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j 1. INTRODUCTION

1.1 Summary

It is known that large space structures will be subjected to

thermomechanical loadings and environmental conditions which are likely to

degrade the constitutive properties of the structural materials, thus leading

to possible failure of these vehicles. Therefore, it is desirable to develop

new analytical models which are capable of accounting for these degraded

properties so that design procedures can be improved. There are three

important aspects of such an effort: selection and development of

constitutive models applicable to large space structures, construction of

analytical models and experimentation to determine the precise nature of the

- material parameters to be utilized in the analytical model. These three

components of the research must be tied together into a single concise package

in order to obtain a useful model.

This research project is a three year effort to develop an analytic model

capable of predicting the response of space structures with degrading material

properties under quasi-static as well as dynamic cyclic thermomechanical
.

loading conditions. The research was funded by the Air Force Office of

Scientific Research under contract no. F49620-83-C-0067.

1.2 Statement of Work

Models have been developed for predicting the thermomechanical response

of large space structures to cyclic transient temperature loading

conditions. The research was conducted in the following stages:

1) selection and specialization of thermomechanical constitutive
equations to be utilized in the analysis of large space structures;

1 A
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2) construction (where necessary) of coupled energy balance equations
(modified Fourier heat conduction equations) applicable to the
constitutive models selected in item 1);

3) casting (where necessary) the resulting field laws into coupled and
uncoupled variational principles suitable for use with the finite
element method;

4) finite element discretization of the variational principles for large
space structures;

5) experimentation to determine material properties to be utilized in the
constitutive models; and

6) parametric studies of the quasi-static and dynamic response of large
space structures undergoing thermomechanically and environmentally
degraded material properties.

The experimental effort (discussed in 5) was supported in part by DOD K

equipment grant no. 841542. The total research effort outlined above spanned

a period of three years. The following section details results obtained

during the contract period.

'-I
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2. RESEARCH COMPLETED TO DATE

2.1 Summary of Completed Research
The following tasks have been completed during the contract period:

1) literature survey;

2) selection of constitutive equations for thermoviscoplastic metals at
elevated temperatures and polymeric composites with thermomechanical
load induced damage at temperatures below the glass transition
temperature;

*.4

3) construction of a coupled energy balance equation for
thermoviscoplastic metals;

4) casting of field laws for the material discussed in 2) into a one-
dimensional finite element computer code with two-way thermomechanical
coupling;

5) parametric studies using the model developed in 4) to determine the
thermomechanical response of representative metallic space structures
with degraded material properties;

6) development of generalized constitutive equations for metal matrix
composites with distributed damage;

7) experimentation to determine material parameters for the model
developed in item 6);

8) development of algorithms for composite truss-like space structures
with damage induced and spacially variable stiffness loss;

9) parametric studies for graphite/epoxy composite space structures using
item 8);

10) development of bounding techniques for hysteretically induced
temperature rise in thermoviscoplastic space structures;

11) development of an analytic method for modeling beam-like structural
components with damage induced stiffness loss; and

12) development of a finite element model for composite beam-like space
structures with elastic material properties and subjected to solar
flux heating and radiation boundary conditions.

Ak"
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2.2 Literature Survey

A detailed literature survey has been completed as part of the researchn

effort [1]. This report, entitled "Large Space Structures Technology: A

Literature Survey," was included in the first annual technical report.

Briefly, the report details recent advances in the areas of materialsn

structural solution techniques, damping, and preliminary design and

experiment. The results of this survey indicate that very little research is

available on the effect of material property degradation on large structural

response•."

2.3 Selection of Constitutive Equations

Candidate material models have been selected for metals at elevated

temperatures and polymeric composites below the glass transition

temperature. These are detailed below.

2.3.1 Metals at elevated temperatures are currently modeled using continu-um

mechanics with internal state variables (ISV's) [1-51, wherein the stress-

strain relation is of the form (for infinitesminal strains):

-ij = Dijkt(ek -- - ekk - - (I)

where Oij is the stress tensor, ek is the strain tensor, Djk is the linear

elaticmodlu tesor EI is the inelastic strain tensor, and T the

thermal strain tensor. In addition•, ]

• i j f i (-iT,ct )d (2) m%

and":
4.

4.. .....



n= ~j( ,T ) (3)
li li(6ki k.

where f. and a? are appropriate functions of state, T is the temperature,

and are a set of second order tensor valued internal state variables

modeling dislocation arrangement dislocation density, intergranular damage,

etc.

Although it has been demonstrated that numerous models fall within the

above framework [61, the special cases of equations (1) through (3) utilized

e7 thus far are a classical plasticity model developed by Allen and Haisler 17,81

(see Appendix 6.2), a single internal state variable viscoplastic model

developed by Cernocky and Krempl [9,101 (see Appendix 6.1), and a two internal

state variable viscoplastic model developed by Bodner, et al. 111-141 (see

Appendices 6.1, 6.3, 6.4, and 6.7). It is emphasized, however, that the

.* algorithms developed under this contract can be utilized with any model

capable of formulation according to equations (1) through (3).

2.3.2 Polymeric composites at low homologous temperatures can be modeled using

internal state variable theory as well. However, in this case the ISV's are

assumed to represent locally averaged measures of various damage mechanisms

such as matrix cracking and interply delamination. The constitutive equations

are given by [15,161

i R ik n n=l. ,n (4)= °i + Cik -k E ij:  +  ijk (k4)"ijiEij kiat

Rwhere is the residual stress tensor, Cijkl is the elastic modulus

tensor, In  is the damage modulus tensor for each damage mode, andijkl
n ranges from 1 to the number of damage modes. For example, matrix cracks,

. interply delaminations, and fiber breaks each represent one damage mode.

5



The internal state variables are described by history dependent ISV

growth laws of the form

&n k T, zl ) (5)Pij=  i k t k

Equations of the form of (4) and (5) have been utilized in the analysis

of composite space structures in Appendices 6.5, 6.8, and 6.9.

2.3.3 Metal matrix composites are expected to be utilized commonly in space

structural applications due to their high melting temperatures compared to

polymeric composites. No appropriate constitutive equations for these

materials were found in the literature. It was therefore felt that some

constitutive model development was warranted for this class of materials. The

distinguishing feature of metal matrix composites is the substantial inelastic

(either elastic-plastic or viscoplastic) nonlinearity which occurs in the

matrix. On the other hand, chopped fiber metal matrix composites do not

exhibit the degree of layered anisotropy observed in laminated continuous

fiber polymeric composites. Due to these differences, the internal state in

metal matrix composites can be significantly different from polymeric

composites. Accordingly, a generalized model was developed for this

material. Although the model is an extension of previous research on

polymeric composites 1151, the mechanics of damage development are totally -.4

different. The details of this model are given in references 17 and 18. In

addition, a synopsis is given in Appendix 6.6.

The constitutive framework is based on a continuum mechanics approach

with constraints on the relations provided by thermodynamics and fracture

mechanics. The general model is applicable to materials with damage (such as

6
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voids, cracks, etc.) and included inelastic effects such as plasticity 117).

The model is constructed -within the framework of continuum mechanics and

4*

i thermodynamics. The governing conservation laws are integrated over a small

local volume element which is assumed to have a statistically homogeneous

.. damage state. The Helmholtz free energy can be expressed as

hTOT = hEP c (6)
'-

where hTOT is the total Helmholtz free energy, hEP is the Helmholtz free

energy due to the elastic-plastic response in the absence of damage, and u L is

the energy due to damage. It is therefore hypothesized that

hEP hEP .I-T(h h (Eijq E j, aT) (7) -'.

I. .

. where Eij is the total strain tensor, i the inelastic strain tensor, and

AT is the temperature difference from the reference temperature.

Furthermore,

uc = (C. I )aT, a (8)L L ij ij i

where is the internal state variable representing damage, which is defined

by

unjdS (9)
S

where S is the surface area of cracks in the local volume VL, and ui and nj

are the crack opening displacements and normals, respectively. Constraints "%

imposed by the second law of thermodynamics give the following results 1171:

7
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TOT
aij = (10)

Therefore, expanding equations (7) and (8) in Taylor series expansions in

terms of their arguments, substituting into equation (10) and truncating

higher order terms results in

R I T
kij i +  C ijki( ki - kt - ki (ii)

R Iwhere oi is the residual stress tensor, e is the inelastic strain
T, Cijki stelna lsi

tensor, T is the thermal strain tensor, and C. is the linear elastic

modulus tensor. For the uniaxial case in which there is negligible

temperature change, the following form results:

-+ E L) (12)

where EL is the initial loading elastic modulus. Now define the initial

unloading modulus EU such that (See Fig. 1):

Eu a EL(l (13) 

It is assumed that at relatively low homologous temperatures the

inelastic strain remains constant when unloading, so that:

-= 0 (14)

Assuming linear elastic unloading of the matrix, the change in damage is

.proportional to the change in strain:

8
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- = constant (upon unloading) = (15)

Therefore, for unloading:

EU = EL(1-0) (16)

The model described above provides the motivation for the experimental

research. It is hypothesized that the two parameters that are defined in this

model (aij and s) can be determined by experimental methods. By determining

the change between the initial loading and unloading moduli of the composite

in a uniaxial mechanical test, a (defined in equation 16) can be found. It

is also observed that aij (defined in equation 9) can be determined by

evaluating the amount of surface area in the composite. It is therefore

desirable to determine if a cause-and-effect relationship exists between the

microstructural damage (aij) and the stiffness loss (a).
'W

The primary objective of the experimental effort was to develop a

technique for determining and evaluating damage in metal matrix composites.

This technique was required to be capable of detecting cracks and voids (free

surfaces) in the composite. These cracks are generally on the order of

microns in characteristic dimension, so that scanning electron microscopy was

required to measure the damage. Specimens were loaded to different levels and

the damage was studied at each increment. Once the amount of damage was

determined it could be input into the general constitutive model for metal

matrix composites.

The material used in this study was obtained from ARCO Metals Silag

Operation in Greer, S.C. The composition of the material is 6061 Aluminum

with a twenty percent volume fraction of F-9 silicon carbide whiskers. Plate

10
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was made from the materials by. a powder metallurgy process and cast into

billets. The billets were then rolled, extruded or machined to the desired

shapes. The SiC whiskers average two microns in diameter and twenty microns

long. The composite has a T-6 temper. Tensile test coupons were machined in

accordance with ASTM E-8 (Tension testing of metallic materials) to the

dimensions shown in Fig. 2. For the initial portion of the study all

S., specimens were machined with the same orientation with respect to the plate

for the purpose of uniformity (with respect to the SiC whisker orientation).

A second phase of the testing involve the use of tensile test specimens

oriented perpendicular to the initial specimens. Details of the experimental

procedure are given in Appendix 6.6.

It was shown in the development of the constitutive model that the damage

parameter, 01ij can be used to predict stiffness losses. Therefore, it was

the objective o, the experimental research to measure stiffness loss and the

associated microstructural damage as a function of strain level in order to y

qualitatively assess the applicability of the model to the Al-SiC metal matrix

composite. This experimental objective was carried out by determining the

initial loading and subsequent unloading moduli of tensile specimens oriented

parallel (0) and perpendicular (900) to the principle rolling direction of a

plate fabricated from 6061-T6 aluminum with silicon carbide whiskers. In

addition, scanning electron microscopy was utilized to characterize and

quantify load-induced changes in the microstructural damage associated with

the silicon carbide particles.

The results showed that the Al-SiC plate was anisotropic with

approximately 15-20% difference in the moduli of the specimens oriented in the

00 and 900 directions. Also, the SEM photomicrographs indicated that the SiC

whiskers were oriented more or less parallel to the principle rolling

direction.

11



II

r .122"

I..

ROLLING
DIRECT ION

.0 0 
°
..

"

x
, 0 -, ..

4-

Fig. 2 Test Specimen Configuration

U.

12 *



4b.

There was very little difference between the initial loading and

subsequent unloading moduli of the 00 specimens, as shown in Fig. 3. Also,

there was no apparent load-induced change in the state of microstructural

damage in these specimens. On the other hand, there was a significant

p reduction in the moduli of specimens oriented in the 9o direction, as shown

in Fig. 4. Furthermore, the photomicrographs revealed very obvious and

"P. significant load-induced changes in the state of microstructural damage in the ".4

90' specimens.

The results illustrate a clear cause and effect between the increase in

"- load-induced microstructural damage and a decrease in the elastic modulus of

the Al-SiC metal matrix composite. It is concluded from these results that

the constitutive behavior of a short-fiber reinforced metal matrix composite

can only be modelled by an appropriate treatment of the microstructural damage

associated with the fiber particles. Although the model developed herein is

*: capable of accounting for these effects, due to the qualitative nature of the

results obtained, the constitutive equations for metal matrix composites have

not at this time been utilized to model the response of large space

structures.

J".

q 2.4 Coupled Energy Balance Law

.
The energy balance law for thermomechanically coupled media of the type

described in Section 2.3.1 has been constructed [191 (see also Appendix

6.1]. This equation can be utilized to predict temperature rise in a
.'. .

* thermoviscoplastic medium subjected to cyclic mechanical loading. This

equation is in general a statement of conservation of energy and represents a

modification of the Fourier heat conduction equation given by

13
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ILI
--

D TT-D. T 17D jk (ckt - ki k iR i T lij + DijktLij kT ijki ijTk. (17)

-PCT + qj, = r

where aki is the internal state variable modeling plastic strain, ki is the

thermal conductivity tensor, p is the mass density, Cv is the specific heat, U

qi is the heat flux vector, and r is the specific heat supply.

The above result has been utilized to predict the thermomechanical

response of a single perfectly insulated truss element to cyclic mechanical

loading (see Appendix 6.1). As shown in Figs. 5 and 6, substantial

temperature rise (approximately 3.7C) is predicted for each cycle.

In polymeric composites the majority of the strain energy lost to

inelastic deformations may be expended in the creation of internal surfaces

called damage. It is therefore assumed to be unnecessary to construct two-

way coupled energy balance laws for these materials and the classical Fourier U

heat conduction equation is adequate for modeling the temperature field.

Therefore, the models developed herein utilize only one way coupling for

polymeric composite media; that is, the temperature field affects the

displacement field but not vice versa.

2.5 Space Structural Response Algorithms P

Due to the nonlinearity introduced by the constitutive equations

developed in Section 2.3, as well as radiation thermal boundary conditions,

approximate techniques must be utilized in order to obtain results for

geometries representing space structures. Accordingly, the following finite

element computer algorithms were developed during the course of the research

effort: -

16
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1) one-dimensional code for analysis of two way coupled thermoviscoplastic
media (see Appendices 6.3 and 6.4);

2) truss code for analysis of composite space structures with spatially
variable and history dependent damage (see Appendix 6.5);

3) two-dimensional continuum code for predicting quasi-static response of
elastic-plastic media to mechanical inputs (see Appendix 6.2);

4) frame code with one-way coupled thermal analysis for predicting response of
composite space structures to thermomechanical inputs (see Appendix 6.8);
and

5) beam code for analysis of beam-like composite space structures to spatially
and history dependent damage (see Appendix 6.9).

Details of the models are given in the various appendices cited above.

In addition, further information on the algorithm mentioned in item 4) above

is contained in reference 20.

2.6 Model Results for Large Space Structures

*] For purposes of illustrating the capability of the models developed under

the contract, several sample problems are provided here for representative

space structures. These examples fall into the following four categories: 1)

heat generation due to cyclic loading of metallic members; 2) frequency and

mode shape degradation of composite truss structures; 3) radiation induced

m response of composite frame structures; and 4) degradation of dynamic response

of composite beams with damage. Results for these four examples are discussed

briefly below.

2.6.1 Heat generation in metallic members occurs due to coupling between

4 thermal and mechanical effects, as discussed in Section 2.4. Considerable

research was performed on this subject, as detailed in Appendices 6.1, 6.3,

6.4, and 6.7. These results are summarized here.

: 19



It was found that for an insulated truss member composed of a

representative metal, when the member is intentionally loaded cyclically to

the postyielded state (in order to induce significant material damping) shown

in Fig. 5, a temperature rise of 3.70K occurred on each load cycle, as shown

in Fig. 6. This was cause for further study, since a modal response of the

structure could eventually result in structural component melt-down.

Therefore, a subsequent effort was made to account for more realistic thermal

boundary conditions. This required that spatial variability of the field

parameters be incorporated into the model, so that it became necessary to

utilize the finite element method. This resulted in a highly complex

nonlinear and numerically stiff algorithm due to the viscoplastic constitutive

equations, as described in Appendix 6.3. Results indicated that for the case

of a truss member with insulated longitudinal boundaries and nonzero thermal

flux at each end, for the loading input shown in Fig. 5 the temperature rise

per cycle was reduced to 1.0°K per cycle, as shown in Fig. 7. Since this was

still considered to be sufficient to lead to structural failure, it was

decided to incorporate the effect of nonlinear radiation boundary conditions

to the algorithm. As shown in Figs. 8 and 9, the temperature rise is quite

substantial for fifty cycles, even at moderate frequencies (cases I and II

represent different member coatings), reaching 900K for a frequency of 5 Hz.

Finally, bounds on the predicted temperature rise versus stress amplitude are

shown in Fig. 10. Since this amount of heating is unacceptable in metallic

structures, it is concluded that the intentional use of metal inelasticity to

induce passive structural damping can possibly lead to catastrophic heating of

the structure. Therefore, attempts to induce damping via this mechanism

should be viewed cautiously.

,°,.
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2.6.2 Degradation of modal frequencies and shapes can occur in composite space

structures wherein microstructural damage occurs as a result of the history of

loading. As an example, consider the truss structure shown in Fig. 11. This

beam-like structure is cantilevered at one end to simulate an antenna boom.

The structure is sixty feet long with bays ten feet long by three feet wide.

The structure is constructed from graphite-epoxy composite material with a

quasi-isotropic ply layup. Experimental research indicates that the material

may undergo up to 15 percent loss in stiffness due to cyclic thermomechanical

fatigue which causes a variety of damage modes in the structure. Additional

loss of stiffness may be attributed to elevated temperature and chemical

changes due to solar radiation and other environmental efffects. In this

model the properties are degraded spatially on an element by element basis as

a function of the stress history in the structure induced by long term

thermomechanical cyclic loading. Stress amplitudes were obtained by using

displacements corresponding to the first modal shape and the degraded

properties were computed by assuming a linear damage law bases on peak stress

amplitude. Because the boom is fixed on one end, the stresses are highest

there and stiffness degrades the most at the fixed end. Modal frequencies and

shapes were then computed for the five cases where the maximum degradation

within the structure was 5%, 10%, ... , and 25%. Fig. 12 indicates the

decrease in the fundamental frequencies of the first two resonant modes as a

function of this spatially induced damage. Fig. 13 shows that the shape of

the first mode undergoes no appreciable change in shape as the damage occurs,
., which is due to the fact that the first mode is a symmetric mode. The second

mode shape, however, shown in Fig. 14, undergoes a substantial change in

shape. This result indicates that active control mechanisms which may be

placed according to the original undamaged mode shapes may not be capable of

controlling all modes as the dynamic response of the structure changes over
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long time periods. The control designer must be cognizant of these modal

changes if he is to design a workable control system. Adaptive or robust

control systems will be required.

Numerous other results are presented in Appendix 6.5. For example, it is

shown that if the material properties degrade on only one side of the

structure, as might happen due to solar radiation, the mode shapes are

completely changed.

In conclusion, these preliminary results seem to indicate that small

changes (or errors) in material properties as they change or degrade due to

fatigue damage, etc. may produce significant changes in predicted frequency

and modal response. Correspondingly, this affects the ability to design

effective control systems and places an even greater burden on the control

designer to develop systems which account for these structural changes. It is

clear that an understanding of material behavior in space environments and its

impact on structural response is very important to successful design and

development of large space structures.

