

> DEPARTMENT OF THE NAVY NAVY EXPERIMENTAL DIVING UNIT PANAMA CITY. FLORIDA 32407-5001

IN REPLY REFER TO

NAVY EXPERIMENTAL DIVING UNIT REPORT NO. 8-85

AIR- $\mathrm{N}_{2} \mathrm{O}_{2}$ DECOMPRESSION COMPUTER ALGORITHM DEVELOPMENT

By :
Edward D. Thalmann, CAPT, MC, USN
August 1986

Approved for public release; distribution unlimited.

E. D. THALMANN

CAPT, MC, USN

Approved by:

INCLASSIFIED

REPORT DOCUMENTATION PAGE	
	${ }^{3}$. RECiPIENT'S CATALOG NUMEER
AIR- $\mathrm{N}_{2} \mathrm{O}_{2}$ RECOMPRESSION COMPUTTER ALCORITIM DEvelopevt.	5. TYPE OF REPORT A PERIOD COVERED FINAI. 6. DERFORING ORG. REPORT NUMEE
C, "! Edward O. Thalmann, MC. ISN	- Contract or grant mumber(e)
 יM:M (:TTY. FI. 3:407-5001	
-1. Controlling office name and adoress	
16 oistribution statement (ot mitis repori)	
	Iom Repori)
18 SUPPLEMENTARY NOTES	
(1): REyerse)	
	xcmasspaen

SECURITY CLASSIFICATION OF TMIS PAGE (When Deta Entered)

Abstract

A computer algorithm which can conrute decompression schedules for air or a $\mathrm{N}_{2} \mathrm{O}_{2}$ breathing mix of any PO_{2} was developed and tested. Testing consisted of 837 man dives on some 38 different profiles. There were 19 air bounce dive profiles from depths of $50-190$ FSW, 5 being no-decompression dives. Four bounce profiles at 100 and 150 FSW were tested breathing a constant $0.7 \mathrm{ATA} \mathrm{PO}_{2}$ in N_{2} throughout. Three profiles at 60,100 and 150 FSW where air was breathed on the bottom and a constant $0.7 \mathrm{ATA} \mathrm{PO}_{2}$ in N_{2} mix was breathed during decompression were tested. There were 10 air repetitive dive profiles at depths of $80,100,120$ and $150 \mathrm{FSW}, 7$ of which were for no-decompression dives. Two long duration multiple level (20-100 FSW) dives where gas switches were made between air and a constant 0.7 ATA PO_{2} breathing mix were also done. All dives were cold, wet, working dives and all decompression schedules were computed in real time using a HP-1000 computer which constantly monitored chamber depth. A total of 49 cases of decompression sickness (DCS) resulted all of which were successfully treated. The following no-decompression depth/time limits were tested without DCS: 60/66, 100/30, 120/24, 150/14, 190/10. Testing showed that repetitive dive no-decompression limits could probably be extended but that total decompression times for both bounce and repetitive decompression dive had to be exteded considerably compared to U.S. Navy Standard Air Tables. Decompression time for constant 0.7 ATA PO_{2} in N_{2} dives could be shortened compared to current tables. The final decompression model uses total gas tension in determining decompression stops and computes a venous oxygen tension from an arterial value based on the hemoglobin disassociation curve and an assumed tissue metabolic rate. Gas uptake is assumed exponential while offgassing is assumed linear while a gas phase is present and exponential thereafter. The final decompression model can compute decompression schedules for a dive of any complexity and any oxygen level with nitrogen as the inert gas. The rO_{2} may be changed at any time during the dive. The model is suitable for propramming into a small portable microprocessor based decompression computer for real time computations.

Table of Contents

Page
ABSTRACT/KEY WORDS vii
GLOSSARY viii
INTRODUCTION 1
METHODS 1
General 1
Test Profiles 4
Decompression Model and Computer Algorithms 11
Ascent Criteria 15
RESULTS 18
Air No-Decompression Bounce Dives 19
Air Decompression Bounce Dives 19
Constant 0.7 ATA PO_{2} in N_{2} Bounce Dives 27
Air \rightarrow Constant 0.7 ATA PO_{2} in N_{2} Bounce Dives. 29
Air Repetitive Dives 30
Decompression Repetitive Dives 31
No-Decompression Repetitive Dives 32
Multi-Level Air/Constant $0.7 \mathrm{ATA}_{\mathrm{PO}_{2}}$ in N_{2} Dives 34
DISCUSSION 34
Development of Initial Ascent Criteria (VVAL22) 35
EL MK 15/16 DCM-I Testing (VVAL22-29) 38
EL MK 15/16 DCM-II Testing (VVAL50-59) 40
Decompression Sickness Symptoms 42
Final Decompression Model and Tables 43
Decompression Model Limitations 45
CONCLUSIONS 46
FOOTNOTES 48
REFERENCES 49

FIGURES

Page
FIG. 1 Typical Dive Profile 7
FIG. 2 No-Decompression Dive Profile. 9
TABLES
TABLE 1 Profile Descriptions (Bounce Dives) 5
TABLE 2 Profile Descriptions (Repet/Multi-Level Dives) 6
TABLE 3 Calculation of Arterial and Venous 02, C02, and N2 Tensions For the EL-MK 15/16 DCM 12
TABLE 4 Phase 1 Test Dive Results 20
TABLE 5 Phase 2 Test Dive Results 21
TABLE 6 Phase 3 Test Dive Results 21
TABLE 7 Results of Bounce Dives Tested 22
TABLE 8 Results of Repetitive/Multi-Level Dives Tested 23
TABLE 9 Ascent Criteria Blood Parameters 24
TABLE 10 No-Decompression Limit Comparisons 25
TABLE 11 Decompression Sickness Incidence 28

APPENDICES

APPENDIX A	Diver Physical Cha	A-1 to A-6
APPENDIX B	Decompression Sickness Descrip	B-1 to B-10
APPENDIX C	Individual Diving Intensity	$\mathrm{C}-1$ to C-6
APPENDIX D	Maximum Permissible Tissue Tension (MPTT) Table	D-1 to D-16
APPENDIX E	Dive Profile Comparison	$\mathrm{E}-1$ to E-12
APPENDIX F	Air Decompression Tables (VVAL59)	F-1 to F-32
APPENDIX G	Constant 0.7 ATA PO2 in N2 Decompression Tables (VVAL59)	G-1 to G-26
APPENDIX H	Constant 0.7 ATA P02 in N2 Phase I \& II Dive Profile Comparison. \qquad	$\mathrm{H}-1$ to $\mathrm{H}-26$

ABSTRACT

A computer algorithm which can compute decompression schedules for air or a $\mathrm{N}_{2} \mathrm{O}_{2}^{-}$breathing mix of any PO_{2}^{n} was developed and tested. Testing consisted of 837 man dives on some 38 different profiles. There were 19 air bounce dive profiles from depths of $50-190$ FSW, 5 being no-decompression dives. Four bounce profiles at 100 and 150 FSW were tested breathing a constant 0.7 ATA PO_{2}^{n} in \mathbb{N}_{2}^{n} throughout. Three profiles at 60,100 and 150 FSW where air was breathed on the bottom and a constant $0.7 \mathrm{ATA} \mathrm{PO}_{2}^{n}$ in $\mathrm{N}_{2}^{n} \mathrm{mix}$ was breathed during decompression were tested. There were 10 air repetitive dive profiles at depths of $80,100,120$ and $150 \mathrm{FSW}, 7$ of which were for no-decompression dives. Two long duration multiple level (20-100 FSW) dives where gas switches were made between air and a constant 0.7 ATA $\mathrm{PO}_{2}^{\hat{2}}$ breathing mix were also done. All dives were cold, wet, working dives and all decompression schedules were computed in real time using a $\mathrm{HP}-1000$ computer which constantly monitored chamber depth. A total of 49 cases of decompression sickness (desulted all of which were successfully treated. The following no-decompression depth/time limits were tested without Dds: 60/66, 100/30, 120/24, 150/14, 190/10. Testing showed that repetitive dive no-decompression limits could probably be extended but that total decompression times for both bounce and repetitive decompression dive had to be extended considerably compared to U.S. Navy Standard Air Tables. Decompression time for constant 0.7 ATA PO_{2} in N_{2} dives could be shortened compared to current tables. The final decompression model uses total gas tension in determining decompression stops and computes a venous oxygen tension from an arterial value based on the hemoglobin disassociation curve and an assumed tissue metabolic rate. Gas uptake is assumed exponential while offgassing is assumed linear while a gas phase is present and exponential thereafter. The final decompression model can compute decompression schedules for a dive of any complexity and any oxygen level with nitrogen as the inert gas. The PO_{2} may be changed at any time during the dive. The model is suitable for programming into a small portable microprocessor based decompression computer for real time computations.

KEY WORDS:

Air Decompression Tables
Computer Algorithm
Computer Model
Constant Oxygen Partial Pressure
Decompression Model
Decompression Sickness
Decompression Tables
Mathematical Model
MK 15 UBA
MK 16 UBA
Nitrogen-Oxygen Decompression Tarles
Repetitive Diving,
NEDU Test Plan Number $\varepsilon \neq / 30$

Actual Dive Profile	A table or graph showing the actual depth/time coordinates for an entire dive.
Algorithm	- A sequence of logical steps used to obtain a mathematical result.
Ascent Criteria	A set of constraints on a decompression model which defines how ascent may be accomplished without causing decompression sickness.
Bottom Time	The elapsed time from leaving the surface until beginning ascent to the first decompression stop (or the surface if a no-decompression dive).
Bounce Dive	A dive where descent is made to some depth for a specified time and then decompression is done to the surface without stopping at any depth not required by the decompression schedule.
Controlling Tis	The theoretical tissue which will require the longest time to offgas from its current tension to its maximum tension at a given stop depth.
Computer Program	A series of instructions directing a computer how to process information to obtain the desired output. A computer program may contain one or more algorithms which perform intermediate calculations. As an example, a computer program for an Underwater Decompression Computer (UDC) may contain algorithms describing gas uptake and elimination, rules for finding the first stop and warning the diver when he is outside of the tested limits.
Decompression Model	A series of algorithms which describe how gas is taken up and given off by the body during a dive and what conditions must be met in order to avoid decompression sickness.
Decompression Obligation - The total amount of decompression stop time accrued at any time in a dive profile if ascent were begun at that instant at a specified rate.	
Decompression Profile - A table or graph showing the depth-time coordinates for an entire dive including all desired stops and all obligatory decompression stops.	

SAD	Safe Ascent Depth. The shallowest depth which could be ascended to at any time in a dive profile without violating the ascent criteria. The SAD is used in real time decompression profile execution and is computed and displayed by the EL-MK 15/16 RTA.
SDR	Saturation-Desaturation Ratio. The ratio of the theoretical tissue halftime used to compute gas uptake to the halftime used to compute gas elimination.
Set Point	The P02 in a closed circuit UBA at which oxygen is added to the breathing loop.
TDT	Total Decompression Time. The total time required from leaving the bottom until reaching the surface after taking all required decompression stops.
Tension	The partial pressure of a gas in a gas mixture.
Theoretical Halftime Tissue - A conceptual area of body tissue whose gas uptake can be described by an exponential term with a time constant K or halftime equal to $\ln (2) / K$.	
Underwat	ion Computer (UDC) - A small microprocessor device carried by a diver which continuously samples depth and updates his decompression obligation.

Air- $\mathrm{N}_{2} \mathrm{O}_{2}$ Decompression Computer Algorithm Development

By: Edward D. Thalmann, CAPT, MC, USN
INTRODUCTION: Testing of a computer algorithm for diving while breathing a constant 0.7 ATA PO_{2} in N_{2} had been completed at the Navy Experimental Diving Unit in August 1980. This algorithm was used to generate a set of decompression tables (1) and is also being programmed into a small, portable wrist-worn Underwater Decompression Computer (UDC) for use with constant PO_{2} closed-circuit Underwater Breathing Apparatus (UBA). Interest in the Special Warfare Community in being able to switch between a constant PO_{2} breathing gas and air, coupled with interest in seeing if the constant PO_{2} algorithm could be extended to air, lead to the study reported here.

The overall plan at the inception of the present study was to develop a computer algorithm which would allow any desired changes in inspired oxygen tension during a dive with nitrogen as the inert gas. An initial feasibility phase looked at what modifications would have to be made to the previously tested Exponential Linear MK $15 / 16$ Decompression Mode1 (EL-MK 15/16 DCM) in order to allow switches in oxygen tensions. Next, a dive series was conducted which was divided into 3 phases. Phases 1 A and $1 B$ examined air bounce dives using both U.S. Navy Standard Air Tables (6) as well as decompression profiles generated using a modified EL-MK $15 / 16$ DCM. Phase 2 looked at additional air bounce dives using only computer generated decompression profiles, repetitive air dives, dives in which the breathing gas was switched between air and a constant $0.7 \mathrm{ATA} \mathrm{PO}_{2}$ in N_{2} and dives breathing a constant 0.7 ATA PO_{2} in N_{2} throughout. Phase 3 looked at repetitive air dives and long multiple level dives where switches were made between air and constant 0.7 ATA PO_{2} in N_{2}. All phases of the dive series were completed between August and December of 1984. A total of 837 man dives were done which resulted in 49 cases of decompression sickness.

METHODS:

General

All 126 divers who participated in this study were active duty Navy or Army divers, or military trained civilians. Divers from the U.S., Canadian and British military participated. The physical characteristics of all divers are given in Appendix A. One of the divers (\#110) was a female. There were 4 separate dive series (Phases $1 A, 1 B, 2$ and 3) and some subjects participated in more than one series. Divers were all actively exercising up to the time of their participation in the study and were all in good physical condition. All divers were given thorough diving physical examinations before each dive series began and were examined immediately before and after each dive by a U.S. Navy Diving Medical Officer.

Breathing gas for the dive was either compressed air ($\mathrm{FO}_{2}=20.95 \%$) supplied through open circuit $S C U B A$ regulators or a constant 0.7 ATA PO_{2} in N_{2} supplied
by a MK 15 closed circuit UBA. In dives where switches were made between air and the constant 0.7 ATA $O_{2} \mathrm{mix}$, the divers wore the MK 15 on their bac and breathed air from SCUBA regulators attached to a manifold on an underwater habitat.

All divers were thoroughly trained in the use of the MK 15 closed-circuit constant PO_{2} UBA which had the PO_{2} setpoint adjusted to 0.7 ATA. A complete description of the MK 15 hardware and operating characteristics is given in references (2) and (3). With a PO_{2} setpoint of 0.7 ATA , the MK 15 will automatically add oxygen when the PO_{2} falls to 0.7 ATA . Normally, the PO_{2} will have a mean level between 0.7 ATA and 0.8 ATA, but could be as low as 0.6 ATA without the UBA indicating a malfunction. This PO_{2} range is maintained irrespective of depth. There is an alarm light that will warn a diver if his PO_{2} falls to 0.6 ATA. If this happened during dives in this study, the diver was instructed to manually add oxygen and to change to another UBA if PO_{2} could not be maintained automatically in the $0.6-0.8$ ATA range. As long as no alarm lights indicated a low PO_{2}, divers were instructed to let the UBA control automatically and no attempt was made to control the PO_{2} at exactly 0.7 ATA. The diluent used for all MK 15 dives in this series was 100% nitrogen. Operationally air will be used as a diluent which would result initially in higher oxygen partial pressures immediately after compression as diluent gas is added to the breathing loop to make up volume during descent. By using 100% nitrogen the oxygen partial pressure during the first portion of time at depth will be lower than it will be when operational dives take place. Since a lower PO_{2} is presumed to increase decompression obligation, schedules were tested under conditions of maximum decompression stress with respect to oxygen partial pressure.

All dives were conducted in the 15 foot diameter by 46 foot long wet chamber of the Ocean Simulation Facility (OSF) at the Navy Experimental Diving Unit (NEDU) in Panama City, Florida. Divers were generally divided into 10 man teams. While at depth the 10 divers performed intermittent exercise at 75 watts on an electrically braked bicycle ergometer pedalling at 55-60 RPM. Since only 5 bicycle ergometers were available, only half the divers were actually exercising at a given time. Exercise periods lasted 6 minutes after which time the 5 non-exercising divers mounted the ergometers and began exercising. This alternating 6 minute work, 6 minute rest cycle continued until 1 minute prior to decompression at which time all exercise stopped ${ }^{1}$. Previous studies showed that the mean oxygen consumption for divers in wetsuits pedalling 55-60 RPM doing this alternating work/rest cycle was approximately $1.00-1.2 \mathrm{l} / \mathrm{min}$ with a $1.6-1.8 \mathrm{l} / \mathrm{min}$ oxygen consumption during exercise and a $0.4-0.5 \mathrm{l} / \mathrm{min}$ oxygen consumption at rest (1) ${ }^{2}$. All divers remained at rest for the entire decompression.

All dives were done in cold water with divers wearing full $1 / 4$ " neoprene wetsuits consisting of "Farmer John" trousers, jacket, hood, gloves and boots. Water temperature was set ($\pm 2^{\circ} \mathrm{F}$) according to the total dive time as follows: 250 min or greater, $65^{\circ} \mathrm{F} ; 249-190 \mathrm{~min} 60^{\circ} \mathrm{F} ; 179-80 \mathrm{~min} 55^{\circ} \mathrm{F} ; 79 \mathrm{~min}$ or less $50^{\circ} \mathrm{F}$. For repetitive dives, the water temperature was set according to the shortest in-water segment of dive, surface intervals were not
considered in setting water temperatures. Most divers were visibly chilled and shivering when exiting from dives, indicating a significant thermal stress during the dive.

Inspired CO_{2} was less than 1 mmHg during air dives as confirmed by analysis of the air banks. No CO_{2} measurements were made when the divers were breathing from the MK 15 but previous experience with this UBA showed that inspired CO_{2} would not rise above 2 mmHg in a normally functioning UBA during the maximum times it would be in use during these dives (1).

Descent rates were $30-60 \mathrm{FSW} / \mathrm{min}$ depending on diver's ability to clear their ears. Occasionally there were holds on the way down followed by intermittent ascents because of eustachian tube blockage in some divers. Since the decompression schedules were all computed in real time all these holds were taken into account in determining actual decompression obligation. Ascent rates were $60 \mathrm{FSW} / \mathrm{min}$ to $20 \mathrm{FSW}, 40 \mathrm{FSW} / \mathrm{min}$ from 20 to 10 FSW , and 30 FSW/min from 10 FSW to the surface, these being the maximum OSF wet chamber travel rates over these depth ranges.

The wet chamber was pressurized with air for all dives. Occasionally, a diver would have to come off his UBA at depth. A dry underwater refuge was in the wetpot and always contained an air atmosphere. During air dives, breathing refuge atmosphere had no effect on the diver's decompression status. If divers were breathing from the MK 15 UBA, then breathing refuge atmosphere would cause his inspired PO_{2} to be different from his fellow divers during that time. In these circumstances, if a diver breathed refuge atmosphere for more than a few minutes he was eliminated as a test subject from that particular dive. Chamber occupants (tenders or divers withdrawn from the wetpot) usually breathed an $\mathrm{N}_{2} \mathrm{O}_{2}$ mix which was higher than that being breathed by the divers. This mix was either $40.0 \% 0_{2}$ down to 150 FSW and 32.5% for deeper dives. During decompression, the same gas breathed at depth was used until a depth of 30 FSW was reached at which point chamber occupants were switched to $100 \% 0_{2}$ for the remainder of decompression. One some of the no-decompression air repetitive dives tenders breathed only chamber air for the entire dive.

The only criteria used to evaluate the safety of a particular dive profile was the occurrence of clinical decompression sickness. The determination as to whether or not a particular diver had decompression sickness was made by an experienced U.S. Navy Diving Medical Officer who evaluated both subjective and objective signs and symptoms. If, in the opinion of the examining Diving Medical Officer (based on diver history and physical examination), decompression sickness was present, then appropriate treatment was instituted. No other criteria (such as ultrasonic doppler monitoring) were used to determine whether or not decompression sickness was present. Usually symptoms of decompression sickness would not manifest themselves until the diver surfaced in which case only the stricken diver was treated. In some instances symptoms occurred while still at depth and when the stricken diver could not be isolated in another chamber all the other divers on that particular dive were treated along with the stricken diver. In these cases,
the asymptomatic divers were not included in the dive statistics at all while the stricken diver was counted as a case of decompression sickness. All treatments for decompression sickness were done using standard U.S. Navy Oxygen Treatment Tables and Procedures (6) unless otherwise noted.

Test Profiles

A total of 38 different test profiles were used in this dive series and are presented in Tables 1 and 2. These profiles were chosen to cover the depth/time domain of the U.S. Navy Standard Air Tables over the depth range of 50 to 190 FSW. Dives were classified as either bounce dives, repetitive dives, or multi-level dives. Appendix C shows which divers dove on which profile on any given day of the series.

All dives were done using real time decompression profiles generated by a Hewlett-Packard HP 1000 Series Computer using a computer algorithm based on the current version of the EL-MK 15/16 DCM as described below. The computer continuously monitored chamber depth from an Ashcroft Digigauge to an accuracy of ± 1 FSW and updated the diver's decompression status every 2 seconds. Real time algorithms were developed as described elsewhere (1). Real time computation allowed any holds or changes in travel rate during ascent and/or descent to be taken into account thus producing a decompression schedule exactly suited to a particular dive profile. The decompression status was displayed on a video display as the shallowest depth which could be ascended to at any given time without violating the ascent criteria, the so-called Safe Ascent Depth (SAD). During decompression the divers' depth was matched to the SAD which was always computed in 10 FSW increments. The actual dive profiles were continuously recorded and stored by the computer and could be retrieved after the dive. A typical dive profile plot is shown in Figure 1.

When doing real time decompression profiles divers were compressed to the desired depth at a rate of 30 to $60 \mathrm{FSW} / \mathrm{min}$ but occasionally holds occurred so mean descent rate varied considerably from dive to dive. In order to keep profiles at a given depth comparable, the actual time for leaving the bottom was determined by Total Decompression Time (TDT). The Hewlett-Packard HP 1000 computer was programmed to compute TDT every 2 seconds along with the SAD. Thus, every 2 seconds the Diving officer knew exactly how many minutes of decompression would be required if ascent were begun at that instant. Before the dive, a complete set of hard-copy decompression schedules were calculated using the current version of the EL-MK 15/l6 DCM assuming a 60 FSW ascent and descent rate. Each one of these schedules had a total decompression time associated with it. Thus, if the planned dive was 190 FSW for 30 min the divers were compressed to 190 FSW and after arrival stayed at 190 FSW until the TDT as calculated and displayed by the HP 1000 computer was the same as that in the previously computed 190 FSW for 30 min hard-copy decompression schedule. At that instant decompression was begun and accomplished by matching diver depth with the SAD. By using this procedure the actual time at depth was adjusted to take total descent time into account such that upon leaving depth the theoretical tissue tensions for controlling tissues were the same as for the profile in the previously computed hard-copy schedule where a

TABLE 1
PROFILE DESCRIPTIONS
(Bounce Dives)

Profile No.

> Schedule* Depth/Bottom Time (FSW)/(Min)

	Air Dives	
1		50/240
2		60/[66]
3		/100
4		1120
5		/180
6		80/120
7		100/[30]
8		160
9		190
10		120/[24]
11		160
12		170
13		180
14		150/[14]
15		140
16		$/ 60$
17		190/[10]
15		$/ 30$
16		140
	Constant 0.7 ATA $\mathrm{PO}_{\underline{2}} \underline{\underline{2}}$ in $\underline{\mathrm{N}}_{2}$	
20		100/60
21		150/30
22		140
23		160
	Air \rightarrow Constant 0.7 ATA PO2 in N 2	
24		60/120
25		100/90
26		150/40

*Times in [] are no-decompression times.

TABLE 2
PROFILE DESCRIPTIONS
(Reper/Multi-Level Dives)
 FSW, times in minutes.

FIGURE 1. Typical Dive Profile. The dotted line shows the actual depth while the solid line shows the Safe Ascent Depth (SAD) as computed by the computer algorithm. Decompression was accomplished by matching actual depth to SAD and following it to the surface. The irregularities noted during compression were due to holds because of ear squeezes. Since the decompression was computed in real time by continuously monitoring chamber depth, all of these irregularities were taken into account in the final decompression schedule.
$60 \mathrm{FSW} / \mathrm{min}$ descent rate was assumed. Thus, when a $190 \mathrm{FSW} / 30 \mathrm{~min}$ profile is referred to in this report it means a profile where after arriving at 190 FSW divers stayed at depth until the TDT was the same as for a diver who left the surface and traveled to 190 FSW at exactly 60 FPM and stayed at depth for exactly 26.33 min (total bottom time equal to the 3.66 min descent time plus 26.33 min at depth) and ascended at exactly 60 FPM during decompression. Thus, all profiles began ascent at very close to the same theoretical tissue tensions although actual times at depth may have differed by a few minutes depending on the actual descent time.

Decompression stops were in 10 FSW increments. At the 10 FSW stop, the chamber depth was 3 FSW with divers at the bottom of the 7 foot wetpot water column. Since it generally took 30 sec to travel this last 3 FSW , travel was begun when the HP 1000 computer showed 30 sec remaining at the 10 FSW stop. At the instant the HP 1000 showed that the divers could surface, all divers ascended to the surface and immediately began breathing chamber air. This procedure, when followed, always had the divers within 1 FSW of the surface when the HP 1000 showed that they could ascend to the surface. Once the chamber was actually at the surface, divers swam to the ladder and exited the chamber.

In doing no-decompression dives using the real time computer algorithm, the no-decompression time is that time at which the SAD increases from 0 to 10 FSW indicating the need for a decompression stop. As long as the SAD was 0 , the divers were within no-decompression limits. Thus, at any given depth no-decompression time was the time remaining before the $S A D$ increased from 0 to 10 FSW and this time was displayed and counted down in 2 sec increments. Programming constraints in the real time environment dictated that this time be computed assuming instantaneous ascent. Thus, once at depth, the no-decompression time was computed by calculating the shortest time it would take any tissue to saturate from its current value to its surfacing tension (10 FSW row of the Maximum Permissible Tissue Tension Tables, Appendix D). Since some tissue offgassing would always occur during ascent, this instantaneous no-decompression time would always be shorter than no-decompression time calculated assuming a finite ascent rate. To take care of this problem, divers were kept at depth until the HP 1000 showed the divers had accumulated approximately a 30 sec stop at 10 FSW . Ascent was begun at that time and if the stop time upon arrival at 10 FSW was more than 30 sec , a stop was taken until the displayed stop time decreased to 30 sec , at which point the chamber was surfaced and divers came to the surface of the wetpot. Stop times less than 30 sec were ignored. This procedure ensured that the real time no-decompression dives were in fact either right at the limits of the model or even slightly beyond model limits (Figure 2).

When doing dives where the U.S. Navy Standard Air Tables were to be used for decompression, a variation on the real time decompression profile procedure was used to take delays during descent into account. During compression, the real time computer program was running and would calculate and update the displayed value for TDT every two seconds, using the current version of the EL-MK 15/16 DCM. The actual time at depth was determined based

FIGURE 2. No-Decompression Dive Profiles. The profile on top shows a single dive. Upon arrival at 10 FSW there was 1.62 min remaining at this stop. With about 45 sec remaining the chamber was surfaced but the divers remained at 7 FSW in the wetpot until the SAD became 0 FSW at which instant they swam to the surface. The second profile shows a repetitive dive in which ascent was essentially directly to the surface to ensure that divers were at the surface the instant that the SAD decreased to 0 FSW.
on this displayed TDT in exactly the same way as was cone during real time decompression profile diving. However, once leaving the bottom a Standard U.S. Navy Air Decompression Schedule was followed to the surface. It should be noted that this procedure was used only to determine when to leave the bottom, not which Standard Air Decompression Schedule to pick. For instance, a dive to 100 FSW for an equivalent 60 min bottom time may have been decompressed on a 100 FSW for 60 min Standard Air Schedule or in other instances on a 100 FSW for 70 min Standard Air Schedule. The reasons for this will be detailed later.

Air dives were accomplished by having divers dress in their wet suits and don a standard air SCUBA apparatus (open-circuit regulator and tank). They then entered the wetpot and remained on the surface until all other divers were in the water. Then, on signal from the Dive Supervisor, all 10 divers went on their SCUBA regulators and swam to the bottom of the wetpot, a depth of 7 FSW. Dive time began at the instant the divers left the surface of the wetpot and at that time the computer program was started. Since the computer monitored the actual chamber depth, it added 7 FSW to all chamber depths to get the actual diver depth.

Once at the bottom of the wetpot (a depth of 7 FSW to mid chest), all divers were instructed to remain upright with their feet just touching the floor of the wetpot. The bicycle ergometer frame heights were such that exercising and non-exercising divers were within 1 FSW depth of each other at mid chest. Thus, the assumed depth error over an entire dive was ± 1 FSW between divers. While on the bottom, divers did not breathe from their SCUBA bottles but breathed from open-circuit SCUBA regulators coming from a manifold piped from the main OSF air bank. Thus, the divers were insured of an unlimited air supply during the dive and only had to breathe from their SCUBA tanks during movements around the wetpot where the regulators on the manifold would not reach.

When doing dives involving the MK 15 UBA (either exclusively or in combination with air breathing) all compressions were done with the divers breathing from the MK 15. Divers donned their UBAs outside of the chamber and breathed chamber air as they entered the water. After entering the water, all divers switched from breathing air to breathing from the MK 15 UBA at the end of a full inspiration and descended to the bottom of the wetpot in unison on signal from the Dive Supervisor, thus ensuring that computer updates regarding breathing gas changes and depth changes corresponded exactly to what the divers were doing in real time. Dive time began when the divers began breathing from the MK 15. Once at depth, the divers either continued breathing from the MK 15 or breathed air from the manifolded SCUBA regulators in the wetpot as called for by that particular dive profile. All gas switches were done in unison on signal from the Dive Supervisor so that the computer could be instructed to change the breathing gas at the instant all the divers actually switched breathing gas. Decompressions were done either breathing air or from the MK 15 as called for by the dive protocol.

Decompression Model and Computer Algorithms

The decompression model used to compute the real time decompression profiles in this study was the Exponential-Linear (EL) version of the model used in developing the computer algorithm for constant 0.7 ATA PO 2 in N_{2} diving and is thoroughly described elsewhere (Appendix A of ref. l). This original decompression model will be referred to as the Exponential-Linear MK 15/16 Decompression Model (EL-MK $15 / 16$ DCM) or the original model. While the decompression model actually encompasses all equations and assumptions considered in the avoidance of decompression sickness (DCS), reference to the EL-MK $15 / 16$ DCM will refer mainly to that portion of the model describing gas uptake and elimination. The other portion of the model which defines the ascent criteria are found in the various Maximum Permissible Tissue Tension (MPTT) Tables which define the maximum gas tension allowed in any of the theoretical halftime tissues at a given depth. Thus, to compute a decompression schedule the EL-MK $15 / 16$ DCM computes tissue tensions based on the particular dive profile and gas uptake and elimination equations then computes decompression stops such that no tissue exceeds its MPTT at any depth. The assumption is that by never having any tissue exceed its MPTT, decompression sickness will be unlikely.

The EL-MK 15/16 DCM was originally developed assuming a constant inspired oxygen partial pressure and assumed that arterial CO_{2} tension and venous O_{2} and CO_{2} tension were constant. Also, venous and tissue oxygen tension are assumed equal. From a physiological standpoint, all these assumptions are reasonable as long as the inspired oxygen tension (PO_{2}) does not change. However, when breathing air it is the inspired oxygen fraction (FO_{2}) which is constant and the inspired oxygen tension will be depth dependent. This will also presumably cause venous (and tissue) oxygen tension to vary depending on the arterial tension and the amount of oxygen extracted from arterial blood by the tissue (the a-v oxygen extraction). During this dive series, two modifications of the EL-MK $15 / 16$ DCM were used, the only difference between them being the way in which arterial and venous oxygen tensions are calculated. The original model will be referred to simply as the EL-MK 15/16 DCM while the two modified versions will be referred to as the EL-MK 15/16 DCM-I and EL-MK 15/16 DCM-II. The differences in the way these three versions handle oxygen is summarized in Table 3.

In the original version of the EL-MK $15 / 16 \mathrm{DCM}$, inspired and alveolar oxygen tensions were assumed equal and arterial oxygen tension differed only by a constant amount from alveolar. This difference, designated as AMBA02, was assumed to be zero during previous algorithm testing (1). The equation used to compute the alveolar (and arterial) oxygen tension for a constant inspired oxygen partial pressure assumed that the inspired oxygen partial pressure was a dry value, that the inspired and alveolar oxygen fractions were equal and that alveolar gas was fully saturated with water vapor.

In the version EL-MK 15/16 DCM-I, the alveolar oxygen tension was computed from the alveolar gas equation ${ }^{3}$:
table 3
CAICULATION OF ARTERIAL AND VENOUS $\mathrm{O}_{2}, \mathrm{CO}_{2}$, AND N_{2} TENSIONS FOR THE \&. AK $15 / 16 \mathrm{DCM}$

Site	Original Version	OCM-I Version	OCM-2 Version
	$\begin{aligned} & \left(P_{A M B}-P_{H_{2} O}\right)-\left(1-F_{I_{N_{2}}}\right) \\ & \rho_{\mathrm{I}_{2}} \cdot\left(1-P_{\mathrm{H}_{2} \mathrm{O}} / P_{A M B}\right)[\text { Note } 1] \end{aligned}$ Constant $P_{\text {AMB }}-\left(P_{\mathrm{A}_{2}}+P_{\mathrm{A}_{\mathrm{CO}_{2}}}+P_{\mathrm{H}_{2} \mathrm{O}}\right)$		$\begin{gathered} \left(P_{A M B}-P_{\mathrm{H}_{2}}\right) \cdot\left(1-F_{1_{N_{2}}}\right)-P_{\mathrm{A}_{\mathrm{C}}} \\ \mathrm{P}_{\mathrm{I}_{0_{2}}}-P_{\mathrm{A}_{\mathrm{C}_{2}}} \quad[\text { Note 2] } \\ \text { Constant } \\ P_{\text {AMB }}-\left(P_{\mathrm{A}_{\mathrm{O}_{2}}}+P_{\mathrm{A}_{\mathrm{CO}_{2}}}+P_{\mathrm{H}_{2} \mathrm{O}}\right) \end{gathered}$
Arterial $\begin{aligned} & { }^{{ }^{\mathrm{a}_{\mathrm{O}}^{2}}} \\ & { }^{\mathrm{P} \mathrm{aCO}_{2}} \\ & { }^{\mathrm{P} \mathrm{~d}_{2}} \end{aligned}$	$\begin{aligned} & P_{\mathrm{AO}_{2}}-\mathrm{AMBAO}_{2} \\ & \mathrm{P}_{\mathrm{A}_{\mathrm{CO}}^{2}} \\ & \mathrm{P}_{\mathrm{A}_{\mathrm{N}_{2}}} \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{A}}-\mathrm{AMBAO}_{2} \\ & \mathrm{P}_{\mathrm{A}_{\mathrm{CO}}^{2}} \\ & \mathrm{P}_{\mathrm{A}_{\mathrm{N}_{2}}} \end{aligned}$	
Venous/Tissue $\begin{aligned} & \mathrm{P}_{\mathrm{V}_{\mathrm{O}_{2}}} \\ & \mathrm{P}_{\mathrm{V}_{\mathrm{CO}_{2}}} \\ & \mathrm{P}_{\mathrm{V}_{\mathrm{N}_{2}}} \end{aligned}$	Constant Constant $P_{A M B}-\left(P_{V_{O_{2}}}+{ }^{P} V_{\mathrm{CO}_{2}}+P_{\mathrm{H}_{2} \mathrm{O}}\right)+\text { PBOVP }$	Constant Constant $P_{A M B}-\left(P_{V_{0_{2}}}+P_{V_{\mathrm{CO}_{2}}}+P_{\mathrm{H}_{2}}\right)+\mathrm{PBOVP}$	$\mathrm{P}_{\mathrm{a}_{2}{ }_{2}}{ }^{-\mathrm{f}\left(\mathrm{P}_{\mathrm{a}_{\mathrm{O}_{2}}} \cdot \mathrm{P}_{\mathrm{aCO}_{2}} \cdot{ }^{\mathrm{P}_{\mathrm{VCO}_{2}}}, \mathrm{CAVO}_{2}\right.}$ Constant $\mathrm{P}_{\mathrm{AMB}}-\left(\mathrm{P}_{\mathrm{V}_{\mathrm{O}_{2}}}+\mathrm{P}_{\mathrm{V}_{\mathrm{CO}_{2}}}+\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}\right)+\mathrm{PBOVP}$

$A M B A O_{2}$ - Constant alveolar/arterial oxygen tension difference.
CAVO_{2} - Tissue specific arterial/venous oxygen concentration difference.
DAAO_{2} - Constant alveolar/arterial oxygen concentration difference.
$\mathrm{F}_{\mathrm{I}_{2}}$ - Inspired nitrogen fraction.
${ }^{F} \mathrm{I}_{0_{2}} \quad-\quad$ oxygen fraction (dry) of inspired gas)
$f(\ldots$.$) - Function which converts \mathrm{OAAO}_{2}$ or CAVO_{2} to a partial pressure difference. Variable in parenthesis are the independent variables. (See text for function description).
$P_{A M B}$ - Ambsolute ambient hydrostatic pressure
$P_{A} \quad-\quad$ Alveolar gas tension.
$\mathrm{Pa}_{\mathrm{a}} \quad$ - Arterial gas tension.
PBOVP -. Tissue specific gas phase overpressure
$P_{V} \quad-\quad$ Venous or tissue gas tension.
$\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}$ - Water vapor tension
${ }^{\mathrm{P}} \mathrm{I}_{0_{2}} \quad$ - inspired oxygen partial pressure.

