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FOREWORD

This report summarizes research obtained on Contract F-49620
84-C-0024 on Computational Methods for Nonlinear Dynamics Problems in
Solid and Structural Mechanics. The report particularly focuses on
Models of Dynamic Frictional Phenomena in Metallic Structures. The

original research objectives of this project were:

1.) Develop analytical models for contact mechanics problems involving

large deformations, rotations, large strains, and thermomechanical inter-
actions, with due consideration of frictional resistance.

2.) Conduct preliminary studies of simple quasi-static problems
with the characteristics listed above.

3.) Investigate dynamic friction mechanisms, their role in heat
generation, and the resulting thermomechanical response. Examine role
of thermomechanical effects in damage processes such as fatigue and wear.

4.) Conduct preliminary modeling studies of 1lubrication effects
in structural dynamics.

5.) Conduct parameter studies of new static and dynamic friction
models of large amplitude structural dynamics problems.

6.) Apply new static and dynamic models to the study of the mechanics
of structural damping, metal forming, dynamic contact (impact problems)
and elasto--plasticity. Correlate results with available experimental
data wherever feasible.

All of these objectives have been accomplished.
The work led to the following technical articles:
1. Oden, J.T. and Martins, J.A.C. [1984], "Models and Computational Methods

for Dynamic Friction Phenomena"”, Comp. Meth. Appl'd Mech. Engrg., vol.
52, pp. 527-634

2. Martins, J.A.C. and Oden, T.L. [1983], "A Numerical Analysis of a Class
of Problems in Elastodynamics with Friction", Comp. Meth. Appl'd. Mech.

Engrg., vol. 40, pp. 327-360

3. Oden, J.T. and Martins, J.A.C. [1984], “New Inteface Models of Dynamic
Friction Effects in Nonlinear Structural Dynamics", Proceedings of AIAA
25th Structures, Structural Dynamics & Materials Conference and AIAA
Dynamics Specialists Conference, Palm Springs, California, May, 1984

(iv)
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4, Rabier, P.J., Oden, J.T., Martins, J.A.C. and Campos, L.T. [1986],
"Existence and Local Uniqueness of Solutions to Contact Problems in
Elasticity with Nonlinear Frictionm Laws”, Int. J. Eng. Sc. {to appear]

5. Martins, J.A.C. and Oden, J.T. [1986], "Existence and Uniqueness Results
for Dynamic Contact Problems with Nonlinear Normal and Friction Interface
Laws”, J. Nonlin. Analysis [to appear]

6. Rabier, P.J. and Oden, J.T. [1986], "Part I. Preliminaries and Formulation
of a Variation Inequality, J. Nonlin. Analysis [in review]

7. Rabier, P.J. and Oden. J.T. [1986], "Part I1. Existence and Uniqueness
Theorem”, J. Nonlin. Analysis [in review]

8. Oden, J.T. and Martins, J.A.C. [1985], "New Models and Theories of
Dynamic Friction”, Developments in Mechanics, Vol. 13, Proceedings of
the 19th Midwestern Mechanics Conference, Columbus, Ohio, Ed. Popelar,
C.H.

9. Martins, J.A.C. and Oden, J.T. [1985}, "Interface Models, Variational
Principles and Numerical Solutions for Dynamic Friction Problems, In:
Mechanics of Material Interfaces, Ed. Selvadurai, A.P.S. and Voyiadjis,
G., Elsevier Science Publishers, Amsterdam, NL

The following personnel worked on the project:

Principal Investigator and Project Manager: Dr. J. Tinsley Oden

Senior Research Engineers: Dr. J.M. Bass, Dr. T.H. Miller

Graduate Research Engineers: Mr. C. Berry, Mr. J.A.C. Martins,
Mr. K.T. Hsieh, Mr. P. Devloo

Senior Scientific Consultants: Dr. E.B. Becker, Dr. N. Kikuchi,
Dr. P.J. Rabier.
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CHAPTER 1
INTRODUCTION

1.1 Motivation
Relative 4liding motion between dry on poornly {Cubrdicated

bodies s 4{requently accompanied by nodsy and troublesome vibrations.

If *the sound generated by the friction-induced oscillations of
violin strings may be the delight of all music lovers, the sound
of a long piece of chalk sliding on a board, the ringing of a wine
glass when a moistened finger is run around its rim, the squeak
of the ill-lubricated hinges of a slowly opening door or the squealing
of vehicle brakes give a better idea of how undesirable the noise
generated by frictional oscillations may be. In industrial environ-
ments, friction-induced oscillations may be a serious problem.
The precise positioning of tables of machine tools is fundamental
for the accuracy of the work performed with them. However, 1t
may be severely prejudiced by the intermittency of its sliding
motion, particularly at the low speeds employed during final position-
ing adjustments. Such stick-slip motions (a designation coined
by Bowden and Leben [1939]) have a saw-tooth wave form consisting
of successive periods of repose and sudden sliding (see Figs.
1.1.1 and 1.1.2) and are the typical friction-induced oscillations
observed at small sliding speeds. In other applications, violent
friction-induced oscillations may lead to surface damage and failure

of machine components.
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Most experimental studies on friction and wear have been
concerned with finding qualitative and/or guantitative relationships
between friction and wear data and various governing parameters
and conditions, namely: the properties of bulk and surface layer
materials, the roughness of the surfaces in contact, the stress
levels, the sliding speed, the temperature, the environment, the
properties of the lubricants and the 1lubrication conditions. The
correlations found in those experimental works are usually assumed
to be intrinsic characteristics’ of the interfaces testad for the
ranges of parameters and conditions considered and, frequently,
they are used in the design of operating machinery. Difficulties
on the reproducibility of friction data with different experimental
apparati under otherwise similar conditions, and dependence of
the results of wear tests on the dynamic properties of the equipment
have been occasionally mentioned in the literature (Barwell [1959],
Soda et al [1975], Kato et al [1982], Madakson [1983]).  However,
these effects have received comparatively Tlittle attention. Recent
experimental results by Rice et al [1982] and Aronov et al [1983 |
19841 show, in a striking manner, the effect that the change of
stiffness properties of an experimental apparatus may have on the
wear results. It should be noted that, for some experimental apparati
and with appropriate vibration measurement instrumentation,the correla-

tion between stiffness changes, friction-induced oscillations and

wear results may be clear (Aronov et al [1984]); in other circumstances,

particularly when the oscillations do not produce an audible noise
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(Rice et al. [1982]), it may be rather difficult even to suspect of

those effects. Equally striking are the observations reported by
Tolstoi [1967] on the effect of external normal damping on the measur-

able values of the coefficients of static and kinetic friction: suffi-

ciently strong normal damping of the free normal microvibrations
of a slider can increase significantly the static friction, eliminate
apparent decreases of kinetic friction with the increasein sliding
velocity, i.e., it can eliminate all the frequently observed or
assumed distinctions between static and kinetic friction. It is
thus clear that no connect dinteapretation of experimental 4riction
and wean data L& possible, no neldiable prediction of griction and
wear 4n operating machinery can be done, without a good hnowledge
an the dynamic properties of zthe equipment 4invofved and a good
undenstanding of zthe oscillations that are Likely to accompany

moAt sliding motions.

1.2 Objectives, outline and major contributions
The objective of the research summarized 1in this report

48 the development o4 models and computational methods 4or the
Atudy of dynamic friction phenomena JLnvolving the dry contact o4
metaflic bodies. Special emphasis is given here to the following
topics:

(1) The study of phenomenological interface constitutive Tlaws
capable of modelling realistic normal and tangential contact condi-

tions.
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(i1) The formulation of dynamic contact problems incorporating

appropriate interface laws.
(i11) The numerical study of friction-induced oscillations at
small sliding speeds, in particular the occurrence of stick-slip

oscillations.

It is well known that no engineering surfaces are perfectly
flat, no matter how precise the machining process used to produce
an apparently fiat finish. Under magnification one observes that
all polished surfaces have undulations that form hills and valleys,
the dimensions of which are large in comparison with molecular
dimensions. Furthermore, the surface layers (contaminants, adsorbed
materials, oxides, work-hardened layers) which cover most exposed
metallic surfaces and which meet in actual contact processes, do

not have the same mechanical properties as the underlying bulk

materials. It 45 theregorne natural in developing continuum mechanics
models 4on contact problems, to assign to the interface a separate
structune charactenized by phenomenological Laws independent 04 tne

constitutive equations that charactenize the parent bulk matendials.

Toward assessing what features these interface models should

exhibit, a review and critique of a substantial body of experimental
literature on this subject has been done and is presented elsewhere
(Oden and Martins [1985]). In Chapter 2 of this report the
major conclusions of that study are summarized as a basis for the
interface model introduced in the final section of the same chapter.

That 4ntenface model J{ncorporates a constitutive faw 4cn the ncmal
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dejonmability o4 tne interjace and Coulomb's Law cvg 4ndcticn. Contrary
to classical assumptions used in the study of friction-induced
oscillations, ne distincticn between coediicients of static and
hinetic 4ndiction and no dependence o4 the ZLatter on the sfadding

speed 48 consdidened n tnds wonrk.

The use of separate constitutive assumptions for the interface
behavior has not been frequent in continuum mechanics formulations
involving the dry contact between solid bodies (for a recent inter-
esting exception and related topics see Felder [1985] and the refer-
ences therein). Usually, unilateral contact conditions are adopted
which simply assert that, when two deformable bodies are pressed
together, no mutual penetration of the bodies occurs. In other words,
the compressed interface is assumed to have no normal compliance.

Thic approach has led to serious mathematical difficulties,
particularly in the formulation of dynamic contact problems. To
date, no general theory of existence is available for these problems
even in the frictionless case. Many of the unresolved mathematical
difficulties can be traced to the requirement of an unilateral
(non-compliant) contact constraint. In fact, these wunilateral
dynamic contact problems are a particular case of general classes
of evolution problems governed by second-order (in time) partial
differential equations and subjected to unilateral constraints
on the unknown displacement field itself as opposed to constraints

on the time derivative of the displacement. Regularization {penali-

zation) techniques and monotonicity arguments, used successfully in the
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not, in general, yield the desired results when the constraint is on

the function itself bucause, in this case, the corresponding multi-

e

valued operator is not monotone. Perhaps not surprisingly, <t wdl{ be

shown, in the initial sections of Chapter 3, that, by taking dnte ac-

2R%

count the noamal compliance o4 the interface, the essential dijsdlculiy

gl
.
3

in the fornmulation 0f physically nealistic and mathematically —well

posed dynamic contact problems L3 nemoved. N

Throughout most of this work, one question will be central:

. -
gg what conditions may determine the occurrence of a smooth steady-slid- ﬁ?-
ing or an intermittent stick-slip motion? By steady-sliding it i;

ii is meant, (recall Fig. l.1.1(b)) the preservation of the static equi- ;
o Tibrium position of the body (stider) in frictional contact with :;2
ﬁ; the moving foundation. When stick-slip oscillations occur, the ii
l! body does not stay in such an equilibrium position, although, at the _
- conclusion of the stick portion of each cycle, one would expect it to }45
;; be in a state very close to equilibrium. It is therefore natural to 5&
“ ask if such steady-sliding equilibrium positions exist, if they ;g
;? are unique and if they are dynamically stable. In an attempt to ?7f
_: answer these questions, the elastostatics problem corresponding to ?g
23 the steady-sliding configuration and an appropriate eigenvaiueproblem ;?
5 are formulated in the final sections of Chapter 3. There ¢ s provad ﬂé
:H tnat, {on sufficdently amall  coedfdlcdents o4 fmdction ov appled f;
> {0nces, tae steady-slading problem nas Locally uncaue Sclutions, Er
X o
"o




hd
K

rl

A
e

¥

VA

L"-‘ <

el
o -

.

The continuum mechanics problems formulated in Chapter 3 are
not easy to solve. The use of numerical techniques to obtain
approximate solutions will certainly be the only alternative available
to study the complex situations of interest. However, the number
of degrees-of-freedom required to produce acceptable finite-dimensional
models and the associated computational effort appear to be excessive
for the preliminary, essentially gualitative studies that are needed
to evaluate the interface laws adopted in Chapter 2. A simple mecnani-
cal system, not unlike many seen 1in friction experiments, that has
sufficient degrees-of-freedom to capture gqualitatively the dynamic
friction behavior observed experimentally at low speeds, is a simple
rigid body in plane motion. In Chapter 4, the same interface laws
adopted in the continuum case are also assumecd %t hold on *the contact
interface of the rigid becdy. The influence 2f various physical
and geometric parameters on the dynamic behavior of the rigid body
is studied in the same chapter. There it is shown that, {cs sufsccwent-

ly large coefiackents of {rection and  approptaadl vadals o

N
(';

ctnen parameters «nvolved, Steady-sdiding b Junamecaddy undiaodl.
Tne dynamic instabildity o4 steady-sdidaing equdlibrium {4 a Consequence
¢4 the Jdnherent non-symmetiy 04 the {wctdon contidbutions to tae
governing equations and Lt may occut even when fae osAlcdend 4
Rinetic 4rdcition s assumed to be equal to tne coeficcient & sEazes
jrecteon.  In the same chapter it is also numerically snown that., +.«
sufbecaently small drcvang veleedty, tangentiad stesdness  and  iampond

crecall Fig. 1.1.1) {@ne wistapedety o4 tne steady scadorg maw deadi oo
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Loew-4requency  stLch-8ip  oscadlatdions;  don sufdlclentlu  dange
duving vedocdty, ¢ 4fon sufsicdently Large tangentlad $E(34ness ox
dampang, "apparently smooth" sdiding mozions at avetrage appatent
valued 04 the coefidlcient cf hinetic friction smaller than the
static one can be cbsewed; and,agadn, all this may aappen when
the thue coeigicdent 0§ hinetdic 4fadction &5 equad to the coedsdcdents

o4 static {niction.

In Chapter 3, numerical techniques for the study of dynamic
friction phenomena are presented. Standard finite element methods
are used to obtain finite-dimensional approximations to the continuum
mechanics problems formulated in Chapter 3. The multivalued Coulomb
friction law is approximated by using a regularization technique.
[t is an immediate consequence of the theorems proved in Chapter
3 that the semi-discrete §inite-elament approximations o4 the regufat-
(zed dynamic 4{riction problems  convenge, dn  appropriately  weak
topologes, to the solutdion 04 the continuum non-regularized duynamic
firaicticn  problem, when the negulardization parameter tends o zew
and the dumensdon ¢4 the fLniie-element space tends to «nfindliy. Fyll
discretization of the governing equations 1is achieved by employing
techniques commonly wused 1in structural dynamics computations:
the Newmark method and the central-diffarence technique. The
same time-discretization techniques are also used in the computations
of Chapter 4 with the rigid-body models. I[n the final sections

of Chapter 5, various numerical examples demonstrate the feasibility

of the techniques proposed and show that nstabidety oA steadu
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8liding and stick-slip motions may also occur and be numerically

studied in the case of deformable bodies.

In Chapter 6, a summary and the major conclusions of this
work are presented. Suggestions for further research are also ad-
vanced. It has also been noted that the mathematical theory of
contact and friction with Coulomb's law of friction is incomplete
and unsatisfactory. The details of a mathematical theory of dynamic
friction have now been established, and these are discussed in
Chapter 4. There remains the study of open questions of existence
and uniqueness of solutions of the Signorini problem for elasto-
statics with friction and the associated mathematical details needed
to make such a theory complete and self consistent. Some particular
results that are not readily reduced from the dynamics theory of
Chapter 3 are developed in an Appendix to this report. In particular,
the Signorini problem of contact of an elastic body with friction
is resolved by special methods in this Appendix.

&

.
¥

sy

ﬁg Major contributions to this study are the following:
(i) A model of interface response for the study of dynamic
gi friction problems involving the dry contact of metallic
bodies;
h (ii) Formulation of dynamic contact problems and proof of
E existence and uniqueness of solutions to these problems;
(iii) Formulation of a steady sliding equilibrium problem and
! proof of existence and local uniqueness of the solution
to this problem;
g@ (iv) Numerical techniques and algorithms for the study of
5 dynamic friction problems;

(v) Numerical results and parametric studies on the stability

ok ]
a2’ s

of steady-sliding, on the occurrence of stick-slip oscil-
lations and on apparent reductions of the coefficient

of kinetic friction.
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CHAPTER 2
PHYSICAL ASPECTS OF DYNAMIC FRICTION
A MODEL OF INTERFACE BEHAVIOR

2.1 The classic laws of friction and the origin of frictional resist-

ance - A brief review

When two metallic bodies in contact are subjected to applied
forces which tend to produce relative sliding motion, friction
stresses develop on the interface that tend to oppose that motion.

In the following only the resultants of the stresses on

N

the contact surface will be considered: Lo oo the normal force

and ZT , the friction force. The metallic bodies are considered

~

i' essentially as rigid bodies with a well-defined tangential relative
velocity ZT . For consistency with wusual continuum mechanics
conventions employed later, a negative normal force En is associated
with the compression of the interface.

According to Moore [1975], the classic laws of friction,
as they evolved from early studies in the past centuries, are the
following:

(i) The friction force (at the onset of sliding and during

sliding} is proportional to the normal contact force,

15 151 (2.1.1)

The coefficient of proportionality, . , 1S known as the

coefficient of friction. Often two values of . are quoted:
‘i the coefficient of static friction, He o which applies to the
12
E
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ol onset of sliding and the coefficient of kinetic friction, + .,

5 which prevails during sliding motion.

! (i1) The coefficient of friction is independent of the

~ apparent area of contact.

N (iii) The static coefficient is greater than the kinetic

b coefficient.

Sg (iv) The coefficient of kinetic friction is independent
of the sliding velocity.

ﬁ Another important characteristic of the friction force

- is the following (Rabinowicz [1965]):

'..'i (v) When tangential motion occurs, the friction force

acts in the same direction of the relative velocity but in opposite

i sense,

. v

: .E.T= -ull] ﬁ (2.1.2)
The first two Tlaws, usually known as the Amontons Taws

! of friction, are generally observed to hold for gross motions

i of effectively rigid bodies. However, we notice that deviations

:' from the first law have been reported at various circumstances:

2 an increase of the coefficient of friction for light loads (Bowden

v

and Tabor [1964]), or an increase of friction for loads greater
g than a fairly well defined value which corresponds to the breaking
of the oxide films on the surface (Bowden and Tabor [1964]) or
S yet a decrease of the friction coefficient for very high loads

when the true area of contact approaches the magnitude of the

“y

»

i apparent area of contact and bulk plastic deformation of the bodies in

fe
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contact occurs (Bay and Wanheim [1976]).
The third and fourth laws deserve a more detailed discussion

since they are intimately associated with the occurrence of stick-

ol

slip and other friction-induced oscillations. That discussion

is postponed to Sections 2.2 and 2.3.

X5

According to Rabinowicz [1965], the fifth property above

. '-('1”4

has been essentially confirmed by experiment: for surfaces without

Lg

pronounced directional properties, the instantaneous friction

| A

force may fluctuate by a degree or so from its assigned dircction,

changing direction continucusly and in random fashion as sliding

EELEY

proceeds.

Detailed historical accounts and thorough discussions of

the theories proposed by early researchers to explain the origins

L

of frictional resistence can be found in the books of Bowden and
Tabor [1964], Dowson [1979] and Kragelskii {1965, 1982].

The adhesion-plowing theory of Bowden and Tabor (reviewed
in Bowden and Tabor [1950, 1964] and Tabor [1972, 1975, 1981])
has been the most widely accepted in recent decades among the

researchers of solid contact phenomena.

PONH | b= >3

In that theory, the interfacial friction between metallic

v
Ei bodies is attributed essentially to two causes: the foumation
! . and Aheaning of metallic jfunctions between tne surface aspernitdes
. ‘}? and the plastic defonmation 0§ the softern suniace by hard asperities.
i N As a consequence, the friction coefficient can be given as the
! I‘ sum of two components resulting from each of the above effects,
N
¢

»

LR, - \w\'.ﬂ'.-". .
‘\L\&{L\m\L‘L\L LlL\‘._*L‘ A AT AT I R O




PR

-

R

[

5

| ==

P XA
x

(2.1.3)

where T results from the adhesion (welding) and p results
from the plastic deformation (plowing).

According to Bowden and Tabor [1964], when two clean metal
bodies are put in contact, plastic flow at the tips of the asperities

and local welding between opposing asperities occur. The true

area of contact (Ar) is then proportional to the normal load,

15

s . s
» A - A

- .
e %% % % T le

L,

X
A= 11 1M (2.1.4) ‘.
Here H is the hardness of the softer of the contacting materials . "
Under plausible assumptions on the relative.strength of the interface ;:
and the undeformed material 1in the hinterland, it 1is shown that zi\
the adhesion component of the coefficient of friction is given .
by
o
Wy = T/H, (2.1.5) ;:
where t denotes the shear strength of the softer of the contacting :
materials. ;:
The Amontons Tlaws of friction are then verified: the friction tz
force 1is proportional to the normal load and independent of the T:
apparent area of contact. :g
o
For most materials, 1t is of the order of 0.2H so that, EE
for this simplified model, Uy = 0.2. However, for clean metals ‘}~
enormous values of u may be obtained and even for metals in ;
air U may be of the order unity. According to the same authors, E
this discrepancy can be overcome if the plastic jsunctica grewth (the E?
increase of true area of contact) due to combined normal and tangen-
b
S e S e R R
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tial loading of the asperities 1is considered. In the amended
theory the junction growth is restricted by the presence of weak

’ &l

e CtLy

contaminant layers on the interface so that in the end: for pe.
clean syrfaces of very ductile materials infinitely large values
of Ja are predicted; a very small amount of weakening of the
interface reduces ua to reasonable values of the order unity;
and for very weak (contaminated) surfaces, such as when a good
lubricant or a thin layer of a softer material is present, ua
is given again by an expression of the form (2.1.5) with 1 denoting
now the shear strength of the weak contaminant.

We wish to point out that this theory not only gives an
explanation for the Amontors laws of friction, but also allows
for interpretations of the other classic laws. Following arguments
of Rabinowicz [1951, 1965] the static friction 1is often greater
than the kinetic  because the strength of the junctions would
increase with the time of stationary contact (we will discuss
this point in Section 2.2.2); the weak dependence of the friction
force on the sliding velocity would be a consequence of the small
rate dependence of the strengths of most solids; the opposite
directions of friction and sliding velocity would be a consequence
of the isotropy of the plastically deforming material on the contact.

We also point out that all the theory is based on the prapor-

tionality A = 0 {c.f. (2.1.4}). Archard [1957] and Greenwnod

and Williamson [1966], among others, have shown that the assumption

of plastic deformation of the asperities is not essantial to obtain
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this proportionality. Consequently, the Amontons laws can also

be explained in a similar manner when the deformation of the asperi-

ties is elastic.

On the other hand, deviations from the proportional-

ity AL« 170l lead to deviations from the Amontons laws.

using,

The plowing

for example,

component (up) of the friction can be estimated

the simplified model of a hard conical asperity

grooving on a softer surface. It can be shown that, for the usually

small

stopes of the asperities, the plowing component of friction

is negligible unless the adhesion is small.

and its

several

and some

recent

Despite the

wide acceptance of the adhesion-plowing theory

effectiveness 1in explaining the basic laws of friction,

serious criticisms (e.g. Bikerman [1976]) have been offered

alternative theories have been proposed, especially in

years. These alternative theories have been developed

by authors who are especially concerned with the evolution 0§ the 4aic-

tlon fonce duning prolonged sliding and with the interaction  between

iniction and the wean damage ¢4 the surngaces. The mechanisms advanced

by these

new theories to explain the origin of friction involve

the interlocking effects of the roughness, adhesion effects, and

plastic deformation effects - plowing by hard asperities and entrapped

wear particles and deformation of the asperities and of the subsurface

layers

(see e.g.

Rigney and Hirth [1979], Heilmann and Rigney

(1981], Kuhlmann-Wilsdorf [1981], Suh and Sin [1981]).

2.2 Static and and kinetic friction. Stick-slip motion.

2.2.1

Introduction.

Historical Background.

-
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The distinction between the coeqiccdents o3  static  and
kinetic friction has been mentioned in the literature for centuries,
at least since the work of Euler [1750]. That distinction was
also a major topic of Coulomb's [1785] detailed experimental study.
Coulomb's work 1is, in addition, the first major reference dealing
with the (ncrease 04 the coefficlent 04 statdlc {riction witn Lncreas-
ing times of nepose (stationary contact before the initiation
of sliding). Indeed, for certain combinations of materials and
surface conditions, Coulomb observed distinctions between static
and kinetic friction, dependence of the kinetic friction on the
sliding velocity and dependence of the static friction on the
time of repose. However, jfon dry metal-to-metal {ntenjaces all
those distinctions on varndiations wene absent o negldig<ble.

Shortly after Coulomb's work, Vince [1785] also observed
that, for a variety of hard materials, the coefficient of kinetic
friction was independent of sliding speeds. Through the nineteenth
century , various authors confirmed the observations of Coulomb
for dry metallic intarfaces with regard to both the coefficients
of static and kinetic friction: Rennie [1829], Morin [1832-35],
Hirn [1854], Jenkin and Ewing [1877].

Other authors, however, had different views: Kimball [1877a,b]
and Conti [1875] proposed, on the basis of their experiments with
various dry or lubricated surfaces that, in general, the coefficient
of kinetic friction would be small and 1increasing with sliding

velocity at Jlow velocities, then at some velocity [(dependent on
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the materials and the normal pressure) it would achieve a maximum

after which it would decrease with the increase of speed. But
also, from Conti's experiments, it was clear that such variations
were smaller for the case of dry interfaces.

As noted by Kragelskii [1965], the early experiments on
kinetic friction were done at relatively small sliding speeds:
Coulomb did not exceed 2.5 m/s; Rennie, 2.56 m/s, Morin, 4 m/s
and Jenkin and Ewing 0.003 m/s. The application of dry friction
in the brakes of railway carriages prompted the study of frictional
sliding at higher velocities. For sliding speeds in the range

1 - 25 m/s, approximately, Poiree [1852], Bochet [1861] and Galton
[1878] observed decreases of the coefficient of friction with
the increase of sliding velocity, consistent with the results
of Kimball and Conti. For sufficiently high sliding speeds it
is thus clear that decreases of kinetic friction with increasing
speeds may indeed occur 1in the dry sliding of metallic bodies.
Kragelskii [1965, 1982] provides various practical formulae for
this situation and explains it as being the result of material
softening due to the high temperatures generated on the contact
neighborhood.

However, for the small velocity range that we are mostly
interested in, the situation is not so clear. Conflicting results
obtained with various 1lubrication conditions and the absence =of
a clear understanding or the distinction between dry and lubricated

sliding added much to the confusion established during the second
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- half of the past century on the velocity dependence of the coefficient
2 of friction. Unfortunately, the fundamental advances on the theory _'
E and applications of lubrication by the turn of the century (1880's !
> to 1910's - see Dowson [1979]) apparently were not accompanied {
:I‘H by corresponding advances on the knowledge of dry friction at '?
small velocities. -
< .
- Well into the twentieth century Bowden and Leben [1939] A
~ and Bowden and Tabor [1939], while studying the nature of kinetic :
! friction between dry metallic surfaces, observed that the friction i
.( force was not constant during sliding: typical saw-tooth stick-slip A
- oscillations occurred when the metals in contact were not similar; ‘
i large very irreqguiar but more slow fluctuations occurred when a
the surfaces in contact were of the same metal. -
: The need to eliminate or atenuate stick-slip motions in "
B various practical applications has originated the publication "\
! of a large number of studies on the subject during the past fifty ~
o years. These studies have provided most of the recent information
;‘\ on dry sliding friction at small speeds. The papers by Bell and :
- Burdekin [1969-70], Antoniou, Cameron and Gentle [1976], Richardson
% and Nolle [1976] and Oden and Martins [1985] provide surveys of
::, related aspects of the friction literature and additional references. '
% 't
Soon it was realized that the stick-slip motion was a relaxa-
tion oscillation which was influenced not only Dby the nature of h
“he surfaces 1in contact but alsc, in a fundamental manner, by E
i the dynamic properties stiffness, inertia, damping ...} of the i
1
I :
. ‘:
N
N
N e n e A G T L o N S e A e T T T T e
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k: experimental apparatus.
» In experiments carried out, using either especially designed
IE apparati or slightly modified machine tool tables and slideways,
i it has been observed that the amplitude of the stick-slip motion
;i: decreases when:
o (a) the driving velocity Up increases (see Fig. 2.2.1)
- :b)  the damping coefficient C increases (Brockley et al
. [1967])
"’,n
[ ] {c) the spring stiffness K increases (see Fig. 2.2.1)
}: \d) the mass M of the slider decreases (Kato and Matsubaya-
i sni [1970]).
i [t has also been observed that the frequency of the stick-slip
motion increases with the increase of the driving velocity and
Ej that the maximum value of this frequency approaches the undamped
” natural frequency of the system (Figs. 2.2.2 and 2.2.3) although
!! in some cases the oscillation stops at a level well below that
. natural frequency.
-
|- Kaidanovskii and Khaikin [1933] and Blok [1940] pointed
| F; out that such oscillations might occur if the friction force decreased
o when the sliding velocity increases, a condition that may lz2ad
S? to an overall negative damping in the sliding system. The dectease ¢4
the coefdicient o4 4riction with the <ncrease o4 sidlding velcocdty
&j according to some continuous or discontinuous law, has been thus
“ one of the most common assumptions in the studies of stick-slip
motion. The other major assumption used in the literature is the
5
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increase 0f the coefiicient of static grdiction with the time o4
stationany contact (Ishlinskii and Kragelskii [1944]). In Fig. 2.2.4,
we summarize scme of the most representative assumptions used

in the study of stick-slip oscillations.

At this point a question arises: if, as noted previously,
most early researchers of frictional sliding with dry metallic
bodies could not find significant dependence of the kinetic friction
on the sliding speed at small speeds, or significant dependence
of the static friction on the time of stationary contact, then
what are the additional experimental results that support the use

of such assumptions in the analyses of stick-slip motions?

2.2.2 Time dependence or rate dependence of the coefficient of static

friction.

Consider a slider resting on a surface with no macroscopic

sliding motion relative to the surface and the friction force

[t increasing at a constant rate o =1 T/[an until gross sliding
occurs. Under these conditions it can be observed that the value

ug of ¢ = ET/|Zn| at which the macroscopic sliding occurs increases

with the decrease of the rate (é) of application of the tangential
force (see Fig. 2.2.5). Observations of this kind can be done
in the course of stick-slip oscillations: smaller driving velocities
imply smaller rates of application of the tangential force and,
consequently, the friction force at the onset of sliding becomes

larger.

S TS e

25

0% ’ o '. ) ' . AP s - -r.\ . ) A e w-* " v A r . y-'( - } X
N OUD0. It IO R XY AP LY ) o 1) _OMQ.’. WS, .s.',')."‘:l. » ) !0 /) ,.hf.\.f. ,.t'.f, .




X
- A ]
2 Fs ]
% a
1
g t (lineor scale) h
(I) variation 01’-_.S with time of stationary contact (ts), “Far &
0 surveyv of the various analytical expressions used in the literature
) see Richardson and Nolle [1976]).
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- Figura 2.2.4. Models of the variation of tha frictian coefficient H
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!! Fiqure 2.2.5. Rate dependence of the static coefficient of friction. i3
Sy and S, are the points at which gross sliding initi- by

J

3
P

ates; wl and 95 are the rates of increase of the tangen-
tial force coefficients 2 and 993 tsl and tsZ area the :§
1 and usZ are the static

L=

times of stationary contact; He

coefficients of friction. .
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As seen in Fig. 2.2.5, smaller rates ¢ correspond also
to larger times of stationary contact (ts). This led to the classical
statement: the coefficient of static friction (u S) increases with
the time of stationary contact (ts). And this also led to a physical
interpretation analogous to the one used to explain coefficients
of static friction larger than coefficients of kinetic friction
(recall Section 2.1): the strength of the contact junctions would
increase with the time of stationary contact. Expressions proposed
by several authors for this “tfme dependence of the coefficient
of static friction" can be found in a survey paper by Richardson
and Nolle [1976] and have been used in the analysis of stick-slip
motions. See also Brockley and Davis [1968] and Kato and Matsubayashi
[1970] for specific mechanisms proposed to explain the contact
strengthening.

However, the experimental work of several authors suggests
that these interpretations were not correct.

Simkins [1967] carried out experiments to observe the micro-
displacements of a slider before gross-sliding. He found that
higher rates of loading inevitably led to macroscopic sliding
at lower force levels. However, in other experiments designed
to assess the influence of the time of stationary contact on the
value of the static coefficient of friction, he could not find
any correlation between the time of stationary contact and the
value obtained for that coefficient.

Johannes, Green and Brockley [1973] (working with lubricated

28
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surfaces) and Richardson and Nolle 1976 (with "quite dry but not
grease free'surfaces ) carried out expertments in such a manner that
they could vary independently the rate of application of the tangen-
tial force and the time of stationary contact. In those circumstances

they found that the goveanding vardable was the 1ate ¢ 4ncrease

04 the tangential 4{once and not the tame 04§ stationary contact.

1

The dependence of Ls on é obtained by Richardson and
Nolle is such that, 4orn sugfdiciently small foad nates, tne coejficient
0§ Astatic griction (s constant and equal to a value which 4s the
wsually quoted coefficient 04 static friction. Fon Lange {eadang
nates the coefficient of 4static friction tends to be constant
and equal to a value which s wsually interpreted as the coefddicient
04 kRinetic griction, although comparative measurements have rarely

been made.

As a consequence of their observations, Richardson and

Nolle [1976] suggest that empirical expressions of .. as a function

of ts should be recast as ug 3s 2 function of 5 . Although
such a program appears feasible, the implications of those experiment-
al findings are more profound than that solution suggests: if
the coefficient of static friction is not affected by the time
of stationary contact, all the classical interpretations 1in terms
of an increase of the strength of the junctions with time will
no longer be valid. What 1is then the mechanism responsible for

the "rate dependence" of the static friction? Although it has

been suggested (Bhushan [1980]) that the strain rate dependence

O (S 2 S X i3 e s O L) = -
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- of the metal strengths should be taken into account in this context,

-

Qf to our knowledge no detailed explanation has been advanced and

the whole subject appears to be far from settled (in this respect

|

see also Tudor and Bo [1982]).

2.2.3. The steady -state coefficient of kinetic friction.

=

For hard on soft metal combinations (steel on indium and

ﬁ

ﬁj steel on lead) coefficients of friction increasing with sliding
X velocity in the ranges 10710 o 1074 en/s and 10710 to 1078 cmys,
I“.‘

- respectively, were obtained by Burwell and Rabinowicz [1953].

These increasing portions of the - Vo curves are attributed

Ly

by Rabinowicz [1965], Kragelskii [1965] and Tolstoi [1967] to

the creep deformation of the interface asperities. Burwell and

A

Rabinowicz [1953] point out that, for harder metals, such as aluminum

copper, steel, etc., it 1is probable that an initial increasing

(4 [ 4 '“l

branch of the u - vy curve also exists. The difficulty to provide

additional experimental evidence of this, at velocities of the

v

o order 10'9 cm/s, 1is obviously extraordinary. In any case, since
\
fb those velocities are so small, it can be concluded, following

Bowden and Tabor [1964],that the frictional behavion of ondinary engd-

Yy |

neering metals at nrcom temperature s neasonably well explained

o tenms o4 thedn plastic propenties without JLntroducdng the pant

| T o

played by creep.

s ety A
A

On the other hand, despite the frequent allusions to coeffi-

cients of friction decreasing with sliding velocity, most of the

.
i‘ experimental steady-sliding results of that type available in
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2 the literature apply to lubricated surfaces. A reason for this, .
" ]
) in addition to the obvious importance of the 1lubricated case, ]

is the difficulty in obtaining, with dry metallic interfaces and

228
X

most of the experimental apparati, a smooth steady-sliding (without

stick-slip oscillations) at low sliding speeds (Heyman, Rabinowicz k

S5
-

and Rightmire [1955]). Despite these difficulties some steady-state

decreasing friction-velocity curves are reported in the works y

e

of Rabinowicz {1965] (a small negative slope for titanium on titanium .

. -7
in the range 10 to 102 cm/s, larger slopes for steel on steel

B

in the range 10-3 to 102 cm/s), Bell and Burdekin [1969-70b] (cast-

O
R 5
N iron on cast-iron for speeds smalier than 2.54 cm/s down to a non- "
D
specified speed). For the same hard on soft metal combinations .‘

o

{

mentioned above, but for larger speeds (> 10-3 cm/s), Burwell and

Byt

:)_': Rabinowicz [1953] also obtained w Vi decreasing curves. In another E
* paper, Heyman, Rabinowicz and Rightmire [1955] <concluded that :
the limited data obtained by them at that time suggested that, ’

* for most metals, the coefficient of friction was affected very (3
::E: little as the speed varied in the range 107 to 10'6 cm/s. Rabinowicz 5
- [1965] states that for hard metal combinations decreasing uovT ’E
‘Cﬁ curves are typically found but he emphasizes the smallness of ‘C
C!’ the slopes of those curves when u is plotted against the logarithm :;
SS of the speed. 3

[ o ol
if oF 3
ety

2.2.4. The coefficient of kinetic friction during the slip phase

of stick-slip motions.
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i Whatever the steady-state friction-velocity curve 1is or
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. is believed to be, it soon became clear that during the slip portion

L of the stick-slip cycles the friction force would not follow the

path predicted by such a curve. Instead, experimental results

?I

show that the friction force follows a loop - the friction force

during the acceleration portion of the sliding is in general distinct

Eah

from the friction force during the deceleration.

» .
N Unfortunately, the various experimental observations of
.

these cycles are not conclusive: different material combinations
A
;; and different experimental apparati originate loops with distinct

shapes and orientations (Sampson et al [1943], Hunt et al [1965],

‘.' (AN

Bell and Burdekin [1969-70], Antoniou et al ([1976] and, even for

the same materials and the same experimental apparatus, changes

.

on the driving velocity or dynamic properties of the apparatus

affect radically the resulting loops (see the experimental results

R

A

of Bell and Burdekin [1969-70] reproduced in Fig. 2.2.6).

Those experimental observations, particularly those in

s

Fig. 2.2.6, suggest that the friction-velocity plots obtained
in the course of stick-slip motions are not an intrinsic property

of the surfaces in contact - they are greatly affected by all

A

the dynamic variables involved in each particular experimental

set up.

Eae)
.

B

x

Rathen than assume a simplified relationship between the

friction fonce and the s€iding velocity, from which the experimental
- evidence will deviate often, an acceptable thecny o4 stich-slip

" 4 motion will have Lo expladn, in a unified manner, the complex

nelationsnip between the 4riction 4orce and the s&iding velocdiy
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and  adse  ctaen  4qactons  tnat are assocdated wdth the stdch-sldp

E: nofeon (e.g. the rate dependence of the static friction).
-! 2.2.5. Memory-dependent friction.
- Some authors have attempted to give unified interpretations
{' of various phenomena observed at low sliding speeds on the basis
}-j ~f friction laws that allow for a dependence of the friction stresses ;
w7 on the previous sliding history. ';
ﬁ Various experimental observations with metals suggestad 5
to Rabinowicz [1958] that the friction force would be determined ‘
; not only by the instantaneous sliding conditions but by the sliding -
' history of a preceeding critical distance (of the order 1073 ¢m :.-
‘ for various metallic surfaces). This critical distance concept |
- was employed by the same author with the purpose of: explaining :
:: clockwise Tloops described by the friction force during the sliiding :
. portion of stick-slip cycles; correlating the steady-state friction p
o -sliding speed curves [uK = uK(vT)] with the static friction-time ':f\
::j‘ of stationary contact curves [”s = Js(ts)]; explaining the transition :
~ from stick-slip motion to smooth steady-sliding. g
:: Although Rabinowicz [1958] provided some promising comparisons
t between the predictions of his model and experimental results, .
§ the absence of a detailed analytical or numerical study on the 3
) behaviors predicted by his model precludes z -efinitive conclusion 5
:;f on its validity. Furthermore, experimental results published h
. after Rabinowicz's paper raise some new difficulties: How to explain
. the counterclockwise loops of the friction coefficient observed ~
:::: ,
- ;

ll .
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by Antoniou et al. [1976]? How to surmount the questions raised

(recall Section 2.2.2) on the validity of the major physical basis
for Rabinowicz's correlation between the us(ts) and “K<VT) curves,
i.e., the increase of the strength of the junctions with the time

of contact?

More elaborate models which also take into account memory
effects 1in frictional phenomena, have been advanced in recent
years by Ruina [1980, 1983], Rice and Ruina [1983]. Gu et al. [1983]
and some promising results and simulations of geological fault
slip phenomena based on these models have been presented (Tse
and Rice [1984]). A brief summary and discussion of this current
field of research can be found in Oden and Martins [1985]. To
our knowledge, an experimental study on the applicability of these

models to metal surfaces has not been done yet.

2.3. The importance of the normal degree of freedom in sliding

friction.

Substantially different ideas were advanced mainly by some
Russian authors: initially Kudinov [1958] for 1lubricated contacts
and later Tolstoi [1967] for dry contacts. Tolstoi observed that
the forward movements of a slider during stick-slip motion occur
in strict syncronism with upward normal jumps (Fig. 2.3.1). Observed
decreases of friction during the sliding portions of the stick-slip
motion might be thus the result of a decrease of the average normal

contact force during the sliding and jumping, without the need

35
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.- to consider any reduction on the real coefficient of friction.

