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ABSTRACT

The partially-parabolic, or parabolised, Navier-Stokes equations for
laminar flow, and the corresponding Reynolds equations for turbulent flow, are
coupled with an inviscid-flow solution procedure to develop a viscous-inviseid
interaction method which can be used in three-dimensional flows which cannot
be treated by means of the classical boundary-layer equations. Potential
applications of such a higher-order matching procedure are, for example: thick
boundary layers on ship sterns and bodies at incidence, interacting shear
layers (wakes, wall jets), solid-solid and solid-fluid corners.

This report provides a detailed overview of the approach for general’
three-dimensional flows, and presents the results of applications to some
simple test cases. The Reynolds equations are derived in nonorthogonal curvi-
linear coordinates, with velocity components along the coordinate directions,
using vector techniques. This approach differs from the commonly-used tensor
methods but serves to establish a connection with the more familiar boundary-
layer methods. The k-e model is used for turbulent flows. The partially-
parabolic viscous-flow equations are solved using an implicit finite-differ-
ence scheme and the SIMPLER algorithm for pressure-velocity coupling. The
inviscid-flow solutions are obtained with a conforming panel, source-panel
method. Interaction between the viscous and inviscid regions is accounted for
using the displacement-body concept. The relative merits of interactive and
global solution procedures are evaluated by comparing the viscous-inviseid
interaction solutions with large-domain solutions of only the viscous-flow
equations. Comparisons are also made with experimental data and other compu-
tational methods. Although the test cases are restricted to two-dimensional
and axisymmetric flows, the results clearly demonstrate the feasibility of
higher-order viscous-inviscid interaction procedures.
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I. INTRODUCTION

The classical boundary-layer equations, which are based on the assumption
that the viscous layer is thin relative to the local radii of curvature of the
surface, are parabolic and neglect all influences of the downstream flow other
than those contained in the inviscid-flow pressure field. Also, in the clas-
sical theory, the inviseid flow 1is calculated without accounting for the
boundary-layer displacement effects. In spite of these approximations, there
would seem to be no question as to the tremendous success of boundary-layer
theory. The requirements of the theory are met in many practical flow situa-
tions, at least for a portion of the flow domain, and for cases where they are
not met it provides a formal framework upon which refinements and modifica-
tions can be applied and understood. The conditions of boundary-layer theory
are not met in a variety of practical circumstances, for example: in regions
or in the vieinity of flow separation; near leading and trailing edges; in
corners; at the juncture of the boundary layer and the free surface for sur-
face-piercing bodies; in regions of strong mass injection; and in regions of
strong shock-wave boundary-layer interaction. In these cases, some or all of
the terms neglected in the Navier-Stokes equations to obtain the boundary-
layer equations become important and, as a result, the classical approach
fails to predict such flows. There is, therefore, a need for approaches which
solve viscous-flow equations which are more general than the boundary-layer
equations.

There are two possible approaches to the solution of higher-order vis-
cous-flow equations: a global approach in which one set of governing equations
that are appropriate for both the invisecid-and viscous-flow regions are solved

using a large solution domain so as to capture the entire zone of viscous-



inviscid interaction; and an interactive approach in which different sets of
governing equations are used for the viscous- and inviscid-flow field regions
and the complete solution is obtained iteratively and interactively through
the use of an interaction law, i.e., patching or matching conditions. The
latter approach is often referred to as a zonal approach. It should be recog-
nized that the former approach is somewhat more rigorous since it does not
rely on the patching conditions which are not exact. Nonetheless, for a
variety of reasons, some of which will be discussed subsequently, both types
of approaches are of interest. A complete review of the literature is beyond
the scope of this report. However, an overview is given using selected refer-
ences as examples for the purpose of putting the present work in perspective.
Traditionally, interaction studies have coupled the thin-boundary-layer
equations with Invisecid-flow solutions which include viscous-flow effects
using displacement-body or equivalent-source methods. Usually, only one
iteration is performed either because sufficient accuracy has been obtained or
due to slow convergence. Such methods have been successful in predicting
flows where the boundary-layer equations are, in fact, a good approximation in
the viscous-flow region, e.g., thin airfoils and wings at sufficiently small
angles of attack such that there is no flow separation. Extensions for thick-
er airfoils and wings and/or larger angles of attack, such that only a limited
separation occurs that is confined to a thin layer adjacent to the surface,
have also been made. In this case, the singularity of the boundary-layer
equations at separation is removed by using the inverse mode and single-pass
solutions can be obtained using the FLARE approximation. Here again, the
results are very good and under most circumstances the interactive boundary

layer procedures can predict the flow as well as the global Navier-Stokes or



partially-parabolic Navier-Stokes solutions (McDonald and Briley, 1983; Mehta
et al., 1985). The interactive procedures have the advantage of computational
efficiency over the global methods.

Applications of either +the traditional (direct-mode) or inverse-mode
interactive procedures to flows in which the boundary-layer equations do not
represent a good approximation (e.g., axisymmetric bodies and ship hulls) have
generally had only a limited success. In the case of the traditional proced-
ures this has been well demonstrated by the extensive experimental and theor-
etical studies of Huang and associates at the David Taylor Naval Ship Research
and Development Center (DINSRDC) (Huang et al., 1978, 1980, 1983). For
axisymmetric bodies with relatively sharp trailing edges, the viscous-inviscid
interaction is relatively weak, and the traditional procedures allow the
boundary-layer calculations to go beyond the premature separation predicted by
the classical theory and show good agreement with the experimental data except
at the extreme tail region. This improvement over the without interaction
solutions is no doubt due to the removal of the rear stagnation point in the
inviscid-flow solution. However, for axisymmetric bodies with blunt trailing
edges and more complex three-dimensional bodies the viscous-invisecid interac-
tion is strong and the agreement with the experimental data has not been
satisfactory. There have, in fact, been only a very limited number of in-
verse-mode interaction studies for axisymmetric and three-dimensional bod-
ies. Here again, difficulties have been encountered for strong interaction
applications (Piquet and Visonneau, 1985).

Patel (1982) has reviewed the experimental data for the viscous-flow over
the stern of axisymmetric bodies and ship hulls, which he refers to as thiek-

boundary-layer flows, and points out the following features: (a) for practical



body geometries there is an absence of flow separation; (b) a rapid thickening
of the boundary layer; (c) variation of pressure across the boundary layer
implying strong viscous-inviscid interaction; (d) the development of a large
longitudinal vorticity component which may or may not lead to a free-vortex
type separation; (e) a general reduction in the level of turbulence. Patel
concludes that the appropriafe governing equations for the viscous-flow region
are the partially-parabolic Navier-Stokes or Reynolds equations. Thus, high-
er-order equations must be used in the viscous-flow region for such applica-
tions.

Investigations using higher-order equations for axisymmetric and three-
dimensional bodies have been quite varied in the approximations embodied and
the turbulence model and numerical procedures utilized. Generally speaking,
the results from most of these investigations have shown an improvement over
the traditional interaction procedures; however, they do not show overall good
agreement with the experimental data. This can be attributed to a variety of
causes: lack of, incomplete, or incorrect viscous-inviscid interaction proce-
dures; inconsistent approximations in the equations; velocity-pressure coupl-
ing procedures; turbulence modeling; and coordinates and grid dependence. For
axlsymmetric bodies, see for example, Brune et al. (1975), Lee (1978), Dietz
(1980), Muracka (1980), Markatos (1984), and Marlin et al. (1985). For three-
dimensional bodies, see for example, Abdelmeguid et al. (1979), Markatos et
al. (1980), Muracka (1980, 1982), Tzabiras and Loukakis (1983), Tzabiras
(1983), and Hoekstra and Raven (1985). In most of the above references the
outer boundary was placed at about two boundary-layer thicknesses from the
body surface where conditions are prescribed based on the potential-flow

solution without including the viscous-flow displacement effects which are



presumed to be small at this distance; however, as pointed out by Chen and
Patel (1985) and also by the present work, viscous-inviscid interaction is
important even at such distances from the body. Thus, these previous solu-
tions are not complete. Also, in one case (Tzabiras 1983), the use of the
experimental displacement-body to compute the potential flow actually led to a
less accurate prediction of the surface pressure distribution, indicating
other numerical difficulties.

Only Chen and Patel (1985) and Zhou (1982) have taken a sufficiently
large solution domain in the solution of the partially-parabolic Reynolds
equations to capture the entire zone of viscous-inviscid interaction. The two
methods are very different. Zhou uses a streamline iteration method which may
not be easily extended to three-dimensional flows. Chen and Patel use the
novel finite-analytic method to discretize the equations and have presented
results for both two- and three-dimensional flows. Also, see the recent
review article by Patel and Chen (1985) of the state-of-the-art for axisym-
metric bodies (not including the present work). Thus far, these large domain
solutions have proven to be the most successful.

In the present investigation, a viscous-inviscid interaction method has
been developed in which the partially-parabolic, or parabolised, Navier-Stokes
equations for laminar flow, and the corresponding Reynolds equations for
turbulent flow, are coupled with a displacement-body inviscid-flow solution
procedure in an interactive and iterative manner. There are numerous poten-
tial applications of such a higher-order matching procedure, for example:
thick-boundary-layers on ship sterns and bodies at inecidence, dinteracting
shear layers, solid-solid and solid-fluid corners. Herein, of particular

interest are thick-boundary-layer tralling-edge flows, e.g., ship boundary



layers. For such applications the interaction approach has the advantage over
the global approach in that it is most easily extendable to the calculation of
ship boundary layers at nonzero Froude numbers.

This report provides a detailed overview of the approach for general
three-dimensional flows, and presents the results of applications to some
simple test cases. The Reynolds equations are derived in nonorthogonal curvi-
linear coordinates, with velocity components along the coordinate directions,
using vector techniques. This approach differs from the commonly-used tensor
methods but serves to establish a connection with the more familiar boundary-
layer methods. The k-e¢ model is used for turbulent flows. The partially-
parabolic viscous-flow equations are solved using an implicit finite-differ-
ence scheme and the SIMPLER algorithm for pressure-velocity coupling. The
inviscid-flow solutions are obtained with a conforming panel, source-panel
method. Interaction between the viscous and inviscid regions is accounted for
using the displacement-body concept. The relative merits of interactive and
global solution procedures are evaluated by comparing the viscous-inviscid
interaction solutions with large-domain solutions of only the viscous-flow
equations. Comparisons are also made with experimental data and other compu-
tational methods. Although the test cases are restricted to two-dimensional
and axisymmetric flows, the results clearly demonstrate the feasibility of

higher-order viscous-inviscid interaction procedures.

II. METHOD OF APPROACH

Consider the flow field in the vicinity of a body fixed in a uniform

stream with velocity Uo of an incompressible viscous fluid. The body shape is



assumed to be sufficiently streamlined and the Reynolds number sufficiently
large such that no flow separation occurs and viscous effects are confined to
a relatively narrow region adjacent to the body surface and in the wake. As

depicted in figure 1, the flow field can be divided into three regions.

Region 1 1s the inviscid-flow region. Region 2 is the thin-boundary-layer
which ends at a station x, beyond which boundary-layer approximations are no
longer valid. Region 3 (X > X,) is the thick-boundary-layer and wake region
in which it is assumed that only streamwise gradients of viscous and turbulent
stresses can be neglected. The inviscid-flow region extends to a distance Yo
beyond which uniform stream conditions may be assumed. Appropriate computa-
tional methods can be used for each of the three regions. They are related
through their boundary conditions and are not necessarily independent. In
particular, the flow fields in regions 3 and 1 are interdependent such that a
complete solution for each region has to be determined iteratively through the
use of a viscous-inviscid interaction procedure. Alternatively, the flow
fields in regions 3 and 1 can be solved simultaneously by simply extending
region 3 to also include the portion of region 1 influenced by the interac-
tion. Such a 1large-domain solution captures the entire zone of viscous-
inviscid interaction and can be used to assess the accuracy of a small-domain
interaction solution. Herein, both types of solutions will be obtained in

order to explicate the nature of an interactive solution.

III. VISCOUS-INVISCID INTERACTION

In an Interactive approach to the present problem, the viscous- and

inviscid-flow regions 3 and 1 are demarcated by the common boundary & , as



shown in figure 1. This boundary must be placed at a sufficient distance from
the body surface and wake centerplane such that, exterior to § (region 1),
viscous effects can be neglected. Traditionally, this boundary is placed at
or Jjust beyond the edge of the boundary layer. Note that this should be
considered as the minimum value for § , and it is also possible to place § at
distances greater than the boundary-layer thickness, as has been done by other
investigators. Herein, the traditional defirnition is used. The flow-field
solutions in regions 3 and 1 are obtained separately and by quite different
means, but they are interdependent through the common boundary condition that
the two solutions merge smoothly at §. That is, the viscous-flow solution
(region 3) is obtained with edge conditions at § specified based on the invis-
cid-flow solution (region 1) which is obtained with recognition of the dis-
placement effect of the viscous flow. The complete solution is obtained
iteratively until convergence is achieved.

It has long been recognized that the viscous-flow region displaces the
inviscid-flow streamlines such that the inviscid flow is not the same as that
about the actual body, but rather that about a surface displaced into the
fluid a distance 6* referred to as the displacement surface. The displacement
surface can be defined unambiguously by the following two requirements: (a)
that it be a stream surface of the inviscid flow continued from outside the
boundary layer; (b) that the inviscid-flow discharge between this surface and
any stream surface exterior to the boundary layer be equal to the actual
discharge between the body and the latter stream surface. The second condi-
tion implies that the flow reduction inside the viscous flow is compensated by

*
an outward displacement of such a stream surface through a distance § , i.e.



i V'iA_=f(Vp—K)-§A (III-1)
Agy £ A 2

where XE is the velocity vector of the outer inviseid flow analytically con-
tinued into the viscous-flow region, V is the viscous-flow veloecity vector,
and AB* and AB are the cross-sectional areas between the actual-body surface
and the displacement-body surface and the boundary-layer surface respec-
tively. Thus, the inviscid-flow solution is obtained for the displacement

body. This solution then provides the boundary conditions for the viscous

flow

U(§) =0 (8) =T
ho) e

W) =W (6) =W (II1I-2)
P e

p(§) = pp((S) =P,

Since 6* and Xﬁ}é) are not known a priori, an initial guess must be provided
and the complete solution obtained by iteratively updating the viscous- and
inviscid-flow solutions until the "patching" conditions (III-1) and (I11-2)
are satisfied. Note that, in the present viscous-inviscid interaction pro-
cedure, no assumptions have been made with regard to the thickness of the
boundary layer. The primary assumption is that the inviscid- and viscous—flow
solutions can be patched together through conditions (III-1) and (I1I-2).
Within the context of thin-boundary-layer theory, and for two-dimensional

flow, equation (III-1) becomes



5
e %—{) (1 - U/U,) oy (ITI-3)

where

[
i

U = 5
p(o) Up(ﬁ)

Lighthill (1958) refers to this definition of 5* (III-3) as the flow-reduction
method which he shows, for both two- and (with the appropriate definition)
three-dimensional flow, is completely equivalent, within the context of thin-
boundary-layer theory, to three other definitions: equivalent source, velo-
city comparison, and mean vorticity. The velocity-comparison method was first
introduced by Moore (1953) and is closely related to the equivalent-source
method, in which 1t is shown that the displacement effect of the boundary
layer on the inviscid flow can be represented by an additional distribution of
sources on the actual body surface of strength
op =5 3= (U ) (I1I-4)

where x 1is the distance along the body surface in the streamwise direction.
Landweber (1978) has pointed out that (III-4) is just the first approximation

to the solution of the general integral equation for o due to the boundary-

BL

*
layer outflow velocity distribution g;-(UeS ). To the same order of approxima-

tion, the source distribution for the actual body is given by
o =1—-(Un) (I1I-5)
B 2 o'l

where n; is the x-component of the unit normal to the body surface. Based on

either thin- or thick-boundary-layer order-of-magnitude estimates (see Table

10



1) 9al / Uolv O (e) where ¢ is the nondimensional boundary-layer thickness
and g /U0 ~ 0O(nj). The equivalent-source method has been used extensively
and with success in viscous-invisecid interaction procedures for airfoils and
wings where nj 1s small in the region of interaction. However, for the prob-
lems of present interest (e.g. axisymmetric bodies and ship hulls), nq is not
necessarily small near the trailing edge and the equivalent-source method is
not useful for representing the viscous-flow displacement effect on the invis-

cid flow.

IV. VISCOUS FLOW

In the thick boundary layer and wake (region 3 in figure 1) it is assumed
that only streamwise gradients of viscous and turbulent stresses can be ne-
glected. Under this assumption, the Reynolds equations are reduced to a
simplified form referred to as the partially-parabolic (Reynolds) equations.
In these equations, the velocity field is elliptic in transverse planes and
parabolic in the streamwise direction while the pressure field is fully ellip-
tic. Solutions to the partially-parabolic equations can be obtained itera-
tively by solving the parabolic equations that result when the pressure field
is specified and subsequently updating the pressure field using the results
from the latest parabolic solution. Of crucial importance is the manner in
which the velocity and pressure fields are coupled. Many procedures have been
tried for this purpose (e.g., Anderson et al. 1984). In the present work, a
modified form of the SIMPLER algorithm (Patanker, 1980) that enhances global
convergence has been used (Chen and Patel, 1985). Selection of the appropri-

ate coordinate system and grid generation technique used to obtain the coor-
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dinates is also important. A streamline coordinate system is the most consis-
tent with the assumptions of the partially-parabolic equations; however, such
a coordinate system is difficult to generate. Alternatively, body-fitted
coordinates can be used in which the axlal coordinate should be roughly
aligned with the streamlines since they are coincident on the body surface
itself, The partially-parabolic assumptions are made in this preselected
axial coordinate direction. In the present work, both simplified analytic and
numerically generated body-fitted coordinate systems have been used. The
Reynolds stresses are modeled using the k- ‘turbulence model. A complete
transformation of the governing equations is used such that the directions of
the velocity components are along the grid lines. It should be recognized
that very few investigators have used a complete transformation of the govern-
ing equations, no doubt due to the complexity of their derivation as will
become apparent subsequently. The more common approach is a partial transfor-
mation in which only the coordinates are transformed and the velocity compon-
ents are maintained in either cartesian or polar coordinates. The governing
equations are reduced to algebraic form using finite differences and solved
implicitly by the method of lines. In the subsections to follow, the details
of these computational procedures are discussed.