Note $2-P_{\mathrm{I}_{\mathrm{O}_{2}}}$ specified as measured in fully saturated atmosphere, i.e. $\mathrm{P}_{\mathrm{I}_{\mathrm{O}_{2}}}=\mathrm{F}_{\mathrm{I}_{\mathrm{O}_{2}}}\left(\mathrm{P}_{\mathrm{AMB}}-\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}\right)$.
${ }^{{ }^{P} \mathrm{I}_{2}}$ cannot exceed $\mathrm{P}_{\mathrm{AMB}}-\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}$ at any depth.

$$
\begin{equation*}
\mathrm{P}_{\mathrm{A}_{\mathrm{O}_{2}}}=\mathrm{P}_{\mathrm{I}_{\mathrm{O}_{2}}}-\left\{\left(\mathrm{P}_{\mathrm{A}_{\mathrm{C}}^{2}}-\mathrm{R}\right)-\mathrm{C}\right\} \tag{1}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{I}_{2}} & =\text { Inspired oxygen tension } \\
\mathrm{P}_{\mathrm{A}_{\mathrm{CO}_{2}}} & =\text { alveolar } \mathrm{CO}_{2} \text { tension } \\
\mathrm{C} & =\mathrm{P}_{\mathrm{A}_{\mathrm{CO}_{2}}} \cdot{ }^{\mathrm{F}_{\mathrm{I}_{2}}} \text { •(l-R)/R } \\
\mathrm{F}_{\mathrm{I}_{\mathrm{O}_{2}}} & =\text { inspired oxygen fraction } \\
\mathrm{R} & =\text { respiratory quotient }
\end{aligned}
$$

The value for R was assumed to be 1.0 and the alveolar CO_{2} level equal to arterial. In the DCM-I version, the inspired oxygen tension when breathing from the MK 15 UBA (or any other closed-circuit UBA) is assumed measured in an atmosphere fully saturated with water vapor, that is:

$$
\mathrm{F}_{\mathrm{I}_{0_{2}}}=\mathrm{P}_{\mathrm{I}_{0_{2}}} /\left(\mathrm{P}_{\mathrm{AMB}}-\mathrm{P}_{\mathrm{H}_{2}}\right)
$$

This means inspired oxygen tension can never exceed the difference between ambient pressure and water vapor pressure ${ }^{4}$ Arterial oxygen tension was assumed to differ from alveolar by a constant amount and venous oxygen and arterial carbon dioxide tensions were assumed constant.

The second modification of the decompression model (EL-MK 15/16 DCM-II) uses the same method of computing alveolar oxygen levels as used for the DCM-I version. However, in computing the arterial oxygen tension, instead of assuming a constant partial pressure difference between alveolar and arterial gas, a constant oxygen concentration difference is assumed corresponding to the degree of arterial-venous shunting in the lung. Equation 1 is used to obtain the alveolar PO_{2} value which is assumed equal to the alveolar capillary PO_{2} converted to a concentration in ml/ 100 using a mathematical representation of the hemoglobin dissociation curve as will be described. The assumed concentration difference due to shunting is subtracted and the resultant concentration converted back to a partial pressure (as will be described) which is then the arterial oxygen tension. In the EL-MK 15/16 DCM-II version the venous oxygen tension is also computed from the arterial tension assuming a constant arterial-venous oxygen concentration difference using the same hemoglobin disassociation curve mathematical representation. The mathematic representation used has been previously published (4) and is:

```
S = (ax n}+b\mp@subsup{x}{}{2n})/(1+c\mp@subsup{x}{}{n}+b\mp@subsup{x}{}{2n}
```

where:

$$
\begin{aligned}
& \mathrm{S}=\text { fractional hemoglobin saturation } \\
& \mathrm{a}=0.34332 \\
& \mathrm{~b}=0.64073 \\
& \mathrm{c}=0.34128 \\
& \mathrm{n}=1.58678
\end{aligned}
$$

and:

$$
\begin{equation*}
x=\left(P / P_{50}\right) \cdot 10[0.024(37-T)+0.40(\mathrm{pH}-7.4)+0.06 \log (40 / \mathrm{PCO})] \tag{3}
\end{equation*}
$$

where:

$$
\begin{aligned}
\mathrm{P} & =\text { oxygen partial pressure (mmHg) } \\
\mathrm{P}_{50} & =25 \mathrm{mmHg} \\
\mathrm{~T} & =37^{\circ} \mathrm{C} \\
\mathrm{pH} & =7.4 \\
\mathrm{P}_{\mathrm{CO}} & =\mathrm{CO}_{2} \text { partial pressure }(\mathrm{mmHg})
\end{aligned}
$$

The values for a, b, c and n in Equation 1 were those from reference (4) which minimized the error in computing the saturation fraction S. (Another set of values was given in reference (4) which minimized the value of P when Equation 1 is inverted but these were not used). In computing a value for \mathbf{x}, P 50 , T and pH where given normal values as shown above and the value for PCO_{2} was either the arterial or venous value specified in the MPTT Table. The oxygen concentration in $\mathrm{ml} / 100 \mathrm{ml}$ was computed from the formula:
(4)

$$
\mathrm{C}=\mathrm{S} \cdot \mathrm{HBG}+0.003 \cdot \mathrm{PO}_{2}
$$

where:

$$
\begin{aligned}
& \mathrm{C}=\text { oxygen concentration in } \mathrm{ml} / 100 \mathrm{ml} \\
& S=\text { fractional hemoglobin saturation from Equation } 1 \\
& \operatorname{HBG}=\text { maximum hemoglobin } 0_{2} \text { capacity (} 20 \mathrm{ml} / 100 \mathrm{ml} \text {) } \\
& 0.003: \text { soluhility of oxygen in plasma (ml/100 ml } \cdot \mathrm{mmHg} \text {) }
\end{aligned}
$$

Given a value for PO_{2} and PCO_{2} the value of C is easily computed using Equations 2, 3, and 4. Once the value for the arterial concentration is nomplitec, the concentration difference due to lung shunting (DAAO2) or tissue metabolism for a specific tissue (CAVO2), as appropriate, is subtracted. This new concentration is then plugged back into Equation 4 which then must be solved for S. Reference (4) gives the inverse of Equation 2 which would allow straigntforward calculation of PO_{2} given a value for S . Unfortunately, this inverse equation neglects the solubility factor in Equation 4 which may become significant at increased PO_{2} levels. Since Equation 4 cannot be explicitly soived for PO_{2}, a Newton-Raphson iteration is used to obtain a value which will have an error less than $\pm 0.01 \mathrm{mmHg}$. The details of this iteration can ve obtained by perusal of Subroutine UPDTl which is listed elsewhere (5).

In computing changes in inert gas tension, all versions of the EL-MK 15/16 DCM compute all tensions at the ends of linear descents or ascents in one step. However, the equations used to do this assume that the venous oxygen tension will be constant with ascent. When the inspired PO_{2} is assumed constant this assumption is valid but when using a constant FO_{2} it is not. Furthermore, since the equations used to compute venous oxygen tension for a given arterial value (Equations 2, 3, 4) are not linear, incorporating the changes in venous oxygen tensions into the expression used to compute inert bas tension is not possible. In order to circumvent this problem, the venous oxygen tension is computed at the beginning of ascent or descent and is assumed constant for the duration of the depth change. This results in a small but insignificant error in computing tissue inert gas tension for the ascent and descent rates used in this study.

Ascent Criteria

The EL-MK 15/16 DCM uses a table of Maximum Permissible Tissue Tensions (MFTT Table) to determine what the maximum tissue tensions allowed at each depth are. Generally, ascent to the first decompression stop is done so that most tissues are below their MPTT and one tissue (the controlling tissue) is exactly at its MPTT. Once at the first stop, a time must be spent at this fepth until all tissues have offgassed to a value less than or equal to the MPTT for the next shallower stop. This time is the Stop Time. After remaining for the Stop Time, ascent to the next shallower stop is done and another Stop Time computed such that all tissue tensions fall to a value equal to or less than the MPTT valve for the next shallower stop. This process is -epeated until the surface is reached. It should be noted that there is no requirement to ascend from a particular stop depth at the instant all MPTT's Eall below the values for the next shallower stop. Rather the Stop Time is the minimum time which must be spent at a given depth before ascent is Wussibie. In some cases it may be desirable to remain at a particular stop l:netr than the Stop Time, such as when taking the last decompression stop at C ESh.
\therefore of the MPTT Tables used in this study are listed in Appendix D. The : $:=\because i d u a l$ tables are referred to by their VVAL number, and certain MPTT Zuites were used with only certain modifications of the decompression model.
as ciss mocie and long Gables which ias used to compute the constant 0.7 f.TA
Fi= in :i2 Tables presented in reference 1. The MPTT Tables VAL22-29 were
used only with the DCM-I version and VVAL50-59 used only with the DCM-II
version. The body of each MPTT Table in Appendix D gives the maximum tissue
tension in FS^{6} which can be present before ascent to the next shallower
depth is allowed. The values in the 10 FSW row are the maximum tensions
allowed at 10 FSW in order to make a direct ascent to the surface. These 10
FS\% values are also known as surfacing values. Subsequent rows give values
which cannot be exceeded before ascent to the next shallower stop is allowed,
the 20 FSW values indicating maximum values allowed before ascent to 10 FSW
and so on. Besides the maximum tensions at each depth the MPTT Tables list
several other parameters which are used in computing gas uptake and
elimination. The values just under the tissue halftimes are the Saturation
Desaturation Ratios or $S D R$ which are used to change the halftimes for
offgassing. Below the body of the table are listed a set of Blood Parameters
which are constant values used for various blood tensjons, tissue
overpressures, and oxygen extraction differences. Symbol definitions are
given in Table 3 and the values used for these Blood Parameters in various
stages of model development are given in Table 9. Details of how all the
values in the MPTT Table are used in the decompression model are found
elsewhere (1, 5) and certain aspects of their use will be discussed in this
report as needed.

The values in the body of the MPTT Table for VVAL18 and VVAL22-29 represent inert gas tensions while those in VVAL50-59 represent total tissue gas tension as will be discussed. In the original EL-MK 15/16 DCM only tissue inert gas tension was assumed to be important but i. both modifications (DCM-I and DCiI-II) total tissue gas tension, not simply inert gas tension, was assumed to be the critical factor. The venous CO_{2} tension was assumed constant in both modifications so the only other tissue tension which varied besides the inert gas tension was the tissue oxygen tension which was assumed equal to the venous tension. The methods of handing the changes in venous oxygen tension were different for the DCM-I and DCM-II modifications.

In the EL-MK 15/16 DCM-I, the venous oxygen tension was (artificially) assumed constant and set at the value it would assume had the inspired oxygen tension been 0.7 ATA. The MPTT Table was then adjusted to take into account the change in venous oxygen tension with depth as the inspired oxygen tension breathing air varied from 0.7 ATA. The starting point for this adjustment was VVALi8, the MPTT Table previously developed for computing the constant 0.7 ATA PO_{2} in N_{2} Decompression Tables (1). VVAL18 contained values for inert gas tension only, but since the sum of tissue $\mathrm{PO}_{2}, \mathrm{PCO}_{2}$ and $\mathrm{PH}_{2} \mathrm{O}$ were constant, these values differed from total tissue tension by a constant amount which was independent of depth. Thus, by adding this constant value ($\mathrm{PVO}_{2}+\mathrm{PVCO}_{2}+$ $\mathrm{PH}_{2} \mathrm{O}$) to the inert gas tension computed by the gas uptake and elimination equations and by adding the same value to each of the inert gas tensions in the MPTT Table, the model would then be evaluating total gas tensions but would compute exactly the same dec mpression tables. When using a constant oxygen fraction gas (such as air) the venous CO_{2} and water vapor tensions
would remain constant for a given tissue metabolic rate but the venous oxygen tension would vary depending on the arterial oxygen level. In modifying VWAL18 for use with air the first thing that was done was to postulate a metabolic rate for each tissue compartment which would then specify a particular arterial-venous oxygen concentration difference. This concentration difference could then be converted to a partial pressure change using the mathematical representation of the hemoglobin dissociation curve as previously discussed. At each depth, the difference between the venous PO_{2} while breathing air and while breathing a constant 0.7 ATA PO_{2} could be computed. At a depth of 77 FSW , air has a PO_{2} of 0.7 ATA so this difference would be zero. At shallower depths, air has a lower PO_{2} than 0.7 ATA so this difference would be negative. That is the venous oxygen tension breathing air would be lower than that breathing a $0.7 \mathrm{ATA} \mathrm{PO} 2_{2}$. Deeper than 77 FSW air has a PO_{2} greater than 0.7 ATA and the difference would be positive. The inert gas tension is computed as:

$$
P_{V_{N_{2}}}=P_{A M B}-\left(P_{V_{0_{2}}}+P_{V_{C 0_{2}}}+P_{H_{2}}\right)
$$

and as previously mentioned if the arterial oxygen tension is constant, the sum $\left(\mathrm{PVO}_{2}+\mathrm{PVCO}_{2}+\mathrm{PH}_{2} \mathrm{O}\right)$ is constant. However, if the tissue oxygen tension is increased above 0.7 ATA , and one desires to keep the total venous gas tension constant, then the PVN_{2} must be reduced by exactly the amount hat the PVO_{2} increassd. Conversely, when breathing air shallower than 77 FSW , the PVO_{2} will be decreased and the PVN_{2} is increased by that amount to keep total gas tension constant. Initially, a tissue extraction of 2.39 Vol. \% was chosen empirically for all tissues based on experimental dive results at different PO_{2} levels, as will be discussed later. Based on this, VVALI8 was adjusted by subtracting the difference between the calculated venous oxygen tension on air less the oxygen tension breathing 0.7 ATA PO_{2} from each MPTT value. This initial modification of VVALl8 resulted in VVAL22. Although the MPTT Tables VVAL22-29 were modified several times, these venous oxygen tension differences were not changed and are reflected in the difference in MPTT values between VVAL28 and VVAL29. VVAL29 was constructed for a constant PO_{2} of 0.7 ATA in the breathing gas and each tissue increases its MPTT exactly 10 FSW for each 10 FSW increase in depth (Appendix D). At 0 FSW, the decrease in venous oxygen tension breathing air was calculated to be 0.76 FSW (17.5 mmHg) less than when breathing a $0.7 \mathrm{ATA} \mathrm{PO}_{2}$. Thus, the inert gas tension could be increased by this amount and the total gas tension would be constant. The MPTT values at 10 FSW are those which can be safely sustained at 0 FSW but which must be attained before leaving 10 FSW . These are all 0.76 FSW larger in VVAL2 8 than in VVAL29 reflecting the difference in venous oxygen tensions due to the differences in assumed inspired oxygen tension. As depth increases, the differences between VVAL28 MPTT values and VVAL29 MPTT values decreases and in the 90 FSW row (these are values for leaving 90 FSW or being at 80 FSW) the sign reverses and the VVAL28 MPTT's become smaller than VVAL29 values. Thus, VVAL28 and VVAL29 are the same MPTT's except VVAL28 is adjusted for varying inspired oxygen tensions assuming a constant 21% fraction.

The concept of using total tissue gas tension as the determıning factor in causing decompression sickness was used throughout the whole study. When the EL-MK 15/16 DCM-II was instituted, the equations for computing the venous oxygen tensions from inspired (Equations 1 through 4) were included in the model so that the MPTT Table could reflect total inert gas tension for any inspired PO_{2}. However, in the EL-MK $15 / 16 \mathrm{DCM}-\mathrm{II}$, values for the postulated arterial venous shunt in the lung along with the postulated arterial venous oxygen concentration difference for each tissue had to be specified. The value for the lung shunt determines the difference between arterial and alveolar oxygen tension and was given a value of $0.17 \mathrm{Vol} . \%$ (A 4% shunt assuming a mixed venous oxygen of 40 mmHg and an alveolar value of 100 mmHg on air). This value was assumed independent of inspired oxygen tension. The assumed arterial venous oxygen concentration differences were assumed to be 2.39 Vol. \% throughout the study and are shown as the variable CAV02 in MPTT Tables VVAL50-59 in Appendix D.

The venous CO_{2} tension was reduced to 1.87 FSW for all MPTT's (VVAL22-59) from the 2.30 FSW value used in the original EL-MK $15 / 16$ DCM using VVAL18. The arterial CO_{2} value was 1.7 FSW for the entire study which was increased from the 1.5 FSW value used with VVAL18. The gas phase overpressures (PBOVP) were adjusted empirically as testing progressed, these were all set to 0 in the original model.

RESULTS

The dive series described here was done in three phases, the first phase being subdivided into two parts. Phase 1 A was done over the period from August 23 - September 20, 1984, and Phase 1B from October 3 - October 26. Phase 1 focused mainly on air bound dives but some 38 man dives using a constant $0.7 \mathrm{ATA}_{\mathrm{PO}}^{2}$ in N_{2} were done in the last part of Phase 1B. Phases 1 A and 1 B consisted of 465 man-dives which resulted in 23 cases of decompression sickness. Results in chronological order are given in Table 4 and detailed descriptions of all cases of DCS are found in Tables B-1 and B-2 of Appendix B. Phase 2 was done over the period from November 5 through November 30, 1984 and consisted of 197 man dives resulting in 17 cases of DCS. This phase consisted of bounce dives, repetitive dives and dives where the breathing gas was changed from air to a constant $0.7 \mathrm{ATA} \mathrm{PO}_{2}$ in N_{2} during decompression. Results in chronological order are given in Table 5 and detailed descriptions of all cases of DCS are found in Table B-3 of Appendix B. Phase 3 went from the loth through the 20 th of December, 1984 and looked mainly at multiple level and repetitive dives. There were 175 man dives done resulting in 9 cases of DCS. There were 175 man dives done resulting in 9 cases of DCS. The chronological results are given in Table 6 and detailed descriptions of all cases of DCS are given in Table B-4 of Appendix B.

The results of all dives grouped according to the type of dive are summarized in Table 7 and 8 . There were 612 man dives on bounce profiles resulting in 29 cases of DCS and 225 man dives on repetitive or multiple level
profiles resulting in 20 cases of DCS. The entire dive series encompassed 837 man dives resulting in 49 cases of DCS. In Table 8 it should be noted that the two cases of DCS in dive tenders have not been included in the dive results. These will be discussed separately.

The chronological sequence of events as given in Tables 4-6 shows that each phase consisted of more than one type of dive (air no-decompression, decompression, constant $0.7 \mathrm{ATA}_{\mathrm{PO}_{2}}$, etc.) and it was this sequence of events which influenced changes in the model as testing progressed. In this section the results will be presented according to the type of profile, some of which spanned several phases. The detailed reasons for adjusting the model based on the chronological sequence of events will be presented in the Discussion section of this report.

Air No-Decompression Bounce Dives

Table 7 includes the results of all of the 197 man dives done to test no-decompression limits on air. These schedules are identified as the ones with the bottom times in []. No-decompression limits were tested at 60,100 , 120, 150 and 190 FSW. As previously described, the bottom times for these dives were chosen so that a stop time of at least 30 sec was accumulated at 10 FSW and upon arrival at 10 FSW a stop was taken until the stop time decreased to 30 sec at which time the diver surfaced. Thus, in no case were dives less than the predicted no-decompression limit and in most cases divers surfaced having taken only a portion of the calculated decompression time. All of these conditions were taken to mean that the no-decompression limits were tested under conditions of maximum decompression stress. The no-decompression limits tested were all longer than found it he current U.S. Navy Standard Air Tables (6). The 66 min bottom time at 60 FSW is 6 min longer than current air no-decompression limits, the 30 min time at 100 FSW is 5 min longer, the 24 min time at 120 FSW 9 min longer, the 14 min time at 150 FSW 9 min longer, and the 10 min time at 190 FSW 5 min longer. These increased bottom times ranged from 10% to 100% greater than current air no-decompression bottom times and the fact that no cases of DCS occurred in the 107 man dives is a testament to the safety of the tested no-decompression limits. Table 10 compares the current air no-decompression limits with the tested limits.

Air Decompression Bounce Dives

Table 7 summarizes the results of these dives. Of the dives shown in this table, 367 man-dives were Air Decompression Bounce Dives accounting for all 25 cases of decompression sickness (DCS). Three methods of determining decompression schedules were used. Schedules from the U.S. Navy Standard Air Tables (6) were used for some dives and were usually chosen as the next longer schedule than called for by the actual bottom time of the dive. Choosing the next longer schedule is standard procedure for cold hard-working dives (reference 6, Sect: 7.2.3). There were a total of 4 depth/bottom time combinations on which Standard Air Schedules were used $60 \mathrm{FSW} / 100 \mathrm{~min}, 60 / 180$,

TABLE 4
Phase 1 TEST dive results
Bottom Time (min)* Total Man Dives/DCS (Type)
All Dives on Air Unless Otherwise Noted

* All Bottom Times include $60 \mathrm{FSW} / \mathrm{min}$ descent time. Times in [$]$ are no-decompression time.
\# Where Standard Air Schedules were used, depth/time of schedule used is indicated in this column, otherwise 23 Cases DCS VVAL number of the MPTT Table used to compute the schedule is shown.
- valal29 dives all constant 0.7 ATA PO_{2} in N_{2} dives.

Letters Key DCS to Description in Appendix B

All Bettom times include $60 \mathrm{fsw} / \mathrm{min}$ descent time
197 Man Dives
17 Cases Dés Profiie No refers to Table 2
©VAL2 aives ail constant 0.7 ATA PO_{2} in N_{2} ．
Le：ters Key Oís to Vescridition in Appendix B

TABLE 6
PHASE 3 TEST OIVE RESULTS
Bottom Time（min）or Profile No．＂Total Man Dives／DCS（Type）
All Dives on Air Unless Otherwise Noted

$\begin{gathered} \text { DATE } \\ \hline \quad 1984 \\ \hline \end{gathered}$	H00	$\begin{gathered} 50 \mathrm{FSW} \\ \mathrm{~A} \cdot \mathrm{P} \boldsymbol{1} \mathrm{PO} \end{gathered}$		REPEIS	100 FSW	REPETS	120 FS	REPETS	150 FS	REPETS	$\begin{aligned} & \text { MUTT-LCVEL } \\ & \text { AUP } 7 \text { Fl } \end{aligned}$
12！19	Wulst．	．．－．－－．．－	No． 29	2011（1）${ }^{*}$							
12／11	VVAL53		No． 28	10／1（1）w	No． 31	10／2（1）${ }^{\text {\＃}}$					
12／12			No． 27	1010	No． 31	9／0					
12／13			$\begin{aligned} & \text { No. } 28 \\ & \text { No. } 29 \end{aligned}$	$\begin{aligned} & 10 / 1 / 1 / \mathrm{y} \\ & 9 / 0^{e} \end{aligned}$							
12／14			No． 27	10／0							No． 38 10／1（1）2
12／17	VVAL59						No． 32	1010			No． 37 10／1〈1）dd 1（1）
12／18									No． 33	10／0 ${ }^{\text {S }}$	No． 38 8／111700
12／19							No． 32	10／0			No． $37 \quad 10 / 0$
$12 / 25$		$120 \mathrm{~mm} 19 / 0$									
＊All Bottom times include $60 \mathrm{r} \mathbf{5} / \mathrm{min}$ descent time リち Man［い口•• Profile N a refers to rable 2.											

＊OCS in render not shown．See tert and table B－A
d 10 divers completed ist dive
3 Bottom T me of 2 ad dive 2 min longer than planned because of technical error
Letters key OCS to Description in Adpendix B

TABLE 7
RESULTS OF BOUNCE DIVES TESTED
AIR

Profile No.	$\begin{aligned} & \text { Depth/Time } \\ & \text { (FSW)/(min) } \end{aligned}$	Std. Air	VVAL22	VVAL25	VVAL26	VVAL28	$\begin{array}{r} \text { VVAL53 } \\ 154 \\ \hline \end{array}$	TOTALS
1	50/240					20/0		20/0
2	60/[66]				29/0			29/0
3	/100	9/0 a						9/0
4	/120					18/0		18/0
5	/180	$10 / 3 \mathrm{~b}$	20/1	10/4				40/8
6	80/120						18/1	18/1
7	100/[30]			20/0				20/0
8	$/ 60$	38/0 c	30/0					68/0
9	190					19/0		19/0
10	120/[24]					19/0		19/0
11	160	20/1 d				29/1		9/0
12	170					10/2		18/0
13	/80					10/2		10/2
14	150/[14]			20/0				20/0
15	140				29/2	28/1		57/3
16	160		20/5					20/5
17	190/[10]			20/0		19/0		19/0
18	130					19/0		19/0
19	140					10/2		10/2
	TALS	77/4	70/6	50/4	58/2	20/8	18/1	474/25

a - 60/100 Std. Air Schedule Used.
b - 60/200 Std. Air Schedule Used.
c - 9/0 Using 100/60 Std. Air Schedule.
29/0 Using 100/70 Std. Air Schedule.
d -120/70 Std. Air Schedule Used.
\#-Times in [] are no-decompression times.
CONSTANT 0.7 ATA PO_{2} in N_{2}

20	$100 / 60$		
21	$150 / 30$		
22	140		
23	160	Al1 Dives Used VVAL29	$27 / 0$
			$19 / 0$
TOTALS		$9 / 2$	

AIR \rightarrow CONSTANT 0.7 ATA PO_{2} IN N_{2}

| 24 | $60 / 120$ | | |
| :--- | :--- | :--- | :--- | :--- |
| 25 | $100 / 90$ | | |
| 26 | $150 / 40$ | | |
| | TOAIS | VVAL59 | $19 / 0$ |
| | VVAL52 | $19 / 0$ | |
| | | VVAL52 | $19 / 0$ |$|$

TABLE 8

RESULTS OF REPETITIVE/MULTI-LEVEL DIVES TESTED

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Profile No. \& VVAL28 \& VVAL50 \& VVAL52 \& VVAL54 \& VVAL5 \& VVAL56 \& VVAL58 \& VVAL59 \& TOTALS

\hline \& \multirow[b]{11}{*}{$$
\begin{aligned}
& 9 / 3 \\
& 7 / 0
\end{aligned}
$$} \& \multirow[b]{11}{*}{9/2} \& \multirow{11}{*}{$10 / 2$

$8 / 1$} \& \multirow[t]{11}{*}{1
$10 / 3$} \& \multirow[t]{11}{*}{R

$16 / 0$} \& \multirow{11}{*}{20/1\#} \& \multirow{11}{*}{\[
$$
\begin{gathered}
20 / 0 \\
20 / 2 \\
9 / 0 \\
\\
19 / 2
\end{gathered}
$$

\]} \& \multirow{11}{*}{\[

$$
\begin{aligned}
& 20 / 0 \\
& 10 / 0
\end{aligned}
$$
\]} \&

\hline 27 \& \& \& \& \& \& \& \& \& 20/0

\hline 28 \& \& \& \& \& \& \& \& \& 20/2

\hline 29 \& \& \& \& \& \& \& \& \& 29/1

\hline 30 \& \& \& \& \& \& \& \& \& 36/5

\hline 31 \& \& \& \& \& \& \& \& \& 19/2

\hline 32 \& \& \& \& \& \& \& \& \& 20/0

\hline 33 \& \& \& \& \& \& \& \& \& 10/0

\hline 34 \& \& \& \& \& \& \& \& \& 8/1

\hline 35 \& \& \& \& \& \& \& \& \& 9/3

\hline 36 \& \& \& \& \& \& \& \& \& 16/2

\hline \multicolumn{9}{|c|}{Total Air Repetitive Dives} \& 187/16

\hline \& \& \& $$
\text { AIR } \rightarrow
$$ \& CONSTAN Mul \& \[

0.7 \mathrm{ATA}
\]

i-Level \& PO_{2} in \& $$
\mathrm{N}_{2} \quad 1
$$ \& \&

\hline 37 \& \& \& \& \& \& \& \& 20/2 \& 20/2

\hline 38 \& \& \& \& \& \& \& 10/1 \& 8/1 \& 18/2

\hline \& tal Mul \& ti-Lev \& 1 Dives \& \& \& \& \& \& 38/4

\hline Total
All \& 16/3 \& 9/2 \& 18/3 \& 10/3 \& 16/0 \& 20/1 \& 78/5 \& 58/3 \& 225/20

\hline Dives \& \& \& \& \& \& \& \& \&

\hline
\end{tabular}

\# DCS in Tender Not Shown. See Text and Table B-4.

TABLE 9

ASCENT CRITERIA BLOOD PARAMETERS
All values in FSW except for those in parenthesis () which are in Volume \%.

	${ }^{\mathrm{P}_{\mathrm{A}}} \mathrm{CO}_{2}$	$\mathrm{P}_{\mathrm{H}_{2} \mathrm{O}}$	$\mathrm{PV}_{\mathrm{CO}_{2}}$	PVO_{2}	AMBAO_{2}	PBOVP	$\Delta \mathrm{P} / \Delta \mathrm{P} \\|$
VVAL18	1.5	0.0	2.30	2.0	0	0	10
$\begin{array}{r} \text { VVAL22 } \\ -28 \end{array}$	1.7	2.0	1.87	2.8	2.46	10	10@
VVAL29	1.7	2.0	1.87	2.8	2.46	10	10
				CAV02	DAA02		
VVAL50	1.7	2.0	1.87	(2.39)	(0.17)	10	10
$\begin{array}{r} \text { VVAL52 } \\ -59 \end{array}$	1.7	2.0	1.87	(2.39)	(0.17)	7-36*	10

\# Increase in MPTT for every 10 FSW depth increase.
@ Values adjusted at each depth for changing PO_{2}, see text.

* Different PBOVP specified for each tissue, see Appendix D.

The Surfacing tissue Tensions, and Saturation Desaturation Ratios (SDR's) were varied according to dive results. PBOVP values were changed for WVAL52-59 only.

For Symbol Definition, see Table 3.

TABLE 10

NO-DECOMPRESSION LIMIT COMPARISONS

Depth (FSW)	USN Standard Air Limits	Tested Limits	Final VVAL59 Limits
30	360\#		α
40	200		167
50	100		88
60	60	66	61
70	50		47
80	40		39
90	30		31
100	25	30	26
110	20		22
120	15	24	20
130	10		18
140	10		16
150	5	14	14
160	5		12
170	5		10
180	5		9
190	5	10	9

[^0]$100 / 60$, and $120 / 60$. The next longer Standard Air Schedule was for all the 60 FSW/180 min depth/bottom time dives, all the $120 / 60$ dives and 29 man dives at 100 FSW for 60 min . The Standard Air Schedule with the actual bottom dove was used for the $60 / 100$ and 9 man-dives on the $100 / 60$ depth/bottom time combinations. The EL-MK $15 / 16$ DCM-I was used to compute all VVAL22-28 schedules and the EL-MK 15/16 DCM-II was used for the VVAL53/54 schedules as shown in Table 7.

The success of the Standard Air No-Decompression Limits are in contrast to the abysmal failure of some of the Standard Air Decompression Tables. The most notable is the $60 / 180$ dive which was decompressed on the $60 / 200$ Standard Air Schedule. Appendix E shows that this added 14 min to the total decompression time (TDT) compared to the $60 / 180$ Standard Air Schedule but the 3 cases of DCS in 10 man dives testify that this increase was insufficient (Table 4, Table ?). VVAL25 added another 40 min of decompression time but the DCS rate was increased to 4 cases in 10 man dives. One of these cases (subject 110, Table B-l Appendix B) was a particularly resistant case of shoulder pain. A further increase of 42 min of TDT using VVAL22 reduced the DCS incidence to 1 in 20 man-dives but even this small incidence was surfrising considering that the TDT had been increased by a factor of 2.15 over the $60 / 200$ Standard Air Schedule and 2.68 over the $60 / 180$ Standard Air Schedule.

In stark contrast was the experience using the 100 FSW Standard Air Schedules on the 100 FSW/60 min depth/time dives. After doing 29 DCS free dives on the $100 / 70$ Standard Air Schedules, 9 man-dives were done using the 100/60 Standard Air Schedule without experiencing any DCS. The initial study design had VVAL22 schedules being tested first and in retrospect the 100 min TDT was much longer than required. The $100 / 70$ Standard Air Schedule became one of the benchmark schedules and as the decompression model MPTT Tables were modified, it was always done with trying to get the resultant model to predict a decompression schedule for a $100 \mathrm{FSW} / 60 \mathrm{~min}$ dive with the same TDT as the 100/70 Standard Air Schedule.

The $120 / 70$ Standard Air Schedule was reasonably successful in decompressing a $120 / 60$ dive with only one mild shoulder pain in 20 man-dives. Increasing the TDT to 147 min using VVAL28 decreased the DCS incidence only slightly to 1 in 29 man-dives. The same MPTT, however, produced a considerable incidence of DCS when used to decompress from dives having a 80 and 70 min bottom time at 120 FSW (Tables 4,7).

The 150 FSW depth was considered important because that was the deepest depth used in the testing of the 0.7 ATA constant PO_{2} in N_{2} decompression model (1). The VVAL22 air schedule as computed was over 2.5 times longer than the Standard Air Schedule but the 5 cases of DCS in 20 man-dives showed this increase was not adequate. When the bottom time at 150 FSW was reduced to 40 min, VVAL26 proved inadequate giving rise to 2 cases of DCS in 29 man-dives with a TIT over 1.4 times longer than the Standard Air Schedule. VVAL28 reduced the nCS incidence to 1 in 28 man-dives with a TDT 1.62 times longer than the $150 / 40$ standird Air Schedule (Appendix E, Table E-1).

By the end of thatit la the modifications to the MPTT Tables were being htavily influmet $\because \because$ be surts of the no-decompression limits, the success
of the $100 / 70$ Standard Air Schedule and the fact that the $60 / 180$ schedule as computed by VVAL22 did not appear overly conservative although it was 2.68 times longer than the Standard Air Schedule. The search was on for a model which would; (1) Retain the previously tested no-decompression limits, (2) Predict a decompression schedule for a $100 / 60$ dive with a TDT the same as for the $200 / 70$ Standard Air Schedule and, (3) Keep the $60 / 180$ schedule with the same TDT as computed by VVAL22. In addition, it should lengthen the TDT for $150 / 60$ dives beyond those predicted by VVAL22. VVAL28 was derived to fulfill these criteria but succeeded only partially as shown in Appendix E. The $100 / 60$ schedule was only 2 min longer than the Standard Air $100 / 70$ Schedule but the $60 / 180$ Schedule $T D T$ increased 23 min over that predicted by VVAL22. Also the $150 / 60$ schedule had 10 min less TDT than the previously unsafe VVAL22 schedule. In spite of these deficiencies it was used as a starting point for Phase 1B and indeed survived until the end of Phase 1.

Its success on the $50 / 240$ dive showed, if anything, it was too conservative for this long shallow dive. VVAL 28 predicted a schedule 11 min shorter than the VVAL22 schedule for a $60 / 120$ dive but produced no DCS in 18 man-dives. At 190 FSW safe decompression could not be accomplished using WhaL2 8 until the bottom time was shortened from 40 to 30 min even though the 40 min schedule was 2.22 times longer than the Standard Air Schedule and the 30 min schedule only 1.57 times longer.

By the end of Phase 1B, all air bounce diving had been completed except for one 80 FSW schedule for 120 min which was tested at the end of Phase 2 (Table 5). Although this schedule was dove using two different VVAL's (53 and 54) the profiles differed by only 1 min so the results were lumped together. In spite of increasing the TDT by a factor of 2.9 over the Standard Air Schedule there was 1 case of Eype 1 DCS in 18 man-dives.

The $60 \mathrm{FSW} / 100 \mathrm{~min}$ dive done using the Standard Air Schedules started out as a $60 / 180$ dive but was aborted for technical reasons after 100 min . There was no DCS in any of the 9 divers but the schedule was not tested again because of time constraints.

Table 11 summarizes the raw and expected binomial incidences of the air dives. The first line shows no-decompression dives and the second all Air Bounce Dives. Since the $60 / 180$ using the Standard Air Schedules and VVAL25 would fall outside the limits of the final model, these dives (and resulting DCS) can be excluded dropping the expected incidence as shown in the third line. Also, if one restricts the diving depth/bottom domain to $120 / 60$, 150/40, and $190 / 30$ another 50 man-dives and 11 cases of DCS can be eliminated, resulting in an overall expected incidence of 3.2%. However, all the DCS resulted from decompression dives and if these are separated from no-decompression dives, the expected incidence is 4.2% while for no-decompression dives it is 2.7% (Table 11).

Constant 0.7 ATA P02 in N 2 Bounce Dives

All of the 0.7 ATA constant PO_{2} in N_{2} dives were done using VVAL29 and the EL-MK 15/16 DCM I during the last week of Phase 1 B (Table 4) and the first

TABLE 11
DECOMPRESSION SICKNESS INCIDENCE

Dive Type	Man-Dives	DCS	Incidence	
			Raw	
No-Decompression Air	107	0	0.0\%	2.7\%
All Air Bounce Dives	474	25	5.3\%	7.1\%
Exclusive of $60 / 180$ on VVAL25 \& Std. Air	454	18	4.0\%	5.8\%
Limited (All)	404	7	1.7\%	3.2\%
Domain*(Decomp. Only)	297	7	2.4\%	4.2\%
All 0.7 ATA N202 Dives	81	4	4.9\%	11.3\%
Limited Depth/Time Domain"	46	0	0.0\%	6.3\%
Air $\rightarrow 0.7$ ATA Bounce Dives	57	0	0.0\%	5.1\%
No-Decompression Repetitive Dives	154	10	6.5\%	11.0\%
All Repetitive Dives	187	16	8.6\%	12.0\%
Exclusive of Profile 30 on VVAL52 \& 54	134	5	3.7\%	7.2\%

[^1]week of Phase 2 (Table 5). As 2zeviously descrited in the Ascent Criteria portion of the Methods Section, VVAL29 is VVAL28 adjusted for the theoretical differences in venous PO_{2} breathing a constant 0.7 ATA PO_{2} compared to air at the various depths. Thus, VVAL28 and VVAL29 represent the same decompression model. The results of all dives are summarized in Table 7. A complete set of 0.7 ATA O_{2} in N_{2} schedules using the EL-MK $15 / 16 \mathrm{DCM}$ and VVAL18 had already been previously tested and published (1, 8).

The $100 \mathrm{FSW} / 60 \mathrm{~min}$ schedule produced no DCS in 27 man-dives in spite of a 28% (18 min) reduction in TDT from the previously tested VVAL18 schedule (2) (Table E-2, Appendix E). The success of this reduction was particularly gratifying because during the original testing of the $0.7 \mathrm{ATA}_{\mathrm{PO}}^{2}$ in N_{2} Decompression Tables (8), a schedule having a TDT 8 min longer than the VVAL29 schedule gave 1 case of DCS in 10 man-dives. This previously tested MVAL5 schedule (reference 1, Profile 8, Appendix C) did, however, have decompression stops beginning at 50 FSW , some 20 FSW deeper than the first stop for the VVAL29 schedules.