More detailed observation of these upward jumps revealed that, while

sliding, the body undergoes a normal oscillation, the frequency of

228

which (of the order of 103 Hz) is consistent with the normal interface

E‘ stiffness properties (Fig. 2.3.2).
We note that several authors have also done observations
T
.
yﬁ analogous to these. In their early study Bowden and Tabor [1939]

measured the interface electrical conductance during stick-slip

[ A=

motion and observed a marked fall of electrical conductance during

the slip phase of the motion (see Figs. 9a and 9b, Plate 26, op.

- cit.). More detailed analysis also revealed that during those
i‘ slips the conductance actually oscillated very rapidly with frequen-

cies of the order 105 Hz (see Fig. 1Ca, Plate 26, op. cit.).
ig These changes in conductance are attributed by those authors to
) corresponding changes in the true area of contact and this indeed
!! suggests the occurence of normal oscillations of the type observed
y by Tolstoi and co-workers. Of course, for clearly distinct experimen-
5: tal apparati, contact geometries and loads, the frequencies observed
- are also very different. Sharp decreases of electrical conductance
:i during the slip phase of (lubricated) stick-slip motions can also
Q: be found in the work of Johannes et al [1973]. Direct measurements
v

of the separation of unlubricated and lubricated surfaces during

stick-slip motion were also done by Bo and Pavelescu (1982] and

2

by Tudor and Bo [1982], respectively. Other experimental evidence,

although less conclusive, of the influence of the normal degree

Yhy
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of freedom on stick-slip motions was presented by Antoniou, Cameron
and Gentle [1976] and by Elder and Eiss [1969].

Specially important was the experimental observation by
Tolstoi that external damping of the normal free microvibrations
of a slider could eliminate the decrease of friction force with
the increase of sliding velocity. No quantitative distinction
between static and kinetic friction could be observed in those
circumstances. Furthermore, when normal damping was introduced,
with no change on the driving velocity, during a run that showed
stick-slip oscillatiuns, it was observed that the oscillations
ceased and that the value of the coefficient of friction for the
subsequent smooth sliding was even greater than the maximum values
obtained at the end of the stick pericds of the stick-slip motion.
The responsibility of the freedom of normal displacement for both
the falling ZT - vq relation and the stick-slip motion was corrobo-
rated in another manner: sufficiently heavy tangential damping
alone could indeed suppress the stick-slip oscillations but it

-
failed to affect the negative slope of the LT - v curve.

From these (and other) observations Tolstoi concludes that
osciilations normal to the contact surface play a key role in

both “"static" and "kinetic" friction.

With respect to static {rniction, apparent reductions of the
measurable static coefficient at any rate of application of the

tangential force, would be the result of microseisms of amplitudes

0.1 to 10 ym commonly observed on the earth crust (cf. Coulomb
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[1956]).

Sl N

N

With respect to Rinetdic 4ndiction, Tolstoi and  co-workers
have proposed the following mechanisms to explain apparent coeffi-

cients of kinetic friction lower than the static one:

.d"
e
- (1) Asymmetny of nonmal contact oscillations (Tolstoi [1967])
§: - An increase in the speed of the slider increases upward components
< of the impulses exerted on the slider asperities as they collide
ﬁ with those of the underlying surface; this increases the amplitude
of the normal natural vibrations of the slider which are governed
f’:\ by the contact stiffness and mass of the slider; due to the nonlinear-
.. ity of the normal force-penetration relationship (see Section
. 2.4), the normal vibrations of the slider are highly asymmetric
and, consequently, an increase of the amplitude of the oscillation
o decreases the mean Jlevel of penetration during sliding; hence,
! the average area of contact decreases and, as a result, the friction
" force also decreases. This mechanism provides thus an explanation
5_. for apparent decreases of hinetic §riction with increasing Aliding
) speeds.
-
"\': (II) High-f§requency stick-sLip motions (Budanov, Kudinov  and
~, Tolstoi [1980]) - Oscillations in normal contact force induce
& similar oscillations on the maximum instantaneously available
S friction force so that during each cycle of normal oscillation

the slider will alternately stick and slide; since the frequency

of the normal oscillation 1is high, its amplitude small and the

w

average sliding velocity of the body also small, the motion of
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the body will be recorded as an apparently smooth sliding; furthermore
the ratio between friction and normal force for tne short periods
of sticking 1is smaller than the coefficient of static friction,
so that, in average, an apparent coefficient of kinetic friction
results which is smaller than the true static one; also, for larger
average sliding speeds, the average time of stick of the successive
stick-slip cycles will be smaller, so that the average apparent coef-

ficlent of griction will increase with the average s€iding velocdty.

As might be expected, the influence of normal oscillations
on friction phenomena is not exclusive of the stick-slip motion,
For various experimental observations on this respect we refer
to the works of Tolstoi [1967], Godfrey [1967], Lenkiewicz [1969],
Soom and Kim [1983a, b] and Aronov et al [1983, 1984].

The experimental evidence collected in this section leads
us to the conclusion that an appropriate model {on s&iding 4niction

must 4nconporate physically nreasonable nowmal contact  interdace

conditions.
The stiffness properties of compressed metallic surfaces

are summarized in the next section.

2.4, The normal stiffness of metallic interfaces.

Theoretical models and experimental results for the normal

deformability of rough metallic surfaces are available 1in the

literature. For the theoretical developments we refer to the

survey papers of Archard ([1974], Thomas [1975] and Whitehouse

.
-
.

oY
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(1980]. More recent references are the papers by Greenwood [1984]
and by Greenwood, Johnson and Matsubara [1984]. For the experimental
work we refer to the survey papers of Back, Burdekin and Cowley
(1973] and Woo and Thomas [1980].

The more elaborate theoretical models are based on a statisti-
cal description of the surface topography and incorporate suitable
assumptions on the mechanical behavior of the interface asperities:
elastic, plastic, elasto-plastic, work-hardening, etc.

Comparing the predictions of the theoretical models with
the available experimental results, some broad conclusions on the
behavior of quasistatically compressed metallic surfaces can be
drawn. We summarize them as follows (for additional details see

Oden and Martins [1985]):

On the mode of deformation of metal surnfaces:

(i) The essential factors affecting the mode of deformation
of a rough surface are the material properties and the surface
finish. The normal load is expected to have little effect on
the mode of deformation of the surface.

(i1) For most engineering materials and surface finishes,
the initial contact of the surfaces is expected to be plastic
even at light loads.

(iii) The repeated loading-unloading-reloading of the metal
surfaces, as in normal sliding or in metallurgical polishing,
produces changes 1in the shape of the asperities, which lead to

a subsequent elastic deformation, provided that severe wear is
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prevented during the process of sliding.

On the stiffness of compressed nough surfaces:

{(iv) At small penetrating approaches (large separations)
the stiffness of rough surfaces becomes vanishingly small.

(v) The stiffness of a surface is inversely proportional
to its roughness.

(vi) The normal load increases roughly as an exponential
function of the penetrating approach (the separation decreases
proportionally to the increase of the logarithm of the load).

(vii) For 1light loads, because of (iv), the normal load
is closely proportional to a power, in the range 1/0.5 to 1/0.3,

of the penetrating approach.

Andrew, Cockburn and Waring [1967-68] studied the dynamic
response of the annular interfaces of several mild steel discs
compressed together with some preload when subjected to a normal
harmonic force. They observed that the interface normal stiffness
depended Tlinearly on the normal preload, which is consistent with
(vi) above. This and other more qualitative information collected
in Oden and Martins [1985] suggests that the normal stiffness
properties summarized above also hold in dynamic situations which
do not involve significant sliding. The experimental observations

of Tolstoi and co-workers mentioned earlier also suggest that

the same happens for situations involving frictional sliding.
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2.5. A model of interface response

The interface between contacting bodies is a hypothetical
medium of vanishing thickness, the mechanical response of which
depends upon the various geometrical and physical properties of
the surfaces 1in contact. For the class of problems addressed here,
we wish to characterize the response of such an interface to normal
and tangential deformations in a way consistent with the experimental
observations summarized above.

Consider a continuous material body B, in contact with
another material body B1 over a contact surface reCs B . The contact
surface FC represents the boundary of the parent bulk material
of which the body B is composed. One can regard it as parallel
to a surface representing the average surface heignt of the asperities
of the physical body B. We suppose that T¢ has a well defined
exterior normal vector n.

For simplicity of presentation, but with easy generalization,
we assume that the body B1 is rigid and ideally flat. In the
spirit of Fig. 1.1.1(b), we also assume that the body Bl does not
move on the direction of n, but that it can move with some prescribed
velocity Q% parallel to Te-

We suppose that the actual interface (asperities, oxide
film, adsorbed gas, work-hardened material, etc.) is initially
of thickness Ly as shown in Fig. 2.5.1. The initial gap g between
8 and B1 is defined as the distance, along the direction of the

normal vector n , between the highest asperities of the body B

44
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;\ and the flat surface of B1 in the reference (undeformed) configura-
s i i
tion. The interface thickness after deformation is denoted by
3 t in Fig. 2.5.1 and the actual displacement of Ic in the direction
ofg is ug =u-on. Thus, the approach of the material contact
E_’E surfaces is
O - - = -
,‘k a = to t (un g)+ (2.5.1)
1!
. where (.)_ = max{0,-}
.p . . L .
& On the other hand, if Up = U - un denotes the tangential
A velocity of the points on FC , then the relative sliding velocity
@ between bodies B and B1 is equal to QT - OT . Here (°') denotes
partial differentiation with respect to time 52— (.

Oenoting by g, and g7 the normal and tangential (frictional)

stresses on e respectively, the constitutive relations for the

v
.
PSS

3

interface adopted here are the following:

Normal interface response

il

m, [
% -0, = ¢alup-9),] ~ * o [u -g). T " uj (2.5.2)
h
A
Friction conditions

™
= Upsg = op = 0 3

(Hoise[(u -g) ]mT
'-\: “‘T T n g +
N
~ and M. e L (2.5.3)
‘ u>g > § [gpl<crllu-9), ] " = up-Up = Q
. and m
‘t. o T 3 N . .C .

Clort = eqllug-9), 1 => 3020, up-ly = Aog
oo . A
i Here Cn’ mn, bn’ in Cr» My are material parameters characterizing
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“l the interface and are to be determined experimentally. E;
;2 The following remarks provide an explanation and interpreta- Ed
'. tion of these relations: é
22

1. The interface constitutive equation (2.5.2) combines a
ﬁ; nonlinear power-law elastic contribution, °i='cn[(“n-g)+]mn, Wi th g
i a nonlinear dissipative component given by (3:=-bn[(un-g)+] “nan.
é? We incorporate these nonlinear boundary effects in our model instead
. of a classical non-penetration unilateral contact condition because:
i; (i) For metallic bodies the deformation of the contact
o interface may be of an order of magnitude comparable with the
B: bulk Tlinear elastic deformation of the contacting bodies (Back,
'i Burdekin and Cowley [1974], Villanueva-Leal and Hinduja ([1984]).

(i) The experimental results of Andrew, Cockburn and Waring

[1967-68] (Section 2.4) and those of Tolstoi and other authors

r ?"k‘) 41

(Section 2.3) strongly suggest that physically reasonable normal

contact conditions have to be used in dynamic problems.

e |

-8

2. The form of the nonlinearly elastic contribution “n

E.‘!l’"

is consistent with the experimental observations outlined earlier

for the case of interfaces subjected to low nominal pressures

=4

(l Gnl < 5 MPa) characteristic of sliding interfaces (recall (iv)

g =1

and (vii) in Section 2.4):

dc
- a) % =0 (a=(u_-g),)
- da ‘530 not
: m
) b) -:ﬁ xa " with 2% m € 3.33.

-
2)

r

Tables with experimental values of the constants cn and

¥
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S" m, for several combinations of materials and surface finishes
= can be found in Back, Burdekin and Cowley [1973]. Finite element
? computations of static contact problems using such power-law normal
interface constitutive equations have been done earlier by Back,
'E Burdekin and Cowley (1974] and Villanueva-leal and Hinduja [1984].
3. The nonlinear dissipative term Or? is designed to model,
@ only in an approximate manner, the hysteresis loops that result
% from the actual elasto-plastic behavior of the interface asperities.
Indeed, the constitutive equation (2.5.2) allows for the approximation
;: of loading paths of the form presented in Fig. 2.5.2(a) by loops
of the form in Fig. 2.5.2(b). Thornley et al [1965] obtained
i experimentally loops of the type depicted in Fig. 2.5.2(a) when
. the surfaces were allowed to unload completely, that is to say,
»'; when some, even small, tangential reorientation of the surfaces
was allowed. The idea of a similar approximation was proposed
! by Hunt and Crossley ({1975] for vibroimpact phenomena involving
e macroscopic Hertzian contacts. For small energy losses, the correla-
~ tion between the damping coefficient bn and the energy loss per
EE cycle of contact is readily obtainable (Hunt and Crossley [1975]).
YR
. 4, The friction law (2.5.3) is a slightly generalized
; ;.. local form of the classical dry friction laws (recall 2.1.1, 2).

That law allows for possible deviations from the Amontons laws

’)

v A

(recall Section 2.1), i.e., a possible dependence of the coefficient

ﬁ of friction (Y¥) on the normal stress according to
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“On “n
(a) (b)
Figure 2.5.2. Hysteresis Toops for the normal deformation of the

interface (schematic). (a) Experimentally observed
Toop, under quasi-static loading conditions.

(b) Hysteresis loop modelled by the constitutive aqua-
tion (2.5.2) under dynamic loading conditions.
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Qa
1 = ? l i = - -
v Clo I with o me/m -1 and C = cp/c

1f the normal dissipative effects are negligible (bn = 0). If

My = my (and again b, = 0) the usual Coulomb's law of friction is re-

covered with u= C¢/Cy

5. In using the friction law (2.5.3) we assume that there

exists no distinction between coefficients of static and kinetic

50

friction and no variation of the latter with the sliding speed.

This means that creep or thermal softening effects will not be
taken into account in the present study. We do these assumptions
because:

(i) The experimental observations of Tolstoi and co-workers
summarized in Section 2.3 clearly suggest that at small sliding
speeds those distinctions or variations are not intrinsic properties
of the interfaces.

(ii) Occurrence of friction-induced oscillations even for

sliding speeds in regions where the slope of the L -Vo Ccurve is

T
positive have already been observed ( Yokoi and Nakai (19791).
Furthermore, instability of steady-sliding and occurrence of self-
excited oscillations with some systems that have two or more degrees-
of-freedom and particular geometric configurations have been explained
without recourse to the classical assumption of a decreasing 4eVr
curve (Shobert [1957], Spurr [1961-62], Jarvis [1963-64], Earles
and Llee ([1976], €farles and Badi [1984], Aronov et al [1984])

We wish thus to study now much of the frictional behaviors

observed at low speeds can be explained and numerically simulated
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"
::# without those classical assumptions.
2
6. Dissipative effects on a metallic interface are associated
N with plastic deformation of the interface asperities. Cf course,
such plastic deformation involves both tangential and normal motions
:L‘. coupled in a complex manner (recall Section 2.1) which we cannot
C" expect to reproduce in detail with the dissipative terms in (2.5.2,
5;: 3). Related to this is also the fact that the friction law (2.5.3)
* does not take into account preliminary (plastic) tangential micro-
i displacements known to .occur before gross-sliding (Courtney-Pratt
__\S and Eisner [1957]). We believe however that these approximations
~ are acceptable because we are not interested in studying the details
i of small quasistatic evolutions of the bodies involived, but rather
gross motions and oscillations for which the major contributions
2 of the interface are its nonlinear elasticity and its tangential
frictional dissipation, with a comparatively much smaller contribution
! of the normal dissipation. In this context we remark that in
" all the calculations done by Tolstoi and co-workers to analyze
:::: their experimental results, only the two major contributions mentioned
- above were taken into account, although, of course, those authors
; were perfectly aware of the existence of the normal dissipation.
“ 7. The constitutive assumptions (2.5.2, 3) are not completely
consistent with some aspects of the work of Tolstoi and co-workers: .
(i) The nonlinearly elastic contribution in (2.5.2) is A
. not of the form experimentally observed by those authors for the :.:.
. surfaces and loads they worked with, but it can be shown (see :
~
- R
' .
S
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}: Martins and Oden ({1986)]) that, within the range of validity of

e our model, (2.5.2) leads to normal microvibrations with frequencies

!! close to those considered by Tolstoi as typical: 103Hz.

N (i1) In thein wonk, these authons did not propose a  detesmi-

fi& STl constitutive Ldaw 4or drudctional s€iding. Instead they posty-

) lated a time -averaged behavior consistent with their observations

:; and the asymmetry mechanism (l) in Section 2.3. Our phenomenolcogical El{
- law (2.5.3) 1is not consistent with that mechanism (see Martins Eé‘
;i and Oden [1986]). However (see Chapter 4), we will be able to o]

- model their high-frequency stick-slip mechanism (II} and also
other effects that are attributed by those authors to their mechanism

(I).

8. Finally, we observe that no time or rate dependence {{;

%: of the static friction are considered with the law (2.5.3). Conse- :i-
'

quences of this on our results will be analyzed and, much in the -

!! spirit of Tolstoi's ideas on the apparent reductions of static gt
o

A friction, a preliminary study on the effect of external perturbations :%
~ 4 a
“ on the measurable static friction will be done in Chapter 4. fL:
Gy’
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CHAPTER 3
CONTINUUM MECHANICS MODELS

3.1 Preliminary remarks. Orientation.

In Chapter 1 we observed that no general theory of existence
is available to date for continuum mechanics problems involving
the unilateral (non-compliant) dynamic contact of deformable bodies,
even in the frictionless case. Furthermore, in finite-dimensional
situations, examples of non-existence and non-uniqueness of solutions
are known for both frictionless and frictional cases (see, e.g.,
Schatzman [1978], Carriero and Pascali [1980], Lotstedt ([1984]
and Jean and Pratt [1985]). Sufficient conditions for existence
and/or uniqueness in finite dimensional problems have been proved
for frictionless situations by Schatzman [1978], Carriero and
Pascali [1980, 1982], L&tstedt [1982], Buttazo and Percivale [1981,
1983], Degiovani [1984], Percivale [1985], and for frictional
situations by LOtstedt [1984] and Jean and Pratt [1985]. For
the reasons indicated in Chapter 1, easy extensions of these results
to infinite dimensions have not been possible. However, several
works have been published that provide important results for particu-
lar cases or related problems: the unilateral contact of strings
with continuous or discrete obstacles (Amerio and Prouse [1975],
Amerio [1976, 1977], Citrini [197%a, 1975b, 1977], Schatzman [1980a,
1980b], Bamberger and Schatzman [1983], Burridge et al [1982]),

a wave problem in a half-space with a wunilateral constraint at
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the boundary (lebeau and Schatzman [1984]) and, recently, the

2 AR

unilateral contact of an axially deforming rod with an obstacle

at one of its ends (Schatzman and Bercovier [1985]); and the important

r=a

work of Duvaut and Lions [1976] on dynamic or quasistatic evolution

problems involving linearly elastic or viscoelastic bodies subjected

i,
\X
13
v
~3
hat
A4
N
"
)
Xy
]
1y

w5

to Coulomb's friction on a part of the boundary where the normal

L of

(2% 'ﬂ'f

stresses are prescribed.

It is our objective in Sections 3.2 to 3.4 to formulate

B

dynamic problems in continuum mechanics involving the contact

interface laws adopted in Chapter 2 and to show that these problems

W do have a unique solution. In Section 3.2, we present formal

ii statements of the problems to be studied. In Section 3.3 we establish

the variational statements which govern a class of dynamic friction-

3; less contact problems involving linearly elastic bodies and a
’ class of dynamic frictional contact problems involving linearly Q
!! viscoelastic bodies. In Section 3.4 we prove the existence and ;
. uniqueness of solutions for these classes of problems. ?
é: The techniques used in the proofs are now classical: Faedo-
- Galerkin approximations, regularization technique, compactness N

;3 and monotonicity arguments. Indeed, in the frictionless case,

we encounter a second order hyperbolic semilinear differential

iﬁ equation, the essential distinguishing feature relatively to other
gg equations treated 1in the 1literature (e.g., Lions [1969], Reed :f
= [1976]) being the fact that the nonlinearity arises on the boundary. Eg
R Y

The existence proof given here employs essentially the strategy

s,
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of the proof of Theorem 1.l in Lions [1969, pp. 8-14]. When friction
is taken 1into account, we are led to a variational inequality
which 1is similar in several respects to those studied earlier
by Ouvaut and Lions [1976]. Here we extend their results to a
case in which the normal and frictional stresses on the contact

boundary depend nonlinearly on the normal interface deformation.

In Sections 3.5 to 3.7 we study a steady-sliding problem
in elastostatics, again with the interface laws of Chapter 2 holding
on the contact boundary. With the applied forces and the (non-zero)
driving velocity (recall Fig. 1.1.1(b)) both given independent
of time, the steady-siiding positions are the singular points
for the autonomous case of the dynamic friction problem studied
in Sections 3.2 to 3.4.

The static friction problem that has received most attention
in the mathematics and continuum mechanics literature is the Signorini
problem with friction. In both the Signorini and the steady-sliding
problems the actual contact surface is unknown a priori. But,
while in the Signorini problem the actual regions of stick and
slip and the direction of the tangential stresses are also unknown,
in the steady-sliding problem it is a priori known that all the
contact region must be sliding and that the direction of the tangen-
tial stresses must be opposite to the known direction of relative
sliding.

The question of the existence of solutions to the general

Signorini problem with friction was put forth as an open problem
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by Duvaut and Lions [1976]. Duvaut [1982] pointed out that a
mollification of the contact pressure would provide sufficient
reqularity for the establishment of existence of solutions to
Signorini-type problems, and this led to several studies of non-local
friction laws and the establishment of a mathematical theory for
these problems: Demkowicz and Oden [1982], Oden and Pires [1983],
Pires {1982], Pires and Oden ([1983]. Recently, Nedas, JaruSek
and Haslinger [1980] and JaruSek [1983] have shown that even without
mollification and without the regularity needed to write a variational
statement, existence of solutions to Signorini's problems with
friction could also be proved. In all the developments, uniqueness
of solutions has been proved only for sufficiently small coefficients
of friction.

In Section 3.5 a formal statement of the steady-sliding
problem is presented and in Section 3.6 the equivalence between
classical and variational statements of the problem 1is proved.
The existence and uniqueness of solutions to the problem are studied
in Section 3.7. There, both existence and uniqueness are proved
only for sufficiently small data: small appiied forces or small
coefficients of friction.

The technigue used in the proof of existence for the steady-
sliding problem is similar to the one used by Oden and Pires [1983]
to prove existence of solution to a Signorini problem with non-local
friction. Both proofs are based on some version of the Schauder

fixed point theorem: if T is a compact mapping of a nonempty closed

56
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bounded convex set K of a Banach space V into itself then T has
a fixed point in K . The essential difference is that in Oden
and Pires [1983] the compactness of T results from the compactness
of a smoothing operator used in the non-local friction law adopted,
while here the compactness of T results from the compactness of

the trace operator.

Finally, in Section 3.8 an eigenvalue problem is formulated

which 1is intended to give information on the stability of the

B S B 2 B O OB

small (formally) 1linearized oscillations of the body about the

steady-s1iding equilibrium position.

’,

3.2. Fformal statement of the dynamic contact problems.

|

let @ C RN(N = 2 or 3) be an open bounded domain representing

the interior of the body. The sufficiently smooth (e.g. Liaschitz

continuous) boundary T of Q contains three open subsets FD, FF

and T. (see Fig. 3.2.1) such that,

C

28

r=\&)ra ,ranBw if a #8

FE

meas (Fa - ra) =0

w8 € {0,F,C} .

b

Points (particles) in Q with cartesian coordinates X,

| B2

1ls igN, relative to a fixed coordinate frame are denoted by 5(=(x1,X2,

.,xN)) and the volume measure by dx. Points on I' with cartesian

s

coordinates Si 1gigN, relative to the same coordinate frame,

'r_
~

are denoted by s and the surface measure by ds.

b

it
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Figure 3.2.1. Geometry and notation for the continuum mechanics models
of contact and sliding phenomena.
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We assume that the components Oij’ 1<1,j <N, of the Cauchy

stress tensor depend linearly on the gradients of the displacements LY
13

e,
rd
-

and their time derivatives according to the following viscoelastic —

L
=
-
-

constitutive equation: &
o = A, ) $i,3,k, 15N . (3.2. o
A Uij(B) P3k1 Y, * Cigen Ypuy o BTEKISN L (3.2.1) :
s y . ciel . i
2 ere E=(”1’u2""’uN)' u(x,t) is the vector field of displacements, ‘Q
the components of which are sufficiently smooth functions of position CC
TV )
‘H‘ 5 - - h"
(5) and time (t) and Aijk] = Aijk](g and cijkl = Cijk1(f) denote L
3 the wusual elasticity and viscosity coefficients, respectively. g
E. In (3.2.1) and throughout this work, ( ) ! denotes partial differen- M,
’ pd
i tiation with respect to X and the wusual summation convention ‘*
1 is used. :
oy
{,3" We suppose that body forces with components of force per ;3*
2 2
unit volume b.=b.(x,t), 1SiSN , act in the body. Displacements (14
a U.,D = UiD(s,t), 1SiSN , are prescribed on Ty and tractions t1.=t1.(§,t), o
~ O
lgig N, are prescribed on FF . We also suppose that the body may “!;
94 d
& come in contact along the (candidate) contact surface I‘C with ;
a foundation which slides by the material contact surface with
e R R s - 5
<+ a velocity UT = UT(s,.t) (the driving velocity) tangent to I‘c; o
o g = g(s) denotes the normal gap between the body and the foundation %:"
& ) | -
Lﬁ measured in the undeformed configuration u=0; Cn":n<§)’ cT=cT(s),
o = i i ¢
58 bn bn(f)’ mn, mT and 2 denote the material parameters in the )
- interface constitutive equations (2.5.2,3); 1in those equations ‘a;!!
1
is given by o =0 (u) = =z .(u)n.,n. and o;f

w the normal stress on T n 9,y RRRARLE

et A ALY A AL 4% A AT N Y™ b " T
BRI A A T ‘ oty et
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&L

the components of the tangential stress vector Jp O To are
given by op; = op;(u) = 9y5(uing-Gpluing , 1si,dsN 0 = 0 (x)
denotes the mass density of the material of which the body is
composed.

With the above notations, the class of dynamics problems
studied here is governed, for a time interval [0,T] by the following

system of equations and conditions:

Linear Momentum Equations

- = i . 2
pui oij(f),j by inQ x(0,T) (3.2.2)
where the cij satisfy the constitutive equations (3.2.1).
Boundary Conditions
uy =00 on Lx(o,T) (3.2.3)
oij(g)nj =t; on T x (0,T) (3.2.4)
The contact interface conditions (2.5.2,3) hold
on Te x(0,T) (3.2.5)
Initial Conditions
u(x,0) = uy(x)
. _ xX€ Q . (3.2.6)
u(x,0) = u,(x)

3.3. Variational formulations for the dynmamic contact problems.

In Section 3.4 we study questions of existence and uniqueness

of solution for the general class of problems (3.2.2-6) in the

following cases:

T AT Lo et X L e T e o T R W PN ¢ Ao o DT M

60

-

Qs

L

-

h S oo g ola }

A |

g
A

O Ny

v



2y 5 R

B R &2 EE

VAR B A O W X

= O

61

(1) with no viscous damping and no friction; (3.3.1)
(2) with viscous damping and friction.

In the present section, we specify minimum regularity require-
ments for the dependence of various functions on the space variables,
we indicate various assumptions on the data, and we introduce
the definitions of various spaces and forms which will be used
in the variational statements to be established in the end of
the section. Further restrictions on the functions involved (in
particular, the regularity of their time dependence) will be needed
later and will be specified in the statements of the Theorems
in Section 3.4.

For simplicity of presentation, we shall assume hereafter

that,
meas (rD) >0 (3.3.2)
W o, misw (3.3.3)
p=z1 : (3.3.4)
bn = 0. (3.3.5)

Denoting by HI(Q ) the wusual Sobolev space of functions
with Lz-derivatives in @ , it is well known that values on I for
a function in Hl(ﬂ ) can be interpreted as tne values of its Hé(F)
image through the linear, continuous, surjective trace map ( cf .
Kufner et al [1977]). with such interpretation holding hereafter,

we define the Hilbert space

Ve v @M v = 0ace on 1y
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endowed with the usual (HI(Q))N-norm denoted by ||+|| . The topologi-
cal dual of V 1is denoted by V', <.,.> denotes duality pairing

on V'xV and

» denotes the V'-norm.

We denote by H the usual (LZ(Q))N-Hﬂbert space and (.,.)

and | .| will denote the usual (LZ(Q))N-’inner product and norm,

Lottt
o e Tl

respectively.

We assume that the elasticity coefficients satisfy the

e

following conditions (with 151,j,k,1sN),

=4

Aijk] €L (@)

i Jop > 0, Aijk](f)AklAij 2 chA]JA1J a.e. xXEQ ,
for every symmetric matrix [Aij]ERNXN,
E,{ In case (2) of (3.3.1), the coefficients Cijk]are assumed to
Y.}
satisfy the following conditions (also with 1si,j,k,1sN),
‘ Cijin€ L (@)
4
¥ - = = E
. Cigin(¥) = Ciin (%) = Cigqp (%) = Cqyy(x) e x 2@ (3.3.7)
f; 3% > 0, cijk]Q)Ak]Aij 2 acAiinj a.e. x€Q,
. . ~ oNxN .
i for every symmetric matrix [Aij] € R . R
Yo j
e
.- It follows from these assumptions that the bilinear forms, ,-
o o
I a:VxV » R,c : VxV - R defined by , 3
g a(w,v) =, Aijm"‘k,lvi,jdx’ W, v eV Z
Q

R
L b
§\ [V
Rt )

MAliE \ ; ._,. NPT T \.-_,- o T R T AR A AR AT
ROEER N ﬂ 1!‘*"I’3gi X !.‘. ‘t\ N .o ‘. * ( NSRS ‘1 “*‘ 2 ( B fne ittt Al AR oh‘,“..‘
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% C(!l_,_\!_) = {2 Cijkle,]vi,jdx’ Y’ 36 v
g are continuous and V-elliptic, i.e.,
v ELN Mcs ogs & > O such that Vvi, VE V
3 laGe Il w I, w3l M Thwit flv | (3.3.8)
2 2
alvay e llvl®, e(v,v) 2o |l il (3.3.9)

&R

We assume that

<+ if N=?
15mn,mT {

w3

$3 if N=3
[
& and we denote by gq the number q=1+mn. in case (1) of (3.3.1),
i or g = 1 + max {mn,mT}, in case (2) of (3.3.1). If follows that.
for these values of g, the space Hé(r) is continuously embedded
t::; in Lq(r) (c.f. Kufner et al [1977]); q' denotes the Holder conjugate
r
. exponent of q, i.e., q' = q/(q-1).
! Following standard notations, we denote by b(t) and t(t)
h b -
the functions x - b(x,t) and s > t(s,t), respectively, and we assume
g that b(t) € H, and t(t) € (L9 (Tc))N. We can thus define f(t)
€ V' such that,
-
.}.
o
<f(t),V>=f b(t)s v dx + [ t(t)evds, ve V.
NG ) Q L
2 We further assume that
;} ¢, cr€ Lm(rc), CpoCr 2 0 a.e. on Tes g€ Lq(l‘c) s

and that there exists a function $(t) such that

= T I 2% e

T 0y, e A% Q g, & ¥y OGRS d { ; - AT "
LRI P LN DO ORI k DO IO Q) y x " |
RGO USSR AR M NI A NS S N S i e L e il al ity

L O O

rxd + -

i,

I T ¥ v §F




= B

2(t) , (L) EV

o R

¢n(t) =0, ?T(t) = ET(t) a.e. on ..
s Finally, we define nonlinear maps P:V - V' and j:VxV - R such that
m
§S <P(y),x>=l[c e l(w-9), 1™ ds , wyveV

m
. T
J(w,v) = [ el -9) T “lyqlds , wiveE V.
y

R

From a mechanical point of view, the space V denotes the

space of admissibie displacements (and velocities in case (2)

of (3.3.1)) at all times t € [0,T] . The bilinear forms a{.,.)

and c(.,.) represent virtual work (or power) due to elastic and

> B

viscous deformation, respectively; <f(t},*> represents virtual

-~

work (or power) of the external applied forces; <P(e),*> represents

virtual work (or power) due to the normal compliance of the interface

== K

and j{(.,.) represents virtual power due to frictional sliding.

Remark 3.3.1. Assumptions (3.3.2-4) are by no means essential

and are used only to simplify the proofs in Section 3.4.

If = ¢ , assumptions (3.3.6,7) lead to the following

§ §
estimates
E Vr> 0, Ja,,a. > 0such that,

a(v,v) + xlglzzaallgnz, c(v,v) + AlleZQCHVHZ (3.3.10)

o which should replace (3.3.9). A1l the estimates derived from
(3.3.9) in the proofs below can be derived also from (3.3.10),

although the details are lengthier.
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S.\ 1 P ¢ 0, in particular, if the prescribed displacements
are time dependent, the regularity of such dependence requires

a special attention. The treatment of *he prescribed velocities

«C
Ur and the assumptions on ¢ in Theorem 3.4.2 are typical of this.
w

Ifo#z 1lbut pe L (q) withp (x) 2 oo(= constant) > 0 a.e.

XE Q , the usual (LZ(Q))N -inner product should be replaced by

P

the equivalent weighted inner product [ o (x)wjvj dx, w,v € H.Z
a Z AR

% Remark 3.3.2. Additional boundary terms corresponding to
the deformation of linear springs on a part of T could also be

W , . )

o easily incorporated in the formulation. See Oden and Martins

%

[1985] and Rabier, Martins, Oden and Campos [1986]. T

It s now simple to show, in a 4oamat manner, that, for

each of the cases in (3.3.1) any solution of (3.2.2-5) satisfies

)

™

N a variational statement which we shall use in the deﬁm"cions1

B of the problems below:

. Problem 1 (no viscous damping and no friction). Find a

&

v function t - u(t) of [0,T] » V such that

- ..

< U(t),v> + a(u(t),v) + <P(u(t)),v> = <f(t),vw¥Wv eV, (3.3.11) N
L8 ~ ~ ~ ~ ~ ~ ~ ~ ~ L

.J:

- with the initial conditions, v
s .

N
v, W

1These definitions are obviously still incomplete since regulari-
ty with respect to time and regularity of the initial conditions has
not yat been specified.

'”«.* -» A
f 'n.m fm‘:m':x" :(ﬁ\ o



2

2

66

u(0) = u'O

~ ~ (3.3.12)
u(o) = T .

Problem 2 (viscous damping and friction). Find a function

t - u(t) of [0,T] » V such that

CB(t),y - u(t)> + alu (t),v - u(t)) + cld(t),v - u(t))

+ <P(u(t)),v - ult)> + Jlu(t),v - &(t)) - j(u(t),u(t) - 3(t))

2 <F(t),y - u(t)> Vve Vv, (3.3.13)

with the initial conditions (3.3.12).

Remark 3.3.3. Details of the calculations leading to the
variational statements (3.3.11) and (3.3.13) are well known and
we refer the reader to, e.g., Duvaut and Lions [1976] or Demkowicz
and Oden [1982] for similar calculations. Here we only observe
that the variational inequality (3.3.13) is a result of the nondiffer-
entiability of the frictional functional j(.,.) with respect to
the second argument {velocity). In this context we observe that
the friction conditions (2.5.3) on I‘C imply that, for every ze v,

. P T Ao
a1 (vp-dp) + cqllug-9), 1 (Jyg-Ugl + tup-Ugl) 2 0

on FCX(O,T)

and this produces the inequality sign in (3.3.13). OJ
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Remark 3.3.4. Denoting by A &€ [(V,V') and C € [ (V,V'), the

operators

<Aw,v> = a{w,v), <Cw v = c( w, v , ¥ W "€Z v

the statements {3.3.11) and (3.3.13) can be expressed, respectively,

=5 98

in the equivalent operator forms,

o R
b G(t) + Au(t) + P(u(t)) = f(t) in V' &

~ ~ ~ ~ 2

. X

EE G(t) + Au(t) + Cu(t) + P(u(t)) + 5,3(u(t), u(t) - #(t)) 3 )

' h - - ~ - ~ ~ i
f(t) in V' .

- -~ -» N
5 A

L where azj(g(t), u(t)- é(t)) denotes the partial subdifferential \ét

of j with respect to the second argument (velocity) at (u(t),

-~

Q(t)u@(t)) € VxV (note that j is convex with respect to the velocity

~

Y
argument). O S

Paford
3 v
7

3.4. Existence and uniqueness results for dynamic contact

g
A
-

problems !
~ S
'y S
%} Theorem 3.4.1: In addition to the assumptions listed in g ;
Y :‘i‘
the preceding sections, let =~

o |

$3  if N=3 (3.4.1) 2

1 {40 if N=2 :
<m { Ly

(753

= 1+
1 m,

b=
AL

=
‘e
o
-

223
7
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b, be L2(0,T;H)

t,te o oY (3.4.2)
(hence f , i’e Lz(o,r;v')]

u € V

~0 } (3.4.3)

U € H.
Then, there exists a unique solution for Problem 1 such that

ue £(0,T;V)

ue L(0,T;H) (3.4.4)

e 1°(0,T;v")

Proof: We first prove the existence of sofutions. Let (w.} .7,
be a sequence of functions such that,

wev Vi, (3.4.5)
3‘1""’le are linearly independent A4 m,

and span the subspace Vm of V (3.4.6)
v=0Uv . (3.4.7)

mzl m

Let us consider the following Faedc-Galerkin approximation Of

Problem 1:

Find a function Em (ox [0,T] ~ RN in the form

(thwy(x) (3.4.8)

A VR AR A% T W T P A, T S LT e Y o S M B Y ” ~ ) L AN e '
Ly e N J o8 @yl CRA TP 7 (A / 1
RO R R O D A e O P TS L U K O o o ot e G "'.‘9&54'6.!"-a!":!""i't.-‘ f"t:":,“e.’
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such that

(@).0) + al"(t),y) + PNEY> = FU 0T vey, (3.4.9)

~ ~

with the initial conditions

'ﬁ Em(0)=38 =[§ QT~W1--’ I‘O inVasms+
i=1 (3.4.10)

3 Elm(o)ng =1'g=‘1 3‘1‘.‘ Wi T, in Has ms =

From the theory of systems of ordinary differential equations,
Bﬂ it is known that a solution for (3.4.9,10) exists in an interval
:: [o’tm]' We proceed to obtain a privadl estamates on the solution that
e ultimately will show that t_ =T .
i Letting \~/=£1m(t) in (3.4.9), it follows that
" L " (0)1% + 5 a (1), u"(8) + p(u"(E))] =

= <f(t), uT(t)> (3.4.11)

where p: V -+ R denotes the energy associated with the normal deforma-

tion of the interface,

1 f mn+1
p(v) = T r ¢ [(vn-9)+] ds , ve V.

s

n

vl

Integrating (3.4.11) in time from 0 to t, integrating by

parts its right-hand side, using the continuity and V-ellipticity

A

properties (3.3.8,9) of a(.,.) and Young's inequality, we obtain

ﬁ B

«

w5

5
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where the ¢ 1.(1'=1,2....) denote arbitrary positive constants and
the Ci(i=l,2,...) denote positive constants «ndependent of m. Now,
choosing 81 such that §1<ags observing that f,i,e LZ(O,T;V‘) implies
that f € CO([O,T];V'), and taking into account the boundedness
of _ym(O) and Qm(O) implied by the initial conditions (3.4.10), it
follows that

t 2

R T R A R (T L S T TPLI S TR PR
0

")

Application of the Gronwall inequality then leads to the desired

estimate,
")) ey ¢ s,

i.e.,

u™€ bounded set of 1=(0,T;V) ; (3.4.12)

u"€ bounded set of L(0,T;H) ; (3.4.13)
and also,

m '
cn[(ug-g)+] " € bounded set of L™(0,T;L9 (rc)) . (3.4.14)

With these estimates, we are now in position to take the Lumit

as m - o,

First we observe that (3.4.12-14) imply that there exists a
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| N
m m N
Es subsequence of u” , also denoted u , such that R
» t
\]
gm + u weak star in L”(0,T;V) , (3.4.15) i
5 u™ - | weak star in L7(0,T;H), (3.4.16) 5{
c [(um- ) ]mn X weak star in L7(0 T'Lq' (3.4.17) :
§ aLu-9), 1 750 in JTiL (1)) 4. J
: m
In order to show that X = Cn[(un-g)+] N, we first observe that .
L% A
:3 (3.4.12, 13) imply that | ',:':
m 1 N ’::
ﬁ U € bounded set of <H (szx(O,T))> : "
U\
Since the trace map is compact from HI(Q x(0,T)) to Lz(r x(0,T)), it )
3 3
::? follows that (by extracting a subsequence of gm again denoted by um), i
N g
i J" - u strongly in ( LZ(I'x(O,T))> and a.e. on r'x(0,T) "
'
and then, N
X
‘:{,-( m T mn :
bt c l(up-9), 1 "~ ¢ [(u-9),1 2 e. on rex(0,T). (3.4.18) Iy
2.
R On the other hand, (3.4.14) imples that -
! %)
n , v
$3 cn[(un-g)+] € bounded set of L9 (rcx(O,T)). (3.4.19) Ky
‘;.
*- From (3.4.18) and (3.4.19) it follows (c.f. Lions [1969], Lemma 1.3,
r 12, 13]) that c_[(u™-g) ]m” ((u_-g) ]m" kly in LY (T x(0,T)) X
‘6: pp.12, at ¢ [(u -9), » cpllu -g), weakly in ox(0,T))- .
‘ ' o m m q" \
Since (3.4.17) also implies that Cn[(un'g)+] ~ X weakly in L" (ro « :
E (0,T)), the uniqueness of weak limits implies that, in fact, x LY
m .
n
3 =c [(u -9),]1 " and N\
‘ m -m . =) ! ‘
Cn[(”n'g)+J n, cn[(un-g)+]"}\»veak star in L®(0,T;LY Tell :’:ﬁ
ﬂ (3.4.20) 0
3
3
o
i :
3
.

