constitutive laws (2.5.2,3) adopted in this

work. Since these effects may have some importance along the

Cquasistatic loading process studied here, the results above should

be viewed only as indicators of what to expect when using more complex

models of the interface behavior.

A question that is important to discuss is the size of

the normal perturbations considered. As we decrease the size

of the perturbation its destabilizing effect of course is reduced

(recall Fig. 4.4.2). It is easy to anticipate, and we confirmed

it numerically, that sufficiently small normal perturbations have

negligible effect on the initiation of sliding. However we observe

that the size of the perturbations considered here, although "mathema-

tically not small", are indeed "physically quite small" and of the

order of magnitude of the microseisms mentioned in Section 2.3.

.'.J.
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For static penetrations Y=(W/cn BL) 1n in the range 0.3 to lOwm ,the

perturbations considered here would be in the range 0.015 to 2w~m.

Apparent decreases of the coefficient of static friction

with the increase of driving velocity, as suggested by the numerical

results above would affect the stick-slip results of Section 4.3.2

(recall that in the computations leading to Figs. 4.3.16 to 4.3.18

no reductions of static friction were taken into account). Smaller

stick-slip amplitudes and more pronounced slopes of the amplitude-

velocity curves in Figs. 4.3.16 and 4.3.17 should be expected

as a result of the reductions of static friction. On the other

hand, these reductions would lead to smaller periods of stick

and consequently to larger frequencies in Fig. 4.3.18, more close

to the natural frequency of the tangential motion of the system.

These effects would certainly improve on what appears to be an

"1excessive" sharpness of the transition stick-slip to apparently

smooth sliding in Figs. 4.3.16, 17 and also on the smallness of

the maximum stick-slip frequencies in Fig. 4.3.13.

It is thus clear that the "rate dependence" of the coefficient

of static friction plays an important role on the stick-slip oscilla-

tions, precisely as it has been assumed in previous analyses.

The question that we raise here and that needs further study isj

solely related with its origin - is it an intrinsic property of -

the contacting surfaces or is it the result of a (still not well

defined) "instability" along the stick portion of the stick-slip

cycles? Much theore ti calI, numerical and experimental work is i

<%5
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still needed before a definitive answer to this question can be

given.

4.5. Some remarks on the numerical results.

The nature of the problems studied in this chapter leads

to the two following difficulties when numerical solutions for

them are sought : firstly, the friction law introduces a multi-

valued operator and discontinuous accelerations and friction forces

result at the transitions slip to stick; secondly, in the physically

interesting situations, the periods of response in the tangential

direction that are of interest to span are much larger than

j the periods of the normal and rotational oscillations of the body:

although we may not be too interested in knowing very accurately

how many microns or fractions of the micron the interface penetration

is at each time, we cannot afford to lose too much accuracy in

* that computation since that may affect the rapidly varying values

of the friction force to an extent that the whole average behavior

in the tangential direction may become meaningless.

To handle the first difficulty, a regularization technique

has been used which, for the continuous in time problem (4.1.4,5)

can be shown to lead to approximate solutions that converge, as

the regularization parameter eO, to the solution of (4.1.4,5). The

proof of this is essentially the same as the one presented earlier in

Section 3.4. When used in conjunction with the time discretization, it

is reasonable to expect (although not proved) that the time step will

U - •,.
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have to decrease to zero at a rate somehow related to the rate

of decrease of E , if convergence is to be assured. In the absence

of such convergence studies the choice of has been dictated

only by how physically reasonable the numerical results look,

in particular, how well stick states are modelled. For the small

driving velocities U'C  considered in most of the examples of this

chapter, values of ,/Uc <0.1 lead to results with well-defined stick

7states (see, for example, Figs. 4.3.8, 4.3.15 and 4.3.24).

With respect to the second difficulty mentioned above,

there seems to be no other alternative than to use time steps

of a size sufficiently small that the normal oscillation is integrated

with sufficient accuracy. Values of the maximum time step Atmax (see

Chapter 5) have been used that are at most 1/50 and, usually,

1/100 of the period of the linearized normal free oscillation

R YThe numerical results shown in Figs. 4.5.1 and 4.5.2 illus-

trate our contention that, 6or "regutat" cases6 (see below), the quaii-

tative behavior and the esential quantitative 6eatues o6 the

motion (amplitudes, 6equencies, average stiding velocities) are

not sen~itive to %eazonabte (and sometimes not so reasonable) vc~ia-

t"on in E and At or changes. in the method o6 integration (see also
max

Martins and Oden [1986]). By "regular" cases we mean all the

motions that,despite their complexity, occupy after a sufficiently

large time, a well defined region of the phase space and reveal

a pattern that "essentially" repeats itself in time, namely:

I..
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the low-frequency stick-slip motions and the apparently smooth

sliding motions of Section 4.3. For these cases, we may say that our

code behaves in a robust manner. If high accuracy is desired (very

accurate stick states, very accurate values for the instantaneous

penetrating approaches and rotations) the analysis may become

too expensive for the small number of degrees of freedom involved.

In order to improve on this it seems advisable to use, at least

in the rigid body case, other standard techniques of integration

of systems of ordinary differential equations that allow for the

estimation of the errors introduced at each stage and the automatic

time step control. This may permit increasing the time step in

a controlled manner during periods of no contact and extended

periods of stick and reduce it during short periods of contact and

transitions stick to slip. Radical improvements in computational

time should not be expected however, due to the steep slopes of

the regularized friction law that are needed for very accurate

stick state modelling.

We report now on some situations for which we found a

"-sevete senitivity" 06 the numexicat sowtuion. to the numvucae

parameteU E and Atmax, and to every smatt change Zn comptationa

aigoA.. thm ot data. Such situations may occur in applications

of the type presented in Section 4.3 when the normal damping parameter

2 is equal to zero or is very small and some values are chosen for

the other governing parameters.
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"Regular" results with zero normal interface damping (2=0)

were earlier presented in Figs. 4.3.14 and 4.3.15. However, when

other values are assumed for the other governing parameters, the

trace of the tangential motion may be extremely "irregular", with

regions of sliding and sticking alternating in a irregular and

unpredictable manner. For the times spanned by our computations those

"irregular" motions do not appear to be converging to any more

predictable oscillation. Small changes in data, computational

algorithm or numerical parameters lead to solutions that only

have in common with each other their extreme irregularity and

unpredictability. We illustrate these difficulties in Fig. 4.5.3,

i where we reproduce the tangential displacements obtained with

three different maximum time steps and keeping constant all the

other parameters.

Situations of this type should not be surprising. It

is now well known that other nonlinear nonconservative systems

with three or more phase space variables may reveal equally unpredict-

able irregular behavior. An example that has in common with the

7 present problem the fact that it also leads to a nonsymmetric

2x2 stiffness matrix (recall equation 4.2.13) is the problem of

a double pendulum subjected to a follower force (see e.g. Takens

[1974a,b] and for related problems Holmes [1977] and Holmes and

Marsden [1978]).

On physical grounds, we conjecture that the irregular motions

that we have obtained numerically are of the same type as some

4-
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if not all of the irregular experimental friction traces obtained

by Bowden and Leben [1939], Bowden and Tabor [1939], and Rabinowicz

[1965]. For each of the irregular plots obtained numerically

it is always easy to find some experimental trace in the literature

that is qualitatively very similar (just as an example, compare

Fig. 4.5.3 with Fig. 8e, Plate 22 in Bowden and Leben [1939] or with

Fig. 8b, Plate 26, in Bowden and Tabor [1939]).

We suspect thus that those "irregular" motions and the asso-

ciated numerical difficulties are inherent to the governing equations

(4.1.4,5) for some ranges of the governing parameters. Only

a detailed qualitative study of that system may confirm (or not)

the truth of this conjecture.

toPt
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CHAPTER 5

FINITE ELEMENT MODELS

5.1. Finite element approximations

Using standard finite element procedures, approximate versions

of the Problems 2, 3 and 4 (Chapter 3) can be constructed in finite

dimensional subspaces Vh( C V C V'). For a certain mesh (h) the

approximate displacements, velocities and accelerations at each

time t E [O,T] are elements of Vh,

h h _
v(t) v(t), (t) E Vh

Within each element (e2 (e=1,2,. Eh; Eh=total number of elements

in the mesh) the displacement components are expressed in the

form

h Ne
v(Z v (t) N (x) j=1,2,...,N, (5.1.1)

and similar expressions hold for their time derivatives. In (5.1.1),
N is the number of nodes of the element e; vh

e v1l(t) denotes the j-th dis-

placement component of node I at time t, and NI is the element

shape function associated with the node I. The particularization

of the above when no time dependence exists (Problem 3 and 4) is

obvious.

Hereafter, we confine our attention to plane problems (N=2)

and we consider two types of finite element approximations: four-node,

191
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bilinear (QI) elements and nine-node, biquadratic (Q2) elements.

The finite dimensional versions of the variational statements

(3.3.13), (3.6.1) and (3.8.1 ) are immediate. On the other hand,

the systems of ordinary differential inclusions or algebraic equations

to be solved are precisely of the form found in the previous chapter

with the rigid body model: (4.1.4,5), (4.1.7) and (4.1.12).

Clearly, the vectors and matrices appearing now in those

equations have the dimensions 2xNh and (2xNh)x( 2xNh), respectively

(Nh=total number of nodes in the mesh). It is also clear that

all of them depend on the mesh parameter h, which,for simplicity,

'3 will be omitted in the notations.

5.2. A regularization of the Coulomb friction law

, elComputationally, it is desirable to work with a system

of ordinary differential equations rather than a system of differen-

tial inclusions of the type in (4.1.4). We achieve this by using

a regularization technique of the type employed earlier in Section

3.4: recall, in particular, the assumptions (3.4.35-39) on the

regularization function y. . and the definitions (3.4.40,41) and

(3.4.43,44) of the regularized continuum problem and its finite

dimensional approximation, respectively. The variational statement

governing the finite element regularized dynamic friction problem

is precisely of the form (3.4.43). The corresponding system of

ordinary differential equations has the formi

! \
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M 0(t) + C u(t) + K u(t)

+ P(u(t)) + Q(u(t),(t)) + J (u(t),C(t)) = F(t)

with initial conditions

u(O) = -Go tI(O) =Ti (5.2.2)

Here we take into account normal interface dissipative effects,

we omit in the notations the dependence of the solutions upon the

regularization parameter E , and, for simplicity, we assume 0

and u 1 to be given in Vh

The function T E E CI(R 2,R) employed in the computations

reported in this work has the form, with E>O,

2 1I
(e 1 if E

The corresponding directional derivative at in the direction

f of is

1 ' if W E

In order to visualize this regularization procedure, we

denote by T a unit tangent vector along the (uni-dimensional and

sufficiently smooth) contact boundary . With and cr. tangent

to " (recall Section 3.4), we denote the components of . and :

C

aa -kp
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along T by & and O respectively (i.e., = T and = IT) and

we can define the real valued function of a real variable T

such that ( =) = and ( )()=T' ( )(). The functions
E -~

and T' are depicted in Fig. 5.2.1 together with the function

and the multivalued application sgn(. ) which, respectively,

they approximate.

Many examples of similar regularization procedures in dynamic

friction problems can be found in the literature. Among them

we refer to Duvaut and Lions [1976] for mathematical aspects;

to Threlfall [1978) and Rooney and Deravi [1982] for computational

applications to Theory of Mechanisms and to Martins and Oden [1983]

for a finite element analysis of a simplified friction problem.

Remark 5.2.1. Let us assume that:

- .(i) The family {Vh} of finite element subspaces is endowed with

standard asymptotic interpolation properties as h -O (see e.g.

Ciarlet [1978] or Oden and Carey [1983]).

(ii) The assumptions of Theorem 3.4.2 hold with, for simplicity,

in (3.4.32) and %0 and U in (3.4.33) belonging to all the Vh

in the family {V with h sufficiently small.

Then the family {Vh} satisfies conditions of the type (3.4.5-

7) and, with the same proofs of Lemma 3.4.1 and Theorem 3.4.2

and the observations of Remark 3.4.5, it follows that the finite

: , elements regularized solutions converge to the non-regularized

continuum solutions of Problem 2, as h-O and E- 0, in the topologies

indicated in Remark 3.4.5. r7

Y &
.4* ~ '~ $ ~ 4
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5.3. Algorithms for transient analysis

The algorithms that we have used for solving the discrete

dynamic system (5.2.1,2) involve variants of standard schemes

in use in nonlinear structural mechanics calculations: Newmark's

method and central-difference technique, both associated with

Newton-Raphson iterations within each time step.

Let us consider a partition of the time domain [0,T] into

M intervals of length At=tK+l-t K with 0=t0,t I .... t K9 tM=T.

Choosing as fundamental unknowns at time tK, for example,

the velocities 6K- ,(t the displacements and accelerations at

time tK can be expressed as linear combinations of 6K and the

(known) variables at tK I, according to the Newmark formulae:

uK = _K1+ 6-KJ/t
~K ( (5.3.1)

Uat2 2B K AtB+2t1- u_ (1 ) I
UK = UK-1 + &t - 1 - )U -

K- K- 1 y
where 3 and y are the so-called Newmark parameters. For 3=1/4,

y=1/ 2  the average acceleration method is recovered and for 3=0,

y=1/2 the central-difference method is recovered.

Substituting the above relations into equation (5.2.1) C

we obtain the following equation at time tK:

!0_60 = 0 (5.3.2)

-.,here

1.t MI.N + C + tK] +N((53)
tK(3K - ,,t Y K (UK) - K

UV
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K' -K - (K (.4

def -1~SfK-M[(I -)~K-1- K-I]

- K[UK_1 + At(1 - y)UK-1 + - (1- ) K-I] (5.3.5)

with uK in (5.3.4) given by (5.3.1)2.

In order to solve the nonlinear equation (5.3.2) the Newton-

Raphson iteration technique is used: given a starting value u0)

successive approximations of the solution uK are computed using

the recurrence formula
j(i+1) i)_ [C O )]- R i)

-K - ZK RK (5.3.6)

where i=0,1,2, ... denotes the iteration counter,

RO R (i)(5.3.7)..K -- K ?K

60) d ef (R

MIM +[C + cQ(i)+ rJ(i)]

At P(i) QM J(i)
i t [K + KP + KQ(i) + K (5.3.8)

Y z ZK E:K3

The form of the element contributions to the vectors and

matrices in the above equations is the following:

(e)p .f cn[nwNimn(w) Cn[ -g)+ n. N ds-3ePJw  f(e) n IcI(e nc

(Q (w,v) : bn[(Wng)+] n Vn n Nds

(e),

* - . ', - -N ~ .
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mT .

(e)KM .N(WE) : S C ((wn Wg) ] ' i(vT T)Tj NJ ds
.

(e)rc

(eP fn-i

K = bn[(Wnig ) ] n.n. NM NN ds
e) .N .( V~ ~ e

1. (e) bl[w~) n 1.

r c

m~T-i(e)KMN (wv) I'b1 CTT(w n- 1vn(vT-UjC)Tinj NM NN ds

e J (e) n

C
.N. N (e) bn[(wn-g)+] n ninj NM NN ds

1 (e)r

(e)CJ (WV T ^"uC)Ti~j)NM NN ds
C ) CT(Wn-g)+]  (v T)TiTj NM NN, : ( e ) E

C

.c *
where (w,v) E Vhxvh' VT = VT(S) and O = U(s) denote the components

of vT : vT(s and C = OC(s) along the unit vector T = T(s) tangent

to (e) denotes the portion of F belonging to the element e, and

E if I [

The linear damping matrix C considered in the finite element code

has the general form:

C = c K +c M

It is clear from (5.3.8) that, if the central-difference

technique is used (B=O) no stiffness contributions to the matrix

-_4

S.
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~(i) eit Thmarx(i)

K exist. The matrixC K is then a 6ymmettic matrix. If d4*agonae-

ized mass and damping matrices (M and C) are used, then the only

possible nondiagonal entries of Em( result from the element segments

on Fc. The matrix C becomes diagonaZ when, in addition, a trans-

formation (rotation) o6 the degtee o6 fteedom on r c  is performed

in such a manner that the final degrees of freedom have the direction

of the normal and the tangent to r c at each contact node, and

the element contributions to CQ ( ) and CJ ( ) are computed with
K K a o

a quadrature rule which uses the nodes as integration points (e.g.,

trapezoidai rute for lineat elements and Simpson' tule forL quadratic

etemenXt4). The resulting explicit form of (5.3.6) is then a clear

advantage of the central-difference technique over the implicit

members of the Newmark family of methods.