A 150 FSW/30 min schedule produced no DCS in 19 man-dives in spite of a 30 min (46\%) reduction in TDT from the previously tested VWALI8 schedule (1). In the original testing of the constant $0.7 \mathrm{ATA} \mathrm{O}_{2}$ in N_{2} decompression schedules, attempts had been made to develop a safe 150/60 schedule which were abandoned due to time constraints and a high incidence of DCS (1, 8). During Phase 1 of this earlier testing (1) schedules with about $130-135 \mathrm{~min}$ TDT appeared safe but later produced an unacceptable incidence of DCS. While the final VVAL18 schedules contained a $150 / 60$ schedule, this was not tested and the bottom time restriction at 150 FSW was set as 30 min . Since the untested VVALI8 schedule had a TDT 77-86 min longer than the earlier $150 / 60$ schedules which had been previously tested and since VVAL29 predicted a further 5 min increase in TDT it was thought that this $150 / 60$ schedule would prove successful. The two cases of DCS in 9 man-dives using VVAL29 showed this increase was not adequate and shortening the bottom time to 40 min reduced the DCS incidence to 2 cases in 26 man-dives which was, however, still unacceptably high. So in the end, reduction in TDT were possible within the previously determined depth/time restrictions applied to VVALI8 (1) without an increased incidence of DCS. Profiles tested outside of this restriction at 150 FSW still produced an unacceptably high incidence of DCS. The final version of the decompression model (VVAL59) resulting from tesing in this study would have lengthened the TDT for the $150 / 60$ profiles by another 60 min but time was not available to test this profile. Table 11 shows the expected incidences of DCS based on the limited testing of these constant 0.7 ATA PO_{2} schedules but the number of dives was too small to obtain significant predictions.

Air \rightarrow Constant 0.7 ATA P02 in N 2 Bounce Dives

Up through the middle of Phase 2, testing of the decompression model in real time switching from a constant fraction to a constant percentage of oxygen would not have been possible since the MPTT Tables had to be adjusted
to suit the two different conditions. With the irtroduction of the EL-MK 15, : 0 DCM-II, a single MPTT Table would suffice for both conditions so testing could progress.

Initial testing using VVAL52 focused on 100 FSW and 150 FSW at the maximum bottom times which produced safe profiles on air dives. In all of these dives, a constant $0.7 \mathrm{ATA} \mathrm{PO}_{2}$ was breathed from the MK 15 UBA during descent then air was breathed from arrival on the bottom to arrival at the first stop. At the first stop, a switch was made back to the constant 0.7 ATA PO 2 in N_{2} breathing medium of the MK 15 and this was breathed to the surface. No DCS Was observed on the 100 FSW and 150 FSW profiles (Table 7) in spite of some impressive reductions in TDT. VVAL52 reduced the TDT for the 100/90 schedule with breathing gas switching by 42% compared to the VVAL28 air schedule (Table E-1, E-2; Appendix E). The TDT for the $150 / 40$ profile with breathing gas siwtching was reduced 39% compared to a schedule breathing air throughout.

The 60 FSW/ 120 min profiles was tested with breathing gas switching because VVAL59 predicted a 42% reduction in TDT compared with the previously tested VVAL28 schedule on air while for the $60 / 180$ schedule the reduction was only 33% compared with the previously tested VVAL22 air profile (Appendix E). No cases of DCS resulted from the 19 man-dives on this schedule.

The overall results of switching to the higher PO_{2} during decompression showed that the EL-MK $15 / 16$ DCM-II could adequately handle these PO_{2} changes. The overall impression from the dive series is that further reductions may have been possible but unfortunately, time was not available for further testing of these profiles. Table 11 shows the expected incidences for this limited testing.

Air Repetitive Dives

Testing of Air Repetitive Dive profile began in Phase 2 (Table 5) and continued through Phase 3 (Table 6). A total of 187 man-dives were done resulting in 16 cases of DCS and the results are summarized in the the top portion of Table 8 . A total of 10 different repetitive dive profiles were used (Table 2) with 7 being no-decompression and 3 being decompression. The no-decompression profiles were constructed such that both the effects of increasing depth and increasing surface interval could be tested. A series of two no-decompression repetitive dives separated by a 60 minute surface interval at $80,100,120$ and 150 FSW was used to test the effect of increasing depth. Three different surface intervals at 80 FSW served to test the effect of increasing surface interval time. Finally, three successive no-decompression dives at 100 FSW were done to see if the model could handle multiple repetitive dives.

Table E-3 of Appendix E compares the various no-decompression profiles. For all profiles computed by the decompression models tested in this study the no-decompression times for each dive are given in the appropriate "Excursion" column. The first two line entries for each profile show two Standard Air

Table comparisons. The first line shows what the no-decompression times for each excursion would have been if Standard Air Repetitive diving procedures had been followed. If the Residual Nitrogen Time was greater than the no-decompression time, this difference is shown as a negative number. The second line of the "Std Air" entry for each profile shows the amount of decompression time which would have been required for the bottom time enclosed in \{ \}. The first column \{bottom time\} entry shows a typical bottom time actually used in testing. The TDT is given in the TDT column. In succeeding columns the \{bottom time\} is shown with the Residual Nitrogen Time as determined by the Standard Air Repetitive Diving Procedures enclosed in []. The TDT for the Standard Air Decompression schedule with a time equal to the sum of the \{bottom time\} and [Residual Nitrogen Time] is given in the TDT column.

Table E-4 compares the decompression schedules for the three decompression repetitive dive profiles tested, the decompression schedules for the first and second dives shown in the appropriate column.

Decompression Rovetitive Dives:
The first repetitive dive profiles tested were the repetitive decompression profiles at 100 and 150 FSW, Profiles 34,35 and 36 . These profiles were tested during the transition from the EL-MK $15 / 16$ DCM-I to the EL-MK 15/16 DCM-II. VVAL50 was the first MPTT used with the EL-MK 15/16 DCM-II and was calculated to give decompression profiles as close to VVAL28 (using the DCM-I version) as possible.

The 150 FSW repetitive decompression profile (\#36) initially appeared safe, resulting in no DCS in 7 man-dives using VVAL28. When dove again on VVAL50, however, two mild Type I DCS occurred after the second dive (Table 5, Table B-3, Appendix B). Unfortunately, the VVAL28 and VVAL50 profiles were not identical although the small differences were thought to be insignificant. Compared to the Standard Air Profile, however, the decompression times for both the VVAL 28 and the VVAL50 profile were considerably longer. The TDT for the first dive was 63% to 69% longer for the computed tables compared to Standard Air Tables and for the second dive 82% to 77% longer. On the first dive the decompression stops as computed using the Decompression Models began 10 FSW deeper and were longer at every depth than the Standard Air Table but for the second dive, the decompression model predicted a shallower first stop and a much longer 10 FSW than the Standard Air Table.

The first 9 man-dives on the 100 FSW Profile $\$ 35$ produced 3 cases of DCS. One of these occurred during the surface interval but the diver did not report it and made the second dive after which the pain recurred. Another of the cases of DCS occurred at the 10 FSW stop of the second dive. VVAL52 was created which increased the TDT for both portions of Profile $\# 35$. However, in order to keep testing within a reasonable working day, the second bottom time
 the shorter repetitive bottom time had almost the same TDT as Profile $\# 35$.

ご：ミ こここ ：ncidence ias 1 case in 3 mar－dives blit the pain only sjmptom occurred A＝ 70 FS\％during ascent from the first dive．The circumstances of this symptom（Table $\bar{B}-3$ ，Appendix B）were very unusual and further testing of this profile wouid have been carried out had time allowed．Like Profile $\# 36$ ， Profiles $; 34$ and $\# 35$ predicted significantly longer decompressions than Standard iir Tables for both the first and second dives as shown in Table E－4 of Appendix E ．

The overall raw incidence of DCS for the three repetitive decompression profiles was 6 cases in 33 man－dives or 18% ．However，the number of trials was too small to draw any statistically significant inferences from them．

No－Decompression Repetitive Dives：
Initial testing of the no－decompression repetitive dives began at the end of Phase 2 with the double 100 FSW Profile $\# 30$（Table 2）．The initial dive using VaLj2 used the previously tested 30 min no－decompression limit which had produced no DCS in 20 man－dives．However，of the 2 cases of DCS which occurred on the first 10 man－dives，one was during the surface interval． VVAL54 shortened the first no－decompression limit by over 1 min and shortened the second no－decompression time by almost 2.5 min （Table E－3，Appendix E）but this resulted in 3 cases of DCS in 10 man－dives．The disconcerting thing here is that all three symptoms occurred after the lst dive，and none of the seven subjects who completed the second dive had any symptoms．There was no procedural reasons which accounted for this rash of DCS on a schedule previously thought to be safe except that these dives were done late in the Phase 2 studies and diver fatigue may have played a role．This phenomenon had been seen previously during Phase I testing of the constant 0.7 ATA PO 2 in N_{2} Decompression Schedules（8）．At the end of Dive Series I of this previously reported testing，the DCS incidence on profiles having had 25－27 DCS－free dives increased for no apparent reason（reference 8，Table 3）and diver fatigue was postulated．

The next MPTT used fo：the 100 FSW no－decompression repetitive dives was VVAL55 which reduced the first no－decompression time to 26.5 min （only 1.5 min longer than the Standard Air Table limit）but increased the second no－decompression limit to just over 20 min ．Two of the divers who suffered DCS on the VVAL54 schedule dove the VVAL55 schedule（Table C－3，Appendix C） and there was no DCS in 16 man－dives．

In testing the triple 100 FSW repetitive dive（Profile \＃31），VVAL58 retained the 26.5 min no－decompression time for the first dive but reduced the second to 17.74 min ．This no－decompression time was only reduced an additional 1.85 min for the third dive．The two cases of DCS which occurred in the 19 man－dives performed both occurred after completion of the third dive．However，there was a bizarre case of DCS in the dive tender（Subject \＃122）who was in a warm dry chamber some 7 FSW shallower than the diver subjects for the entire dive（Table B－4，Appendix B）．This individual had participated as a diver subject in Phase $1 B$（Table $C-2$ ，Appendix C ）and made 8 dives resulting in l case of DCS after a $120 / 70$ dive on VVAL28（Table B－2， Appendix B）．
The double dive no-decompression profiles with a 50 min surface interval at 80,120 and 150 FSW (Profiles 427,32 and 33) produced no DCS in 50 man-dives. If one combines these results with the 16 DCS-free dives on the 100 FSW profile ($\$ 30$) using VVAL55 the expected incidence assuming a binomial distribution is 5.2% at the 95% confidence level. The savings in decompression time on these profiles are substantial as shown in the comparisons of Table E-3 of Appendix E. On the 80 FSW profile (\#27) the no-decompression limit for the second dive was almost tripled and 19 min of decompression time saved compared to Standard Air Tables. On the 100 ESW profiles, the 26 min Residual Nitrogen Time resulting from the first dive would have precluded no-decompression diving on the second if Standard Air Tables had been used. The EL-MK $15 / 16$ DCM-II saved some 28 min of TDT on the second and 39 min on the 3rd dive. Similarly, for the 120 and 150 FSW profiles, the Standard Air Tables would have required decompression from both the first and second dives for bottom time tested. As far as the 60 min surface interval double repetitive dives are concerned, it appears substantial amounts of decompression time required by the Standard Air Tables can be safely eliminated. The ability of the decompression model to safely handle a third no-decompression repetitive dive was not sufficiently tested.
The ability of the EL-MK $15 / 16$ DCM-II to handle 80 FSW no-decompression repetitive dives with surface intervals greater than 60 min is not as clear cut. With a 95 min surface interval (Profile 28), VVAL58 increased the no-decompression time for the second dive by 32%. This 30 min bottom time was 18 min longer than allowed by the Standard Air Tables. Two mild cases of DCS occurred in 20 man-dives. After a 180 min surface interval (Profile 29), the no-decompression time for the second dive had increased to within a minute of the initial dive limit using VVAL56 and one case of Type I DCS occurred in 20 man-dives. However, one of the trunk tenders suffered Type I symptoms in spite of being in a warm chamber and 7 FSW shallower than the diver subjects. This subject (\#118) had made 13 dives during Phase $1 B$ and 2 (Table C-2, 3; Appendix C) and suffered only 1 case of Type I DCS. He was breathing air throughout and was warm. After this incident, dive tenders began breathing mixes with PO_{2} levels higher than air during these types of dives. VWAL58 shortened the second no-decompression time by about 2 min compared to VVAL56 and produced 9 DCS-free dives. Considering that the one case of DCS on VVAL56 was mild and that WAL58 had shortened the second no-decompression limit, no further testing of Profile \#29 was done.
Table 11 summarizes the DCS incidences for the air repetitive dives. Overall there was an 8.6% raw incidence of DCS. The three decompression profiles ($34,35,36$) resulted in 6 cases of DCS in 33 man-dives (18% raw incidence) but were considerably lengthened by the final VVAL59 MPTT. Unfortunately, time for retesting them was not available. If one just looks at the no-decompression repetitive dives, excluding the decompression dives, the raw incidence drops to 6.5% but the expected incidence drops only slightly. Profile \#30, using VVAL52 and 54, was considerably changed by VVAL55 resulting in a lowered DCS incidence. Excluding these VVAL52 and 54 dives, the expected incidence for no-decompression repetitive dives drop to 7.2\%.

Abstract

The overall results of the testing $:$ Ethe dir Mo－Decompression Rapetitive dives indicated that considerable amounts of decomprression could be saved compared to the requirements of the Standard Air Tables．This is in contzas： to the decompression repetitive dives where substantial increases in TDT were required compared to the Standard Air Tables．The two cases of DCS in the tenders during no－decompression repetitive dive testing was disturbing， however，and may indicate that increased gas uptake in the warm chamber environment more than offset the 7 FSW depth advantage of the tenders．

Multi－Level Air／Constant 0.7 ATA P02 in N 2 Dives

There were two long multiple level dive profiles tested，both designed to see if the EL－MK 15／16 DCM－II would work with combined depth changes and breathing gas switches．Both of these profiles（\＃37，\＃38 Table 2）are essentially two dives on air separated by a 180－200 min interval breathing 0.7 ATA PO_{2} at 20 FSW ．Profile $⿰ ⿰ 三 丨 ⿰ 丨 三 38$ had a 20 min downward excursion to 100 FSW after 2 hrs at 20 FSW ．Unfortunately，time was not available to test these profiles using air throughout so the DCS incidence on air is unknown．Profile \＃38 was first tested using VVAL58 which resulted in a single case of Type I DCS which did not respond rapidly to treatment（Table B－4，Appendix B）．The Multi－Level Profiles were such that none of the intermediate excursions required decompression stops，so changing the MPTT＇s would only change the decompression to the surface from the last excursions．Table E－5 of Appendix E shows the final decompression schedule which has only a single decompression stop at 10 FSW ．WVAL59 lengthened the TDT from the final 60 FSW excursion of Profile 38 by 7 min compared to VVAL58 but the incidence of DCS remained essentially unchanged with 1 case in 8 man－dives．Again this was a Type I symptom which did not respond rapidly to compression to 60 FSW（Table B－4， Appendix B）．Profile $⿰ ⿰ 三 丨 ⿰ 丨 三 一$ 37 produced 2 cases of DCS in 20 man－dives one of which occurred 72 hours after completion of the dive．During testing of these multi－1evel dives， 3 out of the 4 cases of DCS which occurred had recurrences during treatment which required recompression．

Abstract

There are no currently available procedures for computing decompression schedules for dives of this type except to use a Standard Air Schedule with the total bottom at the maximum depth as shown in the＂Std Air＂entry in Table E－5 of Appendix E．Profile $\# 37$ would have required decompression on an 80／360 Standard Air Schedule requiring 279 minutes of decompression stops．Profile \＃38 would have required decompression on a $100 / 360$ Standard Air schedule which has 415 min of decompression stops．

DISCUSSION

The main purpose of this study was to see if the computer algorithm which had previously been developed and tested for constant $0.7 \mathrm{ATA} \mathrm{PO}_{2}$ in N_{2} diving （the EL－MK $15 / 16$ DCM）could be extended to air diving and furthermore could handle gas switches between gases of different oxygen partial pressures．When originally developed，the U．S．Navy Standard Air Tables were computed assumang that oxygen has no effect on the development of DCS but that only the inert gas partial pressure was important（9）．However，in a series of experiments
using goats, Eaton and Hempelman (10) showed that repiacing nitrogen with oxygen did not change the DCS threshold as much as one would expect if oxjgen played no role in causing DCS. Therefore, it must be concluded from Eaton and Hempelman's results that some portion of inspired oxygen tension does play a role in DCS. Conceptually what makes oxygen different from inert gases is its high blood (hemoglobin) solubility which is not linearly related to blood partial pressure and the fact that it is metabolized by tissue. Depending on the tissue metabolic rate, an increase in arterial oxygen tension may result in an insignificant rise in venous oxygen tension for areas of high metabolism or substantial rises for areas with low metabolism. In modifying the EL-MK 15/16 DCM it was decided to base the ascent criteria on total tissue gas tension and develop a scheme for calculating changes in tissue oxygen tension as a function of inspired oxygen tension. It was also assumed that venous and tissue gas tensions were the same. The mathematical representation of the hemoglobin dissociation curve described earlier in this report provides a method of computing venous from arterial oxygen tension but one must specify a metabolic rate for each tissue of interest. This is most conveniently done by specifying the steady state difference between arterial and venous oxygen concentration (CAVO2). The problem then becomes choosing appropriate values for CAV02.

Development of Initial Ascent Criteria (VVAL22)

If one takes the EL-MK $15 / 16$ DCM using VVALI8 as used to compute the Constant $0.7 \mathrm{ATA} \mathrm{PO}_{2}$ in N_{2} Decompression Table and computes schedules using a constant 21% oxygen fraction (air) one obtains schedules which are three to five times longer than current USN Standard Air Schedules (Table E-1, Appendix E). On the other end of the spectrum, Vann (11) has calculated and tested two decompression schedules using an $\mathrm{N}_{2}-\mathrm{O}_{2}$ mix of a constant $1.4 \mathrm{ATA} \mathrm{PO}_{2}$ which was reduced to 1.3 ATA and the last decompression stop which was taken at 20 FSW. Vann's model predicted a $100 \mathrm{FSW} / 60 \mathrm{~min}$ schedule with 90 min of decompression stops breathing a constant $0.7 \mathrm{ATA} \mathrm{PO}_{2}$ and only 20 min of stops with a $1.4 / 1.3$ ATA PO_{2}. For a $150 / 60$ schedule the decompression stop time was reduced from 195 min to 105 min . Selected VVAL18 schedules for $0.7 \mathrm{ATA} \mathrm{PO}_{2}$ are shown in Table E-2 of Appendix E and it will be noted that the 100/60 schedule is 27 min shorter than Vann's $0.7 \mathrm{ATA} \mathrm{PO}_{2}$ schedules but the $150 / 60$ is 7 min longer. If $1.4 \mathrm{ATA} \mathrm{PO}_{2}$ schedules are computed using the EL-MK $15 / 16 \mathrm{DCM}$ and VVAL18, the decompression stop times are reduced to 10 min for the $100 / 60$ schedule, much shorter than predicted by Vann. Vann had tested his 1.4/1.3 ATA schedules on 20 man-dives each without DCS and based on this limited experience it was decided that the EL-MK 15/16 DCM should initially be modified to compute $1.4 \mathrm{ATA} \mathrm{PO}_{2}$ schedules with total decompression times close to Vann's. In computing the VVAL18 1.4 ATA schedules the PO_{2} was assumed to be 1.4 ATA during the last stop which was taken at 20 FSW (1.61 ATA). Vann reduced the PO_{2} to 1.3 ATA at 20 FSW for technical reasons, which makes his schedules slightly longer than they would have to be if 1.4 ATA was breathed throughout. This excess time provided a bit of "slop" when fitting the EL-MK 15/16 DCM to Vann's data.

In original the EL-MK $15 / 16$ DCM the tissue offgassing rate is linear and goverened by the equation:

$$
\begin{align*}
\text { DPDT } & =\mathrm{SDR} \cdot \mathrm{~K} \cdot\left(\mathrm{P}_{\mathrm{A}_{\mathrm{N}_{2}}}-\mathrm{P}_{\mathrm{V}_{\mathrm{N}_{2}}}\right) \tag{5}\\
& =\mathrm{SDR} \cdot \mathrm{~K} \cdot\left(\mathrm{P}_{\mathrm{VO}_{2}}+\mathrm{P}_{\mathrm{V}_{\mathrm{CO}_{2}}}-\mathrm{P}_{\mathrm{A}_{\mathrm{CO}}^{2}}-\mathrm{P}_{\mathrm{A}_{\mathrm{O}_{2}}}-\mathrm{PBOVP}\right)
\end{align*}
$$

where:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{V}_{2}}=\text { Venous nitrogen tension (FSW) } \\
& \mathrm{P}_{\mathrm{A}_{2}}=\text { Arterial nitrogen tension (FSW) } \\
& \mathrm{P}_{\mathrm{V}_{2}}+\mathrm{P}_{02} \mathrm{~V}_{\mathrm{CO}_{2}}-\mathrm{PA}_{\mathrm{CO}_{2}}=2.8 \mathrm{FSW} \text { (Table 9) } \\
& \mathrm{SDR}=\text { Saturation Desaturation Ratio } \\
& \mathrm{K}=\text { exponential time constant } \\
& \mathrm{P}_{\mathrm{A}_{\mathrm{O}_{2}}}=\text { alveolar } \mathrm{PO}_{2} \text { (FSW) }
\end{aligned}
$$

PBOVP $=$ Tissue specific gas phase overpressure (FSW)
(See reference 1 for details)
If one examines the ratio of offgassing rates (DPDT) for different PO_{2} levels for a given tissue, one will see that the ratio approaches 1.0 as PBOVP increases. That is, by specifying a PBOVP greater than 0.0 , the percentage increase or decrease in DPDT as the PAO_{2} is raised or lowered from a reference value will decrease. If a reference PO_{2} level of 0.7 ATA is chosen, the SDR can be decreased as PBOVP is increased so that DPDT calculated at the 0.7 ATA reference value doesn't change. Unfortunately, decompression schedules will change slightly because as PBOVP increases, the tissue tension at which the offgassing rate slows from linear to exponential changes (1). When PBOVP was increased from 0.0 to 10 FSW and the SDR reduced from 1.0 to 0.67 for all tissues, DPDT at 0.7 ATA (23.1 FSW) PO_{2} remains unchanged. The 100/60 decompression schedule at 0.7 ATA using the EL-MK $15 / 16$ DCM and VVAL18 (maximum tissue tensions) was unchanged but the $150 / 60$ schedule TDT increased to 221 min (14 min increase in 20 FSW stop and 15 min increase at 10 FSW). When used to compute air schedules, the above modifications to the SDR and PBOVP of VVALI8 reduced the 100/60 decompression schedule TDT from 158:40 to 96:40 and the 150/60 TDT from 383:30 to 297:30. While these air schedules are still 2.5 and 2.6 times longer than USN Standard Air Schedules, they are not much longer than other air schedules which have been proposed, especially the RNPL schedules (12).

The reduction in calculated decompression times using VVALl8 and modifying the values for SDR and PBOVP was most welcome. However, when schedules using a $1.4 \mathrm{ATA} \mathrm{PO}_{2}$ were computed, the TDT for the $100 / 60$ schedule was increased only 2 min to $12: 40$ and for the $150 / 60$ increased by 17 min to 76:30. These increases were not felt to be close enough to Vann's predictions so it was decided to investigate other methods of modifying the decompression model to somewhat blunt the effect of the large change in TDT with change in inspired PO_{2} levels. The initial attempt at this was the EL-MK 15/16 DCM-I in which a slight change was made to the way the alveolar PO_{2} was computed (Table 3) and in which values for other Blood Parameters were changed (Table 9, VVAL 22-28). The change in the way alveolar PO_{2} was computed prevented computed arterial nitrogen tensions from becoming negative when $100 \% 0_{2}$ was breathed. The arterial CO_{2} level was assumed to be 40 mmHg which rounded off to 1.7 FSW and water vapor pressure at body temperature 47 mmHg which rounded off to 2.0 FSW. The venous carbon dioxide tension will vary as venous oxygen tension changes and was calculated to change from 41 to 45 mmHg over a venous oxygen tension rage of 50 to 75 mmHg . This change was small and to reduce the complexity of the model a mean value for venous CO_{2} tension of 43 mmHg (1.87 FSW) was chosen which was assumed constant for all venous oxygen tensions. The value of AMBAO2 was supposed to represent the difference between alveolar and arterial oxygen levels and was chosen as the calculated 57 mmHg (2.46 FSW) difference between arterial and alveolar 0_{2} at 0.7 ATA inspired oxygen assuming a 4% shunt in the lungs. This physiological rationalization was soon dispensed with by assuming that arterial and alveolar nitrogen tensions were the same resulting in not having to calculate the arterial oxygen tension for the EL-MK $15 / 16$ DCM-I. The values for PBOVP were kept at 10.0 FSW because of the desirable effect this had on decreasing the magnitude of change in TDT with changes in inspired PO_{2}.

The PV_{2} value of 2.8 FSW (65 mmHg) for VVAL22-29 represents the assumed value for a tissue with a 2.39 Vol. \% a-v extraction and an inspired PO_{2} of 0.7 ATA. If PAO_{2} is computed as shown in the DCM-I column of Table 3 and other values in equation (5) are taken from the VVAL22-28 row of Table 9, it can be shown that an SDR of 0.72 is needed to keep the calculated offgassing rates (DPDT) for a constant $0.7 \mathrm{ATA} \mathrm{PO}_{2}$ the same as in the original EL-MK $15 / 16$ DCM model. Schedules computed for constant 0.7 ATA PO_{2} using the EL-MK 15/16 DCM-I with VVAL18 but with the VVAL22-28 Blood Parameters (Table 9) and SDR values of 0.72 decreased the TDT for the $100 / 60$ schedule by 1 min and increased the TDT for the $150 / 60$ by 8 min compared to VVAL18 Tables computed using the original model and Blood Parameters. When a constant 1.4 ATA PO 2 was used, it was assumed that the increase in venous oxygen tension would be 120 mmHg (assuming the tissue extracted 2.39 Vol. \% of 0_{2}) or 5.54 FSW . Schedules computed using the DCM-I, VVAL18, and VVAL22-28 Blood Parameters assuming venous PO_{2} of 5.54 FSW gave a TDT for the $100 / 60$ of $23: 40$ and a TDT for the 150/60 of $109: 30$, very close to the $20: 40$ and $105: 30$ times of Vann's schedules.

The DCM-I model was easily adjusted to compensate for the two different constant PO_{2} values of 0.7 ATA and 1.4 ATA simply by adjusting the $\mathrm{PVO}_{2} \mathrm{Blood}$ Parameters. If air is used as a breathing gas, the PVO_{2} value will be different at each depth so simply adjusting PVO_{2} will not work. To compute

Abstract

air schdules, the actual MPTT values were adjusted at each depth as previously described in the Ascent Criteria section. VVAL18 was adjusted in this manner and when combined with the Blood Parameters in the VWAL22-28 row of Table 9, resulted in the new MPTT Table VVAL22 (Appendix D). VVAL22 was then used with the EL-MK 15/16 DCM to compute a set of air decompression schedules. The resulting air schedules are given in Table E-1 of Appendix E. It was VVAL22 and the EL-MK 15/16 DCM-I which was used as the initial method of air table calculation. All MPTT's are given in Appendix D.

To summarize, the original EL-MK 15/16 DCM using VVAL18 was judged unsatisfactory because computed air decompression schedules appeared too long while schedules using a constant $1.4 \mathrm{ATA}_{\mathrm{PO}}^{2}$ appeared too much shorter than schedules which had been previously tested. In order to shorten computed air tables and lengthen the $1.4 \mathrm{ATA}_{\mathrm{PO}}^{2}$ tables the PBOVP was increased from 0.0 to 10 FSW . Since it was desirable to keep 0.7 ATA PO_{2} Tables as close as possible to those which were previously tested the offgassing rate (DPDT) had to be kept the same and the SDR was decreased from 1.0 to 0.67 to compensate for the change in PBOVP. The result of these adjustments was that air schedule TDT's were reduced but 1.4 ATA PO_{2} schedules were still too short. The Decompression Model was then changed to the EL-MK 15/16 DCM-I and MPTT values were adjusted to compensate for changes in venous oxygen tension as inspired tension varied from 0.7 ATA. When breathing air, the MPTT adjustment was depth dependent reflecting the different inspired oxygen tensions at various depths. The resulting MPTT Table was VVAL22 which was the first one used for air diving in this study.

EL-MK 15/16 DCM-I Testing (VVAL22-29)

The initial testing of the EL-MK 15/16 DCM-I with air using VVAL22 gave the impression that the $60 / 180$ and $100 / 60$ schedules were safe but that the deeper $150 / 60$ schedule was not long enough (Table 4). At this point it was decided to dive some USN Standard Air schedules to see what the DCS incidence for these schedules under controlled conditions was. Since the dives were considered cold, hard-working dives the standard USN practice of using the next longer bottom time schedule was implemented. The 100/70 Standard Air Schedule proved DCS-free in 29 man-dives when used to decompress from 100 FSW after a 60 min bottom time. The initial attempt at a $60 / 180$ dive on August 30 was aborted early for technical reasons and decompressed after 100 min on a 60/100 standard air schedule, which was DCS-free in 9 man-dives. Retesting of the $150 / 60$ schedule using VVAL22 confirmed that this schedule, although over 2.5 times longer than the Standard Air Schedule was too short.

Decompression from 60 FSW after 180 min using the $60 / 200$ Standard Air Schedule produced 3 cases of DCS in 10 man-dives. At this point, a return was made to decompression schedules computed by the EL-MK 15/16 DCM-I using the newly computed VVAL25. VVAL25 used the same MPTT values as VVAL22 but the SDR's were increases to 1.0 which put the TDT for a $60 / 180$ dive about halfway between that predicted by the 60/200 Standard Air Schedule and the previously tested VVAL22 schedule. This gave 4 cases of DCS in 10 man-dives and it was decided that the previously tested $60 / 180$ VVAL22 schedule was not too short after all.
while the o0/200 Standard Air Schedule was a total failure in decompressing from a $60 / 180$ dive, 9 divers were decompressed from 100 FSW after 60 min on a $100 / 60$ Standard Air Schedule. This incredible disparity between the safety of the $100 / 70$ and $100 / 60$ Standard Air Tables and the 60/200 Standard Air Table prompted testing of an intermediate schedule. The 120/70 Standard Air Schedule was used to decompress from $120 / 60$ dive and produced only 1 mild knee pain in 20 man-dives.

It is interesting to note that Berghage (7) in a review of fleet diving from 1971-1978 reported that the 100/60 Standard Air Schedule had the highest incidence of DCS according to U.S. Navy dive records, 5 cases in 104 man-dives. This would predict a 10% incidence assuming a binomial distribution. There were too few dives done using the $100 / 60$ schedule in this study to make a valid comparison. Only two dives were reported by Berghage using the $60 / 180$ schedule (which were DCS-free). As a matter of fact, Berghage reported that only only 35 man-dives were done at 60 FSW with bottom times greater than 70 min . In the 120 FSW range, only 11 dives were reported for the 60 min bottom time (with no DCS) while 2347 were done with shorter bottom times. Clearly, except for the $100 / 60$ schedule, fleet experience for long bottom times at 60 and 120 FSW is minimal.

At this point, it was felt that safe air schedules for the $60 / 180$, $100 / 60$ and $120 / 60$ dives were at hand. At 150 FSW , lengthening of the decompression schedule for the 60 min bottom time would have required an impractical amount of time in the water, so it was decided to try decompression after shortening the bottom time. By changing the VVAL25 SDR's only, VVAL26 was created to put the TDT for a $60 / 180$ dive back to 153 min and to make the TDT for a $150 / 40$ dive about the same as for a 150/50 Standard Air Schedule (88:30). The resultant 150/40 schedule had a TDT of $85: 30$ which made it only 1.4 times longer than the Standard Air $150 / 40$ schedule. This rather mild increase in TDT was thought reasonable based on the success of the $120 / 70$ schedule and the much increased no-decompression limit at 150 FSW which had been successfully tested. The resulting 2 cases of DCS in 29 man-dives was an improvement over the $150 / 60$ incidence and both cases of DCS were mild.

Based on the experience of Phase 1A, VVAL28 was created which attempted to keep the TDT for a $100 / 60$ schedule close to that of the $100 / 70$ Standard Air Schedule, lengthen the $60 / 180$ to a TDT slightly longer than the VVAL22 schedule and lengthen the $150 / 40$ schedule compared to VVAL26. The surfacing MPTT for the 240 min tissue was chosen as 44.26 which would allow surfacing directly from 25 FSW after saturation on air. Bell et al (13) have in fact shown that the no-decompression saturation depth on air is somewhere between 23 and 26 FSW. The changes made to VVAL26 to get VVAL28 were only in the MPTT's for the $120-200$ min tissues because the 10 FSW stops for both the $60 / 180$ and $150 / 60$ schedules were controlled by tissues in that range. The main casualty of WVAL2 28 was the $120 / 60$ schedule which acquired a TDT of 147 min when it appeared that a Standard Air Decompression $120 / 70$ schedule with a TDT of 89 min would suffice. Initial testing of VVAL28 looked very promising with 18 DCS-free dives on the previously unsafe $150 / 40$ and 19 DCS-free dives on a new $100 / 90$ schedule. When a $190 / 40$ dive was attempted there were 2 DCS in 10 man-dives but restricting the bottom time to 30 min at that depth resulted in 19 DCS-free dives. VVAL28 handed a 6 hour 50 FSW dive without DCS in 20 man-dives and produced 18 DCS-free dives for $60 / 120$ schedules.

Attempts to extend the 60 min bottom time at 120 FSW using VVAL28 to 80 or 70 min were unsuccessful giving rise to 2 cases of DCS on each of the 10 man-dives on these schedules. When a 60 min bottom time at 120 FSW was repeated, there was a single case of mild DCS in 29 man-dives showing that the 147 min TDT was not over conservative.

By the end of Phase 1 , VVAL28 had been modified considerably from the starting MPTT, WAL22, and it was desirable to see if 0.7 ATA schedules would prove safe. VVAL28 was modified for a constant 0.7 ATA PO 2 to VVAL29 as previously described (see Ascent Criteria). VVAL29 produced no DCS on significantly shortened $100 / 60$ and $150 / 30$ schedules (compared to VVAL18). This success lead to an attempt to increase the 150 FSW bottom time to 60 min which produced 2 cases of DCS in 9 man-dives. Even backing off to a 40 min bottom time at 150 FSW produced 2 cases of DCS in 26 man-dives.

At this point it appeared VVAL28 would compute air decompression schedules with a low risk of DCS within the following maximum depth/time limits: $50 / 240 ; 60 / 180,100 / 90 ; 120 / 60 ; 150 / 30$; and $190 / 30$. Also, it appeared to allow some shortening of constant 0.7 ATA P02 schedules within previously tested depth/time limits. These restrictions were acceptable from an operation standpoint so further time was not spent trying to extend them. Rather, the models ability to handle repetitive dives was tested.

At the beginning of Phase 2, VVAL28 was tested on some repetitive dives also. VVAL28 initially looked adequate on the 150 FSW air decompression repetitive Profile \#36 but when used on the 100 FSW profile it proved totally inadequate giving rise to 3 cases of DCS in 9 man-dives.

EL-MK $15 / 16$ DCM-II Testing (VVAL50-59)

At this point a new modification of the decompression model was brought on line, the EL-MK 15/16 DCM-II. This new model now incorporated equations for calculating venous oxygen tension as a function of arterial so that MPTT adjustments for various PO_{2} levels would not have to be done. VVAL50 was designed to compute air schedules close to VWAL28 and constant 0.7 ATA PO 2 schedules close to VVAL29. Table E-1 of Appendix E shows that VVAL50 air tables were changed only slightly from VVAL28 tables. The 0.7 ATA constant PO_{2} schedules were almost identical to VVAL29 with the maximum increase in TDT being 1 min. When schedules breathing 1.4 ATA constant PO_{2} were calculated, the 100/60 schedule TDT was $22: 40$ and the $150 / 60$ was $126: 30$, both times comparing favorably with the 20:40 and 109:30 schedules tested by Vann. So a single model was now at hand which would reasonably fit schedules which were tested on air, a 0.7 ATA constant PO_{2} and 1.4 ATA constant PO_{2}.

VVAL50 was short lived producing 2 cases of DCS on 9 man-dives on the 150 FSW repetitive dives. Up to now, the gas phase overpressure, PBOVP, had been kept constant at 10 FSW for all tissues and changes in decompression schedules had been brought about by changing the surfacing MPTT's and the SDR's. By slowing offgassing through a decrease in SDR values, the offgassing rate
change is the same at all inspired PO_{2} values. However, by manipulating the PBOVP, offgassing rates will change more at lower PO_{2} values than at higher values. Both SDR's and PBOVP values in VVAL50 were changed to get VVAL52 with the specific intent of having a greater slowing of offgassing shallow, especially at the surface during the surface interval. The TDT for the second dive of Profile 35 was increased by 57 min and for the first dive only 3 min with VVAL52. This made profile 35 too long to be tested during a normal work day so the bottom time for second dive was cut to 40 min resulting in Profile 34. The single case of DCS in 8 man-dives using VVAL52 on Profile 34 was a mild knee pain but was atypical in that it was first noted at 70 FSW during ascent. Considering the mildness of the DCS and the length of the decompression schedule it was decided to persist with VVAL52 a while longer.

A series of dives breathing air at depth and 0.7 ATA PO_{2} during decompression were tested using VVAL52. A total of 87 min of decompression time was taken off the 100/90 schedule compared to the previously tested VVAL28 schedule using air. No DCS occurred in 19 man-dives. More surprising was the 19 DCS-free dives on a $150 / 40$ schedule, one which had produced DCS both using a constant $0.7 \mathrm{ATA} \mathrm{PO}_{2}$ and air.

It was the results of the next dive tested, a 100 FSW no-decompression repetitive dive which caused VVAL52 to be modified. Not only did 2 cases of DCS occur in 10 man-dives but one occurred after the first dive, a no-decompression limit having previously produced no DCS in 20 man-dives. VVAL5 3 was an intermediate MPTT Table used only on the $80 / 120$ schedule. It was rapidly modified to VVAL54 which had modified SDR's for the $5-40$ min tissue and different MPTT's for the 40 and 120 min tissues compared to VVAL52. These adjustments were designed to decrease the 100/60 TDT toward that for a Standard Air 100/70 (57:40) while decreasing the no-decompression limit for the second 100 FSW dive on Profile $\# 30$. When retested, Profile $\# 30$ using VVAL54 produced 3 cases of DCS after the first 100 FSW no-decompression dive. This rash of DCS caused consideration of diver fatigue as a possible cause of increased DCS incidence. VVAL55 changed the MPTT's for the 40 and 80 min tissue as well as the PBOVP values and increased the 40 FSW SDR to 0.96. This reduced the no-decompression limit for the first 100 FSW dive to 26.5 min, close to the 25 min in the Standard Air Tables while the no-decompression limit for the second dive increased. This change allowed 16 DCS free dives on Profile $\# 30$.