2, RVAF Ry Wi %¢ { < 1 S RYRCCY () M v 4 LA TR F P T S V. - hy 4 Yot a ]
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Let now v in (3.4.9) be equal to ‘i'j' with j fixed and m>j, i.e.

oM
(T wy) + al”, W) +P(u"), Wy =< f, W (3.4.21)

From (3.4.15) ard (3.4.16) it follows that, as m> © |,

a(u™, Wy) = aly, w;) weak star in L*(0,T) (3.4.22)
(u", gj) - (u, !j) weak star in L7(0,T) (3.4.23)
and then
«Mm I ~ d .a . s =
(U7 we) = g5 (U5 wy) ™ g (L) = g U, w;
=<d, wy> in 0'(0,T) (3.4.24)

and, from (3.4.20),

<P(Em), ‘l’j> -+ <P(E)v!‘j> weak star in L°°(0,T).

We can conclude from (3.4.21) that

< i, wi>+ a(u, !J-) +<P(u), W; >=<f"'~"j >inpY0,T) V¥ i21.

It follows from (3.4.7) that (3.3.11}) holds in D' (0,T).
Furthermore, since u € L~ (0,T;V), we have Au € L (0,T;V') and
P(l.a)e L (0,T;V') and, since f, j’e LZ(O,T;V'), we also havefé Lm
(0,T;V').  We can thus conclude that i € £7(0,T;V') and that (3.3.11)
holds for a.e. t€[0,T].

Finally, we have to prove that u and g satisfy the initial
conditions (3.3.12).

From (3.4.15) and (3.4.16) it follows that, u"(0) = u(0)

~

weakly in H and from (3.4.10) it follows that also u™(0) *UO weakly




>

-

[

:tﬁ?

LB

WA e

A

Rf.

[ = N
[V %

-_— e

in H. The uniqueness of weak limits implies then that (3.3.12) is
satisfied.

On the other hand, from (3.4.24) and (3.4.4)3 it follows

that <Um, Wi > <d, w,y weak star in [ (0,T). This, together
~ ~ ~ ~ J . .

with (3.4.23) implies that (u™(0), Wiy e (0), wy> and, since

~

from (3.4.10), <u"(0), wy> - <9, Wi>, it follows that <u(0),

LR <ty "o %W j2 1. The density property (3.4.7) finally implies

that (3.3.12)2 holds. This concludes the existence proof.

We now prove the uniqueness of solution. Let u and u+w, both
satisfying (3.4.4), be two solutions of Problem 1, for the same
data and with assumptions (3.4.1-3) in force. Writing the variational
statement (3.3.11) for utw and u and subtracting the resulting

equations , we obtain

<E(t),v> + a(w(t),v) + <P(u(t) + w(t)) - P(u(t)),v> =0

~

YV ve v
i.e.,
W+ Aw + P(utw) - P(u) = 0 in (0, T;v") (3.4.25)
with the initial conditions
w(0) = w(0) = 0 (3.4.26)

Alternatively, we can put (3.4.25,26) in the form of a

first order differential equation:

X€F w21 € L0, T, %)
X(+) = F(X(+),e) in OO0, T3ev) ¢ (3.4.27)
5(0) = g in VxH J

73
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where F : (VxH)x[0,T] - HxV' is given by,
F([E’Z]’t) = [Za - AE + p(.';‘,(t)) - P(E(t) + E)]a
V[W,Z] € VxH, for a.e.t.€ [0,T].

We then need to show that for any given u € L°(0,T;V) the
only solution of (3.4.27) is the trivial solution {0,0].

We can also put (3.4.27) in the integral equation form,
t
X(t) = | F({(r),r) drt . (3.4.28)
0
Since X(t)€& VxHC HxV' we can compute Hf(t)HHxV' and we have,

u

t
IXCEN ey (J)' IF Q) e dT-

But,
| F(X( T)sT)”HxV.
= jz(r)] + | -Rw(t) - Plu(r) + w(t)) + Plulr))il,
sfz(a | +c w(l]
lell T m M
#sup { ——=L— 7 [ [(up(t)-9) 1 "= [{u (2) + w (1)-9),1 "klv_lds
vev HY,H T n n n
v#0 ¢
and
m m
[T(up(0)-0, 1 ™= [(u (T) + w (1)-g) 1"
mn-l n-l
$ Mun(0=g1 T 4 u (1) w (D)=l )w (o)

Since both u and u+w exist in L™(0,T;V), we have

m m
II[ (1= " [y (0w (1)-9),1 "Iv 1 ds

C

(A
‘9'1.1

' "“‘ll
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mn-l mn-l |
SR GO TNCD b I Hwg (1

o

s Collwee v Il (3.4.29)

s iy (1)-] s Wallg,

and then

1K) st ey s 1201+ €y M+ Cof[wlTils € (T ey
We have thus

t
IX(t)hyey s €3 f X0y o dT
0

which, when we apply Gronwall's inequality, allows us to conclude

that
X = 0 in L°(0,T;HxV'), hence in L™ (0,T;VxH) .

This concludes the proof of the theorem. O

Remark 3.4.1. The wuniqueness of solutions obtained in
Theorem 3.4.1 implies (by using a simple contradiction argument)
that the whofe seguence um 04 the sofutions 0f the f4inite dimensional
probfem (3.4.8-10) (and not only some subsequence of it) convenges,

in the weak sense of (3.4.15,16) to the sofution u of Problem 1. O
Turning now to Problem 2, we have:

Theorem 3.4.2.2 [n addition to the assumptions listed in Sec-

tions 3.2 and 3.3, let

Lsmm [ if N=2 (3.4.30)
3 if N=3

=1 + max{m 1
q + max{ n’mT’

180,V 8,5 1
x"kL‘AKG‘ [y Y

J '8
s b n?l's,l’y,
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pe L2(0,TiH)
re o8 o) (3.4.31)
[hence f€ Lz(o,T;v-)]

33€ YV, 30€H2(0,T) such that o(x,t) = §(x0 (t)
a.e. (x,t) € @ x(0,T) (3.4.32)
m o 1
~0=" (3.4.33)
heH

Then, there exists a unique solution to Problem 2, such that

€ L7(0,T3V)
i€ (0,T;H) (O L3(0,T;v) (3.4.34)
ie 0,T;v)

Proof: We start by proving uniqueness. Let u1 and u2 be two
solutions of Problem 2, both satisfying (3.4.34), for the same data
and with hypotheses (3.4.30-3.4.33) in force. Writing the variational

1 and u2, taking v equal

Y

statement (3.3.13), successively for u

to uz(t) in the first statement andequal tod t) in the second and

adding the resulting inequalities, we obtain,

S L)% + aw(t),w(t))] + c(u(t),m(t)

N r—

[ TaN

P(l(t)) - plut(e)), Wt

2Assumptions (3.4.31-33) and conclusions (3.4.34) are very similar to
those in Duvaut and Lions [1976, Theorem 6.1 bis, p. 167]. Assumption
(3.4.32), together with previous assumptions on 4 in Section 3.3, re-

quires =0 a.e. on Ic and _QTG=L~‘*Cr a.e. on I'x(0,T).
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.01 2 . 1 ] . S
i + J(uR(t), ut(t) - o(t)) - J(ur(t), u(t) - 2(t)) "
¥ 3
hg . 2 01 . X 2 .2 . ':*
+ 3(uT(t), ui(t) - o(t)) - J(uT(t), u"(t) - o(t)) M
K where W = U° - u” and w(0) = w(0) = 0 . Integration of this equation
‘\g in time from 0 to t leads to the estimate '
ok

- t *

= !w(t)}z + g ”u(t)”z + 20 j”w(r)nz dr .
-::v ~ a ~ Co - ':i:
AN 'ﬁ.
t m ht,
) s2[]elrql " [(uy()-9),1 "+ b ()l ds dr o
E s H ol Llut)-9),1 - [(up(r)-9), w (t)l ds 33

C

t m 1 mro .
E::’ +2£_{I:CT|[(u[21(T)-9)+] T Lwhe-9), 1T g o) ds o . :;.
LY )
c :‘

i

Using an estimation of the type in (3.4.29) and Young's inequality

we obtain m &

=
r&j.'»f

\7_{(1)[2 + |Iv1(r)||2) dt

t
el 2 o lweell 25 ¢y f ¢
~ . 0

5 from which the uniqueness follows. [ 5:
o)

& In order to prove the existence of a solution for Problem 2, :'.'-;

>

o [

we shall first introduce a family of (convex and Gateaux differenti-

o’ |
o

able with respect to the velocity argument) approximations of

ot

g the friction functional j , depending on a real parameter < >0. \
Accordingly, a regularized version of Problem 2 will be introduced 7Y

i e
(n and the questions of existence and uniqueness for this auxiliary o
Ny

ﬁ problem will be studied. Only after this we shall complete the '
Y

-\

.
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aE =T

proof of Theorem 3.4.2 by showing that, as the regularization

S
1

18

2 parameter € - 0, the solutions of the approximate problems converge,

in an appropriate sense, to the solution of the original Problem 2.

Let us first consider a family of functions y :RN- R depending
€

mE 2ZE

on a real parameter € >0, satisfying the following conditions (suffi-

cient for our purposes),

=

oy (1) v € ctRV,R) Veso (3.4.35)

' €

% (1) 0sv (15| Ve>0, ¥ yer" (3.4.36)
(iii) we(ew(l-e)x) < @ws(wh(l-e)ws(x) (3.4.37)

Ve>o, V wyie R% Y, V o€ [0,1]

(iv) 301 > 0 such that V e>0, V (w,v) € RN RN

=)

I\y's(g)(!)l s Oyfv| (3.4.38)
o) (v) 30, > 0 such that Ve >0, ¥V vy RY,
v-.- ¥ (v)-|v]ls D,e (3.4.39)

where \yé(w)(v) denotes the directional derivative of U‘Je at w on the

~

K

direction of v and [ denotes here the euclidean norm of a vector

in RN.

.

A

We now define a family of reqularized friction functionals

Favam . e r e p e T AN e R A
R RN ATIIININE A Ot D55 S pIENTR e e Nl o > e A Catu Lo (s I N "o‘,‘,)“‘ It O ) Y
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je: VxV ~ R, depending on the parameter €>0

m
; = - T
Je (w,¥) -IL crlw,-g), 1T (vp) ds, wve v
o
which, as a result of (3.4.35-38), are well-defined, and convex and

Gateaux-differentiable with respect to the second argument. The
partial Gateaux-derivative of j€ with respect to the second argument

at (y,v)e'_ VxV in the direction of z€ V is given by

W way)iz> = L erlw-9),] Ty (vp)(zp)ds, w,v,z€ V.
C

With the above definitions we study now the reqularized

version of Problem 2.

Problem 2E (viscous damping and reqularized friction). Find

a function t-»us(t) of [0,T] -V such that,

S
u_(t),v> + a(u (t),y) + clu (t),v)
N <P(E€(t)),!> + < (u (B),u (1) - 3(t)), v ) (3.4.40)
S(t),vw \-4 ve v
J
with the initial conditions,
u (0) =y, (3.4.41)
4 JO) =4

Lemma 3.4.1. Let the hypotheses of Theorem 3.4.2 hold. Then,

there exists a unique solution to Problem 2 , such that

u € 2(0,T;V)

~€

i€ L7(0,TiH) O L2(0,7;v) (3.4.42)
5 € L0, v

<c

- [ -.-‘;'I N

"' *"\{'“-‘ -('\ "'""(.,1.-'(\.-1 (‘F

-----

o~
.l

0
.
‘
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‘Jy Proof. Again with the assumptions (3.4.5-7), but choosing
A now w; =g (recall (3.4.32)), we consider the Faedo-Galerkin approxd-
g mations for Problem 2 :
<Y e
. Find a function u (0,77 - R in the form (3.4.8) such that,
>
-
* (@), v) + a(ui“(t),v) ¢ c(Ll(t),y)
< ~ s < e <

o + PT(1),0 + (] (0),00(t) - 3(t),v (3.4.43)
PhaY ~c ~ ~
n = <f(tw> VovEy
"n i
o . . .

#ith the initial conditions,
~ y?(O) = umO »ug strongly in Vasm .= ;

T (3.4.44)

=y °m _.m L= ;
. u-(0) = uy Ty strongly in Hasm . ».
i;l:: Letting v = gg(t) - g(t) in (3.4.43) we proceed to obtain
Ry

a priord estamates on the solution y First we obtain,

e O TN SN TON
- +eUl(e), 0™ (0 + 0 (e W00 - B Wl B

- Lm o m .. x ' b
= <f(t),y€(t) 2L+ (U ()2 (L)) + alu (t),2(t)) +
-2 m :

+c(g(t),2(t))

)
< Integrating this equation from 0 to t, integrating by parts the
, term (QQ(t),&;(t)), observing that <Jr (vg,!),v\ > 0V Wy € V and

s w
.t
. s

following steps similar to the previous proof, we finally obtain

x> IR

r
¢

e g ta T Tm e e .
- . "l"’ '\ 4."'\\ LR
: e ! Mhﬁ

W XX a'.in" 1
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. t .
FUOL OIS H0nIP dx
t oM 2 m 2
$Cp+ Czéf (o (1 + Hlug (01%) dr

We have then

u?€ bounded set of L (0,T;V) (3.4.45)
i"e bounded set of L°(0,T;H) M L(0,T3V) (3.4.46)

m m ® q'(r
Cn[(uﬂ; )+] "e bounded set of L (0,T;LY ( C)) (3.4.47)

m

m T L . q‘
1l (uen-9),] € bounded set of L (0,T;L7 (I¢)) , (3.4.48)
with all the bounds independent 0f m and ¢ . It follows that a

m . m .
subsequence of u., again denoted u., exists such that as m + «,

u‘: - uE weak star in L=(0,T;V) (3.4.49)

&f::' > U weak star in L°(0,T;H) and weakly in L2(0,T;V)(3.4.50)
~ ~€

and, using the compactness arguments used earlier,

m mn mn
Cn[(usn-g)+] > Cn[(“en'9)+] weak star in
3.4.51)

m m '
el (Wh-9),1 T+ cqllu_,-9),1 L0, 1508 (1))

It turns out, however, that we can obtain, and we shall need

later, stronger results. In fact, introducing the spaces,

W={ve (Hé(l‘))N: v = 0a.e. on Ip}

6= [ve WV, v =0a.e. on Ip}

it follows from (3.4.49,50) that, in particular,
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4" >y weakly in L2(0,T;H)
3—3 :m - U weakly in LZ(O,T;G).

Since W C G with compact injection, it follows from Lions [1969, Theo-

.
<o
2

rem 5.1, pp. 58-59] that Eg' > u_ strongly in LZ(O,T;G) and, consequent-

1y,

o
> 4

.2 q
m T:L%r
- U strongly in L°(0,T;L (AC)).

o SR

! :ﬁ: From this and (3.4.47,48) it results that

1 m M m, .

b cllu -9). 1"~ cn((u€ -9),1 " strongly in

* - € n 2 q' (3.4.52)
n L m me (1200, 7319 (1))

X CT[ (usn'g)+] he CT[ (uen'g)+]

=

- Let now v in (3.4.43) be equal to 1',]" with j fixed and m>j. From

4 - ‘

2 (3.4.49-51) it follows, after taking the limit as m- o and using

2’

arguments similar to those in the proof of Theorem 3.4.1, that

-
B

<O.,v>+ a(ys,){) + C(_L-JE V) o+ PYe )o¥> + KeH¥> = <f,v>

in L2(0,T) V y €V (3.4.53)

with Ee’ée satisfying the initial conditions (3.4.41) and G€ satisfy-

ing (3.4.42)3.

o~ P
Rty o o

In order to conclude the existence proof, we have to show

. :"3 that in fact x = Jg(ge,je-é) in  L3(0,T;V').  We do this by
B using a monotonicity argument of the type, e.g., in Duvaut and Lions
L ;}' (1976, Theorems 5.1, 5.2, pp. 55,56] and Lions [1969, Theorem.6.1,
& :}' pp. 222-226]. The monotonicity of Je with respect to the second
. 3} argument (velocity) implies that

T £ ]
0s X" . memgs. _ m m_ 2 V)
: g < (ugsuz9) - J_(ugug-2), uo-9>dtY 9 € L7(0,T3V)

W

]
‘i‘
]
L)

. g ~ . - - |- T T e P Tk
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But, from (3.4.43) it follows that,
< 2 1 m m m
0 X" UR(M 1 - 7 a(ug(T),ug(T)) - p(un(T))
+ 71'9'2(0)12 + 3 awl(0), 42(0)) + p(yT(0))
+JI [<F, 0™ - c(a™,u™) 1dt (3.4.54)
~’~€ ~€’~€ . -

- g gm
W (U, uc-8), ¢ > dt

& (U '9- ¢), u -¢> dt

Ot— — o'ﬂ-—-{ o

Since um(T) - u (T) weakly in H and u (T) - ue(T) weakly in V, and
~€ ~

taking into account the initial cond1tions (3.4.44), the strong

convergence property (3.4.52) and the weak upper semi-continuity

of various terms, we abtain

0< lim sup X"

m-+o
1 2 1
S - g{EE(T)l -5 a(ge(T).ge(T)) - p(ge(T))

1- 2.1 _,- = -
+ 21417 + 7 a(ugayy) + P(Uy)

T

+ [ [, u > - c(b ,u )] dt (3.4.55)
O

- g <x . m> dt

- J (u ,w-@), u - o> dt

On the other hand, integrating (3.4.53) from 0 to T, with v = ue(t),

~

we have

oo o o

=~ — J W
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=5
+

e

T
J
0
and then, V QQLZ(Q’T;V)
T .o
0 Sg <,x_€ = Jg(!g’? - 2), ye‘ (£> dat .

We can conclude ( cf. Duvaut and Lions [1976, p. 56]) that Xe *©
Je(gs, ~G€ - é) in LZ(O,T;V'), as desired. This concludes the proof
of exdistence.

The uniqueness proof follows steps similar to those in Theorem

(3.4.2) and is omitted. I

Remark 3.4.2. The step in the above proof that extends

earlier results in Duvaut and Lions [1976, Theorem 6.1 bis , p.167]

applicable for viscoelastic bodies with prescribed nonmal stresseson

the frictional (reqularized Coulomb's 1law) contact surface to

S

L'

the present situation, in which the pommaf inteaface Law (2.5.2)

holds, is precisely the one that requires the strong convergence

-

%553

(3.4.52). In fact, the passage from (3.4.54) to (3.4.55) relies

% on the fact that

T
phy Tim | <J (um,w-¢), a5 dt
» Mo E ~E ~ ~ ~€ ~

m
< vim S L eqliwl-9), Ty, (0q-U%) (091 l0s at

i me 0 Lc N

.................

B A S, .
L)
“,4\.“. & 'et' " ;.‘..0. N, 6%,
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JB < B

m
! ¢rl(ugy=9),] 11w’ (@ -0 (_p0q) 1ds at
[od

O O

<J (u_,9-9), u -p>dt
€ ~E ~ ~ ~g ~

m My My .2 q', -
because CT[(”sn'9)+] > CT[(”en'g)+] strongly in  L°(C,T;L7 (7))

and Wé(QT'gg)(QET‘ET) > W;(QT-Qg)(QeTﬂgT) weakly in Lz(o,T;Lq(:C)),

O

Continuation of the Proof of Theorem 3.4.2. (Existence

of solution).

Applying to the regularized equation (3.4.40) the same
procedures used earlier with its finite dimensional approximation
(3.4.43), we conclude that the bounds (3.4.45-48) also hold for u_

In addition, since
. (t) = -Au(t) - CO(t) - Plu () - J (¥ (t),0.(t) - &(1))
+ f(t) in V',
it follows that
geéi bounded set of LZ(O,T;V')
We can conclude that a subsequence of u. again denoted by u. exists

such that, as ¢ - 0,

weak star in L7(0,T;V)
(3.4.56)

.
e !l

weak star in L®(0,T;H) and weakly in LZ(O,T;V)

[
+
[

i weakly in L5(0,T;V")

.,v

" - LY N, . o’ - LR - e A N _\\ RCOTG , ) ...',t
l" L 4,94 t ) %, .t s g » I3 » (M ! " -
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Sk S

Uen > Y, strongly in L2

en (0,T;L80 ()

oty
. -

™ Mn
calugy=9), 1 "+ cpllu-9) ] weak star in
m m_ |L7(0,T;L9°()) ang §(3-4-57)
cl{ugy-9),] T, c;l(u,-9),1] T | strongly in
L2(0,T5L9 (rp)).

We shall now take the &imit as €*0. Taking v in (3.4.40)

By 85 =4

equal to v(t)-a€ (t), with v € L2(0,T;V) arbitrary, and integrating
from O to T, it follows that

| ===

T
N [ [<t v o+ a(u ,v) +c(u ,v) +
;} 0 -~ ~ ~€ ~
i- + <Plu),w> + J (U, - @) - <f,v>] dt

T L]

g [<u ,u >+ a(u ,u >+ c(u ,u ) + <P(u )y u >+ J (u u -¢)]dt
v ~
h.
1y - 1 2 1

=214 (M7 + 7 a(u (T),u (T)) + pu(T)) (3.4.58)

! - 31T, - 3 atugug) - p(E,)

T . T .
%; é c(y,,u_)dt +6r Je (Ugo¥. - @) dt .

Computing now 1im of the left-hand side of the above inequality

ﬁ g0
[ and 1im inf of the right-hand side, we obtain
T g TE + 0 :‘
J [§§,j> + a(u,v) + (y V) + <P(u),v> + j(u, v~®) - <f,v>]dt ‘
0
ﬁ Livm 2 + Lawm,ur (T
2 7 |UM% + 5 au(T),u(M) + p(u(T))
) 1 1 - - _
ﬁ - ? ‘U | - ? a(gosuo) - p(go)
N
@ N
"
Pt
' i
g.
B B L e y L e e T T T e e R
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on the strong convergence property (3.4.57).

L

XE

+

“'g

e M

LI Y
+

ke

fetels

Y. e

R

[>

I [<U,v-u> + a(u,v-u) + c(u,
0

?Co
I<
IC.

+ <Pu),v-0> + j(u,v-¢) - (u,0-$)] dt

<fv-i>dt ¥ v e L3(0,T;V)

Oc_.—(

from which it follows that (3.3.13) holds for a.e.

€ V (cf. Duvaut and Lions [1976, pp. 57,58]). =

t € [0,T],

Remark 3.4.3. In a manner similar to Remark 3.4.2,

passage to the limit on the right-hand side of (3.4.58)

1im inf f J u ,G -é)dt
€0 ~€ ~

m

In fact,

T me T ‘c
lim [ | {CT[(usn-g)+] - cpl(up-9), 1 'H¥e (G, -U7)ds dt

€*0 FC

glg\ff crl(u,-9) ] { T-uT |u -UTl}ds dt

] . . f T mT M Y C d d
im inf [ f CT[(un-g)+] \ﬂﬂ'UTl s dt
£+0 0 [‘c ~

T m
T -
[ 1 eqltu-9),] jag-USds at
0 I
rT- 3
J(E!u = o)dt

O Y ) S NI WS BE TS T
n‘ R e ‘qf OO AR u"'t‘ Yo fa ". n‘.. S ..l .. :"'1, 'c.'t. ." ‘ﬁ“ 3 '\ ‘l \
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m m
) T T . '
because: CT[(UEn-g)+] - CT[(“n'g)+] strongly in LZ(O,T;Lq (rc))

2

and due to (3.4.36), kyE(UET-Ug) is bounded in L%(0,T;L%(r));

m
T @ ' . .
crl(uy-9),1 '€ (0,751 (1)) and, due to (3.4.39), ¥ (i -0%) -

. . c .
|5€T'9T| - 0 in Ll(O,T;Lq(FC)); and, finally, the functional

T m
v [ [ elt)vr(t)] ds dt of L2(0,T;V) » R, with o = ¢rl(u-9),] T
0k

. . 2 ! .
given in L (O,T;Lq (FC)) is convex and continuous, hence weakly lower

samicontinuous.

The passage to the limit on the left hand-side of (3.4.58)

does not require the strong convergence property mentioned earlier:

T L)
Tim [ o (U v - @) dt
€+0 Q

=lim | [ crlu-9), 1 ¥, (vy-Uy) ds dt
e»o 0 Fc

My *C
CT[(un‘9)+] |vy-Url ds dt

m

mT T EY q'
> c;[(up-9),1 * weak star in L¥(0,T;L7 (r())and

because cT[(u€ n-g)+]

due to (3.4.39), ¥ (1T-QC) - l!T-Q$§ strongly in L1

~
<

(0,719 =

Remark 3.4.4. We emphasize the key role played by the

viscous damping in the proof of Theorem 3.4.2. It is the viscous

. e
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damping that guarantees the strong convergences (3.4.52) and (3.4.57).
Such a situation should be expected from the beginning since our
methods are the same of Duvaut and Lions [1976] and those authors
exposed in Theorem 5.7, pp. 156-162 (op. cit.), the difficulties
in obtaining a opriori estimates 1in the presence of frictional
contributions dependent on velocities on the boundary of the domain.
Those authors were able to show existence and uniqueness of solution
with prescrdibed time dependent normal forces on the contact boundary
only when viscous damping effects were taken into account (Theorem
6.1 bis , p. 167, op. cit.). For a linearly elastic material, only
the case of prescribed time independent normal forces on the contact

surface was successfully studied (Theorem 5.7, pp. 156-162, op. cit.).

Remark 3.4.5. With the same arguments of Remark 3.4.1,

m

it results that the whole sequence Ue

{(cf. Lemma 3.4.1) converges
to Y. in the weak sense of (3.4.49,50) and the whole sequence
uo (cf. Theorem 3.4.2) converges to u in the weak sense of (3.4.56).
Without further effort (by Jjust using the compactness results
of Lions [1969, Theorem 5.1, pp. 58-59]), some additional strong

convergence results for the finite dimensional regularized solutions

uT as m +» o, ¢ - 0 can be stated. We have, in particular,

m,.m

. . 1-¢ N
Ye(Ue) * u(u) strongly in Lp(O,T;(H () )

with 1<p<= and 0¢sZl arbitrary. =
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3.5. Formal statement of the steady-sliding problem.

Let us assume that the prescribed displacements (UD) and

~

the forces (P,}) applied to the body considered in the previous
sections are independent of time and that the driving velocity
(gg) is also independent of time and different from zero everywhere
on Te. We deriote by n the unit vector field paraliel to the driving

velocity at each point of T The equations governing the steady-

c
sliding equilibrium positions (uo) are obtained from (3.2.2-5)

~

by simply setting U=10U=z0. We have thus:

~ ~

Equilibrium Equations

oij(EO)j +b,=01inQ (3.5.1)

where the o .

J
course, u = 0 .

satisfy the constitutive equations (3.2.1) with, of

Boundary Conditions

- P -
ugj = Ui on Ty (3.5.2)
mn
-3 = - N .5.4
N go) cn[(uOn g)*] on I, (3.5.4)
me )
splugh = eqllug-9),1 ' on 7 (3.5.5)

90
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3.6. Variational formulation for the steady sliding problem.

A1l the assumptions, notations and definitions introduced
in Sections 3.2 and 3.3 that are relevant for the present problem
are kept 1in force hereafter. For clarity we enumerate them:
the smoothness (Lipschitz continuity) of the domain o and the
decomposition of the boundary r; the simplifying assumptions (3.3.2)
and (3.3.3); the definitions and notations associated with the
spaces V and H; the assumptions (3.3.6) on the elasticity coefficients;
the definition of the bilinear form a(.,.); the assumptions lsg
Mo sy if N=2, and lsmn,m.r$3 if N=3; the notations q=1+max{mn,mT',~
and q' = g/{(q-1); the assumptions on b and t and the definition
of f (eliminating, of course, their time dependence}; the assumptions

on ¢, ¢y and g; and the definition of the nonlinear map P.

n’
I[n addition, we denote by % the following open subset of T

£ = int(p - rD) .

From Section 3.4 we recall the definitions of the spaces

W={ge CHISIL :g =0 a.e. on rp}
G={ge (Lq(T))N £ =0 a.e. on Ipl.

As a closed subspace of (Hi(r ))N, the space W is a Hilbert space.

A possible choice for the Hilbertian norm on W is

;iw=1nf{||v[l: v = £ on F},EG W .
et 777 N

..........
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The topological dual of W will be genoted by W' and the duality

- pairing in W'xiW will be denoted by < ., . >. For the wvalues of

n 3 indicated above %the space W is continuously embedded in G, which
s
(v}

in turn is canonically isomorphic to the space (Lq(z))N, the topologi-

:ij cal dual of which is (LY (z))N.

[t is also well-known that, for

3

the above values of g, the space H*(r) is dense in L3(r). Similarly,

’ ) ) N
:w the space W is dense in (Lq(z)) : a similar result obtained using

a system of local charts is mentioned in Hinlich and Nauman [1978,

s
iﬁ Lemma 1.4, pp. 212-213] when q=2. The embedding of W in (Ld(z))N
is compact for all the values of g mentioned above except for the

v

s
S

limit case q=4, N=3 (cf . Kufner et al. [1977]), i.e., except

when max {mn,mT} =3 and N=3. The compactness of this embedding

-‘

was already used in the proof of Theorem 3.4.2.

. Finally, we introduce the nonlinear operator JF Vo~ v

such that

m
- . - T,
! <J_(w),v> = -] C-l.[(wn g)+] n Yo ds, w,v €V

v Here <J (<), «> represents virtual work of the friction stresses
- ,

on Fe The unitary tangential field n is assumed to satisfy
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With the above definitions and notations established, we s
can now state a weak formulation for the steady-sliding problem

a (3.5.1-5):

Problem 3 (steady-sliding). Find a function EO:’, V such that

] 2
3 a(ug,v) + <Plug),v> + U (ugh,y> = <f,v> VY vev.,  (3.6.1) X
4 . y
e We now show in what sense the solutions of the variational 3
" s

problem (3.5.1) can be interpreted for the solutions to problem ':
I . (4
, (3.5.1-5). Our approach here relies on a generalized Green's formula, Y

given below in Lemma 3.6.1. In what follows, D (¢ ) denot2s the

space of indefinitely differentiable functions with compact support

1]
P L

in Q equipped with the usual inductive limit topology and by D '(2)

M

its topological dual, the space of distributions over o . We ¢
N introduce the operator é.:
P'\
o div g: V + (0 (@))N 3
4
. [din(\i)]i = °1’j(3),j = (Eijklka),j , 1si,j,k, 1N, (3.6.2) .
- )
"
:::' In addition, let Vo denote the subspace of V defined by °
}_‘:
N
- V= {ve v :divo(y) €n}. (3.6.3)
- X
N
»e Lemma 3.6.1. (Genenalized Green's jonmulal. There is a unique :
: b Y
b linear mapping -
o T W ;j:
verifying ﬁ
. ;
=3 . 5
(] ("(w)]; = oy (wing on 2
“ 3
3 3
A
¢

- w

BAGAOB0K) . * AL o« %" v 'l"'l LRI
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for every w € V such that Uij(‘i) = Eijk]‘”k,] € Cl(ﬁ), 15,3,k 15N,

A

and

a(w,v) + (div g(w),v) = <n(w),v>W , (3.6.4)

-~ o~ ~ o~ A~ ~ o~

for every pair (14,1/) € Vo x V.

s 2l

Proof: The proof of this result follows standard arguments

and 1is omitted. See, e.g., Showalter [1979, Theorems III.2.C

P

and III.3.A, pp. 55-58] or Kikuchi and Oden ([1986, Theorems 5.8

e M - W

and 5.9] for the proofs of similar or more general propositions. (7

u 2 Theorem 3.6.1. An element u € V is a solution of Problem
D N -
" 3, if and only if
L]
| i (1) €V and
) div a(ug) + h=0 ae. in (3.6.5)
¢ .,'_3 .
b (i1) n(ug) € (L9 (E))N and
: 5 n(go) =t a.e. onlg (3.6.6)
A o m
g (m(4g))p = -¢ [(ugy~9),]1 " a.e. on T (3.6.7)

m
(n(ug))y = cqlug,-9),] g a.e. on I (3.6.8)

Proof: Let uy€ V be a solution of the variational problem (3.

Fit‘x

|
|
6.1) and let vE€ (0 @))NC V. Since all the boundary terms vanish for |
|

such a choice of v, we have ;

a(u

1 47 A S O Ny W Ry
l%'l’;?]‘*.l.?n‘l"r.'lq-'.‘..a,‘(rv L) "a.le:?\"
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{ Joogiluglvy dxo= [ obiviodxo. .
§§ a J'~ »J )

As the above relation holds for every v € (D(Q))N, it is equivalent to

-div o(ug) = b in (v'(sz))N ,

Y
> which proves (i). Next, as we have just seen that Ypg € V5, the .

generalized Green's formula of Lemma 3.6.1, the definitions of

A

f, P and Jn and the variational statement (3.6.1) yield b
i} A &
; -J’Q(d'lv Q(EO)) ev dx + (TT(EO), !>w t
=/ b +] ty
-. Q ]‘F
- mr ‘
i + {C{ Cpllug,-9) ] v+ crl(ugn-g),] | n vy} ds ;

for every element v € V. With (3.6.5) and since the trace map

E: is onto from V to W, this reduces to
. wlug), By = [y g as
]
' (]
3; for every ¢ € W, where ¢ € (L9 ():))N is (uniquely) defined by ‘
t on T J
~ F
- L= ;

o ™ mr r
“Cnllugy=9), 1 7 0+ crl(ugp-9),1 "noon 7 -

From the density of the space W in the space (Lq(z))N, it follows

that n(go) can be uniquely extended (by ,, ) as a linear continuous

$ QoM Q' 5y N L A

3 form on (LY(Z))". Hence, n(uo) =y € (L7 (Z))". Boundary conditions \
(3.6.6) - (3.6.8) are immediate from this result. ’N.

1 H

i To prove that conditions (i) and (ii) of Theorem 3.6.1

L

o

B N0 SR N YL 0TS e 2 N (5 N P P P SR 2 B s ST
ae e Ty .,0’:‘.1‘.,!”..: AL .,c':fn AR D 0 At s s !o:‘fn. S JO0 ) S R T R e ,l,.).. ,
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imply Lg € V and Ug is a solution to the variational problem (3.6.1),

we need only to reverse the steps of the above proof. —

3.7. Existence and uniqueness of steady-sliding equilibrium

solutions.

Toward the study of the questions of existence and uniqueness
of solutions to Problem 3, we first consider the following auxilliary
problem:

Problem 3. Find a function E € V such that

a(u,v) + <P(U),v> = <F,v> 47 5o .vpds, V vEV (3.7.1)

L

where the dataéT satisfies:

3 ' N =
SrE S, = fye? (ron" - yen=0ae. on re) (3.7.2)
St is the space of the tangential stresses on Fe and s
a reflexive Banach space. The norm of a function in ST is tha

(L3 (r ) "-norm:

1/q' ' N

' Y €:(Lq (r.)).

I ,
:‘b”q"rc E C

J 1W1|q' ds}
i I

1

Sufficient conditions for existence and uniquess of solution

to Problem 3 are recorded in the following

Lemma 3.7.1. Llet (3.7.2) and all the assumptions in Section

3.6 hold. Then:

(i) There exists a unique solution to Problem 3.

(i) The map B: S V which associates with each iT‘E S,

T-,

ST g

.\
|
$
\
\
{

e » w_s_¢

-----

"1. \‘-»" '.*\ﬂr“ LS "d. - \‘\¢ \—’-‘ ‘ }\)\-
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the solution y € V of (3.7.1) is Lipschitz continuous

in the sense that, there exist L>0, only dependent on the
domain and the other (fixed) data for Problem 3, such

that

o8 11 s ey ~T'(q,rc Virme s xs, (3
Proof: Existence and uniqueness can be proved by using well-
known results from the Theory of Optimization or the Theory of
Monotone OQOperators. In order to apply a result of the latter,
we recast the variational statement (3.7.1) 1in the equivalent

operator form
Au) = f in V' (3.7.4)

where A%€fA 4 Piv . V' (recall Section 3.3), i.e.,

<A(w),v> = a(w,v) +<P(w),v> ¥ (w,v) € V x V
and, for given f € V' and GTEST,E € V' is defined by

<fv>-<f wilo rv dsVY oyev.
-~ T ~T ~T ~
c
Sufficient conditions for existence and uniquenass of snlutions
to the operator equation (3.7.4) are the following ( cf. Lions

(1969, pp. 171-173]): boundedness, hemicontinuity, coercivity

~

and strict monotonicity of the operator A.
In the present problem the boundedness of A results from

the boundedness of A and the estimate

m
Plwv> s Clleplly - (iwll+lighly ) “iv V(v E VXY,
ol el Y Vv
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which implies the boundedness of P. In the above, C denotes a
sufficiently large constant independent of w and v. The continuity
(hence hemicontinuity) of A results from the continuity of A and

the estimate

<P(w)-P(z),v>

m
$ C”Cn“m,rc[max{”yll.||5||}+l|9||q,pc]n w-2ll Hv i
W (vm,2) €V,
which implies the continuity of P. In the above,C is a constant
independent of v, wand z . The strong monotonicity (hence stnict mono-

Zonicity and coercivity) of A results from the V-ellipticity property

(3.3.9) of a(.,.) and the monotonicity of P, i.e.,

(%
[
o
£
'
~N

This completes the proof of the assertion (i).

In order to prove the Lipschitz continucty (3.7.3) of the
map B, let 4 = B(;T) and Z = B(ET) be the solutions of Problem
3 for QT € ST and iT € ST’ respectively, and with the other data

fixed. Writing the variational statement (3.7.1) successively

for u and z , subtracting the resulting equations and choosing

~

-Z, we obtain

ic

Vv =

~

a(u-z, u-z) + <P(u) - P(2), u-z>

~
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e 4
< =] lgr- ) Wr-zp) ds .
¢ r
Ky Cc

The monotonicity of the operator P, the V-ellipticity (3.3.9)
g of a(.,s) and the continuity of the trace map lead to desired
" result (3.7.3) with L = C/a, » where C denotes here the trace
-,
Q"{ map continuity constant. This completes the proof of the lemma.
g Theorem 3.7.1. In addition to the assumptions listed in
-

Section 3.6, let

<t if N=2 )
m |
M {<3  if N=3 (3.7.5)

—
A

1 + max{mg,,my}

0
"

Jw*€ V such that w*e n = g a.e. on I‘C ) (3.7.6)
x:.
. Then there'exists a constant C = C(Q,Z, rc,mn,mT) such that if, in ad-

dition,
AN '1
celleo.T + M |w* ““T

eyl <||f|l* il -
2 a "
N

then there exists a strictly positive number R = R(Q,Z,T¢,m,,mr,

3

| *
HCT‘LM‘C’ Hw 1] ,Ma,aa,llfll*) such that, in the set

| SAL8

K=(veV:|vwis R}, (3.7.8)

~

=

there exists a unique solution to Problem 3.
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Proof: In order to prove ex«xstence o4 solutions we first define

the map o :(Lq(z))N - ST’ given by

M N
o(g) = crllgy-9),1 " n»  £€(LIN)”,

~ ~

where we have extended cy, g and n by zero on I-TI¢. This map

assigns to each displacement field £ on the boundary the corresponding
tangential stresses on Tes according to (3.5.5). The continuity

of the map @ follows from the estimate:

Hao(‘:)-co(g)ilq. r.
m. m. q 1/q"
= {.z1 folep{ligy=9),1 -0 -9) 1 I 1T dst
1= I“C

[TaN

mr me
c ||CT|lw,F 1[(gq-9),] ‘((cn‘g 17 ||q/m s
c

Q'l - q-l \mT/q
sc llchlw,Pc{(l‘gn-g||q : * g gllq,z)'lgn-cn]]q 5!
m / m+/q' m./q
. T e _r~ | T
e llegllep o manliegllh s Heyegllgly 1oz s 1T

where ¢ and ¢ are arbitrary elements of (Lq(z))N and the c's denote

various constants independent of g and g
Let K be the bounded, closed, convex sybset of the Banach
space V, defined by (3.7.8). We denote by T the mapping T:K -

V which results from the following composition
=B 05 0 ;

where 7 : K+ (L'(g))  1is the restriction of the trace map ¢ to the

L] -

o X My 2 0 M0 X

1 8 8 3 v 1
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T set K; ¥ : Rg(Y) - Sy is the restriction to the range of Y of
o -
w4 the map ¢ defined above; and B : Rg(y) -~ V is the restriction
g to the range of T of the map B defined in Lemma 3.7.1.
"~ Since the maps B and ¢ are continuous and the trace map
o Y is compact (note that m,, my < 3 and q < 4 if N=3) then the
4 |
map T is compact.
3_:: In order to apply the Schauder's fixed point theorem (see,
‘ e.g., Oden [1986]) in the existence proof, we need now to show
o
ﬁ that a constant C exists such that, if (3.7.7) holds, then we can find
R > 0 such that, witn K given by (3.7.8), T(K) C K, i.e.,
v
. *
+ e )-w' il sR Vi ex, (3.7.9)
i where y* is an element of V satisfying (3.7.6).
Let u* be an arbitrary element of K and let u = T(g*) =
*
rf Blo(r(u))E V.
From the definition of the maps B, ® and Y and from the
! variational statement (3.7.1),it follows that
. . * M1
a(u,v) + <P(u),v> = <f,v +f crllup-9),1 'n = vyds,
I
o
*
- for every v e V. Letting v = u-w and adding and subtracting
-~ %*
- a(w , E-:l*) we obtain
e * * m
= alu-w, u-w) + [ collu-9) 7 Mu -9)
. A r
o
':P' * * *
0 =a(w, w-u) + <, uew o
7
' + . ¢l (u -9),] (up-wy) ds
C
o
=

X T N -"\_ . BT e e et
R e g A e g T
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Using the V-ellipticity property (3.3.9) and continuity (3.3.8)

m
of a(+,+) and the fact that [(y)+] n y 2 0 for every y € R, we obtain

* t 4 * mT 'k‘
Hu-w [| s Callu-w (| "+8 Wu€&K. (3.7.10)
Here we used the notations
N
o eglla g
e (3.7.11)
Hell, + Mallw*ll
B = = =
@a A J

and C1 = CI(Q’Z’ FC’mn’mT) is a constant.
For reasons that will become clear later, we introduce

another constant C0 satisfying

C1 < CO . (3.7.12)
Clearly, we also have
* * % mT *
Hu-wll < Coallu-w'll " +B8 WV u €K. (3.7.13)
Denoting x = || u*-w*|| , a sufficient condition for (3.7.9) to hold,

with some R > 0 , is then

m
CoAx | +B R W x € [0.R]. (3.7.18)

We study now what conditions on A and B are sufficient
for this inequality to hold.