Remark 5.3.1. In the actual computer implementation of

the implicit members of the Newmark family of methods the displace-

ments uK at time tK were taken to be the fundamental unknowns.

L The nonlinear equation to be solved iteratively involves thus "

displacements, rather than velocities. The same happens with

the recurrence formula (5.3.6) where, instead of an effective

damping matrix (C ), an effective stiffness matrix is used (see

Oden and Martins [1985] for the details of the equiva.ten~t formulation).

Remark 5.3.2. The discontinuity (actually, the multivalued-

ness) of the Coulomb's friction law at zero sliding velocity is

a major source of computational difficulties in friction problems.

w.A
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Even though, in the algorithms described in this section, a regular-

ized form of that law is used, those difficulties cannot be completely

avoided. The situation which may arise when using the methods

described here with a constant time step is the following: in

unloading situations (passage from sliding to adhesion) the Newton-

Raphson iterative techniques may fail to converge if E is very

small and the time step too large. We observe that similar difficul-

ties may occur even when different regularizations of the friction

law and different iterative schemes are used (see Martins and

Oden [1983]). The difficulty appears to be the result of the steep

changes in T ' (recall Fig. 5.2.1) in the region where its curvature

changes sign, i.e., in the interval [-E , E]. We observe also that

it is in transitions from sliding to adhesion that the most drastic

changes in the solution are expected to occur: with a single degree-

of-freedom sliding system a discontinuity of the tangential accelera-

tion (and of the friction force) arises at the transitions from

slip to stick.

One simple remedy for these difficulties is the use of

smaller time steps whenever such nonconvergences occur. The need

to reduce the time step when load-deflection curves present an

inflection and Newton iterations are performed within each time

step has been reported earlier by other authors (Geradin, Hogge

and Idelsohm [1983]). .'

In the computer codes developed in the course of this work

(either with the finite element models or the rigid body models)

! -
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reduction of the maximum time step prescribed in the input (Ltmax
is only performed if the Newton-Raphson iteration fails to converge

in a prescribed number MAXITE of iterations. In that situation,

successively smaller time steps Lt are tried until a convergent

solution is obtained. This smaller time step is then kept for

a prescribed number of steps KSTEPR during which the most drastic

changes in the solution are expected to occur. After this time

interval, the time step is gradually increased again to Itmax.

It was found that for the smaller time steps, a reduction

below 0.1lt was rarely needed if a _It was used which providedL.max max
simultaneously for accurate computation of dynamic response and

for the stability of the central difference technique and if the

values of E used were not too small. The parameter MAXITE has

been set usually to 5 and KSTEPR to a number in the range 10-20.

An indication of the extra computational work resulting

from the reduced time steps is given by the quotient T'/ T, where

T is the total physical time spanned by our analysis with some

total number of time steps, and with time step reductions, and

T ' is the total physical time that would be possible to span with

the same total number of time steps if no reduction of time steps

were needed. In most of the computations, values of this ratio

of the order 1.2-1.5 were experienced. If more restrictive values

of - are used without decreasing the input value of ",tmax' the

result may be a significant increase on the ratio T'/T : for example,

-1
for =0.02cms -  in Example 1 of Section 5.5, a ratio T '/T :4.2 was

N 0
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obtained.

5.4. Algorithm for steady-sliding and linear stability analysisP
In order to compute the solutions of the finite dimensional

versions of Problem 3 for a certain range [0, cT] of values of

cT we subdivide the interval [0,Z T]  into a prescribed number

NINCT of increments AcT-cT/NINCT and, for each increment K=0,1,...,

NINCT we again use the Newton-Raphson method to solve the nonlinear

*system of equations at each value of c For the Newton process

at CT=O (K=O) the input of some (very simple; initial guess is

required. For K I, the starting value for the equilibrium iterations

at the K-th increment is the (converged) solution for the (K-1)-th

increment.

For the computed equilibrium position at each increment

K, the finite dimensional versions of the nonsymmetric eigenvalue

Problem 4 are solved using standard routines.

5.5. Numerical results

Our first example is designed more to test the performance

of the algorithms described in Section 5.3 than as a model of

complex dynamic friction phenomena.

Example 1 (A s;-ab subjected to pe.,Lodic loading) . We study

here the motion of the slab shown in Fig. 5.5.1. The dimensions

of the slab are 16cm x 2cm, as indicated, and it is assumed to

be in a state of plane strain. The linear elasticity properties

of the material of which the slab is constructed are: Young s

!% %
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modulus E=1.4x 106(103Kg cm- 1s2) and Poisson's ratio =0.25.

The mass density of the material is Q=7x10 6(10 3Kg cm 3).

The slab is simply supported on the portion D of its boundary

and is compressed along a frictional interface Fc by a flat 'rigid'

surface, the vertical downward displacement of which is prescribed.

This corresponds to prescribing an initial uniformly distributed

gap g=-5x104cm. The prescribed tangential veolocity of the 'rigid'

surface is zero (T=O). The normal contact properties of the

interface were taken from Table I of Back, Burdekin and Cowley

[1973], assuming that the surfaces in contact are of cast iron

hand-scraped with a surface finish (peak to valley distance)

in the range 6-8um. The coefficient mn is then equal to 2 and,

after a change of units, cn=10 8 (103Kg cm- 3s 2  The friction

coefficient along rc was arbitrarily assumed to be w =0. 3 and

independent of the normal load. Consequently, mT=2 and cT =0.3

X 108(10 3Kg cm-3s- 2 ).

On one of its ends (TF), the slab is subjected to a time-

dependent uniformly distributed force

t = sin Gt

3 -1 -2 4 -where T=30 (10 Kg cm S - ) and Z=3xlO rad s - 1

The prescribed initial conditions are as follows: the

initial velocities in all the slab are zero (-iG=O) and the initial

displacements are the static equilibrium displacements of the

5lab due to the normal compression exerted by the flat surface

on 'c alone (no friction on Fc and no applied tractions on lF).

c c
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We observe that, due to the normal deformation of the

interface, the equilibrium normal displacements and normal pressure

on rcare not known a priori. The initial equilibrium displacements

solution is obtained by solving the following system of nonlinear

algebraic equations:

K + p(20) =0

The numerical solution of this frictionless unilateral

contact problem is obtained by using a standard Newton-Raphson

algorithm analogous to that discussed in Section 5.4.

The finite element mesh used in this analysis consists

of 16 nine-node isoparametric quadratic elements, as illustrated

in Fig. 5.5.1. The regularization parameter E for the Coulomb

friction law was taken, successively, to be equal to 1, 0.1 and
-1

0.0 cm s . The dynamical equations of this discrete model

were integrated using Newmark's method, as discussed earlier,

with parameters B=0.25, Y=0.5 and a maximum time step of At mx=10-6s.

The distributions of normal stresses at several time

instants obtained with E=0.1 cm s-1, are shown in Fig. 5.5.2.

The distributions of friction stresses on Fc at several

time instants are shown in Fig. 5.5.3. The travelling wave type 1,

evolution of these stresses can be clearly observed in that figure

as can the sharp transition between the sliding and adhesion

regions on r c,

The effect of the regularization parameter E on the evolution

of the displacements, velocities, and friction stresses at the
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contact node 55 is shown in Figs. 5.5.4 to 5.5.6. As might be

expected, smaller values of E lead to sharper transitions between

sliding and adhesion states; large values of E smooth out those

transitions. An examination of the computed variation in the

tangential displacements and velocities leads us to the conclusion

that the essential effect of the reduction of E is to produce

more accurate adhesion states. High values of E (e.g. E=1) lead

to solutions which only vaguely resemble those obtained with

smaller values of E , no meaningful conclusion relative to stick

or slip being possible. From a practical point of view it appears

reasonable to choose values of e , that are sufficiently small

j relative to the order of magnitude of the tangential velocities

that occur during the sliding states. In this manner, sliding

and adhesion will be essentially relative and not absolute concepts.

We observe that for tangential velocities on the order of I cm s--1
the value of E=1 cm s 1 is obviously inadequate while results

obtained with E :0.1, 0.02 cm s seem to be physically reasonable.

All the computations performed in Section 4.2 with a

rigid body can also be done with finite element models of linearly

elastic or viscoelastic bodies. The essential effects observed

there are also observed with the deformable bodies.

Example 2 (Steady-sliding of a compteed slab and it. dunam-

,cc tab4 ittu). We consider here a slab similar to the one presented

in Fig. 5.5.1. The material and normal contact properties and

N~ N.
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the boundary conditions on rD are the same as those in Example

1. The dimensions are now 16 cmxl cm and the finite element

mesh consists of 9 x 2 nine-node isoparametric elements. The

initial negative normal gap on rc was taken successively to be

-4 -3
510-  cm and Ix10 3 cm. The 'rigid' flat surface that compresses

the body along r c is assumed now to have a velocity towards the

right. No forces act now either in Qor on FF.

hThe steady-sliding equilibrium positions of this slab

(the finite-element approximate solution to Problem 3) and the

corresponding approximate eigenvalues (Problem 4) were computed

for increasing values of cT in the range [0,1] (NINCT=10), for

zero viscous damping and zero normal interface damping.

Deformed mesh configurations and distributions of normal

-3
stresses on F are shown in Figs. 5.5.7 and 5.5.8 for g=1 10" cm.

c

The corresponding friction stresses on rc are, of course, equal

to u times the normal pressure. For 0. 3, if g=-5x 10-4 cm,

-3and for u 0.2, if g=-II0 - , eigenvalues with significant positive

real parts were obtained. In Fig. 5.5.9 a plot of all the eigen-

values in the first quadrant of the complex plane obtained for

all the values of u considered is presented. It can be seen

that larger compression produces increased instability.

The essential fact to be gained from this example results

from the observation that the body considered has no rigid body

freedoms. AU the kns5tab4Uties ar.sng tn ths case ae a~ssckated

vcth "deotmat ton" mode, notk' 'td body modes. We finally observe

"r Pe "A e .r %
4,II
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that in the present example no eigenvalue approaches the origin

of the complex plane, for the range of cT considered: the steadt-
stiding 6otution exists6 and i6 unique for all the range [0,1] o6

values o6 cT.

Example 3 (Steady-sliding and dynamic stability of a defo.rLm-

able block). We consider here a homogenous block sliding, with

friction, on a moving foundation (see Fig. 4.1.1). We assume

that the block has a linearly elastic behavior with a Young's

modulus E = 1.4 x 106(I03Kg cm-1 s-2) and a Poisson's ratio =0.25.

We assume that the body is in a state of plane strain. The geometry,

total mass (M), total weight (W), total tangential stiffness

(Kx) and contact properties are given as follows:

L = 48.8 cm M = 450 Kg
3H = 30.5 cm W = 450 10 Kg cm s-2 (5.5.1)

B = 30.5 cm Kx 2388 103Kg s-2

c = 100 103 Kg cm-3.5s- 2 m = mT = 2.5, cT = ucn = 0n = .,C jn

As in Section 4.2 a necessary condition for equilibrium is u<L/H=1.6.

The finite element model consists of a 4x3 mesh of nine-node

isoparametric elements as depicted in Fig. 5.5.10.

N. In this section we compute the steady sliding equilibrium %

positions of the block for several values of u in the admissable

range [0,1.6) and, for each of those configurations we solve the

finite element version of the eigenvalue Problem 4, in the absence

of any damping.

%% JKN
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Figure 5.5.10. Deformed configurations of a linearly elastic block for
the steady sliding equilibrium configurations at several
values of u. (Note: Nodal coordinates and nodal dis-
placements are not to scale - the apparent distortion
of the body results from an amplification of the verti-
cal displacements 10 larger than the one used for the
horizontal displacements; this was needed in order to
make visible the rotation of the body).
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In Fig. 5.5.10, we show the deformed mesh configurations

for the steady sliding equilibrium positions at several values

of the coefficient of friction , . The expected increase of the

rotation with the increase of u can be observed in that figure:

for the level of forces in presence the block behaves much like

a rigid body.

As in the rigid body case, all the eigenvalues are pure

imaginary for small values of W(in the absence of damping). For val-

ues of i > 0.32 (see Fig. 5.5.11) the occurence of eigenvalues

with positive real parts is again observed. All the eigenvalues

in the first quadrant of the complex plane, together with the

corresponding ranges of w for which they were observed, are

plotted in Fig. 5.5.11. Similar computations were done with the

same block but assuming it as a rigid body. In Fig. 5.5.12 we

compare the rigid body model eigenvalues associated with the

normal and rotation displacements with those from the finite

element model which are associated with similar modes. The results

are close: the deformability of the body does not affect much %

the evolution of the eigenvalues. Finally we observe that the esn-

.tial difference beOeen the %uutts obtained with the tigid body and

the deformable body modeLs i, that, in the Zatter case, thvLe ate

eigenvalue which cor'epond to unstable modes that ate not "rigid

body" mode4. The eigenvalues corresponding to those "deformation

modes" have larger imaginary components and one of them does

appear for values of u below the value at which the rigid body

instability initiates.

mU
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Consequences of the dynamic instability of the steady-

sliding on the motion of a deformable body are shown in the next

example.

Example 4 (Friction- induced oscilation o6 a de6ormable beock

Aiding on a moung foundation). Our final numerical applications

consist of obtaining the dynamic response of the linearly elastic

block of the previous example with the following initial conditions:

the initial displacements are those of the steady sliding equilibrium

configuration appropriate for the value of u considered; the

i. nitial velocities represent a small (upwards) perturbation of

that equilibriim, i.e., =Uo, uxu=O.O, uy=0.01 cm s in all

'* )lock.

In this example, the geometry, normal contact properties
,-.

and total mass are the same as in (5.5.1). We will now assume

the total tangential stiffness Kx equal to 11100 (10 3Kg s- ),

the coefficient of friction w equal to 0.60 and the velocity

-1
XU successively equal to 0.01, 0.08, 0.80 cm s . No damping

effects will be considered when modelling the interior of the

linearly elastic body, but normal dissipation on the contact

X .8 00 3 -4.5 - I') an
boundary is considered with bn=0.38l 1010 (10 Kg cm- s" ) and

,%" 1 2.5.
n

The evolution of the elongation of the spring is shown

in Fig. 5.5.13 for the three velocities Ux considered. The resulting

Zow-frLeqoency 4t4ck-6 Lfp motion for the two smaller velocities

can be observed in that figure. In Fig. 5.5.14 we show a phase

-p.
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0.3.

CL4.

.40 ... .... - -. 0 .'.5 0.0 0? yC~

(b)
Figure 5.5.14. Phase plane plots of the normal oscillation of the con-

tact node 29 during the "sliding" portion of the low-
frequency stick-slip motion. (a) Initial part (growini
oscillation). (b) Final part (decreasing oscillation).

(ot:only 1 for each 5 computed points is plotted.)
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plane plot of the normal oscillations of the node 29 and in Figs.

5.5.15 and 5.5.16 we show the evolution of the normal and friction

stresses on the same node. In Figs. 5.5.17 and 5.5.18 we show
W

what one of the numerous spikes in Figs. 5.5.15 and 5.5.16 looks

like with a different time scale. The corresponding evolution

of the ratio aT/I n I during the same cycle of contact is shown

i n F i g . 5 .5 .1 9 . I n t h a t f i g u r e , a n d a l s o i n F i g . 5 .5 .1 8 , t h e o c c ur-

tence at each cycle o6 contact o6 perods o adhesion and slding

is indicated. Also in Fig. 5.5.18, it can be seen that during

sliding the ratio GT/onl is not exactly equal to the prescribed

coefficient of friction 0.6; this is due to the small normal

3 interface damping considered. As noted in Chapter 2, the Coulomb

friction law is recovered exactly by our model when mn=mT and

no normal interface damping is considered. However, if the normal

interface damping is small, as we always assume, the opposite

Pcontributions of the dissipative term in (2.5.2) during the "impact"
and "rebound" phases of a cycle of contact essentially compensate

so that in average the Coulomb's law of friction is satisfied.

The important reductions of average friction force are not the

result of those effects but, as is made clear from Fig. 5.5.19,

they are the result of the periods of stick during each cycle

of contact, i.e., the high-frequency stick-slip mechanism proposed

by Budanov, Kudinov and Tolstoi [1980] (recall Section 2.3).

It is also important to observe that, having used values

for the normal contact properties (cn,mn) taken from Table I
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Figure 5.5.15. Ev lution of the normal stresses on the contact Node 29
(Ux 0.01 cm S-.

0. .Olms 0.2S9.