VVAL56 was another transient MPTT Table replaced by VVAL58 after only a single dive. VVAL58 was designed to maintain the best fit to previously tested profiles while decreasing the second no-decompression time for the second 100 FSW dive on Profile $\# 30$ which dropped by well over 2 min compared to VVAL55. The 100 FSW repetitive dive profile was extended to three dives and the two cases of DCS which arose occurred after the last dive. The 80 FSW repetitive dive profiles appeared reasonably safe overall with only 2 mild cases of DCS both occurring after the second dive. VVAL58 was eventually modified to VVAL59 based mainly on the results of the multiple level dives involving switches between air and constant 0.7 ATA PO_{2} breathing media. This change involved only the SDR for the 40 and 120 min tissue which served to lengthen the TDT for the final decompression on Profiles $\# 37$ and $\# 38$.

Overall, modification of the decompression model was influenced by two forces. One was not to lengthen schedules which were felt to be safe by too much, and the other was to decrease the rate of offgassing at the surface so that repetitive dive no-decompression limits would be shorter. It must be remembered that the Standard Air Repetitive Dive Tables are computed from a different set of premises than the Standard Air Tables. Details of the way the Standard Air Repetitive Dive Tables were calculated are given elesewhere (14), but in summary all repetitive dives assume that the 120 min tissue will always control the second dive. If repetitive dives had been computed using exactly the same premises as used for the Standard Air Single Dive Tables the Residual Nitrogen Times for the second dive would be much shorter than arrived at using current USN procedures. The goal in this study was to use the same model for the entire dive. This resulted in decompression times for repetitive dives involving decompression to increase markedly but it also allowed no-decompression limits for repetitive dives to increase. As testing progressed, it was just not possible to adjust the no-decompression repetitive dive limits without lengthening profiles which already appeared safe. Part of the reason for this may have been the way the model was adjusted. For example, one could have individually adjusted the arterial-venous oxygen extraction and venous CO_{2} levels for each tissue. Time was simply not available to test this. Also, the effect of individual variation must be taken into account. Certainly some schedules may have proved safer if more dives could have been done on them.

Decompression Sickness Symptoms

Appendix C shows the diving intensity for all divers in this study. Generally, divers had at least 2 days off between dives. In all there were 49 cases of DCS in 39 different divers and 2 in tenders. A total of 9 divers had DCS more than one time, Divers 49 and 71 having had DCS three times, and Divers 5, 13, 55, 82, 104,115 and 122 having DCS two times. Diver 122 had one of his cases of DCS while serving as a tender, the other tender being subject 118.

There were only 7 cases of Type 2 DCS which occurred in Divers 24, 40, 55, $65,68,104$ and 122. The incidence of Type 2 DCS was 14.3%. This is comparable to the 17% incidence of Type 2 symptoms in previous $\mathrm{N}_{2} \mathrm{O}_{2}$ dive series (1,8) and less than half that of the 37% incidence encountered testing HeO_{2} decompression tables (15). Of all Type 2 cases encountered, all but 3 were mild changes in peripheral sensation or mild decreases in strength. The 3 exceptions were all severe cerebral symptoms. Diver 40 suffered memory lapses and marked weakness and sensory changes on the right side. He was followed closely with a battery of neuropsychological tests and required 3 Treatment Table 6's for complete relief. Diver 55 suffered an attack of nausea and lower extremity weakness which responded immediately to compression to 60 FSW. Diver 122 had a mild Type 2 symptoms as a subject on a $230 / 70$ dive consisting of decreased sensation over the right knee but suffered a bout of lightheadedness and profound right sided weakness as a tender on Profile \#3l. This individual was the only one to have suffered Type 2 DCS more than once.

All but 6 cases of Type 1 DCS were straightforward which responded initially to a Treatment Table 5 or 6 . Diver 110 suffered a particularly resistant bout of shoulder pain which required multiple treatments. Complete resolution of symptoms took 3 months. Four months after the incident this diver made a 60 FSW experimental air saturation dive without incident. It is interesting to note that this diver was the first and only female to participate in these dive series. Diver 13 had suffered DCS twice, both Type 2 symptoms. On the second occurrence he had a recurrence of symptoms during decompression which required recompression to 60 FSW. Diver 17 was initially treated for knee pain with complete relief on a Treatment Table 5 but 18 hrs later reported shoulder pain. He showed no change in this pain after 20 min at 60 FSW and it was thought this was not DCS so he was brought to the surface. The pain was mild but persisted over the next 3 days and was present just before he made a $150 / 40$ 0.7 ATA constant PO_{2} dive. The pain disappeared at 150 FSW and never returned so a diagnosis of residual DCS was made retrospectively. Divers 63,33 and 104 all suffered Type 1 symptoms after multiple level dives and all had recurrences during treatment requiring recompression.

There was no particular physical characteristic which set the divers who suffered DCS apart from those who didn't (Appendix A). Also, there was no particular set of physical characteristics distinguishing divers who suffered Type 2 symptoms are those who suffered DCS more than once from other divers. The time of onset of symptoms ranged from immediately post dive up to 40 and 72 hrs post dive and there was no particular pattern to the symptoms except to say shoulder and knee pain predominated.

Overall, all but a single case of DCS occurring on this series responded completely to Standard USN Oxygen Treatment Tables and Procedures. The only exception was Diver 110 who received non-standard treatments after conventional treatments had only provided partial relief.

Final Decompression Model and Tables

WVAL59 using the EL-MK 15/16 DCM-II was the final result of testing. A complete set of Air Tables is presented in Appendix F. The same depth/bottom time combinations in the current USN Air Schedules were used and the limit lines show the division between Standard Air Schedules and Exceptional Exposure Schedules as currently defined (6). The no-decompression limits down to 110 FSW were revised to be close to those already published in the Standard Air Tables (Table 10). This was done in spite of longer limits having proved safe but the reduction was considered prudent in light of the rash of DCS after the first 100 FSW no-decompression dives during Phase 2 . As one moves away from the no-decompression limits, the decompression times get considerably longer than current Standard Air Schedules allow. In trying to compensate for the DCS incidence which occurred on repetitive dives, final bounce dive schedules became longer than some shown to be safe during testing. The $60 / 180$ schedule gained an additional 55 min over the VVAL22 schedule and the $100 / 60$ gained 17 min over the $100 / 70$ Standard Air Schedule.
 amounts of time. The $150 / 60$ picked up 67 min , a 24% increase over the tested VhL22 schedule and the $190 / 40$ picked up 81 min , a 35% increase over the tested VVaL28 schedule.

In computing 0.7 ATA constant PO_{2} schedules, the $100 / 60$ and $150 / 30$ profiles which had proven safe with substantial reduction in decompression time compared to the previously published VVALl8 decompression tables gained back some time but were still shorter than VVALl8 tables. The 150/40 and $150 / 60$ schedules, which had a high DCS incidence gained 32 and 55 min respectively compared to the VVAL29 schedules which were tested. Also, these schedules are longer than VVALl8 schedules. A complete set of 0.7 ATA constant PO_{2} in N_{2} schedule using VVAL59 is given in Appendix G.

When VVAL59 is used to compute constant $1.4 \mathrm{ATA}_{\mathrm{PO}}^{2}$ schedules, the TDT for the $100 / 60$ schedule is $20: 40$ and for the $150 / 60$ 135:20. The 100/60 TDT is the same as the 1.4 ATA profile tested by Vann, but the $150 / 60$ is 30 min longer, a result of compromises made in modifying the decompression model based on test results.

Table 11 shows the expected incidence of DCS for the various aspects of the study. The overall expected incidence on air bounce dives was 7.1%. However, by restricting the maximum depth/time limits to the values shown, the expected incidence falls to 3.2%. In previous testing of the constant 0.7 ATA O_{2} in N_{2} schedules, the final test results showed 393 dives fell within the final model which gave rise to 8 cases of DCS, giving an expected incidence of 3.5%. Based on this comparison, the expected incidence of the tables resulting from these two studies is about the same.

Testing of the current U.S. Navy Standard Air Tables involved 688 man-dives resulting in 47 cases of $\operatorname{DCS}(16,17)$ while the present study involved 837 man-dives and 49 cases of LCS. In numbers these studies are comparable but not in methods. In testing of Standard Air Tables, only a few dives were done on as many schedules as possible including some 47 different repetitive dive profiles. Once profiles were found safe they were generally not retested. In addition, because of a high incidence of DCS some individual decompression tables had to be empirically modified. The intent of the present study was to develop a single computer algorithm which would compute decompression schedules for complex profiles as well as compute a set of cinventional tables. In this regard, testing involved areas perceived to have the highest decompression risk and it is the overall incidence of DCS which becare irfortant, not the incidence on specific tables. In looking at Table \therefore however, the repetitive dives stand out as having the highest incidence of $[C 3$ of al: the groups tested. Even excluding Profile $\# 30$ using VVAL52 and WAL5: which proved safe when lengthened does little to lower the expected incidence. Excluding these profiles drops the expected incidence considerably to 7.2%. However, Profiles 34,35 , and 36 were much longer than Standard Air Schedules and one would expect their DCS incidence to be lower than Standard Air Schedules.

The remarkably low incidence of DCS when 0.7 ATA PO_{2} was breathed during decompression from air dives shows that the EL-MK $15 / 16$ DCM-II sufficiently compensate for changes in PO_{2} level on bounce dives. However, the ability of the model to handle the long multiple level dives remain uncertain because of lack of previous experience in this area. The DCS incidence observed in this study of 4 cases in 38 man-dives is certainly high but the symptoms were all mild. Certainly, more experience in this area is required.

The final VVAL59 Decompression Tables are comparable in TDT to the RNPL Tables for long dives, but have much longer no-decompression times (12). It is interesting that while the RNPL Tables proved very safe in testing, they were rejected by the Royal Navy fleet operators because the no-decompression times were shorter than those known to be safe. Also, decompression times were longer for dives in the current Royal Navy Tables known to be safe or only producing a slight incidence of DCS (18). However, Leitch and Barnard report that the current Royal Navy Tables have an unacceptable risk of about 6% DCS for depths 140 FSW and deeper for durations exceeding 15 min . Certainly the results of the present dive series would indicate that for long shallow dives or deep dives, the current USN Standard Air tables would have an unacceptable incidence of DCS. The EL-MK 15/16 DCM-II does fit current no-decompression limits nicely and does not increase TDT too much within the depth/time domain of most USN air diving. Certainly based on the high incidence of DCS on the $60 / 180,150 / 60$, and $190 / 40$ schedules, one must conclude that the increases in the lengths of the decompression schedules are fully justified and not over-conservative.

In other areas of this study results are less conclusive but indicate that the EL-MK 15/16 DCM-II predictions of shortening decompressions for constant 0.7 ATA PO_{2} in N_{2} dives are reasonable. Indications are that no-decompression times for repetitive dives can be increased compared to current USN procedure but that further testing will be required. However, VVAL59, did shorten repetitive dive no-decompression limits compared to those actually tested so a decreased incidence of DCS would be expected. Certainly, when DCS did occur on repetitive dives in this study it tended to be mild. However, the DCS which occurred in two tenders who were in dry warm chambers and 7 FSW shallower than diver subjects suggests that testing of no-decompression limits in warm water should be done to verify that this will not shorten no-decompression times.

Decompression Model Limitations

The EL-MK 15/16 DCM-II retains many of the characteristics of previous Neo-Haldanian Models. The most obvious is the retention of 9 perfusion limited tissues. However, the assumption of gas phase formation and consequent linear offgassing (vice exponential) is unique. Also, the fact that oxygen is treated the same as all other dissolved gases and contributes to DCS based on its partial pressure is also unique. In developing the EL-MK 15/16 DCM-II the oxygen extraction differences and venous CO_{2} tensions for all tissues were assumed to be the same, this being done for simplicity. There is
no reason to expect, however, that this need remain so and making these values tissue dependent may provide a better fit of the model to the available data. Also, changes in inspired oxygen tension are assumed to be instantaneously reflected in arterial and venous levels, a condition which causes switches to $100 \% \mathrm{O}_{2}$ to cause violations of the ascent criteria in certain instances. The answer to this problem remains to be worked out.

On the positive side, the EL-MK 15/l6 DCM-II does provide a reasonable fit to existing data on tested dives of widely varying PO_{2} levels. The 240 min MPTT's were also adjusted to predict a reason`ble decompression from saturation on air at 60 FSW. The model allows an upward excursion from 60 FSW to 30 FSW and predicts stops of 7 hrs 30 min at $30 \mathrm{FSW}, 10 \mathrm{hrs} 30 \mathrm{~min}$ at 20 FSW and 12 hrs 30 min at 10 FSW for a TDT of 30 hrs 40 min . A total of 9 man-dives were done on this schedule without DCS. Schedules which were previously tested with decompression times less than 30 hours produced DCS, so the 30 hr schedule is not over conservative (19). Overall the EL-MK 15/16 DCM-II remains the most flexible model developed by the USN to date. Although further testing is required in the repetitive dive area this model would probably have a lower overall incidence of DCS than current procedures and would suffice for computing real time decompression schedules for $\mathrm{N}_{2} \mathrm{O}_{2}$ diving for any PO_{2} level.

In examining the air decompression tables in Appendix F, some decompression times are drastically increased compared to current USN Air Tables. This is especially true of the Exceptional Exposure Tables. As an example, the current 60 FSW/720 Exceptional Exposure Air Schedule calls for 266 min of TDT, while the schedule in Appendix F calls for 1496 min . Considering that the saturation decompression schedule discussed above required 1840 min of decompression, 1496 min for a 12 hr bottom time is not unreasonable. The Exceptional Exposure Tables were not formally tested but experience from this study would indicate that the DCS incidence of currently published schedules would be high. Whether or not the increases in TDT predicted by the EL-MK $15 / 16$ DCM-II model outside of the tested depth/time domain are necessary remains to be seen, but the impression from this study is that they are justified.

CONCLUSIONS

1. Tissue oxygen tension plays a contributing factor in the development of DCS and must be taken into account.
2. Current USN Standard Mir No-Decompression Limits are safe.
3. Decompression Times for dives with long bottom times need to be longer than allowed in current USN Standard Air Tables and the percentage increase in decompression time is greater as bottom time increases.
4. When doing no-decompression repetitive diving, some extension of repetitive, some extension of repetitive dive no-decompression times beyond those for USN Standard Air Tables Repetitive dives are possible.
5. The EL-MK $15 / 16$ DCM-II using VVAL59 should undergo further testing and modification on no-decompression repetitive diving.
6. No-decompression limits for air diving should be tested in warm water.
7. The EL-MK 15/16 DCM-II using VVAL59 could be used for real time decompression schedule calculation for air or air/0.7 ATA $0_{2}-\mathrm{N}_{2}$ diving with an acceptable risk of decompression sickness which should be less than using current USN Standard Air Tables.

1 Some dives had bottom times too short for each team member to do a full 6 -min exercise run. In these cases, each team member exercised for one-half of the available bottom time.

2 NEDU Report 1-84 (1) mistakenly reported divers exercising 10 min at 50 watts. In fact, the exercise protocol for the $\mathrm{N}_{2} \mathrm{O}_{2}$ dives (l) was exactly the same as done in this study.

3 See page 166 of West, J.B. Respiration Physiology, Williams and Wilkins, Baltimore, MD, 1974.

4 The oxygen sensors in the MK 15 UBA measure absolute oxygen partial pressure. Since the MK 15 breathing loop rapidly saturates with water vapor the maximum oxygen partial pressure must be $\operatorname{PAMB}-\mathrm{P}_{\mathrm{H}_{2}} \mathrm{O}^{-}$

5 In this report gas tensions are reported in feet of sea water (FSW), atmospheres (ATA), or mmHg which are related as follows:
$1 \mathrm{ATA}=33 \mathrm{FSW}=760 \mathrm{mmHg}$
$633 \mathrm{FSW}=760 \mathrm{mmHg}=1 \mathrm{ATA}$.

REFERENCES

1. Thalmann, E.D. Phase II Testing of Decompression Algorithms for Use in The U.S. Navy Underwater Decompression Computer. U.S. Navy Experimental Diving Unit Report No. 1-84, January 1984.
2. Zumrick, J.L. Manned Evaluation of the Swimmer Life Support System Mark I. U.S. Navy Experimental Diving Unit Report 11-78, February 1978.
3. Paulsen, H.N., R.E. Jarvi Swimmer Life Support System Technical Evaluation. U.S. Navy Experimental Diving Unit Report 14-76, March 1977.
4. Lobell, Donn D. An Invertible Simple Equation for Computation of Blood 0_{2} Dissociation Relations. J. App1. Physiol. Respirat. Environ. Exercise Physiol. 50(5):971-973, 1981.
5. Thalmann, E.D. Source Listings for Computer Programs Used to Compute Air Decompression Tables in NEDU Report 8-85. U.S. Navy Experimental Diving Unit Technical Memorandum TM 86-06, [Enclosure (2)], August, 1986.
6. U.S. Navy Diving Manual, Volume 1, Revision 1, 1985. NAVSEA 0994-LP-001-9010. Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402, Stock No. 008-046-00094-8.
7. Berghage, T.E. and D. Duram. U.S. Navy Air Decompression Schedule Risk Analysis. Naval Medical Research Insitite Report 80-1, January 1980.
8. Thalmann, E.D., I.P. Buckingham and W.H. Spaur. Testing of Decompression Algorithms for Use in The U.S. Navy Underwater Decompression Computer: Phase I. Navy Experimental Diving Unit Report No. 11-80, August 1980.
9. Dwyer, J.V. Calculation of Air Decompression Tables. Navy Experimental Diving Unit Report 4-56, November 1955.
10. Eaton, W.J. and H.V. Hempelman. The Role of Oxygen in the Aetiology of Acute Decompression Sickness. Royal Naval Physiological Laboratory Report 12-73.
11. Vann, R.D. Decompression Theory and Application, In P.B. Bennett and D.H. Elliott Eds. The Physiology and Medicine of Diving, Third Edition. London: Balliere and Tyndall (In U.S., Best Publishing Co., San Pedro, CA) 1982.
12. Beckman, E.L. Recommendation for Improved Air Decompression Schedule for Commercial Air Diving. Sea Grant Technical Report UNIHI-SEAGRANT-TR-76-02. 'NOAA Office of Sea Grant, Dept. of Commerce, Washington, D.C., October 1976.
13. Bell, P.Y., J.R. Harrison, M.A. MacLeod, K.T. Page and M. Summerfield. The Effect of Elevated Inspired Carbon Dioxide Concentration on Some Decompression Parameters in Man. From the Proceedings of the Physiological Society 4-5 January 1985. Journal of Physiology, 362, 9P.
14. Thalmann, E.D. and F.K. Butler. A Procedure for Doing Multiple Level Dives on Air Using Repetitive Groups. Navy Experimental Diving Unit Report 13-83, September 1983.
15. Thalmann, E.D. Development of a Decompression Algorithm for Constant 0.7 ATA Oxygen Partial Pressure in Helium Diving. Navy Experimental Diving Unit Report l-85, April 1985.
16. DesGranges, M. Standard Air Decompression Schedules. Navy Experimental Diving Unit Research Report 5-57, December 1956.
17. DesGranges, M. Repetitive Diving Decompression Tables. Navy Experimental Diving Unit Research Report 6-57, January 1957.
18. Leitch, D.R. and E.E.P. Barnard. Observations on No-Stop and Repetitive Air and Oxygen-Nitrogen Diving. Undersea Biomed. Res. 1982; 9(2):113-129.
19. Thalmann, E.D. Development of a 60 FSW Air Saturation Decompression Schedule. In, Program and Abstracts of the Annual Scientific Meeting of the Undersea Medical Society, May 29 - June 2, 1984. Undersea Biomed. Res. 11(1) Supplement, March 1984.

APPENDIX A

DIVER PHYSICAL CHARACTERISTICS

DIVER PBYSICAL CEARACTERISTICS

DVR	PHASE ${ }^{\text {@ }}$	AGE	HT	WGT		NFOLDS	(mm)	\%FAT
NO.		(YRS)	(IN)	(LBS)	TRI	SS	SI	(NOTE 1)
1	3	31	64	167	9.0	19.0	13.3	20.8
2*	2	23	71	179	7.5	11.0	4.0	10.9
3	3	23	69	162	19.3	8.1	5.8	15.4
4	1	30	68	153	6.0	13.0	3.6	14.5
5*	2	25	73	197	19.0	14.6	10.0	18.6
6	1	23	67	162	11.1	9.5	4.5	12.1
7*	3	24	72	184	4.6	9.6	4.3	8.6
8	0,1	22	70	180	9.6	13.8	3.5	12.9
9	1	30	68	157	14.0	13.5	2.8	17.6
10	2	24	71	173	9.0	9.3	5.3	11.4
11	2	25	70	177	5.0	7.0	3.0	6.2
12	2	21	72	192	9.3	8.0	4.0	10.2
13*	0,1	35	76	195	12.1	9.5	3.5	15.6
14*	2	26	72	186	11.6	11.6	5.3	13.6
15	3	25	72	176	5.0	7.0	3.3	6.5
16	0	28	69	164	11.6	11.6	5.6	13.7
17*	2	23	72	196	11.0	12.3	6.6	14.2
18	0	46	68	155	4.5	7.5	3.0	10.0
19	3	25	70	151	5.0	11.5	3.5	9.5
20	3	20	70	179	8.0	8.1	3.0	9.0
21	0,1	24	72	175	12.5	10.5	5.8	13.7
22	0,1	32	72	200	13.0	16.0	9.0	19.9
23	0	37	69	151	6.1	15.5	10.3	18.1
24 *	0	37	70	170	13.0	13.6	5.6	18.2
25	0,1	24	68	145	3.0	7.0	2.5	4.2
26*	1	27	73	235	22.6	25.6	8.0	21.6
27*	2	21	67	159	4.0	12.8	4.3	10.1
28	0	31	72	172	15.6	9.3	4.3	17.2
29	0,3	33	70	169	12.0	19.3	5.6	19.6
30	3	32	71.	165	6.3	9.0	2.0	11.8
31	0,1,2,3	45	69	162	7.6	12.3	5.3	17.0
32*	0,1,2	30	71	146	10.6	8.8	4.6	15.1
33*	1,3	22	73	205	19.3	15.0	6.0	17.7
34	1	34	67	160	6.6	8.3	4.0	12.7
35	3	23	72	176	4.5	12.0	5.0	10.3
36	3	21	72	190	4.0	10.6	2.3	7.6
37*	0,1,2	27	71	194	10.0	13.3	6.8	14.2
38	0,3	24	72	152	6.0	9.5	3.8	9.1
39	2	20	72	160	5.8	10.1	5.5	10.3
40*	0,1	40	70	185	8.6	14.1	5.3	18.4
41	0	29	67	154	7.3	15.6	5.0	13.4
42*	0,1	27	68	152	12.5	12.8	4.0	13.9
43	1	29	72	208	6.8	19.5	12.3	17.2
44	2	20	71	178	10.3	14.3	5.0	14.0
45	1	28	71	155	5.5	6.8	2.0	5.7
46	2	23	74	185	4.0	7.3	2.0	4.9
47	2	23	72	178	12.3	11.6	3.3	13.1
48	0,1	24	72	162	3.3	8.6	2.8	6.0

DIVER PHYSICAL CEARACTERISTICS (cont.)

$\begin{aligned} & \text { DVR } \\ & \text { NO. } \end{aligned}$	$\text { PHASE }{ }^{@}$	$\begin{aligned} & \text { AGE } \\ & \text { (YRS) } \end{aligned}$	$\begin{aligned} & \text { HT } \\ & \text { (IN) } \end{aligned}$	$\begin{aligned} & \text { WGT } \\ & \text { (LBS) } \end{aligned}$	SKINFOLDS (mm)			$\begin{gathered} \text { \%FAT } \\ \text { (NOTE 1) } \end{gathered}$
					TRI	SS	SI	
49*	2	25	69	183	15.0	11.6	6.6	15.4
50*	0	24	20	196	9.0	8.5	2.8	9.7
51	3	34	72	208	16.6	18.3	10.6	21.8
52	0,1	36	72	189	11.3	10.6	3.8	15.8
53	0	22	69	166	5.0	10.8	3.0	8.8
54	3	25	69	158	5.6	11.6	3.3	9.8
55*	0	25	72	171	22.6	8.0	7.6	17.0
56*	2	29	71	170	6.5	8.5	2.0	7.7
57	0	26	73	204	15.0	16.0	7.5	17.1
58	0,1	29	68	170	11.1	10.8	14.3	16.4
59	3	27	71	192	18.8	18.0	13.1	20.2
60	3	21	72	167	6.1	8.0	3.5	8.1
61	1	23	73	210	8.5	10.1	6.0	11.9
62	1,2	29	75	192	8.8	11.0	3.0	11.0
63	3	34	78	252	14.1	16.0	11.0	20.8
$64 *$	3	32	68	151	7.0	8.0	2.8	12.1
65*	3	37	79	216	8.8	9.8	4.6	14.8
66	2	29	66	177	12.3	12.0	3.0	13.1
67	3	24	70	169	10.8	9.1	2.8	11.0
68*	0,3	23	71	170	14.0	9.6	4.0	13.2
69*	0	23	71	184	7.0	11.0	5.3	11.3
70*	0,1,2,3	37	66	174	12.5	12.6	7.0	18.2
71*	0,3	27	70	183	4.8	10.8	3.1	8.7
72	3	23	69	174	4.6	10.1	4.0	8.7
73*	0,1	35	71	170	16.8	11.8	12.6	20.8
74	0	26	71	177	11.0	11.0	7.3	13.9
75	1	23	70	156	7.0	9.1	3.0	9.0
76	0	31	68	168	14.3	15.3	8.0	19.8
77	0	31	71	175	11.6	18.0	6.3	19.3
78*	3	38	68	197	11.6	17.3	11.1	20.5
79	3	32	73	201	13.8	21.3	9.1	21.5
80	1	31	72	186	17.3	17.0	6.6	20.7
81*	2	20	72	170	10.6	10.3	4.6	12.3
82*	1	35	69	173	9.6	20.0	9.6	20.3
83	3	21	68	175	10.0	8.1	4.1	10.7
84	3	34	68	171	11.3	16.0	9.0	19.4
85	1	23	70	180	5.0	8.6	3.6	7.8
86	3	22	72	162	3.0	6.5	2.3	3.6
87	0	26	68	166	5.3	8.3	2.6	7.1
88	0	33	69	175	8.6	15.6	6.3	17.6
89*	3	27	66	176	9.3	16.0	8.0	15.4
90	3	25	67	137	7.0	7.5	3.3	8.2
91*	3	32	63	183	5.0	15.1	7.0	16.4
92	1	20	71	174	10.3	12.0	4.6	12.9
93	2	22	74	178	6.0	7.0	2.0	6.2
94	1	21	65	155	8.6	11.0	4.3	11.8
95	1	43	73	205	16.0	15.3	9.0	23.5
96	1	37	72	160	4.0	9.3	3.0	11.2

DIVER PHYSICAL CHARACTERISTICS (cont.)

DVR P	PHASE ${ }^{\text {® }}$	AGE	HT	WGT	SKINFOLDS		(mm)	\%FAT
NO.		(YRS)	(IN)	(LBS)	TRI	SS	SI	(NOTE 1)
97	3	27	67	168	13.1	11.3	7.0	14.7
980	0,1,3	32	70	191	8.3	13.0	7.0	16.8
99*	3	20	71	177	8.3	10.5	3.6	10.8
100	3	31	76	216	7.1	12.0	4.0	14.7
101	3	23	72	176	8.5	9.6	6.6	11.9
102*	1,2	24	68	150	4.0	7.6	1.6	4.8
103*	3	24	70	194	9.8	11.8	2.8	11.8
104*	2	24	70	160	9.5	8.1	4.0	10.4
105	2	29	71	179	7.3	7.0	2.0	7.2
106	1.2	39	73	202	6.5	15.5	5.0	16.4
107	1,3	27	71	192	7.8	16.0	11.0	15.9
108	0	24	72	187	11.6	8.0	4.3	11.6
109	0	34	71	198	20.8	22.8	10.6	23.7
110 (F)*	* 0	30	62	126	12.6	11.0	10.8	25.8
111	1	24	67	145	4.1	10.3	1.5	6.9
112	1	26	70	157	6.8	10.0	3.0	9.4
113	2	36	69	185	13.3	10.3	6.6	17.5
114	3	26	68	208	8.6	11.5	10.5	14.4
115*	1,2	32	67	153	4.6	8.0	4.3	11.5
116	0	40	69	185	10.0	15.3	7.3	20.5
117* 0	0,1,2	32	71	207	17.5	28.0	12.3	24.4
118* 1	1,2,3	31	72	175	12.5	16.3	9.3	20.0
119	3	22	69	159	9.3	8.0	5.1	10.8
120	0	21	70	182	7.1	11.6	4.3	11.1
121* 0	0,1,2	22	71	172	4.6	9.5	3.5	8.1
122*	1	29	72	183	5.0	7.5	6.5	8.9
123	0,3	31	74	200	12.6	10.3	6.6	17.3
124	3	26	69	184	6.6	11.6	3.6	10.5
125	1	27	67	156	7.0	9.0	4.3	9.7
1260	0,1,2	38	70	189	17.8	22.0	16.8	24.2

MEANS

ALL	Mean	27.9	20.3	177	13.7
SUBJS.	S.d.	5.8	2.6	19.5	5.0
	N	126	126	126	126
SUBJS. Mean 28.1 20.2 179 WITH S.d. 5.5 3.0 20.5 DCS* N 40 40 40	14.5				

SUBJS.	Mean	27.8	20.3	176	12.9
WITIOUT	s.d.	6.0	2.4	19.1	6.2
DCS	N	86	86	86	86

[^2]Note 1: Body fat percentage computed from rricens (TRI), subscapular (SS). and supra-iliac (SI) skinfolds according to the method of:

Durnin, J.V.G.A. and J. Womersley, Body Fat Assessed from Total Bodv Density and Its Estimation from Skinfold Thickness:
Measurements on 481 Men and Women Aged from 16 to 72 Years. British Journal of Nutrition 32:77-97, 1974.

APPENDIX B
DECOMPRESSION SICKNESS DESCRIPTIONS

TABLE B-1

decompression sickness descriptiuns

Phase IA

TABLE B-1
(CONTINUED)

Tahlei	iver	Date' 84	'Profile!		Tonser Time	
14 Kev !	in.	1 Mod	'FSh/Min!	DCS Type and Location	Post Dive	Comments
1 '		,	1		+	
e	50	9/7	160/180!	(1) R. shoulder pain.	$21 / 2 \mathrm{hrs}$	Complete rellef after one O_{2} period at 60
1		vVAL2 5				FSW, Treatment Table 6.
$1 \quad 1$		1	1		1	
11	55	!	1	(2) Extreme fatigue follow-	13 hrs	Nausea gone after 5 min at 60 FSW . Com-
1		1	$!$	ed by nausea and bilat.!		plete relief after 2 nd O_{2} period. Treat-
1		1	1	lower extremity pares-		ment Table 6 with 1 extension at 60 FSW .
11		1	1	thesias.	,	
1		$!$,		1	
!	70	1	1	(1) R. shoulder pain.	3 hrs	Complete relief upon arrival at 60 FSW .
1		1	1		1	Treatment Table 5.
$1-1$		1	1		!	
1 f 1	71	+ 9/10	+120/60	(1) L. shoulder pain (mild)	10^{\prime} Stop	First noted at depth. Increased over 40
11		'Std.Air	I			min post-dive. Complete rellef upon arri-
$1 \quad 1$!120/70	+		1	val at 60 FSW , Treatment Table 5.
1		1	!		1	
1 ¢ !	73	9/17	$1150 / 40$	(1) R. knee pain.	5 hrs	Reported for treatment 15 hrs post dive.
11		1 WVAL2S			\dagger i	Complete relief after 3 rd O_{2} period at 60
1		,	1		I	1 FSW, Treatment Table 6, with 1 extension
!		1	1		$1+$	1 at 60 FSW .
1		T	I		1 -	-
1 h i	37	! 9/20	1150/40 !	(1) Shoulder pain.	7 hrs	Complete relief on compression to 60 FSW .
11		1 vVAL26	11		1	Treatment Table 5.
1		1	1		1	
1		I	T		I	I
$!$		1	$!$		1	!
1		1	1		I	I
1		1	11		!	1
1		1	11		1	!
1		1	11		,	,
1		1	11		,	,
1		i	1		1	,
1		,	11		,	I
1		1	11		1	1
1		1	11		1	-
1		1	11		!	I
1		1	11		1	,
1		1	1		,	
,		1	11		1 1	!
,		,	$1 \quad 1$		I	!
'		1	1		1	!
1		1	11		1	-
1		1	11		$1 \times$	1
,		1	11		$1 \sim$	$!$
$1 \quad 1$		1	11		1	,
,		1	1		1 -	I
1		1	11		1	1
1		1	1		i	1
1		,	$1 \quad 1$		$1 \times$	$!$
,		1	1 !		1	!
1		1	$1 \cdot$,	1
1		,	$1 \quad 1$		1 -	1
1		1	$1 \quad 1$,	,
1		1	$1 \quad 1$		1 -	,
1		'	11		1 -	1
1		1	1		1 -	,
1		'	1		1 ,	1
,		;	,		1 -	1
'			1		$1 \times$	+
,		,	1		$!$,
*		'	1		$1 \times$,
,		'	,		$1 \times$	1
1		1	1		1 ,	;
,			1		1 ,	'
			'		1	1

TABLE B-2
DECOMPRESSION SICKNESS DESCRIPTIONS
PHASE 1B

Table 14 Key 1	Diver	1 Date ${ }^{1} 84$	$\begin{array}{\|l\|} \hline 4 \mid \text { Profile } \\ \mid \text { FSW/Min } \\ \hline \end{array}$	DCS Type and Location	$\begin{aligned} & \text { Tonset Time } \\ & \text { Post Dive } \end{aligned}$	Comments
1-		1	1			
1	121	$110 / 9$	1190/40	(1) R. knee ache.	3 hrs	Knee ache initially fleeting. Complete
1 \|		IVVAL28		R. shoulder pain.		rellef of knee pain on compression to
1		i	1			60 FSW. 50\% relief shoulder symptoms after ${ }^{\text {d }}$
1		i	1		+	3rd O_{2} period. Treatment Table 6 with 2
11		1	1			extensions at 60 FSW .
11		1	1		1	
1	82	1	1	(1) Ankle pain.	4 hrs	Complete relief after $3 \mathrm{O}_{2}$ periods at 60
11		1	1)	FSW. Treatment Table 6 with 1 extension
I		1	1		!	ar 60 FSW .
1		!	1			
j	118	\| 10/16	120/80	(1) R. knee pain.	7 hrs	Substantial relief upon arrival at 60 FSW .1
1		IVVAL28				Complete relief by 2 nd O_{2} period. Treat-
1 1		1	1		1	ment Table 6. Recurred at 45 FSW during
1		I	I		1	\| ascent, recompressed to 60 FSW , complete
11		1	1		1	\| rellef by 2 nd O_{2} period. Treatment Table 6 \|
11		1	I			\| with 1 extension at 30 FSW .
11		1	1		1	1 l
1	40	1	1	(2)Post-dive fatigue,	40 hrs	Knee pain gone upon arrival at 60 FSW .
11		;	1	Memory lapses, L. knee		Complete relief all symptoms after 3rd O_{2}
1		I	1	pain. Decreased sensa-		period. All neuropsychological tests WNL
1		!	11	tion to pinprick R.		at 60 FSW except for SDMT which improved
11		।	1	temple and R. trunk.		but not WNL. Treatment Table 6 with 2 ex-
1		1	1	Decreased grip strength.		tensions at 60 FSW and 1 extension at 30
11		!	1	Decreased neuropsycho-		FSW.
11		,	1	logical function on		
11		1	i	Trails A, Symbol Digit		1
11		1	$!$	Modality Test (SDMT)	1	
11		1	1	and Wechsler memory		
11		1	1	test.	1	!
11		1	11	(2) Difficulty remembering	96 hrs	Given Treatment Table 6. TTMA and affect
11		1	11	and concentrating. Low		normal after treatment. 48 hrs after this
11		1	$1 \quad 1$	score on Thurston Test	I	treatment still complained of poor con-
11		!	1	of Mental Alertness	!	centration. Subjective improvement after
1		I	1	(TTMA). Flat affect.	1	completion of another Treatment Table 6.
$1{ }^{-}$		I	1		1	
k	122	1 10/18	1120/70	(1) L. knee pain.	10' Stop	Pain first noted at depth but went away.
1		IVVAL28	!	(2) Decreased sensation	2 Min	Recurred 2 min post-dive. Pain 80% gone on
			I	over R . knee.	1 M	arrival at 60 FSW . Complete relief at 30
11		1	1		1	FSW after 1 extension at 60 FSW . Treatment
11		!	!		$!$	Table 6.
1 1		1	i		,	!
11	102	1	$i \quad 1$	(1) L. elbow pain.	16 hrs	Complete relief at 30 FSW during compres-
$!$		1	1		$!$	1 sion. Treatment Table 5.
1		T	T		T	
1	26	- 10/23	120/60	(1) R. shoulder and arm	2.5 hrs	Pain mild at first, increased in intensity
11		IVVAL28	1	pain.	1	over next several hours. Reported for
11			1		1	treatment 5 hrs post-dive. Shoulder pain
11			11		,	gone on arrival at 60 FSW . Arm pain gone
11		1	1		I	! after 3rd O_{2} period. Treatment Table 6
1		1	1		1	1 with l extension at 60 FSW .

TABIER R-3

Pllast?