The trivial case A=0 (”CTH::.TC = 0) leads to the condition
Rz8 which can always be satisfied by some R > 0.

In the case A > 0, we consider first the particular case

~ S S e S RN SR Ol e R R N LN
.r .r.'- .‘ it -r.-q".,,f.- “ -"J'._f.f.x\.._- A
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| .‘
{: mT = 1. In this case, a sufficient condition for (3.7.14) to hold is :
~. )
! A < l/CO .
hY The constant C in (3.7.7) can thus be chosen as
) C = 1/¢ 7 :
> = 1/C, (3.7.15) ‘
8:; and the radius R in (3.7.8) can be any number satisfying
ol .
CU4R+B$ R (3.7.16)
Sﬁ i.e., R 2 B /(l-COA). In the case mT>1, sufficient conditions
i for (3.7.14) to hold can be interpreted geometrically as follows )
;
l':' m
(see Fig. 3.7.1): the curve y=C0A X T4+ B must intersect the line y=x.
ii The condition for the existence of such an intersection is
Mr
;% COA Xg + Bg x0
[y ‘
d mrt
! d_X (CoA X +B ) _ =1
X=X
; 0
b
o . . My :
i? i.e., the point (XO, CoA xg + B) at which the tangent to the curve y |
o m
= COA x T +B is parallel to the line y=x, must be below or on
-
- the line y=x. An easy calculation leads to the following condition
- !
onA and B ) :
o (m_-1
3 el (m-1) T 1 :
AB < —_— M . 'C—
mT T 0
by
{‘ 3
The constant C in (3.7.7) can thus be chosen as )
i (mT-l) mT *
C = [(mp-1) /my ] ‘(l/CO) R (3.7.17)

it
-

-

C Mt m s a s mm - - - - . . . . - - S e e e M et ettt e LIPSL R o™ -
O N P I R I R P PL b O L A RN O R R R G R NI G s RRNEY
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Figure 3.7.1. Geometric interpretation of the suff
Aometric |1 T(K?C g e "‘T ¢ 1u icient conditions on
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and the admissable values for R in (3.7.8) are R & [Rmin’Rmax]’

with R . and R denoting the x (or y) coordinates of the points
min max

of intersection (see Fig. 3.7.1), and Rmax being always strictly

positive. Equivalently, the admissable values of R satisfy the

inequality

CART
AR 4BSR. (3.7.18)

We have thus proved that, if condition (3.7.7) is satisfied,
there exists a set K that is nonempty and such that T(K) C K. The
Schauder's fixed point theorem implies then that there exists

a uOE, K such that

-~

Yo = T(uo) = B(&(¥(uy)))

i.2., (3.6.1) holds. This complietes the proof of existence.

We now prove that for sufficiently small data (condition
(3.7.7) with an appropriate choice of the constant C) the solutions
to Problem 3 are unique <in the set K where existence was just proved.
Let Uy, up € K be two solutions of Problem 3. Taking goin
(3.6.1) successively equal to uj and Y2, subtracting the resulting

equations and letting v = u; - uy we obtain

a(gl - Yo, _!1 - 22) + <P(!l)-P(EZ), Y1 - Us~

+ <Jn(gl)-Jﬁ(52), u, - up” = 0

Using the monotonicity of the operator P, the V-ellipticity of

a(., ), the definition of the operator Jh and an estimation of

]

xR R X £ M A

B n? e u? ” . ® T A BB B Y

LY

-

.
N
1
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the type in (3.4.29) , we obtain

J
HCT Ilwifr

Hul—uzﬁl s G 7a.
2 (3.7.19)
Mo-1 ,mr-1 ,
. (llgl-ﬂ*li Lt llgz-y Ty lug-uoli®

where C, = CéQ’Za Te.m ) is a constant. Since both 4, and yp

n»Mr
are elements of K, it results that

mT'l 2
- - <
(1-CaR " Jup-u,ll "< 0.
In the trivial case A=0 (l|icqli, = 0) this immediately
¢
implies uniqueness of solution (consistent with Lemma 3.7.1).

I[f A#0, we have from (3.7.16) or (3.7.18)

-l 1o 8 1
R gCOA (1 R)ﬁ'cai\—s
and then,
¢
9 2

from which the uniqueness follows if CO satisfies:

C2 < g (3.7.20)

We can thus conclude that the constant C in (3.7.7) sufficient

to have existence and uncqueness o4 solution {n the setK is

I/CO if mTz 1

€= (m-1) m,
((mp-1) /My 1(1/Cq) if mpel

where Cq satisfies simultaneously (3.7.12) and (3.7.20), i.e.,

AN
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wh
i T
R
g C1 < C0 o
C2 < CO 3
n . ,
KN and C1 and C2 denote the constants in the estimates (3.7.10) and A
‘
- (3.7.19). This concludes the proof of the theorem. __ ,:
Y ()
: K]

Remark 3.7.1. Sufficient (not necessary) conditions for

) ¢
S} (3.7.6) to hold are the following: ,
- 1,1 i}
g QE&€C* and (3.7.21) ~
} _
Qﬁwn = (¢ € H(I')|£=0 a.e. on Tp} (3.7.22)
[ 1%,
ket het

KT Under condition (3.7.21), the normal trace of any function v .
i € V belongs to W, }.,,
) &y new o
3 Yn ~ — ¢ ~ ~ n 5 "
3 A
b and Yo maps V onto wn (see HUnlich and Nauman [1978, Lemma 1.5, W
page 213]). Consequently, for any g satisfying (3.7.22) there =

e

exists a y_J*E V satisfying (3.7.8). 10

1£-290
s

Remark 3.7.2. No assumption on the sign of the initial

gap g was made in the above. The conclusions are thus valid both

x4
I
)

in the case of positive gaps (initially separated bodies) or negative

gaps (prescribed indentations of the elastic body by the "foundation"). -

| S
Lt 2 ]
)Y

However, in order to be guaranteed of the existence of steady-

ﬁ sliding solutions, the size of the admissable gaps is restricted j:.'
by the assumption (3.7.7) that involves the norm of !*E V such :

H that \g*- n=ga.e.on ¢ (3.7.6). .
e

2 NS

oA
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Here, we remark that if g30 a.e. on T c» o restriction
on the size of g is needed to obtain an existence and uniqueness
result similar to Theorem 3.7.1. In fact, we only have to observe

that for given y20 and m2l, and every x € R :

[(x-y) "
[ey), s Ix"

Consequently, by taking v in (3.7.1) equal to u (instead of g-g*)
we obtain (instead of (3.7.10))

4 mT
Hull s CiAdflu Il * + B
with
(BRI

a
a

Also, the estimate (3.7.19) can be simplified to

el
2 T'= T¢
[up=Yall © s G, 73,

m.~1 my-1

Clugl T s fuy T ) flug=upll®

With steps similar to those in the proof of Theorem 3.7.1, with

assumption (3.7.7) being simplified to

me-1
aa ¥

and with no need to assume (3.7.6), it follows that a unique solution

to Problem 3 exists in the set

----

L

AW T

- -

]
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b
Remark 3.7.3. Similar existence and local uniqueness results
g are proved in Rabier, Martins, 0Oden, and Campos [1986] using the
. Implicit Function Theorem. Since compactness is not required in
K5 the proofs, those results apply also to the limit case max{mn,mﬁ=3
Eﬂ with N=3. Since it is assumed that g20 on r¢, NO restrictions
- on the size of the initial gap are required, which is consistent
g with Remark 3.7.2 above. Since differentiability is required in
the proofs, those results do not apply to the limit case min{mn,mT}=1.
32‘: Otherwise, the assumptions in that work are similar to those here,
h particularly: small applied forces (f) and arbitrary friction
i (CT)’ or small friction and arbitrary forces. In the first of
. these cases it is shown that the assumption of smallness of the
:- forces can be partially relaxed: only the smaliness of the action of
f on elements of V with non-vanishing normal traces on c is required.
A =
3.8. An eigenvalue problem.
)
": We are interested here in the analysis of the dynamic
- stability of the steady sliding equilibrium positions Ug- We
N,

restrict ourselves to two dimensional problems (N=2) and we assume

m mT>1. A natural idea is to study the behavior of a linearized

version of (3.3.13) for the displacement-velocity pairs in a small

f‘ neighborhood of (ug,0)€ VxV. As in Section 3.5,we assume that b, t,
and y? are independent of time and that u% is different from zero
i everywhere on I‘c. Considening only velocities that are supficcently y
-
. D
57 o
e k
l4 *

R R s
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)
g regulan and emall that the nelative sliding velocity on I is nowhere ¥
Ly

equal to zeno, denoting w(x,t)s= u(x,t)-uo(x), and observing that P .'

nz Nz Yor2 "

M and Jn are continuously differentiable in V, we are led to the -
¥

i, (%
gormally linearized version of (3.3.13): ::

}

; - ;
(W(t),v) + c(w(t),v) + a(w(t),yv) v

@ + <DP(9_0) -!(t),\i) + <D.Jn(go) cw(t),y> =0 VYvEV '::
. ,
- . l|
& where DP(EO)E L{v,v') and DJn(yo) € L(V,V') denote the derivatives of :‘
P and Jn’ respectively, at Ug € V. ‘

3

Working now with the complex numbers field, we define the Y

Aesquilinean forms:

3g(2,¥) = fQ Ajgkt 2,1 Viyg O i

o2&
i"’, Y.

. co(z:¥) = & Cijkr %, Vi, 9% g
bt h
LYy :';
- for every z and v in the space V (now a space of complex functions). -
'f- Here, superimposed bars denote complex conjugation, VaS¥rconon FC, £
§

e Kn denotes the linearized normal stiffness of the foundation.at.the "5
'2 equilibrium posiiton Yo and KTn denotes the coupling stiffness.coef- .
;;,‘ ficient between normal displacements and tangential stresses, ::
» . o R
also at the equilibrium position Yoo i.e., "

Wi

- ;}

-
A
.,
~ar - P P S S D e R R

_.'..‘ i - - " -~ * ‘- - » ! .. . : S
Ol AL N AR AR W S N e Pl P b M W PP

» AIONOA
‘,';‘,\7_!",'_‘,f,}a“.l-.“h',M
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@ mn-l
Kn = M Callugn9),]
' mT-l
‘ Krp = -Mp ¢qllugn-9),]
o
3"; Assuming solutions of the form w(x,t) = W(x) e)‘t we are led to the
[ ~ ~ ~ .~
nonsymmetric eigenvalue problem:
§: Problem 4. Find € C for which there exists WSV, W#Q such
W that
ag(W.v) + A collyy) + N¥(Wy) =0 Yy <V (3.8.1)
"
r::] Here the H-inner product is now (z,v) = | z, 71. dx , u,v =H.
i 0 ol
i Remark 3.8.1. Sufficient conditions for the above foxmaf pro-
2 cedure to be rigorous require additional study. In the (finite i
-~
CD dimensional) rigid body case to be presented in the next chapter a i
similar linearization procedure is rigorous. Occurrence of some .
e eigenvalues of (3.8.1) with positive real parts suggests instability
@ of the steady-sliding equilibrium, and occurrence of negative
l‘.
.‘}
real parts for all the eigenvalues of (3.8.1) suggests a stable
5 steady-sliding equilibrium. i__ .
N \._
iy Remark 3.8.2.  The continuous differentiability of the v
" ")
e operators P and Jn can be proved directly using estimations of the
| type used in earlier sections of this chapter or using general ot
[ S >
‘ '-' ‘e
results on the differentiability of functions in Lp-spaces (see -
;i' Rabier, Martins, Oden and Campos [1986]).
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CHAPTER 4

A RIGID BODY MODEL

4.1. Governing Equations.

AT

We consider here a rigid block (see Figure 4.1.1) with

o7

dimensions LxHxB, weight W, mass M, moment of inertia with respect

to the axis through the mass center I=M(L2+H2)/12, restrained by a

N3

horizontal arm with elastic stiffness Kx(>0) and damping coefficient

Cx( 2 0), and sliding with friction on a surface which moves with

. ‘4.&1:‘

a prescribed tangential velocity UE . The block 1is supposed *to
- have plane motion, the correspcnding degrees-of-freedom being: the

tangential and normal (penetrating) displacements of the center
' of mass G(ux and uy, respectively) and the rotation (ua), as depicted

in Fig. 4.1.1. The rotation Uy 45 assumed to be smafl so that sin u.=

tan Uy Uy and cos uezl. Along the flat candidate contact surface '—C
. the contact laws (2.5.2,3) are assumed to hold. In view of the
T geometry of the present problem, and assuming zero initial gap,

it follows from the normal contact equation {2.5.2) that the vector

xx3

of generalized forces L associated with the normal stresses on '-C

3 satisfies, at each time t,

..

. -2, (t) = P(u(t)) + Qu(t),u(t))

oS t 3, -
where u( [u (t), u (t), u,(t)]" € R’ is the vector of generalized

iy displacements at time t, and

.

Lo n Ly

g N
Ll _."e,'?ptl'nA'An,lb.,i"fl,.’t!v?6‘|tl!:!l’a“l Y
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Geometry and degrees-of-freedom of a rigid block sliding

with friction on a moving foundation.

Figure 4.1.1.
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3 L/2 M 0\[
w€ R+ P(w) = Bcn J [(wy-xw )+] 15 dx (4.1.1)
- - L2 ° -xj
R3xR3 B [ ) ]"( ) i 4.1.2)
s R™ -~ ’ = Bb = - d B
(f X) € Rx 9_(‘1‘ Y.) n_{/zt wy xw@ +:l vy Xv@ -x X (

On the other hand, from the friction law (2.5.3) it follows that
the vector of generalized forces Ir associated with the friction

astresses on I‘C satisfies at each time t
-L(t) € J(ult),u(t) - &(t))

where
303 H 1| L2 My
(w,v) € RxR® > J(w,v) = Bcy sgn(v.+5 v_X 0 »/ [(w -xw ) ] 'dx(4.1.3)
D I A S T x 2 01, y o'+
H/2)-1/2
) US(t)
te [0,T] » d(t) =

OO Xx N

1 if €
ECR ~sgn(g) ={[-1,1] if¢g
g

N H vV

0
0
- i 0

3

For this system the motion t € [0,T]+ u(t) < R” has thus

to satisfy, for a.e. t, the following differential inclusion:

13 4
(X =41
—
(a4
+
¥ e}
(X =]
—
ot
+
ux
—
[ad

+

u
(u(t)) + Qu(t), B(t)) (a.1.9)

and, at t=0, the initial conditions

u(0) = Uy, U(0) = U, . (4.1.5)
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-?_',‘ Here M, C, K€R3xR3 denote the symmetrdic mass, linear damping and lin-
] T = =
s,
ear stiffness matrices and f(t)E,R3 denotes the vector of applied
!! forces at time t. The matrix M is positive def«ncite and the matrices
N =
C and K are posditive semi-definite. The form of these matrices and
g%
;; vector in the present problem is
iy MO0 C 00 €, 007 {o“:
W M=y OMO}|;C=]000};K=1000"; F(t) = ¢ W»-(4.1.6)
N 001 - 0 0O - 0 004 v\O’j
& The problem defined by (4.1.4,5) is the rigid body analog

of Problem 2 in the previous chapter.

{ .
N For given FE R3 and Ufé R -{0}, both independent of time,

i the rigid body analog of Problem 3 consists of finding Ug 3 satis-
fying (set u=i=0 in (4.1.4)):

o P F 4.1.7

= Kug + Plug) + 3 (yg) =°F (4.1.7)
where

! 3 of 1) L/2 my .

o, WER™s J (w)}==-Bc;n 0 f [(w -xw )+] dx(=J{w,0-3)) (4.1.8)
~ ~n o~ wel -2 Y @ DR

?,'

and

- def sCy _ ~C,°C,  °C

¥ m== sgn(U;) = Us/[US] , US # 0.

-, _ 3. ‘ _

D Remark 4.1.1. For every ve Né(g) = {v&R .|vx|+!vy|+[v3;<5_

-

:l.JEi/max(l, H/2): we have |vX+(H/2)v91 < \bg so that sgn(v +(H/2)v, -

s
1,

05) = sgn(-U5)=n , and 7 (w,v) ERPN(Q) J(w,v = 3 ) = J (W), e,

for (w,v) in a sufficiently small neighborhood in the phase space R3x

~ o~

W
<
|
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R3 of the equilibrium position (uO,O), J(w,v-%) 1is single valued
and independent of v (velocity). For mn,mT,1n>1 it results that
P(«), Q(«,*), Jn(-) are continuously differentiable in a sufficiently

small neighborhood of the equilibrium position. —

In a sufficiently small neighborhood of the equilibrium

position (uO,O) the differential inclusion reduces to the equation

MU+ CG+Ku+Plu)+Qu,u)+J (u)=F. (4.1.8)

x ~ T o~ T 0~ ~ o~ ~ e A ~n~ ~
With mn,mT,ln > 1 and taking w(t)=u(t)-uO we obtain the linearized e-
quation

LR REEY (6.1.9)

where

o v cQuy)

= = s 0~ (4.1.10)

def P Q J
50=§ +_§ (!o) "‘5 (30’9) + 50(!'0)

and, for (w,v) in a small neighborhood of (uO,O)E R3xR3,

~

Ca0LE 2wy Q= L gy
=0, if v=0 (4.1.11)
Jyrdef s
5r1‘(~)—3\:4_ ~n ~)
e ‘
* 3w g(y,g)i .
v J
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,;._ The rigid body analog of Problem 4 consists thus of seeking
g

AEC, !€C3, W £ 0 such that
> [Ky + A Co+ A MW =0. (4.1.12)

4.2. Steady-sliding equilibrium and linear stability analysis.

'-;J':

4.2.1. Nondimensional form of the equations.

o,
T4 Assuming, for definiteness, OE > 0 (n=+1) and introducing the nondimen-
1508 sional variables

=u /X, =u /Y ,u =u_ L/Y, 4.2.
. Uy u/ uy uy/ uy = Uy / (4.2.1)
S
L with

i X = N/KX . (4.2.2)
l/mn

Y = (N/anL) . (4.2.3)
:.-
> the equilibrium equations (4.1.7) become
| w. =f+ 10 ) (4.2.4)
ry x0 Xyl “99 T

P

} =

- Iy(“gO’ Uy 1 (4.2.5)
g P fohd -

I@(uyO'UOO) -3 Ix(uyo,ueo) =0 (4.2.6)
~
- where we introduced the nondimensional parameters:




Foss

P

A

|2

and the functions

+4 m
(ry ) € R = Tilwymg) = [ Clwyt ), 1T g
) m
(w0 ) € R« 1) = _f; [(w,-5 wg), 1" a
3 m
(wo ) € R o T8 ) - I; (w5 wy), 1 "(-E)cE

The parametens govenning the steady-s€iding equilibrnium prob-
Lem are thus the powens my and mr the fgriction parameten f and the
geometnic parameten h.

With respect to the eigenvalue problem (4.1.12),we observe

C M_ =0, so that the

nyzKG)xO= yx0=cox0=Myx= Ax
characteristic equation for (4.1.12) decouples into

that in the present case K

2y -
K+ A Co+agM=0 (4.2.9)
* * * *2 *
det(Ky+ A\ G+ A M) =0. (4.2.10)

Here, the superscript * on a matrix denotes the submatrix associated
with the normal and rotational degrees-of-freedom.

From (4.2.9) it is clear that the eigenvalues associated
with the tangential motion are always imaginary (Cx=0) or have
negative real parts (Cx>0).

In order to study the stability of normal and rotational
motions, it is convenient to use the nondimensional variables

u o and y (see (4.2.1) above) and the nondimensional eigenvalues

y0 0
*

LT A /wyO (4.2.11)



;ﬁ where Ly0 denotes the frequency of the free normal oscillation
L
* of the block for the linearized normal stiffness at the (frictionless)
!a equilibrium position ug0= uyO/Y=1, i.e.,
m -1 3
;? wyQ = (mn Ch BLY /M) . (4.2.12)
qu!
* The characteristic equation (4.2.10) becomes then
o 1 W fm,h 1
o +3 m-li1-g mh +} M=t o
' det| [~ [aq(£)] " [ 2 tdg - T fan(e)] . dr
0 - 2m_ 0's i1 - TS
. t(é ge ] n Ly 1-g
ié - _ (4.7.13)
~ r+5 ]nrl -ij 2i l 0
+ 2702 _,’_é (a5(8)] l_‘i 52_j e A LO (1+h2)/12_, =0

h i =
where we have used the notation ao(g)-(u.go -£ “@0)+ and we have

i introduced the interface normal damping parameter
( ;n+1/2)/mn-1

~ VM oy (W
;\: Z = v—— ) \TB—L—
R v C (2 +1/2)/m_

n

. It is clear from (4.2.13) that the parameteras that govean tne

My and

;:', 1,» the friction parameten f , the nowmal damping parameten 2

Linean stability o4 zthe steady-siiding are the powens Mo

and the geometric parameter h. It is also clear that the contribution

o 04 the frictional nesistance L0 the edgenvalue prcblem (4.2.13) 4b

a nonsymmetaic matndix.

4.2.2. Numerical results

A In order to study numerically the steady-sliding equiiibrium

- and its linear stability we first select wvalues for m My and

h and solve the problem (4.2.4-6) for increasing values of f in the
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range [0,F), where ¥ o= ?Kmn,mT,h) denotes the value of f for which
steady sliding equilibrium ceases to be possible due to the tumbling
of the block (for m =m; it is easy to see that f=1/h=L/H). For each
of the values of f considered and for some Tn and Z the eigenvalue
problem (4.1.12) is then solved numerically. For details on the
numerical computations see Chapter 5. For simplicity, we shall
restrict ourselves in the examples presented here to the particular
situation mn=mT=1n, hence fzu; for the study of some cases involving

m My see Martins and Oden [1986].

Typical results for the normal (uuo) and rotational (4., )
equilibrium displacements as the frictionv parameter is increased
are shown in Figs. 4.2.1 and 4.2.2. [t is clear that, as should
be expected, both ugoand ueogrow unboundedly as f approaches f.

In Figs. 4.2.3 and 4.2.4 we plot typical evolutions of
the eigenvalues A as the friction parameter f is increased, when
the normal interface damping 1is zero (Fig. 4.2.3) or different
from zero (Fig. 4.2.4).

It is clear that, in both cases, fon scme range of 4, the
nonsymmetny o4 the griction contributions in (4.2.13) ondiginates
edgenvalues A with positive real part, and thas implies the dynamic
(natability of the conrnesponding steady sdiding equidibrium positions.

These regions of instability are identified in the (h,f)-

parameter plane (Figs. 4.2.5,6) for some values of mn=mT=1n and z

Remark 4.2.1. For each h»>0, the regions of instability in

Figs. 4.2.5,6 are delimited from below by the values {f,) at which

by
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! Figure 4.2.3. Orthographic projections (a,b,c) and perspective (d) of
by the root curves of the characteristic equation (4.2.13)
for the admissable range of the friction parameter f <
W [0,1/0.45) with mn=mT=2.5, h=0.45 and Z=0.00 fixed. }
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a pair of conjugate eigenvalues A starts to have positive real
parts and from above by the values (fZ) at which such positive
real parts cease to exist. Since our numerical results were obtained
by incrementing the value of f without searching for the exact
values of fl and f2, these values are represented in Fig. 4.2.5
by the pairs of endpoints of the increments of f at which the
above mentioned transitions occur. For clarity, in Fig. 4.2.6,
the transitional increments' endpoints lying inside the instability
region are omitted.

We also remark that, if some eigenvalue of (4.1.12) bhas
a zero real part no definitive conclusion on the stability of
the equilibrium solution can be obtained from the eigenvalue problem
(4.1.12). Since we are mostly interested in showing that, for
some range of the parameters involved, steady-sliding is unstable,
we shall not pursue here the study of what happens outside the
region of instability in Figs. 4.2.5,6 when z=0 (recall from Fig.
4.2.3 that in those regions the eigenvalues A have zero real parts).
However.L5CX>0 and bn>0 (2>0), the points outside the neg<on 04 insta-
bility «n Fig. 4.2.5 comrespond to asymptotically stable steady-s€id-
<ng positions (all the eigenvalues of (4.1.12) have negative real

parts). (]

4.2.3. Discussion

We observe that the small rotations assumption adopted

in this work (recall Section 4.1) implies that, for f close to

NN s = | SRS
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f, the results obtained here do not represent the true behavior
of the system, since, for such values of f, large rotations do
occur., We remark that these limitations on the validity of our
results do not affect the fundamental observation of the previous
section, i.e., that for some range of f and appropriate values
of the other parameters, steady-sliding is not stable: as seen
in Fig. 4.2.2 and Figs. 4.2.5,6 the transitions on the nature
of the eigenvalues of (4.2.13) occur when the rotations Ueg are
still very small (note that for L in the range 1 to 100 cm and
Y in the range 0.3 to 10 um the rotation Uso would be in the range
3x10'7u@0t0 10'3 ugg rad). Only somewhere above the upper boundary of
instability in Figs. 4.2.5,6 the small rotations assumption ceases
to be valid. Furthermore, we believe that, in practice, the geometric
nonlinearity does not play any significant role in block-on-slideway
sliding systems of the type studied in this chapter: it is reasonable
to expect that no one would operate or run an experiment with
such a system allowing for the occurrence of large rotations.
0f course, the same may not be true in other circumstances, namely

with some pin-on-disk friction apparati having very flexible arms

and very small contact regions.

From Fig. 4.2.6 it can be concluded that, when the coeffi-
cient of friction is independent of the normal pressure, the specdidic
value o m (=mr) 4in the typical nange [2,3] does not affect conscdera-

bly the boundanies ¢4 the negion of instability.
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In Fig. 4.2.5 it can be observed that, for small values

1Y :_. ;)5.

of the geometric parameter h(=H/L), the interface normal damping

increases the value of the friction parameter at which the 1nstability

N &

initiates, i.e., it reduces the region of instability. However,

it is also clear from the same figure that the normai damping

moves up the upper boundary of the instability region, i.e., it

Q increases the region of instability. Hence, addition of normal
N interface damping in the form adopted here may indeed have a destabil-

izing effect on the steady-sliding equilibrium for some ranges

of values of the parameters involved. Situations of this type,

L:.'.:

in which positive viscous “damping” contributions may have a destabil-

izing effect, are common in nonconservative systems. Such effects

were first discovered by Ziegler [1952] and have since been analyzed

by various authors in connection with the study of critical loads

e aLs

for beams subjected to follower forces, stability of fluid conveying
pipes, panel flutter, etc. (see, e.g., the books of Ziegler [1968],
Leipholz [1970], Huseyin [1978] or Guckenheimer and Holmes [1983]).

g5 7Im

A detailed discussion of these effects in the present problem

falls outside the scope of this work. Here we only remark that,

A |

with a deformabfe block and even with no nowmal <interface damping, the

steady-siiding equilibrium is unstable in the region of the (nh-f)-

| VA

parameter plane where the destabilizing effects of the normal damping

are more significant (the region above the upper boundary of the

|2}

wg4d bedy instability), see Example 3 in Section 5.5.
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4.3.

4.3.1.

Low-frequency stick-slip motion and apparent

of kinetic friction.

Nondimensional form of the equations of motion.
We denote by T the nondimensional time

T = wt

133

reductions

(4.3.1)

and we choaose w to be the frequency of the free tangential oscillation

of the block, i.e.,

. }
w = (K /M)° .

(4.3.2)

Using again the nondimensional displacements Uy s ug and u, defined in

(4.2.1-3), the governing system (4.1.4) becomes

.
Mu'(t) + Cu'(1) + Ku(r)

+ Plu(1)) + Qu(t), u'(7))

+ Ju(r), u' (1) - @) 2F

J

0 0 100 Tz 00
2 | x |
s 0 ;K=]000|;C=2/0 00
0 s%(1+h%)/12 000 | 0 oj
1 m ol

;. [ag)] {1 ’d &

'é \_g/

+ 1 ro >

-2 (mn)l/253/2 i ra(g)] Mv w1 0 d

(4.3.3)

(4.3.4)

(4.3.5)

(4.3.6)

(4.3.6)
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[wX (4.3.8)

[0 Pk
EF= %5 . (4.3.9)
y

= &2 22

Here a(f£) = (w -€w ). , [ )' denotes differentiation with respect
y @ A <_,
[:, to the nondimensional time t, and, in addition to the parameters N
] :~:‘_
' f, h and Z defined earlier, we have introduced the parameters ::
' K 1/ e
m e

- S X /W NN
}“ s = Y/X = W \anU {4.3.10)
~ c !
f; R (4.3.11) oy
- 2y MK -
X .
F .
- The parameter s, hereafter called the stifgness parameten, ‘.'_.-‘.
N
measures the stiffness of the tangential spring relatively to 1:::3,‘.
the normal stiffness of the contact. In fact, s can be rewritten :.ﬁ
as s=mn(Kx/mncn B L Ym”-l) where Kx is the stiffness of the tangential
m_-1 RS
spring and mnan LY" is the (linearized) normal stiffness of the :}:
¢ contact at the frictionless equilibrium position y , = u_./Y=1. Note j
& y0 y0 :i
‘ that these two stiffnesses are equal when s=m.. The parameter z, is .

t:: the (usual) tangential damping parameten. T
L.' -'-u.
The initial conditions (4.1.5) become now ::-:
- Bt

K ul0) =, , «'10) = (4.3.12)
. o
' N
[ B T
s
l‘.h
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N —
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Finally we observe that, for computational purposes , prob-
lem (4.3.3,12) 1is regularized using the procedure employed in
Section 3.4. In the present chapter, € denotes the nondimensional neg-

wlarnization parameten (e =(dimensional e JAuX]. At _ (A ) denotes the

T
max max

dimensional (nondimensional) maximum time step for the numerical

integration of the equations of motion (see Chapter 5).

4.3.2. Numerical results and discussion.

A complete qualitative study of the system (4.1.4,5) is not
available yet3. Here we'present several numerical studies designed
to reveal the effect that some of the governing parameters have
on the behavior of the system and, whenever possible, we qualitatively
compare our numerical results with experimental observations.

First we consider briefly what happens when the coefficient
of friction is sufficiently small that the eigenvalues f.(equation
4.2.10) are pure imaginary (in the absence of any normal or rotational
damping). In the remainder of the section various situations
are considered which involve coefficients of friction sufficiently
large that some of the eigenvalues X* have positive real parts.
The resulting low-frequency stick-slip motions or apparently smooth
sliding motions are then described and the effect of the normal inter-
face damping on these behaviors is pointed out. The dependence
of the stick-slip amplitude and frequency on the driving velocity

and the stiffness parameter is also studied. Finally various cases

3Existence and uniaueness of solution to that problem can, of
course, be proved using tectniques similar to those used in Section 3.
4. For an outline of the proof see Martins and Oden [1986]. o

S B S S T L



136

t; are studied for which apparently smooth sliding motions at apparent
»
ki
ol coefficients of kinetic friction lower than the coefficient of
!! static friction are obtained. The corresponding plots of the varia-

tion of the apparent coefficient of kinetic friction with the
gs average sliding velocity are presented and interpreted.
15 The small friction case. We first consider a case for
P .
3 which the steady-sliding position corresponds to a point outside
ﬁg the instability region depicted in Fig. 4.2.5 for Z = 0. The data

used is the following:
b ]
22 M 2..2 5 2
b M = 450 Ky l=15 (L"+H™) = 1.242 x 10” Kg cm”
i c, = 0.0

K, = 1.11 x 10'kg 57
i
35 _ 1al3 -3.5_-2, _ _ . - .
¢, = 10°° Kg ¢cm S s Mmy =My = 2.5; Cr=u Cpsu = 0.15

e L =48.8 cm; H = 30.5 cm; B = 30.5 cm
)
~ W=4.5x 10 Kg cm 572
ﬁs ¢ - 0.08 cm s}
. X
- ., . T . - -1 t
. Ug = Ypi Yy = (0.0, - 0.01 em s™", 0.0}".
< -5
8 Atmax =1x 10" s.
f§ Note that this data corresponds to a point (h,f) = (0.625 , 0.15) in
Fig. 4.2.5. The initial conditions indicated above correspond
X
i' to a small perturbation of the steady-sliding equilibrium position:

o

e
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P
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~
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[ a small normal {upwards) velocity.
In Figs. 4.3.1 and 4.3.2 we show phase plane plots of
ga the resulting normal and rotational oscillations. Despite the

complexity of the resulting oscillation its ampfitude (for a small ini-

% tial perturbation) 44 small and does not grow with time. At all in-
stants the body remains sliding so that the instantaneous ratio
S? friction force/normal contact force is equal to the coefficient
of friction 4=0.15 and, in average, the ratio friction force/normal
g% load (weight) is also equal to that coefficient. Since the amplitude
= of the oscillation is small its effect on the tangential displacement
L".

trace is small (<0.2%) so that the perturbation of the steady-sliding

does not have a significant effect in the present case. Furthermore,

if some damping were taken into account (CX>0, bn>0) this oscillation

would be damped out and the steady-sliding would be essentially

2

attained after a period of time.

Low frequency stick-slip motion and apparently smooth

sliding. More interesting situations arise when the data is chosen

S 4l

such that the steady-sliding equilibrium {is unstable. In the

A

examples studied in the remainder of this section the following

A

commin data has been used
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In the computations described next we used, in addition, ;
L\ ¥
the following data ¥
o s = 0.01 (4.3.14) "
L]
§ z, = 0.001 (4.3.15) .2
z = 0.01 (4.3.16) "
1y C -
u 0.1 4.3.17
b e/u'y s (4.3.17)
Y AT PR (4.3.18) :
a max * 100 wyo i ;
. and various values of the driving velocity U'i as indicated on "
rA X
T the fiqures. The initial conditions were the following v
) U.q= U U,su,+Pu Uay = ::
x0 x0 y0 go Y U.@o LL@O , X
_ (4.3.19) ,
1. %, @ 9, .
= '3
- where pug is a small normal displacement perturbation:
]
g Pu, = -0.01 or -0.001 . (4.3.20) !
N
ﬁ The values of s and z,  considered above are "in the small range" "
and the initial conditions (4.3.19) correspond to a small normal
st
R’ perturbation of the steady-sliding equilibrium state.
iy
- b}
The following remarks give a summary description and :
~= .
E interpretation of the numerical results obtained for the conditions }\
indicated above:
o] -n
iy (i) Due to the instability of the normal and rotational ™
]
N modes, the normal and rotational oscillations grow {see Fig. ::
By - .
ﬁ 4.3.3) I
N
o .
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(ii) The variation of the normal force on the contact

f?‘i"

produces changes in the sliding friction force which in turn produce

a tangential oscillation.

58

{iii) The tangential oscillation may then become sufficiently

large that, for small values of the driving velocity u'i the points

555

of the body on the contact surface attain the velocity U'S and the
body sticks for short intervals of time (see Fig. 4.3.4).

(iv) With the growing of the normal oscillation actual

s 25

normal jumps of the body may occur (see Fig. 4.3.3).

(v) The repeated periods of adhesion have the result

A%

of decreasing the average value of the friction froce on the contact

and, due to the absence of equilibrium with the restoring force

L

on the tangential spring, the tangential displacement of the center

of mass decreases (see Figs. 4.3.5 and 4.3.6).

(el

(vi) Then, one of the two following situations may occur:

o

(a) gon values of u’x Largen tnan some critical value,  the

normal, rotational and tangential oscillations evolve to what

&

X

appears to be a steady oscillation with successive periods of

adhesion and sliding, the average values of the friction force

LA

and of the spring elongation being smaller than those corresponding
to the steady-sliding equilibrium position (see Figs. 4.3.5 and
4.3.7 to 4.3.10).

(b) forn values of U’S Lowen than the cnitical value, and at a

sufficiently small value of the spring elongation, the normal

interface damping is able to damp out the normal (and rotational)

e
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oscillation (see Fig. 4.3.11) and the body sticks (see Fig. 4.3.6)
since the restoring force of the spring is then smaller than the
maximum available friction force.

Thus, monditoning the sprning efongations, as 48 often
done 4in {grniction experiments, case (a) would be perceived as an
apparently smooth sfiding with a coefficient of hrinetic frniction
smallen than the coefficient of static friction and case (b) would

be perceived as a {Low-f{requency) stick-s8ip motion.

The role of the normal interface damping. [t is clear from
the results presented above that for "small" tangential stiffness
and damping, the size of the driving velocity plays an important
role on the occurrence of low-frequency stick-slip motion or appar-
ently smooth sliding motions. [t is also clear that when a Tow
frequency stick-slip motion occurs the normal oscillation that
accompanies the sliding phase of the stick-slip cycles is damped
out when the spring elongation is close to its minimum. The role
played by the normal interface damping on the qualitative behavior
of the rigid block is made clear in Figs. 4.3.12 and 4.3.13.
The values used in the computations are those indicated in (4.3.13-
15) and (4.3.17-20) but now we fix U'S = 0.0l and we vary 2 as indi-
cated on the figures. In Fig. 4.3.13 it can be observed that,

for very small or null interface normal damping (2=0.002 or z=0.000)

an apparently smooth sliding motion is obtained. As the interface

normal damping is increased (z=0.005, 0.01, 0.02, 0.05) a low fre-
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quency stick-slip oscillation is observed. The amplitude of that
oscillation decreases with the increase of 2 as shown in Fig.
4.3.12. The steadiness of the normal osciliation when 2=0.0 and
the intermittency of the normal oscillation when low-frequency
stick-slip motions occur (Z=0.01 and 2=0.05) 1is made clear in
Fig. 4.3.13. The decrease of the amplitude of the normal oscillation
when Z is increased can also be observed on the same figure.
The phase plane plots of the normal oscillation and of the tangential
oscillation of the points of the block on FC when z=0 are shown in
Figs. 4.3.14,15.

From the observations above we conclude that some normal
interface damping is needed for the occurrence of low-frequency
stick-slip motion. In physical terms, this means that some plastic
deformation (penetration) of the interndace must occur at the end
0f the s€iding porntion/beginning of the stick pontion of the stick-
s8ip cycles and <t 48 that plastic defonmation that (s nesponsib’fe
gon the damping of the nonmal cscillation.

Figure 4.3.13 suggests another comment: the form of the
decay of the normal oscillation at the end of the sliding portion
of the stick-slip cycles reveals in a clear manner the viscous nature
of the nonlinear term in equation 4.1.4 that is responsible for
that dissipation. Experimental observations of the same phenomenon
with actual metallic surfaces may suggest more appropriate forms

for that normal dissipative term.
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The effect of the stiffness parameter and the driving
velocity on the amplitude and frequency of the low-frequency stick-
slip motion. In order to study the influence of theseparameters,
we fixed the data (4.3.13)(4.3.15,16) and (4.3.19) and we assigned

to s and U’C various values in the small ranges for which low-
X

2 =2

frequency stick-slip motion 1is observed. In Figs. 4.3.16 and

R

4.3.17 we plot the amplitudes of the Tlow freguency stick-slip

oscillations against the driving velocities for each of the values

@ considered for the stiffness parameter. The nondimensional amplitude
:j Aux and the nondimensional driving velocity u'i are used in the
& plot of Fig. 4.3.16. In Fig. 4.3.17 different nondimensional
i variables are used: the amplitude bu, /s(=Aux/Y) and the driving

velocity u'g Ns (= Ggl\fg_Y) where Y is the gquantity defined in (4.
,'g , 2.3) and g(=W/M) denotes here the gravity acceleration. The plots of
) Fig. 4.3.17 represent thus the behavior of the dimensional amplitude
!_ Aux when the changes in s and U'i result from changes in K and UC

respectively, while using the same body and the same contact surface
' (the same W, the same M and the same Y). The decrease o4 the dimen-
sdonal stich-sLip amplitude with the Lincrease o4 the tangential Ati4é-

) ness can be observed in Fig. 4.3.17.