TIM

.3

Fioure 5.5.16. Evolution of the friction stresses on the contact NodeI 29(tL 0.01 cm S-').
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of Back, Burdekin and Cowl ey [1973, and having considered a

block with dimensions and weight close to those used by Bell

and Burdekin [1969-70], it turns out that the frequency of the

normal contact oscillations observed in Figs. 5.5.16-20 is of1Z

the order of magnitude indicated by Tolstoi [1967] as typical: C

10 3Hz (recall Remark 7 in Section 2.5).-

For the case of the larger velocity (6C=0.8 cm S-1), that

velocity is sufficiently large that the tangential oscillation

of the body is not sufficient to produce any stick state. Conse-

quently, the average coefficient of friction during sliding is

equal to the static coefficient of friction. We note also that

the instability of the equilibrium position makes it impossible

for the contact damping to damp out the normal oscillation.

A steady self-excited oscillation is then attained. That can

be observed in Fig. 5.5.13 (horizontal oscillation of the node

connected to the spring) and in Fig. 5.5.20 (normal oscillation

of the contact node 29).
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CHAPTER 6

CONCLUSIONS AND

SUGGESTIONS FOR FURTHER RESEARCH

In this study a simple model of interface response

is developed for the study of dynamic frictional contact problems

involving metallic bodies. This model is consistent with a large

body of experimental evidence on the behavior of metallic interfaces

and it incorporates a constitutive law for the normal deformability

of the interface and Coulomb's law of friction.

4 Taking into account the normal deformability of the interface

leads to mathematically tractable problems in continuum mechanics:

variational formulations and existence and uniqueness results for

steady-sliding and dynamic frictionless or frictional contact problems

are established in the present work. Semi-discrete finite element

approximations to dynamic contact problems are also shown to converge,

in appropriately weak topologies, to the solutions of the corresponding

continuum problems.

From the physical point of view, the incorporation of the

normal deformability of the interface allows for the modeling of

normal oscillations that are commonly observed in the course of

sliding motions. It is a fundamental result of this work that,

for sufficiently large friction, the nonsymmetry of the coupling

between normal and tangential deformations of the interface may

lead to unstable steady-sliding equilibria. Such instabilities

231

I "



II
232

may occur either with rigid or with deformable bodies and they

may occur even when the coefficient of static friction is equal

to the coefficient of kinetic friction and the latter does not

decrease with the sliding speed. It is also a fundamental result

of this work that instability of steady-sliding equilibria and conse-

quent high-frequency normal oscillations may lead to low frequency

stick-slip motions or to apparently smooth sliding motions at apparent

values of the coefficient of kinetic friction that are lower than

the coefficient of static friction.

The numerical results presented in this dissertation confirm

and give further insight to essential aspects of the experimentally-

based ideas of Tolstoi [1967] and Budanov, Kudinov, and Tolstoi

[1980] on the role played by normal oscillations in sliding friction

phenomena. Particularly, the high-frequency stick-slip mechanism

(mechanism (I) in Section 2.3) proposed by Budanov, Kudinov and

Tolstoi [1980] emerges in the present work as the essential mechanism

responsible for the occurrence of average friction forces (during

apparently smooth sliding or during the slip phase of low frequency

stick-slip motions) that are smaller than the static friction force.

A new mechanical explanation for the occurrence of such high-frequency

normal motions, which does not rely on the excitation by shocks

between opposing asperities, emerges from the present work: those

motions are the necessary consequence of the dynamic instability !.

of the steady sliding equilibrium. . ,
r s'I Numerical studies on the effect of the variation of several

a%%-
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governinq parameters on the behavior of sliding bodies at small

speeds lead to very promising quaiZita.tZve comparisons between numerical

results and experimental observations.

The results reported in this final report should be the

starting point for many studies in dynamic frictional phenomena.

Full understanding of these complex phenomena can only be achieved

with a close interaction between mathematical analysis, numerical

Lcomputations and experimental work.

The following mathematical studies are suggested:

(i) A detailed qualitative study of finite dimensional

dynamical systems of the type (4.1.4,5) (the choice of model problem(s)

involving some simplifications to the rigid body model considered

here is recommended);

(ii) A study of the regularity of the solutions to the

steady-sliding and dynamic contact problems formulated in Chapter

3, and a mathematically rigorous study of the stability of steady-

sliding equilibria in the deformable body case;
(iii) The construction and study of simple examples of non-

I existence and/or non-uniqueness of solution to steady-sliding problems;

(iv) A study of the mathematical difficulties arising when

I the normal interface stiffness is made to increase to infinity

(the analysis of known examples of non-existence and/or non-uniqueness % 6
of solution to finite dimensional dynamic contact problems may

prove very useful in this context).

The numerical techniques used to solve dynamic contact

I-
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problems deserve the following additional studies:

(v) An analysis of the convergence of fully discrete approxi-

mations when the time step, the regularization parameter, and the

mesh parameter (in the finite element case) converge simultaneously

to zero;

(vi) A study on the application to friction problems of

time integration techniques that allow for the automatic control

of time-step.

Among the numerous numerical studies that are needed, those

indicated in the following are expected to provide information

that is complementary to the results presented in this report:a (vii) A study of the effect of the parameters that govern

the rigid body problem on apparent reductions of static friction;

- (viii) A study of apparent reductions of static friction

employing finite element models of deformable bodies;

(ix) A study of the stability of steady-sliding equilibrium

and the occurrence of friction-induced oscillations with other

-geometries, particularly "pin-on-flat" experimental apparati.

Full assessment of the models proposed in this dissertation

requires quantittative comparisons between theoretical results and ex-

perimental observations. The apparatus to be selected for the

required experimental work should satisfy the following conditions:

,b 41 (a) closeness to other apparati used earlier in the literature

(the possibility of uep'oducing9 earlier experimental results is essen-

tial);

Ar2Z
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(b) possibility of incorporating devices to measure and,

when desired, to restrict the normal (and rotational) motions;

(c) simplicity of the theoretical modeling of the dynamic

behavior of the apparatus.

In view of the numerical results obtained here the experimental

work suggested should, of course, be directed toward the study

of the role played by normal (and rotational) degrees-of-freedom

on:

(x) the "rate dependence" of the coefficient of static

friction;

(xi) the occurrence of stick-slip and other friction-induced .

oscilTations;

(xii) the dependence of the kinetic friction on the sliding

speed.

%:2
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APPENDIX:

SOLUTION TO THE SIGNORINI-LIKE CONTACT PROBLEMS

THROUGH INTERFACE MODELS

In this Appendix, we present a study of contact problems usually

modeled by Signorini's problem. Our approach differs in that we

make use of the constitutive relations for the normal response along

the candidate contact surface developed earlier in this report.

The form of these models is dictated by experimental evidence and

they lead to a variational equality instead of an inequality. We

focus on the most delicate case of contact-traction boundary conditions

for which we obtain existence and optimal uniqueness results under

physically realistic assumptions. The other usual boundary conditions

can be dealt with similarly with simplifications in the proofs.

Signorini's problem is shown to be recovered as the limiting case

of an infinite normal stiffness, while our model allows for perturbations

describing friction phenomena, according to Coulomb's law or generalizations

of it.

Serious mathematical difficulties arise from the fact that the

most general type of interface models rules out the use of Sobolev's

embedding theorem, without which the problem is no longer in the

province of standard convex analysis but rather lies in the realm

of the theory of hypermaximal monotone operators having a domain

with empty interior. Several auxiliary results, including an apparently

new property in Sobolev spaces, are proven which, together with

the general method of proof, should be of interest in other problems.
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The contact-traction boundary conditions require compatibility conditions

to be introduced. They have a somewhat more sophisticated form than

the standard ones involved in Signorini's problem and further examination

shows that their physical content agrees strikingly with common

sense physical observations.

1. Introduction.

Let n be an open, bounded subset of IN with a Lipschitz con-

tinuous boundary r , the disjoint union u rF with r and rF

measurable and meas(rC) > 0 . For N - 2 or N - 3 , S1 represents

the reference configuration of a body in geometrical contact with an-

other body along rC . In other words, no external forces are present

and the boundaries of the two bodies coincide along rC . Suppose now

that the body occupying the domain n is submitted to external forces

f , consisting of body forces b defined in 9 and tractions t

prescribed on rF . Assuming that no point of r F may come in con-

tact with the second body under the action of the forces f , i.e., that

r C  is the candidate contact surface for the deformed configuration,

and that the material has a linear elastic behavior, the problem of

contact with no friction is usually understood as the Signorini

4 problem: Minimize

a(v, v) - <f, v> ' (1.1)

h
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over the closed convex subset of the Sobolev space (HI(f))N,

K - {v c (HI(n))N v S 0 on r} (1.2)

In (1.1) and (1.2) above, a(-,-) denotes the symmetric bilinear form

associated with the virtual work of stresses a(u) on strains

e(v) (a(u,v) - a(u): e(v) dx) . <.P.> Q the duality pairing

between the space (Hl())N and its dual, and vn  the component of

the displacement v along the outward normal vector n : vn - -n

(euclidian inner product). Problem (1.1)-(1.2) is a formal variational

formulation of the equilibrium equations between the stresses a(u)

and the external forces b and t:

i div o(u) + b = 0 in 2 , (1.3)

(u) - n - t on rF , (1.4)

and, on rc  U
u 0 , (1.5)

a(u) n - 0 if u < 0 , (1.6)

a(u) " n - a n , a a 0 , if u * 0 (1.7)

A "qualification" of the formality of this interpretation can be found

among the by-products of our approach (cf. Remark 5.2)

,.2 '
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Existence of solutions to problem (1.1)-(1.2) is known under a

simple necessary and sufficient compatibility condition on the applied

forces (Fichera [4]; see also Lions and Stampacchia [9]). The idea of

using variational inequalities for solving contact problems goes back

to Fichera [4] and Stampacchia [9], but the theory has not been very

successful in the more complicated problem with friction despite

recent contributions by Necas, Jarusek and Haslinger [5, 12].

4With the aim of analyzing problems of friction, Oden and Martins

V[13] have developed a different approach to contact problems. The key

ingredient of their theory is the introduction of a model for the

normal response at points of r at which contact may occur. To do
C

this, it is essential to remove the non-penetration condition u n 0

on rC: The normal response at a point x E rC  is then a function of

(Un)+(L) . Contrary to a first natural reaction, removing the nonpene-

tration condition un S 0 is not physical nonsense. Indeed, in any

mathematical model, the boundary rC  is an idealized average candidate

contact surface, the real candidate contact surface differing from rC

by a layer of asperities. How different the real surface is from rC

"measures" its roughness, a factor increasingly believed to originate

friction phenomena (see, e.g., [13,17,19]). When contact occurs, the

deformation of these asperities (incidentally of a nature totally

different from the "visible" deformation of the body) allows small

displacements of the boundary r towards the obstacle, violating the
C

IN
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condition un 1 0 . Accordingly, when positive, the displacement un

should nevertheless remain small. This point will be examined later

on. In this view, removing the condition u n 0 does not amount to

accepting actual penetration of the two bodies in contact but merely

allows the average surface rC  to get closer to the obstacle. On the

experimental side, these features of actual surfaces have been observed

by many investigators, and the memoir r131 contains extensive arguments

in support of such models. On the mathematical side, they present

numerous advantages: As we shall see, discrepancies between varia-

tiot , and boundary value problem formulations vanish, new compatibil-

itv conditions with precise physical interpretations are involved,

perturbations allowing for friction phenomena become manageable, etc.

I In such models, the normal response caused by the normal displace-

mnt u (x) at x c r is then of the form O(x, un(X)) where
n - n

:r C x 1 -1 verifies * 9 0 and O(x, t) - 0 for t 9 0 tso that

b(x, un(x)) actually depends only on (un) + (L) . The function *

depends on the interface condition and a few of its properties are

dictated by common sense observations: It is intuitively clear that

any positive normal displacement should produce a positive normal

response, so that s(x, t) > 0 for t > 0 Next, an increase of

;6Z)
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the normal displacement must produce an increase of the normal re-

sponse so that *(x, t) is increasing w.r.t. t a 0 . Further, the

resistance to penetration of the bodies suggests for a positive normal

displacement un () that the ratio *(x, un ())/un (r) (normal re-

sponse versus normal displacement) be an increasing function of

U n(x) , namely that 0(i, t)/t is increasing w.r.t. t > 0

Denoting by *(un) the function (u n)(L) = O(x, Un(X)) for

x e , the contact problem (1.3)-(1.7) becomes, in this approach:

Find u G (H L(n))N such that

div a(u) + b - 0 in 11 (1.8)

a(u)n = t on r F (1.9)

a(u)n - - 0(u)n on rc  (1.10)

In 53, we shall see that problem (1.8)-(1.10) has the equivalent

formulation: Find u G (Hl(g))N such that

a(u, v) + r C(un)vn ds = <f, v>n

for every v G(HI(a))N . (1.11)

UJI

Experimental evidence shows that the normal response O(Z, t)

has a power-like behavior for small values of t > 0 , growing up to

exponential as t is increased. Roughly speaking, the power zone

I ,r. -- t-***~'.C~*:.'*.~~
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("light" normal loads) authorizes sliding, prohibited in the exponen-

tial zone ("heavy" normal loads); see [13, Fig. 481. For this reason,

in a study of similar static contact problems with friction (cf.

[10]), we have limited ourselves to considering the choice

m
O(x, t) = c n(x)(t +) n with (experimentally justified) values of the

exponent mn  allowing the use of Sobolev's embedding theorems and

under convenient boundary conditions avoiding the need for compatibil-

ity conditions.

This paper is devoted to the study of problem (1.8)-(1.10) with a

general * . On comparison with the situation in [101, we face sever-

al new difficulties. First and foremost, the variational formulation

(1.11) is a priori not well posed since Sobolev embedding theorems are

not available without serious restrictions on the growth of the func-

tion t -) *(x, t) as t tends to +® . In particular, exponential

growth is prohibited when N a 3 . This difficulty has been overcome

by requiring O(u n ) to belong to the space L (re) as an additional

condition to (1.8)-(1.10) and proving in this assumption that O(u n)vn

belongs to L (rc) for every v G (HI(Q))N  as soon as u is a solu-

tion to (1.8)-(1.10) (Theorem 3.1). Once the variational formulation

(1.11) has been justified, we show that it is equivalent to the mini-

mization of a weakly sequentially lower semicontinuous convex func-

tional over (H with values in R" I U {+-I . In this process,

other difficulties arise because the functional in question is nowhere

continuous in the general case (i.e., its domain is empty), and the

desired properties must be established by using convexity of the func-

tion t f(X,T)dT rather than that of the functional. Another

I0
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technicality is to prove that the minimizers do verify equations

(l.8)-(1.10) in the sense of distributions, and the conditionIn '.I

0(u n ) G L (rC).

From these introductory comments, one might have guessed that the

problem is, in some respects, pertaining to the theory of hypermaximal

monotone operators (cf. Deimling [1] for an excellent account) rather

than standard convex analysis. However, we have found no significant

advantage in using the specialized vocabulary and the general results

of this theory, while doing so might have caused some discomfort to

the non-initiated reader. Nonetheless, it can be reasonably specu-

lated on the basis of this relationship that our method of proof can

be duplicated in other problems, thus ranging farther than the specific

example for which it has been developed here.

Several general properties need to be established. Some of them,

specifically related to integration theory, are collected in §2. In

this respect, we note an interesting coincidence: Most of the results

of §2 hold under the apparently necessary condition that the mapping

t 0 (x, t) has (at most) exponential growth at infinity. Other

statements of general mathematical interest, related to a seemingly

new property in Sobolev spaces, are proved in §3 (Lemmas 3.3 to 3.6).

Coerciveness of the energy functional, hence existence of mini-

mizers, is proved in §4 over an appropriate quotient space (although

the functional is not quadratic!) and under a compatibility condition

* .on the applied external forces slightly stronger than that needed for

solving problem (1.3)-(1.7). This compatibility condition is inde-

pendent of the normal response 0 and, again, the necessary

i
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mathematical assumptions have significant physical counterparts. For

instance, coerciveness for every external force f is obtained under

a purely geometrical assumption bearing a striking interpretation,

namely, that the body is "stuck" due to its contact along rC  in the

reference configuration (in other words, contact along rC  in the

reference configuration prevents the body to be moved without exerting

external forces).

Uniqueness of the solution to within elements of the space

N {v G (H( ) )N , vn = 0 on r }, hence uniqueness if N = {01 , is

obtained under another mild compatibility condition as soon as physi-

cal contact occurs. In any case, uniqueness of the area of physical

contact {x 6 rc; un(x) > 01 is proved and it is shown that the same

result is false in general if the area of physical contact is replaced

by the area of geometrical contact {x G rc; un ) Z 0}.