A. Equations and Coordinate System. The partially-parabolic equations

are solved using a nonorthogonal curvilinear coordinate gystem in which the x-
coordinate is roughly aligned with the flow direction and the y-coordinate is
in a plane transverse to the body axis X (see figure la), For three-dimen-
sional flow, the z-coordinate is also in the transverse plane and in the
girthwise direction (see figure 1b). The Reynolds equations in nonorthogonal

curvilinear coordinates can be derived either through the use of vector or
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tensor analysis. Here, a vector approach has been used since it lends itself
to more physical insight. Recently, Richmond et al. (1986) have provided a
derivation using tensor analysis.

The Reynolds, continuity, turbulent-kinetic-energy k, and its dissipa-
tion-rate € equations for steady incompressible flow can be written in the

following vector form:

%V(Z-X) ~=Vxuw=-Vph +v(V(E-V) -7}

-V . vivj + (vi) Vev (IV-1)
VeV =0 (IV-2)
vy N
VeVk = Ve (—Vk) + G - ¢ (IV-3)
- o
k
v 2, B e2
VeVe =V ¢ (—Ve) + Csl G e Ce2 X (IV-4)

where V = (U,V,W) are the mean velocity components, v = (u,v,w) are the turbu-

lent velocity components, p is the mean pressure, w =V x V is the mean vorti-

clty, Vivj are the Reynolds stresses (the overbar denotes time averaging),

k =

o=

vev 1s the turbulent kinetic energy, vy = Cu kz/e is the eddy visco-
sity, and G is the turbulence generation. Since the fluid 1s assumed to be
incompressible, the terms involving V - VandVvV » v 1in equation (IV-1) are
identically zero, but have been included since they aid in putting the trans-
formed equations into a more compact form. The usual values are used for the
congtants in the k-e equations, namely, (Cu’ 02 Tes Coqs C€2) = (.09, 1.,

1.3, 1.44, 1.92). The turbulence generation term is defined by
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- 2 2 2 o | W)
G = \)t[2(el1 ey, ¥ 833) + 4 (812 + €23 + 831)] (IV-5)

where ¢ is the rate-of-strain tensor

1j

eij = %— vV + VXT] (IV-6)

In (IV-6) VV 1s the deformation-rate tensor eyy and Vy? its transpose, i.e.
T___e
LB Gh S
through the isotropic eddy viscosity concept:

The Reynolds stresses required in (IV-1) are related to k and ¢

Ti’v"j' 8 2\)teij + % k(hihjgij) (1IV-7)
where the h; are the metric¢ coefficients and €13 ig the inverse metrie tensor
both of which are defined below.
Equations (IV-1) - (IV-7) can be transformed into any coordinate system
through the use of appropriate definitions of the gradient (V), divergence
(ve), and curl (Vx) vector operators. The details of this procedure for
orthogonal curvilinear coordinates are provided by Rouse (1959). For nonorth-
ogonal curvilinear coordinates the appropriate vector operator definitions are
not readily availsble. They were probably first derived by Weatherburn
(1926)., Following Weatherburn, and referring to figures 1 and 2 for the pre-
sent notation, the unit vectors ;i = (;1,;2,;3) in the directions of the

nonorthogonal curvilinear coordinates (x,y,z) are defined in terms of the body

carteslan-coordinate position vector

14



R =X (x,y,2) 1 +Y (x,y,2) j + 2 (x,y,2) k (IV-8)

by
e, = B/, e, = R /g, 23 - Ry/hy (IV-9)
where
hy = |§£|, h, = IEXJ’ hy = IEEJ (IV-10)

and a lettered subscript denotes a partial derivative. The angles (A,n,v)

between the (x,y,z) coordinate axes are given by

e* €3 (IV-11)

and the unit normals to constant x- y- and z-surfaces are given respectively

by

~ -~ _ 1 ~ ~ ~

e, X e3 = E;E;E'[Ahlel + Hh2e2 + Gh3e3]

S0 S AR G T e R (IV-12
5 X €T hih s 181 282 783 -12)
: 5 [Gh j + Fh ) Ch c
&1 X'ehl= hh,s gt 280 €3
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where s is the triple product

A ~ A

s = (hlh2h3) (el- e, X e3)

= [Ahi + thh2 cos v + Ghlh3 cos u]1/2 (IV-13)
and
m o o8 2
A= h2h3 sin A
B = hihg sin2u
C = h2h2 sin2v (IV-14)
172
| 2
F = (hlh3 cos u) (hlh2 cos v) - h1 (h2h3 cos )
2
G = (hlh2 cos v) (h2h3 cos ) - h2 (h1h3 cos u)
- 2
H = (h2h3 cos 1) (h1h3 cos i) - h3(h1h2 cos v)
The inverse metric tensor is defined by
A -~ _1
gij = (hiei-hjej)
1 AHG
= g’[ HBF ] (IV-14.1)
GFC

In terms of the above quantities, the gradient of any scalar Q(x,y,z) and

A A

divergence and curl for any vector V(x,y,z) = Vlel + V'2e2 + V3e3 are given by:

1 “ A
vQ = ;5 {(AQx + HQy + GQZ) hie + (HQX + BQy + FQZ) h,e,
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+ (0Q, + FQ_ + CQ,) h3é3} (IV-15)

sV sV sV
1 .3 1 3 2 3 3
VeV = = [— ( ) * = () = (—=)] (IV-16)
— 8 9x h1 3y Ib 32 h3
VxV = }-{§-[V h S + V,h, cos A + V,h,]
X_ s ay 1 3 COS | 2) 3 3 3

5 -
- 37 [Vlh2 cos v + V2h2 + V3h2 cos A} hlel

1 .93
+ E'{gg-[Vlhl+ V,h,cos v + V3hlcos ul
a ~
- 3% [V1h3cos u o+ V2h300s A+ V3h3]} hye,
+ l'{a"'[V h,cos v + V,h, + V.h. cos A ]
s 0x 172 22 32
a 'S
- 55‘[V1h1+ Véhlcos v o+ V3hlcos ul} h3e (IV-17)

The transformed equations are very lengthy and are provided in Appendix
I. The equations have been put in a form that is similar to that used by Nash
and Patel (1972) for orthogonal curvilinear coordinates. By comparison, it is
seen that, for the present circumstances, the coefficients in the governing
equations depend on terms related to not only the curvatures of the coordin-
ates but also their angular orientation. Due to the complexity of the deriva-~
tion of the transformed equations it was desired to check their accuracy;
however, this was made difficult by the fact that no other presentations of

the governing equations in nonorthogonal curvilinear coordinates in a format
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and notation similar to the present one are known to exist. The following
checks were made: for (A,u,v) > 90°, the orthogonal form of the equations was
recovered; for (A,v) » 90°, and subject to the boundary-layer assumptions the
boundary-layer equations of Cebecl et al. (1978) were recovered; and some of
the coefficients were compared with their corresponding counterparts in the
tensor form of the equations presented by Richmond et al. (1986).

The partially-parabolic equations are obtained from the complete set of
equations in Appendix I through the use of the order-of-magnitude estimates

given in Table 1.

Table 1: Order-of-Magnitude Estimates for a Thick Boundary Layer

Quantity Order-of -Magnitude
U 1
v €
W €
3/3x 1
3/3y e-1
3/3z e-1
2
v €
v,V, €
1

Patel (1982) has shown that these order-of-magnitude estimates are consistent

with the partially-parabolic assumptions. Also, in obtaining the partially-
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parabolic equations no assumptions are made with regard to geometrical quanti-
ties; that is, all geometrical quantities are considered 0(1). The x-momentum
equation is obtained by retaining terms of O(1) only. All other equations are
obtained by retaining terms of O(1) + O(e). The partially-parabolic equations
are provided in Appendix II. Lastly, it should be mentioned that, strictly
speaking, the complete equations can also be rendered partially-parabolic by
simply only neglecting the viscous- and turbulent-diffusion terms (second-
order derivatives) in the x direction.

B. Discretization. The governing equations are reduced to algebraic

form by approximating all the spatial derivatives by finite differences. A
staggered-grid system has been used in order to avoid difficulties in the
velocity-pressure coupling procedure to be discussed subsequently. The grid
arrangement and notation are as shown in figure 3. An implicit finite-differ-
ence scheme 1is used which is basically only first-order accurate; however,
certain derivatives have been evaluated using second-order central differences
and all terms have been evaluated at the proper grid location by using aver-
ages of the surrounding values. The detailed finite-difference formulas are
provided In Appendix III. The overall procedure is described below.

The x-momentum equation is discretized with reference to control volume I
of figure 3. Referring to the partially-parabolic form of the x-momentum
equation (B-1), figure 3, and Appendix III.A: only the x- and y-derivatives
in the convective acceleration and the y-diffusion terms are maintained on the
left hand side to form the tridiagonal matrix; the remaining terms are grouped
into a single source term and are put on the right hand side; and all terms

are evaluated at the location of U; n*
J)
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The y-momentum equation is discretized with reference to control volume
II of figure 3. Referring to the partially-parabolic form of the y-momentum
equation (B-2), figure 3, and Appendix III.A: only the x- and y-derivatives in
the convective acceleration and y-diffusion terms are maintained on the left
hand side to form the tridiagonal matrix; the remaining terms are grouped into
a single source term and are put on the right hand side; and all terms are
evaluated at the location of Vv .

The z-momentum equation is discretized with reference to control volume
III of figure 3. Referring to the partially-parabolic form of the z-momentum
equation (B-3), figure 3, and Appendix III.A: only the x- and z-derivatives
in the convective acceleration and z-diffusion terms are maintained on the
left hand side to form the tridiagonal matrix; the remaining terms are grouped
into a single source term and are put on the right hand side; and all terms
are evaluated at the location of W;,n'

The k-e equations are discretized with reference to control volume IV of
figure 3. Referring to the partially-parabolic form of the k- equations (B-
4) and (B-5) respectively, figure 3, and Appendix III.B: only the x- and y-
derivatives in the convective acceleration and y-diffusion terms are main-
tained on the left hand side to form the tridiagonal matrix; the remaining
terms are grouped into a single source term and are put on the right hand
side; and all terms are evaluated at the location of k;,n and e;’n.

By means of the above finite difference scheme, the three momentum and

the k-¢ turbulence-model equations can be put in the form:

i s P e (IV-18)
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PLETL LV A Sn 0" P IS
°1"m,n-1" c2an,n c3an,11+1 ) Swg,n * Pwi,n ot
akp g o * Ok Ay p = 54 1 (1V-21)
elei—l,n + ezsi,n + 63€i+1,n = Se;’n (IV-22)

where the 3¢ terms are the source terms and P$ are the pressure-gradient
terms (¢ = (U,V,W,k,e)). Note that equations (IV-18) - (iV—22) are nonlinear
since both the coefficients a; through e; and the source terms are functions
of the unknowns (U,V,W,k,e) (see Appendix III). If the pressure field is
known then equations (IV-18) - (IV-22) can be solved directly for the velocity
field (U,V,W) and turbulence parameters (k,e); however, since the pressure
field is unknown, it must be determined such that the continuity equation is
also satisfied. The velocity-pressure coupling procedure is the subject of

the next section.

C. Velocity-Pressure Coupling. The coupling of the velocity and pres-

sure fields is accomplished through the use 6f a two-step iterative procedure
involving the continuity equation. In the first step, the solution to the mo-
mentum equations for a guessed pressure field is corrected at each cross sec-
tion such that continuity is satisfied. However, in general, the corrected
velocities are no longer a consistent solution to the momentum equations for
the guessed p. Thus, the pressure field must also be corrected. In the sec-
ond step, the pressure field is updated again through the use of the continu-

ity equation. This is done after a complete solution to the velocity field
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has been obtained for all cross-sections 1in a manner that properly accounts
for the elliptic nature of the pressure field and also accelerates conver-
gence. Repeated global iterations are thus required in order to obtain the
converged solution. The details of the derivation of the pressure-correction
and pressure equations are provided in Appendix III. C. The overall procedure
is described below.

Both the pressure-correction and pressure equations have the same form
and are derived in the same manner from the discretized form of the continuity

equation, i.e.

1 -1 1
—— @ -TH - e

L A ,n 2-1/2 +1,n" 'm,n
(Ax-)m,n (Ay_)m+1/2,n
1 3
=y (W per- Vo ) = 0 (IV-26)
z m,n+1/2
where
= (&
m,n h. 'myn "m,n

_ (s 4

vfn,n - (B;)m,n an,n (IV-27)
_ 4,8 2

an,n N (-Ig)m,n Wfn,n

The velocity components (Ufn,n’ an,n’ an’n) required in (IV-27) are obtained
from the discretized form of the momentum equations (IV-18)-(IV-20) by putting

equations (IV-18)-(IV-20) in the form
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m,n B UiLn,n T APyt a8py ¥ 8Py

5%

,n an,n * Dby * bgPy * bgp, et

,n T CoPy ¥ c8py i CoP

)N z

where Ufn,n,vfn,n,wrln,n are referred to as pseudovelocities.

Substituting (IV-28) and (IV-27) into (IV-26) and representing the pres-

sure gradiem'; terms in (IV-28) by finite differences results in the desired

equation for pressure. In the U!an n equation, a forward difference is used for
>

Py and central differences for Py and P, In the an 0 equation, a backward

b

difference is used for Py and central differences for Py and p,. In the an,n
equation, a backward difference is used for p, and central differences for Py
and Py+ All terms are evaluated at the respective velocity component location
by using averages of the surrounding values. The resulting equation for
pressure involves 20 of the 27 nodes corresponding to x indices (& -1, 2,
£+1) and y and z indices, (m-1, m, m+l) and (n-1, n, n+l), respectively;
however, only certain terms are maintained on the left hand side to subse-

quently form the tridiagonal matrix, and all remaining terms are grouped into

a single source term and put on the right hand side:

p 2+1 +f 2 + 2-1 v F 2

lpm,n 2pm,n 3pm,n 4pm+1,n 5pm—1,n
£ p* v P pY = 5 (IV-29)
6Pm,n+1 7Pm,n-1 ]
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It should be recognized that no approximations have been made in deriving (IV-
29) and as such it is an exact representation of the equation of continuity in
terms of pressure.

Equation (IV-29) is first used to correct the velocity field obtained
from the solution of the momentum equations for a guessed pressure field. In
this case, p is designated as % and both upstream and downstream values of ;

are neglected. The resulting pressure-correction equation is

A

0 “L L 2
f2pm,n ¥ f‘Z+pm+1,n ¥ f5pm--1,n 3 f6pm,n+l

A A

+ Ep oy = (IV-30)
where ép is obtained by evaluating Sp (C-61) with the current solution to the
momentum equations Ui,n’ Vi,n’ Wﬁ,n substituted ST ﬁi,n’ V;’n, W;,n' The
pressure-correction equation (IV-30) is approximate since both upstream and
downstream values of 5 have been neglected as well as the influence of pres-
sure corrections on the neighboring velocities. The 1latter approximation
neglects the indirect or implicit influence of +the pressure correction on
velocity and 1s the reason for the words semi-implicit in the name SIMPLER.
Note that both approximations are justified since the corrected velocity field
is only an intermediate solution, and when the solution converges, ; is zero.
Equation (IV-30) is solved at each cross-section £ using the method of lines
for two-dimensional and axisymmetric flow applications and an alternating
direction dimplicit method (ADI) for three-dimensional flow applications.

Subsequently, the velocity field is corrected using equations (IV-28) with p

substituted for p and with the current solution to the momentum equations

Ul Vl W£ substituted for U; V'Q Wi,n'

b 2 2 )
m,n’ ‘m,n’ "m,n ,n° ‘m,n
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When the exit cross-section £=LL is reached, equation (IV-29) is again
used to update the pressure field. In this case, no approximations are made.
The pressure equation is solved by marching from downstream to upstream using
the method of lines for two-dimensional and axisymmetric flow applications and
an ADI method for three-dimensional flow applications at each cross-section 2
with the £+1 and 2-1 values considered as known from the previous iteration.
With a new pressure field thus obtained, the entire process is repeated until
the results converge; that is, a compatible velocity- and pressure-field
solution is found.

D. Boundary Conditions. The partially-parabolic equations require

boundary conditions for the pressure, either explicit or implicit, on all
boundaries. Boundary conditions are required only from upstream and in the
cross-section for the velocity components and turbulence parameters. Note
that only three of the unknowns (U,V,W,p) can be specified on each boundany\or
the problem is over specified. The fourth unknown 1s determined through the
solution of the governing equations.

Referring to figure 4, the boundary conditions used in solving the momen-
tum and k-e equations (IV-18)-(IV-22), and the pressure (IV-29) and pressure-

correction (IV-30) equations are as follows:

Inlet Boundary St

Initial conditions for (U,V,W,k,e) are specified based on simple flat-

plate solutions. Initial conditions for P and p are not required.

Exit Boundary Sg
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A zero-gradient condition is used for p and i and no conditions are

required for the velocity components and k-e .