2.6.3 Radiation induced response of composite frame structures is caused by

thermal strains resulting from solar and earth radiation. The thermoelastic

boundary value problem is complicated by several factors. First, a one way

coupling between temperature and displacements exists. It is one way coupled

in that displacements depend on temperatures. Secondly, the problem is

nonlinear due to the introduction of radiation boundary conditions. Thirdly,

there are constantly changing thermal loading conditions due to varying earth-

structure-sun orientation. Finally, geometrical factors such as shadowing and

interelement radiation and conduction exist. These factors combine to create

a highly complex problem, as shown in Fig. 15.
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Past research indicates that a structural member, modeled as a thin-

walled graphite/epoxy tube under a constant solar flux, experiences a

significant temperature gradient through its cross-section due to the low

thermal conductivity of the material. This gradient leads to bending in the

structural member itself, a condition normally neglected in thermal/structural

analysis models. This response is important for two reasons. First, the

bending of a structural member reduces the maximum buckling load that member

can sustain. Second, thermally induced vibrations may lead to fatigue, which

is important in predicting the long-term behavior of the material.

The purpose of this research was the development of an integrated, one-

way coupled thermoelastic model for transient analysis of large composite

space structures. The primary load source is thermal strains induced by solar

and earth radiation. Therefore, the model must be capable of transforming

these thermal loads into their mechanical equivalents. Due to the presence of

radiation and temperature dependent material properties, the model is highly

nonlinear.

The thermoelastic analysis is a completely numerical one. The model

satisfies all the requirements for a fully integrated thermal/structural

analysis model. These are: a common finite element methodology, utilization of

a single geometric model, improved thermal analysis, minimized data transfer

between analyses, and a thermal analysis fully integrated into the structural

analysis. However, the model is unique in two key areas. First, temperature

gradients across member cross-sections are accounted for. Thermal moments and

extensions are calculated directly form integration of the resulting

temperature fields. Second, structural members are modeled with beam elements
-U,

enabling bending in the structural members themselves. -

'I]
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In performing the thermoelastic analysis, it is assumed that temperatures

and displacements are one-way coupled. That is, temperature fields within

structural members may be determined independently, then used as input to the

structural analysis. The algorithm is as follows. For a given time step, the

* proper heat loads are evaluated. Then, finite elements are used to construct

the temperature field through member cross-sections. A standard two- .N

dimensional finite element formulation is applied to the following equations

governing heat transfer in the domain of a cross-section, (see Fig. 16):
qJ.

PCvTt= (kzT z,+ (kyT y) y+ Q on A (18)

" ._ 4r

kzT n +kyT ny= q + h(T -T) + eS(T -) on B (19)
. z zz y Sy a r

U Here A is cross-sectional area, B is the boundary, t is time, p is material

. density, Cv is the specific heat, kx and ky are the thermal conductivities, T

is temperature, Q is internal heat generation, nx and ny are vector normals, q

.n is the flux, h is the film coefficient, e is emissivity, S is Boltzman's

constant, and Ta and Tr are ambient and reference temperatures. The resulting

S•temperature field is then converted into bending moments and extensions using

the following equations:

pT - E.T(TTo)dA (20)

A

MT= f E.T(T-TO)zdA (21)

Mz= z E.T(T-To)ydA (22)
A
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the coefficient of thermal expansion, T is the current temperature field, and

T is the initial temperature field or the temperature field in the

unstrained state. The thermal force and moments about the local y and z axes

are given by PT' MT, and MzT , respectively. These loads are initially

p. calculated in the local coordinates of their cross-section, then transformed

into global coordinates to be used as forcing functions in the structural

* analysis. The structural analysis portion of the model is for linear space

frame geometries. It is the result of applying the standard finite element

formulation to the governing differential equations of beam motion:

LN T
(pAu,t),t - (EAUx),x = Pxx (23)

(Imet)t- (JGex),x = 0 (24)

T(pAvt),t + (EzVxx),xx : Mz 'xx (25)

'A ElyW ' T (6

(pAw,t), t + ( yW, xx)1 xx y 'xx (26)

" Here u,v and w are displacements in the x,y, and z coordinate directions, e

is the rotation about the x axis, Im is the mass inertia of a cross-section,

G is the modulus of rigidity, J is the polar moment of inertia, I and I
y z

are the bending inertias about the y and z axes, and PT and MyT and M are
y z

given in equations (20), (21), and (22). Once the deformations and stresses

. are determined, time is incremented and the process repeated. Forward

Integration in time, within the structural analysis, is via the Newmark

method. The thermal analysis utilizes the Crank-Nicholson method. The final

algorithm is described schematically in Fig. 17.

35
% ~ --°*-* . ..*• *.. *-. .. " * .



_17 TzU

Evaluate Thermal Loads

Evaluate the Temperature Fields

Through Selected Cross-Sections

Calculate MT, MT T Time

for Selected Cross-Sections Step

Transform MT MT pT
--y' z'

into Global Coordinates

Evualuae eformations}

Fig. 17 Algorithm Schematic

36



The boom shown in Fig. 11 was analyzed for two physical cases. In case

one, the structure was assumed to be in thermal equilibrium and stress-free in

sunlight. At time t=O, the structures moves into shadow. In case two, the

opposite occurrs, that is, the unstressed structure moves from shadow to

, sunlight. The maximum axial stress divided by the yield stress is plotted

against time for a typical member in Figs. 18 and 19. It can be seen from the

results that bending stresses are not negligible, indicating that the

structure must be treated as beam-like rather than truss-like in nature.

Furthermore, the long time necessary to induce significant stresses indicates

that even though the transition from shadow to sunlight is assumed to be

instantaneous, no inertial effects are induced by radiation. Further results

from this portion of the research are given in Appendix 6.8.

2.6.4 Damage in composite beams can substantially alter their dynamic

response. Fibrous composites are known to undergo a small but significant

amount of stiffness loss due to load induced microcracking. This stiffness

. loss usually occurs over several hundred thousand load cycles. Due to the

stress dependent nature of the damage, the stiffness loss is spatially

variable and concentrated in the areas of high stresses. This spatial change

in the material properties of the structure results in appreciable changes in

the dynamic response of the structure.

Although the authors have previously developed a qualitative method for

predicting response of structures of this type (see appendix 6.5), it is not

* possible to construct a precise history dependent structural algorithm for

V- complex space structures due to the excessive computational times required to

obtain accurate results. A more accurate method has now been developed for a

single beam member with various boundary conditions. Since this model carries
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structures, it is possible to determine the actual structural response for a

load input of several hundred thousand cycles, the following is a brief

description of this procedure.

The well known partial differential equation for the free vibration of a

beam is

a2  a.a.(El -2w + pA -2  0 (27)
ax2  ax at 2

where E is Young's modulus, I is the moment of inertia of the cross-section, A

is the cross-sectional area, p is the mass density, y is the transverse

displacement, x is the axial coordinate, and t is time.

A number of solutions to the above differential equation are available in

the literature for both uniform (constant cross-section) and nonuniform

(variable cross-section) with different boundary conditions. Most of the

solutions are for beams with homogeneous material properties. These solutions

have been obtained by assuming that the stiffness of a structural element is

constant in time and therefore independent of loading history. Neither

material damage nor environmentally caused degradation are considered in these

analyses. -

Due to the occurrence of load induced and history dependent damage in

composite mateials, these previously obtained results represent unrealistic

approximations of the actual structural behavior. In particular, the resonant

frequencies and mode shapes of the structure can be severely altered by the

.d -

introduction of spatially variable damage and environmentally caused I,

degradation, the stiffness of a structure is no longer a constant, since it

will change substantially according to the stress distribution and the history

of external loading. The stiffness loss may change the natural frequencies V.
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and mode shapes substantially. With the material damage and enviromentally

caused degradation involved, the differential equation becomes difficult if

not impossible to solve in closed form.

The concept of internal state variables (ISV) is introduced to represent

the history dependent change of stiffness. An internal state variable D is

utilized as a local ISV representing the damage state together with the ISV

.. growth law, the finite element solution technique can be modified to account

for the history dependent stiffness of the beam element, with resulting field

equations

[MI (y} + [KI(y} = (0} (28)

where

Mij jL NiNjpA(x)dx

K ij = 0jL E(E,T,D)I(x)N j 'dx (29)

The above set of second order ordinary differential equations for each element

is combined to represent the eigenvalue problem for the beam structure.

_, The occurrence of damage will cause the loss of stiffness, that is the

stiffness is history dependent. Experimental results indicate that the time

* 'scale of damage and degradation is very long compared to the first fundamental

frequency of the structure. Therefore, the mathematical algorithm is treated

as linear with slowly varying coefficients. In this research, particular

interest was placed on the natural vibration solution of a beam structure

with history dependent stiffness and the investigation of the possible effect

X. of material damage and stiffness reduction on the natural frequencies and mode
. 4
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shapes of planar beam structures with various boundary conditions (free-free,

clamped-free, clamped-clamped and simply supported). EL

The research also focused on the investigation of the internal state

variable representation of the damage phenomenon. The damage in a composite

material includes a sequence of microstructural and macrostructural events ON

such a microvid growth, matrix cracking, edge delamination and fiber

fracture. The most significant effect of damage on the material properties is

that the stiffness will be substantially changed during the life of the VT

component. The constitutive equation for a composite material could be

represented as

a = E(e - T (30)

where E is Young's modulus, which will change according to the damage D as

E = E0 (1 - D) (31)

U

where the subscript o represents the initial condition. The damage D is an

internal state variable describing the damage phenomenon during the life of

the composite structure, which is governed by the internal state variable

growth law

D =f(e T, D) (32)

A typical result for the degradation if the frequency of the first mode

of the simply supported composite beam shown in Fig. 20 is shown in Fig. 21.

Further results are shown in Appendix 6.9 However, it was found that the
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mode shapes are not substantially affected by damage. We believe that this

was due to the assumption that the damage was assumed to vary through the

thickness due to bending stresses. An experimental effort is currently

underway to determine the accuracy of this assumption.

; 2.7 Conclusions

This research effort has resulted in a number of important conclusions.

We summarize a few of these as follows:

" a) in metallic structures wherein material inelasticity is utilized to produce
passive damping, thermomechanical coupling can lead to castastrophic
heating of the structure;

. b) moderate changes in stiffness of composite structural members can lead to
substantial changes in frequencies and mode shapes of the structure;

c) solar and earth radiation in composite structures can lead to thermal
gradients which lead to substantial bending in large space structures, thus
negating the efficacy of truss analysis; and

- d) in metal matrix composite members there is a qualitative comparison between
microstructural damage and macrostructural stiffness loss.

It is the general conclusion of these researchers that material

inelasticity and temperature effects cannot be disregarded in modelling the

dynamic response of large space structures.

4
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4.1 Faculty Research Assignments

1. Dr. D.H. Allen (Co-principal Investigator) - development of
constitutive equations for polymeric composites, metal matrix
composites, and high strength metal alloys; development of variational --

principles and finite element methods for two-way coupled
thermoviscoplastic media; experimental methods for material model
development.

2. Dr. W.E. Haisler (Co-principal Investigator) - development of finite
element algorithms for truss and beam structures with material property
degradation; sensitivity studies for large space structures with
material property degradation.

3. Dr. M.S. Pilant (Investigator) - development of solution algorithms for

coupled thermoviscoplastic media.

4.2 Additional Staff I,

1. Mr. B. Harbert (Lab Technician) - experimental lab support.

2. Mrs. C. Rice (Secretary) - secretarial support.

3. Mr. S. Kalyanasundaram (Ph.D. Research Assistant) - Modeling of large
space structures with damage induced stiffness loss and damping U
increase; expected completion date December, 1986.

4. Mr. H.T. Chang (Ph.D. Research Assistant) - modeling of history
dependent behavior of beam-like structures with spatially and history
dependent damage.

5. Mr. E.W. Nottorf (M.S. Research Assistant) - development of
experimental techniques for determining load induced damage in metal
matrix composites; completed degree October, 1985.

6. Mr. G. Wren (M.S. Research Assistant) - development of general
theoretical model for constitutive equations for metal matrix
composites with damage; completed degree August, 1985.

7. Mr. J.D. Lutz (M.S. Research Assistant) - modeling of damage dependent
space structures in the presence of solar flux and radiation boundary
conditions; completed degree May, 1986.

8. Mr. M.A. Zocher (B.S. Research Assistant) - literature survey; degree
completed December, 1984.
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5. INTERACTIONS

5.1 Papers Presented

Presentations were given at the following conferences:

1. D.H. Allen - Ist AFOSR Forum on Large Space Structures, MIT, September
1983.

2. W.E. Haisler - 2nd AFOSR Forum on Large Space Structures, Washington,
D.C., 1984.

3. D.H. Allen - 26th SDM Conference, April, 1985.

4. W.E. Haisler - 26th SDM Conference, April, 1985.

5. M.S. Pilant - SIAM Annual Spring Conference, June, 1985.

6. D.H. Allen - 3rd Forum on Large Space Structures, July, 1985.

7. W.E. Haisler - 3rd Forum on Large Space Structures, July, 1985.

8. D.H. Allen - 22nd Society of Engineering Science Meeting, October,
1985.

9. D.H. Allen - ASTM Symposium on Fractography of Modern Engineering
Materials, November, 1985.

* 10. D.H. Allen - 27th SDM Conference, May, 1986.

11. M.S. Pilant - Tenth U.S. National Congress of Applied Mechanics, June,

1986.

5.2 Awards and Achievements .

1. Dr. Allen has been named Associate Editor of the Journal of Spacecraft
and Rockets.

2. Dr. W.E. Haisler has been named Head of the Aerospace Engineering
Department at Texas A&M University.

* 3. The textbook entitled Introduction to Aerospace Structural Analysis,
co-authored by Drs. Allen and Haisler, has been published by John
Wiley.

4. Dr. W.E. Haisler has been named to the Halliburton Chair at Texas A&M
University.

5. Drs. Allen and Haisler have been named Texas Engineering Experiment
Station Research Fellows for 1984-1985.

6. Dr. Allen has received the General Dynamics Award for Outstanding
Teaching and Research in the College of Engineering at Texas A&M
University.
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7. Or. Allen has been tenured and promoted to the rank of Associate
Professor. U

8. Dr. Allen has been named Texas Engineering Experiment Station Research
Fellow for 1985-1986.

5.3 Other

1. Drs. Allen and Haisler have made approximately twenty-five research
related trips during the course of the contract.
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A Prediction of Heat Generation in arn Thermoviscoplastic Uniaxial Bar

by

David H. Allen

Abstract

A thermodynaic model is presented for predicting the thermomechanical

response, including temperature change, in a uniaxial bar composed of a

thermoviscoplastic metallic medium. The model is constructed using the

concept of internal state variables, and it is shown that this general frame-

work is capable of encompassing several constitutive models currently used

to predict the response of rate sensitive metals in the inelastic range.

Results.are obtained for monotonic loading which agree with predicted re-

sults previously obtained by Cernocky and Krempl for mild steel at room

temperature. The model is then utilized in conjunction with Bodner and

Partom's constitutive equations to predict temperature change in Inconel

- (IN) 100 subjected to both monotonic and cyclic loading at 1005°K(1350*F).

Introduction

- It has long been known that mechanical and thermodynamic coupling ex-

ists in solid bodies [1,2]. However, in elastic bodies this coupling is

negligible except when mass inertia is not negligible due to flux of heat generated

through the boundary of the body [3]. However, in thermoviscoplastic metals

the conversion of mechanical energy to heat may be singificant even under

non-inertial conditions, especially since material properties become ex-

tremely temperature sensitive in the inelastic range of response [4-11).

Similar research has been performed on non-metallic media (12-15].

A
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General continuum mechanics models have been formulated for broad classes

of materials [16-19]. However, to this author's knowledge only recently

has attention been paid to the coupled heat conduction equation for thermo-

viscoplastic metals [11,20]. Recently, Cernoc-ky and Krempl [I1] have pro-

posed a model for predicting the temperature rise in a class of thermovis-

coplastic metals, with special emphasis on test coupons subjected to either

homogeneous uniaxial or torsion loadings. In this paper an alternative ap-

,- proach to that proposed in [111] is discussed. This method uses the thermo-

dynamics with internal state variables originally reported in [17] and dis-

cussed elsewhere in detail for metals [18,21,22], with development of the

multidimensional coupled heat-conduction equation in [20].

.. The research herein is presented in three parts: field formulation

in one-dimensional form; development of the governing equations from addi-

tional constitutive assumptions; and numerical results for selected problems.

Thermodynamics of a Uniaxial Thermoviscoplastic Bar

. Consider a slender bar which is subjected to a homogeneously applied

:. deformation field such that the resulting stress field is everywhere uniax-

ial in the x 1-x coordinate direction, as shown in Fig. 1. Rigor would re-

quire that the possibility of finite deformations be considered. However

this condition is covered in detail elsewhere [17,18,20,21,22], and for

* "purposes of simplicity only infinitesimal deformations will be considered

herein. For notational simplicity, then, the observable mechanical state

variables are

u -u, - deformation field, (1)

£ - i E infinitesimal strain field, and (2)

11
" - 11,- stress field (3)
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Although transverse components of deformation and strain may occur, it is

assumed that they are not necessary to characterize the uniaxial stress 0.

The mechanical state variables (1) through (3) are adjoined with the

thermodynamic state variables:

e E internal energy per unit mass; (4)

r EE heat supply per unit mass; (5)

s B entropy per unit mass; (6)

T - absolute temperature; and (7)

q E q, - heat flux in the x, coordinate direction', (8)

where it is assumed in (8) that the bar is isotropic and long and slender

with perfectly longitudinal boundaries so that the heat flux is one-dimen-

sional.

In accordance with the theory of internal state variables [17], ob-

servable state variables (1) through (8) are now supplemented with inter-

nal state variable growth laws in order to characterize the state of inel-

astic bodies:

Ck E scalar valued internal state variables, k - 1, ... , n; (9)

• where n is the number of internal state variables required to characterize

the state of the body. The precise nature of (9) will be discussed later.

Parameters (1) through (9) are assumed to be functions of space (x)

and time (t), and are assumed to be sufficient to describe the uniaxial

state of the bar at all times. These parameters are constrained by;

a) the conservation of momentum,

0, (10)ax

where inertial effects and the body force are assumed to be negligible;

b) the strain-displacement relation,

E ax

.
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c) the balance of energy,

og4

Oeci+ P~r (12)

where P represents the mass density; and

d) the second law of thermodynamics,
or

S -r B P > 0 (13)

where y is called the internal entropy rate per unit mass.

As detailed by Coleman & Gurtin [17], equations (10) through (13) are

now supplemented with the following constitutive assumptions:

a - C(e, T, aT/;x, ak) ; (14)

e - e(e, T, ^T/ x, ck ) ; (15)

s - s(E, T, aTJx, ck) ; (16)

q- q(e, T, 9TJx, ak ) ; and (17)

&k~e T, T/ax ak)(18)

where it is obvious that equations (14) through (18) satisfy the principle

of equipresence [23]. Equations (10) through (12) and (14) through (18)

describe eight +n equations in the eight +n field variables u, E, a, e,

r, s, T, q, and ak described in (1) through (9). These are adjoined with

boundary conditions on the surfaces x - 0 and x - L to prescribe the one-

dimensional field problem.

As detailed elsewhere [17,18,20-22), the second law of thermodynamics

(inequality (13)] will constrain constitutive assumptions (14) through (18).
J..

This is accomplished by defining the Helmholtz free energy:
':JN.

h S h(c, T, aTjIx, ak) - e - Ts -> e - h + Ts , (19)

which together with the Clausuis-Duhem inequality will lead to the conclu-

sions that

5 .'_



h -h(E Toc k ) (20)

s - s (c., T, c%) , (21)

" " and (22)

;T (23)

where k is the coefficient of heat conduction in the x, coordinate direc-

tion. Therefore, equations (19) through (23) replace equations (14) through

(18) as more concise statements of the constitutive behavior, and it can

be seen that specification of the Helmholtz free energy will complete the

description of the field problem.