Considering problem (1.8)-(1.10) as a model for contact with no

friction instead of Signorini's problem thus allows elimination of

3 several ambiguities in the latter. An important question is then to

know how they relate to each other. In §5, we present a very simple

answer providing one more justification for the use of normal response

models: The Signorini problem coincides with the case of an infinite

normal response along rC * This takes us back to the natural require-

ment that, when positive, the displacement un should be "small" along

rc  When u is a solution to problem (.8)-(0.10) and 0 is a phys-

ically admissible normal response, a heuristic but strong argument in

this direction is as follows: As a result of resistance to penetra-

tion, it is observed in physical experiments that $(x,t) is very

*
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large for relatively small values of t > 0 (with O(x,t) = cn(x)(t + )

experiments have provided c(X) - c in the range-of 106 or 108)

On the other hand, by changing any normal response 0 to X$ and

letting X tend to +" , we show in §5 that every solution u(X) is

arbitrarily close to some solution to Signorini's problem in the

strong topology of (HI(Q))N . Hence, un(n) is close to zero in,

say, every space LP(r C) such that HrC-*. LP(r) . The interpre-

tation of this result is that u is close to zero on rC  if the

normal response O(x,t) is large for relatively small values of

t > 0 , which is precisely the actual physical situation.

Another advantage of the formulation (1.8)-(1.10) is that it

admits perturbations allowing consideration of friction phenomena

according to Coulomb's law or generalizations of it. In this case, it

suffices to consider a power-like normal response (since the exponen-

tial zone is characteristic of no sliding). The method of fI01 is then

available with appropriate modifications (see §5). The other aspects

we discuss in §5 are the interpretations of our compatibility condi-

tions for coerciveness and uniqueness in the simple case N = 2 , the

admissibility of an initial gap and the possibility of considering

other boundary conditions. The use of interface models, such as those

described here, together with nonquadratic energies of deformation, is

the subject of current studies.

p.. The work is naturally divided into two parts. Part I is composed

of paragraphs 2 and 3, and is devoted to the establishment of special

mathematical preliminaries and to the formulation of the variational

equality which correctly characterizes the traction contact problem

U V ~~.*. ,~. m
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with a nonlinear interface constitutive law. The major issues of

existence and uniqueness of solutions are taken up in Part II.

PART I. PRELIMINARIES AND FORMULATION

OF A VARIATIONAL INEQUALITY

2. Technical Preliminaries.

We shall begin with a review of some general results. Hypotheses

will later be complemented according to the applications we have in

mind and further properties will be established.

Let w be an open subset of im, m a I , and :w x 1 4 •, a

Carathiodory function, i.e.,

O(x,') : + I is continuous for almost all x G w

(2.1)
0(',t) : i t is measurable for every t G 1

The Nemytskii operator 0 associated with the function 0 is defined

for every measurable function C : w )- by

O()( = O(x, E(x)) for almost all x G w . (2.2)

It can be shown that O(E) is a measurable function. Krasnoselskii

[8] has given necessary and sufficient conditions for the operator I

to act continuously from Lq(w) into L r(,) when q and r verify

the condition 1 5 q, r < + = . Besides, setting

0(x,t) = o (x,r)dT (2.3)

and assuming q > 1 and r= q q/(q-1) (H6ider conjugate of q ),

he has shown under the same assumptions that the functional

i,
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J() f 0 (E)dx , (2.4)

is continuously differentiable on Lq( ) with derivative * , in the

sense that

= f O(E)h dx , (2.5)

for every pair ( ,h) G (Lq(W))2 . For q > 2 , these results are

Qcomplemented in [151 by showing, under the additional assumptions that

(1) the mapping 0 is continuously differentiable with respect to t

for almost all x G w and (2) its derivative t verifies an appro-
*

growth condition (ensuring that t G CO(Lq(w) L(q/2)* (0)), that the

functional J (2.5) is twice continuously differentiable on L.q()

VV with

j"(E)(h,k)= fW0t ( )hk dx

for every triple (&, h, k) G (Lq( ))3  The same conclusion is false

for q = 2 , except in the trivial case when *(x,t) = a(x)t and

a G L () ,but it can be extended to the case q = +o ,of special

interest to us in this paper. Proposition 2.1 below summarizes the

various statements for q = + in a form which will be suitable for

our later purposes. Details and extensions can be found in [16].

Proposition 2.1: Assume that the Carathgodory function * is of

class C with respect to t for almost all x G w (1) and that *t

IIl
(1)No additional assumption is needed to show that t is a I
Carathdodory function.

0
!.
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verifies the following growth condition: For every t > 0 , there is

a function at 6 L1 () such that
0

*t , I a t  for Iti S to (2.6)
00

Then

(i) 6 C0 (L-(w), L1 (w))

(ii) 6 6 C1 (L.(w), L1 (w)) as soon as *(.0) 6 L'(w) , with

D ( = (h ()h , (2.7)

for every pair (,h) G (L-(w)) 2

(iii) Setting

0(x,t) = f (x,T)dt , (2.8)

the functional

J(&) f $( )dx (2.9)

is twice continuously differentiable on L (w) and

J'(&).h =f w ( )h dx ,(2. 10)

for every pair (&,h) 6 (LO(O)32  (note that the combination of (i)

and (ii) yields "O

()(h,k) f * ()hk dx (2.11)

for every triple h, k) G (L- (w)) )

|
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Suppose now that

0(-,t) a 0 for every t G I . (2.12)

Then, for every measurable function : 0 I , (&) is a non-

negative measurable function. The functional j of (2.9) can thus be

extended to all measurable real-valued functions as a mapping (still

denoted by j ) with values in I" = I + } by setting

fo dx if 0() G L

(6) = ' (2.13)

+ otherwise.

Proposition 2.2: The extended functional j is lower semicontinuous

on L Mh

Proof: The result follows by combining [3, Prop. 1.1 p. 218 and

Cor. 1.2, p. 2221.[

Remark 2.1: The same argument shows that the extended functional j

is lower semicontinuous on LP(w) for every 1 S p S + ® .0

We shall consider a particular case when assumption (2.12) is

satisfied, namely

t(.,t) a 0 for t > 0
," 

(2.15)

t(.,t) = 0 for t S 0

and

0(x,t) = J t(X,T)dT (<=> b(',0) - 0) . (2.16)

Ila, Ii -
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In this case, the three functions t(-.,t) , 0(.,t) and 0(.,t) are

non-negative for every t 6 and vanish for t S 0 . Together with

an appropriate condition limiting the growth of the function O(x,t)

as t tends to + ,the above assumptions will now allow us to

complement Proposition 2.1 as follows:

Proposition 2.3: Assume that (2.15) and (2.16) hold and suppose

further that the function 0.(x,.) is nondecreasing for almost all

x 6 w and that there are constants T > 0 and V > 0 such that

i (-.,t) S u 0(*,t) for t Z T , (2.17)

with 0(.,T)(- j(T)) G L (w) . Then, for every measurable function

such that $(4) 6 L (w) and every function n 6 L() one has

0(& + n) G L (w), t(Q + n) G L (W)

and the functional

r L () j(ri) j ( + n) (2.18)

is real-valued and twice continuously differentiable with

1 ( r ) ° h = O(C + n)hdx , (2.19)

j(ri)°(h,k) = + (C n)hk dx (2.20)

for every triple (n, h, k) G (L_ (w))3.

1E Proof: As a first step, we show that 4(e) belongs to L (w):

Integrating both sides of inequality (2.17) we obtain

I i N
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;5 0*T) + u $&(,t) f or t Z; T .(2.21)

Let then w -I, It be a measurable function. From (2.21),

E(x) Z T => O(x, U(x)) ;5 O(x,T) + u O(x, Ex)

On the other hand, it follows from (2.15) that the function *(x,-)

is non-decreasing for almost all x G w. Hence,

E(x) :5 T -> O(x, E(x)) S O(xT) 9 O(x,T) + U 1'(x, Ex)

This shows that

0 1 *(E) S 0(T) + D $(E) G L Mw

proving the relation *() L (w)

Setting

(x-)(, (X) + t) ,(2.22)

we now note that 0Eis a Carathgodory function, and the mapping

t E (x,t) is continuously differentiable for almost all x G w

with

(0 E) t (x,t) - Otjx, E(x + t) .(2.23)

The sole nontrivial part of this assertion is the measurability of the

function 0 (*,t) for every t G 1I. However, it suffices to notice

A:that the function (X,T) G "3 x I ~x T+t) is (obviously) a

Carathe'odory function and to apply the measurability result used at

the beginning of this section after replacing T by E(x)

%I
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At this stage, we see that the properties to be established

follow from Proposition 2.1, provided we can prove that the function

fulfills the required hypotheses. As *(.,0) E (., ()) , Ow

is in L (w) , as we have just seen, we need only prove for every

t > 0 that there is a function b 6 LI (w) such that0o to

0

0 - (; ) t(x,t) S bt  (x) for almost all x G w and Itl ;5 to.
0 (2.24)

We begin by observing that an equivalent formulation of

assumption (2.17) is

*&, T+t) 
< e t 0(.,T) for t > 0 and T a T , (2.25)

the proof of which reduces to a simple verification. In particular,

e U ( t - T ) 0(.,T) for t a T .

Substituting into (2.17), we arrive at

(-.,t) 5 U e 11(t-T) 0(.,T) - ue(t -T) *(T) for t a T .

P- Meanwhile, from the monotonicity of almost all functions 4t(x,.)

one has

t(.,t) ;5 Ot(.,T) S u *(.,T) . ij(T) for t :5 T . (2.26)

Hence, given t > 0 and setting
0

at " a sup(l, el(toT)) (T) G O()
0

we obtain the estimate

0 S t(.,t) S at  for Iti S to (2.27)

I
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To prove (2.24), we may assume t 0 T , since the same function
0bTcan be taken as bt  when t T. We shall find an appropriate

choice for b by considering the three cases: E(x) 6 T - to

T - t° < &(x) < T and (x) a T . Assume first (x) T - to

Then, for Itl s to , one has CQ) + t 9 T . From (2.23) and

(2.26), we deduce

0 S ( ) t(x,t) 9 U6(T)(x) . (2.28)

Next, suppose T - t < E(3) < T . Since t 0 T > 0 by hypothesis

and for JtJ S to , we see that -2t° < (x + t < 2t 0 Applying

(2.27), we get

0 (x,t) S a2 W(x) . (2.29)

0
SFinally, assume that C(x) Z T .For 0 1 t I to relation (2.25)

is available with T t(x) and we obtain

O(x, E(x + t) S eljt O(x, E(x)) - e' O(E)(x) 5 e 0 O~(x).

More generally, as soon as E(x) + t a T , relations (2.17) and (2.23)

yield

0 i (0 E) t(x,t) 6 U$(xE(x) + t)

Together with the previous inequality, we find

pt o
S($ (x,t) 9 ae *(E)(x) , (2.30) P41

for 0 6 t 5 t . Next, due to the monotonicity of almost all func-
O5 tions *( ,') and from (2.17):

,I!
I
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when t < 0 and (x) + t a T . This shows that inequality (2.30) is

valid whenever E(x) a T , Iti S to and V(x) + t a T * It remains

to examine the case when E(x) a T and E(x) + t < T . If so, t is

negative and

-t < T - t < E(x) + t < T S t

whence, from (2.23) and (2.27),

0 :S (4)t(x,t) S a t Wx (2.31)
& 0

According to the estimates (2.28)-(2.31) and since O(T) , 0Q)

atand a2t belong to the space L 1(W , we can take
0 0

b t  sup(I(T), le 0(M), a( t , a 2 t ) r L(W)

in (2.24) and the proof is complete.O

By localization and partition of unity, the results of this sec-

tion easily carry over to the case in which the open set w is re-

placed by the Lipschitz continuous boundary r of a (bounded) open

subset 0 of I N . Indeed, this merely introduces positive measur-

able bounded weights, which does not affect the form of the required

hypotheses. Further, r can also be replaced by any measurable subset

r C  for it is immediately seen that the assumptions are not affected

by extending all the data by zero for values of the variable x in :v'

r\r C . Theorem 2.1 below summarizes the conclusions in this new

context.
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Theorem 2.1: Let 1 be an open bounded subset of I with Lipschitz

continuous boundary r and surface measure ds and let r c r be a

measurable subset. Let : rC x I - I be a Carathdodory function

I and assume for almost all x 6 rC  that the function *(x,.) is con-

tinuously differentiable with 0 (x,-) nondecreasing. Assume further

Ot(-,t) Z 0 for t > 0 , (2.32)

t t(-,t) =0 for t 6 0 , (2.33)

*(xt) = ft *t(xr)dr (<=> 0(-,0) f O) , (2.34)

and that there are constants T > 0 and > 0 such that

Ot(°,t) I vt (°,t) for t a T (2.35)

with 0(.,t) 6 L (r ) . Setting

(X, t (x,T)dT (2.36)

and denoting by t 0 and 0 the Nemytskii operators associated

with t , 0 and 0 respectively, the following conclusions hold:

(i) The functional

f rO(ds if OW )SL (re)
J(r) - C (2.37)

+ otherwise ,

defined for every measurable function :rC + I is lower semicon-
1

tinuous on the space L (r C )

I (ii) For every measurable function such that 0() G L (rC)

and every function n G L(rc) one has

.

'ki
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( + n) G L(r C ) ( + n) G L (re)

and the functional

n G L(r C) C jC(n) - j( + ) (2.38)

is real-valued and twice continuously differentiable with

jj(n)-h = frC W + n)h ds (2.39)

jW(n).(h,k) = frC t(E + n)hk ds (2.40)

for every triple (n, h, k) G (L'(rc W

Remark 2.2: Functions verifying the assumptions of Theorem 2.1

generate a convex cone containing all functions of the form

(x,t) c(x) (t+)m

where m > 1 is an arbitrary real number, t + is the function
N+

t if t-a ,

+0 if t < 0,

and c G LI(r C ) is an arbitrary nonnegative given function. More-

over, condition (2.35) allows for a modification of the growth of

(convex combinations of) such functions as t tends to +w , up to

and including exponential order.0

The assumptions on the function 0 made in Theorem 2.1, and in

particular limitation of the growth in t to exponential order, will

later allow us to characterize the solutions to the problem considered

in §1 as minimizers of a convex functional with values in 1 % As

I
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usual, existence of minimizers will be obtained by establishing a

coerciveness property, relying on complementary (and, of course, com-

patible) specification of the growth of the mapping 0(x,*) for

almost all x G rc . The suitable hypothesis and its main conse-

quences regarding the problem under consideration are examined as the

next objective of this section.

As an additional assumption, we shall require that

O(x,t)
0 S S 0 * (x,t) for t > 0 and almost all x G r C * (2.41)

t

Note since the function (x,') is continuously differentiable that

this new assumption implies O(',0) - 0 and hence makes condition

(2.34) superfluous. Besides, it is easily checked that (2.41) amounts

to saying that the function t - O(x,t)/t is nondecreasing on (0,+-)

for almost all x G rc . This function is strictly increasing on

(0,+-) under the mildly stronger condition

4(x,t)
0 < < (,t) for t > 0 (2.42)Nt

Monotonicity and nonnegativity properties allow us to set for

almost all x G r
C

x (xt)
L(x) - lim Z 0 (possibly +-) (2.43)t++O t

and t(L) is equivalently defined through any sequence (4(5,tk)ltk)

with lim tk -+ and verifies

I
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g
*(x,t) f >

1 (x) a Oxt) for every t > 0

and almost all x 6 . (2.44)

As a result of Egorov's theorem, z is a measurable function on rC

Remark 2.3: It is obvious that functions verifying property (2.41)

form a convex cone and that this assumption does not restrict the

class described in Remark 2.2. This shows that adding condition

(2.41) is compatible with the assumptions of Theorem 2.1, which is

due to the fact that T > 0 can be taken arbitrarily large in (2.35).

Roughly speaking, the combination of (2.35) and (2.41) means that the

growth of O(x,.) is superlinear and at most of exponential order,

monotonicity being imposed by (2.32).0

Theorem 2.2: In addition to the hypotheses of Theorem 2.1,(2) assume

,X that (2.41) holds and let :r c- be a measurable function. Then,

the mapping

.
t -1 2 (t) 6 , (2.45)

t

where j denotes the functional (2.37), is nondecreasing on (0,+-)

and

(2)Although assumption (2.35) can be omitted in this statement.