Outer Boundary Sp

e e e
(IV-31)
3k 9de o
W iy 2
where (Ue’ We, pe) are specified from the inviscid-flow solution. Large-

domain solutions are obtained by placing the outer boundary at a sufficient
distance from the body surface and simply specifying (Ue, Wes Pe) = (1, O.,

0.).

Body Surface Boundary Sy

For laminar flow, the solution is carried out up to the body surface
where the no-slip conditlon is applied: U =V = W = O. For turbulent flow,
the wall-function approach of Chen and Patel (1985) is used. In this proced-
ure, the first two grid points are placed in the log-law region. With a
guessed value of the wall-shear velocity UT the required boundary conditions
at the first grid point for the velocity components (U,V,W) and k and € are

obtained from the log-law and the assumption of local equilibrium:

1/2
(1 +A ) -1
9 /& pip ik s 1+ 211 +ayH2 1p
UT K AT (1 + A y+)1/2 1 T
+ B+ 3,7 AP (IV-32)
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2 =

k=1%ﬂ%
(IV-33)
€ = Uf/Ky

where U} is the wall-shear velocity defined by U} =V Tw/p, yto= yUT/v is the
dimensionless distance measured in the direction normal to the surface,
Ap = 2%%- is the dimensionless pressure gradient, AT is the dimensionless
shear-Zt%ess gradient and is assumed to be 1/2 Ap’ q is the magnitude of the
veloeity, « = 0.42 is the von Karman constant, and B = 5.45. Since the log-~
law (IV-32) only provides the velocity magnitude, in order to obtain the
velocity components, it is assumed that the velocity vector in the (x,y) plane
is parallel to the wall and in the (x,z) plane has the same direction as at
the second grid point. Since the second grid point is also in the log-law
region, after a field solution has been obtained, the solution at the second
grid point can be used to update the guessed value of U& and the procedure

repeated until convergence. Lastly, conditions on p and p are not required on

SB.

Symmetry Plane Sy

g'y— (U,W,p,p,k,e) =0 (IV-34)
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Symmetry Planes Sy and Sy

S (U,V,p,p,k,¢) = O (IV-35)

E. Grid Generation. Grid generation is an important aspect of the

overall numerical procedures. This is primarily due to the fact that the
partially-parabolic assumptions are made with reference to a preselected grid
coordinate curve which is presumed to be sufficiently close to the streamwise
direction. Also, grids that are not sufficiently smooth can cause erroneous
instabilities in the solution. Two body-fitted grid-generation techniques
have been used.

For the small-domain interactive calculations a simple analytiec grid-
generation technique has been used in which local expanding grids for each
cross-section are pieced together in the streamwise direction. That is, the

nonorthogonal curvilinear coordinates (x,y,z) are defined by

x = X
(vy2-1)

Y =AYy g 8(x,2) (IV-36)
y
(erl—l)

z = Az Yz—l a(x)
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where Ay = y+v/UT is the initial y-direction spacing, Yy is the expansion
ratio in the y-direction, §(x,z) is the boundary-layer thickness, Az is the
initial z-direction spacing, it is the expansion ratio in the z-direction,
and a(x) is the arclength of the body cross-section.

For the large-domain solutions it was not possible to use such a simple
analytic technique as (IV-36). This is due to the fact that, as the outer
boundary is placed at further distances from the body surface, the piecewise
local-expansions technique produces a grid in which the coordinates display
humps and hollows near the body trailing edge and midway across the flow
domain. Such irregularities cause instability in the solution. Consequently,
for the large-domain solutions, a more sophisticated body-fitted grid-genera-
tion technique, developed by Chen and Patel (1985), was used in which the
coordinates are obtained numerically from the solution of a set of Polsson
equations for specified boundaries and control functions.

F. Global Solution Procedure. In the previous subsections (IV.A)-(IV.E)

the various aspects of the viscous-flow-solution method have been described.
The inviscid-flow-solution method is described in section V. In this section,
the global and interactive solution procedures are outlined. The main steps

are as follows:
1) Specify all boundary and initial conditions, including an initial
guess for the entire pressure field and, for the interaction solu-

tions, the boundary-layer thickness.

2) Construct the grid and calculate all the required geometric data,
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2

4)

5)

6)

9)

10)

11)

Evaluate all the coefficients in the momentum, pressure-correction,

and pressure equations.

Solve the momentum equations. An under-relaxation factor a is used.

Solve the pressure-correction equation and correct the velocities.

An under-relaxation factor a; is used.

Calculate the pseudovelocities and store for use in solving the

pressure equation.

Evaluate all the coefficients in the k- equations and solve the

k- equations.

Repeat steps 3) - 7) for each cross-section until the exit plane is

reached.

Calculate the displacement body and for the interaction solution the

new inviscid-flow solution.
Solve the pressure equation elliptically. For the interaction solu-
tion the edge conditions are updated based on the new inviscid-flow

solution. An under-relaxation factor ap is used.

Repeat steps 3) - 10) until convergence is reached within a specified

tolerance. Actually, the convergence criterion used for the results

30



to be presented was simply that there was no noticeable change in the
body surface and wake centerline pressure distribution when viewed on
the plotting device. Below, the notation IT is used to refer to the

global iteration number.

V. INVISCID FLOW

A. Source-Panel Method. In the inviscid-flow region (region 1 in figure

1), the flow is assumed to be irrotational. A velocity potential ¢ is defined

such that V® is the perturbation velocity field, i.e.
YE = Uo;'L + Vo (V-1)

The perturbation potential must satisfy the ILaplace equatién

7% = 0 (V-2)
subject to the boundary condition

¢ = - Uon on S (V-3)
on the body,and the condition

Ve + o (V-4)

at infinity. The boundary-value problem (V-2) - (V-4) for the perturbgtion~

potential can be solved by the source-distribution method. The conforming
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panel, source-panel method of von Kerczek et al. (1983) has been used here.

The perturbation potential is expressed by

¢ =[ o Gds (V-5)

where ¢ is the source strength and G is the Green function

(@]
1]

1/R

(V-6)

o
1}

X - ¢

with X = (x,y,z) the field point and £ = (£,u,z) the source point. Note that
equation (V-5) automatically satisfles condition (V-4). Substitution of (V-5)

into (V-3) results in the integral equation for the source strength o, 1.e.
-2m0 +f 0:=d5=-Un (V-7)

Equation (V-7) 1is solved by discretizing the body surface into a number of
conforming surface panels, on each of which the source strength is assumed
constant, and evaluating the integral in (V-7) over each panel approximately
by using Gauss quadrature.

This procedure is facilitated through the use of a parametric surface

equation representation for the body surface:

Ry =X1+Y (Xa)]+2Z (Xa)k (V-8)
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where Rp is a position vector which describes the body surface. Here X is the
usual lengthwise coordinate and o is a parameter which varies along the girth
of each section. The following procedures are implemented. First, the body
offsets for one side are mapped into the X-a plane. That is, corresponding

(X,a) pairs are assigned for each given offset Rp. Second, the derivatives,

RX’ Ra, and BXd’ are obtained by three-point finite-difference approxima-
'gg;n;?— Third:—_ghe offsets and derivatives are interpolated using cubic-
Hermite splines onto a uniform {Xi, aj} grid chosen so as to provide a good
surface coverage with regard to surface features. With the surface vector,
Rp, and its derivatives, RX’ Rd and RXd’ known at each gridpoint, their values
at any arbitrary point (i;;).;; the_;;;d can easily be obtained by reinterpo-
lation, again using cubic-Hermite splines. Lastly, (X,a) are specified to
form the input needed for the evaluation of the integral in (V-7). That is,

i G

3G ] 3G
é an 95y = 8X; ay kil W an (X o) (V-9)

where wy is the weighting factor and (Xx, ak) are the nodes of the Gauss

quadrature formula. The resulting system of linear equations is solved for o
by Gauss-Seidel iteration. With o known, the surface and field point veloci-

ties are readily calculated, again using Gauss quadrature, from

and the pressure 1s obtained from the Bernoulli equation

Cp =1 -V - XE)/Uf)
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where Cp = p-pO}/Z pUO2 is the pressure coefficient.

B. Displacement Body. As explained previously, in the interaction

caleculation, the body boundary condition (V-3) is applied not on the actual-
body surface but on the displacement-body surface. In terms of the present

nonorthogonal curvilinear coordinate system the displacement body is defined

by

[ V. edd= [ (V. -V). d (V-10)
A(S*B—_ AG‘E

where YP. is the velocity vector of the outer potential flow analytically

continued into the viscous-flow region, V is the viscous-flow velocity vector,
AG* and AG are the cross-sectional areas between the actual-body surface and
the displacement-body surface and the boundary-layer surface respectively,
and dA = ;2 X ;3 h2h3dydz . In evaluating (V-10), for axisymmetric flow

applications, the approximation was used that YB is constant across AG *, i.e.

*
§ 8

2 1

—— [ (V. -V) - 1hh, d (V-11)
o YP_(G*)-i o -E 23

This approximation can be removed by analytically continuing the displacement-
body potential-flow solution inside the displacement body; however, this
requires an inviscid-flow solution method based on the symmetric form of
Green's theorem (i.e. source and dipole distributions) which 1s continuous
across the body surface whereas the present source-panel method 1is not.
Lastly, some comments should be made with regard to the evaluation of (V-10)

for three-dimensional flow applications. A straightforward but approximate
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procedure 1is to again assume Xb is constant across AS* and make the addition-
al approximation that §%(x,z) can be defined in terms of a local flux balance,

i.e.

S* 1 2, § R

£ hyh,dy = 7 - £ {) (¥, = W)+ ihyhodydz
[ CV_(6%)eidz “1
2, £

Landweber (1986) has pointed out that such an approximation does not guarantee
that §* is a stream surface of the continued potential flow and suggests an
alternative method for evaluating (V-10) subject to an explicit condition

that §*% is a stream surface.

C. EKquivalent-Source Method. For the flat-plate boundary-layer and wake

test case (see Section VI.A.) the displacement effect of the boundary layer
was 1ncluded through the use of the equivalent-source method. In this case,
such a method is acceptable since the body surface is flat. A two-dimensional

potential function is defined by

%

UX + [ oGdX (V-12)

5

e
"

where
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VI. APPLICATIONS FOR TWO-DIMENSIONAL AND AXISYMMETRIC FLOWS

Results are now presented from the application of the computational
procedures described in Sections II -~ V for two-dimensional and axisymmetric
flows. The two-dimensional-flow application is a simple flat-plate boundary
layer and wake. Results are presented for both laminar and turbulent flow.
For the axisymmetric-flow applications, results are presented for turbulent
flow only, and for two of the family of afterbodies for which experimental
data have been obtained by Huang and associates at DINSRDC. The two after-
bodies investigated represent examples of medium and strong viscous-inviscid
interaction. In the discussions to follow, all coordinates are nondimension-
alized using the body length L, with X = O at the body leading edge (nose),
and velocities and pressure are normalized using the free-stream velocity Ug
and the fluld density.

A. Flat Plate Boundary layer and Wake. The simple case of a flat-plate

boundary layer and wake has been the subject of many previous investigations.
For laminar flow, solutions have been obtained using a variety of approaches:
thin-boundary-layer; thin-boundary-layer including viscous-inviscid interac-
tion; triple-deck theory; partially-parabolic Navier-Stokes; and Navier-
Stokes. Recently, Chen and Patel (1986) have performed a comprehensive inves-
tigation in order to establish the capabilities of their partially-parabolic
method, extended for complete Navier-Stokes solutions, by comparing their
results with the solutions obtained using alternative approaches and systema-
tically studying the influence of the boundary conditions, the size of the
solution domain, and the grid resolution. A direct comparison will be made
between results using the present approach and that of Chen and Patel. For

turbulent flow, results have also been obtained using a variety of approaches;
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however, in this case, a direct comparison is made more difficult by the fact
that the results additionally depend upon the turbulence model utilized and
the numerical details of its implementation. Patel and Chen (1986) have also
performed turbulent flow calculations using the complete Reynolds equations
and the k-e turbulence model with two different treatments of the flow close
to the wall: wall-function approach; and an eddy-viscosity distribution. The
present turbulent-flow results are compared with both the results of Patel and
Chen and the near-wake experimental data of Pot (1979).

1. TIaminar Flow. The laminar-flow calculations were performed for a

UL
Plate Reynolds number Rn = "%‘ = 105 (where L is the plate length) which is

the value used by Chen and Patel and others. Typical large- and small-domain
grids used for the calculations are shown in figures 5 and 6, respectively.
Referring to figures 5 and 1 for notation: the number of axial grid points is
40; the number of transverse grid points is 15; the inlet boundary Sp is at
X,=+4; the exit boundary Sg is at x3=2.5; and the outer boundary S, is at
Yo=12. Referring to figures 6 and 1 for notation: the number of axial grid
points is 40; the number of transverse grid points is 11; the inlet and exit
boundaries have the same values as the large-domain grid; and the outer bound-
ary 1is at y,=1.26 § where 6(x) is the boundary-layer thickness which was
specified based on the Blasius solution. The y-direction grid expansion for
the grids shown was specified based on the turbulent flow conditions since
these grids were actually used for the turbulent-flow calculations to be
discussed subsequently. The y-direction expansion for the laminar-flow calcu-
lations was more gradual., The Blasius solution was used to specify the ini-
tlal streamwise profile and a zero-gradient condition was used for the normal

velocity component on the inlet boundary in both the large-domain and small-

B



domain calculatlons. All other boundary condlitions are prescribed as dils-
cussed in Section IV.D.

Figure 7 shows the pressure distributlon on the surface of the plate and
along the wake centerline. Results are shown from the present methods both
for a large solution domain and a small solution domain, including viscous-
inviscid dinteraction (interaction solution). Also shown for comparison are
results from the Navier-Stokes calculations of Chen and Patel (1986), triple-
deck theory (Melnik and Chow, 1975), and interactive thin-boundary-layer
theory (Veldman, 1979). It is seen that the agreement between both the pre-
sent solutions and the solution of Chen and Patel for X, = .5421 1is excel-
lent. The reason that the partially parabolic and Navier-Stokes solutions are
in such a close agreement is that, at this high Bn, the Influence of stream-
wise diffusion is important only in a region very close to the plate trailing
edge and not resolvable with the present grid. 1In fact, the interactive thin-
boundary-layer results are also in good agreement, indicating that, for this
very simple trailing-edge flow, the influence of the pressure variation within
the boundary layer is also small. As explained by Chen and Patel, the solu-
tlon is very dependent on the location of the upstream boundary. Thus, their
solution for x = .1349, which has also been included on figure 7 for compari-
son, shows large differences. Note that the triple-deck solution for which

X, = .1 is consistent with the solution of Chen and Patel for xu = .1349 on
the plate but not in the wake. In the wake, the triple-deck solution is more
consistent with the other solutions obtained using larger values of X~ S
Apparently, this 1is due to the treatment of the downstream boundary in the
triple-deck solution which 1s matched to the 1/3‘power law solution at too

great a distance.
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The skin-friction coefficient and the wake-centerline velocity are shown
in figures 8 and 9, respectively. As seen from figure 8, all the solutions
for the skin-friction coefficient are in close agreement and show about the
same deviation from the Blasius solution. This indicates that the prediction
of the skin-friction coefficient 1s not very sensitive to the details of the
numerical procedures employed. As seen from figure 9, the differences between
the solutions for the wake-centerline velocity are also not large except for
the triple-deck solution which shows larger values than the the other solu-
tlons for X > 1.3 for the reason discussed previously. The close agreement
among all but the triple-deck solutions for the wake-centerline velocity
indicates that the prediction of the wake properties 1s not sensitive to
upstream conditions beyond D

Figures 10 and 11 show the converged values for the displacement thlck-
ness and edge velocity, respectively, used in the interaction solution.
Referring to figures 10 and 11, it 1s seen that the magnitude of the viscous-
inviseid interaction for the flat-plate boundary layer and wake 1s weak;
however, 1its features are characteristic of more complex trailing-edge
flows. Note that for the flat plate test case the equivalent-source method is
used (see Section V.C.) to represent the displacement effect of the boundary
layer in the interaction solution.

The interaction calculations were started with free-stream edge condi-
tions (Ue = 1., and P~ 0.) which were subsequently updated after each global
lteration. The large-domain solutlon converged in 60 global iterations and
the interaction solution in 40. 1In both solutions, the relaxation factors
used were (a, ap, ar) = (.5, .7, 1.). Also, both solutions required about 5

p
minutes cpu on a Prime 9950 minicomputer.
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2. Turbulent Flow. The turbulent flow calculations were performed for a

plate Reynolds number Bn = 1.2 x 106 which results in a momentum-thickness
Reynolds number at the plate trailing edge of Rne = 3000. This corresponds
fairly closely to the experimental condition of the wake measurements of Pot
(1979) for which Rne = 2940. The large- and small-domain grids used in the
calculations are shown in figures 5 and 6 respectively. Referring to figures
5 and 1 for notation: the number of axial grid points is 56; the number of
transverse grid points is 15; the inlet boundary S is at x; = .4; the exit
boundary Sp is at xq = 16.25; the outer boundary So is at y, = 1; and the
first grid point off the body surface was located at y+40 . Referring to
figures 6 and 1 for notation: the number of axial grid points 1is 56; the
number of transverse grid points is 15; the inlet and exit boundaries as well
as the first grid point off the body surface have the same values as the
large-domain grid; and the outer boundary is at Vi = 1,26 § for X < 1. and
varied linearly to Yo = 25 at the exit.

