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Introduction

The proposed research was partially funded and the following reports on the resulting

scientific progress. We have continued to work closely with the experimental free electron laser

(FEL) projects in Universities and National Research Labs with emphasis on the high-power

configurations at LANL and LLNL as well as the short wavelength configurations at Stanford and

LANL. One aspect of the work has been to characterize the FEL trapped-particle instability. An

especially important result is a new theoretical procedure solving the FEL wave and electron
equations in weak optical fields for an arbitrary electron distribution function. . .

The slowly-varying, self-consistent wave and electron equations of motion provide the basic

- theory. The complex optical field strength is a (.0 ), and the electron phase is ( ,). The optical

wave envelope is then described by the parabolic wave equation:

.14 P.

d% ' where the dimensionless current density is j(',t) and V is the transverse Laplacian. FELs

amplify the radiation with a co-propagating relativistic electron beam traveling along the axis of a

long, undulating magnetic field. For the periodic undulator, we can describe the electron

dynamics at a site in the beam with the self-consistent pendulum equation:

* = V(z-i) = - [a (z) exp(iC(z+t)) + a* (z) exp(-i (z+t)) ] (2)
2

,' The slippage of the optical field with respect to the electrons is indicated by (z + t) . The

longitudinal variables have been normalized to the slippage distance and all variables have been

reduced to a meaningful dimensionless form.

While simple in form, these equations contain a large array of important effects describing

FEL operation. The goals of high optical power or short optical wavelengths both have in common

the need for increasing the current density j(r above. This coupling between the electrons and
light can be increased by increasing the undulator length and/or the physical electron current

density.

," . -.:.*~ . , .-p, .
:.:.:.:.
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Panel Discussion on Long Undulators

Several members of the FEL community reviewed the possible limitations of long undulators

containing up to 1 periods. The panel members were K. Halbach, B. Kincaid, B. Newman, D. A.

G. Deacon, and myself (panel discussion leader). The general conclusion was that the expected

improvements in the design of currently proposed undulators will make it possible to reach the

long lengths desired. The tasks will be difficult, but not forbidden by serious physical limitations.

The reference is

"Long Wigglers for Free Electron Lasers: A Maximum Limit?", First International Laser

Science Conference, Dallas TX (1985).

FEL Review Article

Some work on a major review article fell into this contracting period. FELs were reviewed
N ~starting with their historical development from microwave tubes and atomic lasers. Data

describing all operating FEL experiments was presented in a table format. The basic FEL theory

is reviewed with extensions to include many of the complicated effects in equations (1) and (2). . "

The high-gain growth rate is derived for the first time from the single-particle equations of motion.

Specific accelerators suitable for driving FELs are reviewed in a table format. The linac driven 'Z

FEL, induction linac driven FEL, and the storage-ring FEL are described in more detail. The

extensions of the FEL undulator designs and new configurations are summarized. The reference "-

is

W. B. Colson and A. M. Sessler, "Free Electron Lasers", Annual Reviews of Nuclear and

Particle Science 35, 25 (1985).

A document report on this paper follows.

The Trapped-Particle Instability

Several simulations and simulation techniques have been developed describing the

trapped-particle instability in free-electron laser oscillators and amplifiers. There are distinct

differences in the physics in these two cases. The electrons in a high-power free-electron laser

"' ~'P can become trapped and oscillate in deep potential wells formed by the combined optical and

undulator field forces. The trapped current oscillates at the synchrotron frequency, and can drive

the optical wave at sideband frequencies around the fundamental. This "trapped-particle

instability" can occur in both the oscillator and amplifier configurations. The gain in the trapped-

particle sideband frequencies has been calculated at saturation and agrees well with the ,

simulation results. General features of the trapped-particle instability in free-electron laser

* . - ' . - . - -..-. . . . . . . . . .... . . . . . .

Sb"* " * P ' ° .. . • . . * . . -." . " . ... -". . " * *% ~ " .. , -. . * . . * 5- St , % . - . ',- ° % 5- • o.
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oscillators and amplifiers have been summarized. Dimensionless parameters are used to clarify

the trends for a wide range of FEL designs. The instability was first observed in the simulation of . -

short pulse oscillators, and then extended to long pulse oscillators. In this research, the trends of ,

the trapped-particle instability in short pulse oscillators, long pulse oscillators, and now long pulse -

amplifiers is compared. This research made the first simulations of the sideband instability in the

LLNL long pulse amplifiers. There are two publications:

"The Trapped-Particle Instability in Free-Electron Laser Oscillators and Amplifiers", W. B.

Colson, Proc. of the 1985 Free-Electron Laser Conference, Lake Tahoe CA (1986).

"The Effect of Electron Trapping in Free-Electron Laser Oscillators and Amplifiers", W. B.

Colson, Proceedings of the 1985 International Conf. on LASERs, Las Vegas CA (1986). A

These two documents are included at the end of this report.

Electron Beam Energy Spread and Emittance ,V

In an FEL, maintaining the coherence of the electron bunches over a significant interaction

length imposes important restrictions on the electron beam quality. An energy or angular spread
(due to emitance) contributes a random component to the electron motion that decreases the .'...-

coherent bunching in time. Some of the earliest FEL experiments used electron beams that were

essentially monoenergetic, but practically all subsequent experiments have made use of higher

current sources with significant energy spread or emittance. Many accelerators present a design

trade-off between high current and high beam quality. This makes it essential to accurately

evaluate the effects of beam quality in present and future experiments. It is particularly important ,"

for FELs designed to operate at XUV or X-ray wavelengths.

The theory presented here uses a convenient, yet powerful, method of including an arbitrary

electron distribution function in a self-consistent integral equation for the complex optical field.

FEL gain and the effects of beam quality can then be calculated analytically or integrated on a

small computer. Since the basic equations solved here are the same as in computer simulations .-

or the plasma dispersion methods, specific physical results have been shown to agree with those

methods when a direct comparison is possible. The computer simulations have proved to be a

useful method of understanding many aspects of the FEL interaction, but one of the most difficult - ,.

effects to accurately characterize is that of electron beam quality. Even a prohibitively large

number of sample particles is far short of the number in a real experiment, and yet introduces a " "?.'

large amount of numerical noise when distributed over a large volume of phase-space. To

reproduce some of the results shown later in this paper, we found the simulation method to be ,-.,-

several hundred to a thousand times less efficient. While many other FEL topics are most

..- S.- t. J'. .. .
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efficiently studied through simulations, the detrimental effects of beam quality are probably better

handled through a combination of analytic and numerical techniques.

The stability analysis used to obtain plasma dispersion relations usually calculates the

reduced FEL growth rates due to poor beam quality. This method can lead to analytical ' -

expressions, but depends upon specific models for the electron beam distribution, and does not

easily describe more complicated transient behavior where the FEL growth rate is not constant;

the FEL is often designed to operate in this regime. In addition, the exact formulation presented

here works smoothly between different regimes of operation like high and low gain. The only

requirement is weak optical fields.

An FEL with arbitrary beam quality is accurately described by the Lorentz-Maxwell equations . _

solved self-consistently in weak optical fields. The integral equation is formed by summing over

all electrons in the beam. The result has no reference to the electron phases and only involves

the optical field evolution. High gain growth rates can be recovered from the integral equation . .

analytically; the integral can be solved numerically for more complicated cases. Contour maps .

are used to show the gain degradation due to an electron beam energy spread and an electron
,V.. - - - ,

beam angular spread. In the limit of low gain, the gain spectrum is related to the spontaneous

emission line-shape through successively higher derivatives. In the limit of high gain, it is shown

that the growth rate becomes less susceptible to degradation from the electron beam quality. The

reference is

"Free-Electron Laser Gain Degradation and Electron Beam Quality", W. B. Colson, J. C. ,- 
'-

. '

Gallardo and P. M. Bosco, submitted to Physical Review A. *:'-3. *

The document report is included at the end of this report.

Understanding the Free Electron Laser Optical Self-Guiding Effect , -'

In the free electron laser (FEL) interaction the optical light wave and electrons travel

together through the periodic magnetic field of the undulator. Without the electron beam

interaction, the optical wavefronts propagate in vacuum and diffract according to Maxwell's wave
equation. Depending on the wavelength, diffraction can provide an important limitation to the

effective interaction length of the undulator. This would reduce the coupling of the electrons and "'a

light, because the light diffracts away the smaller electron beam.
. - ". ",

An important FEL effect is the optical guiding of light which focuses the light wave back into
the electron beam so the interaction strength can remain strong over long undulators. The e'.-%P.-P,

a %

existence of this effect is crucial to XUV application and high power FELs. This brief section

contains a simple understanding of how the self-guiding effect can work favorably for FELs.

.. ,. . .
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We start with the full optical wave equation

+ 2 ._ 4.. (3) N;

Using the slowly varying amplitude and phase approximation, the longitudinal derivatives in the

wave operator can be reduced to single derivatives, ik( a + c - 1 a,) where k is the optical
wavenumber. With the coordinate changes s = z - ct and r=ct/L we have

(3, + c - ,) -->L-1 a, where L is the length of the FEL undulator. The full wave equation is now
reduced to the parabolic wave equation, .',,.

112 14/2".'-'-"-'"

where x X(kl2L) 1/ and y = Y(kl2L) are dimensionless transverse coordinates, and a long

electron pulse has been assumed to give translational invariance in the z dimension. The

interacting current on the right hand side (r.h.s.) of the wave equation is determined by the Lorentz

force. The transverse motion of electrons is given by t = eY,/7 Ymc 2ko where ymc 2 is the electron ,

energy Ao = 2xlko is the undulator wavelength and 9. is the transverse undulator magnetic field.

i, The current is not examined in detail here, except to say that in the absence of diffraction, the FEL
interaction causes the optical phase to increase, AOFEL > 0 at the wavelength of maximum gain.

This is true in either the high or low gain regimes, has been observed in many simulations, and

can be shown analytically.-,

In order to study the modification of FEL interaction to diffraction we first try to understand

the diffraction process itself. So, the discussion proceeds with f. =0 in (3) and r.h.s. 0 in (4). .

The exact solution of (4) in this case over a finite time interval At is -. '-*

V V
2

A? %

., a(x,y, T+At )=e a(x,y,r) (5)

There is no restriction in (5) that the time interval At is small, but the equation does require . i

derivatives to infinite order. If the time interval At is small, then an approximate solution is_-.

a(x,ytc+Ac)=a(x,y,T)+ 2 Va(x,ytc)AT +... (4) -

The Laplacian VY 32 + 82 can be evaluated including only nearest neighbors. Propagation -

of the real and imaginary parts of the optical field ar (x,y) and ai (x,y) is accomplished with one "...

step for the following statements in Fortran.

...-V...- ,

.. ,...4.. ,
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# statement_
1 do 8 x=l,n-1 r
2 do 8 y=l,n-1
3 artmp=ar(x,y)
4 ardif=ar(x+l,y)+ar(x-l,y)+ar(x,y+l)+ar(x,y-1)
5 aidif=ai(x+l,y)+ai(x-l,y)+ai(x,y+l)+ai(x,y-1)
6 ar(x,y)=ar(x,y)-C*(aidif-4*ai(x,y)) * '

7 ai(x,y)=ai(x,y)+C*(ardif-4*artmp)
8 continue

The first two steps set up Fortran loops to line 8 over the array surface O<x <n and O<y <n.

The arrays a = (ar,ai) are dimensioned from 0 to n. In order to avoid sampling array elements

outside the window of width w, the loops only cover sites inside the edge. The third step •-
temporarily saves the real part of the field at the point (xy) to update the imaginary part in step 7.
Steps 4 and 5 evaluate the Laplacian for the real and imaginary parts of a (x ,y) using the nearest

neighbor differences at x ± 1 and y ± 1. The real part of a (xy) is updated in step 6 with the
coefficient C = At/4dx 2 where dx = w In. The number of time steps 1/At, and the window width, w,

Al
must both be large enough so that C is a small number. The sampling in n cannot be too large.
The reason for this is that diffraction in one time step must not take significant light past nearest

neighbors.

We see that the important small quantity in this expansion is At/4dx2. This algorithm has

been used on an IBM PC to explore diffraction properties in the free electron laser. In order to .-

understand the step by step process of diffraction, now rewrite the diffraction equations for one

small step At in a slightly different form.
',.e !

The sum of surrounding nearest neighbor points divided by 4 is defined as the average
value of the real or imaginary parts of the field i. The step equation for any field point a (x ,y) is -

then affected by its nearest neighbors Aa i (a - d) At/dX . The optical phase is given by ... ..

AO- (a, - E) A/ a I d x 2 . It is the optical phase over the wavefront that determines that

diffraction focuses the wave into or out of the the electron beam.

A wavefront that has curvature such that a, < ,, then the optical phase shift will be positive.
This corresponds to focusing of the wave. If a, > a, then the phase shift will be negative and the

4%S*"

wave expands in size away from the electron beam reducing coupling.

The FEL interaction also changes the optical phase with AOFEL, but opposite in sign to
natural diffraction. Diffraction causes a negative phase change while the FEL interaction causes a

positive phase change. The FEL interaction therefore decreases the effect of natural diffraction %

and focuses the wave back into the electron beam.
.4"-i"."- ."

i I..-'/..
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1. INTRODUCTION

The free electron laser (FEL) uses a high quality relativistic beam of electrons passing

through a periodic magnetic field to amplify a co-propagating optical wave (1 -4). In an oscillator

configuration, the light is stored between the mirrors of an open optical resonator, as shown in

Figure 1. In an amplifier configuration, the optical wave and an intense electron beam pass .*

• .. through a transversely undulating magnetic field to achieve high gain. In either case, the 4
electrons must spatially overlap the optical mode for good coupling. Typically, the peak electron
beam current varies from several amperes to many hundreds of amperes, and the electron energy

ranges from a few MeV to a few GeV. The electrons are the power source in a FEL, and provide

from a megawatt to more than a gigawatt flowing through the resonator or amplifier system. The
undulator resonantly couples the electrons to the transverse electrical field of the optical wave in

.. vacuum.

,...

.g.\.,j. L '-'"'- ' "-- ~~~ ~ .



.. JW

-2-

INJECTED EXITING
ELECTRON ELECTRON
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MIRROR MIRROR
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,%,

,.-. 'X.V .

Figure 1. The basic elements of a free electron laser (FEL) oscillator are a high quality

relativistic electron beam, an undulator magnet that causes the electrons to wiggle, and the
resonant optical cavity to provide feedback. 4. ,.

The basic mechanism of the coherent energy exchange is the bunching of the electrons at

optical wavelengths. Since the power source is large, even small coupling can result in a powerful

laser. Energy extraction of 5% of the electron beam energy has already been demonstrated. The ..

electron beam quality is crucial in maintaining the coupling over a significant interaction distance,

and of central importance to all FEL systems is the magnetic undulator. The peak undulator field ..

strength is usually several kG and can be constructed from coil windings or permanent magnets.

In the top part of Figure 2, the Halbach undulator design is shown for one period. The field can be

achieve:', to a good approximation, using permanent magnets made out of rare earth compounds,

a technique developed by K. Halbach (5) and now employed in most undulators. The undulator

wavelength is in the range of a few centimeters and the undulator length extends for a few meters, I
so that there are several hundreds periods for the interaction (6-8). The polarization of the

undulator can be either linear or circular or a combination (9). The optical wave has the same

polarization as the undulator driving it. This is an illustration of the FEL's most important

attribute-the flexibility of its design characteristics.

2
The transverse undulations of electrons with energy ymc generate spontaneous emission in ", '

a forward cone of angular width y-1. When the undulator fields are strong enough so that the -.

amplitude of the cone's oscillation off-axis is comparable to the cone's width, a detector on-axis at ,

infinity will begin to see several radiation harmonics (10). If the angular deviations of the cone are VAN

larger, then the spectrum becomes broad-band like the synchrotron emission from a bending

magnet. The total emission energy from a bending magnet and a FEL undulator are similar, but
the FEL spectrum is confined to a relatively narrow bandwidth because the electron motion is

periodic and the radiation cone stays on the undulator axis. The FEL gain-bandwidth falls within

the narrow spontaneous emission spectrum that is determined by the number of undulator

. °,'

"v*".,'v" ", "4 •" "" "' "" "" ," #" " "''. "r "" "" "* " "" "" "" "" "" ". ". -, ". . "." ,. ., .. .,",,".- , ", "o'. % ", ", ". ,' W ","".-".-":".,",= :- "-,
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periods. The laser line-width can be much narrower than the spontaneous line-width as in an

atomic laser; the narrow line and long coherence length are established by mode competition.

V.*- ,.- .'. !

U - i

.. • C, ,-..

411W
uni-for-m electrom-h bnched electr-ons .4

Figure 2. A practical design for constructing the undulator field is shown at the top where

eight permanent magnets are used to form one undulator period. The arrows show the

directions of the permanent magnetic field. The interaction of an initially azimuthally uniform

electron beam with the radiation in a FEL causes the electron beam to bunch in an optical

wavelength. It is this bunching that c, 9s coherent radiation.