K

For the range 0.0004¢5s50.01 of the stiffness parameter,

-

the amplitude of the Low-grequency Atick-s€ip motion decreases only

s8ightly with the increase 0§ the drniving velocity,which appears con-

v
®
A

= sistent with the small slopes of the amplitude-driving velocity plots b
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Figure 4.3.16. Amplitude of the low-frequency stick-slip motion (Aux) vs. driving velocity (U
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at small driving velocities, obtained experimentally by several
authors (Rabinowicz [1965], Brockley, Cameron and Potter [1967],
Kato and Matsubiashi [1970]). Also in agreement with some experi-
mental observations (recall e.g. Fig. 2.2.1) the transition from Eow-
dnequency stick-sLip motion to apparently smooth sliding 45 abrupt.
For small tangential stiffnesses, the critical driving velocity at
which that transition occurs is not very dependent on the stiffness:
a small decrease of the dimensional critical speed Uf with the
increase of the tangential stiffness is observed in Fig. 4.53.17.
Finally, we observe that the larger stiffness parameters
considered (s=0.025 and s=0.035) correspond to a transition be-
tween the range of values of s for which low frequency stick-slip
oscillations occur at 1low driving velocities and the range of
values of s for which no low frequency stick-slip motions can
occur at any driving velocity. For these values of s an increase
of the amplitude of the stick-slip motion with the increase of
the sliding velocity can be observed in Fig. 4.3.16, and this
is followed also by an abrupt transition to apparently smooth
sliding motion at some critical driving velocity. Although increases
of amplitude of the stick-slip motion with the driving velocity
are not frequently reported in the literature, we observe that
in some cases such phenomenon has indeed been observed: as an
example we mention the work .f Brockley and Ko [1970], (in particular
see Fig. 13, page 555 of their work for the small velocity range at

which the friction induced oscillation has a saw-tooth wave form).
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In Fig. 4.3.18 a plot of the variation of the nondimensional

stick-slip frequency with the nondimensional driving velocity u'i

is presented. The nondimensional stick-slip frequency is equal to

the ratio wssﬁu where wss denotes the dimensional (rad s'l) stick-slip

frequency and w denotes the frequency of the tangential free oscilla-
tion (4.3.2). For the small stiffness parameters (s=0.0004; s=0.0016
and s=0.01) an essentially Linear nelationship between the stick-sLip
grequency and the drniving velocity 4is obtained which results from the
small dependence of the stick-stip amplitude on the driving speed
(Figs. 4.3.16 and 4.3.17) and which also bears some similarity
with the results of Dokos [1946] (recall Fig. 2.2.2 in Chapter
2). In Fig. 4.3.18 it can be observed that the low-frequency
stick-slip motion ceases when its frequency is still well below
the natural frequency of the tangential motion. Situations of
this type have been reported by Kato and Matsubiashi [1970] but, as
observed in Chapter 2, it is frequently observed that the 1low
frequency stick-slip motion persists up to the natural fregquency
of the free tangential motion. At this point it s unciear, iT
for some values of the governing parameters, our interface model
and the rigid block considered here may simulate such a benavior.

See Section 4.4 for further related discussions.

The apparent coefficient of kinetic friction-sliding velocity
plots for the apparently smooth sliding motions. For "small"

stiffness and tangential damping parameters and with a small driving

A L] )
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velocity a low frequency stick-slip motion 1is obtained while,

! with a large driving velocity, an apparently smooth sliding results.
& It is also known that two means for obtaining experimentally a
‘ smooth sliding at low sliding speeds are: the use of a very stiff
'g tangential spring or a very strong tangential damping. Here we
show that our model predicts these behaviors.
% In Fig. 4.3.19 the tangential displacements obtained
with the data (4.3.13), (4.3.15,16), a "large" stiffness parameter
ﬁ (s=0.1) and various driving velocities are presented. It can
o be seen that these traces consist of a self-excited oscillation
= (without the typical saw-tooth wave fonm) about a constant average
i displacement which corresponds to an apparent coefficient of kinetic
friction lTower than the coefficient of static friction.
'5:; In Fig. 4.3.20 similar results are shown but now the
stiffness parameter has the "small" value s=0.01 while the damping
g parameter has the "large" value zx=10.
. In Figs. 4.3.21 and 4.3.22 we plot the apparent coefficients
:.:: of kinetic friction as a function of the driving velocity (=average
,3 sliding speed) for the three cases of apparently smooth sliding
:{'4 that have been considered: small s, small z, and large u'i ; large
1 s, small z, and arbitrary U'S ; small s, large z, and arbitrary U')Ci
o In the second case (large s), since the nondimensional amplitude ‘
.1 of the self-excited oscillations is significant for some speeds, we :;
N also indicate those amplitudes on the plot. :;
. w
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The following remarks provide an explanation for ap-
parent coefficients of kinetic friction that are lower than the
coefficient of (static) friction and some additional comments:

(i) A1l the low apparent coefficients of kinetic friction
in our computations result from the occurrence of a period of
stick during each period of oscillation of the body (see Figs.
4.3.8-10 and 4.3.24,25). The ratio (friction force/normal contact
force), when the body sticks, is smaller than the coefficient of
friction, so that the time average of the friction force is smaller
than the product of the coefficient of (static) friction and the
time average of the normal contact force (the weight of the body).
This 48 precisely the high-frequency stick-sLip mechanism proposed by
Budanov, Kudinov and Tolstoi [1980] (recall Section 2.3).

(ii) If the driving velocity is sufficiently small that
periods of stick are possible during each cycle of oscillation
the following effects can be observed:

(a) The periods of stick occur in the portion of each
cycle for which the normal contact force has larger absolute values
(see Figs. 4.3.9 and 4.3.25)

(b) As should be expected, a discontinuity of the friction
force occurs at the instant of each transition slip to stick (see
Figs. 4.3.9,10 and 4.3.25)

(c) For otherwise similar conditions, Tlarger driving
velocities 1imply larger self-excited oscillations (compare in

each of Figs. 4.3.7,8 and 4.3.23,24 the results obtained with
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tion (s=0.1, zx=0.001 and U; =0.0079CS or 0.031623).
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different driving velocities)

(d) Also for otherwise similar conditions, larger driving
velocities imply smaller periods of stick, relatively to the total
period of one oscillation (see Figs. 4.3.9,10 and 4.3.25).

(ii1) Increases of apparent coefficient of kinetic friction
with the increase of driving velocity result essentially from
the effect (d) above (see Fig. 4.3.10). This is (with the extra
complexity inherent to having a three degrees-of-freedom system
instead of a two degrees-of-freedom system) what Budanov, Kudinov
and Tolstoi [1980] suggested to explain apparent coefficients
of kinetic friction Ancreasing with the average sliding speed (recall
mechanism (II) in Section 2.3).

(iv) Decreases of apparent coefficient of kinetic friction
with the increase of driving velocity are associated with the
effects (a), (b) and (c) above. Compare in Fig. 4.3.25, for the
two driving velocities considered, the minimum values of the friction
force (sliding phase), the size of the discontinuities in friction
force, and the values of the friction force at the points of maximum
normal force (stick phase).

(v) For asufficiently large driving velocity, no stick
state occurs during the oscillation so that, since we do not take
into account any thermal softening effects, the average coefficient
of kinetic friction is equal to the coefficient of static friction.

(vi) In the case of the large tangential damping (s=0.01,

zx=10) we can describe our results using precisely the words of
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‘ Tolstoi [1967]: "sufficiently heavy damping of tangential vibrations

alone could suppress these vibrations [ the low frequency stick-slip

B

motions] but failed to affect the negative slope of the friction-

velocity curve." On this respect we note that the decoupling

ey

(4.2.9,10) of the characteristic equation for the eigenvalue problem

(4.1.12) implies that, for the present geometry, the introduction

A

of heavy external tangential damping does not affect at all the

instability of the steady-sliding. For viscous stabilization

|

of an unstable steady-sliding sufficiently strong normal and rota-

P, S

tional damping are required (see Oden and Martins [1985]). This, of

%

course, agrees with the observations of Tolstoi summarized in

Section 2.3.

(vii) Fig. 4.3.24 contains an important warning to experi-

;'.-f mental researchers of sliding friction: a small, apparently negli- 'C‘
! gible oscillation on the tangential displacement trace at the
X point where it is being recorded (in our case the center of mass ‘;-L
":j of the block or the tangential spring) may be the subtle manifesta- ',:':-
5 .-l
> ) . ) , : ">
tion of a stick-slip motion on the contact surface. Another mislead- b
:!} ing point is the fact that the wave form of the recorded oscillation ,
i 3
may be very different from the typical saw-tooth wave form. ;-:
7
'(_‘ 'P
! (viii) M-y plots for apparently smooth sliding motions 3.'
obtained with different "experimental apparati" (different s and zx)

o L -
,’:'- may be clearly distinct (see Figs. 4.3.21,22) -0
” (ix) The initially decreasing portions of the u-vy curves ;:;
‘ in Figs. 4.3.21 and 4.3.22 are qualitatively similar to those _
8 :
) » X
i

) :
A
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RS AE S0 S bin st g2 e e e e Yl e e e
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experimentally obtained by Rabinowicz [1965, Fig.4.45, page 101] and
by Bell and Burdekin [1969-70b, Fig. 4, page 1078, ~espectively.

4.4. Apparent reductions of static friction due to normal per-

turbations.

4.4.1. Introduction.

In Section 4.2 we studied the 1linear stability of the
steady-sliding equilibrium and showed that for some range of the
parameters involved steady-sliding could not be stable: consequences
of this on the dynamic behavior of the slider were shown in Section
4.3, Here we are interested in analyzing the effect of normal
perturbations on the loading path of the slider - the stick portion
of the stick-slip cycles. In a sense, we should like to determine
some sort of stability statement concerning that loading path:
if a perturbation is introduced while the body sticks, will the
body "recuperate" from such a perturbation and keep stuck until
the tangential displacement attains the value at which the unperturb-
ed system initiates sliding or, on the contrary, will the body
initiate sliding ‘"prematurely" with an apparent coefficient of
static friction lower than the true one? We also want to know
what effect the driving velocity {or, equivalently, the rate of
application of the tangential force) has on the apparent value

of the coefficient of static friction at which the perturbed system

initiates sliding.




YN

4.4.2. Numerical results.

The results reported in this section were obtained with

the common data (4.3.13-16).

First we ran our program with the driving velocity succes-

sively assuming the values !¢ =2.5x1073, 5x1073, 1x1072, 2.5x1072,

2

5x107¢, 1x10'1, 2.5x10'1, and with the initial conditions Zxo =Jéo=

E;,=u01=0, J;, =u;§, J;0=1, i.e., the body initiates its motion stuck

with the moving surface and no normal perturbation is introduced

either at start-up or during the subsequent motion. In the subse-

quent motion, the body remains stuck wuntil the nondimensional b

tangential displacement attains a value of the order of f at which

sliding initiates. More precisely, sliding always initiates at a

value of Uy somewhat in excess of f, due to the inertia acquired

by the slider during the stick phase: this excess is almost impercep-

tible (-~ 10'4) for the smallest driving velocities and clearly

2

noticeable (~107°) for the largest velocities considered. For each

of the driving velocities considered the maximum tangential displace-

ment of the slider u"%%=y™X(y’¢
xkh Tx xk

driving velocities u;; considered, the program is successively run

) is recorded. Then, for each of the

starting at the time Thi at which the unperturbed tangential dis-
placement was equal to successively decreasing values Uy =0.575;
0.550; 0.525;... The 1initial conditions for these successive
runs are the following: the tangential displacement and velocity,
the normal velocity, and the rotational displacment and velocity

CTE u;n& s U posuy ., respectively) are precisely the same
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L\:,' as those of the unperturbed system at the time ¢, ; the normal

displacement is made equal to the unperturbed normal dispiacement

4 . .) plus a perturbation Pu . successively equal to -0.05,
(“Lyk,c) p p u,j y eq

-0.10, -0.15, -0.20. In other words, for each driving velocity U;;

E'-: we introduce, at the time T'.u; at which the unperturbed tangential dis-
i placement was equal to w o a normal displacement perturbation puw‘ .
t:“ The numerical results obtained show that nowmal pernturbations
N can produce apparent reductions of Zhe coefficient of static friction
- and that a fixed fLevel of perturnbation has a "destabilizing" effect
t‘ that increases with the increase of the driving velocity, i.e., a cer-
B tain amount pu.w. of normal perturbation at a fixed Uy is more
' likely to produce a ‘“premature" sliding if the driving velocity

ijs large than if it is small. We illustrate this in Figs. 4.4.1
* and 4.4.2.

In Fig. 4.4.1 we can observe that a normal perturbation

5 pu-w.=-0.05 at u =0.575 is capable of producing a premature siiding
x:’, for the larger driving velocities u)’(; = 5x10'3, 2.5x10'3 and 1x10_3,
o but, for u)'(g =5x10'4 the system, after short periods of sliding
I‘" immediately after the perturbation, sticks again and the maximum
tangential displacement is essentially equal to the unperturbed urzzx_
:i: In Fig. 4.4.2 a normal perturbation puw. =-0.1 at uu:O.SS produces a
- "premature” sliding for “LZ =1x107%, 5x1073 and 2.5x1073 but, for
: u;;=1x10'3 the body "recuperates" from the perturbation.
- Additional qualitative information can be obtained from
. the numerical results by searching, for each fixed pair (u;z,puw ),
z
i
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@ the minimum value of Uy at which the normal perturbation considered :;i.
originates a ‘'“premature" sliding. Since actual perturbations ;?

& are somehow distributed throughout time, it is reasonable to expect ,'"
’ that the accumulation of the destabilizing effects of the perturba- 23;
@ tions will produce a "premature" sliding shortly after the above Ezf
mentioned minimum of Y is achieved along the (stick) loading =

@ path. A difficulty however arises: since the unperturbed system has ‘5:‘:
its maximum tangential displacement at a value u':zx that is not t‘i;

% equal to f and that increases with U)’(c we cannot decide whether "pre- i
E:,'E mature" sliding of the perturbed system occurs or not by simply
comparing the maximum value of the perturbed tangential displacement A.

with f. In the results reported below we use the following arbitrany W

criterion: “premature” sliding occurs if the maximum tangential dis-

% B

placement of the perturbed system (pu'::") is at least 1% smaller than

! the corresponding maximum tangential displacement of the unperturbed ot
. max A . oo ; max_p, max o
o, system (4 , ) for the same driving velocity Uy, ie if k" Yxh ) 2

/u.'zzx $ 0.01. We also note that, since we only considered perturba- 1

s

tions at discrete locations uu;=0.575, 0.550, 0.525, ..., to say, for

¥
=

)=

instance, that Uy = 0.550 is the minimum value of u, at which

o

some perturbation produces ‘“premature" sliding only means that E
-‘ﬁ such perturbation at u . = 0.575 and 0.550 produces "premature" :{
) sliding while tne same perturbation at s 0.525, 0.500, ... does -
:': not produce "premature" sliding. ft:‘.
. With these conventions in mind we summarize the results ob- ;_:'

tained in Fig. 4.4.3. In addition to observations made earlier we

M s S
=) m !

l'g,'

a0 ¥, > ha ’0
() " TN 5 4
*'J‘ a’* W, l" n"’ A1 000, (’a.lt'» t‘.‘n’ L Ay 'n\‘:’;'«'»’s‘,‘n’,m ‘p. Ao 0' ‘, ARhnsRLnie ) '.‘a'.\ s !‘ft\,ﬂ‘..s"'l‘.,n [ .t',‘.-:‘a'.‘o‘.
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observe, as might be expected, that farge perturbations produce a "pre-
matune" sLiding mone easily than smalf ones. We observe also that
sugficiently Larnge nowmal perturbations can produce apparent neduc-
tions of the coefficient of atatic griction even fon the smallest

dniving velocities consdidered.

4.4.3. Discussion.

The previous results, however suggestive they are, should be
analyzed having in mind the admitted limitations of the model used:
preliminary tangential displacements occurring before gross sliding
and the details of the plastic deformation of the interface cannot
be modelled with the constitutive laws (2.5.2,3) adopted in this
work. Since these effects may have some importance along the
quasistatic loading process studied here, the results above should
be viewed only as indicators of what to expect when using more complex
models of the interface behavior.

A question that is important to discuss is the size of
the normal perturbations considered. As we decrease the size
of the perturbation its destabilizing effect of course is reduced
(recall Fig. 4.4.2). It is easy to anticipate, and we caonfirmed
it numerically, that sufficiently small normal perturbations have
negligible effect on the initiation of sliding. However we observe
that the size of the perturbations considered here, although "mathema-

tically not small", are indeed "physically quite small" and of the

order of magnitude of the microseisms mentioned in Section 2.3.
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For static penetrations Y=(N/anL) n

in the range 0.3 to 10um , the
perturbations considered here would be in the range 0.015 to 2um.

Apparent decreases of the coefficient of static friction
with the increase of driving velocity, as suggested by the numerical
results above would affect the stick-slip results of Section 4.3.2
(recall that in the computations leading to Figs. 4.3.16 to 4.3.18
no reductions of static friction were taken into account). Smaller
stick-slip amplitudes and more pronounced slopes of the amplitude-
velocity curves in Figs. 4.3.16 and 4.3.17 should be expected
as a result of the reductions of static friction. On the other
hand, these reductions would Jlead to smaller periods of stick
and consequently to larger frequencies in Fig. 4.3.18, more close
to the natural frequency of the tangential motion of the system.
These effects would certainly improve on what appears to be an
"excessive" sharpness of the transition stick-slip to apparently
smooth sliding in Figs. 4.3.16, 17 and also on the smallness of
the maximum stick-slip frequencies in Fig. 4.3.13.

It is thus clear that the "rate dependence" of the coefficient
of static friction plays an important role on the stick-slip oscilla-
tions, precisely as it has been assumed in previous analyses.
The question that we raise here and that needs further study is
solely related with its origin - is it an intrinsic property of
the contacting surfaces or is it the result of a (still not well
defined) "instability" along the stick portion of the stick-slip

cycles? Much theoretical, numerical and experimental work is

Wy +
)

e Sr Ty Te Ty
NN -

l'..

L B IV I B |
J“.A"‘A'
L AL

s

e B e I
5’. l'l »
AP LIS

TR

&

1l

A h A




= o
. -
-

g |-

183 v

still needed before a definitive answer to this question can be

=2 -l

. N

given. S

& 4.5. Some remarks on the numerical results. E‘:e
:

@ The nature of the problems studied in this chapter leads E.g
to the two following difficulties when numerical solutions for .

g them are sought : firstly, the friction law introduces a multi- :‘
. valued operator and discontinuous accelerations and friction forces !:Ef
a result at the transitions slip to stick; secondly, in the physically o
- interesting situations, the periods of response in the tangential -
% direction that are of interest to span are much larger than ':'
the periods of the normal and rotational oscillations of the body: 5.?

althouéh we may not be too interested in knowing very accurately ;;;

how many microns or fractions of the micron the interface penetration

is at each time, we cannot afford to lose too much accuracy in ¢

B Ml R OB

-
Al
that computation since that may affect the rapidly varying values 5
of the friction force to an extent that the whole average behavior .,
A
in the tangential direction may become meaningless. ’,:.-
i

- To handle the first difficulty, a regularization technigue -
:.': has been used which, for the continuous in time problem (4.1.4,5) g
N, can be shown to lead to approximate solutions that converge, as i
SS the reqularization parameter € +0, to the solution of (4.1.4,5). The 2
{§ proof of this is essentially the same as the one presented earlier in ::0
: Section 3.4. When used in conjunction with the time discretization, it '::
‘ g is reasonable to expect (although not proved) that the time step will \::‘
ol l:
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have to decrease to zero at a rate somehow related to the rate

e

of decrease of ¢ , if convergence is to be assured. In the absence

of such convergence studies the choice of ¢ has been dictated

=8

only by how physically reasonable the numerical results look,

in particular, how well stick states are modelled. For the small

S0

driving velocities u;(c considered in most of the examples of this

L?i chapter, values of €/ u;(c $0.1 lead to results with well-defined stick
= states (see, for example, Figs. 4.3.8, 4.3.15 and 4.3.24).
% With respect to the second difficulty mentioned above,
y: there seems to be no other alternative than to use time steps
* of a size sufficiently small that the normal oscillation is integrated
i with sufficient accuracy. Values of the maximum time step Atmax (see
Chapter 5) have been used that are at most 1/50 and, wusually,
E:E' 1/100 of the period of the linearized normal free oscillation
(27T/wyo).
! The numerical results shown in Figs. 4.5.1 and 4.5.2 illus-
- trate our contention that, fon "negular” cases (see below), the quali-
zg- tative behavion and the essential quantitative fgeatures of the
b motions [(amplitudes, grequencies, average sLiding velocitdies) are
i} not sensitive to reasonabfe (and sometimes not so reasonable) varda-
'.:: tions 4in e and Atmax on changes 4in the method of <integration (see also
“ Martins and Oden [19861). By "regular" cases we mean all the
::, motions that,despite their complexity, occupy after a sufficiently
large time, a well defined region of the phase space and reveal
% a pattern that "essentially" repeats itself in time, namely:
:
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o~ Figure 4.5.1. Effect of the regularization parameter on the computed

o, stick-s1ip motion. Note that the major error in the solu-
tion for unreasonably large values of ¢ is the creeping

along the large stick phase of the low-frequency stick o~

i slip motion. The amplitudes of the stick-slip motion ob-

‘ tained with different values of ¢ differ by less than 4%.
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the low-frequency stick-slip motions and the apparently smooth
sliding motions of Section 4.3. For these cases, we may say that our
code behaves in a robust manner. If high accuracy is desired (very
accurate stick states, very accurate values for the instantaneous
penetrating approaches and rotations) the analysis may become
too expensive for the small number of degrees of freedom involved.
In order to improve on this it seems advisable to use, at least
in the rigid body case, other standard techniques of integration
of systems of ordinary differential equations that allow for the
estimation of the errors introduced at each stage and the automatic
time step control. This may permit increasing the time step in
a controlled manner during periods of no contact and extended
periods of stick and reduce it during short periods of contact and
transitions stick to slip. Radical improvements 1in computational
time should not be expected however, due to the steep slopes of
the regularized friction law that are needed for very accurate

stick state modelling.

We report now on some situations for which we found a
"severne sensltivity” of the numenical solutions to the numerical
parametens € and AL and to eveny small change 4in computational
algonithm on data. Such situations may occur in applications
of the type presented in Section 4.3 when the normal damping parameter
2 is equal to zero or is very small and some values are chosen for

the other governing parameters.

P O AR R A N AN --\.'-'\.\x.'-sw..\\ S AL
! > R~ h W e P e o

I

e

'y s ‘v "y
A



188

"Reqgular" results with zero normal interface damping (2=0)
were earlier presented in Figs. 4.3.14 and 4.3.15. However, when
other values are assumed for the other governing parameters, the
trace of the tangential motion may be extremely "irregular", with
regions of sliding and sticking alternating in a irreqular and
unpredictable manner. For the times spanned by our computations those
“irregular" motions do not appear to be converging to any more
predictable oscillation. Small changes 1in data, computational
algorithm or numerical parameters lead to solutions that only
have in common with each other their extreme irreqularity and
unpredictability. We illustrate these difficulties in Fig. 4.5.3,
where we reproduce the tangential displacements obtained with
three different maximum time steps and keeping constant all the
other parameters.

Situations of this type should not be surprising. It
is now well known that other nonlinear nonconservative systems
with three or more phase space variables may reveal equally unpredict-
able irregular behavior. An example that has in common with the
present problem the fact that it also leads to a nonsymmetric
2x2 stiffness matrix (recall equation 4.2.13) 1is the problem of
a double pendulum subjected to a follower force (see e.g. Takens
(1974a,b] and for related problems Holmes [1977] and Holmes and
Marsden [1978]).

On physical grounds, we coniecture that the irregular motions

that we have obtained numerically are of the same type as some
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if not all of the irregular experimental friction traces obtained

BES

by Bowden and Leben [1939], Bowden and Tabor [1939], and Rabinowicz

5 [1965]. For each of the irregular plots obtained numerically
it is always easy to find some experimental trace in the literature
& that is qualitatively very similar (just as an example, compare
Fig. 4.5.3 with Fig. 8e, Plate 22 in Bowden and Leben [1939] or with
@ Fig. 8b, Plate 26, in Bowden and Tabor [1939]).
E We suspect thus that those "irregular” motions and the asso-
ciated numerical difficulties are inherent to the governing equations
.j” (4.1.4,5) for some ranges of the governing parameters. Only
~ a detailed qualitative study of that system may confirm (or not)
i the truth of this conjecture.
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CHAPTER 5

FINITE ELEMENT MODELS

8.1. Finite element approximations
Using standard finite element procedures, approximate versions

of the Problems 2, 3 and 4 (Chapter 3) can be constructed in finite

BE O

dimensional subspaces Vh(C v CV'). For a certain mesh (h) the

approximate displacements, velocities and accelerations at each

.

!
time t € [0,T] are elements of Vs

B, M, ey,

P
o

i Within each element (e)ﬁ (E=1,2,---,Eh; Eh=total number of elements

in the mesh) the displacement components are expressed in the

cﬁ form
9

h Ne
vi(x,t) = L v, (t) N.(x) , j=1,2,...,N, (5.1.1)
It~ 1=1 [. I'.
J
i‘g and similar expressions hold for their time derivatives. In (5.1.1),
Ne is the number of nodes of the element e; v?j(t) denotes the j-thdis-
ﬂ placement component of node I at time t, and Ny is the element
shape function associated with the node I. The particularization
54
s
o' of the above when no time dependence exists (Problem 3 and 4) is
. obvious.
> ,
5% Hereafter, we confine our attention to plane problems (N=2) *
.‘ and we consider two types of finite element approximations: four-node, x
& g
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. 2 =

bilinear (Q;) elements and nine-node, biquadratic (QZ) elements.

B

The finite dimensional versions of the variational statements

(3.3.13), (3.6.1) and (3.8.1) are immediate. On the other hand,

i

the systems of ordinary differential inclusions or algebraic equations

to be solved are precisely of the form found in the previous chapter

=

with the rigid body model: (4.1.4.,5), (4.1.7) and (4.1.12).

W

Clearly, the vectors and matrices appearing now in those

equations have the dimensions 2xNh and (2xNh)x(2xNh), respectively

@ (Nh=tota1 number of nodes in the mesh). [t is also clear that
ot all of them depend on the mesh parameter h, which, for simplicity,
"

. will be omitted in the notations.

i 5.2. A regularization of the Coulomb friction law

"'1 Computationally, it 1is desirable to work with a system
L}

of ordinary differential equations rather than a system of differan-
tial inclusions of the type in (4.1.4). We achieve this by using

a regularization technique of the type employed earlier in Section

= SE

3.4: recall, in particular, the assumptions (3.4.35-39) on the

regularization function Yo and the definitions (3.4.40,41) and

x

'-'C: (3.4.43,44) of the regularized continuum problem and its finite
= dimensional approximation, respectively. The variational statement
- governing the finite element regularized dynamic friction problem
:‘:} is precisely of the form (3.4.43). The corresponding system of
A ordinary differential eguations has the form

3
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ME(t) + Cu(t) + K ult)
+ P(u(t)) + QUu(t),8(t)) + J (u(t),(t)) = F(t) (5.2.1)
with initial conditions
E(O) =E0 ’ 9(0) =§1 . (5.2.2)

Here we take into account normal interface dissipative effects,
we omit in the notations the dependence of the solutions upon the
reqularization parameter € , and, for simplicity, we assume EO
and El to be given in V, .

The function v_ € CI(RZ,R) employed in the computations

€
reported in this work has the form, with €>0,

£ 2
= 1,5 :
e =0 - b il s
teg) =
&:("“"2!-%) it gl > e

The corresponding directional derivative at ¢ in the direction

A
m

22| - a) i g s

T (€ - a) P15l > e

In order to visualize this regularization procedure, we

denote by T a unit tangent vector along the (uni-dimensional and

sufficiently smooth) contact boundary TC . With ¢ and o tangent

~

~ -~

to '-C (recall Section 3.4), we denote the components of 7 and «
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along T by g and o respectively (i.e., £ =¢ T and 5 = aT), and

we can define the real valued function of a real variable Yoo,

such that v () = ¥ (g) and ¢! (€)(@)=¥ (g)(@). The functions

@e and @; are depicted in Fig. 5.2.1 together with the function

«| and the multivalued application sgn(. ) which, respectively,
they approximate.

Many examples of similar regularization procedures in dynamic
friction problems can be found in the literature. Among them
we refer to Duvaut and Lions ([1976] for mathematical aspects;
to Threifall [1978] and Rooney and Deravi (1982] for computational
applications to Theory of Mechanisms and to Martins and Oden [1983]

for a finite element analysis of a simplified friction problem.

Remark 5.2.1. Llet us assume that:

(i) The family {vy} of finite element subspaces is endowed with

standard asymptotic interpolation properties as h+0 {see e.g.
Ciarlet [1978] or Oden and Carey [1983]).
(i) The assumptions of Theorem 3.4.2 hold with, for simplicity,
§1’n (3.4.32) and EO and ~U1 in (3.4.33) belonging to all the n
in the family {Vh} with h sufficiently small.

Then the family {Vh} satisfies conditions of the type (3.4.5-
7) and, with the same proofs of Lemma 3.4.1 and Theorem 3.4.2
and the observations of Remark 3.4.5, it follows that the finite
elements reqularized solutions converge to the non-regularized
continuum solutions of Problem 2, as h+0 and €+ 0, in the topologies

indicated in Remark 3.4.5. [

N,
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Figure 5.2.1.

Graphs of

e121%1- 11ED)

2 _ :
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an
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m

m

: |, sgnf.) and of their regularized approx-
imations ¥_(+) and ¥ (+) .
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5.3. Algorithms for transient analysis 4
'
\
The algorithms that we have used for solving the discrete .
dynamic system (5.2.1,2) involve variants of standard schemes :1
v
in use 1in nonlinear structural mechanics calculations: Newmark's :}
.l
method and central-difference technique, both associated with |
Newton-Raphson iterations within each time step. v
'l
Let us consider a partition of the time domain [0,T] into g
)
, . _ )
M intervals of length At=tK+1-t|< with O-to,tl,...,tK,...,tM-T. ',"

Choosing as fundamental unknowns at time tK, for example,
the velocities QKEE(tK), the displacements and accelerations at ;
time ty can be expressed as linear combinations of GK and the 3

(known) variables at tg.1s according to the Newmark formulae:
3
3
U, = (1-1/y)iy_y + (Gg-ly_q)/v0L 3
~ K-1 K™2K-1 )
. ~ ~ (5.3.1) 3
Caye At 28\ At8 A
U =y T OH - Bluy e T (1 - Dy« 5 U

where 3 and y are the so-called Newmark parameters. For 2=1/4, :
ot
v=1/2 the average acceleration method is recovered and for 3=0, .
y=1/2 the central-difference method is recovered. A
Substituting the above relations into equation (5.2.1) v
Y
we obtain the following equation at time t,. N
A
Relag) = 0 (5.3.2) L
.‘-
vhere -
° \ def 1 A_t.B_ 2 "

Re(ug) = Dgp 0+ S+ v Kl + Mg - Ky (5.3.3)
|’
)
‘ /’h."li" ' ‘~ .Q’ . '\ }-(' ;‘i b \" . ;\‘ -/"J' -\' "‘--.- .(' ~\ ‘ ~ : ."('\ ..r\ \\; ,\-.v’ -’.'-"
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N(G ) == P(u * J .

MBI +Q(y ,u ) +J _(u,u) (5.3.4)

K)o+ Qe ~K) Jeld oY
E§ - def 1ye 1 .
B = EgMUQL - Plixar- 737 Yeoq]
2

N _ By At 28 \::
i - Klugp *+ 0t - Py + 55~ (1 - 11 (5.3.5)

with u, in (5.3.4) given by (5.3.1)2.

In order to solve the nonlinear equation (5.3.2) the Newton-

Raphson iteration technique 1is wused: given a starting value L&P)

=4 %5

successive approximations of the solution u, are computed using

the recurrence formula

dgiet) - gl gt g (5.3.5)

[
'

where 1=0,1,2,... denotes the iteration counter,

i R EBK(E!(J)) (5.3.7)
(1) def g .
C = (R (u ). :
@ ~K 39!( K*'~K EK=gl((1)
=1 Q J(1)
! Y_A_tg»,[g»u(j) [Sdl
- P(i . .
{.5, PR X " SRR S (5.3.8)

The form of the element contributions to the vectors and

matrices in the above equations is the following:

o M,
i3 (e)Plj("i) = | Cn[(wn-g)+] n, Np ds

(e)
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%3
—
1
[
3
>

=
—
1]
s
S
o
3
)
[

o2
1
(9]

(e) ) 1,71
Ei,' Ky (000 = fe) b llMn-g) 17 Vg yny Ny Ny ds
3 i ;
Cc
me-l, .
E (e)"gnlnj(w"’) ) {e) Cr mr{(wy-9),] we(vT-U%Tinj Ny Ny ds
I‘C
g (e)cQ ]n
) Uy 07 Ballng] T ngny Myt s
i .
(e)cd r
; C€M1.Nj(l".’!) = Ie) crliwn-9),1] \y; (VT-UT)T1TJ Ny Ny ds
2 r

(g}

- «C _»oC
where (w,v) € thvh, vy = VT(§-) and UT = UT(E) denote the components

of vr = v;(s) and lig = Qg(;s) along the unit vector T = T(s) tangent

(e
W to I, )FC denotes the portion of [ belonging to the element e, and
& 2
. £(1- 13D if gl s e
- vy (g) = '
by 0 if el > e
- The linear damping matrix C considered in the finite element code
> =
o+
-

has the general form:

It is clear from (5.3.8) that, if the central-difference

BR =R

technique 1is used (B8=0) no stiffness contributions to the matrix

0 d OO v
RN AMN .L.I\.,.f‘s,\.,hf“ Wi

s N A T e O L G R N S O
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~

i ~ (1) .
¢ (L) exist. The matrixC k 1is then a symmetric matrix. If diagonac-
{zed mass and damping matrices (M and C) are used, then the only
(i)
K

& R e

g

possible nondiagonal entries of C result from the element segments

~(i ]
on T.. The matrix E(K) becomes diagcnal when, in addition, a trans-

'l A

formation (rotation) of the degrees o4 greedom on F. is  performed

in such a manner that the final degrees of freedom have the direction

=9

of the normal and the tangent to FC at each contact node, and

the element contributions to 4§3(1) and Qi&1) are computed with

a quadrature rule which uses the nodes as integration points (e.q.,

trapezoidal rule fon Linear efements and Simpson's nule jon quadratic

o

elements). The resulting explicit form of (5.3.6) is then a clear

advantage of the central-difference technique over the implicit

=

members of the Newmark family of methods.

Remark 5.3.1. In the actual computer implementation of

the implicit members of the Newmark family of methods the displace-

ments % at time tK were taken to be the fundamental unknowns.

"‘ -
;: The nonlinear equation to be solved iteratively involves thus bt
- ~i
displacements, rather than velocities. The same happens with ‘
55 the recurrence formula (5.3.6) where, instead of an effective
h damping matrix (EK), an effective stiffness matrix 1is used (see o
W R
Lo Oden and Martins [1985] for the details of the equivalent formulation). L
b I} D -
> -
- Remark 5.3.2. The discontinuity (actually, the multivalued- i
"
o ness) of the Coulomb's friction law at zero sliding velocity is -
ii a major source of computational difficulties in friction problems.

LR PO RTAREIRER PR ORI TR ARG,
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Even though, in the algorithms described in this section, a regular-

DA

ized form of that law is used, those difficulties cannot be completely

avoided. The situation which may arise when using the methods

et |

described here with a constant time step 1is the following: in

A2

unloading situations (passage from sliding to adhesicn) the Newton-
Raphson iterative techniques may fail to converge if € 1is very
small and the time step too large. We observe that similar difficul-

ties may occur even when different regularizations of the friction

law and different iterative schemes are used (see Martins and

Oden {1983]). The difficulty appears to be the result of the steep

~ -~

changes in Wé (recall Fig. 5.2.1) in the region where its curvature

e

changes sign, i.e., in the interval [-e,e]. We observe also that

it is in transitions from sliding to adhesion that the most drastic

S50

changes in the solution are expected to occur: with a single degree-
of-freedom sliding system a discontinuity of the tangential accelera-
tion (and of the friction force) arises at the transitions from

slip to stick.

One simple remedy for these difficulties is the use of

smaller time steps whenever such nonconvergences occur. The need

G |

to reduce the time step when Jload-deflection curves present an

gz inflection and Newton iterations are performed within each time
step has been reported earlier by other authors (Geradin, Hogge

E: and Idelsohm [1983]).

. In the computer codes developed in the course of this work

. (either with the finite element models or the rigid body models)

5

e e e NN A Y e g e N
S, e W AN SEAGN IS
W T *.‘\L'r:’. ri‘hﬂﬁ .L%ﬁj\i DR TN RN AT S LN AR ‘-3'3* \‘.r
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3

reduction of the maximum time step prescribed in the input (At

max)
is only performed if the Newton-Raphson iteration fails to converge

in a prescribed number MAXITE of iterations. In that situation,
successively smaller time steps At are tried until a convergent
solution 1is obtained. This smaller time step is then kept for
a prescribed number of steps KSTEPR during which the most drastic
changes in the solution are expected to occur. After this time
interval, the time step is gradually increased again to Atp,y-

It was found that for the smaller time steps, a reduction
below O'thax was rarely needed if a Atmax was used which provided
simul taneously for accurate computation of dynamic response and
for the stability of the central difference technique and if the
values of ¢ used were not too small. The parameter MAXITE has
been set usually to 5 and KSTEPR to a number in the range 10-20.

An indication of the extra computational work resulting
from the reduced time steps is given by the guotient T'/ T, where
T is the total physical time spanned by our analysis with some
total number of time steps, and with time step reductions, and
T ' is the total physical time that would be possible to span with
the same total number of time steps if no reduction of time steps
were needed. In most of the computations, values of this ratio

of the order 1.2-1.5 were experienced. [f more restrictive values

of

m

are used without decreasing the input value of 2t... . the

result may be a significant increase on the ratio T'/T : for example,

- -1 . .
for £=0.02cms ~ in Example 1 of Section 5.5, a ratio T'/T =4.2 was
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- 2

obtained.

f'ﬁ‘
s %

5.4. Algorithm for steady-sliding and linear stability analysis

A |

In order to compute the solutions of the finite dimensional

2

versions of Problem 3 for a certain range [0, ET] of values of

o,

" Cp we subdivide the interval [0,’c—T] into a prescribed number

:?j NINCT of increments ACT;CT/NINCT and, for each increment K=0,1,..., 4-‘

_:‘ NINCT we again use the Newton-Raphson method to solve the nonlinear ~

}3 system of equations at each value of Cr- For the Newton process r
at CT=0 (K=0) the input of some (very simplej initial guess is _
required. For K21, the starting value for the equilibrium iterations \

. at the K-th increment is the (converged) solution for the (K-1)-th l::

i increment. -

For the computed equilibrium position at each increment 1§

K, the finite dimensional versions of the nonsymmetric eigenvalue

.
v

Problem 4 are solved using standard routines.

-

iy 5.5. Numerical results
ol
-
Qur first example is designed more to test the performance
-
;': of the algurithms described in Section 5.3 than as a model of
complex dynamic friction phenomena.
‘\;\
!
Example 1 (A s2ab subjfected to perdodic Lcading!. We study
here the motion of the slab shown in Fig. 5.5.1. The dimensions o0y
< of the slab are 1l6cm x 2cm, as indicated, and it is assumed to f-;:
SN
a be in a state of plane strain. The linear elasticity properties e
of the material of which the slab 1is constructed are: Young's _
o
-
T
! "o
R
B e L T e e T e e e e e e e
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'2) and Poisson's ratioc .=0.25.

3).

modulus E=1.4 x 108(10%kg cm!s
The mass density of the material is p=7x10-6(103Kg cm”

The slab is simply supported on the portion FD of its boundary
and is compressed along a frictional interface T. by a flat 'rigid’
surface, the vertical downward displacement of which is prescribed.
This corresponds to prescribing an initial uniformly distributed
gap g=-5x10'4cm. The prescribed tangential veolocity of the 'rigid'
surface is zero (QE:g). The normal contact properties of the
interface were taken from Table 1 of Back, Burdekin and Cowley

[1973], assuming that the surfaces in contact are of cast iron
hand-scraped with a surface finish (peak to valley distance)
in the range 6-8um. The coefficient m, is then equal to 2 and,
after a change of units, cn=1o8 (103Kg em 3572 ). The friction
coefficient along [c Wwas arbitrarily assumed to be yu=0.3 and
independent of the normal Jload. Consequently, IﬂT=2 and C ¢ =0.3
«108(103Kg cm-35-2)

On one of its ends (If), the slab is subjected to a time-

dependent uniformly distributed force
t. = tsinat,
where t=30 (103Kg cm'ls'z) and 5=3x104 rad s-l.

The prescribed initial conditions are as follows: the
initial velocities in all the slab are zero (U;=0) and the initial
displacements are the static equilibrium displacements of the

slab due to the normal compression exerted by the flat surface

on Tc alone (no friction on FC and no applied tractions on Ip).
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We observe that, due to the normal deformation of the

interface, the equilibrium normal displacements and normal pressure

on [ are not known a priori. The initial equilibrium displacements

Y o

" solution is obtained by solving the following system of nonlinear E*
% algebraic equations: i
@ Kug + P(Gg) = 0 iv
. The numerical solution of this frictionless wunilateral EE:E
@ contact problem 1is obtained by using a standard Newton-Raphson 'E
\ algorithm analogous to that discussed in Section 5.4. *
& The finite element mesh used in this analysis consists

5 of 16 nine-node isoparametric quadratic elements, as illustrated .!3*:
H in Fig. 5.5.1. The regularization parameter ¢ for the Coulomb
o0 friction law was taken, successively, to be equal to 1, 0.1 and ‘*
i 0.02 cm s-l. The dynamical equations of this discrete model .

were integrated using Newmark's method, as discussed earlier, -

with parameters 8=0.25, v=0.5 and a maximum time step of Atmax=10'65.