TABLE B-3
(CONTINUED)

TABLE: B-4

DECOMPRESSION SICKNESS DHSCRIYTIONS

PHASt: 3

(CONTINUEU)
(T) Tencer

Profile number. See Table ?

appendix C
INDIVIDUAL DIVING INTENSITY

TABLE C-1
PHASE IA INDIVIDUAL DIVING INTENSITY

Body of Table Show Profile No. (Table 1; Appendix E)

$\begin{aligned} & \text { Diver } \\ & \text { No. } \\ & \hline \end{aligned}$	August 1984						September 1984							$\begin{array}{\|c} \text { Diver } \\ \text { No. } \\ \hline \end{array}$
	23	24	27	28	30	31	4	6	7	10	13	17	20	
8	8			5		8			8 8	7	11	15	2	8
13			8					5*		7	14	15	2	13
16	8									7	14	2	2	16
18										7				18
21				5		8	16	5	8	7	11	15	2	21
22		16	8		3				8	11	14	2	15	22
23		16		5							14	15		23
24		16*						5		11	14	2		24
25	8			5		8	16		8	7	11	15	2	25
28			5										15	28
29	8					8	16		5	7	11	15		29
31						8	16				14			31
32			5*		3			5			11	15		32
37		16	8		3			5		11	14	2	15*	37
38	8			5			16		8	7	11		2	38
40			8		8									40
41	8			5		8	16		8	7	11	15	2	41
42	8		5					5*		7	14	15	2	42
48	8		5		8		16		5	7	14	15	2	48
50	8		5		8		16		5*	7	14	15	2	50
52	8		5			8				11	14	15	2	52
53	8			5		8	16		8	7	11	15	2	53
55			5		8		16*		5*					55
57				5			16			7				57
58					8								15	58
68			5		8		16*			7	14	15	2	68
69	8		5		8		16*		5	7	14	15	2	69
70	8					8	16		5*	7	14	15	2	70
71		16*	8		3			5*		11*	14	2	15	71
73	8											15*		73
74		16	8		3			5		11	14	2	15	74
76	8									11				76
77		16									11			77
87	8		5		8		16		5	7	14	15	2	87
88		16	8		3		16		5	7		15		88
98							16		5					98
108		16	8		3			5		11	14	2	15	108
109					8				8				2	109
110							16		5*					110
116	8			5									2	116
117	8									11	14			117
120		16	8		3			5		11	14	2	15	120
121	8			5		8	16		8	7	11	15	2	121
123			8									2	2	123
126	8				3		16		8				15	126

@ Did Not Complete Dive

* Decompression Sickness

TABLE C-2

PHASE 1B INDIVIDUAL DIVING INTENSITY
Body of Table Shows Profile No. (Table 1, Appendix E)

Diver No.	3	4	5	9	12		$\begin{aligned} & \text { ber } \\ & 16 \\ & \hline \end{aligned}$	$\begin{array}{r} 984 \\ 18 \\ \hline \end{array}$	19	22	23	25	26	$\begin{gathered} \text { Diver } \\ \text { No. } \end{gathered}$
4		9		17	18		13		1		11		4	4
6		9		17	$18^{@}$		13		1	20		21		6
8	15			17	10	18		12						8
9									1					9
13			9		10							21		13
21	15		9	17	10	1		12		20		21		21
22								12						22
25	15		9	17	10	1		12		20			$4^{\text {a }}$	25
26	$15^{\text {® }}$			19	10	18		4			11^{*}		4	26
31					18					20		21		31
32	15			17	18	1		12						32
33	15			19	10	18		4			11			33
34				17	18									34
37		9		17			13		1	20		21		37
40							13^{*}							40
42		9								20		21		42
43						1		4						43
45		9		17	18		13		1		11		$4^{\text {e }}$	45
48	15			17	10	1		12			11		4	48
52	15			17	10				1	20				52
58	15				10	18		4		20		21		58
61	15			19	10	18		4			11		4	61
62	15			19	10	18		4		20		21		62
70	15		9	17	10		13			20		21		70
73			9							20		21		73
75	15			19	10	18		4						75
80						18		4						80
82				19*										82
85		9		17	18		13		1		11		4	85
92		9		17	18				1	20		21		92
94	$15^{\text {@ }}$		9	$17^{\text {® }}$	$10^{\text {d }}$	1		12			11		4	94
95										20				95
96	15			19	10	18		4			11			96
98						1								98
102	15		9	17	10	1		12*		$20^{\text {® }}$		21		102
106	15									20		21		106
107	15		9	17	10	1		12		20		21		107
111		9		17	10		13		1	20		21		111
112	15			19	10	18		4		20			4	112
115	15				18				1			21		115
117		9								20		21		117
118		9		17	18		13^{*}				11		4	118
121				19^{*}										121
122	15		9	17	10	1		12*		20		21		122
125												21		125
126				19			13							126

[^3]TABLE C-3
PHASE 2 INDIVIDUAL DIVING INTENSITY
Body of Table Shows Profile No. (Tables $1 \& 2$, Appendix E)

Diver No.	November 1984																$\begin{gathered} \text { Diver } \\ \text { No. } \\ \hline \end{gathered}$
2	20		11		22*			36		25		26		30		30	2
5	15		11		22		35*			25		30*@			6		5
10	20		11		22			36		25		26		30		30	10
11	15		11		22		35			25		30			6		11
12	15		11		22		35			25		30			6		12
14		23		22		36			$34^{\text {@* }}$		26		6		6		14
17		23*		22					$34^{\text {® }}$		26		6				17
27	20		11		22			36		25		26		$30^{\text {* }}$		30	27
31												26				30	31
32														30		30	32
37	15		11				35			25		30			6		37
39		23		22		36			34		26		6		6		39
44	20		11		22			36		25		26		30		30	44
46	15		11		22		35			25		30					46
47		23		22		36			34		26		6			30	47
49	15*		11		22		35*			25		30*					49
56	20		11		22			36		25		26		$30 * 0$		30	56
62	15		11		22		35			25		30			6		62
66	15		11		22		35			25		30			6		66
70	20		11		22			36		25		26				30	70
81	$20^{\text {® }}$		11		22			36*		25		26		30*@			81
93	20		11		22			36		25		26		30		30	93
102		23		$22^{\text {® }}$		36			34		26		6			30	102
104	15		11		22		35*			25		30			6*		104
105	15		11		22		35			25		30					105
106														30		30	106
113		23		22		36			34		26		6			30	113
115	20		11		22*			36*		25		26					115
117		$23^{\text {* }}$		22		36			34		26		$6{ }^{\text {@ }}$			30	117
118		23		22		36			34		26		6		6		118
121		23		22		$36^{\text {® }}$			34		26		6			30	121
126																30	126

@ Did Not Complete Dive

* Decompression Sickness

TABLE C-4
PHASE 3 INDIVIDUAL DIVING INTENSITY
Body of Table Shows Profile No. (Tables $1 \& 2$, Appendix E)

$\left\lvert\, \begin{aligned} & \hline \text { Diver } \\ & \text { No. } \end{aligned}\right.$	December 1984									Diver
	10	11	12	13	14	17	18	19	20	
1		28		29		32		37		1
3	29		31		27	37		32		3
7		28^{*}		29		32		37		7
15	29		27		38		33		24	15
19		31		28		32			24	19
20	29		31		27	37		32		20
29		28		29		32		37		29
30		28		29		32		37		30
31							33		24	31
33		28		29		37^{*}			24	33
35		31		28				32		35
36		28		29		32		37		36
38	29		31		27	37		32		38
51		28		29		32		37		51
54	29		27		38		33		24	54
59	29		31		27	37		32		59
60	29		31		27	37		32		60
63		31		28			38		24	63
64	29		27		38*		33		24	64
65	29		31		27	37^{*}				65
67	29		31		27	37		32		67
68	29		27		38		33		24	68
70	29		27		38		33		24	70
71		31		28			38		24	71
72		31		28			38			72
78				28*@			38		24	78
79	29		27		38		33		24	79
83	29		31		27	37		32		83
84	29		27		38				24	84
88		31		28			38		24	88
89		31*			27			37		89
90	29		27		38		33		24	90
91		31*					38		24	91
97		28		29		32		37		97
98										98
99	29*		$31^{\text {® }}$	28		37		32		99
100										100
101	29		27		38		33		24	101
103		31		28			38*			103
107		31		28			38		24	107
114	29		27		38		33		24	114
118 T	29*									118 T
119		28		$21^{\text {® }}$		32		37		119
122 T		31*								122 T
123	29		31		27			32		123
$\underline{124}$		28		29		32		37		124

© Did Not Complete Dive

* Decompression Sickness

T Tender

TARIE OF MAMTMUM FFFMISEIELE TIESU＇F TEREIGME

：VFHL 1：Z－NITROTAET：
TISSUE HALIF－TIMES．

CEFTH		5 ＋1／d	10 MIt	20 MTH	40 MIH	$80 \mathrm{MIJ:}$	1こ！M11：	160114	\therefore Ofrith	4）M11：
		1．（19）SuF．	1．00 SLF．	1．00 ECF	1．Un $\because[i F$	1．00	1．Hu SOF	1．80 EFF	1．！日成吅	1．$\because 1 / \mathrm{F}$
10	F－31	120.000	98.0100	78.0170	5¢，गo u	48.5010	45.500	44，501	44.000	45.509
ar	$F=1$,	$1 \div 6.000$	$10 \leqslant .010$	88．（1）	因， 000	E¢，5r	55.5017	54.505	54.080	5756
S！	F\％	140.0010	118．010	98，01］ 0		6\％，डin	－5．59！	64 En	64 060	¢又 5fir
44	$F \equiv W^{\prime}$	150．400	128.000	108．01） 0	SE． 000	re． 5	「5．500	74.50	74． 000	－5 5
$5 \pm$	Fsh	1F．0．400	130． 10	113．41）	Fe． 900	е¢，S0	¢5 500	Et．5ib	E4 int	$\because 2$
E ！	F＇did		$14 \mathrm{c}, 010$	128．（1） 0	（16．	98，5111	－，5！！	－4．E110	94000	33． 3014
\cdots	$F \equiv 1$.	180．000	15s．000	135．000	116，000	108．54］	105.50	104．5017	104．000	113．5in
A．	$F=W$	130.000	168.000	149．01？	1えら，0！！	118.5	115.500	114.5011	114.0019	113．519
Gu	$F=0$	200． C 110	1 18\％． 010	155．（1） 11	156，白保	129．Eい1	125.564	124． 510		125 ¢0，
10%	F $=4$ ，	210.0100	188.000	153．010	140．1000	138.500	$15 \% 500$	134．560	1 ± 4.900	159．50ii
11 is	Fご高	ここの．609	153．000	175．（1） 0	156，边吅	148．5：\％	145.500	144，5！	14400	147， 51
120	F＇Sd	230.11001	205 （11） 0	188，01）	168．000	153． 5111	$15 \% 5010$	154．5010	15ヶ，！ 100	1¢3．こ！！！
150	F Ful	240,010	218.010	$198.011) 0$	176．000	168．500	165．500	154500	184．009	163，「！0
140	FSu	$\because 513.000$	225.000	203 （11） 0	135， 000	178.56 in	175 540	174，5010	174.060	1－3，500
150	FS ${ }^{1}$	260.010	233．0150	218.0150	176．000	188．5010	185．5ib	184．506	1－4． 510	185，506
180	FSd	270.000	248.000	223．01）	206．900	198，509	195． 500	194．500	154．100	19\％． 5 （1）
170	Fcid	250.0101	258.000	238，（1） 0	216．000	209．509	205.509	204.500	294.400	こ07，501t
130	FSW	290.000	258．000	248．（11） 0	226．000	218，50！	215．500	214．509	$\therefore 1+100$	－1 ，560
100	FSW	Fro．aro	278.000	258．000	230，000	228．5f0	$2 ¢ 5500$	2－4．50\％	ここ4．1000	223.560
201	F5d	310.000	288．000	268．090	246．000	238，500	23E，500	234．500	224，100	－2
210	FS込	ことの，0n0	298．（1） 1	273．000	256，ग00	24－590	二45．500	244.500	244.900	ごT，E（1）
ご心	FSW	3－0，חr	306.0100	2E8， 0190	266，0t0	255，500	255．569	254.509	254，409	$\therefore \because 3.541$
c 31	FSh		318.100	278.000	2FE， 000	26E， 500	205．500	264．503	玉e4，060	
24	FSul	350.010	323 ． 100	308.090	266， 000	ごす．500	275．500	274．500	274． 010	2\％3．500
250		उE0，0no	338,000	318.000	296，000	288，5rio	285，501	2¢4．500	264，1000	263，5f1）
2E！	FSul	F\％o． 100	349.100	328．000	ごヒ，0i0	290，5rio	295，500	294.500	2－4， 100	2735017
ご	F5u	350.000	358.000	338.010	316.000	308．5（1）	305.500	304.500	304.900	303．50n
ご．6	FSW	3－0．010！	3¢8． 100	348 ，（11） 0	326．000	318，507	－15．500	314.500	－14．1000	315．509
守	FSW	40 n .010	378.000	359， 010	336.000	328,500	525，500	324， 500	ここれ，000	こここ，5年い
200	FSW	410.000	388.0100	368，010	$34 \mathrm{E}, 000$	336.500	335.500	334.500	334.900	335.501

ELODE PGRMMETERS
（PRESSUFE IH FSH； 35 FSU＝ 1 ATH）

$1 \mathrm{HO}^{\text {a }}$	FH2O	PVEO2	PV®2	AMEAn2	FEr，i－
1．\％ 0	0.00	2.30	2.00	0.00	a． 0 \％

TJS:こ'F HFIF-TM:C:

\therefore FFib	$\begin{array}{cc} 5 & \text { HIH } \\ \therefore & \because f ; \end{array}$	$\begin{aligned} & 10 \mathrm{MJH} \\ & 7 Z E C \mathrm{~F} \end{aligned}$	$\begin{aligned} & 20 \text { MIH } \\ & .32 S H A \end{aligned}$	$\begin{aligned} & 4 i \quad M P H \\ & -2 \therefore r \end{aligned}$	$\begin{array}{ll} 8 u & \text { M1 } \\ \therefore Z & \because F \end{array}$				$\begin{aligned} & -40 \mathrm{AIm} \\ & -E \mathrm{E}=\mathrm{F} \end{aligned}$
1 litith	1c！	9\％，780	78．760	56.764	4 4，＜t1：	4 ¢，くら号	4こ．26成	44．7Ei	44，269
	1， 5 \％ 50	$10 \% 50$	26．590	¢n．5\％	59， 0	5	E5．0\％0	54.50	5.7 ¢0，
r $+1,1$	140.500	118.500	78．500	76． 519	Eq．日＂	¢ 6 ¢ 017	E5． 10	64.50	－4 900
．1：1＋． 1.1	154．410	12E．4ty	$10 \% .410$	56.410	¢\％ 519	75．${ }^{\text {¢ }}$	－4， 911	74410	－5， 910
$i=\times 1.1$	1－11， 510	136300	$11 \% 300$	\＃6．3Fi	5\％＝－	安它家号	3480	E4， 500	¢5， 0
－－ 4 i	180， 30	143.280	12，玉E0	$1 \mathrm{lt} \times \mathrm{E}$		95.50	94．780	－4， E	93， 70
－－ 1,11	1\％it， 19	158.194	135，190	115．150		1安，ビち	104.65	194．190	159．640
$\therefore \mathrm{B}+\mathrm{ta}$	$3 \square \%$ On	163．060	148.060	$1 c_{6}^{6} .040$	118 560	115.560	114.560	114．860	11350
$\rightarrow 1+81 i$		17\％．960	15\％．960	155， 661	1\％8．400	185．460	124，460	1ご．FE！	1ご 4.40
1．． 5 － 6	$\because 12 \mathrm{~B}$	1ここ．	16\％．824	145 5－5	1ごこご宁		154 ご！		1－3．
1： $1+1$,	こ1； 9	137．6F！	17\％．6\％	15589	$14 \% .170$	145．170	144196	147，67！	1s玉．1才，
$\because \therefore \therefore=\therefore 1$	$\therefore-4-0$	cit．450	185．490	165.470	157.750	15.590	155．590	152.470	152， 9
$13!+8$ ¢	$\cdots \therefore 150$	217．150	197，150	175．150	16T，E\％O	164．8E1	15\％，650	15こ．150	16－2．60
$1+4+24$	2． 3.840	2ごも． $2+0$	206.840	184.340	177．340	174.340	173.340	172．840	172．341
15，F\％d	≤ 5	250.490	216.490	194.490	13\％．930	183．350	152．950	182，43i	181.970
1511 F＝1，	¢ ¢ ，0！		2こe 060	204 リン		1\％\％ 5	172.58	132,400	1 F 1.
1 it $5=4$	$\because \cdots$	2心5． 240	235.240	213.2411	205.740	202．741	201.741	201240	200.740
	26,240	264．${ }^{\text {2 }} 40$	244.240	玉2c． 240	214．74n	211.740	210.740	210,540	206.7410
$1 \% F \%$	2－5－i，		こちご大の可	230.760	22さ． 2 ¢		217.240	± 18.760	\％18．260
	303．030	251.030	2.61 .030	239.030	231．530	226．550	2゙こ．530	22% 030	2こけ，556
$\because: 0 F \%$	520．000	299．000	275.010	256.000	245．509	245.500	244.500	244.000	－4．5，500
$\because F=14$	$355,6 \mathrm{Br}$		2 cs ¢ 110		ご天， 50	ごッ ，500	254． 510		E3，50
	540.000	318.0010	238.010	2\％ 5.000	2－6． 50		264 500	$\therefore \mathrm{ET} 4.000$	263． 500
－ $10 \mathrm{~F}=1 \mathrm{~d}$	5゙．is（1）0	$3=8.000$	50S．010	202．000	ごら，E60	こちら，E00	274．500	2－4．000	275．500
$\therefore \mathrm{F}$	उrit पity	335．0110	ज18．010	¢ 56.000	2E\％，E¢0	くお5，E0y	くら4．500	ごく4， 000	ことて，500
$\therefore \therefore+6$		34\％．000	328.000	306.000	2\％ 5.546	295.500	294．500	294， 000	－ 33.500
$\therefore F=10$	3s？600	35.3000	335.000	316． 000	З18，51，	T05．Sot	304,500	Ti4．090	313,560
$\therefore 1 . F \mid r$	7	36\％． 900	348.0150	3ट6． 0 U0	31：Etur	¢1	514500	ड14，000	\＃1
$\cdots \mathrm{F}$	qlio．onn	378，ono	358.000	356.000	398.510	5 F 5 5 50	324．500	324.001	ここち．500
$\because F \% 1 i$	41リ 100	aes ono	365,010	$34 E .000$	358， 50 ¢	－35，500	354.500	ここ4．000	23．500

BLOR FOFAMFTEFS
\therefore FRESGIIFF IN FSM； 32 FS $!=1$ OTH？
（Hin：FH2O
1.74 fVerg？

P4O：
AMEAR2
FEG：F
亿品
1.87
c．
$2.4 t$

TARLE GF MAYIMMN FFFNTSSTRAE TI :二UF TFH: TMH:
:VAl25-NTTPOGF

TlSBUF HALF-TIAE:

ELOMO FAPAMIFTEF:
(FFESEUEE IH FSH; 32 FSH=1 HTO;

Fr:CP:
7

FH20
200
fiver
PW?
HMFPT?
FEIT: IF
2.4

11 a!

TARIE OF MAYINIM FEFMISSIELE TISSHF TEHSTINC
GVifich－HITEOGFi
TlSSUE HAR．F－TIMES

「－¢！！	¢ M1\％	10 MJH	20 MIN	40114	80 MTH	18！MIN	16．1H14	二itumid	$\therefore 40 \mathrm{MIN}$
	1 －	1．70 S［号	1．55 S［Fi	1．35 E05	1．00 505	デ $\because \mathrm{C}$	64 S［F	$455[P$	335 CF
14.14	$1 \pm 0,760$	98．760	73．760	56.760	49，250	46.200	45.260	44．760	44.250
$\therefore F: 8$	150.590	103，590	82，590	66.50	57.1050	56.090	55.0 ± 0	54.59	54．950
$\bigcirc \mathrm{O}$	14\％．560	118.500	98，500	75．500	6\％．96	ES．000	65.000	24，560	64.000
	150．410	126.410	108．410	96．410	78.910		74.910	74.411	－3， 910
－！Fごこれ	16日．	13 E ． 30	118．360	G6，369	88． 840	85， 860	84.850	34．350	85.860
$\cdots \mathrm{F}$ ¢ F		148． 290	125.290		93．780	95， 780	54.780	94250	二－ 78
－FSu	180， 19	150．190	138， 190	116.19	108.69	105， 60	104， 694	104．190	1示安
Ei FSU	1\％0，060	163． 160	143，060	1安安，リ¢	118.559	115，560	114．560	114，16 9	113．5た！
$\because \because \mathrm{F}=\mathrm{d}$	159．960	177．SE＠	157．Э¢	155．3E0	128．460	125．460	124．460		$1 \div 3.460$
1い号 F	－¢ E ¢	1日大．	167， BFO_{0}	14E，Ex	1む゙，シit	155，5\％	154． 5 c		1
$1145=14$		177， 5	175．590	155．651	145．150	145.150	144．130	147．644	145．150
1－F Ful	くこう．4 4	$207.4 \div 0$	187.490	165．490	157.990	154．950	153．350	152490	152． 90
	c－ 150	217，150	197，150	17E，15！	167．65i	164，E5i	153，ES！	$163 \cdot 15$	16\％－5il
14i．Fsul	349.810	ごご840	206.840	184.840	177．340	174， 340	173，3419		1rこ 340
15 \％F Sid	253.470	236.470	215.490	154.490	18ら．990	123.990	182，970	12.430	181.390
1－4 FEM	cis． 10	246.020	ご6． 120	c） $0 \cdot 1.020$	136.55	155.580	192，500	1\％2， 0 20	1\％1． 5
1F\％5 ¢	2．5．290	2「5．240	255.240	213.240	$20 \% .740$	202.740	201.740	$=01.2+0$	$\therefore 04.740$
180 F ¢ 16	235． 240	254．240	244．240	22こ．240	214.740	211.740	210.740	210.240	こ69．741）
$17 \mathrm{\square}$	－$\ddagger 4.760$	ごご大日	こここ．ア60	230.760	こと3．2ら门	二厶儿，ze0	こ19，\％60	21：．7E゙い	ごも．こらけ
$\therefore 0 \square+5 W$	303.030	281.030	261．030	235．030	231．530	228.550	227．550	2ご，050	
$\because 10 \mathrm{FGH}$	320.000	2\％6， 000	278．000	25\％． 000	248，50n	245.500	244．500	244.000	
celi Fsw	ES0，000	308.0100	C8E， 010	266．000	25\％．501	こらこ，5！0	254． 500	254， 610	$\because \because$ ，E10
－F F W	－40． 000	318.000	258．010	ごら，000	268．541	二心5，500	264．500	こら4．090	203．50
94．1FFin	こち0，¢00	523．010	308.010	25\％．000	2゙®．5！9	2\％ 500	274．500	ご4，000	二小3．500
$\therefore \because$ Fこい	こey．	3ड	318．019	它馬，900	28す． 500	285，500	264．514	ここ4．600	
c－F F \％	ara gino	348．000	328．010	306.000	298．500	255．500	254．500	274.000	二59．500
	ごこ0．0000	35\％， 100	338.0130	31E．000	308.504	305，500	E04，500	304.000	513．500
－Fth		SE8． 100	348.010	326，040	$318.5 \% 4$	515．500	314．500	314.000	513．550
－Fちい	41.0 .40	373．000	358.000	ЗडE， 000	328．5c！	525．500	324．500	ご24．000	$3 こ 5.500$
T！！F F＝，	410,50	383．000	368．010	346,000	338.500		334.500	3 34 ， 00	3ご気吅
－－－－－	－－－－－－	－－－－－－－	－－－－－－－	－－－－－－－					

GLONT Faprmeters
©FEESSUPE IN FEM： 35 FSH： 1 ATA ：
トロー
$\because \cdot 0$

Fuege
pū́
2.50

AMEAOZ
2.46

FEnYF

10.0010

TISSIE HALF-TIMFE

ELOUD PARAMETERS
(PRESSIIFE IN FSU; उJ FSザ=1 AT: ;
F.rr: $\quad \mathrm{FHzC}_{2}$
E. 00

PVECI2
Fwn
2.60

AMEAOC
2.46

FEG':
10.000
table of maximum permissible tissue tensions
(V'FLL29- NITROGEH)
TISSIUE HALF-TIMES

blood papameters
(PRESSURE IN FSU; 33 FSU=1 ATA)

FACSI
PH20
2.00

PVEO2
1.87
puoz
2.80

AMEAOZ
FR日vF
2.46
10.000

\therefore サWALS：WITEUEH
TISSUE HMIF－TJMES

［EFTH		5 MIN	10 MIH	20 MIf	43 MtH	EGMJH	$1 \therefore 0 \mathrm{mIN}$	160 mIN	E09 MIM	\cdots－ 4 Helt
		Fr Erp	． 76 SNP	． 9 e	． 5 ¢	GEEI．F	$\cdots \mathrm{F}$	¢f ¢f\％		9，$\because 1 \cdot \mathrm{~F}$
14	$F \equiv 6$	126，670	114.670	84，6\％	62．670	Et，170	50.5 ¢0	E\％．670	50.420	50.170
29	$F=$ ，	136．6：0	124．670	94，¢？ 0	72．00	S空170	く0． 50	60，$\% 0$	6i）421	$\because 1.170$
す！	FSha	146．670	134．670	104．570		－170	F0 Fio	70.670	70.421	73．1－0
40	$F \leq h$	156．670	144.670	114.670	92.670	気 1\％0	80． 0^{20}	วリ．6？	（1）．42！	－0．170
50		166，6－0	154．670	124.50	102.670	5s． 1 号	$90.9 こ ゙ 1$		90 4ごい	3i1． 1
内i	Fこい	176．670	164.670	174．67	112.670	105．1－10			110．0゙い	18！ 18
70	FSW	186．670	174，670	144． ¢ $_{\text {F }}$		115．150	1；景，于20		111．420	$11!10$
Ei	FSb	176.670	184．6す0	154．	132．	125．1ヶ！	120.520	1くす．心が	1边 4\％	
90	F三！	205.670	194.670	164．「品	142．ET0	135．170	130． 3 ¢	150．5゙品	170．430	17n．tid
109	$F=11$	216.670	204.670	174．678	152， 50	145．170	140.324	145.6	141．4？	141：97
110	F Fid	2 c 5 E 70	214.570	184，670	15\％．0．0	15\％，170	9 ¢ 0，ヨa	159，穴：	154．4\％	
120	Fこい	236．670	224．670	194，6－0	1てこ．E「0	1－c．170	160.720	1セすジロ	160．4 ${ }^{11}$	1－！ 1 ¢ ！！
17 B	FSW	246．670	234．670	204.50	18べら0	1？1\％		170．6\％	1，0．4．1）	1－1．170
140	FSai	256．670	244．670	214，670	192．6ro	185.1%		180 ¢ ¢	180．4c0	$1: 0.19$
150	F5	266．670	254，670	224．6ア0	2！2．Eヶ口	1FE，1F	1二0．40	1\％n，¢0	$190.4=1$	1－6．170
150	FEW	276．670	264.670	234．670	こ12．ET0	20ヶ．1品	200． 000		$\therefore 10.420$	この而，1－19
170	F Stu	286，670	274．670	$2+4.670$	2こ2，-1	二15．1－0	¢10， 21	$\therefore 16$	$=110$	ミ1i 1－1
180	$F 口 \begin{aligned} & \text { F }\end{aligned}$	296．670	284．6r0	26．4．6「行	2ق2．670	2\％5，1－0	こrr．ヲご	こ，二－	$\therefore 1.410$	ごの，1－
130	FSW	306.670	294.670	264．670	ごごビ吅	235．170	ご吅，Эら	$\therefore 30.68$	$\underline{2} 9.4 \%$	ご1．17
¢00	FSU	316.670	304，670	2ア4．E7！		こ4F，170	$\therefore 40.350$	く49，¢\％		¢41．1才
E10	FSU	326．670	314.670	284， 570	ごん，¢フ0	255，1\％	こヶ0．$\because=0$	こ50．67？	＂！，40！	$\because 6.17$
ごす	FSW	336.670	324．670	294.570		$\geq 0^{\circ} \mathrm{O}, 170$	26ti $\because 15$		$\therefore-8.41$	－54．180
こす	FこH	346．670	334.670	304.650	云示，シ0	c $\bar{\square}$		ごが曻	$\therefore 1.4: 1$	$\therefore \because 1-10$
2411	FS！	35心．670	344.670	314.670	2F，可	二ar，1－n	二小け，Эご	－ 6 ¢－ 0	2n0．4：＂	二小，1－8
250	$F \subseteq W$	366．670	354．670	324， 570	302.570	295．100	240．3ご1	230.650	＜ 40.4%	208170
260	FSW	376.670	364.670	334．670	З	三里，1\％0		3010.670	$360.4 \overline{4}$	ज14， 15
－79	FSH	356.670	374.670	344 فフ0	3ご心可	玉1二 170	310 \％ 30		390，4\％u	
250	FGW	396.670	384．670	354．6．70		Tas．1－0		$\geq 20.6 .0$	5i0．420	3． 1.170
290	FSU	4 UE． 670	354.670	354,670	玉42．6－4	SE5，1：4	350.30	ごい，守安	35\％，4\％	35 ¢ 1－0
360	FSW	416.670	404.670	374，670	$35 \mathrm{x} \because \mathrm{G}$	345.180	741． 321	「4＇6ic	341，4？	$3+4.17$

GLODC Fafonmetfeg

CHVO2	2．39	2.39	2.39	2．3F	こ．	2.3	2．39	ご，	$\because 3 \exists$	Oit．
FVET？	1.87	1.67	1．5r	1．87	1．8i	1.6	1.8	1．$\dot{\square}$	1 －\square°	cFst
FEDYF	22．00	20．00	18.00	15．00	10．00	7.10	T．00	7.00	$\bigcirc .013$	¢FSn

TAELE dF MAKIMUM FEFHISJIELE TIS：IUE TENSIDH：S
VWfins－HITFOLSFII

BLODD PAFAMETEF：

（PFEGEURE IN FSH； 33 FSH ATA）

PAC02	（FSU）	PH20＜FSN）	DAAOESVOL \because ）
0		2.00	

CNat	2.39	2.39	2．35	2.39	2.39	2.39	2.39	2.39	2.39	（YOL \because ）
FVにくて	1.87	1.87	1.87	1.87	1．8\％	1.87	1．87	1.87	1．88	（FGH．
FEOUF	22.00	20.00	18．00	11.00	10.00	？．00	7．00	7． 00	7.00	（FSO）

TISSUE HPLF－TIMES

［EETH	EMIH	10 MTH	citatid	41 MIH	Eti HTH	1ご！MItid	15in MIH	＝6す MIt！	ご隹 Mit
	4＇EnF	.50 SいF	． 5 ¢	¢ $\quad \therefore$ cc	3－Eto	72 S0F	rin Sle	$4=\therefore 5$	4155
10 F	120．670	114．67	玉4 ジ̇U	61.40	E5， 170	51.980	E0．670	E0， 400	Ei， 17
ごFFS	15ら．670	124.670	94．だロ	P1．Ero	65.170	61.320	4．0．679	64． 4 Eis	60.170
36FEd	14＋i．670	134.670	104．6．76	81.60	75.170	71.920	7 （i， 670	F1．4i8	70，170
4 4，FSW	156．670	144．6゙ア0	114．E\％		区玉．170	E1．9\％	Bu． Br_{0}	20， 400	玉日．tru
¢if FSli	150．650	154．670	ごす。らす。	101．＊こ0	$\cdots 5.170$	91.900	品 ¢\％号	30.424	919.170
EG F Sis	1\％ヵ．$\%$ \％	164.670	134．6．0	111，¢\％	105．170		10 ¢！¢ ¢		100.170
¢ F ¢	136.670	174．670	144．6．70	121． 60	115，170	$111 . F 20$		119，4c0	110.170
G：FSW	196．670	184.670	154．6\％0	131.50	125， 170	121．320	124．670	1＊ 0.450	120.170
$\because 0$ F w	206．670	194．670	164．670	141.670	135．170	131． 0^{-10}	130，6「或	$1 \div 0.420$	130.170
	216.670	204.670	1ヵ4，が可	15150	145，170	141，きこけ	14！¢90	1410，421	1411．179
$110 \mathrm{~F}=1.1$	2ご，6T0	214.570	184．880	161.80	159，170	1こ1，Эごす	15GEFO	158．420	150.170
1：0FEM	c3e．6\％	224．670	194.80	171．0\％0	165．170	1e1．95リ		184．420	1－1．170
190 FEW	245.670	234．670	204.670	181．6ro	17E．170	171． 120 $^{\text {c }}$	170．6く0	170．42！	1\％ט．170
$140 \mathrm{~F}=\mathrm{W}$	2̇6．6\％0	244.670	214.670	191.670	185，170	121． 320	180．670	150．420	180.170
150Fsht	266．6ア0	254．670	2ご，シア0	201．570	1奖，170	171．720	150 宁品	170．4ej	170．170
IEM FSW	C76．670	264．670	2．4．6．70	211．ET0	己心c， 170	201，気	200．670		200.170
1；F Sa	2E6．670	274．670	244．60	2＜1．Eri	21：1－0	ご1．すご	210.580	こ 110.420	211.170
1＊F Fu	c．te． 6 ¢0	284.670	254.850	2こ1，©示	2c5，170	ご，ヨご号	ここ0．6\％ 0	200.420	220.170
1905%	306.670	$2 \div 4.670$	264，E70	241，670	$23 心 170$	231.320	230．60	250.42 u	250．170
COO F Sid	316.670	304．670	274．670	251．670	245.170	241.720	240.670	$340.4 \mathrm{c}^{\circ}$	240.170
≥ 10 FSM	ごさら，670	314．670	2\％4．67	261．6ア0	25.5190	251， 920	250，6\％0	230．420	250．170
$\therefore 0 \mathrm{FSH}$	336．670	324.670	274，670	2゙1， 60	2¢5．1－0	2－1．920	ごg．E\％	7r0．409	260.170
$236 F=1 i$	34E， 670	334.670	304，合行	281，\％\％	ご或，170	2\％1． 200	二＇G，6－	こro．4ric	$こ \because 6.170$
$z+0$ FSb	3E6．650	344.670	314.670	231.67	2SE， 170	こS1．320	280,670	$\therefore \therefore 0.400$	$=20.170$
二上0 FSM	366.670	354.670	$3 ¢ 4$ 670	301.600	295，170	2＇51．920	2 F 0.6 ¢	－ 01.42%	－91． 170
टebl F5d	376.670	364.670	354．670	311.670	305，170	301.920	S00，670	3100.420	ご10．170
ごO FSH	386.670	374.670	344.690	321.60	315， 170	311．720	F10．Eア0	510.420	310.170
SEC FE，	356．670	364．670	354．6宁0	3ड1．¢00	3こら，170	$3: 1.920$		$\overline{5 c o .4 c} 0$	$3<0.970$
二 +0 F S 4	406.670	344．670	3「4．6\％0	341，E\％0	335， 170	331.920		3.30 .420	350．170
ज0n FE，	416.670	404．670	3¢4． 5 ¢0	351．6：0	二45．170	341．920	こ40．5゙0	ご10．420	340.170

ELOOR FOFAHETEFS

〔FFESSURE IH FSU； 3Ξ FSU ATA）

rovor	2.39	2.39
Fing	1.87	1.87
FEDVF	36.00	36.00

TAELE OF MAXTMIM FEF：ATSEIETE TISSIF TEHETINE
©VVALES－MITFGGE！

TISEUF HALF－TIUES

IEFFTH		5 MJH	10 MIH	20 MIit	40 MIH	E0 MIN	120 MIH	160 MIt	EO0 Mİd	240 MIH
		． 40 SEF	． 50 SOF：	55 SOF	． 96 S［FF	Sts SDF	72 S0F	． 60 SDF	． 45 SOF	． 40 SCF
10	Fsbu	126．670	114.670	77.000	61.170	54.800	51.920	50.670	50.420	50.170
20	FSW	136.670	124.670	87.000	71.170	64.300	61.520	60.670	60.400	E0．170
34		146．670	134.670	97.000	81.170	74．800	71.920	74.670	70.420	70，170
40	Fこい	156，670	144．670	107.000	91.170	84.800	81.720	80.670	80.400	80.170
511	FSW	166．6す）	154．670	117.000	101.150	94.800	51.920	90.670	$\bigcirc 0.420$	90，170
¢	$F=1$	176，67	164．670	127．000	111．170	104．800	101，Э゙¢	fing 6\％	100.420	100.90
70	$F=W$	$16 ¢, 67 \overline{0}$	174.670	137．000	121.170	114.800	111．920	110.670	110.420	110.170
\％ 0	$F \leq W$	196，670	184．670	147.000	131.170	124， 800	121.920	120.670	120.420	120．170
70	Fsh	206.670	194．670	157．000	141.170	134．800	131.920	130，670	130．420	130， 170
100	FSn	216．670	204．670	167．000	151.170	144．800	141.920	140．670	140.420	140．170
118	FSk	2¢6．670	214.670	17\％．000	161，170	154.800	151．320	150，670	150.420	150．1．0
120	$F \cdot 1$	2すか．ETG	224.670	187．000	171．170	164．360	161，Эこす	160.680	164，420	1E！．1安
130	FSb1	246．670	234.670	197．000	181.170	174．960	171．920	170．6\％0	$1 \overline{10.420 ~}$	1Fi． 1 守
140	FSw	256.670	244．670	207.000	191．170	184.800	181.920	180.650	180．420	180．170
150	FSu	ć66．670	254.670	217． 100	201.170	174．800	191.920	190.670	140．420	190.170
160	$F: 50$	2゙6．670	264．670	227．000	211.170	204.800	201.920	200.670	200，4 20	200.170
170	FS ${ }^{\text {S }}$	296.670	274．570	23\％．00\％	221.170	214.800	211.920	210.670	210.450	210.170
130	F5d	2゙5．670	284．570	247．004	231.170	224.800	221， 290	2¢0，670	260,420	220.170
190	FSW	366.670	294．670	257．000	241．170	234． 80	231.920	230.650	230.480	230.170
200	$F S t$	316.670	304,670		251.170	244． 300	241.920	240.670	240.480	240.170
く10	FS F^{1}	326.670	314.670	2す\％，000	261.170	2心4．800	ご1． 520	250，670	2二u． 420	2．50．17
こと0	F5U1	336.670	324.670	287．000	271．170	264.800	こも1．F20	260．6．50	2t．0．420	250．170
236	$F: \%$	346.670	334.670	$2 \% 6.000$	231．170	274．300	271.320	270.670	2；0，42！	2 20．170
2＋4	F5n	3Et，670	344．670	307．000	291.170	254，\％1：	281．920	280，670	200．42！	2こ日，170
ごい	FSul	उEE． 670	354，670	$31 \% .000$	301.170	ご4．300	291.320	290.670	$2 \div 0.420$	290.170
2¢0	FS！	З今E，670	364，670	327．000	311.170	304.300	301.920	300.670	360.420	300.170
こ？	FSu	386．670	374．670	337.000	321.170	514．800	311.920	510．670	$310.4 \overrightarrow{20}$	310.170
ב：$\because 0$	FSW	3.46 .670	364.670	34\％．0n0	331.170	玉こ4．800	321．320	320.670	320.420	320.170
$\because+0$	FSH	406.670	354.670	357， 900	341.170	354,300	331.920	350，670	350.420	330.170
a！	F $=1.1$	416.670	414.670	367.000	351.170	344.500	341.920	540．670	340.420	340.170