The laser frequencies driven by the FEL mechanism are much higher than the oscillation

frequency of the electrons in the undulator. This is due to a large Lorentz contraction of the -4"

undulator wavelength and a large relativistic Doppler shift of the emitted radiation in the forward
direction. The relation between the undulator wavelength A,, the optical wavelength X, and the

electron beam energy is then X = X,/2y2 and the mechanism can be described as stimulated

Compton backscattering. It is the relativistic factor 2 that allows the FEL to reach short
wavelengths. Low energy beams (5 MeV) are being used to reach wavelengths longer than -

atomic lasers (500 lim) and high energy beams (1 GeV) are used for x-rays (500A,), as shown in

Table 1 (11-27). The FEL system is also continuously tunable merely by changing the electron

energy of the electron source. Figure 3 shows some FEL system configurations, which are

explained more fully in Section 2.

N*. ,o. .,*. --
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Table 1. Operation of free electron lasers .

Year of first

Name (Ref.) operation Wavelength Peak power Type a "

Stanford (11) 1976,1977 10 Im, 3.4 gim 130 kW A,O

Columbia (25) 1977 1.5 mm 8 MW ASE

NRL (26) 1977 400 gim 1 MW ASE "No

NRL/Columbia (23) 1978 400 gim 1 MW ASE,O ,',"
LANL (13) 1981,82 10.6 gm 10 MW A,O

NRL (12) 1981 4.6-3.1 mm 75 MW ASE.

1983 35 GHz 17 MW A

Orsay (15) 1981,1983 6500, 60 mW A,O

MSNW (14) 1982 10.6 gm b A

Frascati (22) 1983 5145 C A,O

TRW (16) 1983 1.57 gm 1.2 MW 0 ...

NRL (17) 1984 1 cm 20 MW ASE,..

MIT (19) 1984 4.3-1.7 cm 100 kW A "i

USCB (20) 1984 0.4 mm 8 kW 0

LLNL (18) 1984 8.6 mm 80 MW A

Hughes (21) 1984 1 cm 60 kW 0

Erevan (24) 1984 20-40 pm loW 0

Novosibirsk (27) 1984 6000 d A,O

- a A = amplifier, 0 = oscillator, ASE = amplified spontaneous emission.

b Output power not measured, but peak loss of electron energy was observed to be 9%.

", c With an input laser power of 6 W, a gain of 3xl 0-4 was measured.

d A gain of 1.5% was measured.

Figure 2 illustrates the basic bunching mechanism used to obtain coherent radiation. The

electrons leaving the accelerator are randomly positioned over many optical wavelengths. There On

are typically 107 electrons, or more, in each section of the electron beam one optical wavelength 4

.1', long. As the light and electrons interact at the beginning of the undulator, some electrons gain

energy and some lose energy. Those that gain energy move a little faster longitudinally and those

that lose energy move a little slower; this creates one bunch in each optical wavelength.

'I,

I =.4
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Some FEL Configurations

S 'ngJl PosS Storage Rng

o4-o

DC Recovery RiF Recovery Microtron

S: Figure 3. Free electron lasers can be in a variety of configurations, as depicted here. In

fact, three of the five types have already operated. -,

FELs have been described in a number of articles in the general scientific press (28-37). In

addition, there is a textbook and a number of review articles on the subject (38-40) and two

special issues of IEEE Journal of Quantum Electronics contained many papers on FELs (41, 42).

Finally, there are six volumes of conference proceedings that contain hundreds of papers and

provide a good introduction to the FEL literature (43-48).

2. GENERALITIES

2.1 History

The historical development of FELs can be traced back to the microwave tubes, backward

wave oscillators, traveling-wave tubes, magnetrons, and klystrons of the 1940s, shown at the top #.. ,

of Figure 4. The traveling-wave tubes were similar in structure to the FEL in that they used mildly
relativistic electrons traveling through periodically undulating electric or magnetic fields inside a

.- wave guide. The radiation wavelengths produced were in the centimeter range. A characteristic
of all such devices was the closed structure used to store the radiation. These electron tubes

were tunable by changing the electron energy and using higher harmonics, and high efficiencies
were common. While the Motz (49) tubes used the same configuration as the FEL, the operating -- ',

mechanism was different. A tube that used the same mechanism as that in a FEL was invented
• 

: .4-4':
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by Phillips (50), but J.M.J. Madey, the inventor of the FEL, was unaware of the Phillips tube,
although he did know of Motz's work. Shorter wavelengths could not be reached because

p..' .' .o

electrons did not oscillate fast enough and the closed resonator could not be made small enough. -" -

GENERAL HISTORY

Electron Tubes (1930's -> 1960's) -1
* free non-relativistic electrons
a microwave cavity

long wavelengths, tunable, efficient

Rtan & Molecular Loser-s (16''s -> now)

*kxourd elec tron u
Sopticd resonmator

short wavelengths ..

Free-Electron Losers (1976 -> now) ' S'
:free relativsti electrons VV

opticaesonator
• [-

short wavelkngths, tunoble, effiCi2nt -

Figure 4. FELs grew out of the development of electron tubes and atomic lasers. They .. ,
retain some of the good qualities of both.

Atomic lasers were invented in the 1960s and made use of two new concepts (51): excited e2 "

electrons in the bound states of atoms or molecules oscillated rapidly to produce optical radiation " .
and this radiation was stored in open optical resonator. r. ."

J.M.J. Madey's conception of the FEL (1) came from a mixture of the attributes of microwave /- ,"

tubes and the atomic laser: the Motz undulator and the optical resonator. The relativistic Lorentz
contraction and the Doppler shift produced high frequencies from the slower oscillations of the

electrons traveling near the speed of light. The FEL is tunable just as the early electron tubes .:.-

were but it works at short wavelengths. 4". -,

Independently, R. Palmer, P. Csonka, and K. Robinson were working on the coherent

emission of radiation by relativistic electron beams (52).

.'. 
.% ..

- , . ,
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2.2 Basic Concepts

A good theoretical approach to FELs is to solve the relativistic particle dynamics and couple,.

the solutions to the optical wave equation. The more sophisticated analytical methods employed

in the analysis of plasmas and lasers are appropriate, but generally not needed. The first classical ' 
-

theory was introduced by M.O. Scully, F. Hopf, et al [531.

The initial electron density has no structure on the scale of the FEL optical wavelength.

Individual electrons are only influenced by the radiation field, the undulator magnetic field, and '.

possibly the Coulomb fields of other electrons if the density is large enough. For typical undulator

fields and wavelengths, the radiation emitted spontaneously after just one pass is sufficient to

define a classical wave. The Lorentz force equations for an electron are

d%

dt mc .

=,0 (I. C) ",

where fA and 9, are the optical electric and magnetic fields, . is the undulator field, e = e I is %
the electron charge magnitude, c is the speed of light, m is the electron mass, Oc is the electron

velocity, and "nc is the electron energy. Only four of the five equations (Equations 1) are needed

to completely specify the problem. The undulator axis is taken along the z axis so that the .

transverse optical force with contributions from both Pr and Br is proportional to IA, I(1 - ,J. For

relativistic electrons (1- z1/2y, so that the transverse optical force is small; the optical electric

and magnetic forces combine almost to cancel when y >> 1.

In order to couple energy out of the electron beam, the time average of 0.E, must be

nonzero during the interaction time in the undulator. The role of the undulator is to rotate the _

transverse electron velocity as the field , passes over it. Note that in Equation (la) the

transverse electron motion is determined primarily by the undulator magnet since the transverse

optical force is small. However, a randomly distributed electron beam will have < 0-0A: > = 0 with

,- no net energy transfer. But, an energy modulation alters the electron z velocities to cause
bunching and coherent emission. While deflections off the mode axis are necessary for coupling, ,.. •

they cannot be too large, since the optical mode has a limited radial extent.

ft . 49*% %4,
%  

'
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A suitable undulator field (6) around the mode axis is
"-{[1 +k 2 (3X2 +., 2) / 8 ]COS(k"Z)-[x /4]sn,,)}i

B [ =B 1+ k. (x2 + 3y 2) / 8 ] sin(k.z) - [k2xy /4 ] cos(k.z)} (2) -

B, -B[1+k 2 (x2 +y 2 ) / 8 ][xsin(kz)+ycos(kz)]

where B is the peak field strength and X 2t/k. is the undulator wavelength. The electron .. 
' 

.

beams suitable for FELs must be sufficiently aligned so that the transverse excursions are small

compared to X. The average magnetic field strength increases off-axis so that the electrons are ., ...

focused toward the axis. When electrons are focused back toward the undulator axis, the

transverse oscillations are called betatron oscillations. Typical transverse excursions are small .,

enough that k~x and k,y are negligible. ' 'V"

With a small, high quality beam, the undulator field sampled by electrons is %. %-

(B cos(k.z), B sin(kz),O) and the orbits which are helical, are

,,=. '= [~~(-KI¥) C0S(k,,z), ( -K/ y) sin(kz), p=](3) - ,. ,.

where I= 1-(1 + K 2)/2Y 2 and K = eB X 2nMc 2. Typically K = 1 and one sees that the transverse

oscillations are small.

The optical field polarization that best couples to the above trajectory is given by the vector

potential
EA t)

A(z ,t) = sin[kz-ot+4(t)], coslkz-ot+(t)], 0 } (4)

where E (t) is the electric field magnitude, X = 2ic ho = 21Uk is the optical carrier wavelength, and

4(t) is the optical phase. No x or y dependence is included in A, for now, since we assume the .

electrons remain well inside the optical mode waist. The optical electric field is L -c-'ailat.

Inserting Lr2 and Equation (3) into Equation (1b) we have ... 4-.,'*,

dy _ eKE

dt- - ] cosl(ku+k)z - + .) +-

A particularly useful form of Equation (5) may be obtained in the case where the fractional " -,

energy change by/y<<1. Define the electron phase t(t)= (k. +k)z(t) -ot, then eliminate yt) -

from Equation (5) to get

.. ,
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ld 2c dv.
Nd-? dcr

I e where Ia =47tNeKLE/Y 2mc2 is the dimensionless optical field strength, c=ctlL is the

dimensionless time, L =N,, is the undulator length so that 0_ lI, and v = drdx is the electron

phase velocity. The electron dynamics have been put in the form of a pendulum equation [54]. , .

The evolution of each electron entering the FEL undulator follows Equation (6). Individual
} ",electrons are identified by their initial conditions C(O)= CO and v(0)=vo=L[k. +kflo,(0)-k]. In

weak fields I a I<<, and when Ia I>>, the fields are considered strong because the phases

R" evolve significantly in the time t 1. Experiments are usually designed so that the spread in -

electron velocities does not cause a spread in v0 greater than n. This can be adjusted by keeping
b. the length L small enough, but a better beam quality allows a greater length L and much more .J.- ..

%. gain. , S

The optical wave is governed by the wave equation driven by the current J,: %

72 ~2at2 J ,t)=- (zt) (7) /.t C2 Ct

where the (x,y) dependence has been dropped (see Section 5). The transverse electron current

'._" ~ is the sum of all particle currents V.

C 6e(3)[ 5e ,(8)
m

where ?,(t) is the trajectory of the mth electron and ( P. =(3,,PY,O). Even the spontaneous .-_-

'.4, emission spectrum in a FEL has a long coherence length so that the field E(t) and phase 4(t) can """

be taken to vary slowly over an optical period, (o. Then, the terms containing second derivatives

in Equation (7) are negligible compared to terms with single derivatives and
hJ :' -. .

-. (EeO (Ee'O) =- eKL _ 5(3)[- 5e~ t _e -.=

d'r c dr _14

. Then, the wave equation has the simple form%

L - %d
(9)

". dzr

r where a =a Ie'*, the dimensionless current density is j 8N (neKL)2 p/y 3 MC, p is the electron

particle density, and the angular brackets represent a normalized average over the electrons. If

% % .° ,

• = =~. Iq

. - .'. . ,,% -. , % , ., % .% . ,, . ....- , , %. ' . .-.. , . % .'{, , % . .. % . % . , .S
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electrons are bunched at the phase ic, then the optical amplitude is driven with strength j during

the time 0<T<1 and there is gain. If the phase 7r/2 is overpopulated, then the optical phase 0

grows with little gain. Usually, it is a combination of I a I and that is driven because the electron '. ',

bunching is not perfect.

Figure 5 shows the phase space evolution of a periodic section of the electron beam in the

(C,v) coordinates. The separatrix path shown is given by v, = 2 1 a I[1+sin(C + i0)]; the peak-to-

peak height is 41 a112 and the horizontal position is determined by 0. The "fluid" of electrons

starts equally populating all phases and at the phase velocity vo = 2.6 for maximum gain. As the
electron fluid evolves in Figure 5 it becomes darker, becoming black at 'r = 1. The final bunching

is near the phase it and the gain and optical phase shift evolution are shown at the right. The

initial optical field is weak a(O)=ao=1, and the final gain determined numerically is
G -[ a (1)1 a - (O)l/a 2(0)= 0. 135j. " "'-Z

XM FEL Phs Space Ev, .tcn M"
J=0.1 o-.O -2.6.

b .G/j 0.2 .A

-/j 0.2

*-4. c"~ .0
-r/2 3Tn/2 0 T

Figure 5. The electron phase space follows sample electrons through the undulator. The . ..

separatrix is shown as a guide to the phase space paths. The electron fluid grows darker as "

it passes through the undulator. (The same representation is employed in Figures 6 and 8.) Z1

Bunching at the phase n leads to gain, but also affects the optical phase.

While we have made a few assumptions, the "pendulum" and wave equations (Equations 6 %

C and 9) form a simple, powerful description of the FEL (54). They are valid for both weak (I a I <<n) . ..

and strong (la I>>n) optical fields in either high (>>1) or low (j<<l) gain conditions. It is
generally important that both the optical field amplitude and phase are included in the description.

J° °
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When the optical fields are weak, Equations (6) and (9) can be easily linearized in a ('C):

a=ij<exp[-i(CO+vo-r)]Cj>; =1I Icos(co+vo T+) , (10)

where () = d( )d T, C = o+ v o + C, and t is C expanded to lowest order in Ia I. For a uniform
beam distribution, the average of any quantityf is given by

2nr

the electron coordinates can be removed from Equation (10) and the optical field is determined by %

the roots to the cubic equation

with the field of the form -.

3

a = a oexp(-ivo'r) c, exp(a't)

where the c, are determined by initial conditions. If I vol >>n so that the FEL is far off-resonance,

the driving term j is negligible and the trivial uninteresting solution a=a o is obtained, i.e., no gain.

If the current density j is large, so that v0 is negligible, the important real root is Er' (j/2)' 34 3/2

giving exponential growth. The complex field is then described by

a ('r) = (a0 /3)exp[ (j/2) 3(43+i)'r/2) ], and the gain is exponential after an initial bunching time.
* 4% V .

Figure 6 shows the phase space evolution in the high gain case where j = 100. The
44 .%% 4.

electrons are started at vo0 = 0 to show how gain is achieved on-resonance. Bunching occurs at ..
the phase n/2, but in the high gain case a significant optical phase shift changes the position of the

separatrix so that, relative to the optical wave, bunching is at phase n. The resulting exponential
growth and phase evolution are shown on the right. The exponential gain only occurs after

. -..-.

bunching is established. -

•%
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0% FE:L PhaOse Space EvolutionM

I 
, ,1,.S

6=100 . ,O v=O.O 0.8

-. ) 1I •

p //

.1 . 7 -- -.

-6.oo" '.-.,'

- rr/20

'.. =", F'

Figure 6. In the high gain case, there is a substantial optical phase change shift, which then
an grows

shifts the separatrix. The height of the separatrix is proportional to the I I 2 and grows111 d ". 4

with the high gain.

In the low gain case, both v0 and j are important in Equation (11). The gain is no longer

exponential and all three roots are needed to find the final gain at -r = 1, which is given by

]2 

'N

[2-2cosvo-vosinvo] _ j d sinvi2)G (vo) =-j 1 2(1o(2)) ':''
VO 2 dv0 [(v /2)](

The gain is antisymmetric in vo and peaks at G = 0.135j with v0 = 2.6. Figure 7 shows the plot of -" -

(v0) above the accompanying optical phase shift 4(v0) =j[ 2sinvo - v0(1+cosv 0 ) ] 1v3. Note that

the gain spectrum can be written as the derivative of the spontaneous emission spectrum ..

sin(v0/2) / (vo/2) . This remains true for a large class of undulator designs and is known as the

Madey theorem [55]. The theorem states that when an undulator design produces a spectrum .

s(vo) the gain is proportional to the slope of the spectrum ds(vo)/dvo. A second theorem relates

the "second moment of the mean electron energy loss evaluated to first order in the optical field

strength," < [-/"j 2>, to the "mean energy loss evaluated to second order in the optical field

strength," < W2)>"

< 2) > =- < [ a1 ) 12 >.

a q II
. 2 D1-%
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YBI Gal, cand Phase Spectn~m RM~J"0. ao :, ',', ?

j-o.I 00=0o.1 .- : ..-
- .. '.1 -.J0.

"I."

-- .13S ""
-0.0

e -12.0 ID 12.0

Figure 7. The final gain and phase of the optical wave are plotted as a function of vo .

Experimental points are superimposed to show agreement between small amplitude theory

and experiment (Orsay) (89).

In the FEL oscillator, gain over many passes leads to strong fields. The spontaneous fields

either experience exponential growth or the repeated gain of Equation 12. In stronger fields 4-

where I a 1>, the gain process changes and begins to depend on Ia 1. Electron phases now

evolve too far in phase space and bunching is difficult to maintain. Figure 8 shows electrons in a

strong field ao Ia (0) I =8. The separatrix is now large and electrons are trapped in the closed

orbit region of phase space. Those near the harmonic circular paths oscillate around the phase
w!2 at a frequency I a 112; these oscillations are called synchrotron oscillations. There is a " '

decrease in gain, i.e., saturation. When the gain is reduced to equal the FEL system losses,

steady-state operation is established.