- -
-
-

W L“
‘f, The distributions of normal stresses at several time .
: o
- instants obtained with €=0.1 cm s'l, are shown in Fig. 5.5.2. o
z N
LUl The distributions of friction stresses on [e at several o
o
- time instants are shown in Fig. 5.5.3. The travelling wave type {t
‘s
L [
. At
) evolution of these stresses can be clearly observed in that figure
z as can the sharp transition between the sliding and adhesion .:::
> ¢
1
ok regions on Fc. '\§ N
ﬁ The effect of the regularization parameter € on the evolution !
of the displacements, velocities, and friction stresses at the
o .(:\
v "N
-;: .'{'u
L
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contact node 55 is shown in Figs. 5.5.4 to 5.5.6. As might be

y ~, 0 N X
§J

-

expected, smaller values of ¢ 1lead to sharper transitions between

g sliding and adhesion states; large values of ¢ smooth out those n::E:
transitions. An examination of the computed variation in the :3
E tangential displacements and velocities leads us to the conclusion :.f
‘ that the essential effect of the reduction of ¢ 1is to produce "y
@ more accurate adhesion states. High values of ¢ (e.g. e=1) lead (c,-
to solutions which only vaguely resemble those obtained with i"‘

==
| T
.-
.

smaller values of €, no meaningful conclusion relative to stick

F or slip being possible. From a practical point of view it appears {3‘_:._
4 -
reasonable to choose values of ¢, that are sufficiently small {"‘

. o
i relative to the order of magnitude of the tangential velocities .
) L ]

that occur during the sliding states. In this manner, sliding ]
= .~"‘"
53 and adhesion will be essentially relative and not absolute concepts. 5.,,
. A il.
. . . '1 . )

We observe that for tangential velocities on the order of 1 cm s 2

-1 . . . . oy

' the value of ¢=1 cm s is obviously inadequate while results S
na obtained with € =0.1, 0.02 c¢cm s'1 seem to be physically reasonable. :'_:'
~ .
- o~
? :{f.
A1l the computations performed in Section 4.2 with a ¥,

& TN
g rigid body can also be done with finite element models of linearly A
X elastic or viscoelastic bodies. The essential effects observed ::-f-"
; there are also observed with the deformable bodies. -
o > i
o Example 2 [Steady-s{iding o4 a compnessed sfab and its dynam-
. -
¢ diability). We consider here a slab similar to the one presented :‘::

& in Fig. 5.5.1. The material and normal contact properties and

h-:f

O hgs
% 3
W K‘
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N
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R e e e e T Lo T T

»
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Figure 5.5.6. friction stress at Node 55 using differant valuas of ¢
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the boundary conditions on I‘D are the same as those in Example

1. The dimensions are now 16 cmxl cm and the finite element

mesh consists of 9x 2 nine-node isoparametric elements. The

initial negative normal gap on rc was taken successively to be

.
N

-4 -3 o
o £x10 cm and 1x10 ¢cm.  The 'rigid' flat surface that compresses
;-': the body along I‘C is assumed now to have a velocity towards the
o

right. No forces act now either in Qor on [f,

The steady-sliding equilibrium positions of this slab
(the finite-element approximate solution to Problem 3) and the
‘o corresponding approximate eigenvalues (Problem 4} were computed
for increasing values of c; in the range (0,1] (NINCT=10), for

. zero viscous damping and zero normal interface damping.
Deformed mesh configurations and distributions of normal
o~ stresses on Fc are shown in Figs. 5.5.7 and 5.5.8 for g=1*10'3cm,

The corresponding friction stresses on Tc are, of course, equal

»i

to u times the normal pressure. For u20.3, if g=-5x 10'4 cm,

w and for 0.2, if 9=-1"10-3, eigenvalues with significant positive

s real parts were obtained. In Fig. 5.5.9 a plot of all the eigen-

?’ values in the first quadrant of the complex plane obtained for

iy all the values of . considered is presented. [t can be seen
Ef that larger compression produces in¢reased instability.

The essential fact to be gained from this example results

::' from the observation that the body considered has no rigid body

freedoms. AL the (natabilitdes anising «n tnds case ate assccdated

m;

wvetn "deformation” modes, not wigdd body medes. We finally observe
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that in the present example no eigenvalue approaches the origin
of the complex plane, for the range of cr considered: the steady-
sliding solution exists and 4b unique for all the range [0,1] o4

values o4 Cr.

Example 3 (Steady-sfiding and dynamic stability of a dejorm-
abfe bfLock). We consider here a homogenous block sliding, with
friction, on a moving foundation (see Fig. 4.1.1). We assume
that the block has a 1linearly elastic behavior with a Young's

-1 5'2) and a Poisson's ratio .=0.25.

modulus € = 1.4 x 106(103Kg cm
We assume that the body is in a state of plane strain. The geometry,

total mass (M), total weight (W), total tangential stiffness

(Kx) and contact properties are given as follows:

L =48.8 cm M = 450 Kg
H = 30.5 cm W = 450 10%kg cm -2 (5.5.1)
B = 30.5 cm K, - 2388 10%g 572

¢ = 1010 103Kg em3-54-2 m =m_ = 2.5, cp = HC

n T n-

As in Section 4.2 a necessary condition for equilibrium is u<L/H=1.6.

The finite element model consists of a 4x3 mesh of nine-node

isoparametric elements as depicted in Fig. 5.5.10.

In this section we compute the steady sliding equilibrium
positions of the block for several values of u in the admissable
range [0,1.6) and, for each of those configurations we solve the
finite element version of the eigenvalue Problem 4, in the absence

of any damping.
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2 Figure 5.5.10. Deformed configurations of a linearly elastic block for
the steady sliding equilibrium configurations at several

5 values of u. (Note: Nodal coordinates and nodal dis-

\ placements are not to scale - the apparent distortion

of the body results from an amplification of the verti-
‘ cal displacements 103 larger than the one used for the
& horizontal displacements; this was needad in order to

make visible the rotation of the body).
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In Fig. 5.5.10, we show the deformed mesh configurations

0

for the steady sliding equilibrium positions at several values
of the coefficient of friction ;, . The expected increase of the
rotation with the increase of u can be observed in that figure:

for the level of forces in presence the block behaves much 1like

555 A

a rigid body.

As in the rigid body case, all the eigenvalues are pure

okl

imaginary for small values of u (in the absence of damping). For val-

ues of uw 2 0.32 (see Fig. 5.5.11) the occurence of eigenvalues

B

with positive real parts is again observed. All the eigenvalues

<5

in the first quadrant of the complex plane, together with the

e

corresponding ranges of u for which they were observed, are
plotted in Fig. 5.5.11. Similar computations were done with the

same block but assuming it as a rigid body. In Fig. 5.5.12 we

e

compare the rigid body model eigenvalues associated with the

normal and rotation displacements with those from the finite

element model which are associated with similar modes. The results

are close: the deformability of the body does not affect much

b 2o

the evolution of the eigenvalues. Finally we observe that the essen-

?.- tial difference between the nesults obtained with the nigid body and :::
_- the defonmable body models <& that, 4n the lLatter case, there are {
5‘.; ecgenvalues which correspond to unstable modes that are not "rnigdd ;-
. body" modes. The eigenvalues corresponding to those "deformation »

;} modes" have larger dimaginary components and one of them does by

. appear for values of , below the value at which the rigid body

i instability initiates.
- .
3 :
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Consequences of the dynamic instability of the steady-

sliding on the motion of a deformable body are shown in the next

example.

Example 4 (Friction-<induced oscillations of a deformable block
sLiding on a moving fgoundation). Our final numerical applications
consist of obtaining the dynamic response of the linearly elastic
block of the previous example with the following initial conditions:
the initial displacements are those of the steady sliding equilibrium
configuration appropriate for the value of u considered; the
yartial  velocities represent a small (upwards) perturbation of
that equilibrium, i.e., gb=go, U =0.0, Uy1=0.01 em s™b in all
£ lock.

In this example, the geometry, normal contact properties
and total mass are the same as in (5.5.1). We will now assume
the total tangential stiffness Kx equal to 11100 (103Kg 5-2),

the coefficient of friction u equal to 0.60 and the velocity

UE successively equal to 0.0, 0.08, 0.80 cm s-l. No damping

effects will be considered when modelling the interior of the

linearly elastic body, but normal dissipation on the contact

0 3 -4.55-1)

(10°Kg cm and

boundary 1is considered with bn=0.381 101

1 =2.5.

n
The evolution of the elongation of the spring is shown

in Fig. 5.5.13 for the three velocities GE considered. The resulting

Low-§nequency Atich-s84ip motion for the two smaller velocities

can be observed in that figure. In Fig. 5.5.14 we show a phase
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plane plot of the normal oscillations of the node 29 and in Figs.

LEs

5.5.15 and 5.5.16 we show the evolution of the normal and friction

stresses on the same node. In Figs. 5.5.17 and 5.5.18 we show

=3

what one of the numerous spikes in Figs. 5.5.15 and 5.5.16 looks

&R

like with a different time scale. The corresponding evolution

of the ratio OT/| Oni during the same cycle of contact is shown

in Fig. 5.5.19. 1In that fiqure, and also in Fig. 5.5.18, the ¢ccur-

nence at each cycle of contact of perdods of adhesdion and sLLding

=3

is indicated. Also in Fig. 5.5.18, it can be seen that during

sliding the ratio OT/loni is not exactly equal to the prescribed

coefficient of friction 0.6; this 1is due to the small normal
interface damping considered. As noted in Chapter 2, the Coulomb
friction law is recovered exactly by our model when m, =My and

no normal interface damping is considered. However, if the normal

= R

interface damping is small, as we always assume, the opposite

contributions of the dissipative term in (2.5.2) during the "impact"

f_

and “"rebound" phases of a cycle of contact essentially compensate

AR

so that in average the Coulomb's law of friction is satisfied.

The important reductions of average friction force are not the

result of those effects but, as is made clear from Fig. 5.5.19,

they are the result of the periods of stick during each cycle

B

of contact, i.e., the high-frequency stick-slip mechanism proposed

by Budanov, Kudinov and Tolstoi [1980] (recall Section 2.3).

vy
S tay

[t is also important to observe that, having used values

=

for the normal contact properties (cn,mn) taken from Table 1

T =<
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of Back, Burdekin and
block with dimensions

and Burdekin [1969-70],

Cowley [1973], and having considered a
and weight close to those used by Bell

it turns out that the frequency of the

normal contact oscillations observed in Figs. 5.5.16-20 is of

the order of magnitude

indicated by Tolstoi [1967] as typical:

103Hz (recall Remark 7 in Section 2.5).

For the case of

the larger velocity (0&:0.8 cm 5'1),that

velocity is sufficiently large that the tangential oscillation

of the body is not sufficient to produce any stick state. Conse-

quently, the average coefficient of friction during sliding 1is

equal to the static coefficient of friction. We note also that

the instabilitv of the

equilibrium position makes it impossible

for the contact damping to damp out the normal oscillation.

A steady self-excited oscillation is then attained. That can

be observed in Fig. 5.

connected to the spring

of the contact node 29).

5.13 (horizontal oscillation of the node

) and in Fig. 5.5.20 (normal oscillation
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CHAPTER 6
CONCLUSIONS AND
SUGGESTIONS FOR FURTHER RESEARCH

In this study a simple model of interface response
is developed for the study of dynamic frictional contact probiems
involving metallic bodies. This model is consistent with a large
body of experimental evidence on the behavior of metallic interfaces
and it incorporates a constitutive law for the normal deformability
of the interface and Coulomb's law of friction.

Taking into account the normal deformability of the interface
leads to mathematically tractable problems in continuum mechanics:
variational formulations and existence and uniqueness results for
steady-sliding and dynamic frictionless or frictional contact problems
are established in the present work. Semi-discrete finite element
approximations to dynamic contact problems are also shown to converge,
in appropriately weak topologies, to the solutions of the corresponding
continuum problems.

From the physical point of view, the incorporation of the
normal deformability of the interface allows for the modeling of

normal oscillations that are commonly observed in the course of

sliding motions. [t is a fundamental result of this work that,
for sufficiently 1large friction, the nonsymmetry of the coupling -
between normal and tangential deformations of the interface may Ifif
o
Y
lead to unstable steady-sliding equilibria. Such instabilities ot
231
‘v. ‘h‘l’
‘._'.\
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may occur either with rigid or with deformable bodies and they
may occur even when the coefficient of static friction is equal
to the coefficient of kinetic friction and the latter does not
decrease with the sliding speed. [t is also a fundamental result
of this work that instability of steady-sliding equilibria and conse-
quent high-frequency normal oscillations may lead to low frequency
stick-slip motions or to apparently smooth sliding motions at apparent
values of the coefficient of kinetic friction that are lower than
the coefficient of static friction.

The numerical results presented in this dissertation confirm
and give further insight to essential aspects of the experimentally-
based ideas of Tolstoi [1967] and Budanov, Kudinov, and Tolstoi
{1980] on the role played by normal oscillations in sliding friction
phenomena. Particularly, the high-frequency stick-slip mechanism
(mechanism (II) in Section 2.3) proposed by Budanov, Kudinov and
Tolstoi [1980] emerges in the present work as the essential mechanism
responsible for the occurrence of average friction forces (during
apparently smooth sliding or during the slip phase of Tow frequency
stick-s1ip motions) that are smaller than the static friction force.
A new mechanical explanation for the occurrence of such high-frequency
normal motions, which does not rely on the excitation by shocks
between opposing asperities, emerges from the present work: those
motions are the necessary consequence of the dynamic instability
of the steady sliding equilibrium.

Numerical studies on the effect of the variation of several

hRas Sl Lo Sl A g
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governing parameters on the behavior of sliding bodies at small
speeds lead to very promising quaflitative comparisons between numerical

results and experimental observations.

The results reported in this final report snould be the
starting point for many studies 1in dynamic frictional phenomena.
Full understanding of these complex phenomena can only be achieved
with a close interaction between mathematical analysis, numerical
computations and experimental work.

The following mathematical studies are suggested:

(i) A detailed qualitative study of finite dimensional
dynamical systems of the type (4.1.4,5) (the choice of model problem(s)
involving some simplifications to the rigid body model considered
here is recommended);

(ii) A study of the regularity of the solutions to the
steady-stiding and dynamic contact problems formulated in Chapter
3, and a mathematically rigorous study of the stability of steady-
sliding equilibria in the deformable body case;

(iii) The construction and study of simple examples of non-
existence and/or non-uniqueness of solution to steady-sliding problems;

(iv) A study of the mathematical difficulties arising when
the normal interface stiffness 1is made to increase to infinity
(the analysis of known examples of non-existence and/or non-uniqueness
of solution to finite dimensional dynamic contact problems may
prove very useful in this context).

The numerical techniques wused to solve dynamic contact
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problems deserve the following additional studies:

{v) An analysis of the convergence of fully discrete approxi-
mations when the time step, the regularization parameter, and the

mesh parameter (in the finite element case) converge simultaneously

'na; -i.' = "?'

to zero,

- (vi) A study on the application to friction problems of o
: time integration techniques that allow for the automatic control :
E of time-step. ':‘:E
Among the numerous numerical studies that are needed, those -
N indicated in the following are expected to provide information .(
5::' that is complementary to the results presented in this report: }
ﬂ (vii) A study of the effect of the parameters that govern ,*
the rigid body problem on apparent reductions of static friction; '
'\ (viii) A study of apparent reductions of static friction 'i-
‘ employing finite element models of deformable bodies; ‘
E (ix) A study of the stability of steady-sliding equilibrium ’.:
X and the occurrence of friction-induced oscillations with other ;:
:}-‘ geometries, particularly "pin-on-flat" experimental apparati. :'4‘
E Full assessment of the models proposed in this dissertation ‘
Se requires quantitative comparisons between theoretical results and ax- :::‘
..:; perimental observations. The apparatus to be selected for the :

= required experimental work should satisfy the following conditions:
'} (a) closeness to other apparati used earlier in the literature :i,'
W, Y

(the possibility of neprcducing earlier experimental results is essen-

<>
.
.-1.

tial);
. wd
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(b) possibility of incorporating devices to measure and,
when desired, to restrict the normal (and rotational) motions;

(c) simplicity of the theoretical modeling of the dynamic
behavior of the apparatus.

In view of the numerical results obtained here the experimental
work suggested should, of course, be directed toward the study
of the role played by normal (and rotational) degrees-of-freedom
on:

(x) the “"rate dependence" of the coefficient of static
friction;

(xi) the occurrence of stick-slip and other friction-induced
oscillations;

(xii) the dependence of the kinetic friction on the sliding

speed.
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APPENDIX:
SOLUTION TO THE SIGNORINI-LIKE CONTACT PROBLEMS

THROUGH INTERFACE MODELS

2 R B E=

In this Appendix, we present a study of contact problems usually

T
-

modeled by Signorini's problem. Our approach differs in that we

make use of the constitutive relations for the normal response along

B

the candidate contact surface developed earlier in this report.
The form of these models is dictated by experimental evidence and
they lead to a variational equality instead of an inequality. We

focus on the most delicate case of contact-traction boundary conditions

=

for which we obtain existence and optimal uniqueness results under

)i
Eg physically realistic assumptions. The other usual boundary conditions

. can be dealt with similarly with simplifications in the proofs.

i Signorini's problem is shown to be recovered as the limiting case

o of an infinite normal stiffness, while our model allows for perturbations

describing friction phenomena, according to Coulomb's law or generalizations

of it.
; Serious mathematical difficulties arise from the fact that the
gs most general type of interface models rules out the use of Sobolev's
aa embedding theorem, without which the problem is no longer in the

province of standard convex analysis but rather lies in the realm
EE of the theory of hypermaximal monotone operators having a domain
with empty interior. Several auxiliary results, including an apparently

é: new property in Sobolev spaces, are proven which, together with

the general method of proof, should be of interest in other problems.
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The contact-traction boundary conditions require compatibility conditions
to be introduced. They have a somewhat more sophisticated form than

the standard ones involved in Signorini's problem and further examination
shows that their physical content agrees strikingly with common

sense physical observations.

1. Introduction. g

“

Let f be an open, bounded subset of IN with a Lipschitz con- $

tinuous boundary I , the disjoint union T U T_. with T and T .

£, c F c F "]
§§ measurable and meas(rc) >0. For N=2 or N=3, Q represents :1
o

&

the reference configuration of a body in geometrical contact with an- !

other body along T In other words, no external forces are present

C .

and the boundaries of the two bodies coincide along FC . Suppose now

e

that the body occupying the domain Q is submitted to external forces

f , consisting of body forces b defined in Q and tractions ¢ v
',
4
E? prescribed on PF . Assuming that no point of FF may come in con- k
, tact with the second body under the action of the forces f , i.e., that }
Ez I‘C is the candidate contact surface for the deformed configuration,
- \]
and that the material has a linear elastic behavior, the problem of :{
. M
N
3 contact with no friction is usually understood as the Signorini f
' problem: Minimize
}2 l-a(v v) - <f, v> (1.1) :
2 ~’ M -) M Q 1 ] . .
5 ¥
L] (.
\ 3
R

QDN v T .
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)

over the closed convex subset of the Sobolev space (Hl(ﬂ))N R

o3
1y ¥
L
K= {Y e B (@) , v, $0 on I‘C} . (1.2) 3
In (1.1) and (1.2) above, a(+,*) denotes the symmetric bilinear form
associated with the virtual work of stresses g(u) on strains ¥

Q the duality pairing

ev) (alu,v) =J glu) : g(y) dx) , <+,>
Q
between the space (Hl(ﬂ))N and its dual, and vy the component of

the displacement v along the outward normal vector n : v, = Yn

(euclidian inner product). Problem (1.1)-(1.2) is a formal variational

formulation of the equilibrium equations between the stresses o(u)

ol

and the external forces b and t:

divo(u) +b =0 1n & , (1.3)
»
: {ORE RSN N 1.0
I and, on I‘C R
» u s 0 , (1.5)
n
g o(u) *n=20 if u, <0 , (1.6)
g o(u) *n==-an , @20 , if un=0. (1.7)

A "qualification' of the formality of this interpretation can be found

<A

among the by-products of our approach (cf. Remark 5.2)
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Existence of solutions to problem (1.1)-(1.2) is known under a
simple necessary and sufficient compatibility condition on the applied
forces (Fichera [4]; see also Lions and Stampacchia [9]). The idea of
using variational inequalities for solving contact problems goes back
to Fichera [4] and Stampacchia [9], but the theory has not been very
successful in the more complicated problem with friction despite
recent contributions by Necas, Jarusek and Haslinger [5, 12].

With the aim of analyzing problems of friction, Oden and Martins
[13] have developed a different approach to contact problems. The key
ingredient of their theory is the introduction of a model for the

normal response at points of PC at which contact may occur. To do

this, it 1s essential to remove the non-penetration condition u =0
on FC: The normal response at a point x € FC is then a function of
(un)+(§) . Contrary to a first natural reaction, removing the nonpene-
tration condition u S 0 1is not physical nonsense. Indeed, in any

mathematical model, the boundary T _, is an idealized average candidate

c

contact surface, the real candidate contact surface differing from FC
by a layer of asperities. How different the real surface is from FC
"measures" its roughness, a factor increasingly believed to originate
friction phenomena (see, e.g., [13,17,19]). When contact occurs, the
deformation of these asperities (incidentally of a nature totally

different from the "visible" deformation of the body) allows small

displacements of the boundary PC towards the obstacle, violating the

MR R P TN P X CLITL TR SR O I R T I e R e o < oM < o
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! i.’
! condition u, S 0 . Accordingly, when positive, the displacement u, *—

i

; should nevertheless remain small. This point will be examined later .y;

v ;

Ol on. In this view, removing the condition u, £ 0 does not amount to q$

accepting actual penetration of the two bodies in contact but merely o
allows the average surface FC to get closer to the obstacle. On the o
experimental! side, these features of actual surfaces have been observed
by manv investigators, and the memoir [13] contains extensive arguments

in support of such models. On the mathematical side, they present W

numerous advantages: As we shall see, discrepancies between varia- "

€ A TS KA
ot

tior -1 and boundary value problem formulations vanish, new compatibil-

ra )
t". itv conditions with precise physical interpretations are involved, Ny
44
. perturbations allowing for friction phenomena become manageable, etc. §t
. In such models, the normal response caused by the normal displace- g
* Iy
4 ment u (x) at x € ' 1s then of the form d»(;c, u (:_g)) where ﬁ
¥ " c " i
@:I‘C x R *R verifies ¢ 2 0 and 4¢(x, t) =0 for t S0 [so that oy
! ¢()5, uch)) actually depends only on (un)+()5_)] . The function ¢ :’:'
v
(N
depends on the interface condition and a few of its properties are :

dictated by common sense observations: It is intuitively clear that A

any positive normal displacement should produce a positive normal

-
P

LA B

’-
response, so that ¢(x, t) >0 for t > 0 . Next, an increase of 3]
i
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the normal displacement must produce an increase of the normal re- ¢

2 iR K B
- |

sponse so that ¢(x, t) 1is increasing w.r.t. t 2 0 . Further, the v

resistance to penetration of the bodies suggests for a positive normal -

-
-

displacement un(g) that the ratio ¢(§, un(;g))/un (x) (normal re- )
sponse versus normal displacement) be an increasing function of b

u (%) , namely that ¢(x, t)/t 1s increasing w.r.t. t > 0 .

»a =
Tl

Denoting by ;(un) the function ;(un)(g) = ¢(x, un(g)) for

'
X € FC » the contact problem (1.3)-(1.7) becomes, in this approach: 3
'
S

| 225

Find u € (Hl(ﬂ))N such that

uX%

div o(u) + b=0 in  , (1.8)

o(u)°n =t on FF R (1.9)

~
.5

o(u)°n = - ¢(u )n on F . (1.10)

o

FES A

In §3, we shall see that problem (1.8)-(1.10) has the equivalent

-an

formulation: Find u € (HI(Q))N such that

o )
Q. - 3
. a(g, Y) * JF ¢(un)vn ds = <§’ Y>ﬂ Y
Y 1 N ti
> for every v 6(H (2))" . (1.11) 5
- .

o ¢
SS Experimental evidence shows that the normal response ¢(x, t) ¢
ﬁ has a power-like behavior for small values of t > 0 , growing up to M
) ‘.'
] Y,

exponential as t 1is increased. Roughly speaking, the power zone

-~ -
- -

=
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("light" normal loads) authorizes sliding, prohibited in the exponen-
tial zone ("heavy" normal loads); see [13, Fig. 48]. For this reason,
in a study of similar static contact problems with friction (cf.

[10]), we have limited ourselves to considering the choice

¢(x, t) = cn(g)(t+)mn with (experimentally justified) values of the
exponent m allowing the use of Sobolev's embedding theorems and
under convenient boundary conditions avoiding the need for compatibil-
ity conditions.

This paper is devoted to the study of problem (1.8)-(1.10) with a
general ¢ . On comparison with the situation in [10], we face sever-
al new difficulties. First and foremost, the variational formulation
(1.11) is a priori not well posed since Sobolev embedding theorems are
not available without serious restrictions on the growth of the func-
tion t » ¢(x, t) as t tends to += . In particular, exponential
growth is prohibited when N 2 3 . This difficulty has been overcome
by requiring ;(un) to belong to the space Ll(rc) as an additional
condition to (1.8)-(1.10) and proving in this assumption that ¢(un)vn
belongs to Ll(rc) for every v 6 [HI(Q))N as soon as u 1is a solu-
tion to (1.8)-(1.10) (Theorem 3.1), Once the variational formulation
(1.11) has been justified, we show that it is equivalent to the mini-
mization of a weakly sequentially lower semicontinuous convex func-
tional over [HI(Q))N with values in R = R {+=} . In this process,

E other difficulties arise because the functional in question is nowhere

continuous in the general case (i.e., its domain is empty), and the

ii desired properties must be established by using convexity of the func-
B}

ATt T o - " -
' { Y e AT AR
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tion t -» f;¢(x,r)dr rather than that of the functional. Another
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technicality is to prove that the minimizers do verify equations
(1.8)-(1.10) in the sense of distributions, and the condition
s(u) 6 LM (ry) .

From these introductory comments, one might have guessed that the
problem is, in some respects, pertaining to the theory of hypermaximal
monotone operators (cf. Deimling [1] for an excellent account) rather
than standard convex analysis. However, we have found no significant
advantage in using the specialized vocabulary and the general results
of this theory, while doing so might have caused some discomfort to
the non-initiated reader. Nonetheless, it can be reasonably specu-
lated on the basis of this relationship that our method of proof can
be duplicated in other problems, thus ranging farther than the specific
example for which it has been developed here.

Several general properties need to be established. Some of them,
specifically related to integration theory, are collected in §2. 1In
this respect, we note an interesting coincidence: Most of the results
of §2 hold under the apparently necessary condition that the mapping
t + ¢(x, t) has (at most) exponential growth at infinity. Other
statements of general mathematical interest, related to a seemingly
new property in Sobolev spaces, are proved in §3 (Lemmas 3.3 to 3.6).

Coerciveness of the energy functional, hence existence of mini-
mizers, is proved in §4 over an appropriate quotient space (although
the functional is not quadratic!) and under a compatibility condition
on the applied external forces slightly stronger than that needed for
solving problem (1.3)-(1.7). This compatibility condition is inde-~

pendent of the normal response ¢ and, again, the necessary
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B2
s
3

know how they relate to each other. In §5, we present a very simple ()

‘ mathematical assumptions have significant physical counterparts. For ﬁ;

v

l instance, coerciveness for every external force f 1is obtained under .

¢

\ ™y a purely geometrical assumption bearing a striking interpretation, }g

E: namely, that the body is "stuck" due to its contact along FC in the %‘

!; reference configuration (in other words, contact along PC in the 'é

; reference configuration prevents the body to be moved without exerting &J

ES external forces). ,%

Uniqueness of the solution to within elements of the space %

S V={ve [HI(Q)]N » v, =0 on T}, hence uniqueness if ¥ = {0} , is f%

g obtained under another mild compatibility condition as soon as physi- !f

cal contact occurs. In any case, uniqueness of the area of physical ;é

E§ contact {x € FC; un(E) > 0} 1is proved and it is shown that the same iﬁ

”; result is false in general if the area of physical contact is replaced é

i by the area of geometrical contact {x 6 I’C; un(g) 2 0} . ‘

% Considering problem (1.8)-(1.10) as a model for contact with no ’

friction instead of Signorini's problem thus allows elimination of i

g several ambiguities in the latter. An important question is then to XS
&

answer providing one more justification for the use of normal response o,:‘

models: The Signorini problem coincides with the case of an infinite n

2
Lge

c * This takes us back to the natural require- <

ment that, when positive, the displacement u should be "small" along

normal response along T

X

¥

v
X

B

FC . When u 1is a solution to problem (1.8)-(1.10) and ¢ is a phys-
ically admissible normal response, a heuristic but strong argument in
this direction is as follows: As a result of resistance to penetra-

tion, it is observed in physical experiments that ¢(x,t) 1is very >

P ER S
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m
n

large for relatively small values of t > 0 (with d(x,t) = cn(f)(t+) .
experiments have provided cn(g) =c in the range of 106 or 108).
On the other hand, by changing any normal response ¢ to Ad and
letting A tend to +* , we show in §5 that every solution g(l) is
arbitrarily close to some solution to Signorini's problem in the
strong topology of (HI(Q))N . Hence, un(l) is close to zero in,
say, every space Lp(FC) such that H%(F)‘>* LP(r) . The interpre-
tation of this result is that u is close to zero on FC if the
normal response ¢(x,t) is large for relatively small values of
t > 0 , which is precisely the actual physical situation.

Another advantage of the formulation (1.8)-(1.10) is that it
admits perturbations allowing consideration of friction phenomena
according to Coulomb's law or generalizations of it. In this case, it

suffices to consider a power-like normal response (since the exponen-

tial zone is characteristic of no sliding). The method of [10] is then

available with appropriate modifications (see §5). The other aspects
we discuss in §5 are the interpretations of our compatibility condi-
tions for coerciveness and uniqueness in the simple case N = 2 , the
admissibility of an initial gap and the possibility of considering
other boundary conditions. The use of interface models, such as those
described here, together with nonquadratic energies of deformation, is
the subject of current studies.

The work 1s naturally divided into two parts. Part I is composed
of paragraphs 2 and 3, and is devoted to the establishment of special
mathematical preliminaries and to the formulation of the variational

equality which correctly characterizes the traction contact problem
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with a nonlinear interface constitutive law. The major issues of

existence and uniqueness of solutions are taken up in Part II.

ey R BB =

PART I. PRELIMINARIES AND FORMULATION

OF A VARTATIONAL INEQUALITY

2, Technical Preliminaries.

We shall begin with a review of some general results. Hypotheses
will later be complemented according to the applications we have in

mind and further properties will be established.

B 58 £ &3

Let ® be an open subset of ", m21, and ¢:w XX +>R , a

FAEuy

Carathéodory function, 1i.e.,

—

¢(x,*) : R +* R 1is continuous for almost all x 6 w ,

(2.1)
¢(*,t) : 8 + R is measurable for every t 6 I .

4

The Nemytskii operator ¢ associated with the function ¢ 1s defined

‘-

K}
for every measurable function & : w = R by 4
¢ :
gg d(E) (x) = ¢(x, E(x)) for almost all x 6 w ., (2.2) ;*
~ ~ - - LN
83 It can be shown that ¢(£) 1is a measurable function. Krasnoselskii \
) J
Cn, [8] has given necessary and sufficient conditions for the operator ¢
gb to act continuously from L9(w) 1into LY (w) when q and r verify
f3 the condition 1 S q, r < + ® , Besides, setting :;E
(x,t) = fg 6(x,1)dT (2.3)

*
and assuming q > 1 and r =q = q/(q-1) (HSlder conjugate of q ),

h L
T
ﬂQ he has shown under the same assumptions that the functional ;‘
n “q‘
! N
Q2
il " .l L N Ll P e e i W . ™ » O 0P I A " '.(‘f‘ - ", = [g -’.;‘.‘q' o AT L
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36 = [ e(e)ax , (2.4)

is continuously differentiable on Lq(w) with derivative ¢ , in the

sense that

37 b = [ $(E)h dx (2.5)

for every pair (£,h) 6 (Lq(w))z . PFor q > 2, these results are
complemented in [15] by showing, under the additional assumptions that
(1) the mapping ¢ 1is continuously differentiable with respect to t

for almost all x 6 w and (2) its derivative ¢t verifies an appro-

*
growth condition (ensuring that ¢, 6 CO(Lq(w), L(q/Z) (w)}), that the
functional j (2.5) is twice continuously differentiable on L9(w)
with

M0 (hK) = [, (D)hk dx

for every triple (£, h, k) 6 (Lq(w))3 . The same conclusion is false
for q = 2, except in the trivial case when ¢(x,t) = a(x)t and

a6 Lw(w) » but it can be extended to the case q = +» , of special
interest to us in this paper. Proposition 2.1 below summarizes the
various statements for q = +© 1in a form which will be suitable for

our later purposes. Details and extensions can be found in [16].

Proposition 2.1: Assume that the Carathéodory function ¢ 1is of
6 w m

class C1 with respect to t for almost all x and that ¢t

(I)No additional assumption is needed to show that ¢t is a

Carathéodory function.
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verifies the following growth condition: For every t, > 0 , there is
a function a € Ll(w) such that
o
|¢t(',t)l S a, for |t] st . (2.6)
o

Then

-~

) s 6 LW, tlw)

t

-~

(i1) ¢ 6 CI(Lw(w), Ll(w)) as soon as ¢(+,0) 6 Ll(w) , with
Do(£)+h = ¢, (D (2.7)

for every pair (g,h) 6 (Lm(w))2 .

(i1i) Setting
o(x,t) = fo o(x,TVdT (2.8)

the functional

166 = [ 0(E)ax (2.9)

is twice continuously differentiable on Lm(w) and

11(8)h = [ $(Dh dx (2.10)
g; for every pair (£,h) 6 (Lm(w))2 (note that the combination of (1) .
¢ and (ii) yields ;-.
gg . 3}i
v §"(E)+ (h,k) = f 6 (E)hk dx (2.11) s
£
R

for every triple (£, h, k) 6 (Lm(w))3) .

o
2
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Suppose now that

¢(-,t) 2 0 for every t 6 R . (2.12)

Then, for every measurable function £ : w+ R, ¢(£) 1is a non-
negative measurable function. The functional j of (2.9) can thus be
extended to all measurable real-valued functions as a mapping (still

denoted by j ) with values in R =R {+} by setting

ffmi(z) dx  1f (&) 6 Liw)
3@ = (2.13)

+ = otherwise.

Proposition 2,2: The extended functional j 1s lower semicontinuous

on tlw .

Proof: The result follows by combining [3, Prop. 1.1 p. 218 and

Cor. 1.2, p. 2221.0

Remark 2.1: The same argument shows that the extended functional j
1s lower semicontinuous on LP(w) for every 1 S p s+ []

We shall consider a particular case when assumption (2.12) is
satisfied, namely

¢t(~,t) 20 for t>0 ,

(2.15)
¢, (+»t) =0 for ts0
and
t
¢(x,t) = J 6, (x,T)dv (<= ¢(-,0) = 0] . (2.16)
- o -

TR R R
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In this case, the three functions ¢t(-,t) » 6(e,t) and ¢(-,t) are
non-negative for every t 6 I and vanish for t £ 0 . Together with
an appropriate condition limiting the growth of the function ¢(x,t)

as t tends to + « , the above assumptions will now allow us to

complement Proposition 2.1 as follows:

B B3 B2 N

Proposition 2.3: Assume that (2.15) and (2.16) hold and suppose

further that the function ¢ _(x,*) 1is nondecreasing for almost all

X 6 w and that there are constants T > 0 and u > 0 such that

Bz &

¢t(°.t) Su¢(e,g) for tz2T , (2.17)

with ¢(,T)(= ¢(T)) 6 Ll(m) . Then, for every measurable function ¢

A

such that ¢(£) 6 Ll(m) and every function n € Lw(w) one has

LA

€+ 6 LW, o,(¢+m 6Ll w

and the functional

n 6L (w) + Tg(n) = 3(£ + ) (2.18)

is real-valued and twice continuously differentiable with

Jg(n)+h = fw 6(E + n)hdx (2.19)
) (h0) = [ 8, (6 + Wbk dx (2.20)

© 13
for every triple (n, h, k) 6 (L (w))°.

Proof: As a first step, we show that ¢(§) belongs to Ll(w):

Integrating both sides of inequality (2.17) we obtain

R T O TR R S O =X
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Loz

¢(*,t) 5 6(,T) + u 0(*,t) - u &(-,T)

S ¢(C,T) + u ¢(*,t) for t 2T . (2.21)

B

Let then £ : w + B be a measurable function. From (2.21),

<

E(x) 2T => ¢(x, E()) S 0Cx,T) +u o(x, £E(x)) .

On the other hand, it follows from (2.15) that the function ¢(x,*)

is non-decreasing for almost all x 6 w . Hence,

E) ST = ¢(x, £(x)) 5 6(,T) 5 6(x,T) + u ofx, ) .

s 55 &=

This shows that

S $(E) S 6(T) + u 0(8) 6 L ()

i'.'- .l
~ v e
(=]

proving the relation ¢(£) 6 Ll(w) .

-

Setting

0 be(x,t) = o(x, Ex) + ¢} , (2.22)

!! we now note that ¢E is a Carathéodory function, and the mapping
t >+ ¢E(x,t) is continuously differentiable for almost all x 6 w

with

55

(), (x,t) = ¢ (x, €0 + 1) . (2.23)

%21

The sole nontrivial part of this assertion is the measurability of the

Mot

function ¢E(°,t) for every t 6 R . However, it suffices to notice

%S that the function (x,T) 6 w x R * ¢(x, T+t) 1is (obviously) a }{
t&o ‘h
Carathéodory function and to apply the measurability result used at ;

the beginning of this section after replacing t by £&(x) . W

|-l X3 B
Y YT
P

R R A
'\-" \\ ..\"II*

‘,. '.t’ AR M" :' ...a".o AN "" o
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At this stage, we see that the properties to be established

follow from Proposition 2.1, provided we can prove that the function

¢, fulfills the required hypotheses. As ¢€(~,0) = ¢, £(+)) = ;(E)

3

is in Ll(m) , as we have just seen, we need only prove for every

tre O BN R

to > 0 that there is a function bt 6 Ll(w) such that
o

0 s (¢E)t(x’t) S bt (x) for almost all x 6 w and |t| s t -
° (2.24)
We begin by observing that an equivalent formulation of

assumption (2.17) is

= e 3

¢(e, T+t) S eut ¢(*,t) for t20 and T 2T , (2.25)

| S

the proof of which reduces to a simple verification. In particular,

ST

»

eu(t-T)

¢(+,t) s 6(+,T) for t 2T .

Substituting into (2,17), we arrive at

v
N."

e -~

“ o 0t su @D ,m = D gy for t2T .

! Meanwhile, from the monotonicity of almost all functions ¢t(x,-) N
Cﬁ one has

|y

LD

6, (+18) S §,(+,T) S u 6(+,T) = ue(T) for t ST . (2.26)

Hence, given t > 0 and setting

a =a sup(l, eU(to-T)) ;(T) 6 Ll(w) ,
)

| A0

e

we obtain the estimate

05¢.(,t) sa for |t] ste_ . (2.27)
[0}

- -
£ ar

-
K

o R Ry N B ¥
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To prove (2.24), we may assume t, 2 T , since the same function
bT can be taken as bt when to S T. We shall find an appropriate
o

choice for bt by considering the three cases: §(x) S T - t° ’
o

T-t¢t < E(x) <T and &(x) 2 T . Assume first £(x) < T - t, -
Then, for |t| s t, » one has E(x) + t ST . From (2.23) and

(2.26), we deduce
05 (4), (x,8) & uQ(T>(§) . (2.28)

Next, suppose T - t < E(x) <T . Since t, 3T >0 by hypothesis
and for |t| s t, s we see that -2to < E(x) +t < 2:0 . Applying
(2.27), we get

0 s (¢€)t(§,t) s a,, (f) . (2.29)
o

Finally, assume that &(x) 2T . For 0 S ¢t S €, s relation (2.25)
is available with 7T = §(x) and we obtain

ut

8z, () +£) 5 " 4(x, E) = T HOIM s e © O .

More generally, as soon as &(x) + t 2 T , relations (2.17) and (2.23)
yield
05 (8), (x,t) S ud(x,E(x) + ¢)
Together with the previous inequality, we find
Ht

05 (6, (x,8) Sae ° 6O (2.30)

for 0 s ¢t s L, - Next, due to the monotonicity of almost all func-

tions ¢(x,*) and from (2.17):
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05 (8),(x,6) S L8(x,E(0) = ub(E) (x)

when t <0 and &(x) + t 2 T . This shows that inequality (2.30) is

1A

valid whenever £(x) 2 T , |tf t, and E(x) +t 2 T . It remains
to examine the case when £(x) 2 T and &(x) + t <T . If so, t is

negative and
- - < <
t, < T t, S E(f) +t<Ts t,

whence, from (2.23) and (2.27),
0 s (¢E)t(§,t) s ato(f) . (2.31)
According to the estimates (2.28)-(2.31) and since ;(T) , ;(E) >

a and a belong to the space Ll(m) , we can take

t 2¢t
o o

~ ut
bt = sup (u¢ (T) y ue t
(o] [o]

° 4()s a_ , a,. )6 Ll (w)
o
in (2.24) and the proof is complete.]

By localization and partition of unity, the results of this sec-
tion easily carry over to the case in which the open set w is re-
placed by the Lipschitz continuous boundary T of a (bounded) open
subset & of lN . Indeed, this merely introduces positive measur-
able bounded weights, which does not affect the form of the required
hypotheses. Further, ' can also be replaced by any measurable subset
PC for it is immediately seen that the assumptions are not affected

by extending all the data by zero for values of the variable x in

I'\T Theorem 2.1 below summarizes the conclusions in this new

C .

context.