Combination of equations (12) and (19) through (23) will result in the

- coupled heat conduction equation:i
Sh ; " T'h * 32h (24)

) &k - T T - CT T +a

where st-ation on the range of k is implied.

Henceforth in this investigation it will be assumed that there is

no internal heat source (other than material dissipation) so that r 0

in equation (24). In addition, it will be assumed that

boundary conditions are applied in such a way

that heat flux is negligibly small and q a 0 in equation (24). This last

-~ assumption is not valid under most physical circumstances. However, it

can be said that on the basis of heat conduction equation (24) neglecting

heat flux will result in an upper bound for the temperature rise during

mechanically induced energy dissipation. Inclusion of this term results

in a spacially dependent boundary value problem which is beyond the scope

of the current research. However, the one-dimensional model proposed herein

6



does encompass the heat flux phenomenon, and, as such, will be the subject

of a future paper by the author.

Development of Governing Equations from

Additional Constitutive Assumptions

In order to construct the Helmholtz free energy function the elastic

strain is first defined to be

E E E a a- (25)

where a is the total inelastic strain in the x coordinate system [24],

a is the coefficient of thermal expansion in the x coordinate direction,

and 8 B T - TR, where TR is the initial temperature at which no strain is ob-

served under zero mechanical load. The inelastic strain a, will be discussed .

in greater detail in the next section.

It is now postulated that the Helmholtz free energy may be expanded 0.,

about the initial configuration in terms of elastic strain and temperature

as follows:

". 2  C.EE v 2 -
h ha + f - a (26)

where the subscript R denotes the equilibrium value, and

hR E free energy in state R - constant, (27)

E - Young's modulus in the x1 coordinate system, (28) 7,

C -T(a/aT2) - specific heat at constant volume. (29)

Note that although the first order terms in C and 8 have been neglected

due to symmetry conditions due to the form of equation (25) coupling is K

retained between total strain, inelastic strain and temperature. Note also

that the energy dissipation due to microstructural change has been neglected

in free energy equation' (26) because this mechanism has been shown to contribute

7



only a small portion of energy (<10%) to the dissipation process [251.

Further, the fracture energy loss due to microvoid growth, grain boundary

sliding, and intergranular macrofracture is neglected due to the small

strains considered herein.

Although the second order Taylor series expansion of the Helmholtz

free energy given in equation (26) may not be adequate for characterizing

" the response of many materials, it will be shown in the next section that

- the above equations are a suitable framework for describing the material

S behavior of the class of materials considered herein.

Substitution of equation (26) into energy balance law (24) and uti-

lizing equation (25) will result in the coupled heat equation:

( (EE - EaI + ETR)a + EC 2TT] - E - C v T - 0 , (30)

where the terms in brackets arise due to inelastic response and the following

term is the classical elastic coupling term [3]. Equation (30) may be written

*. in the following equivalent form:

.(EE - I + TR)&l -EcT
(EE - + (31)

-2
pC - Ea2T

In order to obtain the stress-strain relation the Helmholtz free energy

- equation (26) may be substituted into equation (22) to obtain

a" - E(e - a -a0) .(32)

Equations (31) and (32) together with internal state variable growth

laws (18) will be sufficient to characterize the response of the uniaxial

bar subjected to uniaxial homogeneous mechanical loading considered herein.

Selected Problems and Numerical Results

I.

" It has been shown that stress-strain relation (32) together with in-

ternal state variable growth laws (18) are equivalent to several models

8
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recently proposed for thermoviscoplastic metals [24]. These include Cer-

Snocky and Krempl t11,26], Valanis [27], Krieg, et al. [28], and Allen and

Haisler [29]. It can also be shown that several others are in accordance

with the model developed herein [30-34]. To illustrate this point two

* models have been selected for further discussion.

Cernocky and Krempl's stress-strain relation may be written in the

following uniaxial form:

a + K(a, e, T); - G(e, T) + M(G, E, T)[" - l , (33)

where

E S M/K (34)

* .and parentheses imply dependence on the current values of the quantities

enclosed. Equations (33) and (34) can be shown to be in agreement with

stress-strain equation (32) by defining the inelastic strain a such that

. " [ - G(, T)]/M(a, £,T) , (35)

so that

a 1(t)- f al(t')dt' , (36)

* d'

where tR is the reference time, t' is a dummy variable of integration, and

t is the time of interest. Thus, since G, K and M are not history depen-

* dent, Cernocky and Krempl's model is a single internal state variable model

, ;and equations (31), (32), (35) and (36) describe the uniaxial bar problem

using Cernocky and Krempl's model.

To illustrate this point an example problem is now considered. Sev-

eral uniaxial bars composed of mild steel are subjected to constant strain

rates at room temperature with material properties as described in Table

2 of reference [11]. Stress-strain behavior and resulting temperature

9
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rise are shown in Figs. 2 and 3. These results were obtained by integrating

equations (31) and (35) with a stable and accurate Euler forward integra-

tion scheme. Due to the rate insensitive nature of mild steel at room tern-
S-,,

perature, the predicted results are identical for strain rates ranging from

-1 -10.001 sec to 1.0 sec • The negligence of heat flux over such a wide

range of strain rates is valid only under adiabatic conditions.

It is significant to note that the results obtained in Figs. 2 and

3 are identical to those obtained by Cernocky and Krempl [11]. This is
I.

- due to the fact that the assumed internal energy rate described by equa-

tion (14) in reference [11) can be obtained in the uniaxial form by util-

izing equations (19), (21) and (26) in this paper. Further, energy balance

[' equation (55) in reference [11] can be shown to be identical to equation

(26) derived herein by substituting equation (32) in this paper. Finally,

it should be pointed out that under non-adiabatic conditions neglecting

$ the heat flux in the results obtained herein causes increasing overesti-

mation of the temperatures shown in Fig. 3 as the input strain rate decreases.

Bodner and Partom's model (35,36] may also be written in the uniaxial

form described by equation (32), where

* 2 xpaat
D 7-%T~ep (37)

where D and n are experimentally obtained material constants and0 \

wee 2 i an -n2 )ra - AZ( - I) (38)

where a2 is an internal state variable representing drag stress and m,

Z1, Z1, A, and r are experimentally determined material constants. Although

equation (38) contains stress a, it can be written in the form described

10
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by equation (18) by direct substitution of equation (32). Thus, Bodner

and Partom's model contains two internal state variables in the form de- U

scribed above.

Results are shown in Figs. 4 through 7 for uniaxial bars of IN

100 pulled at various constant strain rates at an initial temperature of

10050K (13500F). Experimental data were obtained from Reference [37],

and the material constants described above are tabulated in Reference [38].

The stress-strain curves shown in Fig. 4 are identical to those previously

obtained (38].

As a second example using Bodner and Partom's model a uniaxial bar

of IN 100 with material parameters as described in Refs. [37] and [38]

is subjected to the cyclic strain history shown in Fig. 8 and at initial

temperature 10051K (1350*F). Analytic stress-strain behavior is compared

to experiment in Fig. 8 and predicted temperature change is shown in Fig. 9.

Finally, a uniaxial bar is subjected to the multicycle test described

in Fig. 10, with resulting temperature rise shown in Fig. 11 It is observed

that the model predicts a mean temperature rise of approximately 3.7*K

(6.7*F) per cycle. The linear increase in mean temperature with time is

predicted due to the cyclic saturation of the material on the second cycle,

which is in agreement with experimental observations at elevated temperature.

Conclusion

A model has been presented herein for predicting the temperature rise
in uniaxial bars composed of thermoviscoplastic metallic media. The model

is also applicable to multiaxial conditions, and this has been reported to

some extent in reference (20]. Although the procedure used here differs

from that proposed in reference [11], it has been shown that the predicted

13
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temperature change is identical to results obtained by Cernocky and Krempl

j when their mechanical constitutive equations are used. However, it has been

shown herein that the introduction of internal state variables leads to a

more general model which may be used with virtually any thermoviscoplastic

model currently used for metals [24).

It has been found in the current research that significant heating may

occur under adiabatic conditions, expecially during cyclic loading, in ther-

moviscoplastic metallic media. The significance of this heating is compounded

by the fact that material properties often become extremely sensitive in the

inelastic range of behavior. This issue has not been considered herein, but

it certainly warrants study when transient temperature models become available.

Two important questions have not been answered in this research: I)

what effect does the inclusion of the heat flux term have on the predicted

* results; and 2) what, if anything, does the present model have to do with

experimentally observed results? The first question can only be addressed

if spacial variation is admitted in the field parameters. The author is cur-

rently studying this question and hopes to present results in a future paper.

The second question cannot be answered at this time since it requires ex-

tremely sophisticated experimentation. Although experimental results have

been obtained detailing heat generation in inelastic media, it is not pos-

sible to compare the current model since additional complex tests must be

performed in order to characterize the thermoviscoplastic mater,,. parameters.

The author also hopes to address this issue in a future paper.
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ABSTRACT-"

In this paper a new and efficient alternative to subincrementa-

tion is developed for analysis of solid media with rate independent

elastic-plastic material behavior. This alternative method is not

unlike the subincrementation procedure in that it represents an Euler

integration of the nonlinear constitutive equations. However, it

takes advantage of the fact that the Euler integration procedure as-

sumes proportional loading steps so that when the uniaxial stress-

strain curve is idealized as a piecewise linear relation very large

forward integration steps give accurate results. The new procedure,

which we call the zeta method, is equally appropriate for cyclic

loading with combined isotropic and kinematic hardening. However,

due to the nonuniqueness of the monotonic uniaxial stress-strain re-

lation in rate dependent media, the method is not appropriate for use

in viscoplastic media.

Although the algorithm deals only with the evaluation of a clas-

sical plasticity based constitutive law, numerical results are re-

ported herein for an assortment of problems by the finite element

'* method. It is shown via these results that the zeta method discussed

herein provides not oxly accuracy which is superior to the subincre-

mentation method, but the resulting algorithm also shows improved

numerical efficiency.
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INTRODUCTION

In recent years the analysis of elastic-plastic solids which behave

according to classical rate-independent incremental plasticity consti-

tutive models has become quite commonplace. By far the most often used

method for nonhomogeneous boundary value problem solutions is the finite

element method. By the nature of the kinematics and material behavior

this is a nonlinear field problem, and a considerable body of research

has been generated dealing with efficient numerical solution of the

*nonlinear boundary value problem. One efficiency measure adopted solely

to improve material models and independent of large deformation behavior

is the subincrementation method [1-3].

In this paper the subincrementation method will be briefly reviewed

* and an alternative procedure will be proposed. It will be shown that

this new method gives both improved accuracy and efficiency over the sub-

. -. incrementation method, and this contention will be supported via several

numerical results.

REVIEW OF THE ELASTIC-PLASTIC FIELD PROBLEM

An elastic-plastic medium subjected to an isothermal loading must

. in general satisfy the following conditions at all points in its interior

- .V and on its surface B: (1) conservation of linear and angular momentum,

(2) conservation of mass; (3) strain-displacement relations; (4) the

first and second laws of thermodynamics; and (5) stress-strain relations

(constitution). Of course, there are additional constitutive relations

[4], but these need not be considered in order to characterize the mech-

anical response when internal heat generation is negligible. It will

-2-



be assumed that the above restriction holds for the media consideredIherein, although the method to be considered here applies equally to tran-
sient temperature phenomena.

Condition (5) is the main topic of the discussion herein. In this

P paper we consider only elastic-plastic media: that class of materials

for which the stress (or strain) tensor can be considered to be a time

independent functional of the strain (or stress) tensor, that is, stress

is dependent on the entire history of strain but independent of the time

scale. It has been shown that this functional form can often be written

in an equivalent differential equation form [5]. One common strain for-41

mulation is of the general type [6]

=j Cijkldck1

where for small deformation aij and ci represent infinitesimal stress

and strain tensors, respectively, and C ijkl' called the effective mod-

ulus tensor, is the repository for history dependence via its dependence%" p

on the equivalent uniaxial plastic strain, E , which is a metric in the

-, space of plastic strain defined by
_P p

t J d E ij (t.)

0 0

where t represents time and

* P

de Pi dc - D dcy (3)ij ij ijkl kl

and D is the elastic modulus tensor, assumed to be independent of
ijkl

deformation. In a uniaxial sense the effective modulus tensor C

may be thought 
of as a secant 

modulus.
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It should be noted that for finite deformation equations (1) may

still be applicable if o and i are replaced by frame indifferent
ij i

quantities consistent with hypoelasticity [7]. Note also that under

certain simplifying assumptions equations (1) reduce to the classical

Prandtl- Reussequations [8,9].

It has been shown that equations (1) are consistent with the first

and second laws of thermodynamics 110-12]. Therefcre, since the energy

balance is trivially satisfied in an isothermal domain with negligible

internal heat generation and conservation of mass is satisfied if the

density is timewise constant during infinitesimal deformation, we need

consider only conditions (1), (3) and (5) here.

In the finite element method conditions (1) and (3) are usually

* satisfied via an incremental variational principle integrated over the

domain of interest. The discretization process then entails reducing

the volume integral for the variational principle to some sub-domain

aptly called a finite element. The integration over the volume of each

element is usually sufficiently difficult to require numerical integra-

tion, and for this purpose a quadrature procedure is generally employed.

Thus, the integration is reduced to evaluation of the integrand at a

finite number of integration points within an element.

The volume integration of each element yields a set of matrix equa-

tions which are assembled into a global set of matrix equations. These

.- equations are nonlinear even during infinitesimal deformations due to

"" the nonlinearity of equations (1). Therefore, an iterative technique

is generally used to solve the global equations on each load step, and

the constitutive equations (1) must be solved several times for all

-4-



integration points on each load step until convergence occurs.*

SOLUTION OF THE CONSTITUTIVE EQUATIONS

It has become common practice in the literature to incrementalize

equations (1) by simply replacing differentials do and de.. with in-

crements Ai. and Ai respectively. However, since the integrand

depends on the strain tensor during the load increment, an important

77 task becomes the integration of equations (1) over some input increment

in the strain tensor, viz.:

a. (c. (t+Lt)) 6. (t+At)

AOij d ij J Cij kl k1

a (C (t)(t
_. ij ij ij

S.* where t represents the time at the start of a load increment, and t+At

is the time at the end of a load increment.

Equations (4) definitely present a uniqueness problem since the

strain tensor may be cycled during the time increment At. In order to

avoid this difficulty a sufficient condition may be adopted which is

not unlike the condition required to obtain the Mises-Hencky deforma-

tion theory (15] from the Prandtl-Reuss equations. It is assumed that

during the time increment At all components of the strain tensor increase

monotonically via the relation

dckl - Kkld Kkl constants (5)

where dc must be a monotonically increasing function of strain during

plastic loading over the time increment At. Substitution of equations

(5) into (4) yields

*For a more complete discussion of the finite element method applied to
*" elastic-plastic media, see references [13] and [14].
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-P t+At
E C

AG = f C ij k l (-EP) K kld -P(6
" Aoij J 6

4" -P
E (E: )

which is obviously a unique relation due to the monotinicity of the

plastic strain increment during the time increment At. Now define the

" 4 following fourth order tensor which is constant over the time step At:

-P

41 Ey(t+At)

E; (t)

Then substitution of definitions (7) into equation (6) gives

A. i kl Pkl ijkl kl(

which is the exact incremental relation which should be used with the

incremental variational principle. It should be noted that equations

(1) and (8) are by no means equivalent since C! can be seen from
ij kl

definitions (7) to represent an average effective modulus tensor during

the time increment At. Unfortunately, equations (7) cannot be integrated

--P
precisely because the upper limit of integration E (t+At) cannot be de-

termined until equations (8) have been evaluated.

It will be recalled that the equivalent uniaxial plastic strain

can be shown to be equal to the axial plastic strain when a bar is pulled

uniaxially [16]. Now define the equivalent uniaxial stress

[3 oGi _~ 1 (K',~ E (i --- ij ) (Oij - 3 6ij )  (9)

which can also be seen to be equivalent to the axial stress when a bar

is pulled uniaxially [16]. Thus, the information required to charac-

terize equations (6) is obtainable from a single monotonically increasing

"a
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equivalent uniaxial plastic strain diagram as shown in Fig. 1. Note

P that the curve shown represents nothing more than a uniaxial stress-

v strain diagram with abscissa transformed via definition (3). In addi-

- tion, for combined isotropic-kinematic hardening the ordinate in Fig.

1 should be transformed as well [17].

SIt is apparent from Fig. 1 that for a continuously work hardening

material the relation between the equivalent uniaxial plastic strain

-p
e and the slope of the uniaxial stress-plastic diagram is unique; that

is,

- = F do (10)

where F is a bijective mapping. Therefore, the effective modulus tensor

may be written alternatively as

do _
U ijkl ( ) Cc ) ,jk (11

Thus, because the effective modulus tensor C is a nonlinear function
ii kl

, of the plastic secant modulus do/dt- , integration of equations (7) is

not a trivial task. In order to avoid this numerical complexity it is

not uncommon to simply approximate the effective modulus tensor by

c.. (EP) Cijkl(P(t)) , (12)

-: thus reducing integration of equations (6) to

Ac CC C .. U C CP,) (13)
ij - ijkl(-(t))Kkl P  ijkl (t))Ackl

which is Euler's method of forward integration. Obviously, since this

is nothing more than a simple first order Taylor series expansion its

accuracy will depend on the relative nonlinearity or curvature of the

*: 3:uniaxial stress-plastic strain curve during a given load increment.
This condition is illustrated for the uniaxial case in Fig. 2.

-7-
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In many computer codes the uniaxial stress-strain diagram is input

in piecewise linear fashion as shown in Fig. 3. While it is not clear

that this piecewise linearization is motivated by anything beyond sim-

plification of input data, it has the added benefit that it helps alle-

viate the numerical integration problem noted above and described in

Fig. 4. In fact, so long as the plastic strain increment AE does not
%$

subtend a slope discontinuity during a load step equations (11) indi-K! .cate that approximation (12) will reproduce the piecewise linear curve

exactly. Therefore, the accuracy of equations (13) is limited only by

the accuracy with which one can reproduce the exact curve of stress versus

plastic strain with a piecewise linear curve. Mathematically, the slope

continuity condition is satisfied if one can find values of the equiva-

-p
lent plastic strain at slope discontinuities EP  as shown in Fig. 3,

such that for the current load increment

"._, -- _P --P

,. < E (14)

. for all equivalent plastic strains in the range

C (t) < C P < C P(t+At) (15)

However, condition (14) cannot be a priori guaranteed in practice be-

cause in a non-homogeneous boundary value problem the equivalent uniaxial

plastic strain varies spatially. Whereas one integration point may

undergo a very small or even zero (elastic) plastic strain increment

during a specified increment in surface tractions, another point under

high stress concentration may undergo a plastic strain increment which

subtends one or more discontinuities in the piecewise linear equivalent

uniaxial stress versus equivalent uniaxial plastic strain diagram. Thus,

as can be seen from definitions (2) and (3) the equivalent uniaxial

10 -
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plastic strain increment can be determined only after the stress incre-

ment tensor has been found.

REVIEW OF THE SUBINCREMENTATION METHOD

In order to improve the accuracy of approximation (13) subincremen-

tation has been proposed [1,2]. In this method Stricklin, et al. define

the equivalent uniaxial strain increment

• d -- - 2 dc i  dc i  (16)•~~~ ... d,= " j •

This quantity is evaluated over a specified load step and is then

compared to an input parameter called the allowable total strain incre-

ment dE ) as follows
AL

M d ,(17)i CAL
where M is rounded off to the nearest integer greater than zero. Equa-

tions (6) are then evaluated M times for the strain subincrement

a
AE (18)

and on each subincrement the effective modulus tensor is updated to

reflect the current equivalent uniaxial plastic strain. Based on numer-

-. 1 ical evidence, Stricklin suggests that dc AL should be no greater than

0.0005 in./in., although our experience indicates that values as small

as .00005 in./in. are sometimes required to maintain accuracy of solu-

tion.