. N -'.
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Va FEL Phase Space Evobjtion .X'-

J=I. Oo 8.0 Y,=2.6 -

/. /j.

'JO.0

-B .O/ 0.1 . ..
ft.3

-r/2 3Tr/2 0 T

Figure 8. Phase space evolution in the strong field regime. The "synchrotron" motion of the ...

particles has led to saturation and energy is no longer transferred from the electrons to the. '-_,
optical wave. Even in saturation the phases of the optical wave evolves,.l"

Amethod used to extend the saturation limit of FELs was proposed by Kroll, Morton & """ ..
Rosenbluth (56) and is called the tapered undulator. As electrons lose energy to the optical wave, '",";

the undulator properties can be modified to accommodate the new electron energy. As 7'.i 3 "

decreases either the modulator wavelength, X., or field strength B, can be decreased to maintain" ""

,:..'-.

resonance. A simple case is that in which both B and X%, change along the undulator so that K is.:,,.-.

constant. When such a taper is included, the pendulum equation acquires an accelerating term,.".-'-
8 L dk,,(z )ldz," ""%

-6 ... -...-

+ a cos( + (13)

I n t he absence of t he f ield la e, electro ns app e ar to be "accelIe rated" to high er p has e ve loc iti es. I n ",. :.-

strong fields, about half the electron phases are trapped near the phase n, which drives the optical l

f,.'. -"f t ,
apiueagi.Figure 8. Phase spcvltion fina hesitong feleegime.The"synhrotron"motione thein

has occurred in strong fields a 40 and with tapering such that = 6fr. The untrapped electrons
are seen at the top of the phase space picture spread over the phase axis randomly. The gain is
higher than would be possible at this field strength without tapering. The tapered undulator is a

good example of the design flexibility of FELs. The undulator structure [length, polarization, .

,'_ Ics %.(3

Inth bsne fthiedI :.eetrn:apartob."celrte"tohghrphsvlciis.I
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wavelength profile, field profile B(z), etc] are all features that can be modified to enhance V

performance for a particular FEL application.

W FEL Phase Space Eyuticun ) M
j=1. o0--40 YO=o.o 6=6. r .

0. .- o

,O ---

v " ~0.01: '.

-30. %_.
-r,/2 3Ir/20 

Figure 9. In a tapered FEL some electrons are trapped near the phase that drives the , "

optical wave. The untrapped electrons are distributed over many phases and do not drive

the wave.
.'

An example proposed by Vinokurov & Shrinsky (57) is the klystron FEL (sometimes called a .

transverse optical klystron FEL, or TOK) where the undulator is split into two sections separated

by a drift or dispersive section. The purpose is to achieve higher gain for a given interaction

length L. The dispersive section acts like the bending magnet of an electron energy analyzer.

Small variations in the electron phase velocity v caused by the first undulator section are

translated into phase changes AC = Dv at the end of the dispersive magnet and the parameter D

measures the strength of the dispersive field. The theoretical description of the field and the

electrons uses Equations 6 and 9 with AC= Dv applied to each electron atr = 1/2. This results in

a higher degree of bunching, and therefore greater gain than given by Equation 12.

When the undulator is designed to have linear polarization, only the definitions of variables

in Equations 6 and 9 change while the form of the equations remains the same. The modifications

are a -- a [o(k)-j j(k) 1, j --)j[jo(k) -J() 12, where t= K/2(1 + K2), and B becomes the rms

undulator field strength.

.. ,..?..

SI'.. ,''
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-2.3 
Transverse Effects 

. .4

The one-dimensional analysis, which we have employed up to this point, leaves out all .', L -

., transverse effects except the simple periodic undulator motion.

.,First we discuss electron beam transverse effects. A helical undulator provides focusing of %1",%,

~"
.-'. ..

the electrons in both transverse planes. Sometimes a longitudinal, solenoidal field is employed so

as to give even more focusing. For some devices the cyclotron resonance in this field coincides,

or almost coincides, with the FEL resonance and makes the interpretation of these experiments

more complicated (12). On the other hand this juxtaposition appears to enhance the gain, but is

limited to long wavelength applications because of the upper limit on attainable solenoidal field

strengths.

For planar undulators there is only "natural" focusing in the plane perpendicular to the .

sinusoidal motion and the betatron wave number is kpy = eBI-mcy in the non-wiggle plane,

where B is the peak field. The resonance condition is maintained as a particle undergoes .

betatron oscillations. In the wiggle plane, generally some focusing is required (50, 58, 59). .

Quadrupoles, although they give focusing, seriously degrade FEL performance. A planar .A

undulator field is

B =-B cosh(ky) cos(k,,z) y+Bsinh(ky) sin(kz) ', .

so that the motion is

' 2
dx B I k2y2  '.

x'-= 1 2 + sin(kuz)dz y 2 . ,_..

and hence increases as y increases. This increase with y just balances the decrease of J

y'm dyldz when y increases and causes 0, to be constant. E. T. Scharlemann (60) has shown

how shaping the undulator pole faces with a slight parabolic curvature provides horizontal

focusing while maintaining 0, a constant of the motion. The curvature causes the field to increase "

off-axis and provides focusing in both x and y. If the pole face is given by y(x) = Y0(1 -k,14), _"__

then the focusing will be the same in x and y and the electron beam cross section will be round.... .

It is necessary, in any real FEL, to avoid resonances between the various frequencies to

which the particles are subject. For example, one must avoid a resonance between betatron -

oscillations and integral multiples of ?,. Also, one must avoid the usual coupling resonances

between the betatron oscillations in x and y. There is another kind of resonance that must also

S.h

S., 
. "

'S.- 
...
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be avoided: a synchro-betatron resonance between the "synchrotron motion" of trapped electrons

and transverse betatron motion (61, 62). ,.,,

We turn now to transverse effects of the electromagnetic wave. The simplest effect is the

excitation of cavity modes in an oscillator. Figure 10 shows this phenomenon in a computer

simulation of the original Stanford experiment where the electron beam has been moved off-axis

to excite a combination of higher order modes.
".t-.,. "- 2'.,'..

E(n)

JS ...
X-" n""250 I0 .0..0'n ,.' -

~..P",,, *o"

•o,m, ..

-10

Figure 10. Typically FELs are made to produce the fundamental mode in an optical ,.

resonator with a Gaussian shape in x and y. A higher order mode is excited here by moving

the electron beam off of the resonator axis. The theoretical calculation employed the
parameters of the original Stanford FEL (11).

The Rayleigh range is a measure of the effect of diffraction. For a light beam of radius w,
2-

the Rayleigh range z, = n X is the propagation distance over which the optical wavefront

doubles its area. In a proper FEL design one wants good overlap between the electron beam and

the light beam over the whole interaction length so that z, should be comparable to L. However, if

V the FEL has sufficiently high gain it can provide "guiding" to the light and keep it within the electron .

beam for many Rayleigh lengths, as in an optical fiber (63, 64). This is seen, dramatically, in

Figure 11.
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sin( + €) and cos(C + ). When there is gain, we know that the averages of sin and cos are

nonzero. % b

In the exponential growth regime one can evaluate the averages analytically (63-65). One %-0
simply augments the wave equation, Equation 7, with V 2 and then approximates this transverse

3 derivative with

v 2 

.,2k.

Zr

The result is that Equation 11 becomes for v = 0,
,..': 3 •2 v P f

(x, + h4 (L/z,) - (i12)j 0
e 1j

. where the length of the undulator is L. Thus the effect of diffraction and optical guiding are
included in a one-dimensional theory. Extension to a warm beam and to v0 0 can be found in the

quoted literature (63-65).

2.4 Longitudinal Effects

U The simple pendulum and wave equations (Equations 6 and 9) are valid for a single

complex field a = a e with only a single frequency, the carrier frequency o. A realistic FEL
oscillator, or amplifier, produces a spectrum of frequencies surrounding the carrier wave. Usually,
the coherence length extends over several optical wavelengths so that the slowly varying
amplitude and phase approximation remain valid. To generalize the optical field representation to
many modes, the single complex field a (Tr) becomes a (k ,'c) or a (z ,j).

Driving the carrier phase 0 in the center of the optical wavefront will focus the light along the
electron beam path. Even in low gain, diffraction couples the transverse and longitudinal waves.
The phase profile 0(z) in a low gain oscillator is determined by the resonator mirrors and their
Rayleigh length z. This causes a shift in frequency and a shift in the gain spectrum in an oscillator .

(66).

Often, the lack of distinct electron energy levels leads to questions about the ultimate P. A
coherence capabilities of FELs. In both the FEL and atomic laser, a long coherence length and
narrow frequency spectrum is determined by mode competition, not by energy levels. In the low
gain case, the weak field gain per pass in each mode is given by Equation 12. The number of
modes within the gain bandwidth is about y2 (typically y 2  1). Figure 12 shows the evolution of
100 optical wavelengths, around resonance. The spontaneous emission above resonance

-. . . . . .- . 5..- -. . . . .-
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experiences gain on every pass, while other wavelengths receive less gain or absorption. The
vertical scale follows the photon number il(%) over six orders of magnitude in 100 passes. The

spectrum clearly narrows as mode competition continues. The photon number evolves as

exp[G (L)n,], where n. is the pass number in the low gain oscillator where modes are uncoupled.

CONVENTIONAL UNDULATOR
12 17th= 4.9x i t=.o Figure 12. The growth of coherence in the

10 -

' n=100 optical wave is shown by following 100 modes
1010- n= 50

0 = from spontaneous emission. The photon density ',

n(,o) 108 at the wavelengths near peak gain grows more

106 rapidly than the densities at surrounding r

10 4 wavelengths. This narrows the spectrum after

only 100 passes. Evidently the laser can

become narrow-band.

4
Short pulse effects (67) in FELs can also be described by generalizing the field to a (k). An

essential concept is "slippage"; this is the distance that light travels over the electron beam while .:,

the electrons travel through the undulator. It is given by L(1 -3,) =NX using the FEL resonance

condition. The ratio of the slippage distance NX to the electron pulse length ( determines

whether or not short effects are important. If NX << cr,, then the pulse is considered long, and

each part of the pulse experiences gain proportional to the local density. If NX >> ar, then the FEL

has short pulses and the modal structure of the pulse is comparable to the gain bandwidth, ZN-"

Since electrons bunch when they reach the trailing edge of the optical pulse, the optical ,

pulse receives more gain on its trailing edge than on its leading edge and behaves as if it is

traveling slower than the speed of light, c. This effect is called "lethargy" (68) and must be -

considered in the oscillator FEL, where the resonator mirror spacing and the electron pulse

repetition time must be synchronized (69, 70). The range of mirror positions to achieve

synchronism is astonishingly small: only a 4-fim range was observed in the Stanford experiment. .

The amount of synchronism within the working range is important in determining the laser line- .. "

width and power. -:

Other longitudinal effects involve long pulses in the FEL. One is the "trapped particle" -

instability analyzed by Kroll & Rosenbluth (71). The synchrotron frequency a I"'1 can mix with ..
..-...:

= ***4



-21- P..e %
a. .4 ".m "'"

the carrier wave and produce sideband gain in the FEL. Figure 13 shows the growth of sideband

structure in Ia(z) I and i(z). A window section of a long pulse is four slippage distances long

(-2 < zIN < 2). The field I a (z) I is plotted at the top left, with bright regions indicating an

intense field and dark regions indicating a low field region. The pass number is plotted along the

vertical axis. The "trapped particle" instability starts a modulation in the field magnitude Ia(z) : ,.,

and the phase 0(z) with a period equal to the slippage distance. The final spectrum, the Fourier

transform of a(z), is shown with its sideband on the bottom right; above is the weak field gain

spectrum for reference. The final electron energy spectrum is shown above the gain spectrum.

The power and net gain evolution are plotted on the upper right as a function of pass number n. .0..-

The trapped particle instability is expected in nearly all FELs that saturate because of strong

fields.

NOMM1881 FE_ Modes MXV"l, ,...'~3~3~l~l~F~h.'... .. ?

j.6 0=8 0 ld scde 40

Ia(h I Opt ical Field ntensi tw Po.-r,
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" - 0 ... •...

0'0
1 5 0.-.0...:.0 4 . .....,
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• a. .n -. t •.
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Figure 13. When the electron synchrotron oscillations mix with the carrier wave, sidebands
can be formed. Over many passes the optical wave develops a modulation whose period """. -

matches the synchrotron period. The optical power increases with the addition of energy of . %. -

the sideband. :
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In a linearly polarized undulator, the electron z motion is more complex than in the helical

case because there is a periodic oscillation of the electron z velocity even when injected perfectly.

The oscillation in zAz, is given by kAz =- ksin(2kct) where k = K 2/2(1 + K2). Since typically
K = 1, the oscillations are a sizeable fraction of the optical carrier wavelength and lead to . -

spontaneous emission and gain in higher optical harmonics (72). To generalize Equations 6 and .

9 for a harmonic hk, make the replacements C -- hlC, v -> hv,

a -- ah[J(hl12(ht) -J(h+l), 2 (ht) 1, andj -- jh[J(h l)12(ht) -,(h+y)2(ht) 2.

The form of the equations stays the same, only the couplings are modified. Note that there is gain

only in the odd harmonics h = 1,3,5,- --. If the undulator field is large enough so that K>2, then

the coupling to higher harmonics is very strong. Several of the FEL experiments to date have

observed coherent emission into higher harmonics, and it should prove to be a useful technique

for reaching shorter wavelengths in a FEEL.

3. Free Electron Laser Systems

FELs can be made in a variety of configurations as is depicted schematically in Figure 3. In

Section 2 we describe in more detail a particular linac oscillator, a linac amplifier, and a storage
ring oscillator experiment. FEL systems are rapidly evolving and in the future can be expected to - "

be quite different from those described here.

In Table 1 we presented a compendium of those FELs that haiie operated. Many more FEL
devices are under construction and, as one can see from the dates in Table 1, these devices are

being brought into operation at an ever-increasing rate. In 'Table 2 (73-87) we present a -

representative list of FEL accelerators.

Of great importance to FELs are electron beams of high quality. Two figures of merit of "

quality, for a given current, are energy spread and brightness. The brightness is defined by
J"21 2 4 V,and becomes a measure of "goodness," where I is the current enclosed within the

transverse 4-volume (84V -- x'8yy'). For uniform phase space density, the brightness can be

approximated by J = 21/y 28x8x' BySy'. The quality of a beam depends upon the parameters of
the accelerator, the type of accelerator, and, of course, with what care it is aligned, etc. In Table 2
we present brightness and energy spread for a number of accelerators. As one can deduce, the 7 ,

expected performance of FELs far exceeds present achievements." -

The development of FELs has been the result of both theoretical advances, which we . ,

emphasized in this article, and of experimental advances. In fact, without the latter, we would only
have an empty theoretical structure. The experimentalists who have been instrumental in the

**,,* ,.... . . . . . ..
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development of FELs are many in number and, of course, are cited in the references, but special

note should be taken of the work of C. A. Brau, D. Prosnitz, D. A. G. Deacon, J. Eckstein, L.

Elias, E. Shaw, S. Skrinski, B. Kincaid, C. Pellegrini, J. M. Ortega, M. W. Poole, A. Renieri, P.

Elleaume, T. Smith, A. Gover, J. A. Edighoffer, J. M. Slater, D. Dattoli, V. Granatstein, B.

Newman, R. Warren, T. Marshall, J. Walsh, R. Pantell, J. Pasour, and Y. Petroff.

ze-
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Some FEL accelerators

Accelerator' Beam Peak Pulse length Pulse Beam brightness Ay / y

energy beam rep. rate (Hz) (/cM 2 rad 2)

(MeV) current(A) 
- .

ETA (IL) 5 1.000 15 ns1. 10d

(at 2.5 MeV)b

ATA (IL) 5 ,0-000 5 s1056I0

Osaka (RF) 20-38 1,000-3,000 16 ps 1.0-720 1.8-5.4x1 07 7x10-3

* LANL (RF) 20 3565 40 ps (micro) 1.0 7.OxlO 2x1 0'
100 jis (macro)

UC Santa Barbara (DC) 2.5 1.25 30 n-dc 3.8xl 06b8

.- Stanford SCA (RF) 80-1 20 4 2 ps (micro) 10 8xl 0'-1-

10 ms (macro)

LLNL High Brightness 2 20-900 70 ns 1 I.5X1 05

Test Stand (IL) -

% Bell Labs Microtron 10-20 1-5 l0 pS (micro) 100 4.2x1 02,

% ~10 lis (macro)
UKRVia R)3-0 0060p mco 0 .x0 0

44

8.5 ps (macro)

Frascati ENEA Microtron 20 6.5 23 p: (micro) 10 5x01.l

12ts(macro)
Inuton(L 0.55-0.75 200 2 jis single shot 6.4xl 03  3A 2

MIT Pulsed Device 2.0 1,100 20Ons 0.01 1.4x 1Or <0.01

Orsay ACO (SR) 163 3.3 0.5-1 ns 27 MHz 3.8x1 0' 103

Stanford SXRC Ring (SR) 1.2GeV 270 33 Ps 20 MHz 4x1 0e 6X10-4
% . 04

Orsay Super ACO (SR) 400 50 25-300 Ps 4.8 MHz 1.7X1 011 3x10'

LBL Design (SR) 750 327 41 ps 2 MHz 2.8xl0' 2A10-3 A

aIL = induction linac, RF =rf linac, SR -storage ring, DC -DC accelerator.

bEdge emittance, i.e. area of x-x' phase space :hat includes all of the beam. -. *

10 c le in x and Ile in x' emittance, or approximately 9 times edge brightness.
8 

-1

Ayy unmeasurably small; variation of y during a pulse.