BLOOC FMFGMETEFE
〔PFESSUPE IN FSU； 3 I FSG MTA）

ゆ1．
FE1．

2.39	2.39
1.87	1.87
36.00	36.00

2.37
1.57
29.00

2.39	2.39
1.67	1.27
19.00	10.00

2.39
1.57
7.00
$\therefore .39$
1.50
600
2.30
$1.8 i$
7.00
2.39
1.37
7.00

『しL \because ？
©FSIN：

TISEUE HOLF－TIMES

ELGMIT FAEAMFTEFSS
\because FFESSHFE IH：FSH： 3 ：FSH TTA：

rus	2.37	2.37	2．3．	E．3F	2.37	2．ぶ可	こ．54	37	$\therefore 77$	
$F \cdot \mathrm{CB}$	1.87	1．87	1．	1．8；	$1 . \mathrm{Br}$	1.8	1． 2.8	87	－． 3.	－ 20.
Frojp	36.110	36．00	25.00	19.00	10.00	7 ． 10	7．in	－． 10	－，in	F

TARLE GF MBYDMUM FEFMISGIELE TIE日E TEHSIGtS
GVALSS－HITFMGEH
TISSUE HGLF－TIMES

EFTH	5 MIH	10 MIN	20 MIN	40 MIH	EUMIN	$1 E 0$ MIN	160 MIN	ごすOMN	24011 H
	． 40 SiF．	． 50 SUR	，5E SLF	． 9050	． 9 E Sof	． i ECF	． 60 SLR	45 SO	40 56
10 FSW	126．650	114.670	77.0000	61.510	54.800	51.700	50.670	50.420	50.170
20 FEW	136.670	124.670	87.000	71.510	64.809	61.700	60.670	60.420	E1）． 170
30 FSN	146.670	134.670	97．000	81.510	74.800	71.700.	70.670	70.420	710.170
411 Fsid	156.670	144.670	118.000	91.510	84.80	31.700	80.670	E6，420	Bij 170
50 FSO	166．670	154.670	117．000	101.510	94.800	91.700	90.670	50.420	90.170
¢4 FSW	176.670	164.670	127．000	111.510	104，800	101.700	100.680	100.450	100.170
$76 F E W$	166.650	174.670	13\％．000	121.510	114.800	111.700	110.650	110.420	110.170
99 Fsh	176670	184．670	147．000	131.510	124.800	121.700	120．670	120．470	120．170
90 FSh	206.670	194.670	157．000	141.510	134．800	131.700	130.650	130.420	130.170
100 Fsid	216.670	204.670	167.000	151.510	144.800	141.700	140.670	140140	149.170
110 FSW	226．670	214.670	17\％．000	161．510	154．800	151.700	150.670	150．4E0	156， 170
120 FSt	236．670	224．670	185．000	$1 \overline{16} 510$	164.800	161．700	160.670	160.420	160．170
190 FSW	246．670	234．670	197.000	1ה1．510	174.800	171．700	170．6ア0	170.420	176．170
14 F 54	256.670	244.670	207.000	191．510	184.800	181.700	180.670	180.420	180.170
150 FSH	265.670	254．670	217.000	201.510	194.800	191.700	190.670	190.420	190．170
150 FSU	276.670	204.670	225．000	211.514	204.800	201.700	2010．ET0	200.420	200．170
1？0 FSH	286．670	274.670	257.000	221.510	214.800	211.700	210.670	210.420	210.170
150 F	276.670	284．670	247．000	231.510	224．300	221.700	220.670	220.420	220．170
170 FSW	306.670	294.670	25．7．000	241．510	234.300	231.700	230.670	230．420	E30．170
2（1）FSW	316.670	304.670	26．7．00\％	251．510	244．800	241.700	240.670	240.420	2＋0，170
C10 FSW	326.670	314.670	275．000	2E1．510	254，800	251．700	250．630	250.420	250．170
zeO FSW	35\％．6：0	324．670	2\％7．000	－ 21.510	264800	261．700	260．ET0	$2 \mathrm{Es0.420}$	200．170
$\therefore 34$ F5u	$3+6.670$	354.670	237.000	281.510	274．800	271.700	270.670	270.420	$270.1 \% 0$
240 FSu	356.670	344.670	30.7000	291.510	284． 900	281.700	280.670	280.420	2E®．170
250 FSW	366.670	354．670	317.000	301.510	294．800	291.700	290.670	290.420	$2 \because 0,170$
260 FSU	376.670	364.670	325．000	311.510	304.800	301.700	300.670	300.420	300.170
\％0 FSM	366．670	354.650	327．000	321.510	514.800	311.700	310.670	310.420	310.170
20\％F\％	356.670	384.670	347.000	331.510	3¢4．800	321.700	320.670	3＜0．420	320.170
वat FSu	416.670	354．670	357.400	341.510	334.800	331.700	330.670	350.42π	390.170
Sun FSH	416.650	404．650	367.000	351.510	344.800	341.700	340.670	340.420	340.170

ELDND FAFAMETERS
〔FFESGURE IN FSU； $3 \mathbf{3}$ FSH RTA：

$\begin{gathered} \text { FOTO2 } \\ 1.86 \end{gathered}$							
2.39	2．34	2.39	2．33	2.39	2.39	2.39	くVOL \％
1.67	1.87	1.87	1.87	1．87	1.87	1.87	（FSW）
29.00	13.00	10.00	7.00	－． 00	7.00	7． 00	（FSid）

T15SUF HOLH－T1UES

\because CFIM	EMIH	10 MIN	$20 \mathrm{MLi4}$	40 MIt	－11 Mri	120 c 1 lt	160 PMIti	209 MIP	2411．M
	4 it	，E9 Suk	Eこ ーL゙	． $5.51+$	St $\because \mathrm{CH}$	．frestm	＋！－	． 4% \％¢	4 CL
				E1511	－1	51 －		c－－－－	
11% 号	185．670	114.6	$\vec{\square}$	61.511	E4， 4 ¢ 4	51.70	50.670	56.480	E0．170
－1 F F	17大．6可	124．6．0	E\％Mity	71.514	E4．Etin	¢ 1.70	6日，穴0	E11．4 4	6it 170
F：F\％\％	145．670	134．670	95.604	81．510	74.600	71.700	－0．6－0	「0）4ご1	（i） 170
4 F \％i	$15 \in 670$	144．670	167．000	91.510	8.4 S． 80	उ1．	80.670	E0． 4 ¢	E19．170
Eif F－	186，6－4	154．E゙吅	117，新	101.511	E．4 En	$\rightarrow 1.800$	\＃景穴品	$\cdots 4 \dot{4}$	\％11．170
－F F U	170．670	164．ETO	127．000	111.516	101．864	10i，\quad ¢ 60	100．5\％0	1104こ0	110．170
\cdots－F F ！！	16 E ． 60	174．670	137，प\％	181．51i	114．804	111.70			119.170
ai $F=t$	198． 60	134．6すu	147，प6	151．51	1ご，Sun	12.700	1くず大す！	10420	1：1，170
\rightarrow（1）F $\because 1.1$	$\therefore 60.670$	134．ロ゙0	157．006	141．519	134．3014	151．$\overline{8} 00$		159．42u	15is， 17
！！id F\％n	こ1F．6\％ 0	co4．E70	16F．009	151．51和	144．504	1＋1． 710	$140 \div 0$	141140	1415，175
：！！F－，		こ14 它吕	18：9019	181．Et	1 5.4 .514	$9 \square 1.70$	150	15114	1－11，1－0
！－F Eni	こうさ．00	こご，ご㑑	12\％．000	1－1．5il	164． 500	1－1． 500	！¢ E ¢ ¢	180.40	1－8．176
i $=$ a F － H	己車里， 0	$2 こ 4.570$	1% ，	181，510	174： 819	171．	1F日，号保	150，4 20	1：0．170
：40 FE114	256．6F0	244．850	$\overline{207}$ ，000	1－91．$\square_{1} 10$	134．30！	151． F	1：0，－－	180，4家苟	150.170
156 F5日	258，670	25－1．670	ご？以！！	E01．5i！	174． 50	171.70		1－0．400	176．1ヶ¢
15：F Sa：	27e，6？	254．670		211，上！！	coly 00	201.700	こ00，ジ，	\therefore ¢0，4 $=0$	200.170
		ごれ ¢゙す		$\because 1=11$	$\therefore 14.8 \cdots 11$	E11．ru！	ご！－¢！	$\therefore 10.420$	こ11190
1－，F－1．i	235670	264．670	$24 \% .000$	2 z 21．5	204 － 217	$\because 21.500$	ことら，6－	$\therefore=0.420$	$=00.170$
$1 \rightarrow F=1.1$	30reoio	2F4．670	25\％．000	241．514	$\because: 4.301$	－31．700	250．6行	$\therefore 30.40$	234． 9 ¢
	319670	\＃i4．6\％0	2－r，0nio	－1．510	244， 50	$2+1.700$	こ4n． 5 ¢	\therefore＋19，4\％	$2+i, 17 i$
$\therefore 1: F S \pi$	326．670	314.650	27\％．000	261．510	－54．300	251．r00	550．6－0	$\therefore 50400$	玉59．170
－if F\％H		ご乐里：	こと，0¢	二1． 51 it	Sed Sin	如1． Cu	\therefore ¢0． 0 或	こrit 4 ¢	crat 17
－iFF」，	す山ictor	374．6：0		2\％，¢10		$=71.760$	ごす。大ア0	ごい，100	こっ1．1号
	356．6F0	344．580	307.006	29.51 ¢	－84． 00	玉 1．-70	2siociou	$\therefore 517401$	2：$=1$－
$\therefore \mathrm{F}$ 相	的を，6\％0	354，Eiv	こ！ 7 ， 010	301.510	ぐ4． 500	2 F 1.740	290.65	2כ0，420	230170
	アデのだ！	364．5斤0	こご，び四	511.510	304， 500	301.700	300,680	300.420	T01，170
¢，F Fsll	ころ4． 0	374.870	3ア\％．00！	3\％1．E14	314.808	311,700	319.6 － 0	－19．420	510.150
$\therefore 0 \mathrm{~F} 51$ ！	T TE，A O		34. ，6\％	33． 314		3c1． 50	云它如安	F－0．4\％	3－1，－－
－－$\quad F=1.4$	416.6	$334.6 \% 0$		741．5io	334．$\overline{6} 010$	321．700		30，4\％0	320，1－0
\therefore ？ 5 F．i	4 4＊6－0	47960	すer． 0 Ono	351.510	544． 800	241．700	4 4 ¢ ¢ 0	7．40．426	3.10 .150
．．．．．．－	－－	－－－－	－－－－－－－	$------$					－－－－－－－

El InTM FNEAMETEFS
\therefore FFEGGMFE IM FSi：？S FSi，ATA；

1．70 2．0！－1：

Curaz	－ 5.5	2.54	2.74	c． $\mathrm{c}_{\text {a }}$	2． 3.9	2．53	$\therefore 3$	2.33	2.37	¢ ¢ ¢
Frab	1.87	1.97	1．61	1．8．	1．8i	1． Fr	1．8：	1.57	1．70	－F5，
FFrom	36．00	3e．no	29， 90	130	10.911	B．${ }^{\text {a }}$	－ 00	7.90	－． 14	FSt

APPENDIX E

DIVE PROFILE COMPARISONS

TABLE E-1
Dive Profile Comparison: Air Decompression Bounce

Profiles FSW/Min	VVAL	$\begin{array}{r} \text { STOPS (FSW) } \\ 20 \\ \hline \end{array}$	10	Total Decomp. Time (min:sec)
Profile \#1	Std Air	9	47	47:50
	18		229	238:50
	22		135	135:50
50/240	25		97	97:50
	26		135	135:50
	28*		158	158:50
	50	1	157	158:50
	52	1	194	195:50
	53	1	183	184:50
	54	1	183	184:50
	55	3	181	184:50
	56	3	181	184:50
	58	3	181	184:50
	59	3	186	189:50
Profile \#3	Std Air*		14	15:00
	18		69	70:00
	22		38	39:00
60/100	25		28	29:00
	26		22	23:00
	28*		22	23:00
	50		23	24:00
	52		24	25:00
	53		31	32:00
	54		28	29:00
	55		27	28:00
	56		27	28:00
	58		30	31:00
	59		31	32:00
Profile	Std Air		26	27:00
	18		123	124:00
	22		67	68:00
60/120	25		48	49:00
	26		48	49:00
	28*		56	57:00
	50		59	60:00
	52		71	72:00
	53	2	49	52:00
	54	2	49	52:00
	55	2	51	54:00
	56		54	55:00
	58	2	57	56:00
	59	2	56	59:00
				(Continued)

MICROCOPY RESOLUTION TEST CHART
national bureau of standaros-1963-A

TABLE E-1 (Continued)
Dive Profile Comparison: Air Decompression Bounce

Profiles FSW/Min	VVAL	$\begin{array}{r} \hline \text { STOPS (FSW) } \\ 30 \\ \hline \end{array}$	20	10	Total Decomp. Time (min:sec)
Profile \#5	Std Air			56	57:00
	(60/200)*		1	69	71:00
	18		48	205	254:00
	22*		28	124	153:00
	25*		20	90	111:00
60/180	26		20	132	153:00
	28		20	155	176:00
	50		21	154	176:00
	52		21	191	213:00
	53		21	170	192:00
	54		21	170	192:00
	55		24	168	193:00
	56		24	172	197:00
	58		24	172	197:00
	59		24	183	208:00
Profile $\# 6$	Std Air		17	56	74:20
	18	21	69	184	275:20
	22	14	49	112	176:20
80/120	25	10	36	80	127:20
	26	7	37	127	172:20
	28	7	37	149	194:20
	50	3	36	150	195:20
	52	8	38	186	233:20
	53*	13	34	166	214:20
	54*	14	32	168	215:20
	55	11	38	163	213:20
	56	8	41	166	216:20
	58	13	36	168	218:20
	59	14	35	182	232:20
Profile \#8	Std Air*		9	28	38:40
	(100/70)*		17	39	57:40
	18		64	93	158:40
	22*		43	56	100:40
100/60	25*		31	40	72:40
	26		23	35	59:40
	28		23	35	59:40
	50		23	38	62:40
	52		25	43	69:40
	53		34	38	73:40
	54		32	34	67:40
	55	4	20	42	67:40
	56	4	17	45	67:40
	58	4	28	36	69:40
	59	4	30	39	74:40

[^4](Continued)

TABLE E-1 (Continued)
Dive Profile Comparison: Air Decompression Bounce

Profiles FSW/Min	VVAL	$\begin{gathered} \text { STOPS (F } \\ 40 \\ \hline \end{gathered}$		20	10	Total Decomp. Time (min:sec)
Profile \#9 100/90	Std Air		3	23	57	84:40
	18	3	55	70	155	284:40
	22	1	44	49	105	200:40
	25	1	31	35	76	144:40
	26	1	23	33	128	186:40
	28*	1	23	33	151	209:40
	50	1	22	34	150	208:40
	52	1	25	33	188	248:40
	53	4	30	34	163	232:40
	54	4	30	32	165	232:40
	55	4	21	38	164	228:40
	56	1	22	39	167	230:40
	58	4	30	32	170	237:40
	59	4	32	34	179	250:40
Profile \#11	Std Air		2	22	45	71:00
	(120/70)*		9	23	55	89:00
	18		52	69	92	215:00
	22		39	49	63	153:00
120/60	25		28	35	46	111:00
	26		21	26	76	125:00
	28*		21	26	98	147:00
	50		20	26	100	148:00
	52		23	27	121	173:00
	53		31	33	93	159:00
	54		30	32	94	158:00
	55	8	15	23	109	157:00
	56	8	14	21	116	161:00
	58	8	21	33	103	167:00
	59	8	23	34	110	177:00
Profile \#12	Std Air		9	23	55	89:00
	18	22	55	69	141	289:00
	22	17	44	49	99	211:00
120/70	25	12	32	35	71	152:00
	26	9	23	30	124	188:00
	28*	9	23	30	147	211:00
	50	9	23	30	147	211:00
	52	10	26	29	183	250:00
	53	15	30	34	154	235:00
	54	16	30	32	156	236:00
	55	13	21	35	158	229:00
	56	13	18	37	162	232:00
	58	15	29	33	160	239:00
	59	16	31	34	170	253:00

(Continued)
*Profiles Actually Tested.

TABLE E-1 (Continued)
Dive Profile Comparison: Air Decompression Bounce

Profiles FSW/Min	VVAL	STOPS (FSW)					Total Decomp. Time (min: sec)
Profile 非13	Std Air			15	27	63	107:00
	18		42	56	69	196	365:00
	22		35	43	50	135	265:00
120/80	25		25	31	36	97	191:00
	26		18	24	47	155	246:00
	28*		18	24	51	170	265:00
	50		18	23	53	169	265:00
	52		21	25	60	208	316:00
	53		27	31	37	223	320:00
	54		28	30	37	223	320:00
	55	3	18	22	54	210	309:00
	56	3	15	22	56	106	304:00
	58	3	24	29	44	219	321:00
	59	3	26	31	46	220	328:00
Profile \#15	Std Air			5	19	33	59:30
	18		9	28	69	93	201:30
	22		7	22	48	56	135:30
150/40	25		5	15	36	40	98:30
	26*		3	12	26	42	85:30
	28*		3	12	26	53	96:30
	50		3	12	26	57	100:30
	52		4	13	27	68	114:30
	53		4	19	34	42	101:30
	54		4	21	32	43	102:30
	55	2	13	14	15	65	111:30
	56	2	13	14	14	70	115:30
	58	2	13	14	25	62	118:30
	59	2	13	14	29	64	124:30
Profile \#16	Std Air		3	19	26	62	112:30
	18	18	45	55	70	196	383:30
	22*	16	38	43	50	134	283:30
150/60	25	11	28	31	35	97	204:30
	26	8	20	24	46	152	252:30
	28	8	20	24	48	171	273:30
	50	8	20	23	50	168	271:30
	52	9	23	26	57	207	324:30
	53	13	28	30	37	224	334:30
	54	15	28	30	37	226	338:30
	55	813	13	20	59	217	332:30
	56	813	13	17	62	215	330:30
	58	813	18	30	50	224	345:30
	59	$8 \quad 13$	21	31	53	222	350:30

(Continued)

TABLE E-1 (Continued)
Diwe Profile Comparison: Air Decompression Bounce

$\begin{aligned} & \text { Profiles } \\ & \text { FSW/Min } \end{aligned}$	VVAL	STOPS (FSW)							Total Decomp. Time (minisec)
		70	60	50	40	30	20	10	
Profile \#18	Std Air				1	d	19	32	63:10
	18		3	10	11	26	56	92	201:10
	22		3	9	9	20	41	57	142:10
190/30	25		2	6	7	14	30	41	103:10
	26		1	3	5	10	25	43	$90: 10$
	28*		1	3	5	10	25	52	99:10
	50			1	8	10	24	54	100:10
	52			1	10	11	25	65	115:10
	53			1	10	15	34	39	102:10
	54			3	9	19	32	41	107:10
	55			11	13	14	14	69	124:10
	56			11	13	14	14	73	128:10
	58			11	13	14	21	68	130:10
	59			11	13	14	25	70	136:10
Profile \#19	Std Air				8	14	23	55	103:10
	18	3	8	20	23	50	69	170	346:10
	22	3	8	17	20	40	49	113	253:10
190/40	25	2	5	13	14	29	36	77	179:10
	26*	1	3	9	11	23	32	125	207:10
	28*	1	3	9	11	23	32	147	229:10
	50		5	8	10	23	32	147	228:10
	52		6	10	12	25	32	186	274:10
	53		6	10	19	30	34	160	262:10
	54		7	11	23	30	32	164	270:10
	55	6	11	13	13	13	48	178	285:10
	56	6	11	13	13	13	48	183	290:10
	58	6	11	13	13	23	38	187	294:10
	59	6	11	13	13	27	35	202	310:10

[^5]TABLE E-2
Dive Profile Comparison: 0.7 ATA $0_{2}-\mathrm{N}_{2}$ Bounce
Constant 0.7 ATA 0_{2} in N_{2}

Profiles FSW/Min	VVAL	STOPS (FSW)							Total Decomp. Time (min:sec)
Profile \#20	18					7	28	28	64:40
	29*					3	15	27	46:40
	52					4	18	27	50:40
100/60	58					7	20	20	48:40
	59					7	21	22	51:40
Profile \#21	18			1	7	8	17	29	64:30
	29*				3	4	10	15	34:30
	52				1	8	12	18	41:30
150/30	58				9	11	11	16	49:30
	59				9	11	11	19	52:30
Profile \#22	18			7	15	19	28	28	99:30
	29*			3	6	12	15	45	84:30
	52			4	8	14	18	48	94:30
150/40	58		3	11	11	11	17	46	101:30
	59		3	11	11	11	20	48	106:30
Profile \#23	18	4	14	22	28	29	30	75	204:30
	29*	1	7	13	15	14	57	100	209:30
	52	2	8	15	18	18	58	111	232:30
150/60	58	11	11	11	19	20	55	132	261:30
	59	11	11	11	22	21	58	128	264:30

Air \rightarrow Constant $0.7 \mathrm{ATA} \mathrm{PO}_{2}$ in N_{2}

Profile \#24	18					38	39:00
	29					34	35:00
	52					37	38:00
60/120	58				2	28	31:00
	59*				2	30	33:00
Profile \#25	18		2	28	29	47	107:40
	29		1	15	20	75	112:40
	52*		1	18	19	83	122:40
100/90	58		4	20	20	73	118:40
	59		4	22	21	77	125:40
Profile \#26	18		6	15	28	28	79:30
	29		3	8	15	26	54:30
	52*		3	10	18	25	58:30
150/40	58	2	11	11	14	21	61:30
	59	2	11	11	16	22	64:30

[^6]TABLE E-3
Dive Profile Comparison: Air No-Decompression Repets
Body of table shows No-Decompression Time in minutes which includes descent time at $60 \mathrm{FSW} / \mathrm{min}$.

TABLE E－3（Continued）
Dive Profile Comparison：Air No－Decompression Repets
Body of table shows No－Decompression Time in minutes which includes descent time at $60 \mathrm{FSW} / \mathrm{min}$ ．

$\begin{aligned} & \text { Profiles } \\ & \text { FSW/Min } \end{aligned}$	VVAL	1st Excursion TDT非	2nd Excursion TDT非	3rd Excursion TDT非
Profile $\# 30$	Std Air	$\begin{array}{ll} 25 \\ \{30\} @ & 5 \end{array}$	$\{20\}+[26] \text { - } 28$	－－－－－－－－－－－－－－－
	18	29.73	5.81	－－－－－－－－－
	22	30.78	10.84	－－－－－－－－－
100／ND	25	30.78	14.28	－－－－－－－－－
	26	30.78	18.30	－－－－－－－－
$60 \mathrm{Min} \mathrm{S.I}$.	28	30.78	18.30	－－－－－－－－－
	50	30.49	19.02	－－－－－－－－－
100／ND	52＊	30.49	18.23	－－－－－－－－－
	53	29.25	14.99	－－－－－－－－－
	54＊	29.25	15.84	－－－－－－－－－
	55＊	26.50	20.06	－－－－－－－－－
	56	26.50	20.15	－－－－－－－－－－
	58	26.50	17.74	－－－－－－－－－
	59	26.50	18.06	－－－－－－－－－
Profile \＃31	Std Air	25	－1	
		\｛30\}@ 5	$\{20\}+[26] @ 28$	$\{19\}+[38]$ ¢ 39
	18	29.73	5.81	5.81
	22	30.78	10.84	10.84
100／ND	25	30.78	14.28	14.28
	26	30.78	18.30	18.30
$60 \mathrm{Min} \mathrm{S.I}$.	28	30.78	18.30	18.30
	50	30.49	19.02	18.42
100／ND	52	30.49	18.73	15.67
	53	29.25	14.99	14.99
60 Min S．I．	54	29.25	15.84	15.84
	55	26.50	20.06	18.94
100／ND	56	26.50	20.15	18.86
	58＊	26.50	17.74	15.89
	59	26.50	18.06	15.15

（Continued）

Dive Profile Comparison: Air No-Decompression Repets
Body of table shows No-Decompression Time in minutes which includes descent time at $60 \mathrm{FSW} / \mathrm{min}$.

$\begin{aligned} & \text { Profiles } \\ & \text { FSW/Min } \end{aligned}$	VVAL	1st Excur	TDT非	2nd Excursion	TDT ${ }^{\text {\# }}$	
Profile \#32	Std Air	15		\{14 $\}^{0}+[21]{ }^{\text {a }}$	32	
	18	23.34		4.85		
	22	23.92		8.86		
120/ND	25	24.36		11.18		
	26	24.45		14.29		
$60 \mathrm{Min} \mathrm{S.I}$.	28	24.45		14.29		
	50	24.24		14.87		
120/ND	52	24.24		14.65		
	53	23.31		11.72		
	54	23.31		12.39		
	55	20.21		15.04		
	56	20.21		15.04		
	58*	20.21		14.63		
	59	20.21		14.14		
Profile \#33	Std Air			\{1\} $+\stackrel{0}{[14] @} 24$		
		$\{15\}^{\text {e }}$	6			
	18	14.58		6.79		
	22	14.79		7.31		
150/ND	25	15.58		11.04		
	26	16.45		12.66		
95 Min S.I.	28	16.45		12.66		
	50	18.09		11.67		
80/ND	52	16.16		12.58		
	$\begin{aligned} & 53 \\ & 54 \end{aligned}$	16.16		10.34		
		14.42		10.96		
	55	14.42		11.23		
	56	14.42		11.23		
	58*	14.42		11.23		
	59	14.42		11.23		

[^7]\# Total Decompression Time required by Standard Air Schedule.
\& Times in \{ \} are bottom time, times in [] Residual Nitrogen time according to Standard Air Tables (see text).

TABLE E-4
Dive Profile Comparison: Air Decompression Repets

[^8]TABLE E-5
Dive Profile Comparison: Multi-Level Air/Constant 0.7 ATA PO_{2} in N_{2}

Profiles FSW/Min	VVAL	STOPS (FSW)			10	Total Decomp. Time (min:sec)
Profile \#37	Std Air	80/360				280:20
	18				74	75:20
80/60 (Air)	28	Final	Decompression	from	60	61:20
20/180 (0.7 PO_{2})	29		80 FSW		75	76:20
80/50 (Air)	52		after		76	77:20
	58		50 min		60	61:20
	59*				68	69:20
Profile \#38	Std Air	100/360				416:40
	18				11	12:00
80/60 (Air)	28	Fina	Decompression	from	33	34:00
100/120(0.7 P02)	29		60 FSW		48	49:00
100/20 (0.7 P02)	52		after		43	43:00
20/60 (0.7 PO_{2})	58*		40 min		27	27:00
60/40 (Air)	59*				34	34:00

* Profiles Actually Tested.

Note: No decompression stops were required until arrival at 10 FSW during final ascent to the surface.

APPENDIX F

AIR DECOMPRESSION TABLES (VVAL59)
Tables in feet with 10 FSW Stop Depth Increment and in meters with 3 MSW Stop Depth Increments

MPTT Tables are included for reference in FSW and MSW.

『VHLOG－MITROGEN

TISSUE HMLF－TIMES

くご「．．	$\begin{array}{r} 5 M I N \\ +950 F \end{array}$	$\begin{array}{r} 10 \mathrm{MIN} \\ .50 \leqslant 0 R \end{array}$	$\begin{aligned} & 2 i j 1 t i \\ & E 5 E 0 F \end{aligned}$	$\begin{aligned} 4015 N \\ 85306 \end{aligned}$	$\begin{aligned} & 80 \mathrm{MIH} \\ & .7630 \mathrm{~F} \end{aligned}$	$\begin{aligned} & 129 \mathrm{MIN} \\ & \text { ES } \mathrm{SUF} \end{aligned}$		$\begin{aligned} & \therefore 4 \text { M! } \\ & .4=30 F \end{aligned}$	$\begin{aligned} & 24910 \\ & .405 \end{aligned}$
$1 \because \mathrm{FSin}$	126．670	114．E70	アテ， 0 ¢！	$61.5: 0$	54.800	51.750	50.670	50．42？	E9， 170
こ！FSu	15\％．673	124．670	Er． 100	71．519	64.300	51.700.	60．ET0	60，420	¢is， 17 ¢
E\％FEH	146.670	134.670	97.000	81．510	74.800	71.700	70.670	70.420	－0．170
4 F F 51	156．679	144.670	105．000	91.510	84.300	81． 7 良	80.570	E0．42！	B0． 17
Ei FSul	166．670	154.670	117．1000	101．510	94.3010	31.700	90.670	70.420	70．176
¢？FSU	176．670	164．670	127．0010	111.510	104．300	101.700	103，670	110．420	1015
	136．670	174．670	1こ7．000	121．5：4	114．300	111.700	110，¢\％	119.420	119817
3 ¢ F n	19E，670	184.670	147.000	131.510	124.800	121．700	120．570	120.420	120．170
$\because \mathrm{F}=\mathrm{M}$	こ06．670	194．670	157．000	141．51！	134．300	1．31．700	$150,6 \%$	170.420	1 30.15
140＝3\％	218.670	204.650	167．000	151．514	144.800	141.700	140．500	14i． 4 2is	145.170
119 FSH	226．570	214.670	177．000	161．510	154.300	151． F 0	150．670	150．420	150.170
－F Fid	255，670	224．670	157.000	171，510	104． 500	161.700	180．670	1E0，420	$1 \leq 0.170$
！こ～FこW	246．670	234．670	137．000	181．510	174.300	171.700		170.420	170．170
1＋	256．670	244．670	207．000	191．510	184．800	181.700	180,670	180，420	18017%
15 ？F＝ 4	2¢6．570	254．670	217.000	201．510	194.800	191．700	150．670	150， 420	198.170
	2テ6．6゙9	264，676	227．000	211．519	204.800	201.700	200.600	こ00．4こ0	293．170
今心 Fこli	266．670	274．670	257．000	221． 510	214.800	211.70	210．670	－ 10.450	E11．170
1517 F	278.670	284．670	247.000	231．510	224.300	221.700	220.650	≥ 00.450	220．170
1为 FE？	306.670	234．670	257．000	241．510	234.800	231.700	250.670	$=20 .+20$	E30．170
2ia FSil	316.670	304.670	267．000	251． 510	244．300	241.700	240，67！	こ40．4こ！	E40．170
210 F5in	326．670	314.670	277．000	2E1．51！	254．300	251．700	250.670	こE0．4ご1	－51］．170
二二口 F 三ri	35 6.670	324．E70	267．000	こ71．510	± 64.900	2E1．700	二E0．ETO		E¢0．1F0
	$34 \div .670$	354.670	275．000	261．510	ET4．800	271．700	ごロ 0	ご0 4 $=1$	二－0．15\％
$\therefore+0$ Ean	356，670	344.670	507.1000	291.510	$=34.300$	281．700	280．	280．420	280.170
ごせ Fこれ	吠た ¢フ！	354．67！	317 ，409	391.510	3 ± 4.3010	271.700	290.670	29049	290.170
二⿺⿻⿻一㇂㇒丶幺小）F\％	ぶゼ家0	364.670	327.1000	311.510	304．301）	301.700	こ00．850	300＋2i	3130.170
？ P F Ba	可感	374.670	337，100	321.519	314.200	311.710	310.670	310.420	310.170
こ！E＝ain	ご可	384.670	3＋7， 010	351.514	ここ4． 300	321.700	こと！．670		すこ0．t「茄
$\therefore \rightarrow F \mathrm{lai}$	40 Ec ¢ 6	394．670	357．030	341.510	354.300	331.700	こ？0．570	$5 \geq 0.420$	330.170
三小 $F=\cdots$	41 －¢ ¢	404.670	367．000	351．510	344， 500	341.700	3417， 0	34リ．42！	340，170

QLODD FAFAMETECE

：PRESSUPE IN FSW： 33 FSM ATA）

FACO2	（FSW）	FH2O ©FSti	CVOL
1.70		2.00	170

2.39	2.39
1.87	1.87
56.00	36.00

2.37	2.37	2.35	2.35
1.87	1.87	1.87	1.37
29.00	13.00	10.00	7.00

2.39
1.87
7.00
2.37
1.87
8.00

TBLP1 WVAL59 (FEET)

TBLPI VVAL59 (FEET)

21.00 FIMED FE2 IN NITROGEN RATES: DESEENT GO FFM: ASEENT GO FFM

60	100	$0: 50$			31	32:00
60	120	0, 40		2	56	59:00
60	140	0:40		8	108	117:00
60	160	0:40		1.3	152	166:00
60	180	0:40		24	183	208:00
60	200	0:40		36	213	250:00
60	240	0:40		85	313	399:00
60	360	0:30	9	203	E02	815:00
60	430	0:30	57	35.	734	1145:00
60	220	0:30	158	588	749	1496:10

7047 1:10

		0	1:10
		4	5:10
		18	19:10
		30	31:10
	2	38	41:10
	10	38	49:10
	16	59	75:10
	21	91	113:10
	26	120	147:10
	30	146	177:10
	34	172	207:10
1	43	191	236:10
3	50	210	264:10
5	63	226	295:10

TGIFI 分VHEG•FEE：

90	90	1：00			$1 .$.	4.	1\％	1日里：
90	100	1：00			$\therefore 1$	5.4	：	
90	110	1：00			$\therefore 4$	3	\therefore－！	$\because \because \because$
90	120	$0 \cdot 50$		＇	\because	$5:$	\cdots	F1r．ar
－30	130	O：50		5	1	$\underline{2}$	3	5x－${ }^{1}$
100	26	1：40					9	1：4\％
100	50	1：30					i	$\therefore 411$
100	40	1：20				4	$\therefore \therefore$	$38: 4$
100	50	1：20				$1:$	37	Fera
100	E0	1：10			4	210	37	14.11
1010	7	1：10			14	3：－	81	\％i \ddagger
100	Ei	1：10			26	34	13ヶ	1ミ： 11
1010	90	1：00		4	3	54	175	25149
100	100	1：00		$1:$	31	45	20	36540
100	110	1： 10		13	32	$3:$	24°	$37-8$
100	120	1：00		24	51	117	704	
limit	lirie							
100	130	$0: 50$	13	？：	118	$\therefore 0$	－24	102541
100	240	0：50	20	97	10.	$45:$	74	145040
100	360	（1）：40	4.4	159	40%	n5	i43	E6en 40
100	480	0 －40	14.	378	57	ret	14.4	$\cdots 7 \%$－
100	220	0：40	327	489	554	$\underline{6}$	149	235411
110	22	1：50					4	1 ： 50
110	25	1：40					5	¢ 5 ¢
110	30	1：40					15	1セ： 5

TELPI YサHLSS EFEET

130	20	2：00					6	－ 10
130	25	1：50				3	15	－1． 1
130	30	1：50				13	25	4110
130	40	1：40			14	19	$3:$	7a．110
130	50	1：30		10	$1=$	3.4	78	$12+14$
130	60	1：20	4	13	37	34	150	－30：10
130	70	1：20	\exists	2	1	$\overline{4}$	ق̈	¢！：！
150	80	1：20	1 r.	28	51	$\rightarrow \square$	$\therefore 1$	$441: 11$
$\begin{gathered} 1 \text { init } \\ 130 \\ \hline \end{gathered}$	line 30	1111	－	－－	I	14	SE	5－10

140	18	こ：20									\％	$\therefore \mathrm{O}$
140	211	2：10									1.	$1 \therefore \therefore 1$
140	25	$2 \cdot 00$								10	18	玉uct
140	511	1：5010							\because	15	\because	
140	40	1：40							$1:$	\because	36	F－
140	50	1：30					\therefore	$1:$	$\because 9$	\therefore	$: 1 ;$	$\because \square$
140	E．	1：30					$1 \because$	$!$	\bar{z}	4	$1 \% 1$	． 7 \％${ }^{\text {a }}$
1410	70	1：				5	1.	\because	\because	\cdots	－ris	$4 \mathrm{H}^{--}$
140	60	1：20				\square	2	\therefore	$\div 1$	$1 ;$	$\because 49$	－80，
limit	11rif．						－－－					
140	90	120				1 m	\therefore	\therefore	4	1．：	$4 \cdots$	：
140	160	1：19			14	$2 \cdot 4$	\because	\because	$15 \cdot$	\cdots	－デ	$\therefore \square=\therefore$
140	1：0	1－110		11	2マ	ii	$\therefore 3$	14.4	A．$\because 4$		－	1：：¢ ¢
140	240	1：06		1：	37	：-1	124	$\therefore 7$	4 ¢	ATE	－4－	；
146	3 Ba	6：50	9	57	110	$1 \because$	－	19，	「． 5.	－	－4．	91．．．${ }^{\text {a }}$
140	490	0：50	30	76	197	24	4 E	$1 \therefore$	$5 \cdot 4$	$\therefore \square$	－4＂	$\because 4 \%$－
F－8												

TELFI UYमLSS \&FEET ;
21. GO: FISED FGZ IN NITPOGEN RATES: [ESCENT GO FFM: ASCENT 60 FPM

170	30	$2: 10$								12	13	13	38	$83: 511$
170	40	1：50						4	$1 \because$	13	18	34	132	$215: 14$
170	50	1：40					4	12	12	17	31	50	2 c 1	94.519
170	60	1：30				1	11	12	15	28	31	150	ここ	50.50
1iruit	line													－－－－－－
170	70	1：30				6	12	15	20	28	48	1－7	455	$\overrightarrow{7} \overrightarrow{5}$ ：
170	90	$1: 20$			2	11	20	24	26	37	153	274	671	$1220: 50$
170	120	1：20			14	21	22	25	44	144	$\therefore 67$	ミ18	748	$1741: 50$
170	180	1：101		15	20	21	41	103	123	268	478	E\％	743	
170	240	1：00	4	19	30	52	10	117	278	413	55	E．3E	749	25E2：50
170	360	1：00	18	43	91	98	218	300	438	489	557	E®	748	3ESS：
$\underline{170}$	480	1：00	46	85	113	241	311	577	433	487	553	E36	749	$4050: 50$

180	9	3：00							11	5： 010
180	10	$2: 50$							1	4 ： 910
180	15	2 ： 30					1	4	\ddagger	1： 010
180	20	$2: 20$				1	4	1．	20	41 － 19
180	25	$2: 20$				5	14	14	3	ヵ9：118
180	30	2：10			4	15	14	$\therefore \therefore$	41	9＊： 0
180	40	2：00		11	12	13	2 c	55	165	$261: 00$
180	50	1：50	11	12	12	22	31	85	200	4JE：O！
180	60	$1: 40$	11	12	20	29	33	旦	$3 E$	

190	9	3：10				\square	9：111
190	10	3：00				3	0： 19
190	15	2：40		3	4	12	2こ： 10
190	20	$2: 30$	3	6	14	24	$50: 119$

TEIFI VUA！59 ©FEET

190	：：	$=20$								2	3	14	14	37	75：10
19%	30	$2 \cdot 0$								11	13	14	25	70	136：10
190	411	2：10						E	11	15	13	$\therefore 7$	35	208	$310: 19$
S：mit	lime														
041	5	1：\％11					$\overline{7}$	11	12	12	25	51	120	317	541910
120	E9	1.41				5	10	12	11	25	20	52	187	4 ES	797：10
litit	11 rir														
\therefore ail	5	3.20												0	$3: 20$
－ 10	10	3：80											1	4	シャロ
$\bigcirc 0$	15	$2 \cdot 47$									2	4	4	13	20：ciol
$\because 00$	$\therefore 0$	c： 70								\sim	4	8	14	28	$53: 20$
210	2	2 O							1	3	12	14	17	38	68： 20
\％ 10	56	20							5	12	1.	14	29	9.9	
2610	40	c．					1	11	12	12	13	32	50	220	$354: 20$
200	50	1：50				3	11	11	12	15	28	32	150	365	636：20
2 Br	$\therefore 0$	1：411			1	11	10	12	15	Eter	28	86	137	55？	930：20
2100	419	1：30		5	10	12	$\vdots 1$	22	24	38	134	175	5019	748	$1695: 20$
c！！	$1 \because 0$	1：30		14	19	17	2i	23	57	129	154	411	634	747	$2232: 20$
c	1511	1：111	<17	17	19	26	54	107	117	26.	411	554	636	749	こヨアテ：くす
$\therefore \therefore \therefore$	210	1：10	1010	25	36	82	$9 E$	121	28：	$38 i$	$48=$	554	636	749	348ri 20
$\underline{\square}$	$3+0$	10	2 C	37	05	129	247	304	395	433	490	553	636	149	$4171: 20$
11 mat	1．ric														－
＜1 9	\because	इ：$\square^{\text {a }}$												0	$5: 50$
$\therefore 11$	16	$7: 10$											3	4	$10 \cdot 30$
$\therefore 10$	！-	－： 511									4	4	4	16	31.30
$\therefore 11$	＇i	$\therefore 311$							1	4	3	11	15	30	67． 30
． 11		： 30							\because	6	12	13	$\therefore 1$	45	104．30

TBLP $\because \because H L 5 F$ GEET
21.00\% FIXEO FG2 IN NITRGGFN FATES: UEGEENT GO FFM AGGFT EO FFM

$\underline{10}$	30	200			1	9	$1 \bar{c}^{\prime}$	13	14	74	$1 \because 4$	
210	41	$2: 10$		7	11	12	12	18	¥	-	E5:	7
- 216	50	2:00	F		11	12	19	7			413	

220	10	$3: 10$							1	4	4	! $\because 4$
$2 \Sigma 0$	15	2:50					3	$\overline{3}$	4	i	$1-$	\% $\quad .7$
22^{20}	20	$2: 40$				4	Ξ	4	15	$1=$	7.4	$5 \cdot 411$
220	c^{5}	2.30			3	3	:	$1:$	14	5	\because	14.4
220	30	c: 30			4	$1 \ddot{7}$	12	17	17	55	15	$\therefore 4.5 \cdot 4$
cid	41	$2: 10$	\bar{z}	19	11	12	$1:$	2	31	112	303	515.40
50	50	$\therefore 000$		1.	11	1.	2	$\underline{2}$.	E	5	$\operatorname{siz} 4!$
$1 \mathrm{~m}_{1} \mathrm{t}$	10.											