In order to illustrate the effect of subincrementation let us ex-

amine a single example. Suppose we consider a bar subjected to a grad-

ually increasing homogeneous uniaxial stress state. Because conditions

* -13-
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(1) and (3) are satisfied trivially we need only consider approximate

constitutive equations (13). Since the input material properties will

be described via a piecewise linear equivalent uniaxial stress versus

equivalent uniaxial plastic strain diagram as shown in Fig. 3, and be-

cause this boundary value problem is equivalent to the experiment which

produced the material input data, an exact analysis using equations

-2 (13) should reproduce Fig. 3 precisely. In fact, using subincrementa-

tion will yield the results shown in Fig. 4 when a single slope discon-

tinuity is encountered in a given load step. It can be seen from the

figure that the total error is incurred during the plastic strain sub-

increment subtending the slope discontinuity. The effect then of sub-

incrementation is simply to improve the approximate integration of equa-

tions (6).

iA PROPOSED MODIFICATION

It is apparent from the above discussion that subincrementation

h will often require multiple evaluations of equations (13) for each inte-

gration point. Since these equations must be evaluated at each inte-

gration point in the body and often several times for each load step

in order to obtain equilibrium convergence, considerable computational

time can be spent in this process. Detailed herein is a numerical pro-

. ,., cedure for integrating equations (7) which is both more accurate and

more computationally efficient than subincrementation. We call this

method the zeta method.

The method proposed here is a simple extension of a procedure uti-

lized by Krieg and Duffey [18] for the transition step from elastic to

.4 elastic-plastic material behavior. The primary extension is that each
. d I.
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subsequent slope discontinuity in the piecewise linear equivalent uni-

stress versus equivalent uniaxial plastic strain diagram is treated ex-

actly like a subsequent yield surface. Since equations (13) are exact

under conditions (14) and (15), no subincrementation will be required

to obtain precise results between slope discontinuities.

In order to see how the zeta method works, consider a material point

which is in a post-yielded state at time t and with equivalent uniaxial

plast strain c (t), as shown in Fig. 5.

According to Krieg and Duffey [18], the value of the stress tensor

at the material point necessary to bring the equivalent uniaxial stress

state to the i+-th slope discontinuity is defined by

+ (19). ' j

where AC is the increment predicted by equations (13) using the input
ij

total strain increment Aeij and is a scalar factor to be determined.

In order to determine zeta definitions (19) are substituted into

the yield criterion used in the model. For example, if von Mises'

yield criterion is utilized, equations (19) will result in

- a ] + -]) (20).' Oi + Aij 3 ij Oi Aij- 3 ij

Solving the above equation for zeta will result in

-B + -(B 4AC)
2A (21)

where

A AoijAoij (22)

iji
B 2 ij Ai , (23)
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and

IA C - ~a -2 (24)
c ij oij - 2  .1

Utilizing equations (21) through (24) the value of zeta may be

obtained. If zeta is greater than or equal to unity, the input totalIstrain increment will not take the equivalent uniaxial stress beyond

F . the next slope discontinuity and the results of equations (13) may

! . be considered correct. In other words

,> 1 => Aoi . Ai . (25)

If, on the other hand, zeta is less than unity, the predicted stress

increment tensor is incorrect and equations (13) must be modified.

- iThis is accomplished by first constructing the input strain increment

necessary to bring the equivalent uniaxial stress to the slope discon-

tinuity:

L i+ 1 (26)

where AE is the input strain increment. The values of AE . are
ij 13

then substituted into equations (13) to produce

P+' W i+l i+(AO. ij ij (EP (t)) AC ij (27)

the remaining portion of the stress increment tensor is calculated

by first determining the remainder of the input strain increment

R
AC G- -~ A~ij (28)

ij = -

noting from definitions (26) and (28) that

AC M ij + Aij• (29)

The remainder of the strain increment tensor AC.R is then substituted

into equations (13) to give the remainder of the stress increment tensor

-17-
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-P R
ij - Cijkl ( (30)

Thus, the total stress increment tensor is given by

1 +1 Rj
AG =A0ia + Ao . (31)

ii ij ii

It is easily verified that the above procedure will result in an equiv-

alent uniaxial stress and equivalent uniaxial plastic strain (utilizing

definitions (2) and (3)] which lie on the equivalent uniaxial stress

versus equivalent uniaxial plastic strain diagram. It should also be

pointed out that although the actual yield surface is updated through-

out plastic loading, the equivalent uniaxial stresses corresponding to

o. slope discontinuities should at no time be altered.

Although the above procedure has been discussed here only in the

context of isotropic hardening, it is also applicable to more complex

yield criteria and work hardening rules [19,20].

..

COMPUTER CODE FLOWCHART

*
The following chart outlines in abbreviated form the application

*".. of the 6 method for a given increment in the total strain tensor ACij

-Pand equivalent uniaxial plastic strain at the start of the step E (t).

a) Set Aa.. = O.
13

7-Pb) Evaluate Cijkl(c (t)).

c) Obtain Aoij using equations (13).

d) Determine a from Fig. 5.

e) Calculate A, B, and C using equations (22) through (24).

f) Determine zeta using equation (21).

g) If > 1 go to step q).

- 18 .
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•i+1
h) If < 1 evaluate A j using equations (26). ,I

i+l ii

i) Determine A6 using equations (27).
ii

j) Set Aoi1 . - Aoij + AOi.

k) Calculate Ag j using equations (28).

1) Set Ai AE R
ij ij*

m) Calculate AsP. using equations (3).
-P

0) Set E W) - EP(t) + p

p) Go to step b).

1) Set Aci 60Aij + Aoi.
Are.

DISCUSSION OF RESULTS

In this section the results generated using the zeta method as

well as the subincrementation method for solving the constitutive equa-

tions of classical plasticity are presented. Both solution techniques

have been incorporated into a finite element computer program which

uses constant strain triangular elements. The formulations have been

cast into a 2-dimensional plane stress format.

In order to compare the efficiency of the two different methods

their respective solution times will be compared. This was accomp-

." lished by using the built in timer (clock) subroutine used in the

Fortran-H Extended language available on the AMDAHL 470 V6 located

on the Texas A&M University campus. Two times will be given in the

analysis: 1) time spent using the constitutive package, and 2) total

time spent in solving the specified boundary value problem.

t Two boundary value problems have been selected for comparing the

two constitutive packages: a highly yielded uniaxial bar subjected

194
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S, - t to uniaxial tension only and a thick walled pressure vessel subjected

Cto internal pressure sufficient to yield a broad band of the vessel.

Both specimens are assumed to be made of 5086-H34 aluninum with piece-

wise linearized room temperature properties shown in Figure 6. The

finite element mesh used for the uniaxial bar as well as the load

input diagram are shown in Figure 7. Only two elements are necessary

r.#. ."to represent the bar because the boundary value problem is homogeneous.

However, if the problem was inhomogeneous then mesh refinement would

17" be necessary to increase the accuracy of the solution. It should

nevertheless be pointed out here that the number of elements used in

the mesh is directly proportional to the computational time required

S."in the constitutive package. Another factor influencing the computa-

tion time is the non-linearity of the given stress strain curve. In-

creasing the number of piecewise linearities in the idealized uniaxial

stress strain curve will increase the computational time required by

S." the zeta method. Although this increase in piecewise linearizations

will not greatly affect the computational time required by the subin-

crementation, it will have an adverse affect on the accuracy of this

method.

The results of the uniaxial bar test are shown in Fig. 8 and the

" . comparative solution times are given in Tables 1 and 2. Fig. 8 shows

" -' the output axial displacement versus time for the zeta method as well

as the subincrementation with various allowable errors in equivalent

S-.uniaxial strain shown in parentheses. Table I shows a comparison of

solution times for each load stup, while Table 2 gives a more detailed

comparison of solution times for the final time step. Several dif-

S,,ferent cases were run using the subincrementation code in order to

e"- 20 -
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TABLE 2:

COMPARISON OF SOLUTION TIMES FOR

THE LAST LOAD STEP ON THE

UNIAXIAL BAR

.

- .4

ZETA SOLUTION TIMES (sec)

* TIME ZETA SUBINC SUBINC SUBINC SUBINC
METHOD (0.005) (0.0005) (0.0001) (0.00005)

CONSTITUTIVE 0.063492 0.0027 0.0555 0.18764 0.37684

* SUBINC/.063492 .043 .716 2.955 5.935

.' TOTAL TIME (SEC) 0.0968 0.00798 0.07761 0.22315 0.40994

SUBINC/.0968 .0824 .802 2.305 4.235

2..5
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illustrate the difference in solutions and comparative times for dif-

j ferent values of the allowable uniaxial stress increment dcAL used

in determining the number of subincrements. In general, increasing

the required accuracy of the subincrementation method also increases

the computational time.

The results of this test show that in order to obtain solution

accuracy by subincrementation which is comparable to the zeta method,

the allowable strain increment must be of the order of 0.00005 in/in.

In fact, the larger the allowable strain increment the less solution

time required, and in fact for dEc. W 0.005 and 0.0005 the solution

time was less for the subincrementation method. However, the resulting

accuracy was very poor. Table I indicates that subincrementation

(CAL W 0.00005 in./in.) requires 3.171 times as much computer time as

the zeta method for the uniaxial bar problem. Although this is a

rather large difference in relative times, since only a two element

-. problem has been run, the difference in actual cost is small. However,

on an extremely large scale problem obvious savings would result.

The finite element mesh used for the thickwall pressure vessel

is shown in Fig. 9 and the load input diagram is shown in Fig. 10.

The results of this test are shown in Fig. 11 as well as Tables 3 and

4. These results are for the final pressure of P - 30,000 PSI. It

should be noted that if one applies increasing pressure to the speci-

men then more of the elements will yield in the outer regions of the

thickwalled pressure vessel, resulting in a higher solution time be-

cause more time is spent in the constitutive package and more time

in iterating on the correct nonlinear solution.

",
.4%
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TABLE 3: RADIAL DISPLACEMENTS AND SOLUTION

.. IMES FOR THICK WALLED PRESSUR VESSEL

SRADIAL RADIAL DISPLACEMENT (IN)
i , LOCATION

ZETA SUBINC SUBINC SUBINC SUBINC
METHOD (0.001) (0.0005) (0.0001) (0.00005)

2.0 0.01324344 0.01285087 0.01289475 0.01292329 0.0129211

2.2222 0.01167517 0.01133769 0.01137959 0.01141027 0.01140665

2.4444 0.0105329 0.01026293 0.01029393 0.01032073 0.01031638

2.6666 0.00971329 0.00947785 0.00960516 0.00953320 0.009-52741

, '-

3.0 0.00883162 0.00862648 0.00866162 0.00868949 0.00868414

3.3333 0.00821108 0.00802864 0.00806262 0.00809172 0.00808688

4.0 0.00728626 0.00714737 0.00717933 0.00720508 0.00720022

CONSTITUTIVE

PACKAGE TIME (SEC) 0.691703 0.6132077 0.6854118 1.056744 1.503111

SUBINC/.691703 .886 .991 1.527 2.173

, TOTAL TIME (SEC) 3.1546827 3.0397627 3.1661748 3.61964 4.0580

SUBINC/3.1546827 .964 1.003 1.147 1.286

:30.
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TABLE 4:

< .-. COMPARISON OF SOLUTION TIMES FOR

THE LAST LOAD STEP ON THE

THICK WALLED PRESSURE VESSEL

* SOLUTION TIMES (sec)
ZETA SUBINO SUBINC SUBINC SUBINC

TIESMETHOD (0.001) (0.0005) (0.0001) (0.00005)

CONSTITUTIVE
PACKAGE TIME (SEC) 0.476943 0.398788 0.468156 0.838656 1.278211

SUBINC/.476943 .830 .982 1.758 2.680

TOTAL TIME (SEC) 1.662752 1.565564 1.665976 2.143309 2.579693

SUBINC/1.662752 .941 1.002 1.289 1.551

-31

S

.

4'.

o.

-31-



0-1."

The results of the test are basically the same as those for the

uniaxial bar. From Table 3 it can be seen that for comparable solu-

tion accuracy the subincrementation method takes 1.527 to 2.173 times

-p
more constitutive time (depending on EAL) than the zeta method and

1.147 to 1.286 times greater total time. Closer examination shows

-P
that even for the smallest e = 0.00005 the solutions still differ

AL.

from the zeta method and that there is no noticeable difference be-

tween solutions for dcAL = 0.0001 and dEAL - 0.00005. In fact, the
-P

results tend to be less accurate for dc = 0.00005. This can be at-
AL

tributed to numerical roundoff error because the increments in the

strain are so small that further improved accuracy is not possible.

By constrast, there is no numerical roundoff error apparent in the

zeta method.

S ~CONCLUSION

4' The objective of this researc has been to produce an alterna-

tive to subincrementation which results in a substantial improvement

in computational efficiency. This new method has been shown by ex-

ample to give not only improved efficiency, but also slightly greater

accuracy of results. The following general conclusions can be made:

1) in order to produce results by the subincrementation method

which are comparable in accuracy to the zeta method, signi-

ficantly greater computation time is required by the former

method;

2) increasing required accuracy in the allowable equivalent uni-

axial strain increment can lead to roundoff error when

subincrementation is utilized;

32



' ",3) subincrementation necessarily produces errors in predicted

stresses whenever a slope discontinuity is subtended in the

uniaxial stress-strain curve;

, 4) the zeta method follows the uniaxial stress-strain curve ex-

actly;

. [5) both subincrementation and the zeta method approximate the

load path to be radial during each load increment,

. 6) piecewise linearization, although merely a numerical conven-

ience in subincrementation, is necessary in order to utilize

the zeta method,

7) the zeta method can be used with cyclic hardening models of

plasticity; and
-

8) the zeta method may not be appropriate for use in rate depen-

dent viscoplastic media.
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ABSTRACT

The thermomechanical response of a uniaxial bar with thermoviscoplastic

constitution is predicted herein using the finite element method. After a

brief review of the governing field equations, variational principles are con-

structed for the one dimensional conservation of momentum and energy equations.

These equations are coupled in that the temperature field affects the displace-

ments and vice versa.

Due to the differing physical nature of the temperature and displacements,

first order and second order elements are utilized for these variables, respec-

tively. The resulting semi-discretized equations are then discretized in time

* '* using finite differencing. This is accomplished by Euler's method, which is

*, utilized due to the stiff nature of the constitutive equations.

The model is utilized in conjunction with stress-strain relations devel-

S'-. oped by Bodner and Partom to predict the axial temperature field in a bar sub-

jected to cyclic mechanical end displacements and temperature boundary condi-

NO tions. It is found that spacial and time variation of the temperature field

' is significantly affected by the boundary conditions.

TABLE OF SYMBOLS

*-. ..:

t - time

P - axial internal resultant force

p - axial externally applied force per unit length

.x - axial coordinate dimension

A - cross-sectional area

T x - end traction in units of force per unit area

s - surface area

e." e1



Table of Symbols (cont.)

S c- area of the longitudinal surface of the bar

E - axial strain component

u - axial displacement component

,l - internal state variable representing axial inelastic strain

E - Young's modulus in the axial coordinate direction

a - coefficient of thermal expansion in the axial coordinate direction

T - temperature

" T - reference temperature at which no deformation is observed at zero load
R
a - internal state variable representing drag stress .

q - axial component of heat flux

k - coefficient of axial thermal conductivity

C - specific heat at constant elastic strain

P - mass density

r - internal heat source per unit mass

L - length of the bar

INTRODUCTION

It is well known that mechanical and thermodynamic coupling are signif-

icant in metallic solids [1-11]. The author has recently developed a model

capable of predicting this coupling effect in thermoviscoplastic metals [12].

In the previous paper a cyclic strain control loading on a sample of INIO at

1005°K (1350°F) was used to predict a temperature rise of approximately 3.7°K

per cycle when the strain amplitude was 2% and the specimen was adiabatically

insulated.

The focus of the current research is to consider the effect of thermal

boundary conditions on this same process. The introduction of these

,A.

2
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conditions causes the strain and temperature fields to be inhomogeneous even

though the stress field is homogeneous if the bar is prismatic. This spacial

variation in the field variables causes the process to be difficult to model

because the thermomechanical constitutive equations are highly nonlinear stiff

differential equations. In this paper the finite element method is utilized

to spatially discretize the dependent variables displacement and temperature,

and the finite difference method is employed for timewise discretization.

This process results in a set of highly nonlinear algebraic equations.

Since the thrust of this research is to obtain accurate results without

regard to numerical efficiency, the results are obtained via the relatively

inefficient but accurate method of simply utilizing successively smaller time

-J steps along with refined spatial mesh to obtain a convergent and therefore

accurate solution for the temperature and displacement fields both spatially

and as a function of time for a cyclically imposed end displacement.

The physical interest in the problem is to determine the effect of

temperature boundary conditions on the predicted temperature rise in a bar sub-

jected to cyclic mechanical loading. It is found from the analysis that the

* -introduction of these nonadiabatic boundary conditions causes significant axial

temperature gradients. Since nonadiabatic conditions cannct be avoided in

experimental research, it is concluded that experimental tests of this type

should be viewed with caution when their purpose is to construct constitutive

Sr relations.

• "PROBLEM SOLUTION

Field Problem Description

The following field equations are given:

.5 a) equilibrium [13],

;P = x (x) (1)

3



where the axial resultant P is defined by

" P fcdA , and (2)

• fA
= Px Txds ; (3)

S
c

- b) strain-displacement relation

au (4)

c) thermomechanical constitution,

O=E -a - a(T TR)] (5)

= ai(C, T, aj) , i = lz , and (6)

q -k (7)
ax

where z is the total number of internal state variables; and

d) conservation of energy

N -% '" + ETa LL c-E + EaT ) Ea1  T LT - x + .r 0 (8)
1 R a at]at vat aq

The conservation of mass is satisfied trivially and the second law of thermo-

dynamics has been previously shown to be satisfied by the above equations [14-

161. It should be noted that equilibrium equation (1) satisfies equilibrium

-• 'in the axial coordinate direction only in an average sense over the cross-section.

4
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The above 6+Z equations (excluding definition (3)) define a nonlinear

initial-boundary value problem (together with appropriate thermal and mech-

anical initial and boundary conditions) in which the following dependent vari-

ables are sbught as functions of x and t: c, C, u, q, T, P, and ai.

For convenience the domain is defined to be of length L, so that boundary

and initial conditions are of the form:

u(x,0) E u = known

Tn initial conditions ; (9)
:"T(x,0) -Tx known

and

0 0u(Ot) ; ut known or P(O,t) P = known

L L
essential u(Lt) E uL = known or P(L,t) E P t = known natural

boundary boundary

conditions T(O,t) E T = known or q(O,t) E qO = known conditions. (10)
.4t t

L L
T(L,t) - T = known or q(L,t) E q = known

It is now assumed that a = a(x) so that equation (2) reduces to

P = OA (11)

.- Therefore, substituting (4) into (5) and this result into (11) gives

P - EA - (T - T (12)

P Aax R]

The above result is now substituted into (1) to obtain

a [EA [- I -a, (T - TR) = -Px) , (13)

5
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which represents the differential equation relating displacements and temper-

ature to the applied load p x(x).

Equations (4) and (7) are next substituted into energy balance law (8)

and this result is integrated over the cross-sectional area A to obtain

A E Lu Ea +  EaTRT] + E a u2 T - AEo T - A PC 3T
* ~ax~1 I Rja atcx atax vA at-~--pC-

+ A a (k = -A.pr (14)
ax ax

where it has been assumed that all field variables depend on x and t only.

Now define

Q q dA= k- dA =-k-LT A (15)J ax ax (5iA A

Careful inspection of equations (13) and (14) will indicate that these

equations, together with internal state variable growth laws (6) and initial

and boundary conditions (9) and (10), represent a well-posed boundary value prob-

lem in terms of the 2+z dependent variables u, T, and a..~1

Solution Procedure

The field problem is to be solved analytically using the semi-discretized

finite element technique with timewise finite differencing. In order to ac-
qP* 1

complish this, differential equations (13) and (14) must first be written in

a suitable variational form.