"I•
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i+ 1 2(t dc ( 3) (2.46)

where E+ = sup(&,O) and with the (usual) convention that

£(x) 2+(x) - = 0 when I(x) = + and E+(x) = 0

+ +

Proof: A preliminary observation is that for almost all

x 6 rC , the function t + O(x,t)/t 2  is nondecreasing on (0,+ac): To

see this, it suffices to compute

(D(x, 0

2 (txt) - 2,(x,t))
at t t -

and note that to(x,t) - 20(x,t) k 0 for t > 0 as it follows by

multiplying (2.41) by t and integrating. This yields the monotoni-

city of the function (2.45) from the relation (for t > 0)

---=-C -2(x) for E(x) > 0,
r € (xt (x))t2 (x) ~"

2 2 W (2.47)

0 for (x) =< 0

I
A second conclusion from the above observation is that lim

t- H xt)/t

exists (possibly + w) for almost all x G rC . Actually, a more

5 precise result is true, namely,

lim 40(x, t) 1 lim (xt) 1
t + f 2 2 t++- t 2 £ ().(.8

t~I

Allowing, of course, the value 4 for the right-hand side.

-. V.! AA'
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Although it holds in a much more general context, this relation is

easy to prove under our assumptions. Indeed, it is a simple exercise

to check that (2.48) follows from de l'Hospital's rule.

We are now in position to prove relation (2.46): Supose first

that the left-hand side of (2.46) is a (nonnegative) real number I

For every sequence tk tending to + ,one has

I = lim -2r P(tk )ds
tk C

and

.2 fr (D(t k)ds a I for every k G N . (2.49)
tk rC

On the other hand, it follows from (2.47) and (2.48) (and the conven-

tion £(x)W 2 (x) 0 when L(x) xad E (X) = 0) that the se-

quence $Lxitk F(x))/tk tends to £(x)E+(x)/2 almost everywhere on

rC . With (2.49) and Fatou's theorem, it follows that

2 rC

I L 2 ds I 1
C

To prove that -L Jtk ds = I ,we shall use the inequality

I2
0(x,t) 1

-:5 (x) for t > 0
2 2.

t

23 which follows from (2.48) and the monotonicity of D(x,t)/t 2
. With

(2.47), this yields

I1 2 1
2 + ? (t for t > 0 *(2.50)

It

NI



1 273

Hence,

f ZE' ds > L 'D (tE)ds 1 ( t E)

2 C+ t 2 1r Ct2

and, in the limit as t tends to + ,we get

2 +C

C

Assume next that the right-hand side of (2.46) is a (nonnegative)

real number, namely LE G L (f ) . If so, relation (2.46) follows

from Lebesgue's dominated convergence theorem by using a sequence

tk > 0 tending to +- in (2.50). As both sides of (2.46) coincide

when either one is finite, they coincide when either one is +- as

well, and the proof is complete.0

3. Variational formulation.

L This section is intended to show the equivalence of the contact

problem described in Section I with a minimization problem over the

I space (H. )4 We shall begin with a review of some classical

results and introduce a few notations to be used throughout the

remainder of this paper.

Given a bounded domain 02 with a Lipschitz continuous boundary

r , the outer normal n is defined almost everywhere (see e.g., [10])

and is a measurable function. Componentwise, we then have

n i G L (r) , 1 1 N

(3.1)

n,=1 on r

I

I
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The space H (fl) is the usual Sobolev space of distributions

with partial derivatives of order < 1 in L2 (9) . The space

(Hl(pl))N is endowed with the usual inner product inducing the norm

Vll ,v= [fa(v vi + v ,jvi~j)dx] . (3.2)

The trace operator maps the space (HI(n))N linearly and continuously

onto the space (H )N , with topological dual

.4 [(H (r))N] ' M (H- (r))N (3.3)

From (3.1) and for every 1 S p S , a given element

G (LP(r ))N  has a decomposition of the form

.E C + E n ,(3.4)
. ', _ T n ~

with

E n = n LP(r)

n - i

E T 'n n . (LP(r))N  (3.5)

The components En and E T will be referred to as the normal and

tangential components of E respectively.

We next make precise the assumptions on the data of the problem:

We shall assume that the elasticity coefficients EijkI verify

E ijkG LG(Q) (3.6)

and that the uniform ellipticity condition

Eijki(x) AktAij Z a AijAij

holds with some constant a for almost all x G S0 and every N x N

symmetric array Auj
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The body forces are chosen so that

U b . (L2 ())N (3.7)

while the prescribed tractions t on rF = r\r C  are submitted to the

~condition
t G (L2 (rF))N. 

(3.8)

The function 0 : rC x I + I characterizing the normal response

along rC  is supposed to fulfill the assumptions of Theorem 2.2,

namely 4 is a Carathdodory function such that the mapping *(x,.)

is continuously differentiable for almost all x G rC  and

0 < (.,t)t ( ' t) for t > 0 (3.10)
t

* tx,-) is nondecreasing for almost all x G rC

(3.11)

Ot (-,t) -0 for t 9 0,

and there are constants T > 0 and 4 > 0 such that

t(',t) S UO(',t) for t a T , (3.12)

with *(.,T) 6 L (r C)

Physical justification of these assumptions is provided by Remarks 2.2

and 2.3 and the related comments of §1.

In what follows, we shall denote by a(*,*) the continuous

bilinear form over (H defined by

(4)Recall that this condition implicitly contains (2.34).
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a(u,v) = virtual work produced by the action of the stresses

q(u) on the strains e(v)

(3.13)

f ~ ~~ fEijkI

The external forces (body forces b and prescribed tractions t ) are

described by an element f G [(HI(g))NI through the relation

<fJv> f v dx + frFt*v ds (3.14)

a formula in which <-,'>R stands for the duality pairing between

(H1(0))N and its topological dual.

V Our aim is to examine how the problem (1.8)-(1.10) relates to the

minimization problem: Minimize

2 a(v,v) + Ir0(vn)ds - <f,v>, for v G (H162))N

where, as in §2, 0 is the Nemytskii operator associated with the

function *(xt) - ft 0(x,T)dT . However, as the integral fr ON)ds

is not defined in general, the correct formulation of the above

problem is: Minimize

a(vv) + J(v) - <fV> for v G (H 1()) N ,

where, for every measurable function C:rc - , we have set

f (ds if 'O(C) G L (r)

j(W C (3. 16)
+ otherwise.

I,
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The first step of our approach is classical and relies upon a

generalization of Green's formula, given in Lemma 3.1 below, whose

proof can, for instance, be found in [6, Theorems 5.8 and 5.9]. We

denote by D(Q) the space of indefinitely differentiable functions

with compact support in f , equipped with the usual inductive limit

topology, and by D'(9) its topological dual, the space of distribu-

tions over 0 . We shall also make use of the spaces D(O) and D(r)

of restriction to n and r , respectively, of indefinitely differen-

Z~N

tiable functions on I

Consider the operator

div a : (H (l))N (D )
(3.17)

[div (v)]I = i a ij(v) a aj(Eijkkakvk)

and define the subspace Hdiva ) of (H1 (Sj))N by

Hdiv (fl) - {v 6 (HI(f))N ; diva(v) 6 (L2(g))N }  (3.18)

Lemma 3.1 (Generalized Green's formula): There is a unique linear

continuous operator

r> : Hdlv(Q) N
w:Hdiva(2)(H()N

satisfying

[7r(u)] i M a j(u) nj on r

for every u 6 such that iju jk uk 

1 9 i,j,k,k S N and

a(u,v) + (diva(u))-v dx - <n(u),v>r , (3.19)

f
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for every u G Hdiva () and every v 6 (Hl())N , where <'">r

denotes the duality pairing between (H (n))N and (H 0 (f2 ))N

Due to the above lemma, a generalized form of problem

(1.8)-(1.10) is:

Find u 6 (H1(6 2))N such that

diva(u) + b = 0 in fl, (3.20)

with the boundary conditions

r(u) - t on rF, (3.21)

W(U) - (u)n on r . (3.22)

Note, however, that this formulation contains some ambiguity. Indeed,

w(u) is merely in the space (H (Q))N while O(un) - hence, (u n)n

- is only a measurable function. As r(u) is not a function in

general, and a measurable function does not induce a distribution in a

canonical sense, it is not clear how relation (3.22) must be under-

stood. To circumvent this difficulty, we shall include, as a part of

the problem, the condition

ir(u) 6 (LlI(r) )N .(3.23)

Such a condition does make sense in (D'(r))N : It means that the

action of the distribution 7(u) on elements G G (D(r))N is repre-

sented (in a necessarily unique way) by some element of (L1(r))N .

As usual, the notation w(u) stands for both the distribution and its

representative in (Ll(r))N . Conditions (3.21) and (3.22) can then

be understood in the sense of measurable functions, namely, almost

All
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everyhwere. We now give a first characterization of solutions to

problem (3.20)-(3.23).

Lemma 3.2: An element u G (Hl(s?))N is a solution to problem (3.20)-

(3.23) if and only if * (u n ) G Ll (r C) and

a(u,v) + f O(un ) v ds = <f,v> for every v G (D(n))N . (3.24)

Proof: Let u G (H1(0))N be a solution to problem (3.20)-
(3.23). From (3.22) and (3.23), one has (un)n G (L1(rC))N and

hence *(u n) O(u )nn G Multiplying (3.20) by v G (D(?)) N

and integrating over f , the generalized Green's formula (3.19) of

Lemma 3.1 yields

0-J( diva(u) + b) *v dx = <7(u),v>r - a(uv) +J'bivdx

(3.25)

The expression <w(u),v>r depends on the restriction of v to the

boundary r only, an element of (D(r))N . Thus, applying (3.23), we

get

<? (u) v>r = 1r(u)-v ds. (3.26)

Using a decomposition of the integral over r into integrals over C

and rF and from (3.21) and (3.22), (3.26) reads

<7r(u) .v>r f~ ds + fr u nvds .(3.27)

F C I
*1
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.s.

As O(u )n'v O(un)v by definition of v it suffices to combine

(3.25) and (3.27) and use the definition (3.14) of the external forces

f to see that u is a solution to equation (3.24).

Conversely, let u G (H( )N be a solution to equation (3.24)

such that O(un) G L1 (r) . Taking v arbitrary in (D(n))N and by

definition of f (cf. (3.14)) it is immediate that diva(u) = b in

(D' ())N  and hence u belongs to the space Hdiv (3.18). Together

with the generalized Green's formula (3.19) of Lemma 3.1, we see for

an arbitrary v G (D( ))N that

(u)vn ds + <w(u),v>r tv ds

C F

or, equivalently,
(U)V ds +f t'v ds

rC rF~

This relation involves restrictions of elements of (D(5))N to the

boundary r only, and hence can be equivalently stated for an arbi-

trary y G (D(r))N . As (u n ) 6 LI(r C) , one has O(u)n G (L (r))N

and it follows that the distribution ir(u) is represented by the

element of (Ll(r))N defined by t on rF and by 4(u )n on rC .

Hence, u is a solution to problem (3.20)-(3.23).0

Let u G (Hl( ))N be a solution to problem (3.20)-(3.23). From

relation (3.24), it is clear that the mapping v G (D(5))N

fr(un)vn ds extends as a linear continuous form over 
(H

say < (un)n,y>, (depending on the trace of v on r only) and

relation (3.24) remains valid with <$(un)nv>Q  replacing

0(un)Vn ds for an arbitrary v G (Hl(12))N. On the other hand,S nr.
C.
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from Theorems 2.1 and 2.2, the expression <.(u )n,v> strongly

3resembles the derivative at u of the functional

(HS1)) N 1~J(v(H (3.28)

n

where J is the functional (3.16). Strictly speaking, this is not

true since the functional (3.28) is not differentiable (for instance,

because it may take the value + ). In some cases, lack of differen- j
tiability for convex functionals is not too serious a problem, but a

standard assumption is that the functional at least have a domain with

nonempty interior, i.e, be continuous on a nonempty open subset.

Here, this condition is not satisfied in general: For choices of N

and * such that the Sobolev embedding theorems are not available,

the functional (3.28) may perfectly be continuous at no point of

1 (M(a))N since it may take the value +a near any point v with

J(vn) < +oo . The idea of using Orlicz-like spaces is complicated by
Vn

the fact that the function 0 is allowed to depend on the point

G r . Besides, it is not clear at all that changing the space

(H 1()) N  into a smaller one, over which the functional (3.28) would

have nicer properties, would not lead to later problems (as far as

coerciveness is concerned for instance). Despite the fact that the

functional (3.28) is convex, we have then no standard way of justify-

ing the arguments with which it is formally easy to deduce that

solutions to problem (3.20)-(3.23) are minimizers of the functional

(3.15).

To make up for the lack of regularity of the functional (3.28),

we shall adopt an approach based on convexity properties of the function

IL
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t instead of convexity of the functional (3.28) directly. But, to do

this, it is essential to obtain further information on the term

<(u )n.,V> for a general y G (Hl(s))N : The next few results are

devoted to proving (in Lemma 3.6) for every v G (H( ) N and pro-

vided that u is a solution to (3.20)-(3.23) that O(un)vn G L (rC )

and <b(u )n,v> = fr C(u)v n ds , exactly as when v G (D(Q)) . A

somewhat surprising assertion in which non-negativity of the function

* is one of the two keys.

Lemma 3.3: Let T Z; 0 be an element of L and suppose that the

mapping

v G D() Tv ds (3.29)

'C

I
extends as a linear continuous form <T,v> over the space H (0"

Then, for every v 9 H1 (2) , one has Tv G L (P ) and

<Tv>n--, Tv ds for every v G HI (5) (3.30)

Proof: Let v G H (2) be given. Supose first 0 <= v < M for

some constant M. Using the classical procedure of extension to

(I ) and regularization, it is easy to find a sequence [v k ) of

elements of D(5) tending to v in H (5) and verifying

0 5 v k) M . After extracting a sub-sequence, we may assume that

v(k) tends to v almost everywhere on rC . From the continuity of

<T,-> Qon the one hand and Lebesgue's dominated convergence theorem

on the other hand, we get <T,v>, lim C  ds and TvGL (P

-? C n3

p"
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with Tv ds = lim f Tv k'ds . These relations prove (3.30) whenfr fr
C C

0 O vSM.

Suppose next that v 1 0 . For every k G N - {0} set

v(k ) = inf (v,k)

Clearly, 0 : v(k) v k and v(k) G H (0) for every k (cf. [li,

Lemma 1.1, p. 313]). Arguing as in [11], it is easily seen that

11v (k) 1,2 S I vjI', . As v(k) tends to v in L2 () , it follows

that v is the unique cluster point of the sequence (v(k)) in the

weak topology of H and, hence, v (k )  v in H (2) . As a

result, <T,v> = lim <T,v (k)>f. But <T,v (k)>O = r Tv (k) ds from
the first part of the proof, so that C

.

<Tv> lim f Tv(k)ds "  (3.31)

C

From the non-negativity of T , the sequence iTV is non-negative

and non-decreasing and tends to Tv almost everywhere. Applying the

monotone convergence theorem, we find

f Tv ds = lim fTv (k) ds. (3.32)r C  frC

The combination of (3.31) and (3.32) shows that Tv G LI(P C ) andC .

(3.30) holds when v 0

Finally, let v be arbitrary in HI(0) and write v = v - v

with v+ = sup(v,0) , v - inf(v,0) . From Fi, Lemma 1.1, p. 3131,

we know that v and v belong to H (0) . Thus,

<T,v> M <T,v>- <T,v>
[I+

,! -*~ V -. - ~ ..jSA~.~S ~ N~5
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From the above and since v+ and v are non-negative, Tv+ and

16
Tv. are in L (1c ) and this relation reads

<,v>T Tv ds Tv ds

fr + fJ r ds= r
CC C

which completes the proof.I

The following result is a first extension of Lemma 3.3 to

vector-valued functions.