TBLPI VVALSY \&FEET

TELFi YuH! EG FEET

280	10	3:40							2	3	4	4	$\dot{\square}$	20	4.:411
280	15	3:10				2	3	3	3	4	3	$1:$	$1 \div$	$3 \sim$	E8:410
280	20	2:50		1	3	3	3	3	5	11	13	14	34	1Ξ	$215: 411$
280	25	2:40	1	3	2	3	3	9	12	12	15	29	49	219	SEj d 4
280	30	2:40	2	3	3	5	11	11	12	12	24	Se:	13 F	35	55940

280	40	2:40		6	10	10	10	11	11	16	26	33	131		694	1129:40
limit line-																
290	5	4:50													\square	4 4:
290	10	3:50								2	4	3	4	4	$1:$	$35: 5$
290	15	3:10				1	2	4	3	3	4	3	14	20	36	96.5
290	20	3:00			3	3	3	3	3	4	13	13	17	35	147	248:50
290	25	2:50		3	3	2	3	4	11	11	1.3	15	31	73	234	$407: 50$
290	30	2:40	1	3	3	3	8	11	11	12	12	28	35	160	3:	65c: 50
290	40	2:40	3	9	9	10	10	11	11	20	26	41	151	26°	$6 E 5$	1237:50
linit line-																
300	5	5:00													0	$5: 06$
300	10	3:50							2	3	4	3	4	13	28	6-\% : 0
300	15	3:20				2	3	3	4	3	3	6	14	23	37	10500
300	20	3:00		2	3	3	3	3	3	7	12	13	za	35	178	253:00
300	25	2:50	2	3	3	2	3	6	12	11	13	18	32	98	279	487:00
								F-1								

GVVALEF－HITFOMEN

TISSUE HALF－TIMES

DEPTH		5 MIN	10 MIH	2011 H	40 MIN	80 MTH	120 MTV	16日	$\therefore 00111!$	24－M［11
		． 40 SDP	． 50 SOR	． 55 SER	． 965 SF	GE SUR	アと地	E！j［F	4： 3 CL	$41: \because \mathrm{F} \cdot \mathrm{H}$
3	MSW	126.670	114.670	77.000	61.510	54.900	51.700	50，670	50420	5i） 170
6	M -4	136.513	124．513	86．843	71．3E？	C4．E43	61.543	60.513	E020\％	－1．117
9	$\mathrm{M}=1.1$	146．355	134，355	96．6\％5	81．1．5	74．4ん5	71．3ヶ5	7 ¢ 5 5	$70.10 \div$	$\dot{\square} \dot{\square}$
12	MSud	156．173	144.198	10ヶ，523	91．リご	64． 323	81．228	811.17%	77.743	ア－¢－
15	MS61	166.140	154．040	116.37 B	100.850	94．17！	51.47	5i1． 040	89．730	8ち．511
12	MSW	175．893	163.883	126．213	110.723	104.013	100.913	99.883	99.633	77.383
21	MS ${ }^{\text {M }}$	195．725	173．725	156，055	120．5官	119．855	110.755	107.725	109.485	107．2こう
24	MSt	135，5E\％	183.568	145.843	130.41%	123.6 ± 4	1ご号安	11ヶ，5¢	11\％．31j	$11^{\circ} \mathrm{H}$ ，14\％
27	MSd	205.410	193.410	155．74i	$140 . \bar{c}=13$	13.3 .5411	130.440	1こう．41！	127.160	1ご 910
30	MEld	215，25．	203，253	165．537	150，193	143.387	140.203	134．2E？	189．0！？	13＊，757
33	MSU	225．035	213.095	175．425	159．935	153．225	150，125	149．075	143．845	147．595
36	MSul	234．935	222．938	185．268	169．778	163．06C	15.368	156．735	15E．6こ	15\％．43\％
37	MSid	244，780	232，780	135．11！	179．6ご！	1「こ．う1！	18．7．81		1ヶ゙ 5ら！	
42	MSW	254．623	242．623	204．953	189．4sis	182.753	179．653	178．ジ	1\％்．3i3	1ヶ\％ 123
45	MSt	264．465	25．2，465	214．795	199．305．	192．55	18ら．4\％	18\％45E	1： 215	15\％\％¢
48	MSu	274．305	262．308	224．638	209．148	202．436	139.335	138.305	$1 \because 5.0, \%$	1\％7．
51	MSW	284．150	272，150	234.490	218.950	く12．2゙す	＜1\％，18is	こ0： 150	ご5． 70%	こいす。気吅
54	MSld	293.953	281．953	244．3ここ	228，83	22c．$=3$	21% 12う	－1，933	217.743	こ1，．4\％
57	HEW	303.836	291.836	254．155	238．675	231．3F	228．865	227． 235	2．7．529	2ご，355
69	MSW	313.678	301.678	264．008	248．518	¢41．80：	235．708	こう「．6こう	$\because \because .4 \mathrm{c}$	23：178
63	MSH	323．524	311.521	273．65！	25S． 360		24\％，56	これが「品	これす。ごすい	24：日i
bi	MSd	333，363	321.363	283．693	268．203	2E1．473	258．3す5	ミ5．$\vec{\square}$	ご「．11引	こ「ー．3ヵこ
6.9	MSW	343.206	331.206	2 ± 3.536	278．046	271．336	268．256	26i． 2100	266． 55%	26n． 7 （1）
72	MSW	353．048	341.048	303．378	287.888	2お1．175	278．078	27\％．045	ごに，793	ごー 5．75
r 5	MSW	362.891	350.891	313．221	297．751	291．021	287．921	286．81	2ヵも．641	2ミく 3＊
78		372．733	360.733	3ころ．063	307.575	304.863	297．7心玉	ごャ，可ご	$\therefore>6.40$	29ヶ，ごき
81	MSW	382.576	370.576	332.906	317.416	310.705	307.606	306.57	310． 3 －	305 －年
84	M -1.1	392．418	380.418	342．74\％	327.258	320.548	317.448	316.418	－16．183	315．71\％
87	MSW	402.261	390.261	352．591	337． 101	330.351	327．291	ここと，こE1	उこE． 011	こここ．TE1
90	MSW	412.103	400.103	362.433	346.943	340.233	337．133	356.107	E35．85	335.60%

TELFI YUALSG ©METEFE:

TELFI MVMLS 9 METEF:
21.00\% FIXEG FG2 IN NITRUGEN RATES: DESEENT 15 MFM: ASIENT $1 E$ MFM

24 $4111:<1$

TBLFI VYALSG (METEFS)

27	32	1:30			0	1:30
27	40	1:20			13	14:30
27	50	1:10		2	30	33:30
27	60	1:10		13	34	48:30
27	70	1:10		26	37	64:30
27	-10	$1: 40$	5	30	34	110:30
27	90	1:00	13	30	116	160:30
27	100	1:00	20	30	154	205:30

TBLPI YVALS5 (METEFE?

21.00%		FIXEO FGZ			NITROGEN			FATES	: DESCEHT		T 18	MFM	; GSEENT		$\begin{aligned} & 18 \mathrm{MPM} \\ & \text { TGTHI } \end{aligned}$
LEFTH	日TM	TM TD	36.	33	$\begin{gathered} \text { OELOMFFES } \\ \text { STOF } \end{gathered}$			$\begin{aligned} & \text { SSION } \\ & \text { TINE } \end{aligned}$	$\begin{aligned} & \text { STGFE :MSW) } \\ & \text { (MIH: } \end{aligned}$			7		3	
¢MSW	TIM	$\begin{aligned} & \text { FIRST } \\ & \text { STOF } \\ & \text { (M:S } \end{aligned}$						¢				$\begin{array}{r} \text { ACENY } \\ \text { YIME } \\ \text { GM:S } \end{array}$			
					30	27	24		21	13	15		12		
53	69	1: 20										13	36	5	101:50
$\therefore 3$	\checkmark	1:10									3	23	5	114	171:50
3	60	1:10									9	28	30	165	23.30
33	96	1:10									13	27	44	207	2970
33	106	1:00								1	24	23	B1	250	385:50
3 H	20	$\bar{c}: 10$												0	2:00
36	5	1:50												11	13:00
3 E	31	1:411											5	17	24:00
35	411	1:90										5	14	31	$52: 00$
3 E	59	1:20									1	13	25	37	73:00
3 E	E0	1:09									7	19	30	98	156:00
3	7	1: 20									13	27	30	155	227:00
in	80	1:19								2	22	27	42	206	301:00
36	94	1:10								5	25	27	56	259	407:00
\because	160	1:10								15	25	29	120	331	528; 00
3 P	120	1:00							4	23	c 4	59	175	472	257:00
ar	1-17	1:00							20	34	84	15.2	40 E	719	1417:00
3	2411	11:5i						5	37	76	135	320	565	738	1884:00
E	350	\therefore - ¢ ¢						29	97	151	348	525	629	739	2522:00
Ti	4: is	19: 50						80	141	317	456	547	630	739	2918:00
-3E	720	日:90					23	$1 ? 4$	325	435	485	548	629	133	3360:00
30	15	2:10												0	2:10
$2:$	$\because 0$	$\vec{c}: 10$												4	E:10
ic	25	1.50											2	15	$19: 10$

TBIFI VWA！SG METEFS
21．00\％FIAED FO2 IN NITROGEN RATES OEGENT $1 E$ MFM．MEGENT $1 E$ MFH

39	30	1：501				3		7.
35	40	1：40			17	\because	$:=$	α
39	50	1：30		9	13	\therefore	$\therefore \because$	： 1
39	60	1：20	$\bar{\square}$	13	\because	21	17\％	7
39	Fi	1： 20	θ	1%	：－	．${ }^{\prime}$	14	$\therefore-$
37	80		$1=$	$2{ }^{2}$	$\because-$	\because	＇	\cdots
$\begin{gathered} \text { limit } \\ \hline \end{gathered}$	$\begin{gathered} \text { line } \\ =0 \\ \hline \end{gathered}$	1：10	$\therefore 1$	\pm	\therefore		こ：	

42	10	c：20										$\therefore 1$
42	24	$2: 10$									$1: 1$	$12 \ldots$
42	E	$\therefore 000$								$=$	$1-$	－こ！
42	43	1：50							4	1.4	－	
42	40	1：40						\cdots	17	17	\therefore	i
42	50	1：30					4	15	15	711	11.8	1rsar
42	50	1：30					11	15	\because	$\square-$	1－年	＋0．3
42	70	1：co				4	18	$\overline{2}$	2	$r . z$	\therefore	\％ras
42	60	1：$=0$				8	15	2	c．	$1: ?$	3こう	Sこと． 0
limit										－－－		
42	70	1：20				13	\square	24	4.	$16!$	411	－6：
$4{ }^{5}$	120	1：10			11	$\therefore 1$	\because	4.4	13%	CO＝	64	1141．20
42	$18 i$	1．00		9	\bar{c}^{0}	33	7	175	ciin	$5 \cdot 4$	37	1874 ću
42	246	1：100		15	41	74	120	2 r	44.	427	$\therefore 5$	
42^{2}	300	9，¢9	7	4%	99	$1+3$	315	412	54	E31	こざ	
$4 \overline{7}$	48%	IT： 5	z^{5}	\bar{c}	15 t	\cdots	41 ¢	$4=$		二品	3	ふア®－
$-4=$	72	0：50	53	007	O2	20.	4 y	45	Eis	\cdots	\because	204\％

TELF 1 VYHLEG (METEFS)

DE OMFFESSJOW STOFS (MSW) STOF TIAES (MIN.

TOTAL heCENT TIME (M:S)

TE:F1 UWO! E CMETEFS

$54 \quad 15 \quad 2: 40$
$16 \cdot 00$
$5420 \quad 2: 30$
55:00
$54 \quad 25 \quad 2: 20$
$4 \quad 14 \quad 14 \quad 24 \quad 54100$
$5430 \quad 2: 10$
$3 \quad 15 \quad 14 \quad 14 \quad 4 \%$ 天
$5440 \quad 2: 00$
$1012 \quad 13 \quad 15 \quad 30194 \quad \div 4 \cdot 10$
$54 \quad 50 \quad 1: 50$

TELPY VVALSG (METEFS)
21.00\% FIXED FUZ IN NITROGEN RATES: OESEENT 18 MFM; ASCENT 18 MFM

DEPTH	BTM	TM TO				DECOMFFESSIOH STOFS (MSW)										TOTAL
\therefore MS4.	TIM	FIRST					ST	T	CE	MIN						ASCENT
	($\mathrm{N}^{\text {) }}$	STUF														TIME
		(M: ${ }^{\text {\% }}$	37	36	33	30	27	24	21	16	15	12	9	6	3	(M:5)

51	80	1:401					4	10	12	11	17	25	51	163	428	7300:10
lıthit	1 lnf															
bu	ε	3: 20													0	$3: 20$
E!	10	$3: 10$													4	$7: 20$
fil	15	$\therefore: 41$										1	4	4	13	$25: 20$
-. 1	二10	2030									2	3	8	14	20	$50: 20$
8	$\therefore 5$	$\therefore 30$									4	11	14	14	32	78:20
¢-11	30	$\ddot{\sigma}: \underline{0}$								3	12	13	14	20	87	152:20
en	40	2:10							11	12	12	13	21	49	205	326:20
\% 0	40	1:50					2	11	11	11	13	21	36	135	345	$551: 20$
F.6	50	1:50					11	10	12	11	20	25	79	175	516	862:20
-i	98	1:30			4	10	10	17	20	21	44	111	173	459	739	1611:20
tor	1 c.9	1:30			11	17	17	19	24	48	120	154	386	610	739	$2150: 20$
fir	16	1:111	1	15	15	16	35	44	99	i 11	258	393	548	630	ア38	2904 : 20
-i	$2+10$	$1 \cdot 10$	8	14	27	56	70	93	131	274	36.9	485	548	629	739	$3425: 20$
- E®	$3-4$	1:10				89	131	246	295	394	434	485	548	629	737	4114:20
$\begin{gathered} 110.3 t \\ 0.9 \end{gathered}$	$11 r i 6$	\cdots														
	7	$3: 30$													0	$3: 30$
13	10	3:111												$\overline{2}$	4	$9: 30$
r. 3	15	2:5i										3	4	4	15	29:30
8	20	$2: 30$								1	3	4	10	14	23	53:30
03	3	2030								3	5	12	14	14	43	94:30
03	311	20							1	8	12	13	13	24	115	189:30
8	40	$2: 10$						6	11	12	12	13	25	74	228	384:30
e 3	51	E:00					9	10	11	12	12	25	45	158	376	682:30
ifmat	1116							---								\cdots
	,	$3: 40$													0	3:40

TREFI धVAIGE AMETEFE
21．00\％FIKED FU2 IN NITROEEN FATES：OESEENT 18 MFH：ASCEHT $1 E$ MFM

DEPTH ETM TM TO ©MSII ：TIM FIRST （N）STOF

78	$1!$	－ 311								4	4	4	1 rab
7	$1=$	－ 110					3	$\bar{\square}$	4	4	$1 i$	15	$45: 60$
Fic	\dot{c}	$\therefore 10$			1	F	4	7	B	1.7	1.4	30	E0．00
\therefore	\therefore	c．111			3	4	4	1%	1	14	\cdots	119	10： 010
\therefore	ご1	$\therefore \square$		1	4	7	11	12	13	$1 \bar{i}$	4	163	
\therefore	411	$\therefore こ ゙$	3	10	11	11	11	1：	$\therefore 1$	$4=$	1.12	－－ 4	H4F． 10
\leq	\cdots	E1：	10	10	11	11	11	2	2	$\because \pm$	＂	F1	14.96

TBLFI WVATS ©METEFS：
$21.00 \because$ FIWEO FQS IN NITROGEH
RATES：LESCENT 18 MFM：ACIEHT 18 MPH

VFFTH	ETM	THT日						［ELDMFFESS］ON STDFS（HSA）												Ti．THL
1.118	TIH	F95\％							STO	T	E S	MI								H CCENT
	1 F ，	三 Ti．F																		TIFE゙
		（M，${ }^{\text {c }}$	51	48	45	42	39	36	3.3	30	27	24	21	18	15	12	\exists	E	3	CM13．

TBLF1 WMBLSF（METEFG）
21．00\％FIXED FOS IN NITROCEN
PATES：DESCENT IE MFM；GSEENT 18 MFM

CEFTH ：MC．！	ETH TIM	TM TM FIPST								STMF	ESSI	OH：	TOF: MH	$\langle M=$								
																						1 1 \％
		（N：S）	57	54	51	43	45	42	39	36	33	30	27	24	21	13	15	12	9	6	ज	14： 5 ）
－31	40	2：30								1	9	10	10	10	11	12	17	31	92	186	554	44？
$\begin{gathered} 11 n i t \\ 34 \end{gathered}$	$\begin{gathered} 1!\text { ne } \\ 5 \end{gathered}$	4：40																			II	4：412
34	10	3：50															4	3	4	4	\bar{j}	27：4ir
94	15	$3: 10$											1	3	3	4	3	4	10	14	70	Fe．an
54	20	2：50									1	2	3	3	$\overline{3}$	4	9	17	14	24	111	130：40
94	25	2：50									3	3	3	3	8	11	12	13	29	45	175	こごア 4
84	30	$2: 40$								2	2	3	5	11	11	12	12	15	33	119	31°	$5.45: 411$
84	40	2：40								6	9	10	10	10	12	11	213	40	109	211	biz	1455：40
$\begin{gathered} \text { linit } \\ \text { E? } \end{gathered}$	$\begin{gathered} \text { line } \\ 5 \end{gathered}$	4：50																			0	--5 $4-50$
87	10	3：50														2	3	4	4	3	11	315
－	$1 \equiv$	3：24											3	3	3	5	4	4	$1:$	14	\pm	EE： 0
87	21	3：00									2	3	3	3	． 3	4	12	13	13	27	135	215：50
87	2 º	2：50								$\overline{2}$	3	3	3	3	10	12	12	15	22	$\therefore 4$	2こ1	
$8 i$	30	2：40							1	3	2	3	a	11	11	12	12	18	41	137	353	$8.21: 50$
37	40	2140							3	8	9	10	10	11	11.	11	23	42	127	254	652	1101：50
$\begin{gathered} \text { linit } \\ 9(i \end{gathered}$	$\begin{gathered} \text { line. } \\ 5 \end{gathered}$	5：00																			4	$5: 90$
90	10	4：00														3	4	3	4	4	12	$35: 90$
40	15	3：20										2	3	3	3	3	4	5	13	17	40	98：00
90	≥ 0	3：00								z	2	3	3	3	3	\bar{i}	12	12	15	31	154	
915	－ 5	2：50							2	c	3	3	3	5	11	12	12	13	25	88	$25 \therefore$	436：000
30	30	2：50							3	3	2	4	10	11	11	11	13	20	49	155	355	672：00
30	40	2：40						2	5	9	9	10	10	11	11	14	23	57	145	295	$66:$	13ロ3：0n
50	60	2：10			1	7	8	8	9	7	9	10	12	18	27	47	107	145	366	59	737	2124：00
$\ddagger 0$	915	1：50	3	7	7	7	ε	9	9	14	16	16	35	42	100	107	244	386	547	630	739	$2735: 10$

TBLFI
thele of maximum pefilssigle tissur tenstona
（VVALES－NITFOGEN
TISSIJE Hol．f－times

［EFPTH		5 MIN	10 HIH	20 MIH	40 NIN	30 MIH	120 MIN	160 MIN	200 MJH	240 MIN
		． 40 S0F	． 50 S0F	． 55 S0F	． $5 \pm 5 \mathrm{LF}$	． 9650 F	． GB SUN	． 60 SDF	． 95 SuF	40 jur
10	FSU	126．670	114.670	27．000	61.510	54.800	51.700	50.670	50.420	50.170
20	FSW	156.670	124.670	87． 010	71.510	64．800	61.700	60．6ア0	$60.42^{\circ} 15$	60.170
30	FSd	146.670	134.670	97.000	81．510	74.300	81.700	T0．ero	70.4211	70.170
40	FEH	156.670	144.670	107.010	91．E10	84.800	81.700	g0，era	80.420	ci） 170
50	FSU	166．670	154．670	117．00！	101.510	94.800	91.700	$90 . \cos 0$	70.420	90.170
¢0	FSid	176．650	164．650	127．000	111.510	104．800	101．700	100．E50	110.420	100．170
70	FEin	136．670	174.670	137．000	121.510	114.800	111.700	110.670	110.450	110.170
30	FSH	176.670	184.670	147．000	131.510	124.800	121．700	120.670	120.420	120．170
5	FSい	200．670	194.670	157．000	141.510	134．800	131.700	150.650	120.480	15.170
106	Fsw	216.670	214.670	16\％．000	151.510	144.800	141．700	141．850	1411.420	144．170
110	F®\＃	226.670	214.670	177.000	161.510	154.800	151.700	150．670	150．420	150．170
120	FSh	236.670	224.670	187.000	171.510	164.800	161．700	160．670	160.420	160.170
1.30	Fsu	246.670	234.670	197．000	181.510	174．800	171．700	170.680	170.420	170.170
140	FSU	256．670	244.670	205.000	191.510	184．800	181.700	150．670	100．4：0	160．170
150	$\mathrm{F}=4$	265.670	254．670	217．000	201.510	194.600	191.700	190.680	190．42！	190.170
180	FSW	276．6．0	264.670	227.000	211.510	204.800	201.700	cub，ero	200．420	200.170
170	Fsin	286.650	274.674	235．000	221.510	214.800	211.700	210．6－0	$210.45^{\circ} \mathrm{j}$	219．170
134	FSW	276.670	284.670	247.000	231.510	2et． 800	221.700	220，¢－0	220.420	220.170
130	FSid	360.670	c94．670	25．7．000	241.510	234.800	231.700	250．60	2\％0．420	230.170
c 0_{1}	FSW	316.670	304，670	26．9．000	251．519	244.8010	241.700	240.670	240．420	241．170
210	Fsod	326.670	314.670	277.000	261.510	554．860	251.700	259．5－0	250.420	259， 170
2¢！	FS	336．670	324.670	2ar． 080	271．510	2\％4．8010	2e1． 700	2encera	2 ta .42 u	2ra．170
230	$F S W$	346.670	334.670	297．000	281.510	274.800	251．700	276.670	270.420	270.170
240	FSい	356.670	344．670	307.000	231.510	284．300	281.700	200.670	280.420	280.170
250	Fsid	366.670	354.670	317.000	301.510	294．300	291.700	290.670	290.420	250．170
こ¢0	FSH	376.670	364.670	325．000	311.510	304.800	301.700	300，ero	$300.4 \div 0$	300.170
270	FSth	366.676	3r4．E70	35．．000	3 Sc 1.510	314.800	311.700	310.650	310.420	310.180
－0	FSIM	35E．670	364.670	$3+7.000$	331.510	$3 \% 4.3010$	321.700	320.650	320．420	320.170
¢90	$F \leq W$	416．670	354.670	35．7．000	341.510	354.800	331.700	350.650	350.420	330.170
\bigcirc	F：M	416.670	404.670	365．010	351， 510	344.80	341.700	940， 00	340．420	3410.170

BLODC FAFAMETEFS
\therefore PFESGUPE IN FSU； \bar{S} F FSM ATA，

$\begin{aligned} & \text { FATGZ iF } \\ & 1.70 \end{aligned}$.170						
2.35	2.35	2.39	2.35	2.39	2.35	2．39	（vüt \％）
1.87	1．8\％	1.87	1.87	1.87	1．87	1．57	（FSL）
29．10	13．190	10.00	7.00	7.00	$\therefore 00$	7.00	（FSW）

Envos	2.39	2．39	2.35	2.35	2.39	2.35	2.39	2.35	2．39	（Vül \％）
F Fras：	1.87	1.87	1.87	1．8》	1.87	1.87	1.87	1.87	1.57	（FSI．，
FF：IUF	36， 06	36.0	29.10	13．00	10.00	7.00	7.00	$\therefore 00$	7.00	（FSい）

TELF 1 WMLSS \&FEET

70 ATA FIMEE PGZ IN NTTRGTEF FATES: DESEFNT EO FF:G ASCENT EA FE:

TELF！YVALS（FEET ）
FO ATA FISFG FOE IN NITPOCEN RATES：DESEENT GO FFM：ASCENT GO FFM

300 0：40
$107107: 50$
5036010
115 115：50
E0 5T0 0：40
123 123：50
E． 11000040
131 131：50
$50 \quad 30 \quad 0: 40$
139 139：50
60 70 1：00
$0 \quad 1: 00$

$5 \quad 6: 00$
$00900: 50$
E．i $100 \quad 0: 50$
$8 \quad 9: 00$

11 12：00
セ0 110 0：50
14 15：00
$60120 \quad 0: 50$
19 20：00
E11 $130 \quad 0: 50$
24 25：00
6ri 140 8：50
35 36：00
60 150 0：50
$50160 \quad 0: 40$
ní 170 0；40
$60 \quad 180 \quad 0: 40$
$60 \quad 190 \quad 0: 40$
6 78 85：00
60 200 $0: 40$
ジ ごロ 0：40
$602200: 40$
$602300: 40$
E0 $240 \quad 0: 40$

	46	$47: 00$
1	55	$57: 00$
2	64	$67: 00$
3	72	$75: 00$
6	78	$85: 00$
9	83	$93: 00$

$1288101: 00$
$1496 \quad 111: 00$
$16 \quad 104 \quad 121: 00$
20116 137：00

PO ATA FIXED PGE IN NITEDIEN RATEE：DEERENT GO FFN．AGENT EA FFA QFPTH
GFSW：

OEC OMFFESSION STOFE AFGH：
 TOTMI

 CFSW：TIM FIRET STOF TINES（MIHHECENT （ni） 5 TOF

$60250: 40$

$$
25 \quad 12 \overline{25} \quad 15 \cdot 06
$$

EO 260 0：40 $32137 \quad 170: 10$
$00 \quad 270 \quad 0: 40$
36 146 185：00
$60 \quad 280 \quad 0: 40$

$$
43 \text { 15e z0ण:00 }
$$

$4 \approx 16421306$
$603000: 40$

$603100: 40$
$56182 \quad 2900$
$60 \quad 320 \quad 0: 40$
Et 19225400
$603300: 40$
6420426900
E0 340 0：40

$60350 \quad 0: 40$
31220300100
$60360 \quad 0: 40$
$75239315: 00$
$603700: 40$
ア5 250 3この：00
60 350 0：40
3425834000
$60 \quad 390 \quad 0: 40$
$89266 \quad 350: 110$
$70 \quad 49 \quad 1: 10$
$0 \quad 1: 10$
$70 \quad 50 \quad 1: 00$

0	$1: 10$
1	$2: 10$
\exists	$10: 10$

$70 \quad 70 \quad 1: 00$

15	$16: 10$
21	$22: 10$
4	21
8	$20: 10$
	$32: 10$

$701000: 50$
1136 4末：10
$70 \quad 110 \quad 0: 50$
$144964: 10$

TBLFI WVMLSG \＆FEET
－O ATH FIKEU FOE IN MITRUGEN RATES：DESCEHT EO FFM；ASCEHT EO FFM

［EPTH	ETM	TM TU				CECOM	FF	S10	$5 T$	S	Sid				TOTAL．
＜FSW	TIM	FIRET					TF	TITAE	（	W：					AECEHT
	¢	STGF													TIME
		－M ：$: ~=~$	120	110	100	90	80	70	60	50	40	30	20	10	（MS）

71	13	0：50		16	61	78：10
Pi	1すい	U：¢ ¢		18	73	92：10
70	150	19：00		22	82	105：10
79		11：50		27	89	117：10
70	15	11：40	1	31	97	130：10
limit	11 tie					
「11	134	$4: 40$	\bar{z}	38	167	148： 10
70	190	i1：40	2	48	122	173：10
70	200	6：40	3	57	136	197：10
70	210	0：40	5	65	149	220：10
76	2 E	$0: 40$	5	71	162	242：10
79	230	$0 \cdot 40$	11	76	175	263：10
70	240	0：40	1.3	82	186	282：10
$i 1$	250	$0: 40$	15	88	201	305：10
75	200	0： 40	18	92	219	330：10
51	20	10：40	cil	96	235	352：10
－ 0	260	0：40	23	100	251	375：10
$\therefore 1$	290	0：40	29	104	264	398：10
76	300	0：40	34	107	277	421：10
79	519	4：49	$4!$	116	286	443：10
i	3%	11：419	45	126	29%	454：10
76	370	19：40	49	137	297	484：10
7%	340	0：40	54	146	303	504：10
－-0	350	11：40	58	150	308	523：10
E\｜	5	1： 20			0	1：20

TELPI YWr！ 59 EFET
PO ATA FIXEO FGZ IN NITROLEN FATEE：DESGENT GO FFM；HGEFT GU FFH

80	40	1：10					3 シ
E0	50	1：10				17	$14 \cdot \%$
80	60	1：00			1	21	23 －
80	70	1：00			\exists	\cdots	5i Cou
80	80	1：00			15	22	30： 2
80	90	1：00			21	35	5500
$\begin{gathered} \text { limit } \\ \text { Bn } \end{gathered}$	$\begin{aligned} & 1 \text { ine } \\ & 100 \end{aligned}$	19：50		4	21	$5!$	7－909
80	110	0；50		ξ	$\check{\square}$	67	9720
80	120	11：50		11	21	E	115－
80	120	9：50		1.4	Ξ	95	132： 20
80	140	0； 50		15	3	101	1500
80	150	i1： 50		13	$4 \dot{5}$	115	180．20
80	100	9：50		17	5	159	$\therefore \therefore 20$
60	170	$0: 50$		2	6	15	24＊${ }^{-1}$
60	130	19：4i1	1	2%	\bar{i}	167	ごミご，
E0	170	10：4	z	Si！	35	15ら	可安：
80	2010	11：411	z	34	43	14－	
80	210	0：40	\square	37	100	213	3世6：
$E 0$	220	01910	4	4	1110	245	75.30
Ei	270	i1：4i1	－	$\therefore:$	111	$\because 4$	$4, \square!$
E0	2411	0：40	：	\％	107	$\therefore \because$	$45-$－
G0	25	0：40	11	$\therefore=$	124	E－	$4 \mathrm{~A}, ~-1$
80	261	6：111	1：	－ 4	13－	．-1	$\therefore \therefore^{-1}$
80	270	4． 410	1	\％	15.	Fic	$0.1+\cdots$

TGLPY MAMSG iFEET
「OATA FISEOFO天 IN MITPOGEN RQTES: DESCENT 60 FPM; ASCENT 60 FPM

90	2	1:30				0	1:30
90	30	1:20				1	2:30
90	40	1:20				13	14:30
90	5	1:10			5	20	26:30
90	e. 0	1:10			15	21	37:30
90	$i 0$	1:00		2	22	21	46:30
11 mat	line						
90	30	1:00		10	21	42	74:30
Fi	94	1:00		16	21	61	99:30
$\rightarrow 1$	100	1:00		21	22	79	123:30
90	110	$0 ; 50$	4	22	23	97	147:30
90	120	$0: 50$	8	22	38	103	172:30
90	130	0:50	11	22	55	125	214:30
90	140	0; 50	14	21	71	146	253:30
90	150	$0: 50$	16	25	83	166	291:30
90	100	0:50	18	30	92	186	327:30
90	170	0; 50	20	36	100	207	364:30
90	150	$0 \cdot 50$	21	49	101	2.35	407:30
-90	190	0:40	123	61	101	263	450:30
100	24	1:40				0	1:40

UEFTH ETM TM TU （FSW）TIM FIRET （M）ETGF
 $100 \quad 25 \quad 1: 30$
$100301: 30$
$10035 \quad 1: 20$
$100 \quad 40 \quad 1: 20$
$10045 \quad 1: 20$
$10050 \quad 1: 10$
$10055 \quad 1: 10$
$10060 \quad 1: 10$
$100651: 10$

1 （11） $751: 00 \quad 1 \quad 212150.90$
$100 \quad 80 \quad 1: 00$
$100 \quad 90 \quad 1: 00$ 11 28 21 $\because 0$ 145：40
$100100 \quad 1: 00$
$172 \boldsymbol{3} 300170: 40$
$1001100: 50 \quad 122 \quad 21 \quad 59122 \quad 220: 40$

110	20	$1: 50$	0

1i0 25 $1: 40 \quad$ 日 ヨ ヨ
$110301: 30$ 4 19 16： 0
$\begin{array}{llll}110 & 35 & 1: 30 & 10 \\ 15 & \text { E®：} 50\end{array}$
$110401: 20411 \quad 49$

linit line－－－．

	11	18	21	$51: 50$
3	11	22	24	$61: 50$
6	15	21	40	$83: 50$

G－9

TELFI VVALSG GFEET

- OTM FIMFE FRE IN NITROGEN RATES: [DESEENT $6 O$ FFM; ASCENT 60 FFM

TEIFY ，GOEG FEET

DEPTH ETM TM TO〔FSU〕 TIN FINGT （H）STGF

130 60 ：10

$150 \quad 10 \quad 2: 30$

150	15	$\bar{z} 10$			z	5	$\cdots: 30$
150	20	¢ 00		z	5	11	$\because 30$
150	25	$\therefore 80$		11	1.	17	5r 311
150	50	1：50	\because	11	11	14	$9 \mathrm{E}=11$
limjt．	11 me						
150	55	1．4i1	1	11	1.1	24	E， 30

150	40	1：30		\therefore	11	$1 i$	1 i	$2 i$	45	19， 30
150	45	1：30		3	11	11	$1-$	$\because \dagger$	71	14： 96
150	50	1：c！	$\bar{\square}$	11	1.	11	\therefore	$\therefore i$	$3:$	1－9
150	60	－\％	11	11	11	\therefore	$\therefore{ }^{1}$	－	$i \because$	－ 24.11
150	70	1：10	e 11	11	－	\therefore	$\therefore 1$	FF	$17:$	そ－：〒－

TELF1 YYALSG《FEET ？
PO ATH FINEO FOZ IN NITRUSEN RATES：OESEENT 60 FPM；ASCENT EO FFM

$\begin{gathered} 120 i t \\ 160 \end{gathered}$	11 9	$2: 40$							10		2：40
160	10	$2 \cdot 30$								1	3：40
100	15	$2: 10$						1	3	7	13：40
160	20	$2 \cdot 00$					1	4	10	10	27：40
160	ご	2：00					6	11	10	15	44：40
160	30	1：5010				5	11	11	11	¿1	61：40
100	40	1：411			11	11	11	13	22	66	136：40
169	50	1：20	1	11	11	11	15	22	39	103	215：40
1imst	lirie										
170	E	$2 \cdot 50$								0	2：50
179	111	2：411								3	5：50
170	15	c： 10					1	3	3	8	17：50
170	20	200				1	3	5	11	11	33：50
170	25	2：00				3	9	11	10	18	53：50
10	34	1：50			1	11	11	11	13	27	76：50
179	40	1：411		8	11	11	11	17	22	86	168：50
176	50	1：30	10	11	11	11	20	21	64	136	280：50