Variational Equations

Consider first equation (13). This governing equation is integrated against

a suitably smooth test function v = v(x) over the domain of some element Q2
e

xe xe+l

Ii 6
. ~° °" . % - 1. °. - -° . * . . . . .]



Xe+1 -'

F [~Jaf [L' =
f V 5xax(uTR + Px dx =0 .(16)

v ~ EA "[a - a1 - a(T - TR j _~+(6

x e
.'g.I

Integrating by parts results in

ee+1

- f - -a(T TR dx v vEA au (17)
ax [ 1 1 x -1R

x

ex f

e

Substituting equation (12) into the boundary term thus results in

Xe-° 
-

av

EA -5- I  a(T -T R  dx

e
Xe+1

-V(xe) P(xe) + v(x) P(x) - f x (18)

x
e

Now consider equation (14). Once again the governing equation is inte-

grated against a suitably smooth test function w = w(x) over the domain of the

element Q2e

fNw E-E{ Ea1 + EoLTR) + Ea T ]

x a
e

-A olal Apva-t +Ax k! A Pr dxO 0 (19)e

." '-, - -- "
" ,.



Integrating the heat flux term by parts results in

~e+1 f aw T au 2 aT

kA a- a- + wA [(E - Eol + ECfTR a-- + Ea2T m-

Xe -5x --x x [~~E~ 1 Rat+ ati e

-EaT - -Lj dx = w(xe+) Q(x+I) - w(xe ) Q(xe )atX e1 ejj e e

xe+1

+ wA pC-T-pr dx (20)

.4 e

where equation (15) has been substituted into the boundary terms.

*' Finite Element Spacial Discretization

Quadratic displacement and linear temperature fields are now chosen within

each element:

3
u(x,t)= T u i ' x e< x < x+1 and (21)

i=

2
e e

T(x,t) = i e e+1 (22)

i' where u: e u e(t) and T; e T e (t) are the nodal displacements and temperatures,
e ee e

respectively, and 1j - (x) and =  (X) are quadratic and linear shape

[' .. functions, respectively [17].

W. Appropriately, v and w are endowed with the properties of u and T, respec-

tively, so that

8
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li i

ew 0 i= 1,2 (23)

Time dependence in equations (6) and (20) is handled via finite differ-

encing. Although higher order approximations may be used, Euler forward dif-

ee
ference approximations are now entered for the time rate of change of C, Tm

and u.

--"1 - (x,t) • [cc (x,t + At)- c4 (xt)]/At, k 1, ... ',z (24)

m dTe

dT e
W (t) [Te (t + At) - Te (t)]/At, m = 1,2, and (25)

t m m

du 
e

,,.' (t) -- e (t + At) _- (t)]/At, 123 (26)

Substitution of equations (21) through (26) into equations (18) and (20)

will result in (See Appendix.)

,,. " e  e  u e  Fe* ." . .. . ... . .

TK 1 S LT1 VJ ,(27)

2x3 2x2 5xl 5xl

5x5

where all nonlinearity is contained in [5], {Fe}, and {ie}, and all terms are

as defined in the appendix.

,* *I9



Global Assembly and Boundary Conditions

Global assembly is accomplished in the standard way using the Boolean

matrix [17]. Interelement continuity is guaranteed by setting

e + e+1P + = 0 and (28)

2 1

Boundary conditions are implemented in the standard way: 1) essential

0boundary conditions are handled by placing one on the diagonal of the

appropriate row and zeros off diagonal in the stiffness matrix, and the speci-

fied value of the essential variable on the right hand side; and 2) natural

boundary conditions are implemented directly to the right hand side.

Solution of the Nonlinear Algebraic System

Initial conditions are used for the first time step. The time step Lt

is supplied for each load increment and boundary conditions are incremented

directly from supplied input functions.
.a,

The internal state variable a is handled in equations (A8) and(A22) by

using equations (24). aI is initialized according to reference 18. The non-

linear stiffness matrix [S] is initialized using nodal temperatures and displace-

ments from the previous time step. The displacements and temperatures at time

t+At are then estimated directly and without iteration by utilizing equations (27)

" for very small time steps.

10
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EXAMPLE PROBLEMS

In order to completely define an example problem it is necessary

to specify internal state variable growth laws (6). Numerous models

have been proposed for crystalline metals [18,19]. Since it is not the

purpose of this research to compare these models, a relatively

established model proposed by Bodner and Partom [20] has been chosen.

This model contains two internal state variables: the inelastic strain

(a and the drag stress (a2). The growth laws for these variables are

- "given by

a 1  D exp (30)1)Ct

and

(X2 - M(Z1 - (12 ) C&I -. 1 Z(ZI)( (31)

where Do, n, m, ZI, Z1 , A1 and r are experimentally determined material

constants.

. "-.For the purpose of modeling the temperature gradient in a specific

component, a hypothetical problem has been chosen using material

properties representative of Inconel 100 at 10050K (1350 0 F). The

material and geometric properties are given in Table I. The geometry is

representative of a cylindrical uniaxial bar which is 2.50 inches long

' and 0.25 inches in diameter. It has previously been shown that Bodner

and Partom's model accurately predicts the stress-strain behavior of

INI00 under uniaxial loading conditions for both monotonic and cyclic

strain controlled loadings [12,18].
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PC 5.032 MPa/*K

ci = 13.14 x 10 in/in/OK

k = 21.0 x 10 - 6 MPa m2

secK

3
E = 146.86 x 10 MPa

A = 7.12557 x m 2

T = 10050K
R

L = .06350 m

Do  - 10 x 103 in/in

n = 0.70

im = 2.57

ZI = 1015.0

. r o- 2.66

A So 0. 0019

1

Table I.Material Properties for IN 100 at 10050K (1350°F)
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Utilizing the material properties described above, the

b following effects have been studied using the model developed

.herein:

1) the effect of variation of strain rate on the stress-mI
strain behavior of a monotonically extended uniaxial bar which is

insulated on the longitudinal boundaries (Fig. 1);

2) the effect of strain rate on the time dependence of

temperature at the midpoint of the bar described in 1) (Figs. 2-

4).

3) the spacial temperature variation for the case described

-" above (Fig. 5); and

4) the effect of end temperature boundary conditions on the

temperature at the center of a uniaxial bar which is held at

fixed temperature at the end points and subjected to cyclically

S imposed end displacements (Figs. 6 and 7).

The slight instability shown at the lowest strain rate in Fig.

1 is numerical rather than an actual material instability. This

. may be corrected by using slightly smaller time steps. However,

this was not done herein because of the massive computation time

required with the current algorithm. Furthermore, this numerical

instability has little effect on the predicted temperature field.

The opposite signs for temperature change in tension and

compression shown in Figs. 2 through 4 is caused by the well-

known bulk deformation effect of thermoelastic coupling, which is
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described by the second derivative on displacement in equation

(1 4). Of course, after yield, both tensile and compressive

loadings cause heating due to entropy generation caused by the

inelastic strain, which is described by the leading term in

equation (14).

-. It is found from the analytical results that if a specimen

is mounted in an experimental apparatus which has massive grips

simulated by a fixed temperature boundary condition there can be

substantial axial temperature gradients induced in a time

dependent boundary layer near the ends of the specimen. As shown

in Fig. 5, this boundary layer occurs over a small region near

the end of the bar for moderate strain rates and for the material

considered herein. These boundary conditions do not appear to

substantially affect the predicted stress-strain behavior (Fig.

1), especially when the strain measurement is taken between the

thermal boundary layers near the grips. Therefore, it would
",

appear that the standard procedure for obtaining stresses and

s t rains in uniaxial bars is not substantially affected by

mechanically induced axial temperature gradients when the grips

are at fixed temperature equivalent to the initial specimen

temperature and the bar is loaded monotonically. However, it

should be noted that massive grips which are mounted outside a

furnace could, by their much lower temperature than the initial

.' specimen temperature, induce significant error in predicted

14
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strains if the strain is measured by dividing relative displacement by some

-"gage length.

The final example demonstrates that under cyclic loading conditions the

above conclusions may not necessarily be true, especially when the specimen is

subjected to high-cycle fatigue and at high strain rates. There is definitely

a trend towards an increasing mean temperature in the bar, and this mean tempera-

*ture is strongly affected by the thermal boundary conditions as well as the

loading rate. Although it would be interesting to determine the mean temperature

* 'rise in a cyclic fatigue test, the current algorithm precludes this analysis due to

the extremely large computer times necessary to predict only a few cycles of

0 *
2".
. response (approximately 43.8 CPU minutes on an Amdahl 470/V6 for the example

* - demonstrated in Figs. 6 and 7).

Example 3 also demonstrates another interesting phenomenon which may be

significant in large space structures. If the bar is perfectly insulated the

mean temperature rise per cycle for the relatively slow loading rate shown in

Fig. 6 is 3.7*K, whereas if the ends of the bar are held at a fixed temperature of

" 1005*K, the mean rise is 1.0*K per cycle. Faster loading rates show less difference

*between the adiabatic result and the fixed end temperature result. Since many

of these structures are expected to be extremely flexible truss-like configurations,

a typical metallic member which undergoes some yielding (which might be desirable

* in order to induce natural damping) might in fact undergo substantial enough

*heating during vibrational response such that the material properties could be

adversely affected, thus resulting in a material related failure of the structure.a However, further investigation is needed on this last issue since it is expected

that the primary form of heat flux off of space structures will be via radiation

on the longitudinal surfaces of the truss member. Since the current analysis

15
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has treated these surfaces as insulated, no general statements can be made at

this time regarding thermomechanical heating in space structures.

.5.

'.

I, %1

16

-- e,



CONCLUSION

The current research has attemped to demonstrate the effects of

mechanical loading on one-dimensional temperature gradients in a class

of viscoplastic media. Due to the nonlinearity and stiffness of the

field equations, it was necessary to utilize a numerical algorithm.

This algorithm has been shown to be very inefficient for solving even

one-dimensional examples. Therefore, it is apparent that significant

refinement of the procedure will be necessary before multi-dimensional

analyses can be performed by this method. Specifically, it would be

significant to determine the effect of transverse temperature gradients

on the stress-strain behavior of constitutive specimens. Furthermore,

the effects of thermal boundary conditions on the longitudinal surface

' - needs attention. The author is currently studying a perturbation

' technique for more efficient solution of these issues.

The above points notwithstanding, the current research demonstrates

some important results. These are:

1) The axial temperature gradient in a viscoplastic uniaxial ba

is strongly affected by the thermal boundary conditions on the ends.

* ~2) The end temperature boundary conditions can cause temperature

* gradients which are substantial enough to induce spacial variations in

stress and strains which invalidate the standard procedure of using

* average quantities, although when grips are mounted within a furnace at

spacially constant temperature, it appears that the standard procedure

Is accurate.

17
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3) There is a trend toward increasing average temperature in

cyclically loaded bars; whether or not this effect is significant is

strongly dependent on the thermal boundary conditions and the loading

rate.
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' APPENDIX

Substitution of equations (12) and (21) through (23) into variational principle

(18) results in

x e+1 dXp

', aEA e eT dx = eL I
e

ET)]dx ipe( ) P(x ) + (xe) P(xe)

" e+1

ef Pxdx i = 1,2,3 (Al)

xf
e

3 .The above may be written in the following compact form

3 2
e ue + Z Se Te e (A2)

K.. u. S.. = F , i i

_I =

where

e +15 e ee  
EA dx i 1,2,3; j 1,2,3 ; (A3)K ij -xd

xf
e

fe+1 d e
s dx i 1,2,3; j = 1,2 (A4)

ij = ,
'x f

e
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e - e+l e

Fe- EAdX(- + cTR)dxFi  f (-cI R

e

e+1

-P(xi) - f p dx i = 1,2,3. (A5)

x
e

Similarly, substitution of equations (21) through (23) into equation (20) re-

sults in

e:"k de, ,2 ) e 3 3

* -i {-~-~ ~(j2 T 3P; + A [EE ~ ~ u))-E~
dx~~ ex _ - E.

m' +Ec )(-+~ 2 ee ( 2 era\
Ea e e) e e

+ EaT - Z TjC at _ Tm mR) .- j=l J 3-1

'5 2 2  3 e
) eeeEa~ T. atax E u mpm d

" e X e+1 e [ L 2 e ]
"(x Q(X(xe Q(X) + A E T pr dx,

Se+1 e+lex f a
S-, e

i = 1,2. (A6)

Equations (A6) may be written in the following form:

3 2 xe+1 2dTe

Se u +T + f A ~E2 Z( T j(2 dt
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2E( e; e) (m~ d d~ dip) (21 dT~ ) Pr-E ETj ~ dt d-x _ dv  + pr dx

X e+1 a l(

f Oi A(-Et + EaTR) --- Qx i = 1,2, (A7)
x

e

_._ where

* , x e a
x e+1 d . 3a

KV j f AE e -J--t dx i = 1,2; j = 1,2,3; and (A8)
I e i dx a

e

j f-- kA-~-- dx ; i = 1,2; j = 1,2. (A9)
x

e

. Time dependence in equations (6) and (A7) is handled via finite differ-

-S encing. Although higher order approximations may be used, Euler forward dif-

. e , e
' ference approximations are now entered for the time rate of change of cX, Tm,

* and ue
". m

• . e

ak (x,t) I[e (x,t + At) - e (x,t)]/At, k = 1, .. z (AlO)
xt ) '"

dT e

m (t) = [Tm (t + At) - Te (t)]/At, m = 1,2 , and (All)".dt m '

-du 
e

m ue

mU (t) a [ (t + t) -u (t)]/At, m = 12,3.. (A12)- ,dt m m '
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Substitution of (A10) through (A12) into finite element equations (A7) gives

3 2
-e e -e e

E Kij U. + E i .T
* sj=1 j=1 I.

xe+l2 t+L) e

e4 (Ecx2 L e~ elP [.21 (Tt + T~ (t) e""+ f A i EOL E Tj j EA

x e j=l =

ee
e e] F m - M

+ mmt - (t ) e](t) dx ]
j=ml

m~l +At) e~ p  d

-A. [-EQl (t ) + ETRJ - (t)

x
e

-Q(Xi) , i = 1,2 (A13)

The above may be written as follows:

3 2
e -e e

!+ I .. T.
j=l ij 3 j= 13

2 2 2
e e e

+ E 7 C T T + E D Te

k=1J1 ijk j k j=l ij

2 3 2
+ E E E T u + E G Te

k~l=1 ikj k j j1ij i
~~k=l J=l 3 j=l i1

2
+ E H T = , i= 1,2, (A14)

. '. j= j ji:,.J=l
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wher e

X e+l

C" X e E e e = 1,2; j 1,2; k = 1,2 , (A15)

eq x

e+1

D ee+ e I,2 ] dx, i 1,2 , (A16)

Xe

D x Xe+l

D A - [T 'i(t),e2 + T'(t)(,)2 dx, i = 1,2 , (A17)

., X

.E-.E i k =- -A* - e k d x ,i = 1 ,2 , ; k = 1 ,2 ; j = 1 ,2 ,3 , (A l S )

i2j f APi k1 1I

Xe

x ee-"

E e IEc 1 dx, i = 1,2 , (A19)
x

e*~e~ GAec e _e e

G!l fx A l  +  u2 )2 +  u(t)2 dx , i= 1,2, (A 9)

ii Ji At 1 1 ax 2 1t ax 3t 1 a
X

e

" xe+l e e e

Gi - f A e [o, ue, e x'2 ,e i e 3 , 1 1,2 (A20)

x
e

x l

Xe+1 p

H.. A e A e dx , 1,2; j 1,2; and (A21)

x e

bx
fe+1

elA4i [-Ecl(t) + EQTRI --- (t) dx '.3..

X .3

-Q(x ) i = 1,2 ) ]d.
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Equations (A14) may be written equivalently as follows:

3 2==e e --e e -e
Z K U + Z S .j ,e =F (A23)

j=l 1i j=i 1J j i

-e -e
where K and F. are as defined previously, and

ij 1

2
K =k+ Z E Te and (A24)

i k= ikj

+ + C. + G.. + H (A25)"3 ij k= e.+ Cijk Tk ij 13 ij

The above equations may be adjoined with equations (A2) to obtain the following

* i set of nonlinear equations for each element.

e Se  e  e

&e} (A26)

L 2x3 W 5x1 5x1

5x5

where all nonlinearity is contained in [9], {Fe, and -e}. Equations (A26)

are identical to equations (27) in the main text.
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Fig. 1. Predicted Stress vs. Strain for a Uniaxial Bar

Pulled at Various Constant Strain Rates.
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PREDICTED TEMPERATURE FIELD IN A THERIOMECHANICALLY
HEATED VISCOPLASTIC SPACE TRUSS STRUCTURE %

D.H. Allen*
W.E. Ha1sler*

t

Texas A&M University
College Station, Texas

Abstract 3 - surface area

This paper focuses on the effect of Sc - area of the longitudinal surface of the bar
thermomechanically induced heating on the
response of a single member of a space truss c - axial strain component
structure which behaves viscoplastically. The
governing equations are given for a typical truss u - axial displacement component
member, wherein material inelasticity is
reflected in constitutive equations via a set of a - Internal state variable representing axial
internal state variables, each characterized by a

"7 history dependent growth law. The governing inelastic strain
equations are coupled in the sense that
temperature and displacement are dependent on E - Young's modulus in the axial coordinate
each other. This difficulty, together with the

. fact that the inelastic constitutive equations direction
tare nonlinear and numerically stiff, requires

that a computationally complex seMidiscretlzed - coefficient of thermal expansion in the
finite element spatial technique be utilized to

4 obtain a solution. This procedure, detailed axial coordinate direction
24 herein, is utilized to predict the response of a

typical metallic space truss member under T - temperature
vibrational or cyclic loading. Particular
interest is placed on the temperature rise in TR - reference temperature at which no
such a member due to hysteretic loss durir"
structural vibrations and in the presence of deformation is observed at zero
complex thermal boundary conditions
representative of space conditions. Example load

, .4" cases are constructed for a typical cylindrical
bar of 6061-T6 aluminum both with and without a2 - internal state variable representing drag
special coatings. Results indicate that
significant, possibly even catastrophic, heating stress
can occur due to thermomechanical coupling. h

q -heat flux vector

Nomenclature q - axial component of heat flux
%
% k - coefficient of axial thermal conductivity

t - time C - specific heat at constant elastic strain

. P - axial internal resultant force 0 - mass density

Px - axial externally applied force per unit r - internal heat source per unit mass

length L - length of the structural element

x - axial coordinate dimension DO , n, m, Z1I ZI, Zo, r - material constant ised

o - axial stress component in Bodner and Partom's model1

A - cross-sectional area q- flux on longitudinal boundary

T - end traction In units of force per unit area c absorbing portion of perimeter of an element

normal to longitudinal axis

'Assistant Professor, Aerospace
Engineering, Member AIAA qs - solar radiation flux

''Professor, Aerospace Engineering, qE" earth radiation flux
Associate Fellow AIAA

t
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a - absorptivity conditions on the longitudinal surface of the
truss component are significant enough to carry

E - earth radiation view factor off all heat generated due to hysteretic loss.
The paper first reviews the governing field -.