Figures 12 and 13 show the pressure distribution on the surface of the
plate and along the wake centerline and the skin-friction coefficient respec-
tively. It 1s seen that the large-domain and interaction solutions are in
excellent agreement. By comparing figures 7 and 12 it is seen that, for
turbulent flow, the extent of the region of pressure variation is reduced for
the boundary-layer region upstream of the trailing edge and increased for the
wake region downstream of the trailing edge. Also, the pressure recovery in
the wake occurs with a favorable pressure gradient for laminar flow and an
adverse pressure gradient for turbulent flow. Also shown for comparison on
figures 12 and 13 are the results from Patel and Chen (1986) using the k-e

turbulence model with wall functions. Note that their results are for a
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slightly different Reynolds number (Rn = 2.48 x 10°) and that their grid
resolution was similar to the present one except the first grid point off the
body surface was located at y+100 . The comparison between the pressure
distributions 1s excellent for X >.9. For X <.9 the solution of Patel and
Chen shows lower pressures. This is due to the initial conditions used in
their calculations. In order to compare skin-frietion coefficients the re-
sults of Patel and Chen were Rn scaled. Referring to figure 13, it is seen
that although the trends are identical their result is slightly lower than the
present one. This is due to the larger value of y+ for the first grid point
off the body surface used by Patel and Chen.

Figure 14 shows the usual overall parameters for describing the near
wake, the half-width b, the centerline velocity defect Wy = 1-Upp, and also
the shape parameter H = §%/8. Also shown for comparison is Pot's experimental
data and the results of Patel and Chen for We It is seen that the agreement
between the large-domain and interaction solutions for W, and H 1s very good;
however, both solutions deviate from the experimental data for 100 <Xfp <
600. A similar deviation from the experimental data is seen for the large-
domain solution for b. The interactlon solution for b agrees with the large-
domain solution only in the very near wake and elsewhere shows larger val-~
ues. In general, the calculations show larger values for b, W, and H indicat-
iIng a thicker wake region. The agreement between the present results for w,
and Patel and Chen is qulte good with the differences being attributable to
the different values of y+ used for the first grid point off the body sur-
face. Patel and Scheuerer (1982) have compared results from wake calculations

ugipg thin-boundary-layer equations and the k- turbulence model with these

same experimental data, Their results show better agreement in the near
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wake (X/8 < 350) but poorer agreement in the far wake. The differences be-
tween the partially-parabolic calculations and the results from thin-boundary-
layer theory are conslstent; that 1s, the influence of the adverse pressure
gradient In the near wake results iIn a thicker wake region in the partially-
parabolic solutions. The reason for the poorer agreement of the partially-
parabolic solution than the thin-boundary-layer solution with the experimental
data in the near wake is not known. The reason for the discrepancy between the
large-domain and interaction solutions for b is due to the width of the inter-
action solution domain in the wake (see figure 6). Further calculations using
a larger growth rate for § in the wake region indicate a closer agreement of b
with the large-domain solution.

Figures 15 and 16 show the wake momentum thickness and centerline eddy
viscosity respectively. Referring to figure 15, it is seen that the present
results from both the large-domain and interaction solutions indicate larger
values of 8 than the experimental data. This 1s probably due to the differ-
ence in the trailing edge values of Rne + Referring to figure 16, it is seen
that the present results indicate a larger value for vt than the calculations
of Patel and Chen. From the results for vt and 6 it was determined that the
asymptotic value of vt/er for the large-domain solution is .0333 and for the
interaction solution is ,0406. The value from the experimental data for the
range 400 < X/6 < 1000 is .035. Patel and Scheuerer and Patel and Chen ob-
tained values of .024 and .022 respectively. Figures 17 and 18 show the
asymptotic (velocity-defect w = 1-U and stress T = -uv ) profiles for the
large-domain and interaction solutions. Also shown for comparison is Pot's
experimental data. Both solutions for the velocity-defect profile show excel-

lent agreement with the experimental data. Both solutions for the stress
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profile are in agreement and show a peak value of about .029. The experimen-
tal stress profile indicates larger values with a peak value of about .051.
Patel and Scheuerer and Patel and Chen also obtained lower values for the
stress profile than the experimental data. Their peak values are about .033
and .03 respectively. One of the conclusions of Patel and Scheuerer is that
the k-¢ model does not adequately predict the observed asymptotic behavior.
This was confirmed in the present investigation.

Figures 19 and 20 show the converged values for the displacement thick-
ness and edge velocity, respectively, predicted in the Interaction solution.
By comparing these figures with figures 10 and 11 it is seen that the influ-
ence of turbulence is ‘to reduce the extent of the viscous-invisecid interac-
tion.

The interaction calculations were started with edge conditions (U, = 1,
Pe = 0.) which were subsequently updated after each global iteration. The
large-domain solution converged in 40 global iterations and the interaction
solution in 25. In both solutions, the relaxation factors used were

(a, a_, a”) = (.5, 45, 1.). Also, both solutions required about 5 minutes of

PP D
cpu on a Prime 9950 minicomputer.

B. Axisymmetric Bodies. For axisymmetric flow, calculations have been

performed for DINSRDC afterbodies 1 (Huang et al., 1978) and 5 (Huang et al.,
1980)., Afterbody 1 is the parent form of a family of three-dimensional bodies
with elliptical cross-sections (Huang et al., 1983). Referring to figure 21,
which shows a comparison of afterbodies 1 and 5, it 1s seen that both bodies
have similar length/diameter ratios but very different tall forms. In parti-
cular, afterbody 5 (LS/D = 2.04) is blunter than afterbody 1.(LS/D = 4.3) and

has greater curvature with an Iinflection point. Note that afterbody 5 is
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almost as blunt as afterbody 3 (L,/D = 1.5) which exhlbited a small region of
flow separation near the tail (.92 < X < .97) in the experiments. As will be
discussed next, these differences 1In body geometry result in both a larger
extent and magnitude of viscous-inviseid interaction for afterbody 5 than
afterbody 1.

The calculations were performed for afterbody 1 for a body-length Rey-
nolds number Rn = 6.6 x 106 which corresponds to the experimental condition.
The large- and small-domain grids used in the calculations are shown in figure
22 and 23 respectively. Referring to figures 22 and 1 for notation: the
number of axial grid points is 60; the number of transverse grid points is 19;
the inlet boundary SI is at X, = .5; the exit boundary SE is at xd = 16.25;
the outer boundary is at y, = .8137; and the first grid point off the body
surface was located in the range 100 < y+ < 160 . Referring to figure 23 and
1 for notation; the number of axial grid points is 60; the number of trans-
verse grid points is 11; the inlet and exit boundaries have the same values as
the large-domain grid; the outer boundary 1s at y, =38 where §(x) 1s the
boundary-layer thickness which was specified based on the experimental re-
sults; and the first grid point off the surface was located in the range

80 < y+ < 130 . The y-direction grid expansion was specified such that the
first two grid nodes are within the log-law region. Simple turbulent flat-
plate profiles were used to specify the initial conditions in both the large
and small domain solutions. All other boundary conditions are prescribed as
discussed in Section IV.D.

Figure 24 shows the pressure distribution on the surface of the body and
along the wake centerline., Results are shown from the present methods both

for a large solution domain and a small solution domain, including viscous-in-
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viscid interaction. Also shown for comparison are the experimental results
and ‘the inviscid-flow solution without interaction. It is seen that both of
the present methods are in good agreement with the experimental results.
Actually, the interaction solution appears to be slightly in better agreement.
This is probably due to the influence of the initlal conditions which, in the
case of the interaction solution, include a more proper matching with the
external flow. Also, the grid resolution within the boundary-layer region is
better for the interaction solution. Note the large gradients in pressure
exhibited in both solutions in the immediate vicinity of the trailing edge (X
= 1). A part of this behavior is no doubt a result of the rapid change in
curvature of the streamlines associated with the closing of the body and
transition into the wake. However, it was also found that the solution in
this vicinity 1s sensitive to the grid and detailed numerical treatments at
the trailing edge. A comparison of the present results with the inviscid-flow
solution without interaction provides one indication of the magnitude of the
viscous-inviscid interaction (47% reduction in the maximum value of Cp at x =
.975). This comparison 1s made somewhat difficult by the inaccuracy of the
inviseid-flow solution very near the trailing edge. In the present inviscid-
flow method, as is the case with most other singularity-distribution methods,
the solutions are not accurate in regions where the angles between adjacent
panels are small. This inaccuracy 1s well known and was not removed since the
inviscid-flow solution without interaction is not used in the present viscous-
inviscld interaction approach.

Figure 25 shows the wall-shear velocity U% and is of similar format as
the previous one. The experimental values were obtalned from Preston tube

measurements. In thls case, the comparison between the calculations and the
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experimental values 1s not quite as good. For .9 <X < 1. the calculations
show larger values than the experiment. This discrepancy is attributed to the
well known deficlencies of the k-e turbulence model for thick-boundary-layer
flow as will be discussed further subsequently. Also, the large-domain solu=
tion predicts slightly higher values for U% than the interaction solution for
X <+9. This is no doubt due to the influence of the initial conditions.

Figure 26 shows the wake-centerline velocity UCL and 1s of similar format
as the previous ones., The agreement between both the calculation methods and
the limited experimental data is again quite good; however, the calculations
show a slower recovery than that indicated by the limited near-wake experimen-
tal data. The largest differences between the large domain and interaction
solutions are in the intermediate-wake region 2. < X < 5. and are consistent
with differences in pressure as shown in figure 24.

Figures 27 and 28 show the convergence history (pressure distribution on
the surface of the body and along the wake centerline and the displacement
thickness) for the large-domain and interaction solutions respectively.
Values are shown for every five global iterations. The planar definition of
displacement thickness has been used for the large-domain solution. The
interaction calculations were started with free-stream edge conditions (Ue =
l., pg = 0.). After twenty lterations, the edge conditions were updated using
the latest value of displacement thickness. Subsequently, the edge conditions
were updated every five global iterations until convergence was achleved. A
comparison of figures 27 and 28 shows that the convergence characteristics of
the two solutions are quite different. The large-domain solution converges

monotonically in 50 iterations. The interaction solutions converge with

oscillations in 40 iterations. Basically the interaction solution converges
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in two stages. The first stage is with free-stream edge conditions and leads
to an underprediction of both Cp and 6*. The second stage is with the dis-
DPlacement-body edge conditions and the solution converges quite rapidly.
Figure 29 shows the iteratlon history of the edge velocity. The small changes
in the displacement-body shape after 20 global iterations lead to impercep-
tible changes in Us. Figure 30 shows a comparison between the converged edge
pressure obtained from the displacement body with that obtained from the
actual body, and the actual body including the equivalent-source method to
represent the displacement effect of the boundary layer. It is seen that the
displacement-body edge-pressure maximum is shifted upstream as compared to the
actual-body edge pressure which results in greater edge pressures for X < .95
and lower values for X > .95, Note that the equivalent-source method edge
pressure shows the correct tendency but with only a minimal modification to
the actual-body result. This clearly demonstrates, as was discussed pre-
viously, that the equivalent-source method is inaccurate for bodies with
noncusped trailing edges. Figure 31 shows a comparison of the experimental
and interaction solution displacement thickness. The calculated values are
slightly below the experimental values.
Lastly, for afterbody 1, figure 32 shows the solution profiles
(U,V,p,k,e) for a number of X-stations between the inlet and the outlet.
Note that in these figures the radial coordinate has been defined as Y = ;:ﬁp
where R, (x) is the local body radius and Rpax 1s the maximum body rad?i:.
Wherever possible, a comparison has been made with the experimental data. In
general the agreement between the large-domain and interaction solutions 1s

very good and consistent with the previous discussions. Also, both solutions

show good agreement with the experimental data. However, note the fact that
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while both solutions indicate similar transverse pressure gradients Py there
is a systematic difference in pressure magnitude. The large-domain solution
predicts lower pressures than the interaction solution which in general shows
better agreement with the experimental data. The reason for this difference
is not known. It may be related to the outer boundary conditions in the
large-domain solution since its characteristics are similar to a blockage
effect. The principal differences between the calculations and the experi-
ments is that the calculations tend to overpredict the velocity and turbulent
kinetic-energy profiles. This result is due to deficiencies of the standard
turbulence model which 1s known to overpredict the level of turbulence in
thick boundary layers, presumably caused by the use of an 1sotropic eddy
viscosity and the neglection of curvature effects. Another cause may be the
use of wall functions. Note the significant variation in pressure across the
boundary layer in the vieinlity of the trailing edge .95 < X < 1.05 indicating
the necessity of including such effects in modeling the present flow.

The calculations were performed for afterbody 5 for a body-length Rey-
nolds number Rn = 9.3 x 106, which corresponds to the experimental condi-
tion. The large- and small-domain grids used in the calculations are shown in
figures 33 and 34 respectively. Referring to figures 33 and 1 for notation:
the number of axial grid points is 60; the number of transverse grid points is
19; the inlet boundary S; is at X, = .5; the exit boundary Sp is at x5 = 16.25;
the outer boundary is at Yioudi .8137; and the first grid point off the body
surface was located in the range 120 < y+ < 200 . Referring to figures 34 and
1 for notation: the number of axial grid points is 60; the number of trans-
verse grid points is 11; the inlet and exit boundaries have the same values as

the large-domain grid; the outer boundary is at yo =8 where 8§ (x) is the
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boundary layer thickness which was specified based on the experimental re-
sults; and the first grid point off the body surface was located in the range

100 < y+ < 160 . The y-direction grid expansion was specified such that the
first two grid points are within the log-law region. Simple turbulent flat-
plate profiles were used again to specify the initial conditions in both the
large- and small-domain solutions. All other boundary conditions are pre-
scribed as discussed in Section IV. D, In the discussion to follow, all
figures for afterbody 5 are of a similar format as that described earlier for
afterbody 1.

Figure 35 shows the pressure distribution on the surface of the body and
along the wake centerline. Comparing figures 35 and 24, it is seen that the
pressure distribution in the tail region of afterbody 5 shows even more radi-
cal variations than on afterbody 1. This includes both a lower minimum pres-
sure upstream of the trailing edge and a higher maximum pressure at the trail-
ing edge. It is seen that both the large-domain and interaction solutions are
in good agreement with each other and the experimental data. The level of
agreement is about the same as that obtained for afterbody 1. The magnitude
of the viscous-inviscid interaction is larger for afterbody 5 than for after-
body 1 (50% reduction in the maximum value of Cp at X = ,975).

Figure 36 shows the wall shear velocity U% and figure 37 the wake center-
line velocity UCL The level of agreement is not as good as that obtained for
afterbody 1. Figure 38 shows the converged value of displacement thickness
and figure 39 the resulting edge velocity. A comparison of figures 38 and 28
shows that the viscous-invisecid interaction is larger for afterbody 5 than
afterbody 1, resulting in an increased displacement thickness for afterbody

2. The displacement thickness is also shown in figure 40 where it is compared
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with the experimental data. The agreement is very good. lastly, the detailed
solution profiles at various X-stations are shown in figure 41. The results
are similar and consistent with those described earlier and do not require
further elaboration. However, note the increase in pressure variation across
the boundary layer as compared to afterbody 1, again indicating the larger
viscous-inviscid interaction and thick-boundary-layer effects for afterbody 5
than 1.

For both afterbodies 1 and 5, the large-domain solutions converged in 50
global iterations and the interaction solutions in 40. For afterbody 1, the

relaxation factors were (a, a a;) = (1., .2-.5, 1l.) for the large-domain

p’
solution and («, ap, a;) = (.6, .2-.5, 1.) for the interaction solution. For
afterbody 5, the relaxation factors were (a, ap, a%) = (.6, .2-.5,1.) for the
large-domain solution and (a, ap, a;) = (.5, .2-.5, 1.) for the interaction
solution. In all cases, in the wake ap = .05 for IT < 10 and ap = .1 - .2 for
IT > 10. Also, in all cases, the solutions required about 10 minutes of ecpu

on a Prime 9950 minicomputer.

VII. CONCLUDING REMARKS

It has been shown that trailing-edge flows with thick boundary layers can
be modeled using viscous-inviscid interaction procedures if all the important
aspects of the flow, namely the pressure variation across the boundary layer
and the displacement effect of the viscous flow on the external inviscid flow,
are taken into account. The validation of the present interaction procedures
has been accomplished by comparing the results for two-dimensional and axisym-
metric flows with large-domain solutions, in which the entire zone of viscous-

inviscid interaction is captured, obtained using the same numerical proced-
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ures. Also, a direct comparison has been made with other methods, including
the finite-analytic method of Chen and Patel (1985), and with available exper-
imental data.

In general, the comparison between the present interaction and large-
domain solutions is very satisfactory for all the cases investigated. Some
small differences are evident, as might be expected. The direct comparison
between the present methods and other methods and also the experimental data
shows excellent agreement. Of particular interest is the comparison with the
method of Chen and Patel; since, their method and the present ones have cer-
tain features in common and are quite different in other respects. Specifi-
cally, the velocity-pressure coupling procedures as well as the turbulence
model are identical; however, the coordinate systems used in solving the
governing equations, the discretization procedures employed, as well as other
numerical treatments are very different. Chen and Patel (1985) and Patel and
Chen (1985) also present results for afterbodies 1 and 5, including a compari-
son with the same experimental data. The level of agreement is very similar
to that shown with the present methods. Thus, it would seem that the most
critical aspect of computational methods for thick-boundary-layer trailing-
edge flows 1s the velocity-pressure coupling rather than the discretization
procedure (finite analytic vs. finite difference) and other numerical proced-
ures employed.