'estimated. 5I0
do

8%
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3.1 The Linac Oscillator

The experiment of the TRW Group (15) serves to illustrate the linac oscillator. The ,

superconducting accelerator at Stanford has a bunch length 4.2 ps, a peak current of 0.5 - 2.5 A,,J'

and at 66 MeV an energy spread of 0.03% and a beam emittance of 1.5nxl0 ' cm• rad. The %

optical cavity had mirrors 12.68 m apart with a 7.5-m radius of curvature. At the optical . ..

wavelength of 1.57 lim, the reflectivity was 99.84%. The undulator consisted of pairs of linear

arrays of SmCO 5 permanent magnets with wavelength X., = 3.6 cm and a peak field of 2.9 kG.

The experiment was designed to study the effect of tapering. Furthermore they devised an

optical klystron so the multicomponent undulator had the following structure. First, there was a

prebuncher section of 15 periods, then a magnetic dispersion section of two periods and a total

length of 58.6 cm. Then 90 periods followed that could be tapered and, finally, 15 periods of "-" -

constant undulator. The tapered part was varied to be a 0, 1, and 2% taper in energy. Beam

diagnostics consisted of 14 insertable fluorescent screens so as to be sure the beam was steered

properly and the mirrors were aligned using a green light laser.

With a 1% taper, the FEL had an average output laser power of 4W and the peak power was -

1.2 MW. Since the mirror transmission was 0.13% on each end of the cavity, the intracavity

optical power was 11 GW cm-. The repetition rate was 10 Hz and the macro-pulse length 5 ms

with the micropulse of 4 ps. The radiation fundamental was at 1.57km and the laser bandwidth V, N,'

was 1.3%.
% %

Above threshold for the laser, the power increased by a factor of 101° over that of the ".- -

spontaneous radiation! The FEL took 305 passages at a gain of 7% per pass to get to 10% of the A -

saturated level. The experimenters also observed coherent radiation at the second and third

harmonic of 1.6 Im.

A study was made of the effect of tapering the undulator. For an untapered case the St* :

electron transfer of energy, efficiency, should be (1/2N). The efficiency was measured to be 0.4%,

which compares well with the expected value. With a 1% taper the electrons clearly divided into

two groups: trapped and untrapped. Most of the electrons (60%) were trapped and decelerated

1-1.8% while the untrapped electrons were unchanged in energy. Thus the beneficial effect of .

tapering was demonstrated.

. ,, -Z-
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3.2 The Linac Amplifier

The experiment of the LBL / LLNL is representative of linac amplifier FELs (18,88). The FEL -'

was run as a single-pass amplifier in the microwave range at 34.6 GHz. The input signal was

supplied by a magnetron of peak power 60 kW and a pulse length of 500 ns.

Use was made of the LLNL Experimental Test Accelerator (ETA) (73) to provide a 6-kA, 3.3 I.

MeV beam with emittance of 0.23 nt cm • rad. An emittance filter was used to reduce the beam

current to approximately 500 A with a normalized edge emittance of 0.47 X cm -rad. The highly

chromatic transport of the ETA beam-line and matching quadrupoles results in a 15-ns, nearly

monoenergetic, beam delivered to the interaction region.

The undulator magnet was three meters long, and the undulator period was 9.8 cm. The
"4. , .l

longitudinal variation of the undulator field provided strong vertical focusing. Horizontally focusing

quadrupole magnets, surrounding the undulator, provided horizontal focusing while only slightly.,- ..

reducing the vertical focusing and negligibly affecting the FEL resonance condition.

The interaction waveguide was a rectangular, oversized waveguide immersed in the

undulator. The inside dimensions of the waveguide were 9.83 cm wide by 2.91 cm high. The

electric field was horizontal and coupled to the TEO, waveguide mode, which was excited by the

input microwave signal. "V ,.

The signal gain in the amplified spontaneous emission mode (no microwave input signal)

was measured and it was found that the microwave signal grew at a rate of 13.4 dB per meter for

a beam current of 450 A. Extrapolating this growth back to the origin, one finds that the effective

input noise was 0.35 W.

The amplifier gain was studied both as a function of undulator magnetic field intensity and as

a function of undulator length. The peak output power of 80 MW was achieved for both the 2 m

and 3 m long undulator. The amplifier went into saturation at 2.2 m; beyond this point, the

amplified output power first decreased and then near 3 m started to increase again. The gain as a

function of undulator length showed an exponential gain of approximately 15.6 dB m -1 up to

saturation. This was in close agreement with the small signal gain measurement. The gain

curves for the 1-m and 2-m undulators are relatively symmetric about the peak, while the gain

Z: -



-27-

curve for the 3 m long wiggler shows a marked asymmetry with a plateau on the long wavelength

side of the curve. This asymmetry at saturation is also shown in the numerical simulations.

... undulator parameters (so as to avoid saturation at 80 MW) are to be undertaken in the near future.

kWhat has been shown, so far, is that a FEL can be operated in the high gain regime (Gain>

2500). 
-"

3.3 Storage RingsI - . . .C

The first, and so far the only, operation of a storage ring FEL oscillator was achieved by the

Orsay-Stanford collaboration using the Orsay ring ACO (16, 89). This laser operated in the visible

", .- , range, at 65000, and produced 75 j.W average power or 60 mW output peak power. The

~ ,, intracavity peak optical power was 2 kW.

5%!" The ACO storage ring has a circumference of 22 m and was operated between 160 and 166

,, MeV. Two bunches were employed, with the average current between 16 and 100 mA. The rms

bunch length was (in time units) 0.5 to 1 ns and the energy spread (rms) 0.9x10 to 1.3x10- 3

Because of the strong radiation damping, the transverse size (rms) was 0.3 to 0.5 mm, ,°.'!o ,

corresponding to an angular spread of 0.1 to 0.2 mrad. 0. ",,

The optical cavity was 5,5 m long so the round-trip time resonated with the 11 m between

electron bunches. The mirror radius was 3 m, the Rayleigh range 1 m. Although the mirror

%'.r transmission was only 3x10 -5, the round-trip cavity loss was 7x104, primarily because of

absorption in the mirror dielectric. In fact, there was mirror degradation due to the radiation

- "harmonics of the undulator, which forced the experimentalists to operate ACO at a reduced

., ,. energy (originally they had expected to be at 240 MeV) and to operate the undulator at reduced

I magnetic field (K = 1.1 to 1.2), both effects tending, of course, to reduce the flux at higher

harmonics.

The permanent magnet undulator had 17 periods with a period of 7.8 cm, and a total length

of 1.33 m. It was operated as an optical klystron in order to increase the gain per pass. This

increased the gain by a factor of 2 to 7 so as to reach 2x1 0. per pass. Lasing with such low gain ":d.- .'.

5.,/,

_, 
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required careful alignment of the electron beam onto the axis of the optical cavity, high quality

mirrors, as well as precise synchronism between the light pulse reflections and the electron bunch ,

revolution frequency. The detuning curve gave only a 1.6 gm full width at half maximum near . -

laser threshold. -- -

The laser time pulse structure was a series of pulses and showed the electron rf synchrotron

frequency (13 kHz), and the 27.2-MHz bunch frequency. The time sequence of pulses is

understood as a consequence of theoretical study (90). In frequency space the laser had three

lines (near 6500 A with the dominant one at 6475 A. All the lines, corresponding to maximum

gains in the klystron FEL, were in the TEM oo mode. The width of the lines was 2-4 ,. Tunability . "..

was over 50 A and limited by mirror reflectivity.

.K The storage ring FEL is the only configuration mentioned where the FEL feeds back on the . .

electron source. On each pass the working FEL "heats" the electron beam by introducing an .

energy spread. Synchrotron radiation P,,, from the bending magnets in the ring damps the

excitations. The laser power at saturation is determined by thermodynamic equilibrium, which

results in weak tields; this is the Renieri limit (91), Plxae = P,,,,/2N. The efficiency of the FEL was

, only 2.4x1 0- , which is 0.4 of the prediction of Renieri for this case.

3.4 Extensions

We have seen that FELs can be expected to be efficient, powerful, reliable, tunable sources

of radiation in a wide range of wavelengths. In fact, FELs have already been made to operate

from the microwave range down to the visible range. It is reasonable to expect that soon we shall

have FELs readily available, for many different applications, from microwave wavelengths to soft

-" x-ray wavelengths. When augmented with atomic and molecular lasers and conventional radio -

tube sources, we can expect to have coherent radiation sources throughout the radiation

-" spectrum (currently, one can see one's way to 300 A). .

Why then should one develop even more devices? Clearly, because they can be design for

special purposes, have special properties, be less expensive, more efficient, etc. The -

development of FELs is far from completed and really only starting; a number of extensions of

-. " ,.. . . ... .
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FELs appear to be possible. Here, we mention a few of them and refer the interested reader to

the appropriate literature.

In the microwave range it is possible to apply a longitudinal magnetic field of sufficient

strength that the cyclotron frequency resonates with the radiation frequency. Thus one can

arrange a device where there is coincidence between the FEL resonance and the cyclotron

resonance as described in Section 2.3 (12, 92, 93).

%: It is possible to replace the undulator with an electromagnetic field. The attainable magnetic

field of an rf wave is less than that of a static or pulsed magnetic field, but the wavelength of the

"undu!ator" can be made less than that of a conventional undulator. Thus, one can get to short

wavelengths with a low energy electron beam. The use of an rf wave as an undulator has already

been demonstrated (94) and demonstration has been made of an electromagnetic wave undulator

FEL by an NRL group (95). This group had the electron beam produce 500 MW of 12.5-GHz

radiation through a backward wave oscillator mechanism, and then used this radiation as an

undulator for FEL action. In this manner they produced 200-GHz radiation with peak power, not

yet optimized, of 0.35 MW. The Santa Barbara group (96) plans to employ the same idea, but use -4

the FEL mechanism to generate the rf field of an "undulator" in a "two-stage FEL."

We have concentrated upon so-called "Compton regime FELs" where there is a strong
.I interaction between the electrons and the optical wave, but where the interaction between
.j

electrons is small. In the opposite case, where the electrons interact strongly through Coulomb

forces so that a density fluctuations, or plasmon, description of the electron beam is more

appropriate, the FEL is said to be in the "Raman regime." An understanding of the collective

regime, the Raman regime, is more difficult than that of the Compton regime but offers distinctive

features. Experiments (12) have demonstrated 6% conversion efficiency, and large power

emission (75 MW) in this regime. One can expect more development of these devices in future

years (97).

An interesting extension of the FEL is to operate in a dielectric media (98, 99). Gas loading,

, .- , for this is the manner proposed to realize the dielectric media, changes the phase-matching

condition and so allows a wider parameter space than the vacuum FEL. In fact, this extension

....................................-- -- - -,% :----- ..-..
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1- . can be nontrivial and would appear to allow operation, for example, at smaller undulator magnetic

fields than in the conventional FEL. The resonance condition, for relativistic electrons is
n - 1 (1 + K2)/2y 2, for a medium having an index of refraction n. Note that the (n -1)

term can easily be comparable to the usual (1/2X) FEL term. One can think of this device as

being a suitable combination of the Cerenkov effect and the FEL resonance.

Another interesting extension of a conventional FEL is to have an undulator in an i -I
isochronous storage ring (100, 101) in which particles with different energies take exactly the

same time to go around the ring. Thus bunching at optical wavelengths is preserved around the

ring. Most rings do not have this property and thus the electron bunch on entering the undulator is r

I-. essentially a "new bunch" with random phases. Rings can be made isochronous, to some degree, .1

so that the bunching of a FEL can be preserved. Clearly this is advantageous, and it can be done - "

so as preserve far-infrared wavelength bunching as has been shown on BESSY (102). A FEL

using this concept has not yet been made; it is doubtful that the technique can be extended into '

the visible, but for the infrared it could make a very interesting device. . .

Finally, it should be emphasized that "pushing" FELs to shorter and shorter wavelengths, as

has been spearheaded by J. M. J. Made, and C. Pellegrini, may require no "new inventions," but '

nevertheless be difficult and a significaf, extension. This subject, as one might expect, has

received considerable attention (85, 87, 103, 104). Suffice it to say here that it appears possible S.

to construct a FEL oscillator down to about 500 A, and a single-pass FEL growing from noise to

about 300 A. Just what the limits are remains to be seen, but extending the Orsay achievement

by an order of magnitude appears to be possible.
i? ,.•--
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The Trapped-Particle Instability in
: Free Electron Laser Oscillators and Amplifiers ""

: W. B. Colso,,

Berkeley Research Associates, P.O. Box 241, Berkeley, California 94701

ABSTRACT

The electrons in a high-power free-electron laser can become trapped and

.~: oscillate in deep potential wells. The oscillating component of the current drives

the optical field at frequencies around the fundamental. General features of the

trapped-particle instability in free-electron laser oscillators and amplifiers are
Z; discussed. Dimensionless parameters clarify the trends for a wide range of FEL

designs.

1. Introduction

The free-electron laser (FEL) uses a relativistic, high-current electron beam to amplify a

copropagating electromagnetic wave [1]. The optical wave and electrons are coupled as they

pass through a periodic, transverse magnetic field undulator. A common goal of both the FEL

oscillator [2], and the FEL amplifier [3] is large optical power. In strong optical fields, the electrons

can be trapped in deep potential wells formed by the combined optical and undulator field forces.

Electrons near the bottom of the well oscillate in harmonic orbits at the synchrotron frequency.

The synchrotron frequency mixes with the optical carrier wave frequency to form sidebands, and

the growth of the sideband power is the trapped-particle instability. In both the amplifier and the

overmoded oscillator configurations, the optical amplitude and phase are free to evolve over a -..

N wide range so that complicated optical spectra can result from sideband mixing. In this paper, we

try to choose examples that clearly show the features of the trapped-particle instability with a
minimum of complication from further sideband mixing.

• =. .. •. 5-.

Historically, the instability was first predicted for high-power, low-gain tapered FELs with
many synchrotron oscillations in a single pass through the undulator 14]. Later, it was seen in the

simulations of pulsed FEL oscillators, and found to have some different properties than originally

",t .. -. . '.
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predicted [5-7]. The instability has been clearly observed in the high-power FEL oscillator at

LANL [2], and possibly in the TRW/Stanford oscillator [8]. It has been termed the sideband, Kroll- *

Rosenbluth, synchrotron, Raman, and the trapped-particle instability [9-231. There can be a rich *

assortment of varied effects ranging from a single sideband to a chaotic frequency spectrum [22].
The shape of ultra-short optical pulse can be controlled to form shorter subpulses in FEL

oscillators [5,6,13,21).

Any FEL working at high power is susceptible to the instability. Tapered undulators are

used to extend the FEL performance to higher power levels [9], but appear to have less sideband
growth. The tapered undulator design is changed along its length to maintain resonance with the

electrons as they lose energy to the optical wave. We review simulations of the instability in FEL
oscillators, and present new results of the instability in FEL amplifiers. Dimensionless variables

are used to determine important regimes of operation. a

2. Multimode FEL Theory

The wave equation determines the evolution of the radiation field in the presence of the
electron current. The carrier wave with frequency (o =kc = 21w /X has the single-mode phase
e i k -" and a complex slowly-varying coefficient. Transverse (K ,Y) dependence is not included,
since most EL designs attempt to minimize the effects of optical diffraction and mode coupling.. .

The intention here is to clarify longitudinal multimode effects without distractions from other FEL .-

topics; many of the effects can be approximately characterized by adjusting the coupling factors in

the wave equation. Multimode features are followed with a complex field envelope

'. ,-

aN [2], and) eossibevalnathed aRtanfosret osiltes z8. Withabenrd the slowly-varyiogl-mplitude and

derivative in time [24]. The dimensionless optical field envelope is a(z)=4iNCKLE (z )Yrc 2  
*-, -

where N is the number of undulator periods, e is the electron charge magnitude, L=NXO = 2?rN/k 0

is the undulator length, K = eB X0i21mc, B is the rms undulator field strength, m is the electron

mass, c is the speed of light, E(z) is the complex optical electric field, and yrc is the resonant 6 -.- -

2-. . ,.. ...

electron energy, y0 = k (1+K 2)/2k(, for yo>l. A resonant electron passes through one wavelength
of the undulator as one wavelength of light passes over it. The dimensionless coordinate

z = ZINX is normalized to the "slippage distance" N , the characteristic length along the

longitudinal axis in EELs. It is defined by the number of optical wavelengths that pass over a
resonant electron as that electron traverses the undulator length L. Simulations of the EEL mode

evolution take place within a window of width V along z that is an integral number of slippage

%

2- . . . t imode~ FE Thor .*4****** -. *** *.* . .-
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distances long.