0 AT,V
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Theorem 2.1: Let § be an open bounded subset of lN with Lipschitz

continuous boundary TI' and surface measure ds and let PC<: I' be a

measurable subset. Let ¢ : PC x R + B be a Carathéodory function

[Py
. m e

and assume for almost all x € I, that the function ¢(x,-) 1is con-

tinuously differentiable with ¢t(§,-) nondecreasing. Assume further

¢.(e»t) 20 for t>0 , (2.32)

$,(+st) =0 for ts0 , (2.33)
F t

$0x,t) =[5 6. (x,D)dr (<=> 6(-,0) = 0) , (2.34)

,.,..‘
o

and that there are constants T > 0 and u > 0 such that

|2
e

¢ (+,t) s u¢ (+,t) for t2T, (2.35)

with ¢(-,t) 6 Ll(r'c) . Setting

"',:.

oA

o(x,t) = [ 6(x,1)dr (2.36)

and denoting by ¢t » & and ¢ the Nemytskii operators associated

with ¢t , ¢ and ¢ respectively, the following conclusions hold:

Sy

(i) The functional

..
B |

[, o(5)ds 1f e(®) 6 L (T
jg) = c (2.37)

+ » otherwise ,

Y
3

defined for every measurable function E:FC + 1 1is lower semicon- 5

iy

-

=
2

tinuous on the space LI(PC) .

()

Yo e
-l
T
Pt

(11) For every measurable function £ such that ¢(£) 6 Ll(FC) v

|

and every function n 6 LQ(FC) one has -

G R R =<
'y Ay
oA

R NN o N W A A P CPII s b P Pt T P PR " T AL o D SR O 100 1y 7 2 AT SO X QONONONOND
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"
;
i - 1 ~ 1 )
¢(§ +n) 6 L'(T.) , ¢, (§ +n) 6 L(T,) ;5
. and the functional ‘
W)
2 n 6 LT + 3 (n) = §(£ + n) (2.38) g
] .
* :
is real-valued and twice continuously differentiable with i
ﬁ - %
Jmeh = fL 6E + b ds (2.39) A
L Cc 4
; - ;
Jg(m- (b,k) = [p 6.6 + n)hk ds (2.40) X

c

g

=23

for every triple (n, h, k) 6 (Lw(l"c))3

| Sope
e

Remark 2.2: Functions verifying the assumptions of Theorem 2.1

generate a convex cone containing all functions of the form

FEd

$(x,8) = c(x) ()" &

where m > 1 1s an arbitrary real number, t, is the function

t if t20, ‘

t+(t) = Y.

" 0 u e<o,
1 'slt

g and ¢ 6 L (FC) is an arbitrary nonnegative given function. More- I
3

over, condition (2.35) allows for a modification of the growth of

(convex combinations of) such functions as t tends to += , up to

g and including exponential order.( f
The assumptions on the function ¢ made in Theorem 2.1, and in N

:’,: particular limitation of the growth in t to exponential order, will
A (
later allow us to characterize the solutions to the problem considered )

' b
i in §1 as minimizers of a convex functional with values in R . As w
. :
- Y

i3 “3
)
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usual, existence of minimizers will be obtained by establishing a

==
LA g s o o

coerciveness property, relying on complementary (and, of course, com~

patible) specification of the growth of the mapping ¢(x,°*) for

s

almost all x 6T The suitable hypothesis and its main conse-

C .

quences regarding the problem under consideration are examined as the

next objective of this section,

d As an additional assumption, we shall require that

¢(x,t)
0 s ——= ¢t(x,t) for t > 0 and almost all x 6T
. - -

c (2.41)
Note since the function &(x,*) 1s continuously differentiable that
this new assumption implies ¢(°,0) = 0 and hence makes condition

(2.34) superfluous. Besides, it is easily checked that (2.41) amounts :

W A OBE R

to saying that the function t + é(x,t)/t 1is nondecreasing on (0,+®)

for almost all x 6T This function is strictly increasing on

C L]
(0,+*) under the mildly stronger condition

Al =X

d(x,t)

0 < ——%——— < ¢t(§,t) for t >0, (2.42)

Monotonicity and nonnegativity properties allow us to set for

almost all x & T

R B8 X

C N
14m  $(Xs0) N
1(3) = e -:?r- 2 0 (possibly +x) (2.43)

&L

and 2(x) 1is equivalently defined through any sequence (é(g,tk)/tk)

with 1lim tk = 4o and verifies

X
Y

A T . N " r , NI Al o P ot LA ‘ffffﬂf’“fR{
28,0 0 0% Mg A7 A% AV, 1 ) ) 5.8 Y LWARAZYEY B S A WRW N Yy
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¢(x,t)

D e ——
2(:}) 2 T

L

for every t > 0

and almost all x 6T (2.44) i

C .

As a result of Egorov's theorem, ¢ 1is a measurable function on FC .

Remark 2.3: It is obvious that functions verifying property (2.41)

form a convex cone and that this assumption does not restrict the

S-S TN

class described in Remark 2.2. This shows that adding condition

T v o -

(2.41) is compatible with the assumptions of Theorem 2.1, which is

due to the fact that T > 0 can be taken arbitrarily large in (2.35).

Roughly speaking, the combination of (2.35) and (2.41) means that the

-

growth of ¢(x,*) 1s superlinear and at most of exponential order,

&
monotonicity being imposed by (2.32).0 :

"
Theorem 2.2: In addition to the hypotheses of Theorem 2.1,(2) assume ﬂ

A At
o that (2.41) holds and let E:FC+I be a measurable function. Then, ::
t

' the mapping ¢
\

1 . "]

t > j(ege) er (2.45) ")

t W

T
et
rey

where j denotes the functional (2.37), is nondecreasing on (0,+»)

i
and .

” 5

&

' (2) N

o~ Although assumption (2.35) can be omitted in this statement.

]
=

T Sy Y I IR
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1im 1 1 2 (3)
trse 2 jee) = 3 Jr L€, ds (2.46)

c

where £, = sup(£,0) and with the (usual) convention that

2(RE5,(x) - = 0 when 2(x) = +» and £,(x) = O .

Proof: A preliminary observation is that for almost all

x 6 FC , the function t » ¢(§,t)/t2 is nondecreasing on (0,+x): To

-~

see this, it suffices to compute

5 ¢ (x,t) 1
a_t T) = ?(t¢(¥,t) - Z‘b(f)t))

.‘\ AT, m

and note that t¢(x,t) - 20(x,t) 2 0 for t > 0 as it follows by

multiplying (2.41) by t and integrating. This yields the monotoni-

-

city of the function (2.45) from the relation (for ¢t > 0)

[ o (x,tE (x)) ’
-—i??r—=—- E° (%) for &(x)> 0,
t°E (%) - -

1
— b x,tE(x)) = (2.47)
ST TORE:

0 for £(x)s 0 .

1im

2
4w 2 CE)/E

A second conclusion from the above observation is that
exists (possibly +w) for almost all x 6 FC . Actually, a more

precise result is true, namely,

tm 20 11 200 = 2 2.(x) (2.48)
t> 4o t2 2 trie t 2 3‘ ‘ *

(3)

Allowing, of course, the value +» for the right-hand side.

b
Ny

. ‘e L SN e e AT A YRR S R T R R S N ) "
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Although it holds in a much more general context, this relation is
easy to prove under our assumptions. Indeed, it is a simple exercise
to check that (2.48) follows from de 1'Hospital's rule.

We are now in position to prove relation (2.46): Supose first

that the left-hand side of (2.46) is a (nonnegative) real number I .

For every sequence t tending to +« , one has

k
1 -
I =1lim — o (t, £)ds
t2 r k
k C
and
17 j ;(tkg)ds 21 for every k6 4§, (2.49)
& Te

On the other hand, it follows from (2.47) and (2.48) (and the conven-
tion 1(5)53(5) = 0 when &(x) = +» and £+(§) = O) that the se-
quence Q(g,tk 6(5))/t§ tends to 2(5)53(5)/2 almost everywhere on

FC . With (2.49) and Fatou's theorem, it follows that

1 2
c

To prove that % J QEE ds = I , we shall use the inequality
r
C

$(x,t)
_"—s
t2

1

5z(x) for t>0 ,

which follows from (2.48) and the monotonicity of ¢(§,t)/t2 . With

(2.47), this yields

-;-zsz >l scte) for t>o0 . (2.50)
+ t2

T D BE S e e e

o

X
R e
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Hence,
%-J 253 ds 2 15 J 3 (tE)ds = 13 j(tg)
r t r t

c c

and, in the limit as t tends to +» , we get

i J 252 ds 2 T .
2 r +
C
Assume next that the right-hand side of (2.46) is a (nonnegative)
real number, namely lEf 6 LI(FC) . If so, relation (2.46) follows
from Lebesgue's dominated convergence theorem by using a sequence

t, > 0 tending to +» in (2.50). As both sides of (2.46) coincide

k
when either one is finite, they coincide when either one is += as

well, and the proof is complete.l

3. Variational formulation.

This section is intended to show the equivalence of the contact
problem described in Section 1 with a minimization problem over the
space (HI(Q))N . We shall begin with a review of some classical
results and introduce a few notations to be used throughout the
remainder of this paper.

Given a bounded domain § with a Lipschitz continuocus boundary
I , the outer normal n 1s defined almost everywhere (see e.g., [10])

and is a measurable function. Componentwise, we then have

nieL'”(r) , 1sisN ,

(3.1)
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0 &"
} 1
4 The space HI(Q) is the usual Sobolev space of distributions
. with partial derivatives of order =1 in LZ(Q) . The space
v,
:: (Hl(ﬂ))N is endowed with the usual inner product inducing the norm ;
4 PN i
¥ g
g | k |
o nY 1,0 " [fn(viv1 + Vi,jvi,j)d’f] . (3.2) |
:: The trace operator maps the space (HI(Q))N linearly and continuously ‘
1
‘. i onto the space H%‘(I') N , with topological dual
4‘ &l
) : N ] N
§ = [EEm)N) = 2y . (3.3)
* cY
A
NS From (3.1) and for every 1 £ p S +2 , a given element

£6 (LP(I‘))N has a decomposition of the form

%, . ] =
o ; E=gp+E 0, (3.4)
s‘ with
1', o

= . = p
;: . En E n Eini e L' (M) ,
.i' ) (3.5)
3 .:': - - p N
B frE-fne PO |
b |
_ l The components En and ET will be referred to as the normal and
‘. N ~
:.{ tangential components of £ respectively.
o A -
:: -:: We next make precise the assumptions on the data of the problem:
I\ |
c We shall assume that the elasticity coefficients Eijkl verify |
i % |
o o 1
A Eijkz € L (?) (3.6)

| o v
A

and that the uniform ellipticity condition

;|

G

oy Sy

Eigra(X) Aghyy 3 @ Ay |

- >

.--
|

holds with some constant o for almost all x 6 @ and every N x N

¢ .: symmetric array Aij .

RN R AAI0 I AT
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The body forces are chosen so that

W s

be (LZ@)Y , (3.7)

e

while the prescribed tractions t on I‘F = I‘\I‘c are submitted to the

condition
2 N
te (L))" . (3.8)

The function ¢ : I‘C x B + B characterizing the normal response

along T is supposed to fulfill the assumptions of Theorem 2.2,

c
namely ¢ 1s a Carathéodory function such that the mapping ¢(x,*)

&3

% is continuously differentiable for almost all x € I‘C and

3¢ 0s2C2 <y (b)) for t>0 ¥ (3.10)
3 t ¢

i ¢t(§,-) is nondecreasing for almost all x 6 I’c »

C (3.11)
t§ $,(»t) =0 for £s0,

! and there are constants T > 0 and u > 0 such that

9 ¢t(-,t) s u¢(e,t) for t 2T, (3.12)

with ¢(-,T) 6 Ll(rc) .

A

Physical justification of these assumptions is provided by Remarks 2.2

and 2.3 and the related comments of §1.

| ArA

In what follows, we shall denote by a(+,+) the continuous

\\.} :\".
b bilinear form over (HI(Q))N defined by Y
N

i i
(4)Reca11 that this condition implicitly contains (2.34). :"

‘? 2%
‘ .

¥
-,

-

0
i ‘i

- r

P - "L a - R T e » n . AT P . *
‘3 ¥y T, ; " 0 * " " » 7 ! g ) [ W o
o) 1, g“,’g’, AR n‘i"“:‘)q ‘l AR Wi 0’!“'&, g 'Q:") (ol g b N !.‘?".05.&;“] A ..Qq'.’ ‘.'l ) : s !’ p A ._"I.o éc 5‘:'0& v

" P 4 «
oA ] N {
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a(u,v) = virtual work produced by the action of the stresses
. g(u) on the strains ¢£(v)
. (3.13)
N The external forces (body forces b and prescribed tractions t ) are
‘ ~ ~
g described by an element £ € [(HI(Q))N]' through the relation
<f,v>Q = f bev dx + J tevds , (3.14)
3 - Q- - I‘F" -
'& a formula in which <ty t>g stands for the duality pairing between
& (HI(Q))N and its topological dual.
g? Our aim is to examine how the problem (1.8)-(1.10) relates to the
minimization problem: Minimize
%-a(v,v) + J Q(vn)ds - <f,v>Q for v 6 (HI(Q))N .
bz I’C
Y

where, as in §2, ¢ is the Nemytskii operator associated with the

i

function &(x,t) = f; ¢(x,t)dTt . However, as the integral II‘ <l>(vn)ds
c
is not defined in general, the correct formulation of the above

problem is: Minimize

2

*3 %E(Y»Y) + j(vn) - <f’Y>Q for Y € (HI(Q))N ’

2

:'i where, for every measurable function E:TC*l , we have set

e
Sty

J 0(0)as  1f o5 e L'y
r

1 =< © (3.16) 3

+o otherwise.

i
3
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The first step of our approach is classical and relies upon a
generalization of Green's formula, given in Lemma 3.1 below, whose
proof can, for instance, be found in (6, Theorems 5.8 and 5.9]. We

e

denote by D(R) the space of indefinitely differentiable functions

with compact support in & , equipped with the usual inductive limit

topology, and by D'(Q) 1its topological dual, the space of distribu-

tions over @ . We shall also make use of the spaces D(f) and D(T)

Y 2l

of restriction to & and T , respectively, of indefinitely differen-

2L

tiable functions on lN .

Consider the operator

[ 9

g div o : (B'@)N » (0 @)¥
” - (3.17)
At
i [dtv g(n) 1y = 2y 045(0) = 35(Ey53,2%)

and define the subspace Hdivo(n) of (HI(Q)]N by
ot -
¥
! Biggo@ = (v 6 (@)Y 5 atvow) 6 (2@ (3.18)
.3 Lemma 3.1 (Generalized Green's formula): There is a unique linear
¥

continuous operator

E§ T By ® (H%(Q))N

C; satisfying )

o [r(w)]ly = o4y ny on T

-~ for every u 6 (HI(Q))N such that ij(13) ijkza u, ec! @ ,

1s4,j,k,2 S N and

[ £

. a(u,v) + J (divo(u)]'v dx = <1r(u),v>r , (3.19)

8 bl Q - . i
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e

1 N
for every u 6 Hdivg(n) and every v 6 (' (@) , where <>
denotes the duality pairing between (H%(Q))N and (H_%(Q))N .

Due to the above lemma, a generalized form of problem
(108)-(1010) 18:

Find u 6 (Hl(ﬂ))N such that

divo(u) +b =0 1in Q, (3.20)

R A X R

with the boundary conditions

e |

T(u) =t on PF , (3.21)

(3.22)

RS

m(u) = -;(un)g on T, .

Note, however, that this formulation contains some ambiguity. Indeed,

e
RGeS

m(u) 1is merely in the space (H;i(ﬂ))N while ;(un) - hence, ;(un)g

- is only a measurable function. As ﬂ(g) is not a function in

general, and a measurable function does not induce a distribution in a

Sy

canonical sense, it is not clear how relation (3.22) must be under-
stood. To circumvent this difficulty, we shall include, as a part of

the problem, the condition

<y N

rw e (Llm)Y . (3.23)

b=, |

Such a condition does make sense in (D'(F))N : It means that the

action of the distribution m(u) on elements £ € [D(T))N is repre-

s

sented (in a necessarily unique way) by some element of (LI(I‘))N .

£
. 3

As usual, the notation n(g) stands for both the distribution and its

representative in (LI(T))N . Conditions (3.21) and (3.22) can then

be understood in the sense of measurable functions, namely, almost
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everyhwere, We now give a first characterization of solutions to

problem (3.20)-(3.23).

Lemma 3.2: An element u 6 (HI(Q))N is a solution to problem (3.20)-

(3.23) if and only if ¢ (un) € Ll(FC) and

a(g,Y) + jr ;(un) v ds = <f,Y>Q for every v € (D(ﬁ))N . (3.24)

C
Proof: Let u € (HI(Q))N be a solution to problem (3.20)-
(3.23). From (3.22) and (3.23), one has 6(u)n 6 (L'(T))" and
hence ¢(un) = ¢(un)g°g € LI(FC). Multiplying (3.20) by v € (D(ﬁ)]N
and integrating over £ , the generalized Green's formula (3.19) of
Lemma 3.1 yields
0= J ( divo(u) + b) * v dx = <W(u),v>r - a(u,v) + J bev dx .
Q - M - -oT - Q- -
(3.25)
The expression <ﬂ(g),y>r depends on the restriction of v to the
boundary T only, an element of (D(F))N . Thus, applying (3.23), we
get

<ﬂ(u),v>r = J m(u)°v ds. (3.26)
il r o~ -

Using a decomposition of the integral over I into integrals over TC

and FF and from (3.21) and (3.22), (3.26) reads

<1r(u),v>r = J t*v ds + J ¢(u dn°v ds . (3.27)
. n’. .
rF rC
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As ;(un)g'y = ;(un)vn by definition of v, it suffices to combine
(3.25) and (3.27) and use the definition (3.14) of the external forces
f to see that u 1is a solution to equation (3.24).

Conversely, let u 6 (HI(Q))N be a solution to equation (3.24)
such that ;(un) 6 LI(FC) . Taking y arbitrary in (D(Q))N and by
definition of f (cf. (3.14)) it is immediate that divg(uy) =b 1in
(D'(Q))N and hence u belongs to the space Hisvo (3.18). Together
with the generalized Green's formula (3.19) of Lem;a 3.1, we see for

an arbitrary v 6 (D(ﬁ))N that

jr $(u v, ds + <m(u),v>; = Ir trvds ,
C F
or, equivalently,
<W(g).y>r = - jr ¢(un)vn ds + Jr tevds .
C F
This relation involves restrictions of elements of (D(ﬁ))N to the
boundary T only, and hence can be equivalently stated for an arbi-
trary v 6 (D(F)]N . As ¢(un) 6 LI(FC) , one has ¢(un)g 6 (LI(FC))N
and it follows that the distribution = (u) 1is represented by the

element of (LI(F))N defined by t on T_ and by ¢(un)g on T

F c’

Hence, u 1s a solution to problem (3.20)-(3.23).0
Let u 6 (HI(Q))N be a solution to problem (3.20)-(3.23). From

relation (3.24), it is clear that the mapping Vv & (D(ﬁ))N +>

J ¢(un)vn ds extends as a linear continuous form over (HI(Q))N ,
r
c

say <¢(un)g,y>Q (depending on the trace of v on T only) and
relation (3.24) remains valid with <¢(un)g,y>Q replacing

I cb(un)vn ds for an arbitrary v 6 (HI(Q))N . On the other hand,
r
c
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from Theorems 2.1 and 2.2, the expression <;(un)g,g>Q strongly
resembles the derivative at u of the functional
1 N
ve (H (@) [»3tv), (3.28)

where j 1s the functional (3.16). Strictly speaking, this is not
true since the functional (3.28) 1is not differentiable (for instance,
because it may take the value +x ), In some cases, lack of differen-
tiability for convex functionals 1is not too serious a problem, but a
standard assumption is that the functional at least have a domain with
nonempty interior, i.e, be continuous on a nonempty open subset.

Here, this condition is not satisfied in general: For choices of N
and ¢ such that the Sobolev embedding theorems are not available,
the functional (3.28) may perfectly be continuous at no point of
(HI(Q))N since it may take the value += near any point v with
j(vn) < +o , The idea of using Orlicz-like spaces is complicated by
the fact that the function ¢ 1s allowed to depend on the point

x 6 FC . Besides, it is not clear at all that changing the space
(HI(Q)]N into a smaller one, over which the functional (3.28) would
have nicer properties, would not lead to later problems (as far as
coerciveness 1s concerned for instance). Despite the fact that the
functional (3.28) is convex, we have then no standard way of justify-
ing the arguments with which it is formally easy to deduce that
solutions to problem (3.20)-(3.23) are minimizers of the functional
(3.15).

To make up for the lack of regularity of the functional (3.28),

we shall adopt an approach based on convexitv properties of the function
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¢ instead of convexity of the functional (3.28) directly. But, to do
this, it is essential to obtain further information on the term
<¢;(un)g,g>Q for a general y 6 (HI(Q))N : The next few results are
devoted to proving (in Lemma 3.6) for every v € (HI(Q))N and pro-
vided that u 1is a solution to (3.20)-(3.23) that ;(un)vn 6 Ll(FC)

and <¢(un)g,y>

Q= IF ¢(un)vn ds , exactly as when v 6 (D(R)) . A
C

somewhat surprising assertion in which non-negativity of the function

¢ 1is one of the two keys.

Lemma 3.3: Let T 2 0O be an element of LI(FC) and suppose that the

mapping

v 6 D) + J Tv ds (3.29)

Te

extends as a linear continuous form <T,v>Q over the space HI(Q) .

Then, for every v 6 HI(Q) , one has Tv 6 LI(FC) and

<T,v>Q = Ir Tv ds for every v € HI(Q) . (3.30)
C

Proof: Llet v 6 HI(Q) be given, Supose first 0 < v = M for

some constant M, Using the classical procedure of extension to

v(k))

HI(RN) and regularization, it is easy to find a sequence ( of

elements of D() tending to v 1in HI(Q) and verifying

0 s v(k) S M. After extracting a sub-sequence, we may assume that

v(k) tends to v almost everywhere on TC . From the continuity of

<T,'>Q on the one hand and Lebesgue's dominated convergence theorem

on the other hand, we get <T,v>. = lim fr Tv ds and Tv € L (PC)

f c
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(k)

with fr Tv ds = 1im fF Tv ds . These relations prove (3.30) when
C

C

0svsM,

Suppose next that v 2 0 . For every k 6 ¥ - {0} set

v(k) = inf (v,k) .

Clearly, 0 5v™ sk and v® 6 u'(Q) for every k (cf. [11,

Lemma 1.1, p. 313]). Arguing as in [11], it is easily seen that

v s vl ()

1.9 ° As v tends to v in LZ(Q) , it follows

that v 1is the unique cluster point of the sequence (v(k)) in the

weak topology of HI(Q) and, hence, v(k) S v in Hl(Q) . As a

result, <'1‘,v>Q = 1im <T,v(k)>Q . But <T,v(k)>Q = J Tv(k)ds from
T
the first part of the proof, so that ¢
<T,v>o = lim f Tv(k)ds . (3.31)
r

c

(k))

From the non-negativity of T , the sequence (Tv is non-negative
and non-decreasing and tends to Tv almost everywhere. Applying the

monotone convergence theorem, we find

J Tv ds = lim j Tv(k) ds . (3.32)
r|C I‘C

S '1“

The combination of (3.31) and (3.32) shows that Tv 6 LI(FC) and

[ R
)

r v

;’I-

(3.30) holds when v 2 0 .

Finally, let v be arbitrary in HI(Q) and write v =v_ - v_

£5) |

with v_ = sup(v,0) , v_ = - inf(v,0) . From 11, Lemma 1.1, p. 3131, -
- =
o
we know that v_ and v_ belong to HI(Q) . Thus, Y
3
<T,v>, = <T,v >, = <T,v > . :
Vo Vil V0 N
\L\
\
3
RN,

[
-

# | 3 »
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From the above and since v, and Vv_ are non-negative, Tv* and

Tv_ are in LI(TC) and this relation reads

<T,v>Q = J Tv, ds - j Tv ds = I Tv ds ,
r * r. - r
c C C

which completes the proof.[]
The following result is a first extension of Lemma 3.3 to

vector-valued functions.

Lemma 3.4: Let T 6 (Ll(rc))N be given and suppose that the

N
components T, of T in the canonical basis of B yverify T, 0,

115N . Suppose also that the mapping

ve @)V » J Tev ds
e

-~

extends as a linear continuous form <I,v>, over the space

(HI(Q))N . Then, for every v 6 (Hl(ﬂ))N , one has T°'v 6 LI(PC) and

c

-~ -~

Proof: Let 1 S 1 SN be fixed and take v 6 HI(Q) . Denote by
6 (HI(Q))N the vector-valued function whose components of order
j#1 are 0 and whose ith component is v . For v 6 D) , one

has v 6 (D(ﬁ))N and

--1-- .
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As the mapping v € HI(Q) Vv 6 (HI(Q))N is obviously continuous,

this shows that the mapping

v 8 D(Q) ~» f T, v ds
T i
C

extends as a linear continuous form <T1’V> over HI(Q). Applying

Q

Lemma 3.3, it follows that Ti v 6 Ll(FC) for everv v 6 HI(Q) and

<T1’V> = J Tt v ds .

Te

From the denseness of (D(ﬁ))N in (HI(Q))N , the identity

N
<T’Y>Q = z <T
i=1

sV, >

i’'i Q

for v = (vi) 6 (D(ﬁ))N remains valid for vy = (vi) 6 (HI(Q))N and

thus reads

Lemma 3.4 can be considerably generalized as follows:

Lemma 3.5: Let T 6 (LI(TC))N be given and suppose that the mapping

-~

v 6 (D(ﬁ))N > J Tev ds
r

extends as a linear continuous form <I,g>9 over the space (HI(Q))N .

Let (Fk) be a finite covering of I by open subsets and suppose

for every k that there is a system of coordinates in RN in

T A SR

-

I

8 5 3 5 = v e

— (T

~ gk g

"

€ 7« s 0 5 ¥




(5)

which T, 2 0 on PC r\Fk , 1s1sN. Then, for everv

i
1 N 1
v 6 (£°(2))" one has T.vEL (PC) and

<T,v>Q = I Tev ds .

Te

- -

Proof: Each open subset Fk of T' is the intersection kaﬂ r
of T with an open subset Uk of 2 . Let (0,0k) be a partition of
unity associated with the covering (Q,Uk) of @ . For v %) (D(ﬁ))N ’

one has 6 v 6 (D(ﬁ)]N and

TeQ, v ds = J ®, Tev ds .
| o vas=] o 1

c

The multiplication by ©, being continuous from (HI(Q))N into

k
itself, this shows that the mapping

v 6 (D(ﬁ))N > J 0, Iv ds
Te

extends as a linear continuous form <Gk I,y>Q over the space
(al@)" .
N N
Let y,» ... » Yy be a basis of R' such that T = 1£1 ToXy
with Ti 20,151 N, on PC(W Fk (such a basis exists by
hypothesis). Denote by €1 +ees &y the canonical basis of lN and

by A 6 Isom (lN) the linear mapping defined by

(S)A condition obviously fulfilled whenever FC(”\Fk =0 .
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Set

3 1,. N
Zl 0, T8, 6 (L () - (3.33)

For v 6 (HI(Q))N , one has

_ - o meat fi"

* *
where A is the adjoint of A . Obviously, the mapping v + A v is

an isomorphism of (HI(Q))N and A*(D(ﬁ))N = (D(ﬁ))N . From (3.34),

it then follows that the mapping

B =0 8 8

P PR St

- *
‘ v 6 (D(Q))N > J S 'y ds (= I 0.I-AY ds) v,
'y ¥
o Te Te v
. 3
4
i extends as a linear continucus form <‘_S'k,}_r>Q over the space '
® @)Y . In addition
% v
o * 3
<Sk,v>Q = <ekT,A v>o (3.35) k“
1 N =N .
’ for every v € (H (2)) since equality holds for v 6 (D(R)) . on "
N
;g the other hand, the components OkTi » 1 1 s N, of §k in the :
‘ N it
canonical basis of X verify @I, 20 on I‘kﬂ I, since @ 2 0. o
:: As supp 6, T, , one has o,T, 20 on T and Lemma 3.4 ensures '
~ k k ki C g
for every v € (HI(Q))N that §k-g € Ll(r‘c) with »
- .
ot "
>
. <§k’\:>{z = [r §k-Y ds .
-}: C
) )
- Using this result in conjunction with (3.34) and (3.35) in which ';:
L] g ]
* - R
‘ (A) 1 v replaces v and since the mapping v -*(A ) -1 v 1is -
»
WM
)

l\‘. *‘

Ny 10 A T G :
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continuous from (HI(Q))N into itself, we deduce for every

ve (@)Y that o1-y6L(r) with

k. -

<ekT’Y>Q = J 0, T*v ds . (3.36)
FC

Since ZG =1 on ' , one has Tev = ZO Tev 6 LI(F ) and the
X k ~ ~ k~ ~ c

K
relation
<T,v>g = é O Ivg s (3.37)

obvious for v € (D(ﬁ))N » remains valid for v 6 (Hl(ﬂ))N by dense-
ness and continuity. The combination of (3.36) and (3.37) yields
<T,v> = J Tev ds ,

rC
for an arbitrary v € (Hl(ﬂ))N and the proof is complete.l]

We are finally in position to prove

Lemma 3.6: Let T 2 0 be an element of LI(FC) and suppose that the

mapping

v 6 (D(ﬁ))N > J Tvn ds = J Tn-v ds
r r

~ o~

C c

-~

over the space

extends as a linear continuous form <Tn,v>

Q

(HI(Q)]N . Then, for every v 6 (HI(Q))N » one has Tv_ 6 Ll(PC) and

<T1:_1,Y>Q = I Tvn ds .
Te

Procof: The boundary T of Q being Lipschitz continuous, there

is a covering (Fk) of T by open subsets such that T, 1is the graph

k
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=

[ 57

of a Lipschitz-continuous function. This easily implies that there is
€ > 0 such that the angle between two outer normal vectors n(x) and

n(y) , x and y in Fk » 1s less than or equal to 180° - ¢ , or,

P B

equivalently, that all the vectors g(g) » X 6 Fk , are contained in a

cone with angle less than 180° . Clearly, this leads to the conclu-

<.

sion that there is a system of coordinates in which n, 20 on Fk

(see Figure 3.1 below when N = 2: all the normal vectors have

Rz

nonnegative components in the basis X1* Yo )

As T 6 LI(PC) one has Tn 6 (LI(FC))N and, in the appropriate
system of coordinates exhibited above, Tni 20, 151N on
Pc(j Fk since T2 0 . Our assertion is then a simple application of

¢ }-'

vl

Lemma 3.5 with T = Tn .[]

n(l)

XMEB o

n(y)

n(y)=n#)
; K |
| Fig. 3.1
Y
»?
. Theorem 3.1: An element u € (HI(Q))N is a solution to (3.20)-(3.23) -
l ‘. if and only if ¢(un)vn 6 LI(FC) for every v € (HI(Q))N and 5
3 4
2 X

e R
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a(g,!) + J ;(un)vn ds = <£,\_{>‘2 for every v & (HI(Q))N . (3.38)

Te

Proof: Suppose that ¢(u )v € LI(I‘C) for every v € [Hl(ﬂ))N .

Y EE B

Taking v as the constant function equal to the ith vector of the

canonical basis of lN , we find

(s |

- 1
¢(un)n1 6L (PC) , 1sisN .,
Thus,

= 1
¢(u) sup |n | 6 L(T.) .
LIS PTP I c

8 & O

As sup Ini(x)l 2 1//N for almost all x 6 T (cf. (3.1)) we

15isN c

deduce

o

0s3u)sN ;(un) sup [n, |

i 151sN
B and hence #(u) 6 L'(T)) . If, in addition, (3.38) holds, it is
w3
obvious from Lemma 3.2 that u 1s a solution to problem (3.20)-(3.23).
g Conversely, if u 1s a solution to problem (3.20)-(3.23), Lemma

3.2 ensures that cb(un) 6 LI(TC) and the mapping

-~

%5 c

=.\N ~
ve (@) » Jr ¢(u Iv_ ds

» extends as the linear continuous form over the space (HI(Q)]N
‘
g

v € [Hl(Q))N > <£,v>0 - aly,y) . -
- ~ =2 =~ .
s 3

The conclusion follows from Lemma 3.6 with T = ds(un) .0

ﬁ With Theorem 3.1 as a starting point, we shall now be able to =
5 prove _‘
& N

L%y

.S

' X

J

\
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Theorem 3.2: Let u 6 (Hl(ﬂ))N be a solution to problem (3.20)-

- 2 e
ST

(3.23). Then, u 1is a minimizer of the functional

ve (@) » 3w =3 aw,v) +3v) - <f,v5 62 (3.39)

5

where j denotes the functional (3.16).

>

‘. 1
% Proof: Let u 6 (HI(Q)]N be a solution to problem (3.20)-(3.23). .:
o o \J

We first show that J(u) < += , or, equivalently, that j(un) < 4o -

W From (3.10), it follows that the mapping ¢(x,t) = fg o(x,t)dT :'
A

% verifies Nt
& 3

0 s o(x,t) s % ¢ (x,t)

[’y 1'6
s

for t > 0 (a relation that was already used in the proof of Theorem
2.2). This inequality extends to t 6 R since ¢ and ¢ vanish for P

nonpositive values of t . In particular, taking ¢t = un(g) » we get

‘l
!

-~ l ~ Q..
0se(u) s ouu . (3.40) )
g As &(u Ju_6 Ll(r' ) from Theorem 3.1, we find 8(u) 6 Ll ) ‘;;‘
n’n C th n c’? !
:% namely, j(u ) < += (cf. (3.16)) . 3
* N
Now, let v 6 [HI(Q))N be given. We must prove that A
3 J(y) 2 J(u) . Of course, this is satisfied 1f j(v ) = +» . Assume ot
‘e
. 1

X then j(v ) < +=, i.e., ¢(v.) 6 L'(T,) . One has ‘
; 0

J(v) - J(u) = % a(v-u,v-u) + a(u,v-u)
e - - R - P
. >
» e
- - - I
+3v) = 3(u) = <fv-ug . (3.41) N

QIO NI G ) 3 O Y N A I N T A N e e e T A N N T AT N T T
B L "sh‘a.'l“':l'n. ‘ul'n’l.",*':’" ."1""-0’!!' byl ‘:' ) 5 WY "- v . o,

LA R SN
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From our assumptions, the mapping &(x,) 1s convex for almost all

x 6 PC gso that the inequality

d(x,t) 2 d(x,1) + o(x,1)(t=1)

holds for every pair (t,7) 6 R x R and almost all x 6 FC . Choosing

Sl s - B R

t = vn(g) and 1 = un(g) yields

2(v) z 0Cu) + olu ) (v -u) .

5.

-~ - - 1
As the three terms ¢(vn) , @(un) and ¢(un)(vn—un) are in L (FC)

s

(the latter from Theorem 3.1 with v-u replacing v ), integrating

both sides of the above inequality provides

|

Jv) 2 iu) + fr $(u)(v_-u ) ds .
c

Applying (3.38) with v-u replacing v, we obtain

A

j(Vn) 2 j(un) + <f,v-u>Q - a(u,v-u) .

~ o~ -~ -~ o~

Substituting into (3.41), we deduce

X 2R ER

J(v) - J(u) 2 %-a(v-u,v-u) 20 ,

225
t
'
et
'

and the proof is complete.(]

Remark 3.1: From the proof of Theorem 3.2, it also follows if u and

v are two solutions of problem (3.20)-(3.23), and hence two minimizers

o S 2 |

of the functional (3.25), that a(g-g,!—g) = 0 , which characterizes

erE

the difference v-u as an infinitesimal rigid motion (cf. §4).[1

The converse of Theorem 3.2 is essentially based on the results

of §2.

Ay o O
RN W N KRS,
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Theorem 3.3: Let u 6 (Hl(Q))N be a minimizer of the functional J

. (3.39). Then, u 1is a solution to problem (3.20)-(3.23).

o Proof: Since the functional j (3.16) takes finite values for
gé E=v and vy 6 (Hl(ﬂ))N (for instance, if v € (D(ﬁ))N » because
15 vy 6 Lw(FC) so that ;(vn) 6 LI(FC) , as it follows from Theorem 2,1

(11) with £ =0 and n = v ) one has @(un) 6 LI(FC) when u is a

minimizer of the functional (3.39). From Theorem 2.1 (ii) in which

A

E = u and n = 0 , we deduce that ¢(un) 6 LI(FC) . Next, for any

ol

given v 6 (D(ﬁ))N » the normal component v = belongs to LQ(FC) .

Again, from Theorem 2.1 (ii) in which £ = u and n = tvn , the

| 30

function

. €
L

teR -+ j(un + tvn)

is real-valued and differentiable at the origin with

A

d . _[ :
rr3 J(un + tvn)]t=0 = Jr ¢(un)vn ds .
C

-~
. ]

Hence, the function

t 6 R > J(u + tv) (3.42)
is real-valued and differentiable at the origin with

¢(un)vn ds - <f,v> ,

fe

Since t = 0 1s a minimum for the function (3.42), we obtain

Fie el = awy -

|

.
4 4

o(u,)vy ds = <£,v7g = 0

a(u,v) + J
%) Te

. for every v € (D(ﬁ))N and the result follows from Lemma 3.2.[1

P "
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The next section is devoted to proving the existence of
minimizers of the functional (3.39) under suitable compatibility
conditions between the applied forces and the geometry of PC and

to the study of unigueness or non-uniqueness of solutions to problem

(3.20)-(3.23).

4, Existence and Uniqueness of Solutions to the Contact Problem.

On the basis of Theorems 3.1 and 3.2, existence of solutions to
problem (3.20)-(3.23) is equivalent with existence of minimizers for

the functional J (3.39). A classical approach consists in proving

that the functional J 1is weakly sequentially lower semicontinuous
and coercive over the space (HI(Q))N ,» both properties together
providing existence of a minimizer for J . Convexity and continuity

of the term

N 1
ve (@) s 3aty - <ty

are sufficient to ensure its weak lower semicontinuity (see, e.g.,
[3]). By continuity of the trace: (HI(Q))N *> (H%(Q)]N and the

compactness of the embedding (H%(Q))N > (LI(F))N , the mapping

1, \\N 1
ve (H (@) - vnll‘ce L ()

-~

is weakly continuous. Together with Theorem 2.1(i), we then see that

the functional
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v e (Hl(n))N > iv) = Jr ;(vn)ds er
C

wh - X

is weakly (sequentially) lower semicontinuous and so is then J ., A

result slightly more sophisticated than coerciveness of J over

.

(HI(Q))N will be proved next under a condition expressing compati-

bility of the external forces with the geometry of I'C . From now on,

we denote by R the N(N+1)/2-dimensional space of infinitesimal (or

2,

ﬁ affine) rigid motions. We make the assumption

.. For every R € F such that Rn 0 on I‘C and <f,R>Q 20,
S (c)

i one has Rn = (0 on I"C and <f,l§>9 =0,

2 In particular, condition (C) ("C" standing for "compatibility" or

-

> "coerciveness") requires the weaker assumption

?‘!- " <§,§>Q <0 for every R 6 R with Rn £ 0 on I'C .

i

* well known to play the role of compatibility condition in the

Signorini's problem associated with the physical assumptions of this

-
RS
A paper (see, e.g., [9]). A more complete relationship will be
| ;,' established in the next section. On the other hand, it is immediate
‘ from condition (C') that <§,§>Q =0 as soon as R 6 A and Rn =0
. Ta
. on I‘C . For such an element R , one then has J(gﬂ}) = J(Y) for er
h: :F:

L m

OO0 '0.. Py TS AR 'y '-","v, \'r'. a,m
R X KRN M XWX AL I X O ., ot ot

.,,ﬂ -----

'

-('"" + "(;,ﬁ_'.\'.* - '¢A. 530 p "
o “ ot J-‘f‘.‘!‘o! N Y »‘«“,‘t.:'f.




296

= W

.

every Vv 6 (HI(Q))N . In other words, and with an obvious abuse of

notation J(v) = J(\}) where g denotes the equivalence class of

[ o 4
Wads

v € (HI(Q))N in the space (HI(Q))N/IV with

L |

1V={1~26R . Rn=0 on I‘C} . (4.1)

Pl

The space (HI(Q))N/N identifies canonically with the space ¥ &

(orthogonal in (HI(Q))N) so that weak lower semicontinuity of J

over (HI(Q))N implies weak lower semicontinuity of J over

P
& (HI(Q))N/N . Existence of a minimizer for J will then follow from
v the coerciveness of J over (HI(Q))N/IV . This property, essen-
():
b4 tially based on condition (C), is proved in Theorem 4.1 below and
i closely follows [15, Theorem 1.1].
o
b

Theorem 4.1: Assume th
! at _condition (C) holds and that ¢(x,t) > 0

for every t > 0

Ior every and almost all X 6 I‘C . Then, the functional J
sﬁ" is coercive over the space [HI(Q))N/N .
bas
23

Proof: Applying Theorem 2.2, we see that the mapping

N t 6 (0,+x) » —i—,- j(ev ) 6 r’ (4.2)
$
.

.

b !
-~y ">
- o
-

.

! :
! 3
Y

. . - - - Y
X 5 f] ‘. (\ .' .’ '. L) N""\"“h’k""«" \ - WAL :
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g 3

is nondecreasing for every fixed v 6 [H](Q))N with ,*.

| 3
1 2 ’

w (v) =2 1im - j(tv.) = f (v )7 ds , (4.3) +

o t n n’+ o
» t+o Te i3

(a7

where, for almost all x 6 I‘C , we have set

|

. ¢(X,C) .