As to the relative advantages of the interaction vs. large-domain solu-
tions, the latter does not require any approximations with regard to the
viscous-inviscid interaction as does the former; however, the interaction
solution was shown to be just as accurate as the large-domain solution, Indi-

cating that the present viscous-inviscid interaction procedures can capture
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this important influence on the flow. With regard to computational effici-
ency, when the equivalent-source method is used the interaction solution is
more efficient; however, when the displacement-body method is used, which is
the case for bodies of interest, then the large-domain solution is more effi-
cient. This is because of the additional computational effort in calculating
‘the inviscid flow. The prescription of the inviscid flow at the boundary-
layer edge does speed up the convergence rate of the viscous-flow solution but
not enough to offset the increase pointed out above. Note that we have used a
three-dimensional source-panel method for the inviscid-flow solution. For
three-dimensional applications, it is expected that the interactive solution
will be more attractive sincé the saving in computational effort in the vis-
cous-flow solution will have a more substantial effect on the overall computa-
tional efficiency. Calculations for three~-dimensional body geometries are now
in progress and will be reported on in the future. Lastly, it should be
mentioned that, besides the academic interest in the nature of an interaction
solution, it also has a practical value. For example, the modification of the
external inviscid-flow solution due to the thick boundary layer and wake is
obtained as part of the solution, and for applications to ship boundary lay-

ers, it is readily extendable to nonzero-Froude-number calculations.
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Large-Domain Grid for Afterbody 5

Figure 33.
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APPENDIX I: Equations in Nonorthogonal Curvilinear Coordinates

In Section IV.A the procedures for obtaining the governing equations in
nonorthogonal curvilinear coordinates have been discussed. Since the result-
ing equations are quite lengthy they are provided in this Appendix. First,
the continuity and momentum equations are presented. Subsequently, the equa-
tions of turbulent-kinetic-energy k and its dissipation-rate e, which are used
to model the Reynolds stresses in the momentum equations, are presented. The
partially-parabolic forms of the Reynolds and turbulence-model equations are
provided in Appendix II.

A. Continuity Equation

1 23U 1l 3V 1l 3w
e . t35gp tla * Vb +We =0 (A-1)
1 2 3
where
-l A R L W Y-
h1h28x hlhzax hlsax
5 d= i I S D N T (A-2)
h2h3 oy hlh2 3y h28 oy
oh
¢c = 2 + 1 ahl + E
h2h3 02 hlhB 37 hBS 32
with
S = s/h1h2h3 (A-3)

and s is the triple product defined by (IV-13).

B. Reynolds Equations

l. x-Momentum Equation

@
=

b"cz
I
+
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w|s
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+
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+ R_UV + (Rl+ b) uv
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+ a)u2 + R_(VW + vw)

+

RQ(V2+ v2) + R (W2+ w2) + R4U2 + (R

3 4 5
e L (epdLl2p, loap, 1oap
+ R6UW + (R6 +¢) uw = - p82 [sin™A hl Tk h2 5y + B h3 az]
3aU .3U aU aVv aV aV R

+ v[V2U + C
W
* Cg 3z * CoU * OV + CyoWl

where (a,b,c) and S are given by (A-2) and (A-3), respectively, and

COS V COS U - CcOS A

Q
1}

>
i

COS A cCOS V - cos u

COS I COS A - COS V

<2
it

with (A,u,v) defined by (IV-11). The Laplacian operator in nonorthogonal

curvilinear coordinates is defined by (where Q is a scalar variable)

Q=S 5y lag 52+ a2 53 * %13 57 * 5 By lay 53 ¢ 222 53 * %23
37 lag 3y 3323"3’* 233 52
where
h’;h%sinzx hlhzth h hghgﬁ
58l g ) 12 Sl 13~ s
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h2h2sin2u h2 o 2h281n2v
a 173 a 1 2 3 5 - l 2 (A7)
22 s 2 23 s ’ 33 s
and ajj = aj3 for 1 # j. The Ry (1 = 1,6) and C; (i = 1, 12) coefficlents
are:
ah
B 0 1 3 cosv 1 1
= e [ (h, cos n) - (hocos v) - + =~ (h,cos )]
Rl S2 h h3 3y ‘M3 h2h3 3z ‘2 h1h3 32 hlh3 3x 3
+ (y -~ cos v sinzx) . & (sinzl - Y COS V) ah1 (A-8)
2 9x 2 oy
hthS hthS
8 ) (h300s A) 8h2 sinzx ah2 3
R, = [ - ] - [ - 7= (h; cos v)] (A-9)
2 hoh 82 oy 3z hoh S2 3x dy 1
2°3 172
2 dh dh
_ sin") 3 Y 3 3 -
RB——‘—‘hhszl (h cosu) —3x] _hhsz [By aZ(h2 cos A)] (A-10)
173 273
dh ah
- _B 1 Y Lt
R4 —m[ (h3 cos u) -3z ] -hhSZ [ay 3% (h2 cos v)| (A-11)
173 172
_ B 8h3 8h2 sin2>\ 3h2 P sin A
R, = (7= - cos A ] - f[cos A 5= - 5= (h,cos p)] +
5 hh82 Ay 97 hh82 X 3y 1 hhS2
273 12 173
ah 3h
[B—E (h1 cos v) —%;(h3 cos i)l -——Y——[coskﬁz—ﬁg (A-12)
h.h
2 3
2 oh dh oh 3ah dh
sin A 1 3 3 Y 3
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6 2 0z Ix 2 3z 3x 2 3y
hlh 3S h 1h 38 h 2h 38
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S2 9y 3 92 5 3y s
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{—Eiéi———-(gg'(hBCos x) - é—-(hlcos v))} o+

9 2
3y 5 37
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2. y-Momentum Equation

U a3V V 3V W 3V 1 duv 1 3v 1 svw i
e g e e v f e mm— S e e + S.VW + (S, +c) vw
h1 X h2 dy h3 3z hl X h2 dy h3 32z 1 1

+ sz(w2 + wz) + 33(U2 + u2) + 34v2 + (S,+b) v2 + S,(UW + uw) + S, UV

4 6

o il 2 3 d
(S6+a) w = - —> [51nu%——£+a}];——g+y Tll——g—i] +v[V2V+D o)

0S 2 %Y 3 1 13
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X 3V W W SW 5U U 35U
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+
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where (a,b,c), S, (a,8,Y), and V2V are given by (A-2), (A-3), (A-5) and (A-6)

respectively. The S; (1 = 1, 6) and the Dy (1 = 1,12) coefficients are given

by
Y 1 3 1 3 cos A “‘2 1 3
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2 s s
dh h.h hhcosv hhcosx
S5+ 2 feos w & () L& ()
X s 02
h h cos A h.h_cos v
' ——1 leos u = (22— - &7 (25— (A-33)
2h2h cos v h.h, h.,cos u 3h
ar ! 3 3 17273 3
3 ——————82 [ax (h3°°s ) - Nz (hcos v)] + 82 [ay (hjcos v) - 5%
h.h
1 2 ] 172 9
[ax (h2h3cos t) - cos v 5} (h2h3008 Al - -—;5— [hl 5y (thos A) +
2 2
h-h,cos v h, h,h-a
3_ 172008 ¥ 3 eRoRIE 3L L el
+ hy 5% (h3<:os u)l + s2 37 (hlhzcos v) + 3 5y (h2)
h, h h?a
Uy 2 onik
" s 3y ( 3 ) (A-34)
2.2
hZhBhIY ? (S ) h2h3 [8 (h.h_cos u) - cos X . (h_.h_cos v)]
= —— (=) + — u - e
33 y h2 s2 93z 12 93z 12
2 2
h-h.,cos A h,h dh
273 3 3 3 2 2 3
+ -—-—-——82 [aZ (hlcos v) - 7 (thos A)] o+ ] [cos™ 5% 35 (hlcos v)l
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ol ior ol g e FI T (A-35)
s 3y s S.2 Ay 3 9z
202 e
) h2h3hls_Ln i L (i_) . h.h 50 o (hlhBCOS u) 3_ (hlhB)]
3 9z 'h s 3z s Y s
s 3
h.-h.h oh h.h h.h
+ 1 2 3 [a_ (h cos u) _ _.__1".] + _2_..__ [COS u .a_._ (__3__.]:.)
SZ X 3 92 s X s
h . h_cos u h . h_ h_cos u dh
3,31 21000 3 3
T ( S )]+ 82 [E)z (hlcos u) - Y ] (A-36)
2 .2 2 2 2
_ h2h1s1n u 3h3 . h2h3hlot [l 3 (_S___) 1 3h3] h2le 3h3
2 Ay 2 sdz ‘h,’ =~ 23z ' T 2 3Jdx
s s 3 h3 s
h h cosv h h_.h cos u h_ 23h
1 _GRSRE et I 2 43
S [s 3z (hlcOSU) +az( s ) T s x]
h_ h h_cosu h_ h h. 3h h
oAl D _ 3 : LU SR I
32 [az (h2<:os 2) 3y (hlcos B)l S [S 5y =i (h2cos x)
2
I s leos e L0 W+ -23 (enn I
3z s 2 SOD gz CRSNH s N (O S s 3x
2
h. h_.cos u hzhcosx h-h
21 ] 1 21 ]
(————s———) - cos U §% ( 7 )] o+ 82 [cos p T (h3cos A)
- cos A 3% (h3cos u)l (A-37)
h2h2hY h.h h.h h. h
2 1" 3 1 ]
=—S%——Z'(%;)+ i [cosvﬁ(i3)—cosua—g(283cos>\)]
h§h3 5 5 hghBCOS A ah3
+ —3—2— [E (hlcos v) - o (h3cos A)] o+ S2 [3x ~ 5= (hlcos )l
h.h A h h. 3h h.h h.h_ h_cos ah
s e LTI S I I L L
s s 9z 1 4 s 939X X s 2 3y

S
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hh3h h_ h_cos A

h
) 2 33 23 39
= ﬁ (h2COS }\)] + S [?H (h2COS A) o+ H (——‘s—-) - -é——y (thOS u)]
h.h h.h h.h h h2 2S:'Ln2 (h=38)
DN NI o O i i Sl T
7 " s cos u g7 (5 cos u “9x ‘s SB 3x q
h.h.h ah
+ lsg 3 [cos v 3% (hBCOS u) - 3—}22] (A-39)
2 2 2
- h2h3hla 3 (_S_) hlh2h300s u I ) a—h—lj h2h1 [8_ S
8~ T3 8x B T 2 lax M08 V) -5y T2 %y B
h, h h.h h . h.cos v
9 3 9
—E(h2cosv)]+ [cosAa—X- 22)-cosu§;(il—s—-)]
hghl 3 ah
+ 32 [ﬁ (h3cos A) - cos v 5—Z——] (A-40)
h. h oh dh h-h ah h2hh
Dy = - <52 [n siny =% + ha l+'23Y l]*‘231\(?—(-8—)
9 2 3 3y 2 3z h 3x 3 3x h
s 1 8 1
h2h cos A dh h-h h-h.,cos p
273 1 9 2 3. 2"3
+ = [aZ L= (hBCOS u)l + e [cos v % ( 3 )
h, h.cos v hh2 dh
a [DoPhgeos v hghy o, oy
g &5 V5 ( s 8- S2 [ax (hZCOS V) = dy
h§h3 3 5 5
+ 32 [cos u e (hlcos v) - cos v 57 (hlcos ) - cos % (hBCOS A)
oh h.h h.h.cos v h.h,.cos u
3 23 .9 , 273 R 2 )
+ Cos v ] Ml e [ax (————S )—cos)\aX (—-——S——)]
h.h . h.cos p
17273 3 3
+ 2 [3y (hgcos 1) - 7 (hycos v)] (A-41)
h.h h
L2 9 13 (s a_ 13 s
DlO ) [hBhl SELmgH oy {s dy (h2)} * hBhla 32z {s 3y (h )}
8 2
h h.h.cos v
P 129 s 2 .9 21 ) 9
+ h2h3Y 3% {g—y (h—)}] + - [-—Z {——s—— (H (hBCOS X)) - 37 (hlcos v )}
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2
h3h cos U h ah
9 1 . 2 9 1 °%2 3
+E{—_—S—— (W (hlcos V) "ﬁ_)} +E{S_ (a—z—‘——y(hBCos)\))} il
h,h.,cos A h2 3ah
{2—3—8——-— (g—z (hjcos v) - g—x— (h3cos X))} o+ B—X{EB— (5-;[—2— = %3" (hlcos v ))}
h_h.cos p oh
] 173 2
* 33 {—S—— (W (h3cos A) - a—-z—}] (A-42)
h.h h
= MAre I [ 10NN 9 (13 (s
S2 [h3hlSln L Ay {s 3z (h3)} * h2h1°‘ 37z {s 92 (h3)} *
h h h cosv 3dh
) 1.3 s 2 9 2 1 )
h2h3Y 3% {ES—E (B;)}] hl 35 { 3 S5 - % (hqeos u))} + 35
2
e C oA 3 s M1 s 8h,
{ 5 (37 (hjcos w) - o= (hycos A))} o+ i {S— (E (hzcos ) - 8_37_)}
h.h.cos A dh h2
D paEidic. 7Ol 3 9 3 3
+ax{ = (aZ (hlcosu) - 3% )} +3x{s (ax (h2cos A)
h.h.cos ¢ 3dh
3 3 371 3 9
T (hlcos u))r + a—x-{ = (ay S e (hycos A (A-43)
h.h h
g A P 155 9 (13 (s
S2 [hBhlSln i 3y {s ax (hl)} * h2hla 32z {s ax (hl)}
h h.h_cos v 3h
3 19 s 2 .3 21 )
+ h2h3Y B {*S—g'; (E—l')}] = [3Z { 3 (8 (hBCOS u) - ﬁ)}
h3h cos ¢4 dh h2
+ g_z{ ls (ay1 g_x (hzcos v))}+ 35 ?1_ (a—-z— (h2cos v) - g—y (hBCOS BR):
h.h.cos A dh h2 dh
3,23 IS 9 (3 3 - el
+8x{ e (az 5 (hBCOS u))} +ax{ (3x (h cos v) )}
h . h_cos u
S R (3= (hyeos w) - & (hyc0s v))} ] (A-44)
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3. z-Momentum Equation

— — = -
U 9W V W W 3w 1 duw 1 8w 1 ow 2 2
———+—-—+——+-—-—-—-+—-———+————-+TUW+T(U+u)
h1 3x h28y hBBZ hlax hzay h33Z 1 2
— 2 2 —
+ (T + a) W + T3(V2+ V) + T4W2 AT+ e) W+ TV W)+ T W
— il
+(T6+b)W=-—lilsin2\’i—§‘§+6i—g—§*°‘%—g—§]*"[VZW*Ela—z
pS 3 1 2

aW AW U 3U 3y X 3V 3V
ax " Beay * Er3u t Egax t Eg 5y + EygW

tEhsx t B35y v B, 55 ¢ By gy
+E LU+ E12V] (A-45)
where (a,b,c), S, (a,8,y), and V2W are given by (A-2), (A-3), (A-5) and (A-6)

respectively. The T; (i = 1, 6) and the E; (1 =1,12) coefficients are given

by
o 1 ] 1 9 CoS 1 8hB )
T =——-[—-——-——(hc0s)\)—————(hcosu)- + ~— (h,ycos v)]
1 S2 h2hl ox 2 h2h1 3y 1 h2h3 Ay h2h3 92 2
(B - cos sinzv) ahl (sinzv - B cosp) 8h3
+ + (A-46)
hh S2 9z n S2 X
31 3h1
oh 2 3h
_ o 3 1 sinv 1 3
T2 _hhSZ [H (h2cos v) - 33 ] -hhs2 [az - 3% (hBCOSu)] (A-47)
271 371
2 oh oh
_sin™v 3 2 8 2 3 -
T3 —-——h 2 [8y (hBCOS A) - 557 _h S 55 - 3y (hycos v)] (A-48)
3 18
- 3 dh dh 5
T4 = > [a—z— (hzcos A) - 5—2] - —5——2 [3—2 e (hlcos u)l (A-49)
h,h.S f h,h s~ °% 4
273 371
ah oh 2 oh
_ o 2 1 sinv 1} "Rom
T5 hhs2[‘——ax—Cosvay]—hhs2[osv———z —ax(th:osA)]
172 371
. oh oh
3 9
+ S—li-\-’-z— [a—&- (h3c:osu) - 35 (hzcos v)l - B > [cos v T2 - -a—b;L] (A-50)
h3h28 h2hlS
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_sinv [;_a_h__B_ cos A 8h2] o e A ah} ahZ] B
bl o 3z g2 O8 A 5y T 3z ST
32 23 172
dh
2 3 8 a_ _
lcos = oy (hlcos p)l + 5 [az (hlcos v) - 5% (hBCOS )]
hBhls
(A-51)
2.2 2 2 2 2 2 2 2
o1 (h3h1h2 2, . h3h1h28) K (h3 by - hyhyhosin 5
sh_ ‘3z ' s sin v 3% (T8 3y s 3 dz
3 s
h.h.h, cos p ah h.h . h.cos A dh
s . 13 3 2 k] o
(h )+ 5 [3y (hlcos v) - 5% ] + 5 [ax (hzcos v) - 5y
3 s s
h,h h . h.cos A h.h_ cos u h.h h,h.cos u
3 3. 24 3 2t 371 |
* [cosvax( ) )_ax( s )+s [cosvay( s )
h.h,cos A
3 271
=55 ( = )] (A-52)
2h2h cos A h.h.h.,cos v 3ah
Sgotes " B 3 17213 5 !
= 32 [ay (hlcos w) - =% (hycos A)] o+ 52 [az (h,cos ) - 5y ]
h. h h.h
+ -—25-3 [8 hzhlcos v) - cos g— h3hlcos p)l - —izz [h2 a—-z— (hlcos u)
2 2
h,h.,cos A h h-B
3_ 2"3°0° Xy PP e s
+ h3 37 (hlcos v)] + 32 X (h2h3cos A) + 33 37 (h3)
B
193 __3__1____ -
- S5 ( = ) (A-53)
§ ihza 3 s . hl
= 33 3z (—H;) + S [ax hthcos V) - cos ¢ 3 (h2h300s A
2 2
h3h cos 1 h.h 3ah
1 3 3 3l N ) IO
+ —:2—“ [‘3—;{' (h2cos A) - 3y (hlcos u)l + 82 [ecos™m T iz (hzcos A)l
hh2h h.h h.cos v 9h
J1a B R T R e -2 (A-54)
s 9z s 2 3z '11C0S U 3x