As - incident angle of solar radiation on equations, then briefly discusses the procedure
whereby a numerical algorithm is constructed for

structural component modeling the problem. This is followed by a
detailed discussion of the implementation of

A - incident angle of earth radiation on thermal boundary conditions. Finally, example

results are obtained for representative space
structural component structural components. .

a - Stefan-Boltzmann constant = 5.775 x 10-

MPa M/ec/(K)~ 4Governing 
Field Equations

The governing field equations were presented :
TD - deep space temperature in reference 5 for quasi-static conditions. For

problems involving inertial effects, the
governing equations are as follows:

6. '
Introduction a) equilibrium"'

It is well known that in viscoplastic metals 3P - Px(x) (1)
a certain amount of mechanically induced ax
hysteretic mechanic energy loss is converted to
heat, thus resulting in a t epIrature rise in the where the axial resultant P is defined by
medium. In recent research ' a model has been f
developed for predicting this effect by utilizing P = adA (2)
thermodymanic constraints together with Jo

co~~uieequations of Internal state variable P= Tx d () W
type . Furthermore, it has been 3shown that in a T d(

perfectly insulated uniaxial bar , as well as in S
a niaxial bar with insulated longitudinal b) strain-displacement relation

5surface and fixed end temperature , significant
temperature rise can occur in the component au (4)
during cyclic loading,

The purpose of the current research is to x

simulate the response of a typical metallic space c) thermonechanLcal constitution,
truss structural element (see Fig. 1) in the
postyielded state and to determine if significant a-EC'E..I -.*(T-TR)] (5)

heating occurs when this component is subjected -2 a r \/n \ 2"

to cyclic mechanical loading. This problem is Of a,- 2 ao exp ,-"
interest because a certain amount of material 0[-- (6)
inelasticity is desirable in order to produce - 7
passive structural damping. The factors of/ \r
Interest in this simulation are the effects of n-(Z -a -A)oI-Ajl Z)2Z1 (7)

thermal boundary conditions and loading rate on 2 ( 2

the thermal response. In particular, it is of

determine if radiative boundary~q=-k aT (8)

yqwhere a1 and a_ are the internal state variables

) (ISV) represenAiln inelastic strain and drag RR

stress, respctively, in the onstitutive model

* '/ developed by Bodner and Partom . Several other

le constitutive models have been developed for
/ viscoplastic metals, and these are reviewed in

T / Ireferences 1 and 8. Finally,

/ d) conservation of energy
3 .5 .

N an 2
-, / / .. E (EcEn++ET )'O + E. aI-Eac -pr 3T

X I, t at at a/ / z f/ / I(9) .
, Conservation of mass is satisfied trivially

I / /  (under the assumption of small motions in a ' ,

N L Closed system), and the second law of
N f / thermodynamics has been previoyV shown to be ,

satisfied by the above equations .

The governing equations are adjoine% with

appropriate initial and boundary conditions sucn

that a well-posed boundary value problem is

Fig. I. Typical Space Truss Structural Element. constructed in terms of the following dependent

2

% i b.* *nCi~ * - * - , - -



variables which are sought as functions or x and U(x.t)" 71l i (t)ei << (15)bet: 0,Eu,qTP,Q1 . and a .  Due to ISV growth .!laws (6) and (7) (as well as radiative boundary Txt) T () Xe <e l

conditions), the problem is nonlinear. T- (x t) T tO(x) x-xx,,(6

..e Solution Procedure
where u eand T e are nodal displacements and

As described in detail in reference 5 for tdi ants ade

the quasistatic problem, the solution is obtained tI r
using the semi-discretized finite element quadratic and linear shape functions,

' technique, wherein finite elements are respectively . Furthermore, v and w are endowed

constructed spatially, and finite differencing is with the properties of u and T. Note that a

4sed in time. The result is a time marching higher order element must be used for

algorithm which is reviewed here briefly, displacement than temperature due to the fact

SFirst equations (4) and (5) are substituted that temperature produces strain rather than

.' into (2) and this result is substituted into (1) 1isplacement.

to give the following equilbrium equation: Timewise discretization is implemented via
the following backward finite difference

a J I l-(T-TR px) (10) equations:
dT (t)3(T (t)-T (t-At)]/At m-l,2 (17)

Next, equation (4) is substituted into equation dt

"7 (9) to obtain the coupled energy balance law: due (t)a[u(t),C(t-At)]/At m-1.2,3 (18)
1] 2 u m

ELau7E 1 +EcT R - -j dt
A a a at ata The above equations require small time steps in

.C a - V- q +or - 0 order to guarantee numerical accuracy. However,

The result is a set of two coupled partial they are unconditonally stable which is necessary

a. differential equations in terms of axial because ISV gr?6th laws (6) and (7) are

displacement u-u(x.t) and temperature T-T(x,t). numerically stiff
Substitution of equations (15) through (18)

-* Variational Principles and Finite Element into the governing field equations in variational

Discretization form will result in the following algebraic
equations:

Selecting a suitably smooth test function r31 3x
" iv-v(x) over the domain of some element 0: n e - e -

xa< x<Xe , one may construct the ollowing 9 .. 1- u .. (19)

variationaX principle from equation (12) : I r- = I;T

. :- f EA 3v ju-- (T-TR) dx - 2xj 2 5x1 5xl
x,.X ax 5x5[ vle5 Xe dI where [Ke, ES ]  [Ke], [Sel and (F are as

" ,x )(x )+V(x5)P(Xe)-I (12)e' '

e+-. e+ (e e e x described in reference 5, and
* where the boundary terms result from the standard

-' integration by parts. F Fdx 20

obtain~~~ ter i te ave quai acout fo te20 aThe variational principle for heat equation i
(I I) is constructed by first integrating this x
equation against a test function w-w(x) on ae to where7 is as defined in reference 5. The ast

I% obtain term Inthe above equation accounts for therrmal

a .2 3 2u flux boun~dary conditions on the longitudinal
at- a J RTt surface of an element.

After global assembly and imposition of
-PC aT + 7-.+ prdV - 0 (13) boundary conditions equations (19) can be solved

t) in a time marching scheme in order to obtain the

Integrating the flux term by parts, assuming that nodal displacements and temperatures as functions
nonaxial components of flux are negligible, and of time.
substituting equation (8) will thus result in Global assembly of the element equations is

Soaaccomplished n the standard way using the

* [Ea-E +mT aa 2 Boolean matrixw AJu-EaI+EaTR  1 + Ea2T 3T

x / axt at Imposition of Boundary Conditions

-AEaT a u - APC 3T - kA aw DT dx For a typical space truss structural
atax 'at ax x_ element, the boundary conditions are assumed to

( e+- be of the following type:
--w(x 1 )Aq(x~1  + W(x )Aq(x) J w qcdx

de+x (T d u(0,t) - u O = known
+ wA O v 3 r x(14)tJ" 7- / u(Lt) -uL  known (21)

e t

Variational equations (12) and (14) are now T(O,t) - To - known

discretized by assuming the following t
displacement and temperature fields in a typical T(Lt) - TL  k nown
element (superscripted e): t

3



I'J~

4,

4 and
qc.-asfrs cos ),+FE(1 )qscosAe+FEq cosAle CV - 900 J/kg/°K (0.215 Btu/lb/°F)

+as(T 4TD ) (22) a - 23.8x10 -6in./in./K (13.2x106 in./in./*F)

k - 1.27 x 10-l MPa m2/sec/K -

where the first term in the above equation is the
solar radiation flux absorbed by the body, the
second term is the solar radiation flux reflected 3

ter is t1.. 6 0Ma 1. 0pi
by the earth and absorbed by the body, the third E = x 103 MPa (10.3 x 10 psi)

term is the earth radiation flux absorbed by the A = 6.45 x 10 m (1.00 in2
body, and the last term is the flux radiated by A

the member to space.

The above boundary conditons may be TR - 295 K MOF

implemented to the 9iscretized global equations L 3.66 m (12.0 FT)
in the standard way . Although equation (22)

technically includes the unknown temperature D 3 10 x rn/rn

field, the component temperature is treated 
as a o

known quantity in this term for each time step. A - 1.685 x 10-7 e-1
This approximation is accepta4e due to the fact A

that the numerical stiffness of constitutive

equations (6) and (7) requires extremely small n.

time steps in order to obtain an accurate m - 0.1770 MPa (1.2205 Ksi

solution.
EXAMPLE PROBLEMS Z - 620.1 MPa (89.93 Ksi)
4. '-.

A typical structural element has been Z = 0.
modeled with properties shown in TABLE 1. The
material properties were obtained experimentally r - 0.
in the Mechanis and Materials Center at Texas
A&M University for Al 5086 at room temperature, P = 2.66 Mg/m3 (0.096 lb/in. 3)
which is similar to Al 6061-T6.
cl Sample cases were constructed for various c - 0.0508 m (0.8333 Ft.)
cyclic loading rates for two different sets of
thermal boundary conditions, as described in ZO . 387.8 MPa (56.25 Ksi)
TABLE 2. Both cases are considered to be "worst
cases" in that the component is in a maximum TABLE I. Material and Geometric Properties for a
radiation flux condition at the maximum Typical Truss Structural Element (from reference
equilibrium temperature during one orbital cycle. 11).
The two cases differ in the emmissivity and
absorptivity values for the component due to CASE I CASE II
differences in surface treatment of the
component. For case I. the component is 0.20 (degraded) 0.3218 (degraded)
anodized, and for case II, the component is

paintT with high emmissivity ITTRE-S13GLO white E 0.85 0.24
paint

We now consider two elements in a large 00 00
space structure (see Fig. 1). Both elements are 

"

constructed of the same material and are qs 1.39 MPa M/sec 0
geometrically identical. However, element one is

painted with the high emmissivity paint described q 0.20 MPa m/sec 0.20MPa m/sec
above and is in full view of both earth and sun,

whereas element two is anodized and is in view of (4,080 km altitude)
earth only. For this case, as described in Table
2. the components have identical equilibrium 00 00

temperatures T - 295K(obtained by setting qcO T e
in equation (2Z)). TD 00 K 00 K

In both cases the structural members have D
been subjected to 50 cycles of loading at three 0.30 0.30
different frequencies: 1 Hz, 5 Hz, and 25 Hz. -0

These frequencies have been selected as F, 0.4 0.4
representative of resonant frequencies in a
representative space structure. For example, a T 296.2 0K (73.6 0F) 296.2 0K
typical structure analyzed in reference 14 has
resonant frequencies of 4.1 Hz and 3.4 Hz in the
first two modes. Because the resonant frequency CASE I - Surface painted with S13GLO white
of the first mode in the structural element
itself is 240 Hz, inertial effects may be CASE II - Chromic anodized surface
neglected in these examples.

Results for the cases described above are
shown in Figs. 2 through 8. In Figs. 2 through 4 7,1LE 2. Thermal Properties for Example Cases I
the cyclic stress-strain curve is shown at the and II (from references 12 and 13). 1

4



location x-L/2 for CASE I and at all three
loading rates. It 1s found that in all cases the ".6
specimen reaches cyclic saturation after
approximately five cycles. Thereafter, the .,
hysteretic energy loss per cycle becomes a
constant value.

In Figs. 5 through 7 the temperature rise is
plotted for both cases at all three loading
rates. As expected, the amount of temperature 3o.0
rise increases dramatically with loading rate.
For example, after 50 cycles the total
temperature rise at x-L/2 is 17.5K(1 Hz),

62.50K(5 Hz), and 119.7-K (25 Hz) for case I.
Furthermore, It is apparent that while neither"
surface treatment can be regarded as resulting in
negligible heating; at the higher loading rates
the anodized surface treatment produces
temperature rises which are significantly higher a *1.0
than those where the surface is painted with
ITTRE-S13GLO paint. Finally, it is believed by
these researchers that the nonlinear nature of
the average temperature rise per cycle suggests
that the temperature rise asymptotically

;'1 approaches some upper bound, although this belief
cannot be corroborated at this time due to the
large computer times required in the current
algorithm.

Fig. 8 shows that the spatial temperature
variation at 5 Hz is approximately spatially
homogeneous. Apparently, a very thin boundary -0.0
layer forms near the end of the component, and ogle -. 006 ooo 0.04" 0.oo-

%7, this boundary layer has little effect on the STRAIN

temperature at x-LI2. In fact, subsequent
investigations by the authors have shown that, at Fig. 3. Cyclic Stress-Strain Curve at x-L/2 for
least for the geometry and physical conditions Case I Coating Loaded at 5 Hz.
considered herein, identical results may be
obtained more efficiently by neglecting spatial
variations in displacement and temperature. e

ae.0[0

1 40.01

30.0. $0.0

20.0 p. 3.0

00.0

l.4

'..._ - 10.0

0.-00.o

-0.00.0

____________________-________0.0_ 000ooo ,1

.. "

-4.@1.404 0 0304 -0.002 0.000 0.002 0.004 0.006 0.006 0.00 STRAIN

STRAIN

Fig. 4. Cyclic Stress-Strain Curve at x-L/2 for e
Fig. 2. Cyclic Stress-Strain Curve at x-L/2 for Case I Coating Loaded at 25 Hz.

Case I Coating Loaded at 1 Hz.
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Fig. 6. Temperature vs. Time Curves at x-L/2 for Coating Loaded at 5 Hz.

Loading at 1Hz.
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Conclusion

6. D.H. Allen and W.E. Haisler, Introduction to

ructahe rent hserch a typical spce Aeros3ace Structural Analysis, John Wiley, Newpredict the response of a tpal sce York (1985).

structural element which is viscoplastic and is Y 1

subjected to various cyclic loading conditions in
the presence of radiation boundary conditions. 7. T.M. Milly and D.H. Allen, "A Comparative

Several general conclusions can be made as a Study of Nonlinear Rate-Dependent Mechanical
result of this reasearch: Constitutive Theories for Crystalline Solids at

1) significant temperature rises may occur Elevated Temperatures," Virginia Polytechnic

due to hysteretic loss, although the precise Institute and State University, March, 1982. ?
amount depends on loading rate and surface
treatment; 8. D.H. Allen and J.M. Beek, "On the Use of

2) the special paint ITTRE-S13GLO appears to Internal State Variables in Thermov1scoplastic

produce significantly lower temperature rises Constitutive Equations." Proceedings 2nd

than anodized surface treatment; Symposium on Nonlinear Constitutive Relations for
3) the temperature rise appears to be High Temperature Applications, June, 1984.

approaching an upper bound which is loading rateand urfce reamen deendnt;and9. .J.N. Reddy, An Introduction to the Finite
and surface treatment dependent; and EeetMto crwHlNwYr 18)4) the thermal boundary layer which forms Element Method, McGraw-Hill, New York (1981).

near the end of the member appears to have little
effect on the far-field temperature rise. 10. Gear, C.W., "The Automatic Integration of

Stiff Ordinary Differential Equations."

These conclusions indicate that future Information Processing 68, North Holland, Vol. 1,
research on this subject should perhaps p. 187 (1968).

concentrate on spatial variations in the radial
direction rather than the axial direction. More 11. E.W. Brogren, D.L. Barclay, and J.W.

- importantly, these results indicate that an Straayer, "Simplified Thermal Estimation

inelastic structural component may undergo Techniques for Large Space Structures," NASA-CR-
temperature rises during structural vibrations 145253 (Oct. 1977).

which are so substantial that the material
p ec nf12. J.M. Beek, "A Comparison of Current ModelsS properties of the component may be further
degraded, thus leading to failure of the for Nonlinear Rate-dependent Material Behavior of

component and perhaps even failure of the entire Crystalline Solids," Texas A&M University Thesis

structure. (May 1985).

A13. "Long Duration Exposure Facility (LDEF)

Experimenter Users Handbook," NASA Langley
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EFFECT OF DEGRADATION OF MATERIAL PROPERTIES
ON THE DYNAMIC RESPONSE OF LARGE SPACE STRUCTURES

S. Kalyanasundaram*, J. D. Lutz', W. E. Haisler"*, and D. H. Allen*'
Texas A&M University

College Station, Texas 77843

Abstract Although large size by itself does not arouse
concern, structural flexibility resulting from

In this paper the effect of degradation of minimizing the structural weight in nor.-
material properties on structural frequencies and gravitational fields may present problems.
mode shapes of Large Space Structures (LSS) Is Extremely large structural flexibi!,.y may result
investigated. The difficulty and cost of in large amplitudes and low frequencies (.01 to 10
maintenance of LSS make It a necessity to design Hz) which may create new complications for control
these structures to operate with a certain amount designers.

of load-induced damage. This damage is commonly
observed in fibrous composite media. As an example of the precision required1 , a

typical radiometry application may utilize a 200
Sensitivity studies conducted on meter antenna with an effective beam width of 0.01

representative space truss structures indicate that degrees and have requirements limiting the
degradation of material properties may have a vibratory beam shift to less than 0.005 degrees and

significant effect on the structural mode shapes dynamic surface distirtions to less than 1mm.
and frequencies. For even small amounts of Maneuvering or maintaining the altitude of such a
reduction in stiffness (10%), frequencies and nodal satellite leads to flexible body motion which must
locations may change significantly. It is clear be well predicted and controlled. N
that these effects must be taken into consideration
when designing control systems for Large Space The importance of interaction between control
Structures. systems and vibratory response has cau e

considerable research in LSS control systems.
The current practice of guaranteeing a large

Introduction separation between modal frequencies and the
bandwidth of control will not be adequate in future

Due to economic constraints, it is projected applications. The combination of large size and
that advanced high strength-to-weight ratio payload-weight restrictions will drive structural
aerospace materials will be utilized in future frequencies down and the need for more accurate
generation space structures. Such materials pointing will drive the control system bandwidth
include polymer and metal matrix fibrous up. When sufficient frequency separation becomes
composites, which are known tp 6undergo a certain impossible, there exists a need for adaptive
amount of load induced damage. ' These materials control systems. This leads to further research in
are also expected to undergo a certain amount of the design of structural control systems actuator/
environmentally induced damage or degradation, thus sensor placement, and distributed sensing and
resulting in significant stiffness losses, actuation as opposed to co-located sensors and

actuators.

Experimental research on advanced composite a t
materials indicates that the material may undergo Techniques for achieving modal control of LSS -

up to 15 percent loss in stiffness due to will require a more accurate knowledge of modal
thermomechanical fatigue, which causes a variety of characteristics. Optimum sensor and actuator
damage modes in the strucrure. Additional loss of placement will be greatly influenced by modal
stiffness may be attributed to elevated temperature effects which must be known to a greater degree of ..
and chemical changes due to solar radiation and precision.
other environmental effects. This reduction in
stiffness affects the dynamic response which in
turn is critical in the development of control Problem Summary
systems for LSS. In this paper, sensitivity
studies will be presented which investigate the In order to investigate the possible effects
effe-t of stiffness loss on structural frequencies of material degradation on the dynamIT response of
and mode shapes. LSS, a representative space truss structure nas

been selected in the shape of a long boom as shown
The advent of the space shuttle has made in Fig. 1. Using several loading histories, stress

possible the development of LSS. Control systems distributions have been obtained for each truss
for stabilizing and maneuvering these very large memoer. The resulting stress distributions can be
space structures, especially those for precise used in a material damage model to define material
pointing, will require extension of curr,!nt degradation and resultant stiffness reductions.
technology. Using the reduced stiffness properties, modal

analyses have been conducted on the structure to
Research Assistant, Aerospace Engineering show the effect of material degradation on natural

* Professor and Head, Aerospace Engineering frequencies, mode shapes and nodes. Details of the
Associate Fellow AIAA finite element model, material degradation model,

** Assistant Professor, Aerospace Engineering and numerical results are presented below.
Member AIAA .
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where P are a set of r internal state
mn
12variables which are given by the following set of

ISV growth laws,

&Pmn ' OPmn(Ckl'T'klq ) (3)

At low homologous temperatures these

materials are assumed to be rate insensitive so
that the above model will result in quasi-elastic
(rate independent) equations in which inelasticity
13 reflected only through the slowly degra~

modulus tensor. Experimental evidence 
'

indicates that the time scale for .egradation of
C' . is very long compared to the frequencies and
mon shapes of representative structures. It is
therefore sufficient for many space structural
applications to treat equations (1) in the degraded
state only.

The stress-strain relationship for the truss
elements is a one-dimensional approximation of
equations (2) given by

T
0 - E'(E - C (14)
xx xx xx

where o and c are the uniaxial stress and

strain. cT is the thermal strain, and E' is the

axial stiffess of the truss element given by

E' - E (0 - a) (5)
Fig. 1 Space Truss Structure

where E is the undegraded axial stiffness and a is
a scalar valued parameter representing the
integrated effect of all damage modes such as

Model Description matrix cracking, interlaminar fracture, fiber
breakage, and fiber-matrix debonding.