\square

© VVALSE－HITEOCEN
T15SUF HELF－TJHF：

GFFIti		5．MIH	10 MIH	20 MJN	40 MJN	80 Mrti	120 117\％	18\％MTH	－it Mn	2ticmin
		． 40 SiP	． 50 SOF	55 SOF	.9685 .5	． 96 SLF	． 72 StF	60 $-1 . F$	45． ECF	40 Sif
亏	M\％ 4	126.670	114．670	77.900	61.510	54.600	51.70	E日．¢0	E0．4\％i	50.170
ε	$\mathrm{H}+\mathrm{O}$	13E．513	124.513	86． 843	71.35 .3	64.643	61.543	¢ 4515	－0． 0 ¢	＋19．013
\square	11： 11	14E．355	134.355	96.655	81.1%	74.465	\％1．355	F4， 5	70.105	69．555
17	MS凩	156．178	144．148	146．528	91．038	94．329	91．223	（4，15\％	－3．7．12	73．63
13	1－1：	166． 10.9	1.4 .040	116．370	100.890	94．170	91.0%	$\div 0.040$	29．790	85．54
18	$\mathrm{H} \div \mathrm{H}$	175． 5 ¢ 3	163.823	1\％6．213	110.723	10.4013	100.915	95.853	95．535	95．383
$\therefore 1$	$\mathrm{N} \div 1 . \mathrm{H}$	185.725	173．725	136.055	120．555	113.855	110.755	107.75	107．4\％	109.225
4	H\％6	195.548	183.508	145．535	1.30 .418	123．69\％	100.55	119.58	119218	11\％．06\％
$\therefore \overrightarrow{1}$	$\mathrm{H}-\mathrm{H}$	205．410	193．410	155．740	140．250	135．541	130，44i	127.410	12\％．16il	12\％．910
－ 1	$\mathrm{M}=6 \mathrm{i}$	215．223	203.253	165．593	150.075	143．333	140.293	139．253	137003	137．75\％
53	－	225．8．35	213.195	175．425	159.935	153．225	150．125	147．095	14\％．84	14－．555
3	M 5 U	234．938	222．338	185．263	163．77\％	163，063	159．783	158．738	15e．683	15＊．433
35	M，	244．780	232．789	195．110	175．625	172.910	167.810	168．780	16350	16\％．280
$4:$	$\mathrm{M}<\mathrm{H}$	ご54．6こ3	こ4こ．Eこ3	¢014 953	189．465	18\％．75	179．853	17E E23	1里，37	1洨．123
45	$\mathrm{N}=14$	264.455	252．445	214.705	199．305	192.595	189．4．5	189．465	189．215	187．955
4：4	$\mathrm{N}=1: 1$	274，303	262.309	224.633	209，14＊	20\％．435	193．539	195． 30	192.05%	147.803
51	NSW	234.150	272．150	234.481	218.990	212.280	207.180	208.150	207.700	205.650
5.4	MSH	293.953	281．933	244.323	228．853	222．123	219.023	217．973	217．74	217．473
57	H8，	303.836	291．836	254．15	238.65	231.955	2c8． 65		227.53%	ここけ．335
＋9	MSい	313.678	301.678	264．009	248．518	241.809	238.702	237．673	こ5．429	257．178
E	$1: 5$	323．5．1	311.521	272850	258，350	2E1．E50	249.550	二47，50	$\therefore+7.5-0$	24．020
¢ 8	17－1．1	335．363	321．36：	253．695	260.205	＜61．4．3	258.393	こrs． 5 ¢	O7．113	256．853
8.7	15：4	34.3 .206	331.206	2\％3．536	278．04t	271．336	こex．est	$=0.7 .206$	Ste． 95	266.705
72	$\mathrm{H} \because \mathrm{Cl}$	353.048	34：．048	313.375	287．228	281．178	275．076	こ「こ．049	2－6．750	276．54\％
\cdots	M－n	352．891	350.231	313.221	2Ч：．331	291.021	28？．921	236.841	2世6．641	285．351
7\％	M：10	372.833	360.733	322，06．3	307.573	300.863	29：．763	296.753	296．483	296．233
\because	M．M	382596	370，57t	328．90\％	317．416	310．706	317．60\％	Ereser	30e 20	304．076
E．	H：1	352．419	380.418	34E． 745	327．25s	320.545	317.44	$316+13$	315．16\％	315.913
¢－	M： 1.4	40.26 .1	390.261	35．2．591	355．111	330，391	3こう．291	こと心．ct 1	326．011	5こ． 761
50	M -1.1	412.103	400.103	362．433	346，943	34n．233	337．133	336.103	335.853	335，607

ELOUR FPFHMETEF：

 1．i！2．t！

cavor	2.39	2.35	2.39	2.35	2.35	2.37	2.35	2.39	2.39	（VIL \therefore ）
ruros	1.87	1.87	1.87	1． 27	1．87	1.87	1．37	1．ar	1．87	（FSts：
PGMT	36． 610	35.00	\％ 9.10	13．0n	10.00	\％，\％10	\therefore－0\％	7 ，itir	T．00	＇Fid

TBLF 1 YQAS AMETEES

TELFI VUALSG ©METERS

.70 ATA FISED POQ IH NITROEEA RATES: DESEENT 20 MFH: ASCENT 20 MFM

15	370	$0: 36$
15	380	$0: 36$
15	390	$0: 36$

18	79	$0: 54$	0	$0: 54$
18	80	$0: 45$	3	$3: 54$
18	90	$0: 45$	6	$6: 54$
$1:$	100	$0: 45$	9	$9: 54$
18	110	$0: 45$	11	$11: 54$

18	120	$0: 45$
$16: 54$		

18	130	$0: 45$
$21: 54$		

13	140	$0: 4$
$28: 54$		

| 18 | 150 | $0: 45$ |
| :--- | :--- | :--- |$\quad 38 \quad 38,54$

160	60	$48: 54$

| 18 | 170 | 0 |
| :--- | :--- | :--- | $45 \quad 57 \quad 57: 54$

13	180	$0: 36$
$65: 54$		

18	$19: 36$	3	70

$18 \quad 200 \quad 0: 36 \quad 6 \quad 65 \quad 81: 54$

| 18 | 210 | $0: 36$ |
| :--- | :--- | :--- |$\quad 9 \quad 81 \quad 90: 54$

13	220	$0: 36$	$11 \quad 90 \quad 101: 54$

| 18 | 230 | $0: 36$ |
| :--- | :--- | :--- |$\quad 14 \quad 97 \quad 111: 54$

| 13 | 240 | $0: 36$ |
| :--- | :--- | :--- |$\quad 16 \quad 106 \quad 122: 54$

| 18 | 250 | $0: 36$ |
| :--- | :--- | :--- | $20 \quad 118 \quad 138: 54$

18	260	$0: 36$	25
129	$154: 54$		

18	270	$0: 36$	30	139	169,54

TBLFI WWH! 9 ©METEF:
. PO ATA FIXED PQZ IN NITROEEN FATES: DESEENT 20 MFM: GEOENT ZO MFN $\begin{aligned} & \text { DEPTH BTM TM TO } \\ & \text { (MSN) } \text { TIM FIRST } \\ & \text { (H) STUF } \\ & \text { (M:S) }\end{aligned}$

DECOMFFESSION STOPS (MSW:
STOP TIMES (HIN)
$36 \quad 33 \quad 30$
$33-20 \quad 27$ $\begin{array}{lllll}24 & 21 & 18 & 15 & 12\end{array}$

TOTAL HETENT

TIME
6M:5)

TBLFI WVALSG (METEFS:

FO HTA FIXED FOE IN HITRUGEN RATES: DESEENT 20 MFM; ASCENT 20 MPM

DEFTH	ETM	TM TH				0	F.E	S10	Sto	5	15u				TOTAL
\because MSW	T1M	FIFST					OF	TIME	(H					ASCENT
	(H)	STuF													TIME
		- M: S	3 r	33	30	27	24	21	18	15	12	9	0	3	(M:S)

< 1	1%	19:4 ${ }^{\text {F }}$		29	9u	120:03
11mı	11re					
cı	1*1:	11: 45		33	102	136:03
21	190	0. 36	1	41	115	158:0.3
21	200	6: 36	1	50	130	182:03
21	210	0:300	2	58	143	204:03
21	2゙シ	9, 36	5	64	156	226:03
21	230	0:36	8	68	169	246:0.3
$\because 1$	240	$0: 36$	10	74	181	266:03
$\therefore 1$	250	$0: 36$	13	78	193	235:03
$\therefore 1$	260	$0: 36$	15	82	210	$308: 03$
$\because 1$	270	$0: 36$	17	36	227	331: 03
$\cdots 1$	200	0.30	19	95	238	353:03
21	290	0:36	22	101	251	375:03
21	300	0:36	27	106	263	397:03
21	310	0, 36	32	110	275	418:03
21	$3 \div 0$	$0: 36$	36	119	283	4.39:03
21	351	11:36	41	129	288	459:03
21	340	0.36	45	139	294	479:03
-21	350	10:36	49	149	299	498:03

24	29	$1: 12$
24	40	$1: 03$
24	50	$1: 03$
24	60	$1: 03$
24	70	$0: 54$

	0	$1: 12$
1	$2: 12$	
	10	$11: 12$
	18	$1 \xi: 12$
6	19	$2 \epsilon: 12$

G-18

TBLFI WYHLEO METEFS
7 A ATA FIXED FGZ IN NITEUGEN FATES: DESEENT ZU MFH: ASCEMT 天U MFM $\begin{aligned} & \text { DEPTH ETM TM TG } \\ & \text { (MSW) } \text { TM FIFST } \\ & \text { (M) } \text { STGP } \\ & \text { (M:S) }\end{aligned}$ [DEOUFFESS]DN STDFS EMEM: STOF TIMES (MTN)

Tital AEEET

24	80	0:54			12	20	$33: 12$
24	90	0:54			$1 \overrightarrow{1}$	25	4 C
24	100	0:45		2	19	45	E. $0^{\text {a }}$
limit	line						
24	110	0:45		5	19	en	$E \cdot 12$
24	120	0:45		E	21	\%	1020
24	130	0:45		11	25	28	19:18
24	140	0.45		13	311	96	144: 1
24	150	0:45		14	41	109	104:15
24	160	0:45		16	5	12i	15e:12
24	170	0:45		19	E1	145	2-5:12
24	180	$0: 45$		$\therefore 4$	Qis	157	20:13
24	190	0:45		29	75	173	$283 \cdot 12$
24	200	$0 ; 36$	1	$\square 2$	22	194	$310: 12$
24	210	0:36	1	30	88	21.3	35: 12
24	220	0:36	2	40	95	2.5	$3 \mathrm{B0} 12$
24	230	$0 \cdot 36$	2	50	95	25:	4 n : 2
24	240	0136	5	5	195	267	474:12
24	250	0:36	9	$\theta 1$	117	278	40^{5} - 12
24	260	0:36	10	GA	132	286	$495 \cdot 12$
24	270	0:36	15	Fi	14 m	29	59 E
24	250	0:36	15	it	159	300	$5.51: 12$
24	290	0:36	17	z0	172	30	ETE: 1
24	300	0:36	19	8.4	154	314	602:1?
24	310	0:36	20	4	196	310	825:12

TBLPI VYALSG《METERS〉
PO ATA FIXIEO POE IN NITRUGEN RATES: DESCENT 20 MPM; ASCENT 20 MPM

TELFI MYBLEE METEEG
PO ATA FISED FGE IN NITROGEH FGTES: DESCEHT 20 MFH: AEGENT ËO MFM

TELPI $/$ YALSG GMETERS:
PO ATA FIKED POZ IN NITRDGEN RATES: OESEENT 20 MFH: ASCENT 20 MPM

30	20	1:39					4		$5: 48$
Te	-5	1:30					2	11	14:48
SE	90	1:30					10	11	22:48
36	3	1:ci				5	11	13	30:48
36	4%	1:21				11	10	17	37:48
$\begin{gathered} \text { limit } \\ 36 \end{gathered}$	$11 \mathrm{n}=$ 45	1:12			5	10	12	19	47:48
36	50	1:12			5	11	16	26	62:48
36	55	1:0.3		1	11	11	18	42	84:48
56	619	1:0.3		3	11	15	19	55	104;48
36	70	1:03		8	13	19	21	82	144:48
36	80	1:03		12	18	19	38	102	190:48
39	16	1:57						0	1:57
39	20	1:48						9	10:57
39	25	1:39					8	11	20,57
35	34	1:30				6	11	10	28:57
39	3	1:21			2	11	11	14	39:57
37	4	1:21			8	11	10	18	48:57
limit.	line								
35	45	1:12		2	11	11	13	29	67:57
37	50	1:12		E	11	11	17	46	92:57
3.4	60	1:03	2	11	11	17	19	78	139:57
-39	70	1:03	7	11	17	19	36	101	191:57
$4{ }^{\circ}$	13	2;06						0	2:06
42	15	$\therefore: 57$						2	4:06
4%	20	1:4\%					4	10	16:06

TELP \quad, VMS

$46451: 24 \quad 11111011$ 19 Ta 13E:18

$48 \quad 1$ is z:15 $\quad 1 \quad 3: \overline{4}$

$48251: 48 \quad 5 \quad 11 \quad 1011 \quad 39: 24$
$48301: 39 \quad 5 \quad 10111115 \quad 54: 24$

$51102: 24 \quad 7 \quad 5: 33$

$51201: 48 \quad 1 \quad 3 \quad 4 \quad 1111$ 30:33

$51301: 4 \theta \quad 11111111$ 2e 58:34

$51 \quad 50 \quad 1: 21$
9111011131959127 E1:3

TBLPI VWALSG (METERS)
PO ATA FIXED FO2 IN NITROGEN RATES: DESCENT 20 MPM; ASCENT 20 MPM

$45112: 15 \quad 0 \quad 0 \quad 2: 15$
$451: 57 \quad 1 \begin{array}{ll}45 & 15\end{array}$

$45 \quad 251: 48 \quad 10 \quad 10 \quad 11 \quad 33: 15$

| 46 | 10 | $2: 18$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 46 | 15 | $2: 10$ |
| 46 | 20 | $1: 51$ |
| 46 | 25 | $1: 42$ |
| 46 | 30 | $1: 42$ |

PHASE I \& II DIVE PROFILE COMPARISON					
PROFILE 1 (175/30)*2; 10/60					
Stops (FSW)	MVALI	MVAL2	\# MVAL3	VVAL29	VVAL59
175	30.00	30.00	30.00	30.00	30.00
70	---	---	---	0.87	---
60	---	0.09	1.38	2.82	10.28
50	1.45	2.52	3.26	3.30	10.90
40	5.09	6.02	6.51	6.38	10.90
30	7.70	6.91	10.06	11.04	10.90
20	16.90	16.37	17.51	14.87	19.08
10	60.00	60.00	60.00	60.00	60.00
175	30.00	30.00	30.00	30.00	30.00
70	---	---	---	0.69	3.18
60	---	0.01	1.30	2.82	10.90
50	1.37	2.52	3.20	2.82	10.90
40	5.12	6.05	6.51	8.68	10.90
30	13.82	12.32	15.51	19.95	19.96
20	23.13	28.95	30.76	80.44	96.09
10	48.31	52.42	57.03	215.06	202.43
TOTAL	254.22	265.51	284.37	501.07	547.76
RESULTS (Dives/DCS)	8/2	19/1	25/0		

[^9]PHASE I \& II DIVE PROFILE COMPARISON
PROFILE 2 175/60

Stops (FSW)	\# MVAL1	$\#$ MVAL2	VVAL29	VVAL59
175	60.00	60.00	60.00	60.00
100	--	---	$-\ldots$	3.63
90	--	$-\cdots$	3.11	10.90
80	$-\ldots$	--	6.38	10.90
70	1.09	3.23	8.80	10.90
60	6.51	5.37	14.87	17.10
50	13.42	12.88	14.87	21.45
40	14.40	14.40	19.52	21.45
30	18.35	24.61	52.29	65.46
20	36.15	36.92	85.09	100.04
10	55.14	59.26	263.10	257.57
TOTAL	210.88	222.50	533.85	585.23
RESULTS	$10 / 3$	$9 / 2$		

[^10]$$
\mathrm{H}-2
$$

PHASE I \& II DIVE PROFILE COMPARISON
PROFILE 3 (150/30)*2; 30/120

$\begin{aligned} & \text { Stops } \\ & \text { (FSW) } \end{aligned}$	$\stackrel{\#}{\text { MVAL2 }}$	$\stackrel{\#}{\text { MVAL3 }}$	$\stackrel{\text { \# }}{\text { MVAL5 }}$	VVAL18	VVAL29	VVAL59
150		30.00	30.00	30.00	30.00	30.00
90	---	---	0.58	---	---	---
80	---	---	1.52	---	---	---
70	---	---	2.94	--	---	---
60	---	---	3.56	---	---	---
50	---	0.65	3.77	2.33	0.19	2.54
40	2.23	3.22	7.69	6.94	-2.82	10.90
30	120.00	120.00	120.00	120.00	120.00	120.00
150	30.00	30.00	30.00	- 30.00	30.00	30.00
90	---	---	0.60	---	---	---
80	---	---	1.52	---	---	---
70	---	---	3.24	---	---	---
60	---	---	3.56	---	---	---
50	---	0.89	5.08	3.37	0.60	9.56
40	3.70	5.02	8.16	14.89	4.89	10.90
30	9.27	12.78	11.85	28.26 .	14.87	16.38
20	24.83	26.93	20.38	31.04	56.19	55.07
10	50.25	54.72	44.88	72.84	115.91	137.85
total	279.28	293.20	308.32	348.67	384.47	432.20
RESULT (Dives	$\text { ocs })^{8 / 0}$	39/1	28/0			

\# Profiles actually tested.

PHASE I \& II DIVE PROFILE COMPARISON

 PROFILE $4(125 / 30) * 3 ;(10 / 30) * 20$| Stops
 (FSW) | MVAL2 | MVAL3 | MVAL5 | VVAL 18 | VVAL29 | VVAL59 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 125 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 |
| 70 | --- | - | 0.76 | --- | - | - |
| 60 | --- | --- | 1.86 | --- | --- | --- |
| 50 | --- | --- | 3.77 | - | --- | - |
| 40 | --- | -- | 4.00 | --- | - | --- |
| 30 | 1.78 | 3.09 | 7.44 | 0.71 | --- | 5.87 |
| 20 | 7.05 | 7.81 | 9.24 | 10.85 | 5.52 | 10.90 |
| 10 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 |
| 125 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 | 30.00 |
| 70 | -- | --- | 0.75 | --- | --- | -- |
| 60 | -- | - | 1.80 | --- | --- | - |
| 50 | --- | - | 3.77 | --- | --- | -- |
| 40 | --- | - | 4.00 | 4.47 | --- | 5.66 |
| 30 | 3.37 | 5.52 | 8.67 | 28.26 | 8.71 | 12.44 |
| 20 | 14.84 | 17.51 | 15.48 | 28.26 | 14.87 | 21.45 |
| 10 | - | - | 30.00 | 30.00 | 30.00 | 30.00 |
| 125 | - | -- | 30.00 | 30.00 | 30.00 | 30.00 |
| 70 | --- | --- | 0.75 | --- | --- | --- |
| 60 | --- | --- | 1.78 | --- | --- | --- |
| 50 | --- | --- | 3.77 | --- | - | --- |
| 40 | --- | --- | 4.00 | 4.47 | --- | 3.05 |
| 30 | 2.80 | 6.12 | 8.39 | 28.26 | 8.71 | 18.33 |
| 20 | 24.15 | 25.43 | 16.34 | 28.26 | 66.23 | 56.64 |
| 10 | 49.71 | 53.69 | 41.27 | 60.84 | 164.39 | 156.76 |
| TOTAL | 265.53 | 280.99 | 299.69 | 356.23 | 430.27 | 452.93 |
| RESULTS
 (Dives/ | $\text { DCS }{ }^{10 / 0}$ | $37 / 2$ | 40/0 | | | |

[^11]
PHASE I \& II DIVE PROFILE COMPARISON

```
PROFILE 5 (75/30)*5 ; (10/15)*4
```

$\begin{aligned} & \text { Stops } \\ & \text { (FSW) } \end{aligned}$	$\stackrel{\#}{\text { MVAL2 }}$	$\begin{gathered} \# \\ \text { MVAL3 } \end{gathered}$	$\stackrel{\#}{\text { MVAL5 }}$	WALI8	WVAL29	VVAL59
75	30.00	30.00	30.00	30.00	30.00	30.00
30	---	---	1.29	---	---	---
20	---	---	4.17	---	---	---
10	15.00	15.00	15.00	15.00	15.00	15.00
75	30.00	30.00	30.00	30.00	30.00	30.00
30	---	---	1.29	---	---	---
20	---	---	4.87	---	---	---
10	15.00	15.00	15.00	15.00	15.00	15.00
75	30.00	30.00	30.00	30.00	30.00	30.00
30	---	---	1.29	---	---	---
20	---	---	5.39	---	---	---
10	15.00	15.00	15.00	15.00	15.00	15.00
75	30.00	30.00	30.00	30.00	30.00	30.00
30	---	-	1.29	---	---	---
20	---	0.58	5.39	10.40	---	5.77
10	15.00	15.00	15.00	15.00	15.00	15.00
75	30.00	30.00	30.00	30.00	30.00	30.00
30	---	---	1.29	---	---	---
20	---	1.66	5.39	10.91	4.33	6.37
10	36.30	43.00	24.58	57.65	84.32	90.32
TOTAL	257.47	266.40	277.40	300.12	309.82	326.63
RESULT (Dives	$D C S)^{7 / 0}$	18/0	30/0			

\# Profiles actually tested.

PHASE I \& II DIVE PROFILE COMPARISON
PROFILE 6 ($150 / 60$)

$\begin{aligned} & \text { Stops } \\ & \text { (FSW) } \end{aligned}$	$\stackrel{\#}{\text { MVAL2 }}$	$\stackrel{\text { M }}{\text { MVL3 }}$	MVAL 4	$\stackrel{\#}{\text { MVAL5 }}$	VVAL18	$\begin{gathered} \text { F } \\ \text { VVAL29 } \end{gathered}$	VVAL59
150	60.00	60.00	60.00	60.00	60.00	60.00	60.00
100	----	----	----	0.03	----	----	--
90	----	----	----	1.59	----	-	----
80	----	----	----	3.19	----	----	1.28
70	----	--	----	5.71	5.31	1.73	10.90
60	0.86	3.12	4.48	7.26	14.05	6.67	10.90
50	5.80	7.65	9.80	7.69	26.20	14.87	13.86
40	12.58	15.09	16.22	14.74	28.26	14.87	21.45
30	15.55	16.21	17.50	17.50	28.26	18.10	21.45
20	30.91	33.60	40.38	26.77	33.92	62.30	67.55
10	43.32	53.34	63.07	42.80	78.31	112.81	141.49
TOTAL	179.02	194.01	216.46	192.28	279.31	296.35	353.88
RESULT (Dives		38/4	$10 / 1$	20/3		$9 / 2$	

\# Profiles actually tested.

PHASE I \& II DIVE PROFILE COMPARISON
PROFILE 7 150/45

$\begin{gathered} \text { Stops } \\ \text { (FSW) } \end{gathered}$	$\stackrel{\#}{\text { MVAL5 }}$	VVAL18	VVAL29	VVAL59
150	45.00	45.00	45.00	45.00
100	0.01	---	---	---
90	0.76	---	---	---
80	3.17	---	---	---
70	3.36	---	-	0.40
60	5.48	4.12	---	10.90
50	7.69	14.05	6.38	10.90
40	8.16	17.30	10.43	10.90
30	15.26	28.26	14.87	18.47
20	18.63	28.26	18.46	21.45
10	33.87	38.11	73.33	81.32
TOTAL	146.38	180.10	174.68	204.34
RESULTS (Dives/DCS)	10/3			

\# Profiles actually tested.

PHASE I \& II DIVE PROFILE COMPARISON
PROFILE 8 100/60

$\begin{aligned} & \text { Stops } \\ & (F S W) \end{aligned}$	$\stackrel{\#}{\text { MVAL5 }}$	VVALI8	VVAL29	VVAL59
100	60.00	60.00	60.00	60.00
50	2.38	---	---	---
40	5.78	---	---	---
30	8.68	8.67	3.86	8.35
20	14.21	28.26	14.87	21.45
10	19.85	28.26	30.93	22.13
total	114.23	128.52	113.00	115.26
RESULTS (Dives/DCS)	10/1		27/0	

[^12]PhASE I \& II DIVE PROFILE COMPARISON
PROFILE 9 150/30

$\begin{gathered} \text { Stops } \\ \text { (FSW) } \end{gathered}$	MVAL5	VVAL18	VVAL29	WAL59
150	30.00	30.00	30.00	30.00
90	0.58	---	---	---
80	1.52	---	---	---
70	2.94	---	---	---
60	3.56	--	---	---
50	3.77	2.33	0.19	2.54
40	7.69	6.94	2.82	10.90
30	8.68	11.58	5.83	10.90
20	14.01	21.62	13.02	11.20
10	19.85	28.26	16.50	21.45
TOTAL	97.59	105.73	73.36	91.99
RESULTS (Dives/DCS)	20/0		19/0	

\# Profiles actually tested.

PHASE I \& II DIVE PROFILE COMPARISON

PROFILE 10 100/45

Stops (FSW)	$\stackrel{\#}{\text { MVAL5 }}$	VVAL18	WAL29	VVAL59
100	45.00	45.00	45.00	45.00
50	1. ${ }^{\text {a }}$	---	---	---
40	4.00	---	---	---
30	7.18	---	---	---
20	9.24	12.59	5.99	11.41
10	17.97	28.26	14.87	21.45
TOTAL	88.44	89.18	69.19	81.20
RESULTS (Dives/DCS)	20/0			

\# Profiles actually tested.

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Profiles actually tested.

PHASE I \& II DIVE PROFILE COMPARISON
PROFILE 12 75/120

Stops (FSW)	MVAL5	VVAL18	WVAL29	VVAL59
75	120.00	120.00	120.00	120.00
30	6.23	--	-1.	1.46
20	16.79	28.12	15.33	21.45
10	28.25	52.12	67.60	66.04
TOTAL	173.75	202.74	205.43	211.45

\# Profiles actually tested.
$\mathrm{H}-12$

PHASE I \& II DIVE PROFILE COMPARISON
PROFILE 20 ($60 / \mathrm{ND}$)*3; $(0 / 80) * 2$

$\begin{aligned} & \text { Stops } \\ & \text { (FSW) } \end{aligned}$	$\stackrel{\#}{\#}{ }_{\text {MVAL83 }}$	$\begin{gathered} \# \\ \text { MVAL92 } \end{gathered}$	$\stackrel{\#}{\text { MVAL97 }}$	$\begin{gathered} \# \\ \text { VVAL14 } \end{gathered}$	VVAL18	WVAL29	VVAL59
60	71.06	66.64	66.64	83.58	73.20	75.60	69.52
0	80.00	80.00	80.00	80.00	80.00	80.00	80.00
60	43.41	44.95	41.30	$\begin{gathered} 22.45 \\ (31.84) \end{gathered}$	$\begin{gathered} 23.18 \\ (34.75) \end{gathered}$	51.93	50.41
0	80.00	80.00	80.00	80.00	80.00	80.00	80.00
60	42.63	34.85	40.22	$\begin{gathered} 16.05 \\ (25.95) \end{gathered}$	$\begin{gathered} 23.18 \\ (30.27) \end{gathered}$	26.84	27.73
total	323.10	309.44	314.16	$\begin{gathered} 288.08 \\ (307.37) \end{gathered}$	$\begin{gathered} 285.55 \\ (304.22) \end{gathered}$	320.37	313.66
RESULTS (Dives) DCS)	10/1	9/0	10/0	10/1			

\# Profile actually tested.
Times in parenthesis assume $30 \% 0_{2}$ at 1 ATA (See Note 1) and were used in tested profiles.

\# Profiles actually tested.
Times in parenthesis assume $30 \% \mathrm{O}_{2}$ at 1 ATA (See Note 1) and were used in tested profiles.

PHASE I \& II DIVE PROFILE COMPARISON
PROFILE 22 ($100 /$ ND)*4; (0/80)*3

$\begin{aligned} & \text { Stops } \\ & \text { (FSW) } \end{aligned}$	$\begin{gathered} \# \\ \text { MVAL92 } \end{gathered}$	$\begin{gathered} \# \\ \text { MVAL97 } \end{gathered}$	$\begin{gathered} \# \\ \text { VVALO9 } \end{gathered}$	$\begin{gathered} \# \\ \text { VVAL14 } \end{gathered}$	VVAL18	VVAL29	VVAL59
100	18.23	18.23	19.84	28.47	26.18	26.59	22.34
0	80.00	80.00	80.00	80.00	80.00	80.00	80.00
100	18.20	18.20	$\begin{gathered} 10.59 \\ (14.56) \end{gathered}$	$\begin{gathered} 5.78 \\ (9.79) \end{gathered}$	$\begin{gathered} 5.48 \\ (9.36) \end{gathered}$	19.75	17.54
0	80.00	80.00	80.00	80.00	80.00	80.00	80.00
100	18.20	16.98	$\begin{gathered} 5.86 \\ (9.36) \end{gathered}$	$\begin{gathered} 5.78 \\ (9.79) \end{gathered}$	$\begin{gathered} 5.48 \\ (9.36) \end{gathered}$	15.66	16.04
0	80.00	80.00	80.00	80.00	80.00	80.00	80.00
100	13.63	15.78	$\begin{gathered} 5.48 \\ (9.36) \end{gathered}$	$\begin{gathered} 5.78 \\ (9.79) \end{gathered}$	$\begin{gathered} 5.48 \\ (9.36) \end{gathered}$	9.53	10.65
total	321.59	322.52	$\begin{gathered} 295.11 \\ (306.45) \end{gathered}$	$\begin{gathered} 299.14 \\ (311.17) \end{gathered}$	$\begin{gathered} 295.96 \\ (307.59) \end{gathered}$	324.87	319.90
RESULTS (Dives) DCS)	10/0	10/1	9/0	10/0			

\# Profile actually tested.

Times in parenthesis assume $30 \% 0_{2}$ at 1 ATA (See Note 1) and were used in tested profiles.

PHASE I \& II DIVE PROFILE COMPARISON
PROFILE 23 ($80 / \mathrm{NO}$)*4; ($0 / 80)^{* 2}$; ($\left.0 / 60\right)^{* 1}$

$\begin{aligned} & \text { Stops } \\ & \text { (FSW) } \end{aligned}$	$\stackrel{\text { MVAL97 }}{\text { \# }}$	$\stackrel{\text { \# }}{\text { VVALO9 }}$	VVALI8	VVAL29	VVAL59
80	35.66	38.65	38.65	39.39	37.06
0	80.00	80.00	80.00	80.00	80.00
80	25.85	$\begin{gathered} 9.46 \\ (15.27) \end{gathered}$	$\begin{gathered} 9.46 \\ (15.27) \end{gathered}$	30.19	24.73
0	80.00	80.00	80.00	80.00	80.00
80	23.08	$\begin{gathered} 9.46 \\ (14.45) \end{gathered}$	$\begin{gathered} 9.46 \\ (15.27) \end{gathered}$	19.86	24.47
0	60.00	60.00	60.00	60.00	60.00
80	19.01	$\begin{gathered} 6.25 \\ (9.15) \end{gathered}$	$\begin{gathered} 7.29 \\ (11.8 i) \end{gathered}$:0.93	8.36
total	334.27	$\begin{gathered} 294.48 \\ (308.19) \end{gathered}$	$\begin{gathered} 295.52 \\ (311.73) \end{gathered}$	331.02	325.29
RESULTS (Dives/DCS)	18/2	19/0			

\# Profiles actually tested.

Times in parenthesis assume $30 \% \mathrm{O}_{2}$ at 1 ATA (See Note 1) and were used in tested profiles.

[^13]Times in parenthesis assume $30 \% 0_{2}$ at $\underset{H-17}{ } 1$ ATA (See Note 1).

PHASE I \& II DIVE PROFILE COMPARISON			
	PROFILE 24A (150/30)*2; 0/80		
Stops (FSW)	VVAL18	VVAL29	VVAL59
150	30.00	30.00	30.00
50	2.33	0.19	2.54
40	6.94	2.82	6.94
30	11.58	5.83	11.58
20	21.62	13.02	21.62
10	28.26	16.50	28.26
0	80.00	80.00	80.00
150	30.00	30.00	30.00
40	$\begin{gathered} 21.87 \\ (17.83) \end{gathered}$	2.82	10.90
30	$\begin{gathered} 28.26 \\ (28.26) \end{gathered}$	11.14	11.79
20	$\begin{gathered} 28.26 \\ (28.26) \end{gathered}$	37.40	38.53
10	$\begin{gathered} 52.63 \\ (47.10) \end{gathered}$	92.34	113.67
TOTAL	$\begin{gathered} 356.37 \\ (344.31) \end{gathered}$	332.24	387.17
RESULTS (Dives/DCS)	10/1		

[^14]Times in parenthesis assume $30 \% 0_{2}$ at 1 ATA (See Note 1) but were not used in tested profiles.

PHASE I \& II DIVE PROFILE COMPARISON
PROFILE 25A (100/60, 50) ; 0/80

| | Stops
 (FSW) | $\#$
 VVAL.18 | VVAL29 |
| :--- | :---: | :---: | ---: |\quad VVAL59

\# Profiles actually tested.

Times in parenthesis assume $30 \% \mathrm{O}_{2}$ at 1 ATA (See Note 1) but were not used for tested profiles.

	PHASE I \& II DIVE PROFILE COMPARISON PROFILE 26 ($80 / 90,85$) ; 0/60			
	$\begin{aligned} & \text { Stops } \\ & \text { (FSW) } \end{aligned}$	VVAL18	VVAL29	VVAL59
	80	90.00	90.00	90.00
	20	25.32	12.55	20.86
	10	35.68	42.45	35.67
	0	60.00	60.00	60.00
	80	85.00	85.00	85.00
	20	$\begin{gathered} 46.10 \\ (45.93) \end{gathered}$	44.33	2.07
	10	$\begin{gathered} 68.56 \\ (67.39) \end{gathered}$	159.27	51.25
TOTAL		$\begin{gathered} 425.15 \\ (419.84) \end{gathered}$	498.93	150.63

Times in parenthesis assume $30 \% \mathrm{O}_{2}$ at 1 ATA (See Note 1).

PHASE I \& II DIVE PROFILE COMPARISON
PROFILE 27 ($120 / \mathrm{ND}$)*4; ($0 / 80$)*2 ; ($0 / 60$)*

| | Stops
 (FSW) | WVAL18 | VVAL29 |
| :--- | :---: | :---: | ---: |\quad VVAL59

\# Profiles actually tested.

Times in parenthesis assume $30 \% 0_{2}$ at 1 ATA (See Note 1) and were used
for tested profiles.

PHASE I \& II DIVE PROFILE COMPARISON
PROFILE 28 ($140 /$ ND)*3; $(0 / 80) * 2 ;(0 / 60)$

	Stops (FSW)	VVAL18	VVAL29	VVAL59
	140	10.67	12.85	10.61
	0	80.00	80.00	80.00
	140	5.96	12.25	9.63
	0	(8.39)		
	140	80.00	80.00	80.00
	0	(4.44)	10.30	9.31
	140	60.00	60.00	60.00
		1.30	3.26	6.46
		258.96	277.33	274.68
		(265.24)		

Times in parenthesis assume $30 \% 0_{2}$ at 1 ATA (See Note 1).

PHASE I \& II DIVE PROFILE COMPARISON
PROFILE 29 ($150 /$ ND)*4; ($0 / 80$)*2; (0/60)*1

| | Stops
 (FSW) | VVALI8 | VVAL29 |
| :---: | :---: | :---: | ---: | WVAL59

Times in parenthesis assume $30 \% 0_{2}$ at 1 ATA (See Note 1).
PHASE I \& II DIVE PROFILE COMPARISON
PROFILE 30 50/ND; $0.80 ; 80 /$ ND

Stops (FSW)	WVAL18	VVAL29	VVAL59
50	142.22	146.91	140.43
0	80.00	80.00	80.00
	80	7.77	
(13.15)	16.88	18.35	
TOTAL		234.32	248.13

\# Profiles actually tested
Times in parenthesis assume $30 \% 0_{2}$ at 1 ATA (See Note 1) and were used for tested profiles.

Note 1. During Phase II testing of the constant $\mathrm{C} .7 \mathrm{ATA} \mathrm{PO}_{2}$ in N_{2} Decompression Model, certain surface intervals were assumed to occur with the diver breathing a $30 \% \mathrm{O}_{2} \mathrm{mix}$. The times shown in parenthesis are those resulting from breathing this high PO_{2}. Profiles $20,21,22,23,27$, and 30 were tested assuming that this higher PO_{2} was breathed during surface intervals. Note that this increase in PO_{2} was an adjustment to the computer program only, the divers actually breathed air during the surface interval but dove on the schedules indicated by the times in parenthesis. See reference (1) for details.

$$
12.86
$$

[^0]: \# 360 min was the maximum time anticipated in developing USN Standard Air Decompression Limits.

[^1]: * Maximum Depth/Time Limits: $60 / 180,100 / 90,120 / 60,150 / 40,190 / 30$
 \# Maximum Depth/Time Limits: $100 / 60,150 / 30$

[^2]: O- Phase code $0=1 \mathrm{~A}, 1=1 \mathrm{~B}, 2=2,3=3$
 F-female

 * Divers who suffered symptoms of decompression sickness

[^3]: @ Did Not Complete Dive

 * Decompression Sickness

[^4]: *Profiles Actually Tested.

[^5]: *Profiles Actually Tested.

[^6]: *Profiles Actually Tested.

[^7]: * Profiles Actually Tested.

 ## S.I. Surface Interval

 ND No Decompression

[^8]: * Profiles Actually Tested.

[^9]: \# Profiles actually tested.

[^10]: \# Profiles actually tested.

[^11]: \# Profiles actually tested.

[^12]: \# Profiles actually tested

[^13]: \# Profiles actually tested.

[^14]: \# Profiles actually tested