]
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2 2 .2
. . 3 l112s3.n v 3_ (s_) h h2h3 : 3 (hzhlcos v) n I (h2hl”
4 = 2 5x 'h) T o Y s 3x ' s
dh h.h h.h
+ —1_3%—2 [3 (hlcos v) - 8x2] + z L fcos v 3y ( 1s2)
h.h.cos v h h.,cos v dh
PR P18, 1
-— [ (h cos v) - 7—] (A-55)
3y 8 s X Ay
h v ah h'2 h28 oh h2h ah
m o Miea b CEREN ha sl B LTl AN
5 S2 32 2 s dx h1 hi X S2 oy
hhecosX h hhcosv h_3h h.h h coswv
S L VA [—-23— (h,cos v) +——(—L) Fuceel we LN
s s 3y S2
h.h h. 3h h
3 9 B2 2 1L 2N0l 3
[8x (hBCOS W) o- 3z (hZCOS RN s [s 9z ~ s 93x (hBCOS w) - 3x
h.h,cos u h2h dh
(23S I+ 322 [cosug;z--cosvg?(hzcos)\)]+—sﬁ[cosug§
h3h cos v h3h cos h2h
2 ] 2 32 9 )
(——S—-) - cos v 37 (———-——s———)] + 32 [cos v 3y (hlcos u) - cos 5y
(h1 cos v)] (A-56)
h2h2h01. h . h h.h h.h
F, =222 3 (8, , 32 521 (2L 2 (31
6 3 9x 'h s COS A 3% s V3% s
s il
h2h hgh cos ¢ dh
1 3 1 13
+ 82 [Bx (h2cos ) 3y (hlcos p)l + 82 [ay - % (h2cos v)]
" h3h cosu [_2 (h cos) - _hl ahl i 3 (h3h1)] X hlh2h3cos v [’c)h1
2 s 3y 3y ' s S2 32
h.h h h cos U h
2 1 Mg I | "o
x(hBCOS u)l + - [S 5y (hBCosu) +3y( - ) -5 32 (hZCOS v)]
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2.2 .
h h h1 [ ol (h2h1cos v) B (hZhl)] . h3h1h231n v B (i_)
~bg Cos vV 3y s T3y ' s 3 3y '‘h
s 2
h.h.h ah
+ —-1—3%—3- leos v 3= (nycos v) - 5=t (A-58)
h2 hZB h-h.-h oh hh2
= 3h12 a—(LS—)---—1——23(3£[—(hcos>\) —2] —2—2—[3—- (h,cos v)
s3 Ay h2 s2 3y 3 2z S2 3z 1
h hh h3h cos A h?;,h
P 3
- 5= (h3cos A)] o+ [cos u v (———? cos v g—? ( ZS )] o+ 22
J s
5 s
[5-}-; (hlcos u) - cos A Fy (A-59)
h Al dh 2h h.h a Bh 2 h2 cos
L T R zh cll T £
2 1 92 3 3x h2 ay 9y h2 s
dh hhcosv hhcosx
[a—}-za g— (h cos v) ] +_2 [cos A — (—l-————) - cos v B (—l———)]
+h3h’i 2= (h.cos A) f—h—zwhéhl[ 8_ (h.cos A) W i reea )
S2 55 (hgcos -3 32 cos v z— (hycos - cos A 5— (hyco
ah h.h h.h cos A
9 1 20 oW Sl
—cosvay (hlcosu)+cos>\ay ] + = [ax( 5 )
h_h_cos v h h h _cos v
3 Bl 123 3 3
-cosug—i( = )] o+ s2 [Bz (hjcos v) - 5% (hBCos )]
(A-60)
h_h h
_ W0 sl 19 8 2 (13
10 = T2 [hjhgsin™ 59 {5 55 h3)} + hyhf 5= 05 57 (hz)} + hahpa 5= {557
h h. h,cos A h_h,cosv
RS B S v A 1 3 3 Tl >
ah h2 dh h . h.cos u
3pw,8 (2 ,_3 3_ 8 31~ 8
flep oty —ay )}+3x{s ( x 9z (hlcosu))}+ay s (ax (h2cos>\)
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11

il

2
h ah h . h.cos A
9 9 1 3 3 3 271 3
_W (hl cos u))}"'—s;{'s— (5‘5“— 37 (h2COS )\))}"‘W{_?‘_‘ (g; (hlcosu)
3h3
'5}_)}] (A-61)
hIhZh§ 2 0 19 8 3 13 s 9 13
= 5 [hjhosin™ 3= {T 37 (F7)} + h3h28 3 issx 0 h3h1cx 3y {E X
8 1 2
h h.,h.cos A 3h h.-h,cos v
s 3 .3 372 1 3 3 172 ]
(h—l-)} 1+ ot [ﬁ{ 3 (ay =N (h2cos v))+ 'g—i{—T— (a_z— (hzcos v)
2 3h h.h_cos u
a_ 3_¢h 3 Jo & 31 " 3
-3y (hBCOS u))} * 37 {S (3X (hBCosu) oy )}+ay{ S (3% (hycos v)
dh h2 h.h.,cos v 3h
1 a_ 1 3 3_ 9 12 1
- ay )} + ay {S (ay (hBCOS IJ) ' az (hzcos \)))} + ay { s (az
 n Dy (A-62)
- 35 (hg cos u -
h.h. h
17273 2 13 8 3 13 s P}
= [h h,sin®v {= = (/)} + h h8 {=7 (=)} +h h,a z—
2 12 3z "8 3y h2 3727 3x "s 3y h2 3717 o8y
h h. h.,cos A oh h.h.cos v dh
19 8y, ,03 0 D308 % 5 2, 2 M1 2
{s oy (hz)}] s [ax{ s (By (hlcosv) T ox N +3x{ 8 (az
h2 h.h.cosu 9dh
3_ O D S . 9 3 371 2
- 3y (hgcos MR 5 5 G (hqcos A) - 3 (hjcos v))}+ 3y s (5%
h'2 oh h.h.cos v
9 3 1 3 2 3 12
-3y (hlcos v)l o+ 3y (5 (By (h3cos A) - ﬁ} + W{ 5 (é—z (hlcos v)
-2 (n.cos A))}] (A=6
% 3cos -63)
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C. Turbulence Equations.

v v
U 9k _V 9k . W 8k _ 1 (3 t 9k 2k 9k ) 1
e to— st =2 = [ (= (AT + Heo + G =2)) + 20— {——
hlrx h2 v h3 z s '39x 0.8 X 3y 32 Yy 0.8
v
ok ok ok t 3k 9k 9k ~
(H—; BW+FE)}+§_E{5_I{E(G§;+F§§+CE)}]+G-€ {A-64)
U 3e V. de W 3 13 ° de de 3¢ 5 V% 3¢
T th s s Br s Aas+ Him + G3o)} + 5~ {—= (His
hl b'¢ h2 y h3 Z s '9Xx 0.8 X Ay 3z 3y css X
d¢e e ] v de € dg € ~ 82
M PR TR PRI RS MR A FURIME S B S TS
(A-65)
where s and the coefficients (A,B,C,F,G,H) are given by (IV-13) and
respectively. The turbulence generation term is defined by
~ 2 2 2 2 2 2
G = vt[2(ell+ € * 833) + 4(812 + €23 + 831)] (A-66)
where eij 1s the rate-of-strain tensor
_1 T
sij =5 VV + V"] (A-67)

In (A-67) vV 1s the deformation-rate tensor e j and VXF its transpose,

T

vV = eji' The components of €,, are defined by:

ij
11 7 11
s
_1 N _
€12 =2 legpt ey) =€y
1 h1 h2 (A-69)
S2ign (e Mogu Gegl) g Uy By & Eognl]
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i.e.,



€ = l-(e + e, ) =¢
13 2 13 31 31
1, A h, (4-70)
=5 [;2‘ (AAl3 + H.A23 + GA33) + 5_2 (GA11+ FA21+ CABl)]
h,
€op = ;g‘(HA12+ BA22+ FA32) (A-71)
€ = l-(e +e,.) =¢
23 2 23 32 32
1 B hy (A-72)
= §'[;§'(HA13+ BA23+ FA33) + ;5'(GA12+ FA,,+ CA32)]
Sgg" 1 38
h3 (A-73)
= ;5-(GA13+ FA23+ CA33)
where

17 = Uyt Uayyt Ve, Wag,)

A
Ayp= Ubyp+ Vi* Voo, + Wby

A13= Uc11+ Vc21+ Wl+ Wc31

01" U2+ Ua12+ Va22+ Wa32 (A-74)

A
Ay Uby ot Vot Vbt Wby,

23 U012+ V022+ W2+ Wch

31= U3+ Ua13+ Va23+ Wa33

32" PPyt Vgt byt Wb

A33= Uc13+ V023+ W3+ W033

>
H)

-
'

and the notation

aV 3V  aw
ax,’ 9x,’ 3x,
i i i

(U, vy,

W) = ( )
has been used. The coefficients (aij: bij: Cij) in (A-74) are the components of
the vectors representing the derivatives of the unit vectors ;i in the (x,y,2)

coordinate directions, i.e.
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where
= LI =] = !
8y = (agy=py 40y P17 ™ e bt
= USRE- = h! = al
81 = (8157 0y H)/My b= b/ %32~ 12
= L. - 1 = 1
a3 (a13 h1,3)/h1 b13 b13/h1 c)3 c13/h1
= ! = - =
8y = ay/hy Dyy= (byy=hy Wby ey= e/
= = = = !
857 = 83/, Dyp= (Byo= by S)/My  Cpp= Cp/My
853 = aéB/hz b, (béB- h2’3)/h2 Cyg" 053/h2
= 1 = ! = o=
a4 a31/h3 b31 b31/h3 ¢ (031 h
= ! = 1 = |
835 a32/h3 b32 b32/h3 032 (032 h
= ] = 1] = | .
833 = 833/ P33 P33y a5 g b
and the notation
3
ax, By) =By
J
has been used with
ST l
1 1 = i
(811, 13> of1) = D79 Vi = MyPy o
u: - hlhl,B J
B hohy 5 A
(835, bhoy Chp) = D g Ay —hohy 5 ¢
' -
Vi T By
h.h
1 1 ! -1 ? 3"Bh
(833, D3gy 33} = D LUl = Bshgy
! e
SIET Y N

3 O

®1,5° 3%,
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(ei) = aijei+ bije2+ ciJe3

-

)/h
)/h

(A-75)

(A-76)

3
3

3,3'/P3

(A-77)

(A-78)

(A-79)



\
N Jhlhl,Z .
(a],, bly, €,) = D hohy L (A-80)
Loy :
PR Voo )
r ~
-1 hlhl’B [ t 8
] - 1 —
(a]'_B, b]'-3, 013) = D { 2‘ (}\’l" ]J,2+ \)’3) » (A 1)
h,.h
L 33,1
f'l ] 1 )
Y -1 E'(“,3" A’1+ “,2) (A-82)
1 1 - - -
(a23, b23, 023) D~ < h2h2,3 >
h.h
. 3 3’2 J
and
h, h,.si 2A h.h h-h.8
2119810 173y 12
Da e LSS ) % A T o h,h.o (A-83)
217273 13 172
h1h2h38 >
h2h38 hlhjx hlhzsin v
-
A h2h300s A
u' o= h1h300s i (A-~84)
1 =
v hlhzcos v

1 I '

' 1
Note that the coefficients (aij’ biJ’ cij) are symmetric, i.e., (aij’ bij’ cij) =

! 1 1
(aJi’ bji’ ch) for 1 % j.
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APPENDIX II: Partially-Parabolic Equations

In Section IV-A the procedures for obtaining the partially-parabolic form of
the poverning equations have been discussed. The resulting equationg are
provided in this Appendix. The definitions of the various coefficients appearing

in the equations are given in Appendix T.

x-Momentum Equation

U 3U V. 3U W 3UuU 22 1 3uv 1 du 1 .2 1 3p 1 3p
ey Pl e Hioee aenych (M S s e 4+ e aem— (2R = i Ml — + ¥ =3
d h h h, 32 2 h. 3 h_3
hl Ix h2 y 3 Z 4 5 y 3 2 08 1 X 5 y
l 3p, ., v 3 au, 3 ST 3y au, , 3 aU
+ 8 h, 320 * s Ly (Ban 3y) * 3y (8a333) * 37 (835 33) * 57 (83353501
(B-1)
y-Momentum Equation
U 9V .V 3V W 3V 1 av 1 dww AU 30U B
ﬁ;ﬁ*ﬁ;ﬁ*'@?*ﬁ‘z‘?*g?-“Drza—i-"Dsﬁ*‘51*0"’“’

(UW + uw) + SgUV + (86+a) v

- -Llmp 2 Lupdp 1 9p 1l 9p, ., v 3 av, .3 av

= - lslnu Ry e s Y oyl t s Gy (@) tay Bz t
oS 2 3 1

3 3V, 3 3y

37 (a32 g‘,;;) 3z (833 E” (B-2)

z-Momentum Equation




F T (U2 ¢ uR) + (T, +a) T + T V¥ + (T, +¢) W + T_(UV + Tv)

2 3 4 5
el gmd Llp,,Llp, 1dp v o 3W
*(Tg+ b) w = - == [sin™v g— 5, + B 35 * o 7~ 5y) * 5 57 (8y 55)
pS 3 1 2
3 W ] W ] aW
+ 3y (323 35 ) + 3 (832 W) + 37 (a33 5_z_)] (B~-3)
k-Equation
B F F
Uonk, Woak,Woak 1 Uwak, Culak 2 Ve ok, Ut ok
h1 X h2 Yy h3 3z s 9y ‘0.8 3y oks Z 3z oks y cks 92
+G - (B-4)
€ - Equation
Ude , Vvoae Wode 1 “tPae Ve o, 3 Ve, Y40 e
9z 3
hl Ix h‘2 3y h3 Z 8 9y o 8 oy 0.8 9z 3z g 8 9y 0.8 A
€ ~ 82
*C1 kG- Co i (B-5)
The Reynolds stress terms required in equations (B-1) - (B-3) are related
to k-¢ through the isotropic eddy viscosity concept:
V,V, = - 2v_ € +gk(hhg ) (B-6)
17 tij 3 17§71
where vy = Cuk2/e is the eddy viscosity, Eij is the rate-of-strain tensor (A-68)-

(A-73), hy are the metric coefficients (IV-10), and gij is the inverse metric

tensor (IV-14.1). Note that equations (B-1)-(B-3) were derived under the assump-
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tion that ViVj ~ O(e ). Thus, the order-of-magnitude of V€

the order-of-magnitude of v
2

~ O(e); however,

1J

N is difficult to assign and should be 0O(g) f-vt

< 0 (¢7). For this reason terms of O(e_l) and O(1) have been retained 1n the

partially-parabolic form of Eij' Note that eij is also required for the

evaluation of the turblence generation term G (A-66). The terms (A-74) simplify

to

=
1}

U, + Ua

1171 11

Ao = Ubyy

A13 = Ucll (B=7)
Byp = Uy * oy,

Byp = oyt Wy

A23 = Uc12+ W2

A31 = U3 + Ua13

A32 7 Ty3t g

B33 7 Uoggr Wy

and the components of eij (A-68) - (A-78) become

h
i
311 = ;é {A(Ul+ Uall) + H(U2+ Ua12) + G(U3+ UalB)} (B-8)
1 hl
612 =7 [;—2- {AUb11+ H(Ub12+ V2) + G(Ub13+ VB)} +
h2
+ ;5-{H(U1+ Uall) + B(U2+ Ua12) + F(U3+ Ua13)}] (B-9)
1 hl
513 =5 [—SE {AUcll+ H(U012+ W2) + G(U013+ WB)
Dy
+ —5'{G(U1+ Uall) + F(U,+ Ua12) + C(U3+ UalB)}] (B-10)

S
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h

1t

22 "2 {HUby )+ B(Uby o+ V) + F(Uby 5+ V) Ca
1 as

523 =5 [? {HUcll+ B(Uc12+ W2) + F(Uc13+ W3) + ;2— {GUb11+ F(Ub12+ V2)
+ C(Ub13+ V3)}] (B-12)
.