Electrons in the beam are governed by the Lorentz force. When the relativistic electrons

(yo>>l) are properly injected into the undulator, the transverse electron motion is periodic with

amplitude Kk,/2 to and phase exp(ikoZ). The electron beam travels along the undulator at an
22average speed 1Poc where 0o =1- (1+K2 )/ 2yo. At any dimensionless time T= oCt/L,electrons at--

coordinate z+1r in the electron beam overlap the light at site z in the optical wave. The electron

phase relative to the optical wave and undulator field is C= (k+ko)Z- cOt, and the phase velocity is

v= =L [ Pko-k(1-) ]; a resonant electron hasv=O. The Maxwell-Lorentz equations [24] are %

h(z) =-U(z+T) < [ 1 -v (z+0)/2nN ] "2 e-' (--) >

(z +'r) =v (z+-)=8+[1 -v(z+r)/2 N ]2 la(z)lcos(C(z+':)+.(z)) .

where the dimensionless current density is j(z) = 8N(7reKL) 2p(z)/y7omc 2 , p(z) is the actual particle ,* ,

density at site z, time derivatives are with respect to the dimensionless time 'r (note that 'r = 0--1

along the undulator length L), and <...> is an average over sample electrons at site z+t in the

electron beam. Since we have assumed a slowly-varying amplitude and phase for a (z), the

sampling sites z can be taken to be several optical wavelengths apart. The dimensionless current

density j(z) can describe a short, peaked electron pulse or a long, flat beam.

The acceleration term 8 has been inserted to characterize a possible taper in the undulator

design [9]. This can be accomplished by tapering the wavelength X0, or the field strength B. As

an example, a steady taper in the undulator field strength gives 5 = - 47TNK (+K 2) -iLdK/dZ. No
taper in the undulator properties implies 8 = 0. The accelerating term 8 in (1) acts continuously to . -%

restore the resonance condition as the electrons lose energy to the laser light. The factors

[1-vi2mV] in (1) are close to unity unless the electrons lose a significant fraction of their energy. A

large change in v, comparable to 27rN, can drastically change the electron-optical coupling

strength. We take N 30 in our examples, since recent oscillator and amplifier experiments have

been in that range [2,3].

The dimensionless variables in (1) have been defined to have meaningful physical _

interpretations for a wide range of FEL designs. Weak optical fields give values of Ia I <n, while

strong fields give values of I a >1r. The electron-optical coupling is only significant for lvi not too

large, so that the oscillating optical and undulator forces are nearly resonant. The optical power

spectrum P(k) is made more relevant by expressing k, the optical wavenumber, in terms of the .

corresponding resonance parameter v (k); similarly, the electron distribution function f(y) is

- AIIIII,
'..* .. ..
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expressed in terms of v (y). The power spectrum P(v (k)) and the electron distribution function

f(v (y)) are more physically meaningful in terms of their effect on the resonance condition. The
%Vdimensionless current density j represents low single-pass gain when j=1, and high gain when , " '-

j>>l. Typically, the FEL oscillator configuration uses jzl, while the FEL amplifier configuration

uses j>>l. When Eqs. (1) [24] are cast in dimensional form, they are the same as the Kroll-

Morton-Rosenbluth equations [251.

Initial conditions are important to the integration of (1). We represent the beam at each z

with a uniform distribution of initial phases ('r=0) over a 2n range; the initial optical phase is

therefore arbitrary and we take O(T=0) = 0 for each z. In both the amplifier and oscillator cases, JA

we start the optical field at low values a('r=0) =a 0 , well below saturation. The initial resonance

condition v (T=0) =vo is taken to be at the maximum of the weak-field gain spectrum. For small

current j and weak fields ao<<l, the gain found from (1) is G = 0.135j at vo = 2.6; for large

current and weak fields, the gain is G = exp((j/2)113 )/9 at vo = 0. The FEL system would ,

norma!ly develop significant coherence and power at vo before going on to saturation. ,',

3. Trapped-Particle Oscillations

Before starting multimode simulations, it is instructive to present a phase-space picture of

the motion of trapped electrons. Fig. 1 shows the (, v ) phase-space evolution of six sample -:

electrons in a strong optical field a0 = 4n2 ; this field strength causes one oscillation of the trapped

electrons. Many more electrons are used in the simulation, but only six are shown to keep the .-

picture less cluttered. At c= 0, the electron positions are indicated as light grey spots started at

v0 =2.6 and uniformly spread in phase. They are indicated by darker spots as 'C increases, andr ,

are black at c = 1. A 2n span in phase C corresponds to a span along the electron beam about

one optical wavelength in length. Electron motion in v corresponds to changes in electron energy -
through v = 2rN( y- yo) / yo. Most of the electrons shown in Fig. 1 are trapped in closed orbits
indicating a strong optical field. The gain, In(l+G) where G =(Ia 12-a 2) 1a 2, is plotted to the

right as a function of t along the undulator. As bunching develops, the gain and the optical phase

N(T) grow as shown. The final gain here is small, because the FEL is well into saturation for this fr.

current density, j =5, and strong field [a I. Fig. 1 is a single-mode simulation since all sites z

have been given the same values of vo, and a (z) = ao.

5-i ):::!i
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with the initial position vo). The case shown in Fig. 1 has 5 = 0 with small energy extraction,

since the changes in resonance are <<2rN and N = 30. The synchrotron, or trapped-particle,

oscillation frequency is vs (a 0 sin( a ) )'/ = , '2 when 51a 0 <<1. When the trapped electrons -, '.

oscillate through a synchrotron cycle, the gain in Fig. 1 also oscillates through one cycle. It is the

oscillation in the driving phase and the FEL gain that causes the trapped-particle frequency to be ' "

imposed on the optical wave as it slips over electrons. The sidebands appear at vo ± vs, so that

the new FEL power is shifted from the fundamental wavelength by &VX = vs/2i.N. The shift has a
simple interpretation; A/= "the number of synchrotron oscillations"/ "the number of undulator
periods". ,, -

4. Short Pulse Oscillators

RF accelerators inject a series of short picosecond pulses into the FEL undulator in the

oscitlator configuration [2]. The optical pulses start from spontaneous emission, and bounce

between the mirrors of an optical resonator separated by a distance S >L. High-power saturation

is reached after several hundred passes, and the FEL works in steady-state for an additional 103

to 14 passes. The current density of each short pulse j(z) is taken to be parabolic with the form

j(z)=j (1 -2z 2 I) for Iz I< a,14 _ and j(z)=0 for Iz I> a./NF; the FWHM a, is normalized to

the slippage distance NX. Typically, RF accelerators produce current densities that give values of .- -. ,-

j in the moderate range 1-> 10 and a, = 1--) 30. In addition to gain, there is loss on each pass . -.

due to mirror absorption and transmission; in the absence of gain, the optical power decays as

e' IQ where n is the pass number. Usually, Q is from 10- 200. i -

An important concept in the short pulse FEL configuration is the matching of the electron .

pulse repetition frequency and the bounce frequency of the light pulse in the resonator 2Sc. '

These frequencies must be closely synchronized so that each new electron pulse arrives at the

beginning of the undulator simultaneous to the rebounding optical pulse. Define d, the

"desynchronism," as the displacement between the pulses on each pass; if the mirrors are too

close together by the distance AS, then d = 2AS/NX. The desynchronism d is important to pulse

evolution and final saturation. When Id I is too large, the electron and optical pulses do not

overlap over a sufficient number of passes and the FEL is below threshold coupling. Surprisingly, .

when d = 0, exact synchronism, the FEL is also below threshold [5-7,11-13,21]; this effect has --

been termed "laser lethargy" [121. Because of slippage, the gain is preferentially deposited on the .
%" I

trailing edge of the optical pulse; therefore, the optical pulse centroid actually travels slower than c ""

in vacuum, and the frequency 2Sc is overestimated. To compensate for the "lethargic" light, the

nC.L
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pathS must be reduced by operating at d>O. Maximum power is obtained at small d>0. The

final steady-state power P (d) is sharply peaked at d z 0, and slopes to zero as d increases.

.X FEL Pulse Propogation UE""
i=S-az=l0 d=0.02
Q=10 a/I=O N=30

so P(n) :31!2.5 '.--...
50

0 00o)

IT

P=O P, '."

-8.0 z 8. -38 .

Fig. 2. Several pictures show the results of a short-pulse oscillator simulation affected by

the trapped-particle instability. The optical power P (n) and gain G (n) evolve through n=600

passes of the oscillator. The final optical field amplitude Ia(z) I and phase 4(z) are

modulated with the synchrotron period vs = 27c while being driven on each pass by the

electron pulse j(z+tr). G(v) is the weak-field gain spectrum showing the position of
maximum gain for the fundamental; the final opticai power spectrum P(v) has additional -

sidebands vo ± vs due to the instability. The final electron distribution f (v) is broad because

of the strong fields. ..

Figure 2 displays the output of a short pulse simulation for n = 600 passes with j = 5,

SC= 10, N =30, 8=0 (no taper), d=0.02, and Q =10. The Q is low in this example so that

sidebands will not mix further to produce a chaotic spectrum. After many passes, the initial l

'%'°*.**
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conditions are inconsequential, and we look for a final steady-state solution at saturation. The .3 -

lower left picture shows the electron pulse shape before (,c = 0) and after (tr = 1) slippage of one

unit. The evolution of the pulses is followed in a window of width W = 16 so that -W/2<z <W/2.

The upper left figures show the final optical field amplitude I a (z) I and the optical phase profile L .- "

0(z). The jumps in phase by 21c are meaningless, but the slope of the phase profile is a change in

the laser light wavenumber and a resonance change Av (k)=- 0'(z) away from vo. The grey

scale on )(z) shows the local frequency component matching the gain spectrum G (v) on the right.

The grey scale superimposed on the field amplitude above shows the gain experienced by each .-.-

part of la(z) I on the last pass in the undulator. This grey scale matches the scale in the gain,* -

evolution G (n) picture on the right. The top right figure follows the power P (n) averaged over all '"

the sites in the window. Second on the right is G (n) which is the net gain over the whole pulse. 'a",,

Third is the final electron distribution f (v), and fifth is the final optical power spectrum P (v) found "'-

from the Fourier transform of a (z). The fourth picture G(v) is the weak-field, single-mode gain

spectrum for the current density j on a single pass; it is included for reference. ' "

The output of the simulation shows that the FEL oscillator has reached saturation with peak

fields near I a I= 40. On each pass, those electrons that are near the center of the pulse, and

have initial phases that allow them to become trapped, encounter fields strong enough to cause -

about one synchrotron oscillation. Normal saturation takes place early and the power is steady for
about 350 passes; then the power increases again with the onset of the instability. The extra

power is in the sidebands and the fundamental remains saturated [17,23]. Strong optical fields ..

and the resulting trapped-particle oscillations must occur before there is significant gain at the -

, sideband frequency vs. A simple calculation shows that the field component at the sideband , .

frequency vs grows as -

a (vs)= s exp ((js1/4s)1 2') (3)

where vs = I a 11/2 at saturation, as is the initial sideband field at vs, and js is the trapped fraction ' ,

of j; typically, js=(0.1--0.5)j. In this simulation, (jsl4vs) 2 =0.3 and the loss rate is

(2 Q)- - 0.05, so the sideband gain is above threshold. The sideband structure is clear in
a (z) I, and the power spectrum P (v). The modulation length is close to the slippage distance

indicating one synchrotron oscillation of the trapped electrons each pass, and the sideband P (v) -

occurs at vs = 2n above the fundamental. At the ends of the pulse where the fields are weaker, *. " "',"

the sideband period is slightly longer, in agreement with (2). The full-width of the electron -

distribution is given by the height of the closed-orbit region in phase-space, 41 I 112

* 'a " 4 ' , 4,-4.., -. - '*.
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The general features of the trapped-particle instability in short-pulse FELs are briefly

outlined below [21]; many features have now been observed in experiments [2,8,111.

., 1. At small d>O, the FEL usually reaches power levels large enough to cause the trapped-

particle instability. In this case, the optical pulse will be centered on the electron pulse, and VL4_.

will have sharp spikes due to the instability. This gives a broad, possibly chaotic, optical

power spectrum, and a broad electron distribution.

2. At large d, the steady-state power is smaller due to the reduced coupling, and the trapped-

particle instability is less likely to occur. The final optical power spectrum is narrow and in a

single-mode; the final electron distribution is narrow due to the weak optical fields. Since the

optical pulse is advanced by a large d on every pass, the center of the optical pulse may

actually be ahead of the electron pulse. If the trapped-particle instability is undesirable in an

FEL application, it may be easily removed by increasing d.

3. When d is in the intermediate range, we have often observed limit-cycle behavior in the

simulations [5,6,13,21]. In this case, the pulse continually changes shape while the

trapped-particle instability creates new subpulses.

4. Increasing the current density j or the resonator Q increases the steady-state power; this
increases the synchrotron frequency and the sideband gain. The addition of sideband -

power is cumulative, since the presence of a strong sideband again increases the steady-

state power. Simple modulation as shown in Fig. 2 is not the usual case; most parameter

choices lead to a chaotic optical spectrum with many random spikes due to further sideband

mixing [221. S, . .

5. If taper is introduced into the undulator design, the synchrotron frequency is only slightly

modified. But, the depth of the strong-field potential wells is significantly reduced, and a

L. smaller fraction of the electrons are trapped in closed harmonic orbits. Tapered undulators

"' reduce the sideband gain and tend to suppress the trapped-particle instability [2,13,22,23]. -

6. When the pulse length a, is near unity, the short-pulse effects can be dramatic [11].

Adjusting d affects the total power, the electron distribution, and the optical pulse structure

as outlined above. Since the sideband modulation first appears near the slippage distance U;

(normalized to unity), a short pulse may not be long enough to support modulation at the "- ".

synchrotron frequency. Depending on d the optical pulse can be made significantly shorter,

or longer, than the picosecond electron pulse. '-',. .,

. , , ,* ?-
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~..



-10- .P,#.

5. Long-Pulse Oscillators, "Wrapped-Windows"

In long electron pulses ( a,>>1 ) distant slippage sections of length Az=1 are largely

uncoupled and evolve independently in a window W>a,>>1. Simulations can become time

consuming and require large amounts of memory. The straight-forward method used in Fig. 2

becomes wasteful because many of the slippage sections have similar evolutions. A better way to .

solve the problem [17,22,23] is by sampling a smaller window W<<c, with periodic bounoary

conditions C (z-W/2)= (z+W/2). This restricts the number of modes that can be examined. ,.

Using a number of sites Nw in the window W we only represent modes v, = vo - (2 T1 W)( 1-Nwl2)

where the integer 1 =0, 1, 2 ..., Nw-1; the mode spacing is Avr =21r/W. With the periodic r

boundary conditions applied to the ends of the windows, we call them "wrapped-window"

simulations.

Fig. 3 shows the result of a simulation in a window W = 4. The FEL is described by j = 5,

Q = 10, N = 30, and 8 = 0 as in Fig. 2. Without pulses, d and a, don't enter the problem. The .

individual pictures are the same as in Fig. 2 except for the reference to the pulse shape and

slippage. The electron current density j(z) is constant along the window with a small amount of ,.

random noise 8j = 0.01j at each site. Without noise, every site z would evolve identically and no 4

spectral features would develop, but specific sources of noise can vary from one experiment to the

next. The dimensionless current density j depends on several physical quantities which could

contribute noise. Fluctuations of the electron particle density p(z), or undulator errors in K2 , are .

both candidates.

After n = 600 passes, the steady-state optical fields peak near I a = 40 just as in Fig. 2, and

the final power spectrum P (v) is nearly identical to Fig. 2. Yet, this wrapped-window simulation - -

takes only 1/4 the computer time of the pulse simulation; a smaller window W 2 would save
more time and give the same result.

V V-
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2. When there is taper in the undulator design, the instability is less severe for the same

reasons stated above. ,'

3. Some source of noise is essential, but details are not important in the oscillator case. For - .

pulse simulations no random noise is introduced, since the spectral features of the electron

pulse structure are sufficient. In fact, we typically see the sideband modulations start at the - -

ends of the electron pulse where the Fourier components are larger. In the FEL oscillator

case, there are one or more synchrotron oscillations each pass. Over many hundreds of

passes, the stored optical wave "sees" many synchrotron oscillations, and even modest

sideband gain above threshold gives enormous growth from a small amount of noise. The ....

resulting steady-state features are not affected by the details of the noise source employed.

6. High-Current FEL Amplifiers a

The FEL amplifier uses a high current density j>>1 to reach high-power in a single pass. It -

is possbe to attain values of j = 1 04 41 0s with the use of induction linac accelerators and long

undulators [3]. The electron pulses are much longer than the slippage distance, a, - 00, and the

wrapped-window simulation method becomes essential. The FEL growth rates are so large that 4

electrons are trapped early in the undulator and begin executing synchrotron oscillations. There

can be from several to many tens of synchrotron oscillations along the undulator, but these are the

only synchrotron oscillations experienced by the optical field. Even with far fewer synchrotron

cycles than in the oscillator case, the large current density j can give significant sideband gain

once trapping occurs.