Material Degradation Model
Experimental research on composite materials

The process of ultimate failure of composite indicates a power law degradation of l
materials is preceded by a sequence of stiffness as a function of stress history.
microstructural and macrostructural events which Hence the damage ISV growth law is assumed to be of
are termed as damage. These events may be due to the form
transverse cracking, delamiotin, fiber breaking
and fiber-matrix debonding. The mechanical k (0/a )n (6)
response of the structure is affected by this
damage. Global material properties like stiffness where k and n are material parameters, o is the
and residual strength may be substantially altereg maximum stress in the structure, and o Ismt~ axial
during the life of the structural components. stress in each truss element. For constant stress
Some of the analytical studies o modeling damage amplitude, equation (6) may be integrated in time

include ?1 shear lag concept, fracture based to give the following approximation
concepts,12 -14 and internal state variable n'

theories. Although important progress has Q(t1 ) . k'1 O(t1)/0max (7)
been made, current understanding of damage is not
complete. where k' and n' are material parameters which may

be time ependent.
Damage in polymeric composites is modelled in

this paper as a load history-dependent reduction In A power law form of damage is used here~n f-r
stiffness in each structural element. The internal simplicity and for an initial attempt at modeling
state variable theory (ISV) is used for modeling the structural response with damage. In reality
mechanical behavior and 12tYj stress strain the damage laws will be more complex 1 nd are
relationship is of the form, currently being developed for future work.

a C' (E - £kT) (1) Finite Element Model°ij ijkl kl kl

In this case, the ISV are assumed to be Figure 1 illus'rates the geometry of the
second order tensor valued and to enter only representative space truss used to simulate an

through the modulus tensor. C' is the antenna boom. This structure is sixty feet long
ewfective modulus tensor given by with 10 bays, six feet long by three feet w1Je.

The finite element model has 124 space truss

C ijkl "Cijkl - PP mnklJ 'Pmn p-=,...,r (2) elements and 44 nodes. In the initial undegraded
configuration, the material properties are the same

for all members with the following values:

%q
2
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Material type: Graphite epgxy (Hexel) modes about the z and y axes, respectively, and the
Young's modulus E = 21.5x10 9si fourth mode is a pure torsion mode.
Cross sectional area - 1.0 in
Density - 0.065 lb/in 3  

The first case considers the boom structure
Coefficient of thermal expansion - 2x10

"6 
In/in/ 0F shown in Fig. 1 (which is assumed to be fixed on

Reference temperature = 89.6 F one end) with a thermal gradient over the cross-
section. It is likely that one surface of the

Each truss member is idealized with a space structure will become significantly hotter
standard six degree of freedom truss element of than the other surface due to solar heating,
constant cross section. Because the structure is attitude of the structural elements and shadowing
idealized as linear with slowly varying material effects. To investigate the effect of this thermal =
properties, conventional linear finite element gradient through the depth of the truss, the
methodology may be used t?6wfite global equations stresses in each element were calculated by
of equilibrium of the form specifying a temperature of 12?0F for the members

on the top surface, 80.6 F for th- ...embers on the
4 [M]( ) + [K](q) - {Q) (8) bottom surface and 1000F for the diagonal members

connecting the top and bottom surface. With this
where EM] is the mass matrix, [K] is the stiffness thermally-induced stress distribution, the axial
matrix, (q) is the nodal displacement vector, and stiffness of each element was degraded by using
Q) is the nodal force vector. The stiffness equation (7). The maximum level of degradation
matrix [K] is dependent on the spatially variable (loss of stiffness) was set to a prescribed
damage state a which varies from element to percentage for the element with the highest stress
element. Standard eigenvalue extraction may be and remaining elements were degraded according to
performed; in this case, subspace iteration was their stress level by using equation (7). The
used to obtain the first five frequencies and mode value of n' in equation (7) was assumed to be 0.75.
shapes.

In Fig. 2 the first three natural frequencies
Spatial Distribution of Degradation are plotted for different levels of damage. The

effect of damage on the natural frequencies is
The spatial distribution of degradation and clear. Increasing the level of damage reduces the

stiffness reduction of LSS will be complex and stiffness of the space truss and this in turn
dependent on loading and environmental history drives the natural frequencies down significantly
For the present investigation, wherein material even for modest damage states. For a maximum loss
degradation is assumed to be a function of stress of 25% in axial stiffness (for the highest stressedhistory, it was necessary to make some assumptions members), the first three natural frequencies are

about the corresponding stress history and spatial reduced by about 8%. Since mode shapes are
distribution of stresses within the LSS.

Two approaches were used to obtain candidate 1
stress histories/distributions for predicting the
stiffness degradation. In one case, the stress
distribution was obtained for an assumed thermal
load history/distribution. Secondly, a modal
approach was used wherein it was assumed that
primary degradation occurred in the first two
bending modes of the structure. After computing

the mode shapes for the first two undegraded
bending modes, the nodal displacements were used to
compute a corresponding stress distribution.

In each case. the degradation model given by N
equation (7) was then used to obtain degraded I-

properties fcr each truss member assuming that the
element stressed the most was degraded a specified
percentage. The resultant structure with degraded PM

. properties hias spatially variable stiffness that Zi
varies from element to element. Mode shapes and
frvqien-ies iere then computed with varying maximum
per,7ent~gs of degraded properties.

0- FUNDAMUNTAL PRIQUINOY
0, 4ECOND NATURAL FREQUENCY
6- THIRD NATURAL FREQUENCY

Discussion of Results

Natural frequency and mode shape responses
In ave been obtained for several stress-induced
d, ,qr-dation test cases as described above for the
representative space truss structure shown in Fig.
1. Thi3 particular truss structure geometry,
representing a segment of a boom, is similar to o
ones being used for other PACOSS related work. V

Assuming the boom is fixed on one end (at x-0), the a 10 DEGADAIO Ilk

five lowest frequencies (for the virgin structure) MAXIMUM DEGRADATION

are equal to 3.4 Hz, 4.5 Hz, 4.6 Hz, 19.2 Hz, and
20.3 Hz. The first mode is a combined torsion-
inplane shear mode, the next two modes are bending Fig. 2 Effect of Damage on Natural Frequencies
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important for designing the control systems of the
A % large space structures, It is desirable that they
OVA be constant with time. Although it was found that

there was no appreciable change in the first mode
shape between the undegraded and degraded cases,
higher modes were altered due to material
degradation. Figure 3 is a plot of the z
displacement for the second mode shape along the
length of the space truss (z-0, y-0). Significant
changes in the mode shape and node locations as a
function of percent degradation are observed. The
sign of the modal displacement is reversed near the
free edge for the degraded and undegraded cases and
the location of the node (zero displacement)

@U changes appreciably. Figure 4 is a imilar plot of
the y displacement along the length of the space

U truss for the third mode.

.- HORIZONTAL 72 The value of n' in equation (7) was varied

OZN L O from 0.25 to 1.0 to study its effect on the mode

c w m rF shapes. It was found that the trend in mode shapecagswas similar f~or different n' . Fgr

Ilusrae this point. Here the z dslcmn

for the second mode is plotted along the length of

LEEND the space truss for different values of n' (maximum
DeNO-DAMAGE reduction in axial stiffness was 20%). The plot

! 6 DAA indicates that increasing n' (i.e.. decreasing the
.-*o ,A nonlinearity of the degradation tends to
x : 1-0% DAMAGE nolieant model) tnst
o-2SAMAGA increase the changes in the modal displacements.

Such nonlinearity becomes increasingly important
when stresses vary spatially over the structure,

S .i.e., some members are highly stressed compared to

* -' others.

Fig. 3 Effect of Degradation on Second Mode

\ I,

i \\ 4"

2 2W

N HORIZONTAL POSITION
P4 72 14 216 sa s* 453 504 6 7 0

HORIZONTAL POSITON

LEGEND% 3 NO DAMAGE tl.aG.D \I
-:O DAMAGAMAG
. 5% DAMAGE 4--g.5O
A.1 %DAMAG E -S
1'*"0% DAUAGE K. k.
20 tO%. DAMAGE

0., "0,'AG4

' i f t e tFig. 5 Effect of Material Degradation Exponent
Fig. 4 Effect of Degradation on Third Mode on Second Mode Shape
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,The next two sample cases consider the
situation where we assume that primary degradation
occurs in the first two bending modes. For
simplicity. it is assumed that damage occurring in
one mode does not affect the damage in any others,
i.e., no damage induced coupling of modes. In
reality, this may not be the case and will be
considered in future research. ro

In the first case, we consider the case where
degradation has occurred in the first bending mode, _
i.e.. degradation is based on stresses calculated .
from the modal displacements corresponding to the
second mode shape. Figure 6 shows the resulting sU*

first three natural frequencies for different 2 i.
levels of damage. For a maximum reduction in U
stiffness of 25% the first three natural \
frequencies decrease by 8.6%, 9.2% and 7.6%,
respectively. There is little change in the first
mode shape for the degraded and undegraded cases. N
Figure 7 is a plot of the z displacement for the G!
second mode shape along the length of the space

truss and shows that the modal displacements change
quite drastically for the degraded structure. The o LelaO
displacement at the free edge is nearly 30 times " ONO DAMAGI0 i 1 DAMAGE
the magnitude of the undegraded case for a maximum a-10% DAMAGE1, 4%I DAMAGE09+"

damage of 25% (the sign of the displacement is also x 2O96 AMeG
* reversed) and the location of nodes also change oi. 0-& IS DAMGE

considerably. Figure 8 indicates similar changes
in the y displacement for the third mode shape. 
The fourth mode (torsional) is relatively
unaffected by the degradation of material stiffness 0 72 1" tie Se S0 463 604 7e 643 710
properties. This is as expected because the HORIZONTAL POSITION
present analysis assumed that primary degradation
occurred in the first two bending modes. Different
results would be expected if significant stiffness Fig. 7 Effect of Degradation on Second Mode
reduction occurred in the primary torsion mode. Assuming Second Mode Damage State
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Results have also been obtained for the case
where damage is assumed to occur in the third mode
(second bending mode). As in the previous examples

% there is no appreciable change in the first mode

shape between the undegraded and degraded cases.

The z displacement corresponding to the second mode
shape is plotted in Fig. 9 for different levels of

damage. The displacement at the free edge is very
large in the damaged states as compared to the

undegraded state. Figure 10 illustrates similar

show that the mode shapes and node points may
change significantly for even small damage amounts.

Conclusions

This study has attempted to investigate the
possible effects of material damage and stiffness

reduction on the modal response of LSS. Large 1.

space structures constructed of fibrous composites
will experience some stiffness reductions produced

by load-induced and environmentally-induced damage
of the material. To what extent this will occur Is

uncertain at this point but even small damage O.NODAMAS

amounts appear to be significant. . A !

+ The present work has shown that load-induced
degradation of material properties may have a
significant effect on the structural frequencies
and mode shapes. For the representative boom S

structure considered here, even small amounts of
material stiffness degradation (10%) produce H 1 i3 3NTA0 48 304 1O 643 730

frequency and node shifts which appear to be
significant. It is not inconceivable that mode

6 shapes, node locations, and frequency distributions Fig. 9 Effect of Degradation on Second Mode
will change over the plant design life in such a Assuming Third Mode Damage State

.r . way that the structure response is very much
different from the virgin structure. Such changes
in plant response would require "robust" control of

% 3 nature which may not be possible with present
0. technology. Consequently, it is important that -

06 "these effects be taken into consideration when
designing the control systems for large space
structures.

Although preliminary, this study suggests the

need for a more accurate knowledge of the physical
nature of material degradation in fibrous

I' composites, its influence on structure stiffness,
and how material degradation will affect the long-
term modal characteristics for large space

structures.
Uj
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ABSTRACT

A general constitutive theory is formulated for a short

fiber metal matrix composite. The constitutive theory is

based on continuum mechanics with constraints provided by

fracture mechanics and thermodynamics. The basic premise

of the constitutive theory is that load-induced

S...microstructural damage associated with the inclusion of the

fibers in the metal matrix results in a loss of material

stiffness.

The concept of the damage dependent constitutive theory

was evaluated by an experimental investigation of the

microstructural damage in an aluminum 6061-T6 matrix with

silicon carbide (SiC) whiskers. The primary objective of

the investigation was the identification of microstructural

damage such as voids or cracks that were associated with

- the presence of the SiC whiskers.

The results of the experimental investigation include

measured reductions in the elastic modulus of tensile

specimens which were loaded beyond yield and unloaded.

Also, there was an associated change in the extent of the

microstructural damage. These results lead to the

.] ~conclusion that the effect of microstructural damage must

. be included in the constitutive relationship in order to

*fully describe the behavior of a metal matrix composite.

KEY WORDS

Composite material, metal matrix, damage, fatigue,
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scanning electron microscopy, nondestructive evaluation,

continuum mechanics, thermodynamics, internal state

variables, SiC, Al 6061-T6

Im
INTRODUCTION +-

In recent years, metal matrix composites have received

increasing attention as a viable material for structural

applications. Along with the normal advantages associated

with tailorability of directional strength, these compos-

ites can be used at elevated temperatures that would ad-

versely affect the integrity of conventional polymeric ma-

trix composite systems. Metal matrices also offer higher

strength and stiffness than polymeric matrices over a broad

range of temperatures. Further advantages of metal matrix

composites are that machining is possible by using conven-

tional techniques and equipment, most metal matrices are 1 i
weldable, and short fiber or particulate composites can be

extruded or rolled to various desired shapes.

A metal matrix composite consists of a metal matrix -.

that is reinforced with short fiber, particulate, or con-

tinuous fiber material. The matrix is generally aluminum

or titanium, but reinforcements vary from silicon carbide

(SiC) particles to boron, graphite, or aramid fibers.

Production techniques for the material include powder met-

allurgy for particulate or short fiber composites and dif-

fusion bonding, vapor deposition, and plasma spraying for

continuous fiber composites. Along with polymeric compos-

2i
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ites, the continuous fibers in the metal matrix composites

can be oriented in different directions to tailor direc-

tional strength and stiffness to satisfy particular design

requirements.

To effectively utilize the capabilities of metal

matrix composites, a model that simulates the behavior of

the material must be developed. Since composites develop

load induced microstructural fracture during their operat-

ional life, this damage must be incorporated into the model

in order to construct a valid constitutive model. Both

theoretical and experimental efforts are required to.J.w

develop the model.

This paper presents a model that will predict the

thermomechanical constitutive behavior of randomly oriented

short fiber quasi-isotropic metal matrix composites under

both monotonic and cyclic fatigue loading conditions. The

model incorporates various effects such as damage,

inelastic strain, and viscoelasticity in the constitutive

equations with constraints obtained from continuum

/. mechanics and thermodynamics with internal state variables.

The concept of the damage dependent constitutive model

requires experimental verification. Also, the full

"" development of the model requires an experimentally

generated data base. Therefore, this paper also presents

6the results of an experimental program aimed at addressing

the above two issues. The material system selected for

study is a 6061-T6 aluminum matrix with chopped silicon

p% 3



carbide whiskers. The objective of the experimental U

program is to determine if there is a load induced

reduction in the elastic modulus of tensile test specimens

along with an associated observable physical phenomenon

such as a change in the state of microstructural damage.

PREVIOUS RESEARCH

A vast amount of research has been reported on com-

posite materials. Most of the work involves experimental p.

studies on the behavioral response of materials. To a

lesser extent, general constitutive models have been de-

veloped. General information pertaining to metal matrix

composites is presented by Vinson [1] and Renton [2]. These

authors discuss fabrication techniques for both continuous

fiber and particulate reinforced metal matrix composites as

well as selected applications and properties of the

material. Fabrication techniques include powder

metallurgy, liquid metal infiltration, diffusion bonding,

electroforming, rolling, extrusion, pneumatic impaction and

plasma spray. There have been a number of investigations

[3-19] that have studied the physical behavior of metal

matrix composites. Divencha, Fishman, and Karmarkar [7]

have studied aluminum with short whisker (SIC)

reinforcement. The authors found that the Al/SIC composite

properties varied significantly with the amount of SiC

whiskers used. Maclean and Misra [8] have examined the

applications of Al/SiC composites for aerospace use. They

found that although the strength and stiffness of the

4



material were higher than that of conventional aluminum,

fracture toughness decreased.

In order to observe damage in metal matrix composites,

various experimental techniques have been investigated.

Pipes, Ballintyn, Scott, and Carlyle [10] have observed the

acoustic emission response of various laminates of B/Al

composites. Both mechanical and acoustic emission

-. responses of the composites are presented. Various

non-destructive examining techniques such as ultrasonic

C-scan, radiography, acoustic emissions, stiffness change,

edge replication, and eddy current were investigated by

Ulman and Henneke [11] to evaluate large scale imperfect-

ions and damage. X-ray radiography and ultrasonic C-scan

were found to be excellent methods to observe both initial

imperfections and damage due to loading.

Numerous investigative groups [12-19] have reported

the observation of damage in metal matrix composites.

Several different material systems have been studied,

including B/Al, BSiC/Ti, and Al/SiC. It has been found

that complex damage states develop in both continuous fiber

laminated composites and chopped fiber composites.

A number of theoretical papers have also been published

on constitutive equations for metal matrix composites

[20-26]. However, to date these efforts have not included

a damage parameter. Rate dependent viscoplastic

constitutive models have been developed for neat metals

[27-39]. These models have not included a damage parameter

S5 I



applicable to composites. Theoretical models have been
n

developed for predicting constitutive properties of cracked

bodies [40-50]. However, to date these models have not been

applied to metal matrix composites. A review of the current I
literature indicates that no constitutive model has yet

been developed which is applicable to metal matrix

composites that undergo large scale matrix yielding and

load induced damage.

MODEL DEVELOPMENT

This section presents a short review of a constitutive

theory for composite media with damage which is described

in detail in references 49 through 52. The model is

presented herein because it provides the motivation for the

experimental research program undertaken as part of this

research.

The constitutive framework is based on a continuum

mechanics approach with constraints on the relations

provided by thermodynamics and fracture mechanics. The

general model is applicable to materials with damage (such

as voids, cracks, etc.) and includes inelastic effects such

as plasticity [52]. The model is constructed within the

framework of continuum mechanics and thermodynamics. The

governing conservation laws are integrated over a small

local volume element which is assumed to have a

statistically homogeneous damage state, as shown in Fig. 1.

The Helmholtz free energy can be expressed as

6



hTOT hEP + (1)

where hTOT is the total Helmholtz free energy, hEP is the

Helmholtz free energy due to the elastic-plastic response
in the absence of damage, and u. is the energy due to

L
damage. It is therefore hypothesized that

hEP h EP(ijEIVAT) (2):_:_ "j ,A ) 2

I ""

where c. is the total strain tensor, Eij is the inelastic

strain tensor, and AT is the temperature difference from

the reference temperature. Furthermore,

4_

c
UL UL( LJjtj, AT, aij)

where a1 is the internal state variable representing
damage, hich is defined by

iJ" V L uin dS (4)

where S is the surface area of cracks in the local

volume V and u i and n are the crack opening

displacements and normals, as described in Fig. 2.

Constraints imposed by the second law of thermodynamics

give the following result [51]:

7
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71.

3hTOT

(5)

p ~ ij ..

Therefore, expanding equations (2) and (3) in Taylor series

expansions in terms of their arguments, substituting into

equation (5) and truncating higher order terms results in

R I T
0ij + CiJkl (C kk1 k) (6)

R I
where aij is the residual stress tensor, £ij is the

inelastic strain tensor, i is the thermal strain tensor,

and C is the linear elastic modulus tensor. For theijkl .

uniaxial case in which there is negligible temperature

change, the following form results:

0 = 0R + EL - - a) (7)

where EL is the initial loading elastic modulus. Now

define the initial unloading modulus EU such that (See Fig.