€45 = -83 {GUe, ,+ F(Ucy,+ w,) + C(U013+ w3)} (B-13)
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APPENDIX III: Equations in Discretized Form

This appendix provides the details of the finite-difference procedures
used to put the partially-parabolic Reynolds and Turbulence equations, as well
as the pressure-correction and pressure equations, into discretized form. A
written description has already been provided in Section IV.B and IV.C. and
will not be repeated here. As shown below, various terms in the equations
have been grouped for convenlence. All differences are labeled as to forward
(FD), backward (BD), or central (CD). Lastly, the terms are collected and the
coefficients in equations (IV-18) - (IV-22) and (IV-29) - (IV-30) are
defined. The following definitions are used for the distances between nodes

(see figure 3):

2 e (oY
n m,n m

T e S LI S Y e G RV
- m,n m,n m,n m,n m,n

ekl - R
, m,n m,n

’ m,n ] ; m,n
(Ay—)i,n= [(Yi,n- Yf;l-l,n)2 ¥ (Zi,n_ m—l,n)zll/2

RN N 2

5 ,N fBe} m,n m,n-1
I g-1
(Ay—-)m,n— (a -)m,n
Az )* = (a2 )T
-— m,n y —4ho
2 2+1
(Ay++)m,n— (Ay+)m,n

L)



(AZ++)fn,n= (AZ+)§1j111
where (%,m,n) are the indices in the (x,¥,2) coordinate directions and (X,Y,2)
are the Cartesian coordinates. Note that in the present staggered grid
arrangement the streamwise velocity component U is located at the grid node
(2,m,n) whereas the transverse velocity component V 1is located at
(2-1/2, m-1/2, n), the girthwise velocity component W 1s located at
(2-1/2, m, n-1/2), and ‘the remaining variables (p,;,k,e) are located at
(2-1/2, m, n). All the required geometrical quantities are first evaluated at
the grid nodes (2,m,n) using a backward difference for x-dérivatives and
central differences for y- and z-derivatives. Subsequently, when the discre-
tized equations are formed, all geometric quantities are evaluated at the

location of the variable under consideration by taking the appropriate average

of the neighboring values which is the reason that the notation 2 % 1/2, m

1+

1/2, n £ 1/2 has been introduced below.

A. Reynolds Equaf.ions

1. x-Momentum Equation

a)
U 30 _ U’;n n =il & -1
o Yen o -, - i o)
1 (Ax )
-'m,n
b)
Vo U V*
hay " 7, {(o,+1) Ufm’n- 2 U’L, + (8_-1) Ufn-l,n} - xblUIle’n- xszf'n,n
N (c-2)

where

*x 1 +1 1

il ==z (an,nJ' mn VQ+1,n m+1,n)

Re = Re V (Ay, .+ Ay )m,n/Z
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R = l/(vt+ 1/Rn),

e
_ 3
0, = - landdy =20y ),  If Re > 2 (BD)
3
b, = 0and oy = (ay, + Ay_)m’n if [Re_| < 2 (CD)
¢y =1 and Ay_ = Z(Ay+)mn if Rec < - 2 (FD)
c)
WUy W
hBQZ * q{wz’\ 1) Uil,nﬂ' 2¢2U§1,n v (0,-1) Ufn,n-l} " (C-3)
where
* +1
LA (W;,n ¥ wxﬁl,nﬂ ¥ WQ w%n,n+1
*
Re = W Re (Az++ Az_)m,n/Z
_ _ 2
®, = -1andz, =208z )  1f Re_ > 2 (BD)
- = 2
6, = 0andda, = (Az,+ 8z )  If |Re | < 2 (cD)
_ r 2
¢, =1 and bz, = 2(dz,) . If Re < -2 (FD)
d)
2 3 1— N s 12 3 -
RO 2y O3 k) 255 hi% z (Vif13- F X 3) = RO 2{_—h28y vie1o
7 3 1-— a
K2 *haz V13- 3 513) - may O hay)}
3 2 2
= 3 1+
R4U2 * 2{h28y (vye1p- 3 ko) + Rpz (vie13- 3 Kp9)
2 l — l = 2
— 1 3 1 2. LlRe g o
S\CCIPC SUPYMERNS. "oz 4137 3 E13dnne Ot 3 Kiglnnadt
= Xdl (CD) (C-4)
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L

(v,)
9 ol N 2 t'm+l/2,n
TRy (vy h23y) S { A wfml,n' Ufn,n)
I AT m,n Y+'m,n
(v, )k
t'm-1/2,n -
N (Ufn,n‘ UxQn—l,n)} = - xd, Uﬁwl,n p 23 Ufn,n Sz Ufn—l,n (cD)
s (C-5)
where
= e U
12 12 2h28y
K137 P81y
_ 2-1/2
Ay, = (Ay, + by ) n
_ 2-1/2
Az_ = (Az + AZ—)m,n
e)
> 2 241 &
_Llqsio dp_ .y 3p B 9p, _ 1, sinAn Pmon” Pmn | hay
p S2 hlax 82 hzay SZ h38z P 82 m,n Axx S2 m,n
1, 2+l 2 g+1 3 B2 1 2+l 8
Ayx (pm+l,n * Pm+1,n~ Pm-1,n - pm—l,n) N (SZ)m,n Azx Pp,n+1 Pm,n+1
2+1 % _
- Pm,n_l" Pm’n_l)} = = xel (FD), (CD), (CD) (C“6)

where
~ 2 g
Ax = {(Ax+)m’n+ (Ax-)m,n}/Z
_ )
Ay, = (By,* Ay-)m,n
_ ')
Azx = (Az++ Az_)m’
f)
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aU d Ry 3 U 8 al

v
= (I) + (II) + (III) + (IV)
(a0 (a0
v alu, _ v 2822 m+1/2 n 222 m- 1/2 n
(D=5 5y (B2 3y (h,h,8)° { (ay " (U;+1 = U;’n) i ay * -
13 'm,n I+ m,n J_ m,n
2 _ g,
(U;,n - U;—l,n)} by + A % = U;+1,n =2y U;,n i XfBum-l,n (g
y_ Ay
(C-7)
A h_a %
_v 3 30 v 2
(I0)=% 2 (a,, 2 = { (-2 (vt - ¢ )
s 9y 0233z hlhBS(Ay + Ay+)Jm N m+1l,n+1” ‘m+l,n-1
m+l,n
h2 a23 L Uz Ul
- Gz + Az_) 1 ( -1,n+1 m—l,n-l)} - Xf4 (€D}, (CD) §C=69
L
va_ al, _ v ) N2%3
(II1)= 5 33 (832 Sy) " {hlhzs(Az++Az )’ {3 Ay _HAy, )m n+l (U;+1,n+l' Ui—l,n+1)
-’ mn
h 2
2 % _
- s (U"+1 = U;_l,n_l)} = xf, (CD), (CD) (C-9)
(h, a 2
_ v o al, _ 2V s 3 33mn+1/2
(IV)= T 55 (a335,) = (7S Bz 820 _ ) (U;,n+1" U;,n)
172 - +" m,n (AZ+)mn
3
,Q,
_ el mu-l/2 () - b 10} = xfy (CD), (CD) (C-10)
(Az X m,n~ m,n-1 *6 ?
-'m,n

Collecting all terms (C-1) - (C-10):

xa Ul - Xa U!L_l + xb U2 - xb Ul + xb Ul + xc, + xd

1 m,n 1 m,n 1 m+l,n 2m 3'm-1,n 1 1
=g Uﬁ+l,n E Xd3Ufn,n' Xd4U;-l,n del B Xf1Ufn+1,n * XfZUi,n . Xf3Ufn-1,n

-ﬁA-x%-ﬁ6=O
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or

(xb3 - xd4 - xf3) Ufn—l,n + (xexl - xb2 + xd3 + xfz) Ufn,n + (xbl —.xd2 - xfl)
_ -1
Ufn+1,n = xalUxQn,n - xcl - xdl + xf‘4 + xf'5 + xf6 - xe1

Finally, the coefficients in equation (IV-18) are:

1 xb3 - xd4 - xf3

fo
1]

a2 = xal - xb2 + xd3 + xf‘2
a3 = xbl - xd2 - xfl
_ -1

Su = xalllf'n’n - xc1 - xd1 + xf‘4 + xf5 + xf6
Pu = - xe1

2, y-Momentum Equation
a)
UV U* 1 1
nox 2-1/2 (VQm,ﬁ Vlm,x)x . yal(an n- an n) (BD)
1 (Ax ) 2 2

-'m-1/2,n
where
* -1 -1

U & (Ufn,n+ Uﬁx,nq' U';Ln-l,n+ IrIgn--l,n)/z*'

b)
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Vav _
h23y BYy iy (e +1) Vl '2¢yvfn,ﬁ ((Dy'l)vfn—l,n} =¥ an+l,n'yb2viln,n+ beV;tn-l,n
(C-13)
where
. i g-1/2
Qy 1 and Ay y 2(Ay)m-1/2,n if Rec > 2 (BD)
_ . 2-1/2
o, = 0 and &yy = By, + 8y ) 775 o Af |Re | < 2 (cD)
) ) g-1/2
qsy =1 and Ayy = 2(Ay+)m_1/2,n if Re < -2 (FD)
) =172
ot an,n(Ay Y e -1/2, n/?-
c)
WoV W*
h 3z 3 B_zi;{(‘b ¥ ”VQ ,n+1” 2¢zvfn,n +(e,-1) an,n-l} =] (Gt
where
) ) 2-1/2
¢, =-1land Az, =2(Az_) l/2,n-1/2 if Re, > 2 (BD)
- = 2-1/2
¢, = 0 and Azw = (Az, + Az )m 1/2,n-1/2 if IRecl < 2 (CD)
= - L-1/2
6, =1anddz, =202,) 790 1, Af Re < - 2 (FD)
*
o ‘Wl W£ m,n+l wi—l,n * Wi—l,n—l)/4'
1
* 2"5
Rec = ReW (Az++ Az ) 1 /2.
m-'-2-,n
d)
3k dlv,e, )
9 3 1l = 2 22 3 oV 1 22
2{ (v e,.) + (Ve 5 k) - % = 2{- (v ) * 13
hpy w22’ " hgz 172373 %23 3 b3y B3y Vi 2h5y 37
ok
3 M= 2 22
v RE Wif23 =3 ka3l - 355y
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i -
25 (vt523--§]f23) gafzz 2 (vt€22) Ly y v y £
h3z RN h3y Bz V823 3 ®23'm,n+17 V1F23”
e
1 Pl _ e -Llg (vaeane 2T 4L 4 22 (k22mln— X22m-1,n’
3 %23'm,n+1” ‘Vt°237 3 “23'm,n-1" ‘"Y1%23° 3 *23'm,n-1" ~ 3 Ay
1 =) —2-1 —2 —_—2 =1 _
5y (Mef22)mn® Pif22)mn” ©4f22)n1 0 Pifo2 1,0 = ¥4, (CD), (BD), (BD)
(C-15)
(T
3 av. .. _ 2 t ' mn
"y (vy hzay) T Ty s 2y P12 {(A =172 (anw*l,n an,n)
Voo A m-1/2,n Vs m-1/2,n
(v, ) 1/2
1’ m-1,n =
Ty 172 (an,n‘ an—l,n)} = - ¥,V o y‘13"5:1 n” ydﬂfn-l n{CD)  (C-16)
y ) 2 3 ’
-'m-1/2,n
where
- 2-1/2
Az_ = (Az + AZ—)m,n
_ g-1/2
Aye = (Ay—)m,n
T oz - ammd¥
22 " %22 T 7, %y
e)
2
__1_(1 g_g+s£nu§_g+a §_Q)=__1_{(y_)1—1/2 1 (£+1+p£+1 _ 2=l
P g . X g h2 oy S2h3 032 p S2 m-1/2,n Axy mn “m-l,n “m,n
2-1 Sin2u 2-1/2 1 2 L a 2-1/2 1 L 2
pm—l,n) * 2 )m—1/2,n 'A—Sr; (pm,n' Pp1,n) * (?)m-l/z,n A—z; (pm,n+1+ Pp-1,n+
"Pz ‘PR' )} = - ye, (CD), (BD), (CD) (C-17)
m,n-1 ~1,n-1 I ’ ’

126



where

i 2
Axy = {Ax++ (Ax _+ Ax++)/2}m,n
1 2-1/2
Ayy 3 (Ay')m;n
N 2-1/2
Azy S (Az++ AZ—)m-l/Z,n

v 9 oV 9 av 3 aV 3 3V

+ (II) + (III) + (IV)

2-1/2

(h,a.,,)
v 3 aV 2v 2 22'm,n
(1) =55y (8 5y) = i R { hy o172 (V;+1,n_ Vi,n)
s vt SUESIRR R 77 B Y+'m-1/2,n
(hoa, )t /2
2 22'm-1,n 2 -
Ty 12 (Vi,n— Vi1, = Vi+1,n_ vty V;,n+ v, V;—l,n(CD)
-'m-1/2,n (C-18)
2-1/2
(h,a,.,)
v 3 av, _ v il 3723 'm,n
UD =5ay o gg) = w1z by, U el (V1 o1 Va1 no1)
1'3%'m-172,n & BER20ma/20n
2-1/2
(h,a,,)
3#23'm-1,n _ - o
S (an_l’n+1 no1,no1't = 9T, (0D), (oD) (C-19)
+ "-m-1/2,n
where
3 1 2-1/2
Ayg = lay_+ E'(Ay++Ay_-)}m,n
2-1/2
() =2 (@, ) - v H%%%Hmmhﬁl :
T s 3z '"323y’ T L-1/2 Ay m+1l,n+
{hthS(Az_+ AZ-)}m-l/2,n b ’
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2-1/2

(h )
2 232'n-1/2,n-1 -
- thx-l,nﬂ) - Ay, (an+1 ,n+l” Vﬁl—l,n—l)} S5 CD AN (OR)
(C=20)
where
1 2-1/2
Ay, = {ay_+ 5 (Ay .+ Ay-)}m,n{-l
Ay, = {Ay_ +%— (Ay .+ Ay_)}fn;llﬁ
(ha, )t L/2
(Iv) =23 _ (o 3V 2v 1 P 3%33 m-}/z ,n+1/2
s 9z 339z L-1/2 -1 L-1/2
(hthS)m-l/Z,n (AZ—+AZ+)m—1/2,n (AZ+)m-l/2,n
(e, 32
3%33'm-1/2,n-1/2 )
(Vo ne1” Van) - RV (Vg n™ Vmyno} = 98¢ (CD), (CD)
-'m-1/2,n (C-21)
g)
{(Sq+e)(-2v 2%, + 8,2k ) + S (P2v,e,, +2K. )
178l V23" 7 Ka3 2'3 %337 <*+°33 3%V 11 T3 1
2 — 2 —
+(8,90) (5 py- 2vieny) + S5(UN - e+ §Xp4) + SOV - 2(Sg+a) (vyeq, -
1+ nwe-1/2 _
=3 515,07 78
(C-22)
h)
aU AU 2-1/2 . -1
vDy 55 * vDg 33 = vDy (dlln,n' [f:n-l n* Ufn n - Ufn-l
m-1/2,n ’ ? ’
2-1/2 1 -1
+ vD8m_l/2,n (UIQn,n+l UQ * Ufn—l,n+1 * lffn-l,ml

128



i B = 8 -0t 1)/8 = yh

m,n-1" “m,n-1 m-1,n-1 -1,n-1 3 WERIGIA(CD) (c=20)
Collecting all terms (C-12) - (C-23):
yal(vi Vi, ) *+¥by Vfn+1,n - ybzvi,n g beV;-l,n vye, *ydy
- ¥4, Vfn+1,n * ydzvi,n - yd4V§1—1,n t ey - yf1an+1 o’ yfzvi,n
R4S V;—l,n - ¥f, -5 - T *yEy -yhy =0
or
(yb3 -yd, - yfg) V;-l,n + (ya; - yb, + yd3 *yt,) V;,n
+ (ybl— yd2— yfl) V2 = ya, V£ yd + yf4+ yf5+ yfé- yg - ye + yh1
Finally, the coefficients in equation (IV-19) are:
= -yd, - yf
By =¥y - ¥, - ¥y
b2 =ya, - yb2 + yd3 + yf2 (C-24)

o
|

3 = ybl - yd2 - yfl

Sv

-1 '
ya, V;,n— ye - ydp* yf4+ yEg* vt - yg + ¥y

Pv = - yey
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3. z-Momentum Equation

a)
oW U -1, _ -1
R3% ~ o F-172 (an,n— Voo = 223 (an,n— an,n) (EDY
X X _)n,n-1/2
where '
* -1 -1
U (U;,n+ Uﬁ,n+ Ui,n+ U; n-1/4-
b)
Vow V*
npy " a7, (g™ Vet n - i v OyoL) Wy ) = e
where
_ 1 2-1/2
¢y = - 1 and Ayy 2(A )m,n-l/2 if Re, > 2 (BD)
_ B} L-1/2 .
¢y 0 and Ayv (Ay++ Ay ) n-1/2 if |Rec| < 2 (CD)
_ L-1/2
¢y 1 and Ayy = Z(Ay+)m,n—1/2 if ReC < -2 (FD)
_ 2-1/2
Re_ = e Vi,n 6y _+ by, )37 /2.
*
v (V;,n * Viﬁl,n * Vfn,n+l+ m+1,n+l)/4'
c)
Wow W;,n
h33Z - AzW (6,+1) wﬁ,n+1 - 2¢zwi,n + (6,-1) Wg,n—l}
) chwfn,n+1 N Zczmrfn,n B Zc3an,n-1
where
_ _ 2-1/2
¢Z = -1 and Az, = Z(AZ—)m,n—l/Z if Rec > 2 (BD)
N - L-1/2 .
¢Z 0 and Azw (Az++ Az-)m,n—1/2 if |Hec| < 2 (CD)
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2-1/2

¢ =1 and Azw= 2(Az ) > if Rec < -2 (FD)