Fig. 4 shows the final simulation output for an FEL with high current j = 5x10 , no taper ,'-

8 =0, an initial field ao = 20 starting at vo = 0, and N = 30. A small amount of noise is introduced

over a wide range of frequencies using Sj = 0.01j; in addition, there is a specific and comparable r..
contribution from an initial sideband field as = 0.1 at vs = 16nt. A high-current beam with some of

the electrons trapped by strong fields will provide a source for as; small fluctuations from shot

noise or spontaneous emission in the average <...> lead to significant contributions to as because "* *.

j is large. The power evolution P (c) shows about eight synchrotron oscillations; these oscillations

in a (r) are converted to the a (z) modulation through the trapped-particle instability. The sideband

appears to grow at a rate consistent with (3) as soon as the field I a (I) I becomes sufficiently -
strong to cause trapped particle oscillations. The final field modulation and sideband in the power

spectrum are clear.

-. -,- -
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Fig. 4. In the high-current FEL amplifier, the trapped-particle instability must occur in one

pass. In much stronger optical fields, the trapped electrons experience eight synchrotron ~-

oscillations, and impose a corresponding modulation onto the optical wave envelope.

Sidebands are spaced at vs= 16nr.

-The general characteristics of wrapped-window simulations for FEL amplifiers are different

in many ways from the oscillator case. There is no resonator Q to consider, and sources of noise

are much more important to FEL amplifiers than to EEL oscillators.

1 . As with the oscillator cases, large j makes the trapped-particle instability more severe.

However, it is only the large values of j that have a possibility of developing a sideband

comparable in power to the fundamental. Using (3) we can evaluate the current j* needed ~ ~

for the sideband field as to become equal to the fundamental amplitude a = VS2. We '

estimate that most of the current is trapped in harmonic orbits, Is 0.75j*, in the high

S4.°- % "
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current case. With high current, the potential well that traps electrons grows rapidly in height

and forces most of the current into harmonic orbits.

j°=20 vs In2 VS/- (4) ,-

Assume that at least a few synchrotron oscillations ( say vs =16ir) are necessary for the -,

optical wave to pick up the synchrotron frequency. The initial sideband field is estimated at

as = 0.1 for these high current cases; j only has a logarithmic dependence on as so that -

the estimate is not crucial. Then, we find that a characteristic current density j = 3x10 4 is

needed before sidebands can significantly alter the final FEL amplifier spectrum, and . -

currents below j* are not as susceptible to the trapped-particle instability. The example in

Fig. 4 uses j = 5x104 > j° for this reason. We found the trapped-particle instability difficult ..

to excite when j--j*.

2. When there is taper in the undulator design, the instability is less severe for the same

reasons as with the FEL oscillators. Less current is trapped and the synchrotron oscillations

have a smaller amplitude.

3. Unlike the FEL oscillators, the spectral features of noise are important to sideband growth in 4-

the FEL amplifier. Suppression of input noise at the sideband frequency could be an

important method for avoiding the trapped-particle instability in amplifiers. However, shot ...

noise and spontaneous emission cannot be eliminated, and are significant contributions at "

these current densities.

4. The high current necessary for the trapped-particle instability, also plays a role in

suppressing it. For such large j>j*, there is no steady-state achieved even in strong fields . ...

I a I; the power continues to increase and so does the synchrotron frequency. This can be

seen in P(r) of Fig. 4. As the synchrotron frequency changes, the sideband power at a

particular frequency does not accumulate.

In conclusion, we note that the trapped-particle instability is more likely to be found in the

FEL oscillator than in the FEL amplifier, even though it was first predicted for the amplifier case.

This is due to the large number of synchrotron oscillations experienced by the light stored in the

oscillator resonator for many passes. However, the adjustable desynchronism d (and even a
* ,. - , .

wavelength selective Q (v(X)) can make it relatively easy to reduce the trapped-particle instability

., in the oscillator case, while the FEL amplifier allows no such control in just one pass. To suppress ,. ..

sidebands in the amplifier, it may prove most fruitful to explore particular taper designs b(Z), the .

A~ -A
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input wavelength vo(.) and field strength ao, and controllable sources of noise like undulator ...

errors and current fluctuations. It should also be remembered that while the trapped-particle

instability has already been observed in the FEL oscillator, it has not yet been found in the FEL

amplifier.
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The Effect of Electron Trapping in

Free-Electron Laser Oscillators and Amplifiers

W. B. Colson

Berkeley Research Associates, P.O. Box 241, Berkeley, California 94701

ABSTRACT

In high-power free-electron lasers, the electrons can become trapped in deep

potential wells formed by the combined opl;cal and undulator field forces. The "

trapped current oscillates at the synchrotron frequency, and can drive the optical

wave at sideband frequencies around the fundamental. This "trapped-particle

instability" can occur in both the oscillator and amplifier configurations.

1. Introduction

Many free-electron laser (FEL) oscillators [1], and FEL amplifiers [2] are designed to pro-

duce large optical power. In both configurations, a relativistic, high-current electron beam .'%

amplifies a copropagating electromagnetic wave as they pass through a periodic, transverse mag-

netic field undulator. The trapped-particle instability starts when electrons become trapped in

deep potential wells formed by the combined optical and undulator fields. Electrons near the bot-

tom of the well oscillate in harmonic orbits at the synchrotron frequency causing the carrier wave

• ~to develop sidebands. The "trapped-particle instability" was first predicted using a single-mode

theory describing high-power, low-gain FEL oscillators with a tapered undulator [3]; the tapered

undulator design reaches high power by trapping electrons in potential wells that remain resonant

S'.as the electrons lose energy [4]. At the same time, multimode simulations of short-pulse FEL

In oscillators observed the effects of the instability as pulse modulation [5-7]. Recently, the instability i l

has been observed in the high-power gEL oscillator at LANL [1], and possibly in the

* TRW/Stanford oscillator [8]. It has been termed the sideband, Kroll-Rosenbluth, synchrotron, '.-.

i'4' Raman, and the trapped-particle instability [9-23]. Here, the multimode sideband theory is -. ,

I 'reviewed with examples from short-pulse FELs, oscillators, and amplifiers. Common features and

differences are discussed.
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lator electromagnetic fields. When the relativistic electrons of energy y0mc2 (yo>l) are properly ~

injected into the undulator, the transverse electron motion is periodic with amplitude KX, /27ryo and

phase exp(ik 0 Z) where K = eB?92m e is the electron charge magnitude, B is the rms undu-

speed of light in vacuum. The average speed of the beam along the Z-axis is .c where

.1 (1+K )/ 2y2. We follow the beam evolution with the dimensionless time" Poc,L 0-0

along the undulatorlength L = n 0with N periods.

The light wave evolves in the presence of the electron beam according to the transverse
iwave equation. The optical carrier wave with frequency = kc = 2nc iX has the single-mode

phase exp[i(kZ-o)] and a complex slowly-varying coefficient a g(z) = aR(z) + iar(z) a (z) I e

evaluated at many discrete sites z. The dimensionless coordinate z is the ratio Z/NX where the

"slippage distance" NX is defined by the number of optical wavelengths that pass over a resonant

electron as that electron traverses the undulator length L. With the slowly-varying amplitude and-.

phase approximation, and the coordinate change Z-Zc the wave operator reduces to a sing e

*derivative in time. The dimensionless optical field envelope is a (z) = 4tNeKLE (zl)/Y 2C2 where

E(z) is the complex optical electric field, and yomc 2 is the resonant electron energy,

yo = k(1+K 2)/2k0. Simulations take place within a window of width W along z that is an integral ,..

number of slippage distances long. At any t, electrons at coordinate z +,t in the electron beam

overlap the light at coordinate z in the optical wave. The electron phase relative to the optical

wave and undulator fields is C= (k+ko)Z-ot, and the phase velocity is v= C=L[ (k+ko)P1, -k ]. "

The self-consistent electron and optical equations 124] are

V(z-+"'r [)1 -v (z +T)/2rN 12 ( aR(z)cos( C (z+')) -ai(z)sin( C (z+,E)) ) (1)

(z +') = v(z +) (2) . .

6R (z)=-j (z +) < 1 -v (z +t)/2,N 12 COS( (z +,I)) > (3)

a, (z) j j(z + ) < I I - v (z + c)/2lcN ] 2sin( C (z+ "[) ) > (4) . ..., -

where the dimensionless current density is j(z) = 8N(e7zKL) 2p(z)/yomc 2 . p(z) is the actual particle
density at site z, time derivatives are with respect to the dimensionless time 'r, and < ... > is an-

average over sample electrons at site z + t in the electron beam.

. 1. -n7
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In order to maintain strong coupling between the electrons and light, the phase velocity v

cannot be too far from resonance, v = 0. The initial resonance condition v (-t=0) = vo is taken to be .. ,,.-

at the maximum of the weak-field gain spectrum. In both the amplifier and oscillator cases, we

start the optical field at low values a (t=O)= a0, well below saturation. The dimensionless current

density j represents low single-pass gain when j=1, and high gain when j >>1. Typically, the FEL .4
,. -oscillator configuration uses jzl, while the FEL amplifier configuration uses j>>1. Weak optical'.

fields give values of I a I <n, while strong fields give values of I a I >n. For small current and weak -

fields, maximum gain is at vo = 2.6; for large current and weak fields, maximum gain is at vo = 0. -,, .-

The electron beam at each z has a uniform distribution of initial phases t (-x=0) over a 21r range so
that the initial optical phase is arbitrary; we take 0(,=O) = 0 at each z. The factors [1-v/2nN] in .-

(1)-( 4 are close to unity unless the electrons lose a significant fraction of their energy and

become less relativistic. Electron motion in terms of v corresponds to changes in the electron

energy through the relation v = 4iN( y- yo) IYo. We take N = 50 in our examples as a common

value typical of both amplifiers and oscillators. The final optical power spectrum P(k) is made

more re!evant by expressing k, the optical wavenumber, in terms of the corresponding resonance

parameter v (k); similarly, the electron distribution function f (y) is expressed in terms of v (,). The

power spectrum P (v (k)) and the electron distribution function f (v (y)) are more physically mean-

ingful in terms of their affect on the resonance condition.

The single-mode version of (1)-(4) is obtained by removing all z dependence; all sites are

given the same initial values of 0, vo, and a(z) = a0. An estimate of the trapped-particle motion is

obtained by considering the electrons in harmonic orbits near the stable fixed-point n/ it2. With . ..

j not too large, and and small energy extraction (N>>1), Ia remains approximately constant
during the synchrotron oscillations at saturation. Then, the motion of a trapped electron is

r(r) = C*+ ( vo / v. ) sin( Vs'r) with the initial position (*, vo). The synchrotron or trapped-particle

oscillation frequency is Vs ao 2 . When the trapped electrons oscillate through a synchrotron

cycle, part of the current driving the optical field in (3) and (4) also oscillates through one cycle. It

is the oscillation of the driving phase in the average <...> that causes the trapped-particle fre- -. ,

quency to be imposed on the optical wave as it slips over electrons. The sidebands appear at -.

vo ± vs, so that the new FEL power is shifted from the fundamental wavelength by A'. = vs/2itN. NN-- N

The shift has a simple interpretation; AX/%: "the number of synchrotron oscillations"/ "the number ' -

of undulator periods".

Qk .-

'A % * %"N,
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3. The Trapped-Particle Instability in Short-Pulse Oscillators

An FEL oscillator that is powered by an RF accelerator injects a series of short picosecond

electron pulses into the undulator while the optical pulse bounces between mirrors separated by a

distance S>L. High-power saturation is reached after many passes, and the FEL continues to -

work for an additional 103 to 104 passes. The current density of each short pulse j(z) is taken to

be parabolic with the form ji(z)=j ( 1 - 2z2/a.) for Iz I< ,/7-'N and j(z)=0 for [z I> a, /VS; the

length a. is normalized by the slippage distance NX. Typically, RF accelerators produce current ,,

densities which give values of j in the moderate range 1 -> 100 and a, = 1 -> 30. The loss on each

pass (due to mirror absorption and transmission) is described by e-
nle where n is the pass

number. Usually, Q is from 2-> 200.

The repetition frequency of successive electron pulses must be matched to the bounce fre-

quency of the light pulse, 2Sc. When synchronized, each new electron pulse arrives at the begin-
. ning of the undulator simultaneous to the rebounding optical pulse. The "desynchronism,"

d = 2AS. ;,/,, is the displacement between the pulses after each pass when the mirrors are
separated by S -AS. If I d I is too large, the electron and optical pulses do not overlap for a

sufficient number of passes and the FEL operates below threshold coupling. If d = 0, exact syn-

chronism, the FEL is also below threshold [5-7,11-14,21] due to an effect termed "laser lethargy"

[121. Because of slippage, gain is preferentially deposited on the trailing edge of the optical pulse
causing the optical pulse centroid to travel slower than c in vacuum; therefore, the optical bounce

frequency 2Sc is overestimated. To compensate for the "lethargic" light, the path S must be -

reduced by operating at d>0.

-- p
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* t**t FEL FUse Propagation "
j=20 z=12 d=O.04

0=3 N=50 .
S II
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0S
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-10.0 z 10.0-38 Y 38

Fig. 1. Driven by the short electron pulse j(z-i-t), the trapped-particle instability has modulated
the optical pulse envelope a (z) at the synchrotron period N17 z2n. The totl optical power
P (n) and gain G (n) reach steady-state after n =400 passes through the oscillator. G (v) is
the weak-field gain spectrum, included for reference. The final optical power spectrum P (v)

. •.

has an additional sideband at v0 + vs due to the instability. The final electron distribution
f (v) is broad because of the strong fields.

A short-pulse simulation is shown in Fig. 1. Steady-state is reached after ni 400 passes
with moderately high current j = 20, an intermediate pulse length CF. = 12, N = 50, desynchronism

*d = 0.04, and Q=3. Large output coupling is used ( low Q ) because the gain is far above thres-
hold. The top right figure follows the power P (n) averaged over the whole window. Second on
the right is the net gain G (n) experienced by the pulse each pass. The lower left picture shows
the electron pulse shape before (T= 0) and after (t 1) the slippage of one unit per pass in a win-
dow of width W = 20. The upper left f igures show the f inal optical f ield amplitude I a (z) I and the
optical phase profile O(z) plotted along z where -W/12<z<W12. The jumps in phase of 2nt are p
meaningless, but the slope of the phase profile indicates a local change in the laser light

• . . ..-
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wavenumber and a resonance change AW (k) =-'(z) away from vo. The grey scale on ¢(z)

shows the local frequency component matching the gain spectrum G (v) on the right. The grey , ...

scale superimposed on the field amplitude shows the local gain experienced by each part of a (z)

on the last pass in the undulator. This grey scale matches the scale in G (n) pictured on the right.

Third on the right is the final electron distribution f (v), and fifth is the final optical power spectrum i, ;

P (v) found from the Fourier transform of a (z). The fourth picture G (v) is the weak-field gain spec-

trum for the current density j = 20.

~,-.The simulation has reached saturation with peak fields near Ia I = 60. Each pass, those

_ ~~electrons near the center of the pulse, that become trapped, encounter fields strong enough to ,- ....

cause about one synchrotron oscillation since 4a_ = 2n. Normal saturation takes place early and C..,

the power is steady for about 50 passes; then the power increases again as the sideband grows. .I
Strong optical fields and the resulting trapped-particle oscillations must occur before there is '

significant gain at the sideband frequency Vs. The extra power is in the sidebands and the funda-

mental remains saturated [17,23]. A simple calculation shows that the field component at the " --

sideband frequency grows as a (T) = as exp ((ji/4vs) 112 ' ) where vs = I a 1112 at saturation, and as is

. the initial sideband field at vs. In this simulation, (j/4vs)112= 0.8 and the loss rate is

. -(2 Q)- -0.2, so the sideband gain is above threshold. The sideband structure is clear in

.-. la (z) 1, and the power spectrum P (v). The modulation length is close to the slippage distance s,

indicating vs = 2nt, and the sideband in P (v) occurs at Av = 2r above the fundamental. The full-

width of the electron distribution is given by the height of the closed-orbit region in phase-space,

41,a Ii l2

The characteristics of the trapped-particle instability in short-pulse FELs are briefly outlined "'

.- below [21]. Most characteristics have now been confirmed by experiments [1,8,11]. '' " "

1. At small d>0, the FEL usually reaches power levels large enough to cause the trapped-

particle instability. This gives a broad, possibly chaotic, optical power spectrum, and a

broad electron distribution. ,.

2. At large d, the steady-state power is small due to the reduced coupling, and the trapped-

particle instability is less likely to occur. The final optical power spectrum is narrow and in a ,

single-mode; the final electron distribution is narrow due to the weak optical fields.

7-. -.
5.= - .* j,=
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d ...:.



-7 N ~ J ~ W T P ~ ~ -

% *% -

3. When d is in the intermediate range, we have often observed limit-cycle behavior in the

simulations [5,6,13,21]. In this case, the pulse continually changes shape while the

trapped-particle instability creates new subpulses. %

4. Increasing the current density j or the resonator Q increases the steady-state power, the

synchrotron frequency, and the sideband gain. The addition of sideband power is cumula-

tive, since the presence of a strong sideband again increases the steady-state power.

5. If taper is introduce into the undulator design, the synchrotron frequency is only slightly .

modified, and the sideband gain is reduced [13,22,23].

6. When the pulse length a, is near unity, the short-pulse effects can be dramatic [11]. Since ' . ..'

the sideband modulation first appears near the slippage distance, a short pulse may not be ." ,'

" long enough to support modulation at the synchrotron frequency. The optical pulse can be%

made significantly shorter or longer than the picosecond electron pulse by adjusting d.