§3 2(x) = lim —=— 20 . (4.4)
- £+ W

8 3
RS Note from the hypothesis ¢(x,t) > O and the monotonicity of t{
| N
. ¢(x,t)/t that the stronger conclusion 5:::‘,

2 >0 on I'C (4.5)

holds.

Zn By

Assume by contradiction that the functional J 1is not coercive A
i over the space (HI(Q))N/ , namely that there is a sequence (g(k)} o
of elements in M such that J(g(k)) S M for some constant M and :::

L
y

(k) . & _, (k) @ 0

. lim"y ”1,!2 = +o , Setting v tkg ’ tk = "y "1’Q ’ N
(k) - 2 e

S "g ||1 Q= 1 and dividing by t, ve find =3
7 >
S A
a(e(k),e(k)) j(e e(k)) -L <f,e(k)> s 2, (4.6) o

- - t2 k™ n t ~ - 9] t:2 -
E k k =
L (k) N
Let e 6 N~ be a cluster point of the sequence (g ) in the weak v

g topology of (HI(Q))N . After extracting a sub-sequence, we may =
Q'J' assume g(k) 1y e . As j 1is non-negative, (4.6) yields
~ 3
-3
O
" d
0‘

.'." ::
A
>

Y
¥ <
N

. A AT ARSAY \.'\.‘

A T A A4 AT A AT S At et AT e L e e e N e
GO < e fJ"““-""-f -

J"\(' J'.r f_-_f..l‘f.f'ql‘-l'(')‘ ---.-..- AR
9, W . v " . "W "i

. '\‘. 10, et et e,



a(e(k)’e(k)) _1

-~ -~

t}: Since 1lim tk = +o | one then has

lim a(e(k),e(k)] =0, (4.7)

-~

e(k),g(k))

~

whereas a(g,g) s lim a( . Hence, a(e,e) = 0 , namely,

»

'*‘""" e 1is an infinitesimal rigid motion. Further, due to the ellipticity
= 1 N

:;\ of the blinear form a(*,*) over the space (H (Q)) /R (a consequence
n

of Korn's inequality; see, e.g., [1]), (4.7) means that the sequence

A
r
a of orthogonal projections of g(k) onto Rl tends strongly to O .
p- Since R is finite dimensional, weak convergence of g(k) to e
implies strong convergence of the orthogonal projections of g(k)
i onto R (to e 6 R) . Hence, strong convergence of g(k) to e
in (HI(Q))N follows. In particular, [el, o =1.
- ’
::.'.: Now, observe that (4.6) also yields
! 1 (k) 1 (k) M
- —Zj(tken ]-q<f,e >Q§—i'.
t T t
- k k
4
L]
As j 1s non-negative, we infer
R
Lol
-1 1 (k)y _
im 2 j(tken =0 . (4.8)
NG k
<
= k) (k)
Let us then fix t > 0 . As g( tends to e , te tends to te -
o :
",': and from the (weak) lower semicontinuity of j , one has

(k))

ﬁ j(te) < 1lim j(tg . Multiplving by 1/t2, we get




4

iy

: o

Y

Tl

YRR AL
L ,.‘ I...&

2

i j(te ) s &? j[ter(!k)) . (4.9)

t

On the other hand, t, 2 t for k large enough: From the monotonici-

K 2
tv of the mapping (4.2) for fixed v and taking v = g(k) we deduce
1 .o (k) 1 (k)
> i(eet™) s L y(e ey . '
t t
k
Thus,
(k) 1, (k)
lim = J(ten ) < lim = J(tken ) . (4.10)
t tk

From (4.8)-(4.10) and since j 1is non-negative, we find

17 j(ten) =0 for every t >0 .,
t

Thus, in notation (4.3)

w (e) = 2 lim %j(te)=J£(e)2ds=O.
«© n n +
t>+co t FC

Back to (4.5), this shows that (en)+ =0, i.e., e <0, on FC .

Finally, note that <§,g> 2 0, Indeed, if <§,g> < 0 , one has

Q Q
<£,g(k)>Q < 0 for k large enough and (4.6) provides
0 s - %— <f, (i) Q hS E? .
k ~ - t,
K

Multiplying by t, > 0 and taking the limit, we obtain <f,e>x . =0,

a contradiction.

AT AT A T A LAl e s
xyw ., ) o &
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To sum up, the element e has bheen shown to verify the
1 = < ,
conditions e 6, e6& N -*I, "9"1,9 =1,e = 0 on FC and
1 <f,e>Q 2 0. Using condition (C), we must have e = 0 , namely,

e 6 # . This obviously requires e = 0 , contradicting the fact that

"9"1’9 =1 .D

! Remark 4.1: The condition &(x,t) > 0 for every t > 0 and almost

all x 6 TC is not merely physically acceptable, but it is the only

o 3

physically acceptable assumption. Indeed, it takes into account the
' fact that at each point x 6 FC such that n(x) 1is defined, any
positive normal displacement produces a positive normal response (see
1
h §1). Nevertheless, the proof of Theorem 4.1 relies on the weaker
! property £ > 0 on FC ¢ Due to our assumptions on the growth of
¢(x,t)/t, this is equivalent to assuming that ¢(x,t) > 0 for almost
all x 6 FC and t > 0 large enough (possibly depending on x ).[l
Remark 4.2: An interesting particular case when condition (C) is ful-
filled is when
K
For every R 6 F - {0} , the set {x 6 FC » R_(x) > 0}
! (S)
. has a positive measure.
!
. Indeed, if condition (S) is satisfied, R = 0 1is the sole element of
R such that Rn £ 0 on FC . It follows that condition (C) is sat-
isfied with any choice of external forces f . Condition (S) has a
very simple interpretation: As we shall see later on (cf. Corollary ‘}‘\
bl
, RARY
: 4,1), it means that problem (3.20)-(3.23) with no external forces S?ﬁ
.\\ -
avd
N

~ w Al

“y, o> AT A
A O ,'ﬂ.".I""I..J‘-j!l':'f'"'h\.l, 1y

P e A T L U O N e O i e I e T O 3mSR e e -
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(i.e., f = 0) has no nonzero solution. Since solutions to this prob-
lem must be infinitesimal rigid motion, this strikingly relates to the
intuitive idea that the body is stuck (whence "(S)" for the condition)
because of its contact along T .[]

c

As an immediate corollary to Theorem 4.1, we can state

Theorem 4.2: Assume that condition (C) holds and that é(x,t) > 0

for every t > 0 and almost all x 6 FC . Then, problem (3.20)-(3.23)

has at least one solution.(]

To complete this section, we shall now examine questions related
to the uniqueness of the solution to problem (3.20)-(3.23). We begin

with the essential

Lemma 4.1: Let u and @ be two solutions to problems (3.20)-

~

(3.23). Then, @ -u=R6&F and
= sts
¢t(un + tRn)Rn 0 on FC , 0s¢t 1 . (4.11)

Proof: Applying Theorem 3,1 with u and §{ successively, we
find for every v 6 (HI(Q))N that (¢(ﬁn) - ¢(un))vn belongs to
LI(FC) with

a(t-u,v) + JF (¢(un) - ¢(un)]vn ds = 0 .

-~ - -~

With the choice v = -u , we get

-~ o~ o~ .~

a(fi-u,i-u) + jr (¢(an) - ¢<un))(an-un) ds = 0 (4.12)

c
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From the convexity of the function ¢(x,°*) for almost all x 6 Fe s

the inequality
(6(x,) = 6(x, 1)) (e-1) 2 0,

holds for every pair (t,T) 6 R X B , Setting ¢t = ﬁn(g) and
T = un(g) , it follows that
a -~ q - 2
JF (¢(un) ¢(un))(un u)dsz0 .
C

Since the bilinear form a(°,*) 1s positive semidefinite, this

relation shows that (4,12) holds if and only 1if

a(ﬁ—g,g-g) =0 (4,13)
and

Jr (¢(ﬁn) - ¢(un))(ﬁn-un) ds =0 . (4.14)
C

Relation (4.13) characterizes the difference u-u as an element

R 6 ¥ and relation (4.14) thus reads

jr (¢(un+Rn) - ¢(un))Rn ds = 0 . (4.15)
C

Now, as Theorem 3.2 characterizes the solutions to problem (3.20)-

(3.23) as minimizers of the convex functional (3.39), each element of

the form u + t(y-y) , 0 St S0, is a solution to problem (3.20)-

(3.23) as well. Replacing then Rn by tRn in (4.15), we obtain i
1l ¢ - = <ts
T JF (¢(un+tRn) ¢(un))Rn ds 0, O t 1. (4.16)

c
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~

As ;(un) 6 LI(FC) since u 1is a solution to problem (3.20)-(3.23)

(see the proof of Theorem 3.3) and Rn 6 LG(FC) , we can apply Theorem

2.1 (11) with ¢ = u and n = tRn : On the one hand, we see that

%

(4.16) coincides with the expression (cf. relation (2.39))

=

_1_‘ P ] - 4t . =
t(Jun(tRn) Jun(o)) R =0 , 0<tsl,

o

and, in the limit as t tends to 0 , we find on the other hand

o yam a2l [ 2
Eg 0 iy (0) (Rn) = I ¢t(un) R ds .
n r
C
g " -
As ¢t z 0 , one has ¢t(un)Rn 0 on PC and hence ¢t(un) Rn 0
E% on I, . Replacing y by uy+ tR and R by (1-t)R yields (4.11)

for 0 st <1, The result for t =1 follows by continuity of

[

6,(x,+) for almost all x 6T, 0

=

=

Theorem 4.3: Assume that ¢(x,t) > O for almost all x 6 I', and

C —

every t > 0 and that problem (3.20)-(3.23) has a solution u .

Then, all the solutions to this problem are of the form u + R with

~

= 5N

R 6 P such that u < - (Rn)+ $ 0 on the set (x 6T, Rn(g) # 0}

(a vacuous condition if and only if R 6 N).(6)

i |

Proof: From Lemma 4.1, non-uniqueness of the solution u

requires the existence of an element R 6 & - {0} such that u + R

AN

O,OStsl.onI’ It

c -
is then clear that ;t(un + Rn) = 0 when R # 0., From (3.10) and

is also a solution and ¢t(un + Rn)Rn

;= R

(6)And such an element R verifies <f,R>_ = 0; see the proof of

Corollary 4.3.

.
! o

o

-.\
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the assumption ¢(x,t) > 0 for almost all x 6 PC and every t > 0 ,

B B e

one has ¢(x,t) > 0 for the same choices of x and t . Hence, on

' ,u +tR S0, 0st =S 1, whenever R # 0 . But this is
C n n n

clearly equivalent to saving that u s min (0,-Rn) = —(Rn)+ when

d g R 40 .
N Conversely, let R be as in Theorem 4.3. Using the same equiva-
:3 lence as above, it is immediate that ;t(un + Pn) = t;t(un) so that
\ u + R 1s a solution to problem (3.20)-(3.23) since g(u + R) = o(u)
~
& regardless of the element R € R .[]
ﬁ Corollary 4.1 (an equivalent form of condition (S)): Assume that
. ¢(x,t) > 0 for almost all x € I‘C and every t > 0 . Then, condition
E'S (S) 1s equivalent to the uniqueness of the solution u = 0 to problem
ﬁ (3.20)-(3.23) with no external forces (i.e., f = 0).
E: Proof: From Theorem 4.3, uniqueness of the solution u = 0 means
N that ¥ = {0} and for every R 6 R - {0} that O(=u ) > - (R), on
! a subset of I"C with positive measure. Hence, the conclusion.[]
~
a A first uniqueness question worthy of examination is that of the
% area of contact and normal stress along TC .
:_ Corollary 4.2: Assume that ¢(x,t) > 0 for almost all x 6 I‘C and
tﬁ every t > (0 and that problem (3.20)-(3.23) has at least one solution.
- Then, the area of physical contact
g A= A(‘;‘) = {}f 6T un().() > 0}
' and the normal stress t;(un) are independent of the solution u . o
.
. >

e b TR e L R
AN AR Wy 2 WY ' W 0

ARSI R TR LT PP TR Tt « Wy T T Ca ™ T T
}. PO, . ﬁ-“'v-:.‘\ ;“‘;.—‘a‘)“.-\¢‘;'
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Proof: This is an easy consequence from Theorem 4.3. Indeed, :'

let u and u+R , R6 R, be two solutions of problem (3.20)-(3.23)

q and let x 6 T, be given, If R (x) =0, one has wu (x) =u (x) + \
o "

Rn(:j) . If Rn(:‘s) # 0 , the relation un(g) s - (Rn)+ (x) yields ,;:
E un(;g) s 0 and un(:_g) + Rn(’f) < 0 . Hence, un(g) > 0 1if and only if ‘

un(g) + Rn(g) > 0 (and, in this case, Rn(§) = 0) so that

:.—-

g
B

A(w) = A(w*R) and ¢(u )(x) = ¢(u_+R)(x) (=0 1if R (x) # 0).0

Y o
\

[ ] '\
t‘ Remark 4.3: We emphasize that the area of physical contact cannot be r’,i
)

& replaced by the area of geometrical contact: Fa.
»

. W
- {f € Ic s “n(f) 2 0} (4.18) ‘
i in Corollary 4.2. Indeed, the set (4.18) may greatly vary from one ?s
solution to another. This is easily seen by taking u as a solution R

. >
g‘ to the linear problem h

div g(u) +b=0 in @,

~ -

~i
=

= h

w(\j) t on Tp, !.::

)

% 3

* n(g) = 9 on T., &a

T

g™, verifving u, Ss-¢e<0 on I‘C . Such a choice 1is obviously possible ,.

{-‘

E by taking b and t accordingly and u 1is also a solution to pro- "
L) i_
blem (3.20)-(3.23). It suffices then to "move" u through transla- _

Yy N

-..j tions to observe modifications of the area of geometrical contact (cf. \

_ Figure 4.1). ::f:
ﬁ Given a solution u to problem (3.20)-(3.23), everv element of s

e the form u + R , R 6 / , 1s a solution toc. Thus, uniqueness of the 4
" 2

X . "
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solution can be established to within elements of N only. With this
restriction, it is easy to derive from Theorem 4.3 several uniqueness
statements reducing to actual uniqueness when ¥ = {0} . For

instance, if ¢(x,t) > 0 for almost all x 6 T, and every t >0,

C
condition (C) holds (so that existence is ensured by Theorem 4.2), and

the solution u 1is known to verify un >0 on FC (i.e., the area of

physical contact A verifies A = FC). Indeed, let R&6FR\N be

given. By definition of the space ¥ , one has

meas ({x 6 T

x c Rn(f) 01} >0 .

Sy ’*'{ ,:///30041/"-; S0 S s
rd B //
e / d
Q , - >
// //' / y /
/)rzr /S A '//
C ’ 4 a s
L N S N 4 B ks
(a) (b) (o)
(a) Reference (b) A first solution (c) Other solutions
configuration u for which there for which
is no geometrical geometrical
contact contact occurs

along various

subsets of PC




From Theorem 4.3, it follows that u £ 0 on a subset of FC with
positive measure, an obvious contradiction. This result suggests that
uniqueness might be closely related to the fact that the area of
physical contact (independent of the solution from Corollary 4.2) has
a positive measure. Indeed, Corollaries 4.3 and 4.4 below do express
this property under the following compatibility condition (U) (for

"uniqueness') between the applied external forces and the geometry of

PC:

For every 6 R with <f,R>Q = 0 , one has either R 6 N

(1.e., Rn 0 on FC) or Rn(f) # 0 for almost all x 6 FC .

How general condition (U) is will be examined in §5 in the simple
but significant case N = 2 ., To the best of our knowledge, it does
not relate to any classical assumption in the associated Signorini's

problem.

Corollary 4.3: Assume ¢(x,t) > 0 for almost all x € Ic and every

t > 0 and that conditions (C) and (U) hold. Then, problem (3.20)-

(3.23) has a unique solution to within elements of the space ¥V

provided that the area of physical contact (independent of the

solution from Corollary 4.2) has a positive measure.

Proof: Let u be a solution to problem (3.20)-(3.23), the

existence of which is ensured by Theorem 4.2. By hvpothesis

meas({x € FC , un(x) > O}) >0 . (4.19)
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We shall make repeated use of Theorem 4.3. First, let R 6 A be

such that u + R 1s a solution too. Since u £ 0 on I whenever

C
E R #0, one has ¢(u )R =0 on TI_, ., Theorem 3.1 with v = R then
n n’ n c = ~

) yields
g <£,R> = a(u,R) + Jr $(u)R_ds =0 . (4.20)

C
Ei‘.-
N Assume that R @ V . Then, from condition (U), one has Rn(g) #0
Eﬁ for almost all x 6 I'C . Theorem 4.3 then shows that u, S0 a.e. on
-
: I’C , contradicting (4.19).0
Iy

Remark 4.4: All the assumptions of Corollary 4.3 can be checked with-

> <

E_: out knowing any solution to problem (3.20)-(3.23). This is clear ):

i except for the condition meas(A) > 0 (A = area of physical contact). E
However, an immediate verification shows that an equivalent formulation

:;' of the condition meas(A) > 0 1is that the linear problem

N div C_T(Y) +b=0 in Q, (4.21)

g "(Y) =t on T'F s (4.22)

«2 F(Y) =9 on FC (4.23)

o

has no soclution vy with Vo £ 0 on l"C (such a solution would

- .
A :
it indeed be a solution to problem (3.20)-(3.23) with ::
r
: meas(A) = meas(A(y)) = 0 and conversely) [ ﬁ
- ‘
Closely related to Remark 4.4 is the following:
A )
T Corollary 4.4: Assume that ¢(x,t) > 0 for almost all x € T(, and 4
. {
'i every t > 0 and that conditions (C) and (U) hold. Assume further o
that there is R 6 F such that A
3 :
-~ -
Pl ¢
»

T

-y
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<f,R>Q #0 . (4.24)

Then, problem (3.20)-(3.23) has a unique solution to within elements

of the space IV .

Proof: It suffices to apply Corollary 4.3 and Remark 4.4 since
(4.24) means that the external forces do not verify the Fredholm
alternative, and hence the linear problem (4.21)-(4.23) has no

solution.(]

5. Concluding Remarks

In this section, we examine the meaning of conditiomns (C), (S)
and (U)., For the sake of brevity, we limit ourselves to the simpler
case when N = 2 , We shall also make precise the relationship to
Signorini's problem and discuss some generalizations and extensions of

our results, notably to the contact problem with friction.

More on the Conditions (C), (S) and (U). Suppose N = 2 and the

boundary T {1s connected and piecewise Cl so that there is a
counterclockwise parameterization x(1) = {xl(k), x?(x)\ of o which
is continuously differentiable except at a finftelv manv points, with
”dg/dl" = 1 (euclidian norm). The outward norma' vector n(x) has

then components

nl(n:.(x)] = (dx,/dV) (),
n, (x(N)) = =(dx /A ) .

The three-dimensional space  of infinitesimal ripgid motions

consists of mappings of the form

L e gL L R P G e LY R AT AT AT SENT ST
- . . e, . > szxArkirtf ~

f;)fr?r)ULe‘e:aN:\J‘
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x = (xl,xz) 6 l2 + R(x) = (Yx2 - B, - Yx, + a) 6 lz , (5.2)

LA o e 4
L X

Ml |

23 . From (5.1) and (5.2),

[+ ]

with (a,B,Y)

" G e e
AN i

Cirta

R (x(0) = LI + x2()) = ax () - Bx, () ] .

#

E! More precisely, if y = 0 (so that R 1is a translation) .
' ;
bl d Y
S R (x()) = - Sxlax, () + 8x, () (5.3) i
§§ .
and, if vy # 0, ¥
A

, y d a2 82 3
B R (x0) = § Gl ) =17+ (x,00 - 3)°] (5.4) 0

Among conditions (C), (S) and (U), only (S) is purely geometrical,

¥x'a v

i.e., does not require any compatibility condition with the applied

%
,4:_
»
‘-
>,
._

forces. In what follows, we make the physically realistic assumption

m

meas(PC\PC) =0 . From (5.3) and (5.4) and assuming that x runs

LI 1
LT )
Shh

over FC counterclockwise, it 1is easily seen that condition (S) is

equivalent to saying that

(1) There is no nonzero vector e € RZ such that the mapping

ot o
ol x 6 PC + x*e 61, (5.5)
=
N is nonincreasing (resp. nondecreasing) on all the connected components
(-]
% of FC.(7) This condition is conveniently viewed by saving that no
component of x along any line is nonincreasing (resp. nondecreasing)
e o
o as x runs over each connected component of TC counterclockwise, :
&
Ly .
Ii ~
(7)Monotonicity makes sense since T is one-dimensioconal. -

C <

Jm 2

e,

j."_ :.:, ~
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(11) There is no point X, 6 !2 such that the mapping
-]
x 6 FC > [x - xo" € B (euclidian norm) (5.6)

is nonincreasing (resp. nondecreasing) on ggch connected component of

(8)
c
Figure 5.1 below exemplifies two cases when condition (S) holds

)

C

30

On the basis of this characterization, it is easy to see that

(a) . (b)

Figure 5.1

We shall now give an interpretation of condition (U) in the case

=
1]

{0} (observe in passing that condition (U) is never vacuous since

N

RE 1is impossible). 1If so, condition (U) reads: For every
R 6 R -~ {0} such that <§,§>Q = 0 , one has Rn(§) # 0 almost every-

where on Tc ., Owing to (5.3) and (5.4), condition (U) can be

-}

viewed by saving that FC contains no interval and no arc of a circle

of a special kind. More precisely, set

f(f) = [ bdx+ [, tdseR
rt ] oS

with components rl(f) and rz(f) and
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m(f) = [det(b(x),x)dx + [; det(s(x),x]}ds 6 X .

°

Then, FC should contain
a) If r(f) # 0: no interval colinear with the line
orthogonal with r(f) and no arc of circle

with centre on the line generated by r(f).

b) If r(f)

"
1O

no interval if m({) # 0 and no interval and

no arc of circle if m(g) =0 .

Conditions (a) and (b) above are easily seen to be necessary. Strictly
speaking, they are not sufficient to ascertain that condition (U) holds
(when N = {0}) 1if T 1is only piecewise C1 . Nevertheless, they are

sufficient if ;C is contained in a pilecewise analytical submanifold of

I' . In this last assumption, the interpretation of condition (U) when

N # {0} 1is trivial since it is always satisfied. Indeed, from (5.3)

and (5.4) we infer that the condition ¥ # {0} amounts to assuming

o

that FC is a union of intervals parallel to a given direction or a

union of arcs of circles with the same center (in any case, the space

N 1s one-dimensional). If, for a given R ¢ N the set {g 6T

o

Rn(f) = 0} did not have measure zero, FC would contain an interval

C ’

parallel to a different direction or an arc of a circle with a differ-
ent center, All the possible combinations are contradictory so that
Rn(§) # 0 for almost all x 6 FC when R ¢ V. Condition (U) trivi-
ally follows. These considerations show that the two situations de-

scribed on Figure 5.1 (a) and (b) correspond with the case N = {0}

(note that /Y = {0} as soon as condition (S8) holds) and condition (U)

holds for "most' choices of f on Figure 5.1(a) and for every choice
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of

tHh

on Figure 5.1(b). Figure 5.2 below represents situations in

which

-- N = {0} and condition (U) holds provided rl(g) # 0 and

¥ival

rz(g) # 0 (on Fig. 5.2(a));

N # {0} so that condition (U) holds for every £ (on Fig.

¢ |
!
i

5.2(b), (c) and (d)).

On the other hand, condition (S) is violated in each of the four

A o
e

cases of Figure 5.2, but condition (C) holds with a varying generality.

Eﬁ
\
> More precisely, condition (C) holds if and only if
kX - rl(g) < 0 on Figure 5.2(a)
- rl(f) = 0 on Figure 5.2(b)
h“
L
o -- m(f) = 0 on Figure 5.2(c)
i -— rl(g) =0 and 0 <m(f) < -rz(g) on Figure 5.2(d).
- ] ‘rz
-
2 L L
. nl ¢ (r ) a (r
-
.:: [:: | I‘c s
" (a) (b)
=
L
;'zr Ar‘z
¥ S I
I . -
¢ " N
s . f C g X
) . -
< Q (o) &

Figure 5.2 o
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The above comments carry on to the case when T 1s not connected
but Pc is contained in a connected component of I . In the general
case, the only difference is that n must run clockwise (instead of
counterclockwise) over the components of T not contained in the

unbounded component of 12\9 .

Other Boundary Conditions. Boundary conditions of various other

types can be considered instead of (3.2)-(3.22). For instance, the
body occupying the domain £ may be clamped along a subset FD of T

with meas(FD) > 0 and/or action of linear springs on some subset FE
of T with meas(FE) > 0 can be taken into account. Such problems
involve appropriate modifications of the technical results of §§2 and
3. In this case, coerciveness and uniqueness of a minimizer follow
from the coerciveness of the quadratic part over the space of ad-
missible displacements. These situations have already been considered
in [10] with a simple choice of normal response ¢ allowing the use
of Sobolev's embedding theorems, thus avoiding the technicalities of

§§2-4.

Relationship to Signorini's Problem. All the properties of the

function ¢ are obviously unchanged when ¢ 1s replaced by 21¢ ,

A >0 a given real number. In this process, the function ¢ is
changed into A% , Assuming ¢(x,t) > O for almost all x 6 FC and
every t > 0 and that condition (C) holds, problem (3.20)-(3.23) with
A¢ replacing ¢ has always a solution. Besides, from the proof of

Theorems 4.1 and 4.2, it has always a solution (not necessarily

unique) in the space N & .
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Theorem 5.1: Assume that ¢(x,t) > 0 for almost all x € FC and

every t > 0 and that condition (C) holds. Then, for every ¢ > 0 ,

there is A > 0 such that for every A 2 A and every solution

u(l) 6 ¥ L of problem (3.20)-(3.23) with )¢ replacing ¢ , there is

u6y 1 (possibly depending on X ) solution to the Signorini's

problem: Minimize

%-a(v v) - <f Vg s (5.7)
over the closed convex subset of (HI(Q))
1 N
={ve (H®) , v, S0 on T}, (5.8)
such that
ﬂg(x) - 2“1,9 Se. (5.9)

Proof: We argue by contradiction: If Theorem 5.1 is not true,

there i1s € > 0 and a sequence (Ak) tending to += such that

l!g(xk) glll,Q > €, (5.10)

for every index k and every solution u to the Signorini problem.
Existence of at least one solution to it in (HI(Q))N is ensured by

condition (C), a weaker form of which, already encountered, is

(c") <f,R>Q 0 for every R 6 R with Rn £0

(see, e.g., [4,9]). Existence of a solution in ¥ 1 trivially follows

(note that K + ¥ = K and that (C') implies <f,R> = 0 for every

~ -~

R6 N . It is not restrictive to assume Ak 21 for everv index k,

by By Agf Ayt

£ ¢ r a2 ¥ ¢

=N
t-‘.
r_
*\ ) X x\\\\\}-r\
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which will henceforth be done without further mention. Denote by Jy

the functional

ve @@ 50 =Laww) + 2 | 3(vyds - <o 6 X .
- Al 2 ~ It n L. Q
¢ (5.11)
Clearly, JA 2 J1 =J for A2 1. Hence,
J5 (u(lk)) 2 J(u(r)) for every index k . (5.12)

k
On the other hand, we know that u(kk) is characterized by (cf.

Theorem 3.1)

aleray) + Jr (g )y ds = <tivy
C

for every v € (HI(Q))N . (5.13)
Taking v = g(kk) , we get
2(50u0P) + 4y Jr $la, ), ) ds = <Eu0)>g

¢ (5.14)

Now, recall {cf. (3.40) with Ak¢ and A\, ¢ instead of ¢ and ¢)

k
. A -
M ¢(un()\k)) S5 ¢(un<xk))un(xk) .

Together with (5.14) and the definition of the functional Iy this
k

inequality yields

1
Jxk(g(kk)) S -3 <f,u ), . (5.15)

with (5.12), we obtain

I st Aty / t ‘ o4, m’.' ) T ¥ o o 4
vl.‘ 'n"."‘-.l % M A A °h, BN MY A XM ", WY l..t"». e q'gn'.'n.n O 2 o W A, LS
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i ) (un(xk))ds
c

) + 5 <utsg =3 alu(.ur)) + J

1
-3 <f,u(lk)>Q £0. (5.16)

~ -~

But it is obvious that condition (C) holds with §/2 replacing f .
The coerciveness result proved in Theorem 4.1 shows that (5.16)
requires the sequence (g(kk)) to be bounded in N 1 ., After extract-
ing a sub-sequence, we may assume that there is u € N L1 such that

E(Ak)-é u. Let then v 6 K. As ¢(un(lk)) 2 0 , relation (5.13) ~

shows that a[g(kk),g) z <f,v> In the weak limit, we then find

Q .

ﬁ
-

a(u,v) 2 <f,v>Q for every v 6 K . (5.17)

-~ -~

Next, as ¢(un(xk))un(lk) 2 0, we infer from (5.14) that

aluy),u)) s <ful)>g . (5.18)

(T e X2

A classical argument of weak lower semicontinuity thus provides
a(u,u) s <f,u>s.2 . (5.19)

From (5.15) and (5.11), the boundedness of the sequence (E(Xk))

e 3l

in N 1 shows that the sequence Ak fr o(un(kk)]ds is bounded.
o

Therefore,
E 1im J o(u (A ))ds =0 . (5.20)
r n

c =
§§ o
: With the Sobolev embedding theorem, we see that un(kk) tends to u ﬁ'
O]
1 ‘0
H in the strong topology of L (I‘C) . Applying Theorem 2.1(1) and :ﬂ_:
| (5.20), we deduce that &(u ) 6 L (I)) with f‘"c o(u )ds = 0 . :ifﬁ:f
& o
i
0’“0
L -
S

£ 0\

N R

T N SO OOOI UG (adl IR WA T SR Tele K IOV )
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Hence, 0(un) =0 on FC since ¢ 1is non-negative. The assumption

¢(§,t) > 0 for almost all x € FC and every t > 0 shows that

dE X B

¢(x,t) > 0 for the same choice of x and t . Thus, @(un) = 0 on

B

FC if and only if u S0 on FC » namely u 6 K . From (5.19) and s

(5.17), with v = u , we arrive at

-~
-
s w A

i

a(u,u) = <f,u>, . (5.21) ;

2

Besides, with (5.21), (5.17) can be rewritten as

=

r
W
.

a(u,v-u) 2 <f,v-u>Q for every v 6 K .,

ga “ ~ ~ -~ - :
i

It is well known that this relation characterizes u as a minimizer

k3
t{ of the quadratic functional (5.7) over the set K, i.e., u 1is a K
i solution to Signorini's problem. To obtain the desired contradiction

\ with (5.10), 1t remains to show that

LA
.~

1im ug(xk) - ?"1,9 =0 (5.22) {

Actually, the above relation reduces to showing that

)

o~ ES

1im a(u(xk),u(kk)) = a(u,u) . (5.23)

Indeed, denoting by P the orthogonal projection from (HI(Q))N )

“‘

et

c.

onto the space F , the mapping

o o et

[~

ve @)Y+ tatw,w + Izvl? 17, (5.24)

is a norm equivalent to (since the bilinear form a(-,*)

1y g

induces a norm equivalent to the quotient norm over the space Y

([HI(Q))N/ R) . As g(kk) tends weakly to u , the sequence of ‘

2 i 55

-
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projections Pg(kk) tends to Pu 1in the strong topology of (Hl(n))N
since the space R 1s finite dimensional. Fence, if (5.23) holds,
the sequence (g(kk)) tends to u 1in the weak topology of (HI(Q))N
and the sequence of its norms (5.24) tends to the norm (5.24) of u ,
proving (5.22) by a standard argument. To establish (5.23), recall

that we already know that

a(u,u) s Lim a(u(h),u(d)) . (5.25)
Q?
on the other hand, due to (5.21), relation (5.18) also reads _&
A3

a(g(Xk).g(kk)) S a(u,u) + <fLu(dp)-uw>, .

Thus 3 Py
o

1im a(u(lk),u(kk)) s a(u,u) . (5.26) ‘

..

Relation (5.23) is immediate from (5.25) and (5.26), which completes i
the proof.[] %i
r;

Remark 5.1: The result stated in Theorem 5.1 is rather strong since ~R
it means that provided X 1s large enough, any solucion g(l) to :j:
problem (3.20)-(3.23) with )¢ replacing ¢ 1is arbitrarily close to §§
some solution to Signorini's problem in the space (HI(Q))N . Indeed, u}@
.
this result is exactly what Theorem 5.1 states if u(1) belongs to Eé
N L ., The general case is immediate since solutions are defined to :%;
within elements of I (recall that <§,g>Q =0 for R6 /. Note G
that the conclusion is independent of the normal response ¢ . 1Its ii,
physical significance is clear: It means that the Signorini problem :§{
is the limiting case of an infinite normal response along FC 0 :;
$s
i
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Remark 5.2: Using the boundedness of the sequence (g()‘k)) and

taking v to be the { th vector of the canonical basis in (5.13),

~ 1

@ one sees that the sequence )‘k / o[un(kk))vn} is bounded in L (I‘c)
by repeating arguments in Theorem 3.1. From relations (3.21) and

L

(3.22) with Akd> replacing ¢ , it follows that the sequence

[w(g(kk))] is bounded in LI(I‘) . With this observation, one infers

.

5.:;7

when u = lim g()\k) » and hence when u is any solution to Signorini's

problem, that m(u) {is defined as a (vector-valued) Random measure on

i’ ?
v ' . As n(u) represents a generalization of the surface traction ,:
el

>

% g(u)°n , the formal interpretation of u as a solution to problem .‘a
(1.3)-(1.7) ignores that this masure may have a singular part with

r'.:‘ :.“
f::- respect to Lebesque's measure. Assuming -- but there seems to be no -
)

ﬁ mathematical justification of this assumption -- that the singular rj
part does not exist, it is not difficult to deduce from Theorem 5.! .;.

':

:-2’ that conditions (1.3)-(1.7) are fulfilled by the solutions to :
W Y
Signorini's problem (upon replacing g(u)*n by w(g)) N ‘:~

! Admissibility of an Initial Gap. Instead of assuming that geo- .
.‘

o metrical contact occurs along FC in the reference configuration ":
. §
;7' (i.e., when no external forces are present), it is possible to allow :3
o'

% some initial gap g between the candidate contact surface FC r =
and the body with which contact should occur. Such an initial gap can :

§ be taken into account through a function g € LQ(I‘C) verifying g 2 0 on :“.-
I l"C and the normal response can be modified by replacing ¢ by ;
i
g 8 (x,t) = o(x,t - g(x)) . (5.27)
-

Y

.-

p

4
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However, serious limitations to the use of this model are imposed by

Al R S

the physical requirement that the normal response be evaluated in the

deformed configuration of FC » thus modifying the direction of the

&

normal vector n . When g = 0, this is without importance since the

?5
g
§

normal response vanishes at those points at which physical contact

58

does not occur and the actual displacement is very small at those

=

points at which contact occurs (so that the modification of the normal

) is not significant)., The problem is different when g # 0 since

o

points originally located at a nonzero distance may come in contact

after a significant variation of the normal and at points unknown in

e

advance. This closely relates to the question of actually measuring

the initial gap g , which cannot be satisfactorily answered in a

static framework. In other words, ¢g(§,un(§)) has in general nothing

to do with the actual normal response due to contact at the points

x + u(x) for an arbitrary u . Such a relation as (5.27) should then

.ﬁr’ )

not be used unless there is physical evidence that the actual displace-

ment along T, due to the action of the applied external forces

C

occurs (nearly) in the direction normal to FC (so that g(x) can be

measured as the distance from x € FC to the obstacle in the direction

-
£
gﬂ g(g)), at least at those points located at a nonzero distance from the
2

obstacle. In practice, this requires g computed as above to be

& "small" while the body occupying the domain &£ has a sufficiently
i rigid behavior under the action of the applied external forces.

:; From a mathematical standpoint, and with the assumptions

ai g € Lw(FC) » 22 0, it can be shown that all the properties stated

with ¢ are true with ¢g given by (5.27) replacing ¢ with the
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only obvious exception that ¢g(§,t) is not positive for every posi-
tive t whenever ¢(§,t) is. This, however, does not modify the
existence result (Theorem 4.2) which actually relies on the fact that
¢(§,t) be positive for t large enough (cf. Remark 4.1), unaffected
by changing ¢ 1into ¢g . Differences merely take place in the
uniqueness statements, with simple modifications: for instance, the
area of physical contact must be defined by {x € e » un(g) > g(x)}
and Corollary 4.4 is unchanged.

The Contact Problem with Friction. In [10], we have considered a

similar contact problem with friction, with boundary conditions in-

volving a quadratic form coercive over the space of admissible dis-

m
n

placements and a normal response of the form ¢(x,t) = cn(g)(t+)
where c_ 6 L' (T ) ,c. 20 and m_ > 1 such that
n C n n

m_+1
H%(P)C; L " (). The tangential friction force was supposed to be

m,
T ©
proportional to cT(g)(t+) with ¢, 6L (FC) » Cp 2 0 and my > 1

T

m.+1
such that H%(F)C; L T (T) , and collinear with a vector field Tt(x)

of unitary vectors tangent to (part of) FC . This model allows re-
covery of the usual Coulomb's law when mn =m and Cp = HC where
u 1s the coefficient of friction. As a physical example of this
situation, consider a belt rubbing along (part of) FC with velocity
proportional to 1 . Existence and local uniqueness was established
either for sufficiently small external forces or for sufficiently
small coefficient Cr (i.e., sufficiently small coefficient of fric-
tion 1f mn = mT and Cp = HC ). These results rely on the inverse

mapping theorem and, in the latter case, all amounts to proving that
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the quadratic form associated with the second derivative of the

(8)

energy at the solution of the problem with no friction (i.e.,

Cp = 0 ) is elliptic over the space of admissible displacements.
With the boundaryv conditions of this paper and with the normal
response and tangential friction force described above, the same
method is available: Denoting by u a solution (supposed to exist)
of the problem with no friction and applied external forces f , the
quadratic form associated with the second derivative at u of the
energy functional J (3.39) is
v 6 (HI(Q))N > alv,v) +m J cn(un)Tn“1 vi ds . (5.28)

Te

This quadratic form is not coercive if and only if there is a sequence

(v(k)) 6 (HI(Q))N such that "g(k)ul g=1 and

m -1

1im a(Y(k),Y(k)) +m Jr cn(un)+n (vn(k))zds =0.
c
H 1im a(y®,v®) =0 and 1m [ e ¢ )m“-l(v ())245 = 0
ence, lim a(v ’,v a ren ud, n s .

Considering a sub-sequence, we may assume that (g(k)) tends weakly

to v in (HI(Q))N . From the weak lower semicontinuity of a(-,:) ,
we find a(v,v) = 0 , so that v 4s an infinitesimal rigid motion

R . As the space R 1is finite dimensional, the sequence of orthogonal

(k)

projections of v onto K& tends strongly to R while, due to the

(S)But the problem with friction does not reduce to finding the cri-

tical points of some energy functional, i.e., the problem is no
longer variational,
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ellipticity of a(+,*) over the quotient space (HI(Q))N/ R , the

(k)

sequence of orthogonal projections of v onto R 1 tends strongly

to zero. As a result, (g(k)] tends strongly to R 1in the space

(HI(Q))N and R # 0 since ﬂg(k)nl Q= 1 . From the continuity of
)

5 m +1

the embedding HZX(T)c, L " (I) , this yields

m -1 m -1
n 2 _ n (k)y 2 -
Jr cn(un)+ Rn ds = lim jr cn(un)+ (vn ) ds 0.

c c

Provided that h >0 on FC s this clearly requires un(g) £ 0 for

almost all x € I', such that R (x) # 0 . In particular,

c

cn(un)+ Rn =0 on FC . (5.29)

As u 1is a solution to the problem with no friction, one has

m
n 1 N
a(u,v) + Jr cn(un)+ v ds = <f,v> for every M (Hh@)" .

LR
c

-~ -

(5.30)
Setting v = R 1in (5.30) and using (5.29), we find

ERp=0.

The above relation shows that a contradiction with R # 0 is
reached if, for instance, N = {0} , u is known to verify u > 0

on FC and condition (C) holds (which also ensures the existence of

m

n
u : ¢(x,t) = cn(§)(t+) with c > 0 on PC and m > 1 fulfills

all the assumptions necessary in this paper). Another case is when
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N = {0} , physical contact occurs (i.e., meas({x 6 Te s un(g) > 0}) o
' _ 0) and condition (U) holds. If we drop the condition ¥ = {0} , »
R, ellipticity of the quadratic form (5.38) over the space (HI(Q))N is :
» _‘).'
nr obviously impossible but ellipticity 1s recovered over the space ::
E (HI(Q))L/ N . This weaker result is nevertheless sufficient to prove
3 :\.“
existence and local uniqueness to within elements of the space N of N
. :!:"
t‘% the problem with friction when cr is small enough (111 L (I‘C)] . )
kvs )';.
" Remark 5.3: Roughly speaking, the above considerations can be summar- :-'
E ized as follows: Existence and local uniqueness to within elements of ::f"
the space N of the problem with friction is ensured as soon as cr P
o - ’-
o .
N is small enough and physical contact does occur in the problem with no ::.;
oo
i friction (for instance, if the external forces do not verify the ot
Fredholm alternative; see Remark 4.4). If physical contact does not -
f::: occur, the problems with or without friction have trivial solutioms, ;:
l\j ?;_n
namely, those of the linear problem (4.21)-(4.23).0 ;'."—
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