Lemma 3.4: Let T G (L(rc))N be given and suppose that the
CN

components Ti of T in the canonical basis of IN  verify Ti 0

1 i S N. Suppose also that the mapping

v 6 (D(n)) N  Tv ds
rC_

extends as a linear continuous form <T,v> over the space

(H (2)) N .Then, for every v 6 (H 1(,)) N  one has Tv G LI(r C) and

<Tv> JrJT~ds
C

Proof: Let I S i S N be fixed and take v 6 H (fl) Denote by

v 6 (Hl(f))N the vector-valued function whose components of order

j i are 0 and whose ith component is v . For v G D(n) , one

has v G (D(n))N and

P<T,v> = C T'v ds Jr cTi v ds I

I'

U . ..
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As the mapping v G H1 (S) -1y G (Hl(l))N is obviously continuous,

this shows that the mapping

v D(5) Ti v ds

C

P extends as a linear continuous form <Ti,v> over H (0). Applying

Lemma 3.3, it follows that T v G L (F C ) for every v G H (0) and
i C

<Tiv> = t v ds

C

From the denseness of (D6 2 ))N in (Hl(R))N, the identity

N
<T,v>, Ti= i ,>

-" i= 1

for v =(v) G (D(5)) N  remains valid for v = (v) G (Hl(Q)) N  and

thus reads

N

<Tv>-= Tvi ds iT'v ds 0.- fr C iC~ f _ "

Lemma 3.4 can be considerably generalized as follows:

Lemma 3.5: Let T G (L1 (c))N be given and suppose that the mapping

v G (D(5))N 'v bs

fr Cds

extends as a linear continuous form <Tv> over the space (HI(M))N

Let (rk) be a finite covering of r by open subsets and suppose

for every k that there is a system of coordinates in IN  in

I:e
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which Ti a 0 on rc n rk (i N Then, for every

6 (H (11))N  one has T-v 6 L (r) and

<T,v> f r Tv ds .

C

Proof: Each open subset r k of r is the intersection Uk ol r

of r with an open subset Uk  of ? Let (0,Ek) be a partition of

N
unity associated with the covering (SUk) of Q . For v G (D(5))

one has ek v G (D and

fT-0 vds[ 0 T-v ds

rC k rCk

The multiplication by 0k being continuous from (H (S,))N into

itself, this shows that the mapping

Y 6 (D ~N *. Ok!-v ds 1

C

extends as a linear continuous form <Ok T'v>f over the space

(H1 (Q)) N"N

Let ... be a basis of IN  such that T N [ Tiii=l1

with Ti > 0 , 1 S. i:5 N , on rC n rk (such a basis exists by

hypothesis). Denote by e1, .. , !N  the canonical basis of LN  and

by AG Isom (IN) the linear mapping defined by

All = eA i 2, 1 S N" .,.,

(5)A condition obviously fulfilled whenever rC n rk 0

0~ \'. ' , 0
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Set

§k = ekTie i 6 (L1(r )) N  (3.33)
1N

For v G' (H I()) N , one has

Sk.V= OkTit1.y = A(ekT).v = OkTA v , (3.34)

where A is the adjoint of A . Obviously, the mapping v + A v is

an isomorphism of (H1 (n))N and A*(D(5))N (D(5))N . From (3.34),

it then follows that the mapping

G~ (D5) f k- ds fr0k Av ds)

extends as a linear continuous form <SkV>n over the space

(Q))4N. In addition

<S ,v>0= <ekT,A v> (3.35)

for every y 6 (HI 2(n))N since equality holds for v 6 (D(i))N . on

the other hand, the components 0i , I 1 S < N of Sk  in the

canonical basis of 1N verify OkTi Z 0 on r k n C since 0k a 0.

As supp T c r one has kT > 0 on r and Lemma 3.4 ensures

for every v 6 (Hl (1))N  that Sk .V G L1 ( ) with

<Sk'V>n = I SkVd-

<S - S S kv ds

Using this result in conjunction with (3.34) and (3.35) in which

(A*) y replaces v and since the mapping y *(A ) v is

P
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continuous from (H1(6 ))N into itself, we deduce for every

v (HI(,)) N  that ekT-V G L (rC) with

<T,v>~ = eTv ds .(3.36)

C

Since 1ek= 1 on r, one has T-v = ffi kTv G L (rC) and the
k k

relation

<T,v>, = < k T,v>, (3.37)
" k -' -k

obvious for v G (D(5))N , remains valid for v 6 (Hl(Q))N by dense-

ness and continuity. The combination of (3.36) and (3.37) yields

<T,v> Tv ds

for an arbitrary v 6 (Hl(ln))N and the proof is complete.[]

We are finally in position to prove

Lemma 3.6: Let T Z 0 be an element of L (rC ) and suppose that the

mapping

V6 (D(5))N f Tvds f Tn.vds

r C rC

extends as a linear continuous form <Tn,v>fl over the space

(H1(0)) N . Then, for every v G (H (Q))N , one has Tv 6 LI(Fc) and

<Tn,v>_ f Tv ds .

Proof: The boundary r of n being Lipschitz continuous, there

is a covering (rk) of r by open subsets such that rk is the graph

I
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of a Lipschitz-continuous function. This easily implies that there is

c > 0 such that the angle between two outer normal vectors n(x) and

n(y) , x and y in rk , is less than or equal to 1800 - c , or,

equivalently, that all the vectors n(x) , x G rk , are contained in a

cone with angle less than 1800 . Clearly, this leads to the conclu-

sion that there is a system of coordinates in which ni a 0 on rk

(see Figure 3.1 below when N = 2: all the normal vectors have

nonnegative components in the basis 11, 12 )

As T 6 L1 (rC ) one has Tn G (Ll(rC))N and, in the appropriate

system of coordinates exhibited above, Tni a 0 , 1 j i N on

rc n rk since T2 0 . Our assertion is then a simple application of

Lemma 3.5 with T Tn .

P&W1

SC) #0

-i,

'21

Fig. 3.1

Theorem 3.1: An element u G (Hl(f))N is a solution to (3.20)-(3.23)

b if and only if (un)v n g L (r ) for every v (HI(Q)) N  and

nn C



a(uv) + f*(Udv ds - <f,v> for every v G (H,(.2))N (3.38)

Proof: Suppose that *(un)vn G L (rC ) for every v 6 (HI(n))N

Taking v as the constant function equal to the itb vector of the

canonical basis of N , we find

Th s (u n)n i  G L (r C  , 1 <  i -<N

~Thus,

(Un ) sup In i I Lu(rC )1l5i<N

As sup In (x)I Z 111N- for almost all x G rC  (cf. (3.1)) we

15i;N -

deduce

o < (u) IN (un) sup Iniln1 i<N

and hence *(un ) G L (Fr) . If, in addition, (3.38) holds, it is

obvious from Lemma 3.2 that u is a solution to problem (3.20)-(3.23).

3Conversely, if u is a solution to problem (3.20)-(3.23), Lemma

3.2 ensures that 0(u) G L (rC ) and the mapping

v G (D( ))N + J (un)v n ds

extends as the linear continuous form over the space (H1(f2)) N

V G (HI(S))N _ <f,v> - a(u,v)

The conclusion follows from Lemma 3.6 with T = 0(un) .[l

With Theorem 3.1 as a starting point, we shall now be able to

prove

U,
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Theorem 3.2: Let u G (Hl(fl)) N  be a solution to problem (3.20)-

(3.23). Then, u is a minimizer of the functional

V 6 (HI(Q))N - J(v) = a(vv) + J(v) - <f,v> G 1 (3.39)

where j denotes the functional (3.16).

Proof: Let u 6 (HI(Q))N be a solution to problem (3.20)-(3.23).

We first show that J(u) < +o , or, equivalently, that j(u n) < +4-

From (3.10), it follows that the mapping f(x,t)= ft (xT)dT

verifies

0 S O(xt) < t(xt)

for t > 0 (a relation that was already used in the proof of Theorem

2.2). This inequality extends to t 6 L since 0 and * vanish for

nonpositive values of t . In particular, taking t fu n(x) , we get

0 < 0(un) < - *(u)U . (3.40)

As" (un)u n6 L (rc) from Theorem 3.1, we find 4(u ) 6 L (rc ,

nnamely, J(un ) < +- (cf. (3.16)) .

Now, let v 6 (H1(Q))N be given. We must prove that

J(v) a J(u) . Of course, this is satisfied if J(vn) = +o . Assume
n

then J(v n) < +- , i.e., (v n ) G L (r) . One has

J() V u) a(v-u,v-u) + a(u,v-u)

+ J(v) - J(un ) - <f,v-u>Q . (3.41)

, n,,
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From our assumptions, the mapping O(x,.) is convex for almost all

x C  so that the inequality

O(x,t) Z O(xT) + O(xr)(t-r)

holds for every pair (t,T) G I x I and almost all x G r c  Choosing

t = v(x) and T U n(x) yields

O(v)n n+~) (un)(vn-un

As the three terms (v n ) , n(u) and 0(u n ) (vn-u n ) are in L (r )

(the latter from Theorem 3.1 with v-u replacing v ), integrating

both sides of the above inequality provides

J(vn) => J(Un) + c(un)(Vn-u n ) ds

IC

Applying (3.38) with v-u replacing v, we obtain

J(v n  j(u n ) + <f,v-u> -a(u,v-u)

Substituting into (3.41), we deduce

J(v) - J(u) > 1 a(v-u,v-u) a 0

and the proof is complete.[]

Remark 3.1: From the proof of Theorem 3.2, it also follows if u and

v are two solutions of problem (3.20)-(3.23), and hence two minimizers

of the functional (3.25), that a(v-u,v-u) = 0 , which characterizes

the difference v-u as an infinitesimal rigid motion (cf. §4).7l

The converse of Theorem 3.2 is essentially based on the results

of §2.

!6 .A %
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Theorem 3.3: Let u 6 (HI (Q))N  be a minimizer of the functional J

(3.39). Then, u is a solution to problem (3.20)-(3.23).

Proof: Since the functional j (3.16) takes finite values for

=v and v G (HL(Q))N (for instance, if v G (D(5))N , because

v G L (r) so that O(vn ) 6 L (rC ) as it follows from Theorem 2.1n C n CI
(ii) with = 0 and n = V 3 one has V(un)  L (rC ) when u is a

minimizer of the functional (3.39). From Theorem 2.1 (ii) in which

1=u n  and n = 0 , we deduce that -(un) ' L() . Next, for any~~given v (ZD( ))N

,the normal component vn belongs to L(r C

Again, from Theorem 2.1 (i) in which = u and n = tv , the

function

t G 1 + j(u n + tv)

is real-valued and differentiable at the origin with

j- j(U n + tvn)l t-0 -- f* (un)vn ds

rC

Hence, the function

t G i -' J(u + tv) (3.42)

is real-valued and differentiable at the origin with

J(u + tv) = a(u,v) + O(Un)v ds - <f,v>

dt= J_0  n

C

Since t = 0 is a minimum for the function (3.42), we obtain

a(u,v) + f (U n )v n d s - <f,v> n  0

for every v G (D(6))N  and the result follows from Lemma 3.2.1

J u d f

((6

;', 'V " " ," . • "% ,%','%",." , , ,, , ' , . " ' ' , :" ". - ' " . "," ." " "." "'. '. " % " ,'.' ,% %""%""% " ,, " " I "%
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The next section is devoted to proving the existence of

minimizers of the functional (3.39) under suitable compatibility
conditions between the applied forces and the geometry of rC  and

to the study of uniqueness or non-uniqueness of solutions to problem

(3.20)-(3.23).

4. Existence and Uniqueness of Solutions to the Contact Problem.

On the basis of Theorems 3.1 and 3.2, existence of solutions to

problem (3.20)-(3.23) is equivalent with existence of minimizers for

the functional J (3.39). A classical approach consists in proving

that the functional J is weakly sequentially lower semicontinuous

and coercive over the space (Hl(Q))N , both properties together

providing existence of a minimizer for J . Convexity and continuity

* -of the term

v 6 (H 1(0) )N _+ 1 a(v,v) - fv

are sufficient to ensure its weak lower semicontinuity (see, e.g.,

r31). By continuity of the trace: (H1 (!))N . (H (2))N and the

compactness of the embedding (H (2))N (Ll(r))N , the mapping

v (HL())N v G LI (rC

is weakly continuous. Together with Theorem 2.1(i), we then see that

the functional

* V V. I
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!r

v 6 1a) N  j (v) f ;(vn)ds G I

is weakly (sequentially) lower semicontinuous and so is then J A

result slightly more sophisticated than coerciveness of J over

(H i(Q))N will be proved next under a condition expressing compati-

bility of the external forces with the geometry of rC . From now on,

we denote by R the N(N+1)/2-dimensional space of infinitesimal (or

affine) rigid motions. We make the assumption

(For every R G P such that R 5 0 on r and <fR> > 0n C"

one has Rn =0 on rC and <f•R>1 = 0

In particular, condition (C) ("C" standing for "compatibility" or

"coerciveness") requires the weaker assumption -i

(C') <fR>Q S 0 for every R G R with Rn 0 on rC

well known to play the role of compatibility condition in the

Signorini's problem associated with the physical assumptions of this

-' paper (see, e.g., [9]). A more complete relationship will be

established in the next section. On the other hand, it is immediate

from condition (C') that <fR> = 0 as soon as R G R and R 0

on r. For such an element R , one then has J(v+R) = J(v) for
C

M"

, !.

I'
[ * i.<,~' 4 W
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every v (Hl (p))N In other words, and with an obvious abuse of

notation J(v) = J(v) where v denotes the equivalence class of

Y G (H (n))N in the space (H1(g))N/N with

P1= {R G R , R = 0 on r1 (4.1)

The space (H I())N/N identifies canonically with the space N ±

(orthogonal in (HI(2))N) so that weak lower semicontinuity of J

over (HI(Q))N implies weak lower semicontinuity of J over

(H l(Q))NIN . Existence of a minimizer for J will then follow from

the coerciveness of J over (HIn(n))N/N . This property, essen-

tially based on condition (C), is proved in Theorem 4.1 below and

closely follows [15, Theorem 1.1].

Theorem 4.1: Assume that condition (C) holds and that O(x,t) > 0

for every t > 0 and almost all x G rC * Then, the functional J

N4 is coercive over the space (HI(R))N/N .
t @ (0,+ 

) 
t-- 

j 
(g2 

) 

N 

[(4 

2

Proof: Applying Theorem 2.2, we see that the mapping
t 

no

(0 +00)(4.2)

j t,

Ill -.
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is nondecreasing for every fixed y G (H()J N with

.(v) - 2 lm 7F7 J (tv ) = t(v) ds (4.3)

iA C

where, for almost all x G C , we have set

(x, t)

£(x) = lim ~ z 0 (4.4)t-1+00 t

Note from the hypothesis *(x,t) > 0 and the monotonicity of

O(x,t)/t that the stronger conclusion

2. > 0 on r C  (4.5)

holds.

Assume by contradiction that the functional J is not coercive

over the space (Hl(s))N/ , namely that there is a sequence (y(k))

of elements in AIL such that J((k)) M for some constant M and

lim y(k)I 1 + . Setting y(k) - tk (k) tk = ,

e(k)I2
= and dividing by tk we find

a(e (k) ,e() + 1 J(t e(k)) 1 ,e (k)> < (4.6)
- -kk tk

Let e G N1  be a cluster point of the sequence (e(k)) in the weak

topology of (Hl(f2))N After extracting a sub-sequence, we may

(k)
assume e e . As j is non-negative, (4.6) yields
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a(e (k) ,(k) 1 <f,e(k)>

tk - 2 t
~ t~k

Since lim tk = + , one then has

ur ~(k) (k))~~lira a(e k)e~ k ) - (4.7)

whereas a(e,e) < lim a (e (k) ,e(k)) Hence, a(e,e) = 0 , namely,

e is an infinitesimal rigid motion. Further, due to the ellipticity

of the blinear form a(-,-) over the space (HI( ))N/R (a consequence

of Korn's inequality; see, e.g., [1]), (4.7) means that the sequence

of orthogonal projections of e(k ) onto R1  tends strongly to 0.

Since R is finite dimensional, weak convergence of e(k )  to e

implies strong convergence of the orthogonal projections of e
e(k) "

onto R (to e G R) . Hence, strong convergence of C to e

in (HI(s))N follows. In particular, 1e, = 1

Now, observe that (4.6) also yields

jte (k)) L fe(k1L2 - '(k) Q 2

2 t t 2tk k k

As i is non-negative, we infer

lim jtke) 0 . (4.8)

tk

Let us then fix t > 0 . As e(k )  tends to e te 'W " tends to te

. and from the (weak) lower semicontinuity of j , one has

j(te) < lim j(te(k)) Multiplying by It 2 we get

low%
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4,

(e lm--- j (te W (4.9)

St t

On the other hand, tk a t for k large enough: From the monotonici-

ty of the mapping (4.2) for fixed v and taking v = e (k) we deduce

1 (te(k)) 1 j (te(k)
2"~t n 2 k2

t tk

Thus,

1 (4.10'::lim j j(te ( k ) )  < lir j J(tke n ( ) (4.10)

t tk

From (4.8)-(4.10) and since j is non-negative, we find

1 2 j(te) =0 for every t > 0

t

Thus, in notation (4.3)

w (e) = 2 lim - j(te) k(e) ds 0t-++0 t2 n f FC  n+

Back to (4.5), this shows that (e )+ = 0, i.e., e 5 0 , on C .