-,-

4. Simulations in a "Wrapped-Window"

If the electron pulse is not short (a,>>1) it is prudent to simulate the FEL by sampling a A 0..
%I

smaller window W<< with periodic boundary conditions such that C (z-W/2) = t (z+W/2); these -

can be called "wrapped-window" simulations [17,22,23]. Using a number of sites Nv in a window
of width W we follow a restricted number of modes v1=vo-(2tdW)(l-Nw/2) where

I = 0, 1, 2, ..., Nv-1; the mode spacing is Av = 21r/W. The desynchronism d and the pulse length A

cr, don't enter the problem, and the current density j(z)=j is constant along the window..

The FEL simulation in Fig. 2 uses j =20, Q =3, and N =50 (as in Fig. 1), but for a long

pulse a,>>W= 4. The individual pictures are the same as in Fig. 1 except for the reference to .

pulse shape. Without some noise source, no power would develop at frequencies other than the

*fundamental and every site z would evolve identically. Specific sources of noise can vary from

one experiment to the next. In Fig. 2, the initial electron phases are uniformly spread over a 27C

range, but with an additional random phase of zero mean and standard deviation 8 1 .Oxl 0-.

'- Electron shot noise is a typical source of this kind of noise. In the pulse simulations no random

noise is introduced, since the spectral features of j(z) are sufficient. After n =400 passes, the

steady-state optical fields peak at I a I = 60 just as in Fig. 1, and the final power spectrum P (v) is

similar to Fig. 1, but without the short pulse features. .

6J
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Fig. 2. The "wrapped-window" simulation gives a clear example of the trapped-particle instability

in the FEL oscillator without the complicating features of short pulses. .,-v.'

Wrapped-window simulations have many of the same characteristics as for pulses, but 4
without the effects of desynchronism. As a,-4 co the wrapped-window approach is the only viable v -

solution to the FEL multimode simulation. ' '%

1. Increases in j or Q make the trapped-particle instability more severe. It is unusual to find .

the periodic, even modulation shown in Fig. 2.

2. When there is taper in the undulator design, the instability is less prominent for the same

reasons as stated in the pulse case.

-7U
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3. Over many hundreds of passes, the stored optical wave "sees" many synchrotron oscilla- .9

tions, so that any sideband gain above threshold gives large growth from a small amount of

noise. The resulting steady-state features are therefore not affected by the details of the

noise source employed.

5. The Trapped-Particle Instability in High-Current FEL Amplifiers • .. ...-.

In the high-current FEL amplifier, j>>l, large optical power can be produced in a single -

pass through the undulator. An induction linac accelerator and a long undulator can result in . -

values j = 1 04_-10 [2]. The electron pulses are long, , - 00, so that the wrapped-window simu-

lation method is essential. The FEL growth rates are so large that electrons become trapped early

in the undulator and begin executing synchrotron oscillations. There can be from several to many

tens of synchrotron oscillations along the undulator so that the optical field experiences far fewer

synchrotron cycles than in the oscillator case. However, even the limited number of synchrotron ,

cycles can result in significant sideband gain owing to the large current density j. ..

The wrapped-window simulation in Fig. 3 follows the power and gain from 'C = 0--1 for an

FEL with high current j = 8x1 04, an initial field ao = 20 starting at vo = 0, and N = 50. No electron --

phase noise is present, but a small initial sideband field as = 0.01 is introduced at vs = 20n. Spon-

taneous emission or electron shot noise from the trapped electrons can lead to a contribution of \,p- , f /

this size because j is large. The power P (,c) and gain G (,r) are seen to oscillate with the synchro- "' .

tron frequency Vs = 20n: and impose a strong modulation on the light wave envelope a (z). The

final power spectrum P (v) shows that the sideband has grown to almost equal the fundamental
-., '% o., .4-

power.

"% % %L
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The current j* has a slow logarithmic dependence on the initial sideband field as so that an

accurate estimate is not too crucial; we take as = 0.01. We also estimate that there must be,%

at least a few synchrotron oscillations, say Vs = 16n, before the optical wave could accu-

rately determine the synchrotron frequency. This gives a characteristic current density

j = 3x10 4 where sidebands could be expected to significantly alter the final FEL amplifier V.•

spectrum.
%%'I,'

2. In the tapered undulator case, less current is trapped, and the synchrotron oscillations have

a smaller amplitude so that the trapped-particle instability is observed to be less severe, as

in FEL oscillators. i -

3. Input noise at the sideband frequency is important to the development of significant side- .'%". -

band power in FEL amplifiers. Shot noise and spontaneous emission cannot be eliminated,

and may be a significant contribution at large current densities. '%

4. For the large currents j>j, the FEL does not reach steady-state operation even in strong

optical fields Ia 1. The power continues to increase and so does the synchrotron frequency.

This continual change in the synchrotron frequency may play a useful role in suppressing

Ij the growth at any particular sideband frequency.

In conclusion, we find that the trapped-particle instability is more difficult to suppress in the --

FEL oscillator than in the FEL amplifier. The large number of synchrotron oscillations experienced

by the light stored in the oscillator make the effective gain over for many passes large. But, while

the trapped-particle instability has already been observed in the FEL oscillator, it has not yet been

found in the FEL amplifier. The many differences between FEL oscillator and amplifier simula-

tions implies that we should not use the oscillator case as a direct proof that there will be an
equally prominent instability in real FEL amplifiers.
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Free-Electron Laser Gain Degradation and Electron Beam Quality

W. B. Colson

Berkeley Research Associates, P.O. Box 241, Berkeley, CA 94701

J. C. Gallardo and P. M. Bosco . %- ,

Quantum Institute, University of California, Santa Barbara, CA 93106

ABSTRACT ,

The free electron laser can be described by solving the Lorentz-Maxwell equations

self-consistently in weak optical fields. The field evolution is determined by an integral

equation that allows the inclusion of an arbitrary electron distribution function in a

simple way. Contour maps are used to show the gain degradation due to an electron

beam energy spread and an electron beam angular spread. In the limit of low gain, the

gain spectrum is related to the spontaneous emission line-shape through successively

higher derivatives. In the limit of high gain, it is shown that the growth rate becomes

less susceptible to degradation from the electron beam quality. '-.-. -

I. Introduction *

s. -..---

In a free-electron laser (FEL), a relativistic electron beam amplifies a co-propagating,

coherent optical wave traveling through a periodic undulator magnetic field [1]. In the oscillator

configuration, coherent electron bunching develops on each pass while resonator mirrors allow

;; the stored optical power to grow over many passes. In the amplifier configuration, coherent

electron bunches develop rapidly in the first part of the undulator followed by rapid growth of the

optical field. Maintaining the ccherence of the electron bunches over a significant interaction

length imposes important restrictions on the electron beam quality. An energy or angular spread

(due to emittance) contributes a random component to the electron motion that decreases the

coherent bunching in time. *A

Va..
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Some of the earliest FEL experiments used electron beams that were essentially "

monoenergetic 12-5], but practically all subsequent experiments have made use of higher current

sources with significant energy spread or emittance. Many accelerators present a design trade-oft

between high current and high beam quality. This makes it essential to accurately evaluate the

effects of beam quality in present and future experiments. It is particularly important for FELs

designed to operate at XUV or X-ray wavelengths [6]. Several theoretical models involving :'' % p%

simulations and plasma dispersion relations have discussed the detrimental effects of electron

beam quality in the FEL interaction [7-24]. The theory presented here uses a convenient, yet

powerful, method of including an arbitrary electron distribution function in a self-consistent integral

equation for the complex optical field. FEL gain and the effects of beam quality can then be ''. •"•.'4.

calculated analytically or integrated on a small computer.

Since the basic equations solved here are the same as in computer simulations or the

plasma dispersion methods, specific physical results have been shown to agree with those .

methods when a direct comparison is possible. The computer simulations have proved to be a

useful method of understanding many aspects of the FEL interaction, but one of the most difficult

effects to accurately characterize is that of electron beam quality. Even a prohibitively large -

number of sample particles is far short of the number in a real experiment, and yet introduces a

large amount of numerical noise when distributed over a large volume of phase-space. To "-"

reproduce some of the results shown later in this paper, we found the simulation method to be

several hundred to a thousand times less efficient. While many other FEL topics are most .

efficiently studied through simulations, the detrimental effects of beam quality are probably better

handled through a combination of analytic and numerical techniques. The stability analysis used -.

to obtain plasma dispersion relations usually calculates the reduced FEL growth rates due to poor

beam quality. This method can lead to analytical expressions, but depends upon specific models

for the electron beam distribution, and does not easily describe more complicated transient
* 4-. .°.

behavior where the FEL growth rate is not constant; the FEL is often designed to operate in this ,.

regime. In addition, the exact formulation presented here works smoothly between different MI

regimes of operation like high and low gain. The only requirement is weak optical fields. : -

% -

,% .% .
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H. Basic Theory

We solve the electron Lorentz and optical wave equations self-consistently with the -; 7

assumption of weak optical fields. The effects of beam quality are typically less important when -

9., the optical field strength is large near saturation, and the issue of beam quality is most important

in weak fields where the accurate evaluation of gain can determine whether the FEL is above or

below threshold. .

The electrons travel through a periodic undulator with the field on the z-axis described by

9B=B [ cos(ko z), sin(ko z), 0] where B is the peak magnetic field amplitude. The undulator field ..

extends over a length L =N?,o with a number of periods N, and wavelength X =2ir/ko. The

electron velocity in a perfect helical orbit is co= c [- (K/y) cos(ko z), - (K/y) sin(ko z), 030 ] where ,..

K = eB ko/2rmc 2 e is the electron's charge magnitude, m is the electron's mass, c is the speed of

light, %=( 1-(1+K 2)/y2 )1/2, and ymc2 is the electron's energy. Imperfect injection due to poor

beam quality is more meaningfully introduced after some further theoretical development. A

typica! undulator uses B z 2kG and X = 5cm, so that K = 1. Since the electrons are relativistic

(>>1), the transverse excursions Pre small compared to Xo.

The optical vector potential with the polarization that best couples to the above trajectory is .4

X=k-IE I [sinxV,cos ',0J where V =kz-cot+4, and X=2o/k =2nc/o) is the optical carrier

wavelength. The complex electric field envelope, E (z,t)= I E (z,t) I e(z,.) , is taken to vary slowly

in z and t, so that terms containing two derivatives in the wave equation are small compared to

terms with single derivative [25]. No transverse (x,y)-dependence is included so that diffraction is

taken to be a small over the interaction length L, and the electron beam remains aligned near the

center of the optical mode. The transverse motion above, proportional to (Kly), defines the

transverse current for each electron in the beam. If the current density is uniform over a sufficient

length, each point z + ct in the optical field envelop .volves according to the slowly-varying wave

equation [25] . ,.

da = -J<e >1.:

where a =4NneKLE/y2mc 2 is the dimensionless optical field strength, r=ctlL is the

dimensionless time (0 < t < 1), j = 8N(neKL) 2p 1y3 2 is the dimensionless current density, p is

the actual electron particle density, = (k+ko)z- ot is the electron phase in the combined optical

.* and undulator fields, and <...> represents a normalized average over all electrons in the beam .-

ill -. .i%.a
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driving a (t). The electrons are labeled by their initial phase-space coordinates; the initial phase is

i- (0), and the initial phase velocity is vj= d (O)d = L [(k + k0 ) 13o- k I. There are a large 1

number of electrons spread randomly over each optical wavelength (-10' ), so that the C, can be

accurately taken to be uniformly spread along each section of the electron beam one wavelength
% of light long. It can be easily seen in (1) that bunching the electrons near the relative phase

C + = it drives the optical wave amplitude producing gain, while bunching near C + 0 = 7t/2 drives

the optical phase 0 without gain. Bunching electrons near C + 0 = 0 results in negative gain, or , "-,

absorption. The dimensionless electron phase velocity vi has an initial spread associated with the
~~beam quality. _

The electron motion in the presence of the optical wave is described by the Lorentz force

equation; dyldt =-(elmc) -.. In the FEL, it is important to distinguish between collective

Coulomb forces and collective high-gain effects [26]. Most FELs do not use current densities

large enough for Coulomb forces to be a significant effect for the relativistic electrons; yet, high

gain is possible and will be included. Using the definitions and assumptions above, the Lorentz

force takes on the form of the pendulum equation [27],

d 2 C dv
d' 2  d ICosK+) (2)

,, "

The combined equations (1) and (2) are valid in weak or strong optical fields, for large or small

gain, and for an arbitrary electron distribution. Strong fields near saturation mean that a I >> n ,t

and weak fields occur when Ia I << n. High gain is achieved when j >> 1 and low gain occurs

when j < 1 [28]. Useful FEL configurations display a wide range of current densities. The

electron beam area is typically between 1mm and 5mm, but the current ranges from 1A up to

1 OkA. Undulator lengths L now range from 1 m to 5m, but will soon be made to L = 20m and

beyond. With electron energies in the range 10MeV to 1GeV, the corresponding values of j are

from unity to more than 5x104 [1. Both the high-gain, single-pass and the low-gain, oscillator

configurations have important applications.

Equations (1) and (2) were originally derived [25] for the more general case where the ." .
,

electron energy can change significantly during a single pass; in this case, an additional factor

1 q=(1 -v/2rN) alters the wave and electron equations so that 6 =-j<cQ-e > and, '.

.= V = ja Ij12cos (C+ 0) with (') =d( )/dt. The following work, however, will be confined to weak

optical fields where 71 1. An extension to higher harmonics and linearly polarized unduk',tors is
. "'

-.. . * . . o • - • . . . . • °-".-:, -:,,..'. -.... , _ -,.-._________-.._____..____.-,.-.______
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also possible without any change in form of (1) and (2), so that the general conclusions and
S methods of this paper are immediately applicable to a wide range of FEL designs.

We now proceed to solve (1) and (2) in weak fields, I a I << , to obtain an integral equation

for a(') incorporating an arbitrary electron distribution function. The electron phase can be

expressed as =. + v,-c + t 1 where 11 is the first-order perturbation in a. Expanding (1) and

(2) we have

z(, aT) =ao+ijodS<exp[-i( +vis )] (')(s) > ,(3) .'
0

t (i~~~)(s) = lfsdq 'odu[a(u)exp(i( C + v,,))+a*(u)exp(-i( +v,-))] j.2~ 0

' w

where the initial optical field is a(O)= la(O)l =ao and 0(O)=O. We have made use of

<exp( -i ) > = d exp( -i C )/2n= 0 , since the initial electrons are spread uniformly in

_ phase. The reference to the individual electron phases (1) can be explicitly removed by

combining the equations in (3). Then, we have an integral equation governing the evolution of the

optica field a (T):

N a(t) = ao + J du <exp(-iv(s-u))>a(u) (4)--., 2 0 0 0 ' ;,

where <...> is now an average over the initial electron velocity distribution, and all reference to the

electron phases has been removed. Since (4) is an iterated triple integral, it may be rewritten [29]

as a double integral,

" a(T) )=ao + -fod sfodq < exp (-iv,(s-q) )> (s-q) a(q) (5) _:

20 ,

A normalized electron distribution function f (vi) can be used to evaluate the remaining average: .- "

X < <... >-- dvi f (vi)( ... )with Ldvi f(vj)= 1..'-

0 III. Simple Electron Distributions

We begin by considering two simple examples with perfect beam quality. In the first, we

start the FEL on resonance where the electron-optical wave coupling is largest, f (vi) 8 (vi).

The optical wave is most simply determined from (4).

• -. %" % -'
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2(T)= a 0+ -f dsf dq dUa(u ) (6)

The integral equation (6) can also be written in a differential form by taking successive derivatives, _

(r) = ija ('r)/2. The complete solution uses the form a (r) = 'a,,exp( ct,,'C) where the x, are the "4

three complex roots of the cubic equation a - ijI2= 0, and the coefficients a,, are determined by '.

the initial conditions a (0) = a 0 , and i (0) = d(0) = 0 [11. The solution for a ( "T) is .. ..

a(')=- - [exp((j/2)I3(i+'3),/2)+exp((j2)113 (i-43) T/2) + expl-i(j1211 )]. (7)
3

If the current density is small j -4 0, or << 1, we have the trivial result a (r) = ao (l+ij' /12 +...)

for an FEL starting on resonance. There is no change in the optical amplitude I a I =a 0 +... to ,r .... ,

lowest order, and therefore no gain. The optical phase 0(c) increases slowly in proportion to c3s.

. The FEL gain is defined as G(r)=( a() 1-ao )0a0, and

G(T)= [2cosh(j /2 "'C-z)+ 4 cos(j12) '3"r/2)cosh((jl/2 -r/2)-6 (8) "'? ..

9J

In the high current limit, j>>1 on resonance, the expressions simplify because one fastest-

growing root dominates and describes exponential growth in •r. As seen from (7) there is little

change in the field during the bunching time, - = ( 21j )"3, that precedes exponential growth.

During this time, the electrons move from their initially uniform phase distribution to bunch near

,* the phase C+0= i/2. As soon as bunching forms, the high current immediately causes -.

exponential field growth and high gain. Then, ? -

ao 1
a(T)=-exp[(j2)r3 q3c/2] , and G(r) 9exp[(j/2)1 ' 3/-3, (9)

3 9

A second simple example is a high quality electron beam starting off resonance at vo. This .'

is characterized by f (vi) = 8( v, - vo ). The optical field is then determined by

4- ,OF..-,NO

2 0 odu c ) a(u) (10)

For low current, j:1, the opt;cal field evolution away from ao is small so that a(u) =ao can can be
extracted from the integrand in (10). The resulting integrals are easily solved to obtained the :"" "-

Ah.
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usual low current gain and phase shift formulas [27]. g'"-

2 - 2cos(vo0r) - v' r sin(vo) 2 sin(vo0 ) - vo'r (1 + cos(vor0 ) (-.)
G(r)=j v 3 and ()2v1

The maximum final gain is G =0.135j at vo=2.6 and r= 1, while the range of modes with

significant gain is 8vo = 1 about the peak.