Z +'m,n-1/
_ g-1/2
Rec s an’n(Az_-r AZ*r)m,n—1/2
d)
k.
3 10y 2 3 2 °fa3 3 1-
- h3y (Vi€r3= 3 kp3) + B, 2 (vieg3) -3 Bz 2 h3y (Vi€ns- 3 kp3) +
Ak,
9 — 3 AW 2
A == e el - (v ) - F
3 3 %) h.s
h32 t°33 h3z ‘tBZ 33z
2k,
3 gl 9 e 1 @2
2 {hzay (Viers= 5 kyq) + hpz (vieqq)} - Thpz " by, {er3- 3 X304 0
= sl B o ¥ —y 81 2
v 4Ea3m T o3 el 0 V48237 3 Bag)p1 0 Mifa3 3 Kazln-1,d — 3
= 2 =
(k -k )
39m,n” “33man-1' 1 — —2-1 — —2 -1
T oL * 52 Ye33lnnt P4f330n,n" P€330mn-1" V48330m,0-1
2 )p n e
= 24, (CD), (BD), (BD) (C-28)
where
g-1
Aye B (Ay_+ Ay+)m,n/2
Aze = (Az + Az+):’_rll/2 /2
T =g .1 W
33 33 2h3 z
. fr1/2
d W 2 t'm,n
" haz Ut Tz T T sy 1-1/2 ‘wfn,mr an,n)
3 3 {Az++ Az_} (Az+ )m n-1/2
m,n-1/2 1
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(v,)
t'm,n-1 ~
77— O o1 )b < - sy g agly - 24,0, noy (OD)  (C-29)
(Az )
-'m,n-1/2
e)
2

1 B8 ap adp sin™v 3p 1,8 2-1/2 1 2+1 L+1 -1
S G e i )= - =) i ar Pt D - P

o] 82h1 X S2h28y SthQZ p 82 m,n-1/2 sz m,n m,n-1 “m,n

2-1 )+ (a_)2—1/2 1 (2 + 2 2 2 )
= Pp,n-1 g2'm,n-1/2 Ay, Pm+1,n" Pm+1,n-17 Pm-1,n" Pp-1,n-1

2 2-1/2

sin v 1 2 2 _
where
- 5 ] 2
sz =3 {Ax_+ 5 (Ax++ Ax-)}m,n
_ L-1/2
Ay, = (By,* Ay-)m,n--1/2
Mep M/
Z m,n
f)

oW aW 3 aw

v .93 ow ] 3
5 {5? (ass ﬁ) * 3y (a23 32 Y 3% (a32 W) o (833 5501

(I) + (II) + (III) + (IV)

(hoa oL/
(1) =22 (o, 3. £ (—222ml/2nl/e (0 e
s 3y 922 3y (h.h.S(Ay +A )}2-1/2 (A )2-1/2 m+l,n "m,n
17328V, AT My n-12 Y+'m,n-1/2
2 aQZ)izijg’n'l/z (w* )} = zf. (CD) c
- 2-1/2 m,n” 'm-1,n"’ T %1 (C-31)
4y _)n,n-1/2
5 oW 1 (h.a )2-1/2
(II) =L 2 (o 2N - (—323ml,n-1/2 8
s 3y 23 3z {(h.h.S (Ay + A )}1-1/2 Az m+l,n+1
1732 WY AV ne1y2 4
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g-1/2

(h.a..)
7%33'm-1,n-1/2 )
- Wi+1,n-1) - iz (V1 o1 Wa1,no1)} = #,(0D), (CD)
(C~32)
where
Aza = {Az_+% (az + Az__)}f'n:i/i
U PO T
L-1/2
(h,a,.,)
_v 23 oW, _ 1 222 m,n+l/2
(1D =357 (ap 5y) = Y {(A s g N1/ (Wi+1,n+1‘ w;-l,n+l)
lh2 Ze m,n AL . m,n+1
L=1/2
(h.a,.,)
2 32'm,n-1/2 -
S v (Wouy no1- Wo1 1t = 2f5 (CD), (CD) (C-33)
Y'Yl n-1/2
where
Az, = {Az_+%— (Az + Az__)}i'l-i/z
g-1/2
(h.a._,)
e W, _ 2 3"33'm,n
(IV} = 35 (239 5,) = Bouds s PR {(A 2-172 (Wi,n+1' W;,n‘
172° %% m,n-1/2 %y m,n-1/2
(hja )t/
3 m,n- -
- (Az )2.-1/2 (wfn,n- Wﬁl,n—l)} b zrlpwfn,nﬂ' Zf‘5W1Qn,n * Zf6\‘vf11,n--1 (CD)
-'m,n-1/2 (C-34)
where
gl 8-1/2
bz, =5 (Bz,+ AZ-)m,n-l/Z
g)
[T, 00 + T,(U+ 21 .= 2u6. ) + (T,+a)(- e, + 2%, ) + T.(RE - 2ve. )
1 2 3711 1711 1 713 3713 33 722 t 22
2 T 2 —
+ (T4+ e) (7 k33— 2vt533) + T5(UV - et 3 ki5) + (Tg+ b)
2= -1/2  _ .
(- 2vt523+ 3 23)}111,11_1/2 = g, (C-35)
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3 3U _ _ e-1/2 -1
VEg 5§'+ vE4 3z “Eém, -1/2 (Ui+1,n+ U;+1,n * Ufn+1,n-1

-1 -1 -1
¥ Ui+l,n—l_ U;—1,n - Ui—l,n U;-l,n—l_ U;—l,n-l)/8

2-1/2 = -l ) )
+VE T (U‘fn,n+ = ey U 51)/2 = zhy (CD), (BD) (C-36)
Collecting all the terms (C-25) - (C-36):

-1
Zal(w;,n- W;,n) tmZby * chwi,n+1- ZCZan,n+ ZCBW;,n-l

+ zd1 - Zd2wi,n+l+ deWi,n- Zd4wi,n—l+ ze, - zfl - zf2- zf3
- Zf4wfn,n+1+ Zf5wfn,n - Zf6wfn,n—l+ ZEN s Sy D
or
(ch- zd4 - Zfé)wi,n—l + (zal - ze, * zd3 i zf5) W;,n
+ (zc1 - zd2 - zf4) Wi,n+l = za, W;;i - zb1 - zd1 + zfl + zf2 + zf3
- zgl - ze1 - zh1
Finally, the coefficients in equation (IV-20) are:
¢ = zc3 - zd4 - zf6
02 = za, - z¢ + zd3 + zf5
c3 = zc, - zd2 - zf‘4 (C-37)
Pw = - ze,

- -1
Sw = za,; Wi’n zbl zdl + zfl + zf2 + zf3 - 28 ¢ zh1
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B. Turbulence-Model Equations

F stands for k or ¢

hlax Ax . m, 1 "m,n .
where
* =
vt = @ st ex
m,n m,n
1 (]
Ax =5 {ax_+ Ax__}m,n
b)

F* ) = Fb, (F- F- . ) (CD)

1 "m+l,n” "m-1,n

*
oF W _ y .
W3z *© bz e, +1) F;,n+1 %, Fi,n+ g Fi,n—l} fiey
where
) a g 12
¢, =-1and Az = Z(Az-)m,n if Re, > 2 (BD)
B - 2-1/2
4, = 0 and Az, = (Az .+ 8z ) " 07 If |Re,| < 2 (cD)
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2-1/2

¢_ =1 and Az = 2(Az ) ifRec<-2(FD)

z w +'m,n
*
Re = ReAzW
c
W e )/
= (Az + Az _ )2' =
m,n
d)
1 .9 3F 3 aF 3 9F 3 aF
= (I) + (II) + (III) + (IV)
Cv = vt/ok for k
C\) = \)t/o’3 for e
L=1/2
0 =1 (0 ay, 3 - T 2als ¥ {(hzcv 22)m;%/2 n
T s a3y ‘v %223y’ © 2-1 -1 2-1
{h hBS} (ay,+ Ay-)m,n (ay, )m,n
(h,C,8,0 )0 %3
L v m- n _
(Fovg o= Fon) - 7-1/2 an,n - an—l,n)} B Fdlpfnﬂ,n‘ FszJan,n
b b (Ay )
-'m,n
+ Fagfy ) o (D) (C-41)
C -1
SRS ':sL‘g_ (Cyang = - - 7z 1/2 “fﬁaffz ) /%FQ +1,n+T Fs ,n-1)
{hyhoS(ay_+ay by + m+l,n
C 1-1/2
_1_2_3__ - = .
- (Az_+Az+ m-1,n (F;-l,nﬂ F;—l,n-l)} Fd4 {ChI RIER) (C-42)
(111 =+ & (ca,, 3 - 1 (2232 B/
s 3z v 3293y 2-1/2 Ay +Ay m,n+1

{h S(Az + Az )}mn
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C 2 -1/2

2 32
(F;+l ,n+l” F;-l,n+1) - (Ay +hy, m n-1 (F;+1 ,n=-1" F;-l;n-l)}
= Fd, (CD), (CD) (C-43)
(V) = 5 57 (O35 55) = : T- 1/2 {(h%§230 T i S
{h hZS(AZ Az, )} m,n+l/2 7’ ’
C 2-1/2
h48355 =
- (=220 (Fp o= Fono1) = Fdg (D) (C-44)
- mn-1/2
e)
G -¢ =Sk
£ ~ =
Cle & = Cp 3= S
C Ck?t
1) Fork, & -¢ =8 - 2 k%= @% (o K = Fe - Feit (C-45)
t 4 t m,ngd ’
Eha™ 52 € %4 e.,2 2 L
11) For e, Cjp ¥ G - Cpe- 3 = (Cp¢ E'G)m,n— (Coe k)m,n m,n- HERSIEeD €m,n
(C-46)

Collecting all terms (C-38) - (C-46):

Fal(F;,n' Q)+ P (F;+1 s ) *Fey - F R

A Fsz;,n - F4.F - Fa

Fd_- Fd,- Fe, + Fe F£ =0
3'm-1,

PN G 6 1 2'm,n

or

L
~(Fby+ Fdg) Fy )+ (Faj+ Fape Fey) Fp o+ (Fby- Fa;) Fy

3 m+l,n

= - Fcl+ Fd4 + Fd5 + Fd6 + Fel

137



Finally, the coefficients in equations IV-21 and (IV-22) are:

(d,e)1 - Fb1 - Fd

3

= C-
(d,e)2 Fa + Fd, + Fe, (C-47)

(d,e)3 = Fbl- Fd1

SF = - Fcl + Fd4 + Fd5 + Fd6 + Fel

C. Pressure-Correction and Pressure Equations The discretized form of

the momentum equations (IV-18)-(IV-20) can be put in the form

— 1 .12

Ui,n - Ui,n i a, Pum,n (C-48)
= )

V;,n - V;,n * b2 Pvm,n (C-49)
o 1 .2

W;,n - w;,n * e, PWm,n (C-50)

where the pseudovelocities are defined as

U;,n T a, (alui-l,n+ aBUfn+l,n L Sum,n) heaoL
m,n b, (blv;-l,n+ b3vi+1,n— Svm,n) (C-52)
W;,n T ¢y (clwi,n-1+ CBW;,n+l- Swm,n) (C-53)

and the pressure-gradient term can be expanded to yield

%—-Pu; n - &7 (p;+;— p; n) *2g (P;:i n' pfn+1 - p£+1 J pﬁ )

5 , " 9 , ,i “m-1,n “m-1,n

+ 89 (By 141" Po.ne1” Popel - Panoy! (FD), (CD), (OD) (C-54)
%;'Pv;,n 7 b7(p;:i * p;r%,n’ p;:i- p;:%,n) * b8(p;,n' p;-l,n)

* By (P 141* Ppt ne1” Pronoi- Pao1,ney) (€D, (D), (CD) (C-55)
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P A L 2-1 g-1
c, 'mn ¢7'Pm,n * Pm,n-1" Pm,n ~ Pm,n- 1) *eg (pm+1 ,n pm+1 ,n=1
L 2 L JZ,
. pm-l,n- pm-l,n—l) + (39(pm,n iy _1) (¢D), (cp), (BD) (C-56)

in which the (a;, by, ¢4, 1 = 7,8,9) coefficients are defined by

sin'?')\ Y R
87888 ¥g T e I
xxa2 yva Aaxa2
N X sin p a
®7 %8 P9 C Saxp, Sy, Shzb Rl
y2 g% SRR
o e 8 a sin™v
7 8 Y9 82A ’ S2 s 2
X,Co Ayzc2 S Azzc2

and evaluated at the grid node (2,m,n) .

Substituting (C-48)-(C-50) and (IV-27) into (IV-26) results in the
desired equation for pressure:

1 L 2 L+l R L+1 L
ax ) [(hZhBS)m,n{Ufn (3’7)m n (Pm,n~ Pmn) - (aB)m n{Pm+1,n* Pm+1,n
*'m,n
R AL & U e L - S Y
“Pp1,n” Pn-1,n’ T '%9'mn ‘Pm,n+1” Ppynel pm,n-l Pmn,n-1
~ -1 -1, 2 2-1 2-1
- (b hBS) {UrQn,n_ (a7)m,n (pm,n— pm,n) (a 8 m,n (pm+1 ;" Pmeln
2 .Q £ ¢-1 L 2-1
" Ppo1,n” Po- n) - (89)m n (pm,n+1+ Pp,n+1” Pm,n-1" pm,n—l)} ]
1 2 2
" e 12 ((h;h m+l/2 2V o (o), m+1/2, n(pm+1 nPm,n) = P7lne1son
Y 'm+1/2,n
(pl'f'l " 2 +1 2-1 -1 - I )9, 2 2 2 2

m+1,n" Pm,n” Pm,n” Pm+l,n 9 m+1/2,n(pm,n+l+ Pm+1,n+1” Pm,n-1" Pm+1,n-1 2

L 2 L 2
- (hyhoS)y n-1/2, n{an 0 Bl aln Py~ Baaeh = ol 7o 5
L+l £+1 2-1  2-1 2 2
(pm,n+ n-1,n" Pm,n” pm—l,n) - (b9)m-1/2,n(pm,n+1+ pm-l,n+1— Pm,n-1" Pp-1,n-1 1
. L Lynys)h G e ( ) - (eg)l
A )1-1/2 172°/m,n+1 ,n+l” 9 m,n+1/2 pm n+l” pm n 8'm,n+1/2
Z_'m,n+1/2
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)

( = _ L T )Q ( £+l+ 2+1 l 4-1 -1
Pn+1,n+1" Pm+1,n” Pm-1,n+1 Pn-1,n’ 7'm,n+1/2'Pm,n” Pm,n+1” Pm,n” m,n+1
2 L £ L [A
=i hZS -l{WIQn n- (09)m,n—1/2(pm,n_ pm,n—l) - (08)m,n-l/2(pm+l,n+ Pn+1,n-1
L 2 2 L+1 £2+1 £-1
~ Pp1n” pm—l,n-l) e '7)m n-1/2Pm,n* Pm,n-1" m,n— m,n- l)}] =@ (o=oe)
Through the use of the following definitions
ex, = {h.h S /(Ax ) cx. = (h.h S)z—l/(Ax )JL
1 273 n’ 72 273" 'm,n -'m,n
- 2-1/2 - z -1/2
vy = (hghS)y w1/2,0) O dm1sa e Vo T (ngS), n-1/2,n’ Y Jni1z2 0
. -1/ ) 2-1/2
EZ5 (hthS)m n+1/2/ 8200 ni1j0s 025 = (B 1280 m,n-1/2" 200 1412
L d ~e ~ —1 ~o ~ ~ ~
= CX1Ufn,n‘ cngﬁl,n* cyl\rfn+l,n_ cyZ‘/an,nf czlwfn,nﬂ- cz2wfn,n
) ) o
81x (a’7)m,n’ &y ° (a8)m,n’ 81z (a9)m,n
a,, = ()%t e = et} 8 = (@ tE
2x 7'm,n’ "2y 8'm,n’ "2z 9'm,n
o 2 o b n b
8 = Podniaszn0 B3y = Pglnaisony 23 ° Polniao g
L L - { - L
Bux T (b7)m-l/2,n’ Sy (b8)m—1/2,n’ 84z (b9)m—1/2,n
8. = (c,) a, = (cy)t a, = (e )
5x 7'm,n+l1/2° "5y 8'm,n+1/2’ "5z 9'm,n+1/2
a, = (c)f a, = (c ) a, = ()t
6x " 7'm,n-1/2° "6y 8'm,n-1/2’ "6z 9'm,n-1/2
the pressure equation can be put in the form
£2+41 2 -1 L 2 2 L
flpm,n * fme,n+ f3pm,n ¥ fZ+pm+1,n+ f‘5p —l,n+ f‘6prn,n+1+ f7pm,n—l =% (C-59)

where
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and

Sp

- = + + -
alxcxl a3xcy1 a4xcy2 a6x022 85x021

+ + +
8,,0%* &, CcX, a3ycyl iy

- 8, CX,* a3xcy

a cy2+ a5zczl+ aézcz2

1 a4xcy2+ a5xczl— a6x022

- 8a cx_ + a CX.—- &a a cz.+ a CZ
6y

1yS¥1" Boy®XoT Bay% T 85,02 2

alycxl— azyCX2— a4ycy2+ a5yczl— a6y0z2

-4, ¢cxXx,+ a, cx,- a

12°%17 800%™ 83,097 8, - 8

5Zcz1

8150%7 8p,CX5% 84,071~ 8, ,CY 5~ 8¢, 02y

el (a, ex,+ a._cz,) ot
mtl,n” '%12°%17 #5x%%1’ Py n+1

( . ) L+1 ( " ) 2+1
= V810K T BgyCZp) Ppyona1T M81yCXyt 84427 Ppln

+ (alycx1+ ancyl) P

g g
v (85,0 % 850027 ) Py nay - (83,091 8g0025) Py 19

L L
- (a4zcy2+ a5yczl) pm—l,n+1+ (a4zcy2+ aéyCZZ) Pp-1,n-1

-1 ) -1

m+l,n" 5x°%1’ Pm,n+1
ex,*+ a,_cz,) pﬂ_1 + (a, cx,+ a,_cy,) ij—1
2z "2 “6x "2 “m,n-1 2y 72 T4x Y2 ‘m-1l,n

- (azycx2+ a3xcy1) P (a2zcx2+ a

+ (a
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