Finally, note that <f,e> Q 0 . Indeed, if <f,e> < 0 , one has

<f,e (k)> < 0 for k large enough and (4.6) provides

I (k) M

tk

.' Multiplying by tk > 0 and taking the limit, we obtain <f,e> = 0,

a contradiction.

.1 *...*
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To sum up, the element e has been shown to verify the

conditions e G R , e G N ±1, ell, = 1 , en : 0 on rC and

<f,e>, Z 0 . Using condition (C), we must have en = 0 , namely,

e G R . This obviously requires e = 0 , contradicting the fact that

e = 1 .0l M

Remark 4.1: The condition 4(x,t) > 0 for every t > 0 and almost

all x G rC  is not merely physically acceptable, but it is the only

physically acceptable assumption. Indeed, it takes into account the

fact that at each point x G rC  such that n() is defined, any

positive normal displacement produces a positive normal response (see

§1). Nevertheless, the proof of Theorem 4.1 relies on the weaker

property I > 0 on rC : Due to our assumptions on the growth of

4(x,t)/t, this is equivalent to assuming that O(L,t) > 0 for almost

all x G P and t > 0 large enough (possibly depending on x ).".
C

Remark 4.2: An interesting particular case when condition (C) is ful-

filled is when

For every R G R - {0 ,the set {x rC , R (x) > 0}

(S)
has a positive measure.

Indeed, if condition (S) is satisfied, R = 0 is the sole element of

R such that R ; 0 on P It follows that condition (C) is sat-
n C

isfied with any choice of external forces f . Condition (S) has a

very simple interpretation: As we shall see later on (cf. Corollary

4.1), it means that problem (3.20)-(3.23) with no external forces

S- ' -. . .
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(i.e., f = 0) has no nonzero solution. Since solutions to this prob-

lem must be infinitesimal rigid motion, this strikingly relates to the

intuitive idea that the body is stuck (whence "(S)" for the condition)

because of its contact along rC n

As an immediate corollary to Theorem 4.1, we can state

Theorem 4.2: Assume that condition (C) holds and that (x,t) > 0

for every t > 0 and almost all x G rC . Then, problem (3.20)-(3.23)

has at least one solution.

To complete this section, we shall now examine questions related

to the uniqueness of the solution to problem (3.20)-(3.23). We begin

with the essential

Lemma 4.1: Let u and 6 be two solutions to problems (3.20)-

(3.23). Then, - u = R R and

t(un + tRn)Rn = 0 on rC , 0 : t 9 1 . (4.11)

Proof: Applying Theorem 3.1 with u and 6 successively, we

find for every v G (H L(Q))N that ($01 - (u)v belongs to

1
L (rC) with

a(6-u,v) +Jf (n) - O(u n))v nds = 0

With the choice v 6-u , we get

a(C1-u,a-u) + (j(in ) - s(Un) ) ( r n - u n  ds = 0 (4.12)
. . n C 01%
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From the convexity of the function O(x,') for almost all x G r

the inequality

(O(x,t) - O(xT))(t-T) -: 0,

holds for every pair (t,T) 6 I X I . Setting t = in(x) and

= u(x) ,it follows that

n ) - n(U))( n-un ) ds Z 0

Since the bilinear form a(*,') is positive semidefinite, this

relation shows that (4.12) holds if and only if

a(6-u,6-u) = 0 (4.13)

i and
a f (;( n) - *(un))( n-un) ds - 0 

(4.14)
C

Relation (4.13) characterizes the difference u-u as an element

R G R and relation (4.14) thus reads

r (l(Un+R ) - O(u))R ds = 0 . (4.15)

C

Now, as Theorem 3.2 characterizes the solutions to problem (3.20)-

(3.23) as minimizers of the convex functional (3.39), each element of

the form L + t(j-M) , 0 < t S 0 , is a solution to problem (3.20)- m
(3.23) as well. Replacing then R by tR in (4.15), we obtain

n n

f ((Un+tR n ) - (un))R n ds = 0 , 0< t 1 . (4.16)

J
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As O(un ) 9 L (r C) since u is a solution to problem (3.20)-(3.23)

(see the proof of Theorem 3.3) and Rn G LO(rC) , we can apply Theorem

2.1 (ii) with f u and n = tR : On the one hand, we see that

(4.16) coincides with the expression (cf. relation (2.39))

.(j' (tR " (' (O))*R = 0 0 < t 1 1t2 (tn) -u n = '
n n

Land, in the limit as t tends to 0 , we find on the other hand

0 =j" (0).(R ~ (un) R2 ds
u n n r c t n n

As > 0, one has t(un)R2 . 0 on rC  and hence ,(u) Rn = 0

on rc . Replacing u by u + tR and R by (1-t)R yields (4.11)

for 0 < t < I . The result for t = I follows by continuity of

at (x,-) for almost all x G r C .0

Theorem 4.3: Assume that *(x,t) > 0 for almost all x G rC  and

every t > 0 and that problem (3.20)-(3.23) has a solution u.

Then, all the solutions to this problem are of the form u + R with

R G F such that un < - (R n) +  0 on the set (x G r C , Rn(X) # 0}

(a vacuous condition if and only if R 6 N). (6)

Proof: From Lemma 4.1, non-uniqueness of the solution u

requires the existence of an element R G R - fOl such that u + R

is also a solution and t (u + Rn)R 0 0, 0< t 1 , on rC . It

is then clear that d (un + Rn) = 0 when R # 0 . From (3.10) andtn n n

And such an element R verifies <f,R>= 0; see the proof of
Corollary 4.3.

,V
N.

Ur



304

the assumption O(x,t) > 0 for almost all x G r and every t > 0 ,
C

Uone has O(x,t) > 0 for the same choices of x and t . Hence, on

rC  u + tR S 0 , 0 S t S I , whenever R 0 0 . But this is
C n n n

clearly equivalent to saying that u n min (0,-R n ) = -(Rn) + when

P R 0
nn

Conversely, let R be as in Theorem 4.3. Using the same equiva-

lence as above, it is immediate that 0 (un + Pn ) = t (u n) so that

u + R is a solution to problem (3.20)-(3.23) since o(u + R) - o(u)

regardless of the element R G R .f

Corollary 4.1 (an equivalent form of condition (S)): Assume that

O(x,t) > 0 for almost all x G rC and every t > 0 . Then, condition

(S) is equivalent to the uniqueness of the solution u - 0 to problem

(3.20)-(3.23) with no external forces (i.e., f - 0).

Proof: From Theorem 4.3, uniqueness of the solution u = 0 means

that N= {0} and for every R G R - {0} that 0(-u n) > - (R,)+ on

a subset of rC with positive measure. Hence, the conclusion.l

A first uniqueness question worthy of examination is that of the

area of contact and normal stress along rC .

Corollary 4.2: Assume that 4(x,t) > 0 for almost all x G C  and

every t > 0 and that problem (3.20)-(3.23) has at least one solution.

Then, the area of physical contact

AA(u) fx P , u n(x) > 01

and the normal stress 0(u n are independent of the solution u .

%
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Proof: This is an easy consequence from Theorem 4.3. Indeed,

let u and u + R , R G R , be two solutions of problem (3.20)-(3.23)

and let x G r be given. If R(X)= 0 , one has u (x) u (x) +

R nx W If R (x W #0 , the relation u n(x) ~-(Rn) +()yednn-~nn+ (x) yield

u (x) < 0 and u (x) + R (x) < 0 . Hence, u (x) > 0 if and only if

un(x) + Rn (x) > 0 (and, in this case, R(X) = 0) so that

A(u) = A(u+R) and (u n)(x) = i(un + R n(x) 0 if R (x) 4 0).F. .. nu (= (x ~

Remark 4.3: We emphasize that the area of physical contact cannot be

replaced by the area of geometrical contact:

{x G rc , u (x) > 01 (4.18)

in Corollary 4.2. Indeed, the set (4.18) may greatly vary from one

solution to another. This is easily seen by taking u as a solution

to the linear problem

div a(u) + b = 0 in Q,

7(u) - t on r
~F

7(u) - 0 on rc

verifying un 5 E < 0 on rC . Such a choice is obviously possible

by taking b and t accordingly and u is also a solution to pro-

blem (3.20)-(3.23). It suffices then to "move" u through transla-

tions to observe modifications of the area of geometricsl contact (cf.

Figure 4.1).

Given a solution u to problem (3.20)-(3.23), every element of

the form u + R , R 6 ?. , is a solution too. Thus, uniqueness of the

'L &



307

solution can be established to within elements of N only. With this

restriction, it is easy to derive from Theorem 4.3 several uniqueness

statements reducing to actual uniqueness when N = { . For

instance, if (x,t) > 0 for almost all x G r C and every t > 0

condition (C) holds (so that existence is ensured by Theorem 4.2), and

the solution u is known to verify un > 0 on rC (i.e., the area of

physical contact A verifies A = rC). Indeed, let R P R \ N be

given. By definition of the space N ,one has

meas({x , Rn (x) 0 }) >0

"' z// /I

/" // / I

%/

/I
/ =// /

/" " /

r=r __ _ _ _/'

(a) (b) (C)

(a) Reference (b) A first solution (c) Other solutions

configuration u for which there for which

is no geometrical geometrical

contact contact occurs

along various

subsets of rC

Figure 4.1

* .,
A1*1 Id1~~'C.A ~ o



308

From Theorem 4.3, it follows that un < 0 on a subset of rC with

positive measure, an obvious contradiction. This result suggests that

uniqueness might be closely related to the fact that the area of

physical contact (independent of the solution from Corollary 4.2) has

a positive measure. Indeed, Corollaries 4.3 and 4.4 below do express

this property under the following compatibility condition (U) (for

"uniqueness") between the applied external forces and the geometry of

r C

SFor every R 6 R with <f,R> 0 one has either R G N

(U)

(i.e., R = 0 on r ) or R x 0 for almost all x~ 6 rC ..

n C nC

How general condition (U) is will be examined in §5 in the simple

but significant case N = 2 . To the best of our knowledge, it does

not relate to any classical assumption in the associated Signorini's

problem.

Corollary 4.3: Assume 4(x,t) > 0 for almost all x G rC and every

t > 0 and that conditions (C) and (U) hold. Then, problem (3.20)-

(3.23) has a unique solution to within elements of the space N

provided that the area of physical contact (independent of the

solution from Corollary 4.2) has a positive measure.

Proof: Let u be a solution to problem (3.20)-(3.23), the

existence of which is ensured by Theorem 4.2. By hypothesis

meas((x G rC u(X) > 0}) > 0 . (4.19)n G ,

& % ,o
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I
We shall. make repeated use of Theorem 4.3. First, let R G R be

such that u + R is a solution too. Since u 1 0 on r whenever
n C

R 0 0 , one has *(u )R f 0 on r * Theorem 3.1 with v = R then
n nn R t

yields

<f,R> = a(u,R) + I*(un)Rn ds - 0 (4.20)

C

Assume that R 0 N . Then, from condition (U), one has R (x) # 0~ n

for almost all x G r Theorem 4.3 then shows that un 0 a.e. on

rC , contradicting (4.19).1

Remark 4.4: All the assumptions of Corollary 4.3 can be checked with-

out knowing any solution to problem (3.20)-(3.23). This is clear

except for the condition meas(A) > 0 (A = area of physical contact).

However, an immediate verification shows that an equivalent formulation

of the condition meas(A) > 0 is that the linear problem

div a(v) + b = 0 in S , (4.21)

r(v) = t on rF , (4.22)

7(v) - 0 on rC  (4.23)

has no solution v with vn S 0 on rC  (such a solution would

indeed be a solution to problem (3.20)-(3.23) with

meas(A) = meas(A(y)) = 0 and conversely).Fl

Closely related to Remark 4.4 is the following:
".p.

* Corollary 4.4: Assume that $(x,t) > 0 for almost all x G P and
C

every t > 0 and that conditions (C) and (U) hold. Assume further

that there is R G P such that
,.'

Uq
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<f,R> 0 (4.24)

Then, problem (3.20)-(3.23) has a unique solution to within elements

of the space 1.

Proof: It suffices to apply Corollary 4.3 and Remark 4.4 since

(4.24) means that the external forces do not verify the Fredholm

alternative, and hence the linear problem (4.21)-(4.23) has no

solution.[I

5. Concluding Remarks

In this section, we examine the meaning of conditions (C), (S)

and (U). For the sake of brevity, we limit ourselves to the simpler

case when N = 2 . We shall also make precise the relationship to

Signorini's problem and discuss some generalizations and extensions of

our results, notably to the contact problem with friction.

More on the Conditions (C), (S) and (U). Suppose N = 2 and the

boundary r is connected and plecewise CI so that there is a

counterclockwise parameterization x(I) - (x,(0, xo(W) of - which

is continuously differentiable except at a flnitel,: many polnt, with

!dx/dA!l = I (euclidian norm). The outward normal vector n(x) has

then components

nl(yx(A) )  (dx 2 /dX)() ,

n= -(dx I /dA)(X)

The three-dimensional space of Infinitesimal rivid motions

consists of mappings of the form

A
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x - (XlX 2 )  2 -2 R W = (yx 2 -8,- yxI + a) G1 2  (5.2) 31

with (a,8,y) G R . From (5.1) and (5.2),

(x(X)) --- [ (x() + x2 (X)) - (A) - 8x 2 () ]

More precisely, if y = 0 (so that R is a translation)

Rn(X)) = -L(ax (A) + 8x 2 () (5.3)

and, if y 0

R(x(X)) (x - + ( 2 ) - )2] (5.4)

Among conditions (C), (S) and (U), only (S) is purely geometrical,

i.e., does not require any compatibility condition with the applied

Iforces. In what follows, we make the physically realistic assumption
0

meas(rc\ C) = 0 . From (5.3) and (5.4) and assuming that x runs

over r counterclockwise, it is easily seen that condition (S) is

C

equivalent to saying that

() There is no nonzero vector e G I2  such that the mapping

x G rC + x e 6 , (5.5)

is nonincreasing (resp. nondecreasing) on all the connected components

Of r This condition is conveniently viewed by saing that no

odiy

component of x along any line is nonincreasing (resp. nondecreasing)

as x runs over each connected component of P counterclockwise.
C

(7)MoooityF '

Monotonicity makes sense since P is one-dimensional.
C

% % V",'r rW.CS, , . ., , ., , 'f. " 'w. " ' ,, .,., . ,." ' ' ' " ., ' ',, ," ' " "' '
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(ii) There is no point x G I2 such that the mapping

0~
x G r C , [[x - x 0{ 11 G (euclidian norm) (5.6)

is nonincreasing (resp. nondecreasing) on each connected component of

r ' On the basis of this characterization, it is easy to see that

Figure 5.1 below exemplifies two cases when condition (S) holds

I.c

Ej
CU

C(a) (b)

Figure 5.1

We shall now give an interpretation of condition (U) in the case

N = {0} (observe in passing that condition (U) is never vacuous since

N = R Is impossible). If so, condition (U) reads: For every

R G R - {O} such that <f,R> = 0 , one has R (x) 1 0 almost every-

where on rC  Owing to (5.3) and (5.4), condition (U) can be
C.

viewed by saying that r contains no interval and no arc of a circle
C J

of a special kind. More precisely, set

r(f) = dx t ds G I

with components rl(f) and r2(f) and

I2

p"
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M M( f ) =-d e t ( b (x ) , x ) d x +_fd e t (s ( x ) , x ) d s G I .

Then, r should contain

C

a) If r(f) 0 0: no interval colinear with the line

orthogonal with r(f) and no arc of circle

with centre on the line generated by r(f).

b) If r(f) = 0: no interval if m(f) # 0 and no interval and

no arc of circle if m(f) = 0.