In order to obtain the general solution, use the substitution b =a in (10). Successive "

"" derivatives then lead to the differential form of (10), " -ivotb - ijb/2 = 0. Solutions of the form
3

b = .bexp( a,,-') have roots a. that satisfy the cubic equation cxivoc{_ ij12= 0. In the limit
• 61=1 

. ' % .

n4u tina.va - .-.2 = .Inte-i i

of high current j >> 1, the exponential gain coefficient is reduced by the factor-Vo 3-( j/2 )3...-113

so that the gain spectrum is centered about vo = 0 with a characteristic range 8vo = 4.22j"6. In the

high current case, the range of modes with significant gain increases slowly as j increases. We

go on now to look at more interesting FEL distributions describing less than perfect electron

beams.

IV. More General Electron Distributions
.V New cases of interest involve more complicated distributions f (vi) describing the initial

electron beam in the integral equation (5). Two electrons starting at the same phase C, at the .

beginning of the undulator (T = 0), but with different z-velocities, c 13o and c (f3o + Ap3o), will drift apart

as they travel through the undulator. The amount of drift is not easily predicted without solving the

-_"i full problem, because electrons can influence each other through the self-consistently evolving .,
optical wave. In this sense, the effect of FEL beam quality is collective. However, the times for

the two electrons to traverse the undulator are nearly identical since they are relativistic, LI Poc

L/(PO + APo)c =L1c. An estimate of their separation at the end of the undulator (T= 1) is

Az =APoL, and their approximate phase difference is AC= (k + ko)AZ z kAz kLAPo . If the .-,.,.%%

velocity difference Apo is due to an initial energy difference A-nc 2, we have A3O = (1+K 2)Ay/ Y3

and an approximate final phase separation AC = 4irNAy/y.

Any random phase difference AC - x, or larger, between electrons in the beam is important

to the FEL operation, because bunching on the optical wavelength scale is diminished

significantly. At the end of the undulator, the final phase difference is roughly estimated by

A= Avi for each electron. From the definition of the electron phase velocity vi , we see that a

=,,--
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small change in the initial electron energy Ay mc corresponds to a change in the initial phase

velocity, Avi = 4NAy/y ; y>> 1. A distribution of initial electron energies from an accelerator or

storage ring is often accurately represented by the normal distribution function so that we can take

exp (- (v, - v) 2/ 2o 2 )f (vi) -,(12) "

where a is the standard deviation of vi away from the peak phase velocity vr. If Ay Mc2 is taken to r

be the standard deviation of the electron energy away from ymc 2 , then a=4NWAy y. Two

electrons starting at the same phase IL , but with an energy difference Ay= y/ 4N will drift apart by

roughly half of one optical wavelength at the end of the undulator. A random spread of width a = n.

causes a random phase spread of approximately AC 7t at the end of the undulator and impairs

bunching. Inserting (12) into (5) gives

a2t) =ao+ d dq e- e- (s-q)a(q) (13)

The gaussian factor in the integrand decreases the coupling current j as t increases, and

describes the degradation of bunching due to the spread in electron phase velocities. The "' ,.

complicated self-consistent evolution of the electron beam distribution and the optical field are .,

described exactly in (13), but before evaluation, we can generalize its form further. "

An angular spread is also possible due to the finite emittance of an electron beam. An
2electron of energy ymc entering the undulator with a small injection angle 0i has a reduced z-

velocity, f0 - 00 cos 0, = fo (1- 0j/2) The resulting z-velocity change is AP = - "/2

reducing the initial phase velocity by Avi = - 21N 20i(1+K 2). A gaussian distribution of angles

about the z -axis with standard deviation AG, gives the exponential distribution function - .

f(v,) for v,<vo ,and f(v,)=O for v,>vo , (14) - !
CF -.

where a = 41Ny 2AOj 2 /(1+K 2), and vo is the phase velocity for electrons entering on-axis. The

distribution function (14) is sharply peaked at vi = vo where electrons enter on-axis, and decays .'- .. '-. --

exponentially for vi < vo because the injection at any angle 0, can only decrease the electron's

longitudinal velocity and its phase velocity vi. If each element of the energy distribution (12) is - .

given an angular spread according to (14), then the resulting integral equation for the optical field

becomes
- .,.'-.-'-

,e . o . .--... ,.
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a( "=ao+-dsq v.( ) (s-q)a(q) (15)
20 0d l-ia 09(s-q)e

The transverse motion of electrons injected at an angle is sometimes confined by either the

natural off-axis undulator fields or external focusing elements. The focusing forces result in

transverse betatron oscillations about the undulator axis. When the electron beam is injected to

match the natural focusing properties of an undulator, the number of betatron oscillations along 2

the undulator is NP =NKI"27y. In the limit of large y and/or small K, the angular spread of

electrons can be important, r0 > 1, while the transverse focusing can be made negligible, Np < 1.

In this limit, the integral equation (15) applies. . .

The complex optical field a (c) now depends on an input energy spread characterized by a,

and an input angular spread characterized by a0 . Other types of distribution functions can be

added in a similar way. If (5) is solved numerically, even experimental distribution functions .

peculiar to a given accelerator or transport system can be added. The general result (5) and the

specific example (15) are important results of this paper. They provide analytic expressions

describing FEL performance with an arbitrary electron distribution function. %'

V. Low-Current FELs

One of the cases of general interest is the low current FEL oscillator. Radiation energy is

stored in an optical resonator, and repeatedly driven by successive electron pulses from an " ''

accelerator like a linac or storage ring. An important issue for the oscillator is the detrimental

effect of the electron energy and angular distributions when the oscillator is starting from weak .

optical fields. In the low-current case, we can simplify (15) by taking a(q) = a0 in the integrand of ,-

the integral equation, and neglecting higher-order terms in j . Without a (q) in the integrand, the

integral can be further simplified by noticing that iqe ,v~q =ee . Then, , ---

a(r)-a j ..o'' i (16)
.- I. -dsJ dq - e

a0  2 avo 00 1- ioq q(6

Direct integration of (16) is possible, but the result is a complicated expression containing many

error-functions [30].

We can alter the form of (16), however, to obtain some important physical interpretations...

The factors e-
'"

/ and (1- ic0 q ) can be interpreted as power series expansions in q ."

4,,. 4 ,.4% .
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multiplying the factor e , then (-iq)n e -4 --- Now, write

a (-z)- - - j exp (ca 2 /2) '

a010 lav.a *ds dq e (17) A4ao 2 1 + COe ay e-0qi; -

The double integral is simply vo2 (1 - ivo'r - e 'iv), so that the complex integrations in (16) have .. ,A-
been replaced with a power series expansion to all orders in a and a0 . To first order in a and c, .. '

an explicit expression for a (c) is easily obtained from (17). This is a useful limiting case since a

low-current FEL system would not typically use a low quality electron beam ( large a or a0 ) and Z'....'

remain above threshold. From (17), the low-current FEL gain at the end of the undulator is

_ x _ (a 2  /2) ____

G e (vW,2) (18)[ 12 1 +aov, ( v' )2  (1)] ..'", %

We recognize the factor in brackets [..] as the FEL spontaneous emission line-shape for an J,

electron in a perfect trajectory through the undulator. It has been known for some time that the .-.

gain is fundamentally related to the derivative of the spontaneous emission line-shape [31]. The

new feature presented in (18) is to express how the electron beam energy and angular spreads

affect that relationship through successively higher derivatives.

With the physical interpretation of the line-shape factor [...], we can substitute alternate N'

forms. One convenient choice is [...]- exp (-Vo2/4n) which approximately reproduces the

correct features of the simple FEL gain spectrum, G = (jvo/4n) exp (-vo/4). The successive

derivatives evaluating the effects of beam quality lead to more compact expressions, and illustrate , ,

how (18) can be used in practical situations. Even an experimental line-shape could be used in .,

- .(18).

While the analytic results presented have their merit, the complete integral (15) is easy to - '-'

integrate on a small computer. The values needed for the contour plots of this paper were

evaluated in this way. Figure 1 shows a combined intensity and contour plot of In (1+G (aVo))

where the final gain at the end of the FEL undulator is G = (a*(1)a(1) -o )/la . In Fig. 1

a$ = 0 , so that gain degradation is only due to an energy spread with no angular spread. The

current density is j = 1, and gives low gain so that In(I+G) = G . The brightest points (white) on

the (a,vo)-surface indicate peak gain G = 0.13j, while the darkest points (black) indicate maximum

absorption G 0. .13j. Zero gain is indicated by the intermediate grey shown in the scale at the

.'- 1i**
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top. Specific contours of constant gain, In(1+G)=+0.06,±0.08,+0.1, and ±0.12, are %

superimposed on the intensity plot. The gain surface is approximately antisymmetric about vo = 0, ' -'

and in the limit j -- 0, the gain G (a,Vo) becomes exactly antisymmetric. The characteristic " 'O%

amount of spread required to decrease the gain is seen from Fig. 1 and (18) to be a *= 1. Note

also that as the spread a increases, the phase velocity for peak gain vo* 2.6 increases slightly.

Peak absorption occurs at - vo* and slightly decreases with increasing a.
%' = . '

:" ~~~)M FEL Gain Stx-facm BB '.-,--

---0.13 n~l+[;) 0.13 _

. -:" . . .. . .

• .
". 

.
",,

3

0.08

a- 0.1

0.12 -:-,.-

I , .. . .4" .,
0-$

66 0 4.4,p '4
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Fig. 1. Intensity and contour plot of In (1+G (aVo)) with j 1 and ao =0. The weak-field gain -. "-"-

degradation in this low-current FEL is due to an electron beam energy spread with a normal

distribution function.

Figure 2 shows a combined intensity and contour plot of In (1+G (a0 ,Vo)) evaluated by (15)

with j = 1 and = 0. The gain degradation here is due to a monoenergetic electron beam entering

the undulator with an angular spread described by a0 . The grey scale and contours of gain are ,,. -. ,-
the same as in Fig. 1. Unlike Fig. 1, the absorption contours (white) have a much different shape

than the gain contours (black). Since the distribution function f (vi) due to an angular spread is "

skewed, there is no reason to expect the antisymmetric properties of G (a0 O,vo) to be

%H . 4ll .
S. *44%J
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maintained at a8 > 0. As seen in Fig. 1 and (18). the characteristic value for the degradation of - ,, ,

gain is 0 * = 1. The phase velocity for peak gain, and peak absorption, both increase with ,

increasing ag roughly as Vo* 0 e. Note that the general features of Figs. 1 and 2 are quite

different owing to the different forms of the electron distributions. This emphasizes the importance 1%'

of the shape of the electron distribution in evaluating gain degradation in FELs, and the need for .-

an accurate, flexible theory as presented here.

~~FUE Gain Sur-Fam X ...M,,-,

.. .... 70913 ... I'J+ ) 0.13 - --

,-.- ,d.l .

.069

30,.

Fig. 2. Intensity and contour plot of In(I+G (a.v)) with j 1 and a=O. The weak-field gain

degradation in this low-current FEL is due to an electron beam angular spread with a normal

distribution; the resultant phase-velocity distribution is the exponential distribution function.

V1. Ifg".rrn FE. s

The integral representation of the optical field in (15) is also valid for high-current FELs
where j >> 1. In this case, a () acquires a non-linear dependence on j ( recall expression (7) ):
and cannot be removed from the integrand of (15). To proceed analytically, it is convenient to

remove one integral from (15) by taking the t-dorivative of both sides, and use the form a a0 e 2

- .- -..

--. 1.'-*
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for the optical field. Since j>> 1, assume that a has some large real part, even though the

exponential growth may be somewhat diminished by the presence of a and aq. The magnitude a o

cancels on both sides, and a change of variables gives the form

-'& ' / 2a' -""
a3  e .(19) MI "a 2,of s s e  eiG O ,-

2 0 1- ica (19)

The upper integration limit in (19) has been extended to infinity because the integrand containing %

the factor e' becomes negligible for large s. % -,

Eqn. (19) describes several properties of high-gain FELs without integration. If a, vo, and a

all -0, then a has the same roots found in (7). If the current density j -- co so that a real part of
," % ,P ~~o % * *

a -- o, then we obtain the same limit, since a, vo, and are all appear divided by a in (19). Unlike .

the low-current FEL, the importance of beam quality in a high-current FEL depends on the current

density j . This feature has been seen in FEL experiments and simulations, but is now expressed -

analytically. The importance of beam quality can be made more quantitative by iterating (19). ....-.

Estimating the real part of the fast-growing root as a* = (j12 )32, the integrand of (19) is only

significantly modified when a * = ( 3j12 )3 or when c g* = (j12 )43/2. In the high-current

FEL, the characteristic values of beam quality, a * and aq*, are not equal, and increase with the .

current density j. These expressions should be helpful in designing high-gain experiments where

there is a trade-off between beam quality and beam current. ... .

Figure 3 shows a combined intensity and contour plot of In (1+G (a,vo)) for moderately high V

current j = 100 and a0 = 0. The points at the peak gain In (I+G) = 4.3 are indicated by white on the

(a,vo)-surface; black indicates zero gain. Contours of constant gain, In (1+G) = 2.0, 2.5, 3.0, 3.5,

and 4.0 are superimposed on the intensity plot. For the high quality electron beam, small a, gain

is confined to a region near resonance, but extends to a broader range in vo than in the low-

current cases of Figs. 1 or 2. This agrees with the discussion below (11), and gives the range of . ..

optical wavelengths over which there is significant gain Svo = 4j/ = 7. To find the range of . ,-,-

wavelengths, use AX XAvo/2icn about the resonant wavelength X = Xo(I+K 2 )/2 Y 2 . The

maximum available gain decreases significantly as a -- * =4.5 as predicted in the previous

paragraph, and the phase velocity for peak gain roughly follows ve* = a.

,' '

"d". % a= %

'P .- • %b~ ,A % • . %=- . o,- . .• - - .-
,+, , ' ,,.., ,- ,,, . -, , 3+ , - -, . , ..- ,,, ,- - - A.. . . - ,.. . . .



- 14-

S,,

~E~I66~ FEL Gain SuHrfoce

.1100 rni=
051 G 4.3 -

44.0

Fig. 3. Intensity and contour plot of In (1+G (a,v0 )) with j = 100 and 0F(1=0. The weak-field gain Y
degradation in this FEL is due to an electron beam with a normal distribution in energy. %. 4.-4
Figure 4 shows the plot of In (1+G (a6,vo)) with a = 0 so that the gain degradation is caused

by an angular spread in the electron beam. The contours of constant gain differ from Fig. 3

because of the new shape of the electron distribution function. As cre increases, there is a slower

decrease in gain because Oe* >a * as found above. When expressed in dimensionless form, an '

d ~angular spread is better tolerated in an FEL than is an energy spread. The points of peak gain .N

increase with increasing ae similar to Fig. 3.

* . IV
0%~

eel,
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Fig. 4. Intensity and contour plot of In (1+G (ag,vo)) with j = 100 and a = 0. The weak-field gain

degradation in this FEL is due to an electron beam with an angular spread producing an OPP. e. , ,

exponential distribution in phase velocities. owe

Figure 5 shows the combined intensity and contour plot of In (1+G(a,vo)) for high current

j = 104 with g = 0. There are no negative gain regions, and the available peak gain is much I.'
larger than for the lower current. For r z 0, the position of peak gain is essentially at resonance I....- %

re= 0, but again increases roughly as vo* =a while beam quality diminishes. The width of the

gain spectrum at 0= 0 is wider than the lower current case, and agrees well with 8vo = 4j 6 =12.

The contours of constant gain, In(1+G) = 14,..., 24, show that the range of wavelengths for gain

becomes narrower as a increases, and the maximum available gain decreases significantly as

a -r 20.

S.. M
o -'S=.. ,"-* "-

, .',. , . .

.. :.,.............

• . -... . . .,. ' ,.* ,..*.* ,...., ., %** .-... .. %.'
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Fig. 5. Intensity and contour plot of In (1+G (ayv0)) with j = ~and a,= 0. The weak-field gain %. **.

degradation in this high-gain EEL is due to an electron beam with a normal distribution in
energy. 4

Figure 6 shows the plot of In (1+G(c0 ,v0 )) for high current j =104 with a=O0. Again, the

* contours of constant gain, In (1+G) = 14, ..., 24, are distinct from Fig. 5 showing the importance of-

the electron beam distribution function even at high gain. As Oa -+aO*, the gain decreases

significantly, but again the angular spread is seen to be less harmful than an energy spread.

Unlike Fig. 5, the position of peak gain stays closer to resonance as a0( increases. -

6u .'- q .*.

,a' 6* % I

.4.

-,Ad

Ju % %
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Fig. 6. Intensity and contour plot of In (1l+G (aeyvo)) with j and a=O0. The weak-field gain 5.*.

degradation in this high-gain FEL is due to an electron beam with an angular spread

producing an exponential distribution in phase velocities.
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