Conditions (a) and (b) above are easily seen to be necessary. Strictly

speaking, they are not sufficient to ascertain that condition (U) holds
1

(when N = {0}) if r is only piecewise C .Nevertheless, they are

sufficient if rC  is contained in a piecewise analytical submanifold of

r . In this last assumption, the interpretation of condition (U) when

N 0 {0 } is trivial since it is always satisfied. Indeed, from (5.3)

and (5.4) we infer that the condition N 0 {0} amounts to assuming

that rC  is a union of intervals parallel to a given direction or a

union of arcs of circles with the same center (in any case, the space

N is one-dimensional). If, for a given R 0 N the set {x G C ,

0

R (x) 01 did not have measure zero, r would contain an interval

parallel to a different direction or an arc of a circle with a differ-

ent center. All the possible combinations are contradictory so that

R (x) 0 for almost all x G r when R 0 P . Condition (U) trivi-
n C

ally follows. These considerations show that the two situations de-

scribed on Figure 5.1 (a) and (b) correspond with the case N = {O}

(note that P1= (01 as soon as condition (S) holds) and condition (U)

holds for "most" choices of f on Figure 5.1(a) and for every choice

IM
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of f on Figure 5.1(b). Figure 5.2 below represents situations in

I which

N = {0} and condition (U) holds provided rl(f) 1 0 and

r2 (f) 4 0 (on Fig. 5.2(a));

-- N {0} so that condition (U) holds for every (on Fig.

5.2(b), (c) and (d)).

On the other hand, condition (S) is violated in each of the four

cases of Figure 5.2, but condition (C) holds with a varying generality.

More precisely, condition (C) holds if and only if

-- rl(f) < 0 on Figure 5.2(a)

rl(f) = 0 on Figure 5.2(b)

-- m(f) = 0 on Figure 5.2(c)

rl(f) = 0 and 0 < m(f) < -r 2 (f) on Figure 5.2(d).

rC rc *

r

_ (a) (d)

'V ,

Figure 5.2
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The above comments carry on to the case when r is not connected

but rC  is contained in a connected component of r . In the general

case, the only difference is that n must run clockwise (instead of

counterclockwise) over the components of r not contained in the

unbounded component of 1 2 V2

Other Boundary Conditions. Boundary conditions of various other

types can be considered instead of (3.2)-(3.22). For instance, the

body occupying the domain 9 may be clamped along a subset rD  of r

with meas(rD ) > 0 and/or action of linear springs on some subset rE

of r with meas(r E ) > 0 can be taken into account. Such problems

involve appropriate modifications of the technical results of §§2 and

3. In this case, coerciveness and uniqueness of a minimizer follow

from the coerciveness of the quadratic part over the space of ad-

missible displacements. These situations have already been considered

in [10] with a simple choice of normal response 0 allowing the use

of Sobolev's embedding theorems, thus avoiding the technicalities of

P §§2-4.

Relationship to Signorini's Problem. All the properties of the

function 0 are obviously unchanged when 0 is replaced by AO,

A > 0 a given real number. In this process, the function 0 is

changed into AO . Assuming O(x,t) > 0 for almost all x G rC  and

every t > 0 and that condition (C) holds, problem (3.20)-(3.23) with

NA replacing 0 has always a solution. Besides, from the proof of

Theorems 4.1 and 4.2, it has always a solution (not necessarily

unique) in the space N 1 .

"4

I2
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Theorem 5.1: Assume that 4(x,t) > 0 for almost all x G rC  and

every t > 0 and that condition (C) holds. Then, for every e > 0 ,

there is A > 0 such that for every X a A and every solution

u(X) G N ±  of problem (3.20)-(3.23) with A6 replacing * , there is

u 6 N 1- (possibly depending on X ) solution to the Signorini's

problem: Minimize

a(v,v) - <f,v>Q , (5.7)

over the closed convex subset of (HI(1))N

K = fv G ( v < 0 on r ,C  (5.8)

such that

M- u111,0 S (5.9)

Proof: We argue by contradiction: If Theorem 5.1 is not true,

there is e > 0 and a sequence (Ak) tending to +- such that

Iu(Xk) -U11lQ > C (5.10)

for every index k and every solution u to the Signorini problem.

Existence of at least one solution to it in (H1(n))N is ensured by

condition (C), a weaker form of which, already encountered, is

(C') <f,R> S 0 for every R G R with R '0
n

(see, e.g., [4,91). Existence of a solution in N -- trivially follows

(note that K + N V K and that (C') implies <f,R> 0 for every

R G N. It is not restrictive to assume Ak a 1 for every index k,

Ul'j
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which will henceforth be done without further mention. Denote by JX

the functional

v 6 (H'()) N  Jv = a(vv) + A O(Vn)dS <f,v> G I

C (5.11)

Clearly, Jl A > J = J for X Z I . Hence,

ix (U(k )) a J(U(xk)) for every index k . (5.12)
Jk -

On the other hand, we know that u(Xk) is characterized by (cf.

Theorem 3.1)

a(u(Ak)'v) + Xk r *(Un(Xk))vn ds = <f,v>

C

for every v G (Hl(&1))N (5.13)

Taking y - (Xk) ,we get

a(u(xk),u(Xk)) + Xk Jr ds <f,u(Xk)> Q

C (5. 14)

Now, recall (cf. (3.40) with Xk and X k f instead of * and 0)

Ak 4(Un(Xk)) I T 4(un(k))Un(Xk)

Together with (5.14) and the definition of the functional Jk this
k

inequality yields

1

( (u(- <f'u( lX • (5.15)J k ) 2.. . ..

With (5.12), we obtaina
i'.

U2
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J(U(Ax) + . fu~ )> * a(u(X ),u(Ak) + J (u (X )ds

- f,u(A )>~ ! 0 .(5.16)

But It is obvious that condition (C) holds with f/2 replacing f

The coerciveness result proved in Theorem 4.1 shows that (5.16)

ing a sub-sequence, we may assume that there is u G N -L- such that

u(X k) u. Let then v GK. As O(u n(A k)) a 0 , relation (5.13)-

shows that a(u(X k)'v) a <f,v>~ In the weak limit, we then find

a(u,v) a;<~v for every vG6K .(5. 17)

Next, as *(u n(X k))un(Ak) a 0 ,we infer from (5.14) that

a(u(x k),U(x k)) ;S <f,u(x k)>~ Q (5. 18)

A classical argument of weak lower semicontinuity thus provides '

a(u,u) S <f~u>~ (5. 19)

From (5.15) and (5.11), the boundedness of the sequence (,!(Xk))

in N I shows that the sequence X k fr ON n (A k))ds~ is bounded.

Therefore,

lim fr O(u n (Ak )ds - 0 .(5.20)

C

With the Sobolev embedding theorem, we see that u n (Xk) tends to un

Linin the strong topology of L (re C Applying Theorem 2.1(i) and

(5.20), we deduce that O(u)n G L (r C) with fr. C (u n)ds - 0

Ut
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Hence, (un ) = 0 on r since 0 is non-negative. The assumption

U *(x,t) > 0 for almost all x G rC and every t > 0 shows that

O(x,t) > 0 for the same choice of x and t . Thus, 0(u n 0 on

rC if and only if un i 0 on rc , namely u G K . From (5.19) and

(5.17), with v = u , we arrive at

a(u,u) = <f,u>, . (5.21)

Besides, with (5.21), (5.17) can be rewritten as

a(u,v-u) k <f,v-u>0  for every v K.

It is well known that this relation characterizes u as a minimizer

L of the quadratic functional (5.7) over the set K , i.e., u is a

solution to Signorini's problem. To obtain the desired contradiction

with (5.10), it remains to show that

lim IfuO(k) -U11, = 0 (5.22)

Actually, the above relation reduces to showing that

lim a(u(xk),u(Ak)) = a(u,u) . (5.23)

Indeed, denoting by P the orthogonal projection from (H (0))N

onto the space R , the mapping

v 6 (HI(n)) N [a(v,v) + 11Pv1 , 1 ], (5.24)

is a norm equivalent to l (since the bilinear form a(',')

induces a norm equivalent to the quotient norm over the space

((H1(n))N/ R) . As U(Nk ) tends weakly to u , the sequence of

U
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projections Pu(Xk) tends to Pu in the strong topology of (Hl(n))N

since the space R is finite dimensional. Pence, if (5.23) holds,

the sequence (2(X k) tends to u in the weak topology of (HlI(o)) N

and the sequence of its norms (5.24) tends to the norm (5.24) of I
proving (5.22) by a standard argument. To establish (5.23), recall

that we already know that

a(u,u) S lim a(u(xkiU( . (5.25)

on the other hand, due to (5.21), relation (5.18) also reads

a(u(xk),u(Ak)) S a(u,u) + <f,u(Xk)-U>S

Thus,

li- a(u(Xk ),u(Xk)) S a(u,u) . (5.26)

Relation (5.23) is immediate from (5.25) and (5.26), which completes

the proof.1

Remark 5.1: The result stated in Theorem 5.1 is rather strong since

it means that provided X is large enough, any solution u(A) to

problem (3.20)-(3.23) with X replacing * is arbitrarily close to

some solution to Signorini's problem in the space (Hl (0))N . Indeed,

this result is exactly what Theorem 5.1 states if u(A) belongs to

N ± . The general case is immediate since solutions are defined to

within elements of A (recall that <f,R> . 0 for R G N. Note

that the conclusion is independent of the normal response * . Its

physical significance is clear: It means that the Signorini problem

is the limiting case of an infinite normal response along rc .fl
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Remark 5.2: Using the boundedness of the sequence (U(xk)) and

U taking v to be the i th vector of the canonical basis in (5.13),

one sees that the sequence IAk f ;(un(k))vn is bounded in L I(rC)

by repeating arguments in Theorem 3.1. From relations (3.21) and

(3.22) with Ak4  replacing * , it follows that the sequence

7 )  is bounded in L(') . With this observation, one infers

when u = lim U(Xk) , and hence when u is any solution to Signorini's

problem, that w(u) is defined as a (vector-valued) Random measure on

r . As 1r(u) represents a generalization of the surface traction

a(u)'n , the formal interpretation of u as a solution to problem

(1.3)-(1.7) ignores that this masure may have a singular part with

respect to Lebesque's measure. Assuming -- but there seems to be no

mathematical justification of this assumption -- that the singular

part does not exist, it is not difficult to deduce from Theorem 5.1

that conditions (1.3)-(1.7) are fulfilled by the solutions to

Signorini's problem (upon replacing o(u)-n by r(u)) .J

Admissibility of an Initial Gap. Instead of assuming that geo-

metrical contact occurs along rC  in the reference configuration

(i.e., when no external forces are present), it is possible to allow

some initial gap g between the candidate contact surface rc  r

and the body with which contact should occur. Such an initial gap can

be taken into account through a function g G L(r c) verifying g Z 0 on

rC and the normal response can be modified by replacing * by

g (x,t) = O(x,t - g(x)) . (5.27)
g.. -
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However, serious limitations to the use of this model are imposed by

U the physical requirement that the normal response be evaluated in the

il deformed configuration of rC , thus modifying the direction of the

normal vector n . When g = 0 , this is without importance since the

normal response vanishes at those points at which physical contact

does not occur and the actual displacement is very small at those

points at which contact occurs (so that the modification of the normal

is not significant). The problem is different when g 0 0 since

points originally located at a nonzero distance may come in contact

after a significant variation of the normal and at points unknown in

advance. This closely relates to the question of actually measuring

the initial gap g , which cannot be satisfactorily answered in a

static framework. In other words, 0g(',un(x)) has in general nothing

to do with the actual normal response due to contact at the points

x +u(x) for an arbitrary u . Such a relation as (5.27) should then

not be used unless there is physical evidence that the actual displace-

ment along rC  due to the action of the applied external forces

occurs (nearly) in the direction normal to rC (so that g(x) can be

measured as the distance from x G rC  to the obstacle in the direction

.(x)), at least at those points located at a nonzero distance from the

obstacle. In practice, this requires g computed as above to be

"small" while the body occupying the domain Q has a sufficiently

rigid behavior under the action of the applied external forces.

From a mathematical standpoint, and with the assumptions

g 6 L (r) , g Z 0 , it can be shown that all the properties stated

with * are true with given by (5.27) replacing * with the

g

Uk

I l
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only obvious exception that (x,t) is not positive for every posi-

tive t whenever O(x,t) is. This, however, does not modify the

existence result (Theorem 4.2) which actually relies on the fact that

*(x,t) be positive for t large enough (cf. Remark 4.1), unaffected

by changing 0 into *g . Differences merely take place in the

uniqueness statements, with simple modifications: for instance, the

area of physical contact must be defined by {x G rC I u ) >__ _ _ __

and Corollary 4.4 is unchanged.

The Contact Problem with Friction. In [10], we have considered a

similar contact problem with friction, with boundary conditions in-

volving a quadratic form coercive over the space of admissible dis-

mn
placements and a normal response of the form O(x,t) ffc (x)(t+)

n- +

where c G L() , c Z 0 and m >1 such that

m +1
H (F)(: L n (r) The tangential friction force was supposed to be

mT
proportional to cT(x)(t+) with cT G L (rC) , cT a 0 and mT > I

such that H (F)C LT (r) , and collinear with a vector field T(x)

of unitary vectors tangent to (part of) rC . This model allows re-

covery of the usual Coulomb's law when mn = mI  and cT - c where

u is the coefficient of friction. As a physical example of this

situation, consider a belt rubbing along (part of) rC with velocity

proportional to T . Existence and local uniqueness was established

either for sufficiently small external forces or for sufficiently

small coefficient cT (i.e., sufficiently small coefficient of fric-

tion if mn = mT and cT = licn ). These results rely on the inverse

mapping theorem and, in the latter case, all amounts to proving that

,r 6,-
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the quadratic form associated with the second derivative of the

energy ( ) at the solution of the problem with no friction (i.e.,

c- 0 ) is elliptic over the space of admissible displacements.

With the boundary conditions of this paper and with the normal

response and tangential friction force described above, the same

method is available: Denoting by u a solution (supposed to exist)

of the problem with no friction and applied external forces f I the

quadratic form associated with the second derivative at u of the

energy functional J (3.39) is

v 6 (HI(Q))N - a(v,v) + m c(un v 2 ds (5.28)

n ~ Jr n + n

This quadratic form is not coercive if and only if there is a sequence

(v(k)) G (Hl(0))N such that 11v(k)l1 1 and

lim a(v(k),v(k)) + m C()m (v(k))2ds = 0

m -frk)n(U) ) n (vn(k)) 2dHence, lm av(k),v (k) 0 and lim +r c(u ds 0

C
f(k)

Considering a sub-sequence, we may assume that (v(k ) tends weakly

to v in (H (2)) N . From the weak lower semicontinuity of a(.,.) ,

we find a(v,v) = 0 , so that v is an infinitesimal rigid motion

R . As the space R is finite dimensional, the sequence of orthogonal

projections of v (k ) onto R tends strongly to R while, due to the

(8)But the problem with friction does not reduce to finding the cri-
tical points of some energy functional, i.e., the problem is no
longer variational.

Iz
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ellipticity of a(-,-) over the quotient space (HI(Q))N/ R , the

sequence of orthogonal projections of v (k) onto R - tends strongly

to zero. As a result, (v(k)) tends strongly to R in the space

(Hi( L and R 0 0 since 1!v(k)i, = 1 . From the continuity of

r m n 
+dthe embedding H _r L n(r) , this yields

(un +  Rn d s = lim c (un+ (vn(k))2 ds = 0

r C nr

Provided that c > 0 on 1c , this clearly requires u (x) Z 0 forPrvddta n C

almost all x 6 rC  such that Rn (X) 0 0 . In particular,

C(u) R = 0 on rC . (5.29)

As u is a solution to the problem with no friction, one has

a(uv) +v ds = <f,v>_ for every v G (Hl ())N

+ f cn(u)+n

(5.30)

Setting y = R in (5.30) and using (5.29), we find

<f,R>= 0

The above relation shows that a contradiction with R 0 0 is

reached if, for instance, N = {0} , u is known to verify u > 0

u: xt)=Cx(t)nwthc n n~adi 1flil
on rC  and condition (C) holds (which also ensures the existence of

m
s~~)=C(x)(t+) nwith c n> 0 on r C  and m n> I fulfills

all the assumptions necessary in this paper). Another case is when

I
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N = (01 , physical contact occurs (i.e., meas({x G rC u n(x) > 0})

0) and condition (U) holds. If we drop the condition N = {01

ellipticity of the quadratic form (5.38) over the space (Hl(z))N is

obviously impossible but ellipticity is recovered over the space

(HI( 6))N/ N . This weaker result is nevertheless sufficient to prove

existence and local uniqueness to within elements of the space N of

the problem with friction when cT is small enough (in L(rc )

Remark 5.3: Roughly speaking, the above considerations can be summar-

ized as follows: Existence and local uniqueness to within elements of

the space N of the problem with friction is ensured as soon as cT

is small enough and physical contact does occur in the problem with no

friction (for instance, if the external forces do not verify the

Fredholm alternative; see Remark 4.4). If physical contact does not

occur, the problems with or without friction have trivial solutions,

namely, those of the linear problem (4.21)-(4.23).0
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