E = -o E (1 - - (8) 4...

U DE L c c

It is assumed that at relatively low homologous

temperatures the inelastic strain remains constant when

'.4

unloading, so that:

8 '

8
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Le0 (9)

Assuming linearly elastic unloading of the matrix, the

change in damage is proportional to the change in strain:

' constant (upon unloading) = 8 (10)

Therefore for unloading:

EU - EL(I - 8) (11)i
The model described above provides the motivation for

the experimental research. It is hypothesized that the two

S parameters that are defined in this model (ci and 8) can

be determined by experimental methods. By determining the

change between the initial loading and unloading moduli of

the composite in a uniaxial mechanical test, $ (defined in

equation 11) can be found. It is also observed that a

(defined in equation 4) can be determined by evaluating the

amount of surface area in the composite. It is therefore

desirable to determine if a cause-and-effect relationship

exists between the microstructural damage (cij and the

stiffness loss (s)o

EXPERIMENTAL PROGRAM
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As stated before, the primary objective of the

experimental effort is to provide support and documentation

for the constitutive model for metal matrix composites

developed in the previous section. This initial

experimental study will provide an indication of the type

of damage that may be present in the "virgin" material and

an indication of any additional damage that is created from

mechanical loading of the specimen. The term damage

includes cracks, voids, and debonding of particles and

matrix material. All of these modes of damage cause new

surface area to be created in the material. One of the

goals of this effort is to identify and quantify the amount

of damage in the composite. To accomplish this objective,

it is necessary to develop an experimental evaluation

technique and mechanical test program. The procedure must

be capable of inducing and then examining microstructural

damage in the composite.

Material and Specimen Fabrication

The material used in this study was obtained from ARCO

Metals Silag Operation in Greer, S. C. The composition of

the material is 6061 aluminum with a twenty percent volume

fraction of F-9 grade silicon carbide whiskers. The SiC

whiskers average two microns in diameter and twenty microns

long. The constituents were cast into a billet form by a

powder metallurgy process and then rolled into a plate. The

composite has a T-6 temper. Prior to specimen machining,

the plate was examined by C-scan to observe whether or not

10



macroscopic voids or density changes could be detected. No

defects were observed except for surface imperfections.

Specimens were machined both parallel and perpendicular to

the principal rolling direction as shown in Fig. 4. Tensile

test coupons were machined in accordance with ASTM E-8

(Tension Testing of Metallic Materials) to the dimensions

shown in Fig. 4.

Mechanical Testing

An Instron model 1125 screw-driven test system with two

inch (50.8 mm) wedge action friction grips was used for

mechanical testing. Longitudinal and transverse

displacement data were obtained by the use of an

extensometer. Load, time, longitudinal and transverse

displacement data were digitized and saved for subsequent

data reduction. Also, an analog plot of load versus

displacement was recorded and monitored during the actual

S tests. Several specimens were tested to failure to obtain

the yield point and ultimate strengths of the material.

Other tests involved loading the specimens past their yield

points and incrementally unloading and reloading to obtain

unloading moduli at various load levels. All tests were

performed at a crosshead speed of 0.05 inches per minute

(0.02 mm/sec). Both the loading and unloading moduli were

determined for each specimen and loading sequence. The

moduli were computed by a least squares curve fit to the

digital data. Either 6 or 10 sequential da t a points were

utilized in the calculations. Also, the unloading moduli

4-14
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were computed and compared at several load levels.

Microstructural Damage Evaluation

Once the specimens were mechanically loaded, it was

necessary to examine the microstructure for damage. It was
n

desirable to use a nondestructive technique in the

evaluation process since the most convenient way to observe

the initiation and growth of damage is to study the

behavior of a particular region of one specimen. However,

the photographic resolution of NDE techniques such as

ultrasonics or x-ray radiography was not adequate to

distinguish the microstructural damage of interest, which

could be as small as one tenth of a micron. Therefore, it

" was decided that scanning electron microscopy (SEM) would

be the best method of microstructural evaluation.
a.]

Resolution of the photomicrographs obtained from SEM is

V better than one tenth of a micron. The disadvantage of

using SEM is that the technique is destructive by nature.

This implies that growth of damage in one particular

specimen under various conditions cannot be measured.

The preparation of the internal surfaces of the tensile

specimens followed a procedure that was established after

evaluating the application of several methods [53,54] to

the Al/SiC specimens. The specimens were sectioned into

pieces about one-half by one-half inch (12.5 mm X 12.5 mm)

for mounting in the scanning electron microscope. Since M

there was uncertainty about the degree of anisotropy of the

fiber orientation in the plane of the rolled plate, two

12
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sections were cut from each coupon so that two orthogonal

views of each coupon could be examined. The sectioned

pieces were then mounted in a conductive mounting material

(Konductomet I) manufactured by Buehler. After mounting, -i

the specimens were polished with diamond paste, chemically

etched, and cleaned in an ultrasonic cleaner. It should be

noted that specimen surface preparation requires great care

-V because of the vast difference between the hardness of SiC

and aluminum. Unless care is taken and an appropriate grade

and hardness of abrasive compound is used, an uneven

terrain may be created by the removal of the softer

aluminum matrix leaving exposed SiC whiskers.

The final step in specimen preparation was to vacuum 2
deposit a thin (about 300 angstroms) coating of gold to the

viewing surfaces. This is necessary to achieve a good

image on the SEM. When the voltage is applied to the

specimens by the SEM , free electrons are released from the

specimens. It is these electrons that are received by a

sensor which forms the specimen image. Light molecular

weight compounds have less free electrons, thus the image

formed is not as sharp as an image of a compound with a . -

large molecular weight. Since gold is an element with a

large molecular weight, a thin coating on the specimens

provides an electron source without losing surface detail.

The specimens were examined in a Jeol JSM-25 II

scanning electron microscope. After choosing the optimum

acceleration voltage for the type of specimens, a series of

13
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SEM photographs were taken of the surfaces of orthogonal

edges of the specimens under both virgin, loaded, and

failed conditions. These photographs included

magnifications ranging from 2,OOOX to 1O,OOOX. Along with
U

the photographs of these polished surfaces, additional

photographs of fracture surfaces were taken to observe the

effect of the whisker reinforcement.

The photomicrographs were qualitatively and

quantitatively evaluated for microstructural damage

associated with the SiC particles. A scheme for

determining the actual surface area of the damage was based

on standard quantitative metallographic techniques [55].

The evaluation method consisted of covering the photograph

with a transparent grid of twenty by twenty divisions per

inch. A count was made of the intersections of the grid

that covered damage. The percent of damage surface area

was then obtained by dividing the intersections covering

the damage by the total number of intersections and

multiplying by one hundred.

RESULTS

As noted before, the results presented herein were

obtained for the primary purpose of evaluating the concept of the

damage dependent constitutive relationships. No attempt was made

to construct a complete data base to support the full development

of the constitutive model. A comparison of the typical

stress-strain response of the Al 6061-T6, Al-SiC with 00

orientation and Al-SiC with 900 orientation is given in Fig. 5.

14
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As can be seen, the effect of adding the SiC particles is to

increase the elastic modulus and to increase the yield and

ultimate strengths. These typical stress-strain curves were very

useful for determining the intermediate strain levels used to

evaluate the unloading moduli.

Several tensile specimens were monotonically loaded %J

past yield, followed by continued loading with periodic

unloading to obtain unloading moduli at different maximum

load levels. This test scheme allowed for the

determination of the initial loading modulus and several

unloading moduli at different load levels. Typical material

mechanical responses are shown in Figs. 6 and 7, for the 00

0
and 90 orientations, respectively. Values of initial

loading moduli are compared to numerous unloading moduli

for several specimens in Figs. 8 and 9 for the 00

orientation and 90 orientation, respectively. The moduli

were calculated using a least squares curve fitting

program. It is obvious that the unloading moduli decrease

.. with increasing strain for both specimen orientations.

Since the value of the modulus was very dependent on the

. location of the data points on the unloading curve, a consistent

• method of data point selection was adhered to during all modulus

calculations. Three different sets of data points were selected

on each unloading curve for each test. The unloading modulus was

then calculated from each set of data points. The three sets of

data points used were:
i4%

a. the first six data points following load

S 1i7
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reversal,

b. the middle ten data points on the unloading
U

curve, and

c. all the data points on the unloading curve.

Three values of the initial loading modulus were also
I

calculated using the same technique. The mean and standard

deviation of these data point sets were then calculated for

the initial loading curve and each subsequent unloading

curve. By comparing sets of unloading moduli calculated in

this manner, consistent trends in the data were identified.

0The 90 specimens exhibited a clear reduction in unloading

modulus with increasing applied strain. On the other hand,

the unloading moduli of the 00 specimens were less

sensitive to increasing strain.

Photomicrographs obtained from the SEM were very useful in

obtaining information about the microstructure of the composite. .-

Fig. 10 shows a composite view of three mutually orthogonal p
sections, where the coordinate axes are the same as in Fig. 4.

The orientation and actual shape of the whiskers should be

observed. The question of whether the SIC whiskers are randomly

oriented in the plane that the Al/SiC billet was rolled was

important in view of the differences in the 00 and 900 specimen

data. It is clear from the SEM photographs that the whiskers are

oriented somewhat in the principal rolling direction (x), which

coincides with the loading direction of the 00 specimens.

It is necessary to look at the microstructure of both

virgin and failed specimens to determine if there are load

1'6
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induced changes in the state of microstructural damage. The

damage state was determined from five photomicrographs of

randomly selected edge and side views of each loading state

for a single coupon. Figs. 11 and 12 are representative

photomicrographs from virgin and loaded specimens for the

0° and 90 orientations, respectively. Upon close

examination of the photomicrographs, it was observed that

there were numerous voids and crack-like features of the

microstructural surfaces of both the virgin and loaded

specimens. Therefore, the fractographic examinations

attempted to identify only changes in the surface features

between the virgin and loaded specimens. The most extensive

change (see Fig. 12) in the microstructure was due to %

cracks in the aluminum matrix extending from the SIC

particles. There were no other extensively observed

load-induced microstructural damage modes. Table 1 lists

the amount of damage that was measured in each group of

photomicrographs for specimens loaded in both the 00 and

0 *f90 orientations.. It is apparent from Figs. 11 and 12 as

well as Table 1 that there is little change in the

microstructure of damage for specimens loaded in the 00

direction, while specimens loaded in the 900 direction

exhibit significant load-induced microstructural damage.

The most dramatic photomicrographs of the %U
17
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microstructural response of the Al/SIC material were

fracture surface photos. One of the most important

considerations in the determination of crack onset in

composite materials is the bond between the reinforcing

particles and the matrix material. Fig. 13 is a low -

magnification (150X)photograph of the fracture surface.

When the fracture surface is viewed under a higher

magnification (3,OOOX, see Fig. 14) two major observations

can be made. First, the many cusps In the matrix show that

on the microstructural level, the material is very ductile.

The second observation is that the SIC whiskers form a very

strong bond with the aluminum. This is due to the

observation that the whiskers remain in the matrix,

although they appear to be bonded only on a small portion i
of their surface area (see arrow Fig. 25). The result of

this strong bond is that when stress concentrations exist

at the interfaces of the aluminum matrix and reinforcing

whiskers, the matrix may yield and inelastically deform

before interfacial cracks initiate.

As stated earlier, specimens with the 0 ° orientation

(see Fig. 8) indicated relatively little load-induced

reduction in modulus. This tends to suggest that there is

no mechanism present to produce a reduction in the

stiffness of the test specimen. This is supported by a

comparison of the photomicrographs of a virgin specimen and

a loaded specimen (see Fig. 11), which shows no apparent

difference in microstructural damage state. Furthermore, a

18



specimen subjected to 1000 cycles with the maximum strain

exceeding yield also did not exhibit an increase in the

microstructural damage. On the other hand, the specimens

with the 900 orientation (see Fig. 9) exhibited a

significant reduction in modulus with increasing strain

level. This trend does suggest the presence of a mechanism

that produces a reduction in the stiffness of the test

specimen. This contention is supported by the comparison

of photomicrographs of a virgin specimen and a loaded

specimen (see Fig. 12), which reveals an obvious and

considerable increase in the microstructural damage

. associated with the SIC particles. Finally, a fatigue

0 e.
loaded 90 specimen also exhibited both a substantial

increase in microstructural damage along with a significant

reduction in the elastic modulus. A similar observation

- has been made by Johnson in continuous fiber metal matrix

composites [15,16,45).

CONCLUSION

A constitutive model of the behavior of short fiber

reinforced metal matrix composites has been formulated. The

constitutive model was developed from the continuum mechanics

viewpoint with constraints imposed by thermodynamic

considerations. The model utilizes an internal state variable to

characterize the development of load induced microstructural

damage associated with the inclusion of the fiber particles in

the metal matrix. The internal state variable is defined by the

kinematic behavior of the microcracks and enters the

19



stress-strain relationships as a strain-like quantity.

It was shown in the development of the constitutive

model that the damage parameter, ( j can be used to

predict stiffness losses. Therefore, it was the objective

of this research to measure stiffness loss and the

associated microstructural damage as a function of strain

level in order to qualitatively assess the applicability of

the model to the Al-SIC metal matrix composite. This

experimental objective was carried out by determining the -.

initial loading and subsequent unloading moduli of tensile

specimens oriented parallel (00) and perpendicular (900) to

the principle rolling direction of a plate fabricated from

6061-T6 aluminum with silicon carbide whiskers. In

addition, scanning electron microscopy was utilized to

characterize and quantify load-induced changes in the

microstructural damage associated with the silicon carbide

particles.

The results showed that the Al-SiC plate was

anisotropic with approximately 15-20% difference in the

moduli of the specimens oriented in the 00 and 900

directions. Also, the SEM photomicrographs indicated that

the SiC whiskers were oriented more or less parallel to the

principle rolling direction.

There was very little difference between the initial

loading and subsequent unloading moduli of the 00

specimens. Also, there was no apparent load-induced change m

in the state of microstructural damage in these specimens.

20



On the other hand, there was a significant reduction in the

moduli of specimens oriented in the 900 direction.

Furthermore, the photomicrographs revealed very obvious and

significant load-induced changes in the state of

microstructural damage in the 900 specimens.

WThe results illustrate a clear cause and effect between

the increase in load-induced microstructural damage and a

decrease in the elastic modulus of the Al-SiC metal matrix

'- composite. It is concluded from these results that the

constitutive behavior of a short-fiber reinforced metal

matrix composite can only be modelled by an appropriate

treatment of the microstructural damage associated with the

fiber particles. The constitutive model proposed herein N

accounts for this microstructural damage through a load

history dependent internal state variable. Although the -

results must be considered qualitative at this time, it

appears that the proposed model may be acceptable for

predicting stiffness loss as a function of microstructural

damage.
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TABLE 1. Percent of Damage (Crack) Surface Areas

SPECIMEN SPECIMEN PERCENT STANDARD
ORIENTATION LOAD CRACK DEVIATION

HISTORY SURFACE AREA*

00 (END VIEW) VIRGIN 11.17 2.29 ;Q

00 (END VIEW) MONOTONIC 9.48 1.55
FAILED

00 (END VIEW) 1000 CYCLE 9.31 1.16
FATIGUE,

00 (SIDE VIEW) VIRGIN 9.53 1.55

00 (SIDE VIEW) MONOTONIC 8.62 1.38
FAILED

00 (SIDE VIEW) 1000 CYCLE 8.37 1.50 S
FATIGUE

900 (END VIEW) VIRGIN 1.20 0.90

900 (END VIEW) MONOTONIC 14.7 2.30
FAILED

900 (END VIEW) 1000 CYCLE 31.2 3.10

FATIGUE

*Both large voids and cracks were counted as damage in the specimens

with the 00 orientation. "
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Abstract

Using internal state variables, the time dependent behavior of a thermoviscoplastic
uniaxial rod is reduced to the solution of a nonlinear initial value problem. Nonlinear
black-body radiation boundary conditions of Stefan type are considered. In the quasi-
static case, one can solve for all the field quantities explicitly in terms of the stress.

Using this representation, we derive upper and lower bounds on the temperature vai-
ation within the rod. Full coupling between mechanical and thermal effects are
allowed. These bounds agree quite closely with numerical solutions of the initial
boundary value problem. Boundary layers form near the ends of the rods. Series
representations for the compliance and temperature are derived. Applications to some
problems involving space structures are considered. Finally, a result concerning isoth-
ermal nonlinear wave dispersion in such materials is obtained.

INTRODUCION

Large space structures require significant passive damping in order to sus-

tain structural integrity during structural vibrations in a microgravity field.
One passive damping mechanism which has been proposed is material inelasti-

city. However, in this method of damping, a substantial portion of the strain
energy in the structure is converted into heat via hysteretic loss. The purpose
of this paper is to derive bounds on the asymptotic temperature increase in
terms of bounds on the cyclic stress, for a simple model representing one ele-
ment in a space structure. In particular, lower bounds are derived which indi-

cate substantial local heating may take place if the member is operated near its
limiting strength. These temperature increases may in fact -lead to substantial
material degradation over time.

In Section 7, an example of a uniaxial rod coated with high emissivity
low absorbtion white paint in an outer space environment is considered.

Numerical results are presented and compared with the asymptotic bounds

derived in this paper.

.T7

4o .
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-!* 44 . ..-.. ~.* _,~\.' .% %. ~ .Q
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Section 1. Derivation of the equations of Equilibrium. Constitutive

Laws.

The equations we use to describe the quasi-static response of a thermo-

viscoplastic uniaxial bar have been formulated in [ I]. For brevity, we sum-

marize the main points in this section. The principal equations are conserva-

tion of momentum

oj -" 0 (. 1)

where oij is the stress tensor, and the conservation of energy, as expressed in

the modified Fourier heat conduction law [ 2]

Dj(k - + TT)-q + 6k, TT - (1.2)

Diu (Nij T " )-pcvT -q,, = 0."

Dojj~ is the elastic modulus tensor, ca is the infinitesimal elastic strain

tensor, 4- is the inelastic strain tensor, Nj is the thermal expansion tensor, TR

is the reference temperature at which zero deformation produces no stress, p is

the mass density, and cv is the specific heat at constant volume. In addition,

q -- (1.3)

where k is the coefficient of thermal conductivity. Dots indicate

differentiation with respect to time.

Furthermore, we have the stress-strain relationship

O - - 43) (1.4)

where 43 = (T - TR) is called the thermal strain tensor.

The internal state variables f obey the following evolution equations

= g(E,, Tv,af) (1.5)

where

- f ( ,T,cf) (1.6)

1 =j|

- - 7 t
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are an additional set of internal state variable growth laws, reflecting local

averages of such microphysical phenomena as dislocation density and disloca-

tion arrangement.

We remark that the constitutive equations (1.4) are obtained from ther- H

modynamic constraints imposed on a broad class of materials with internal

state variables. The heat conduction equation (1.2) is the result of thermo-

dynamic constraints imposed on the thermoviscoplastic material considered in

[ 2 ] . The material model utilized here is applicable for use with a wide

variety of crystalline metals at temperatures above half their melting point.

In order to make the above equations more tractable, we consider the case

of a homogeneous isotropic thermoviscoplastic uniaxial rod. We postulate that

o -in Oil a (1.7)

i] = Ell f

Dik, = DII - E

S- - lij 1

Ej . . c"T-R)

We shall also assume for simplicity that E, ot, k, and p are constant.

Substituting the relations (1.7) into (1.2) we have the simplified equation

E E-o+rT)&R l+E,TT -ErT -pcvT +kAT - 0. (1.8)

The stress - strain relation reduces to

S= E (E - l - aT -TR)). (1.9) U.

We also assume infinitesimal deformations

E - U"

We therefore have the uniaxial model

i-
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x- 0 (0.10)

E(E- o+oTR)&I+E 2 TT:-ETE-pcv +kAT , 0 (1.11)

ia -j(&j,T,) (1.12)

a - E[ - oil - a(T -TR)] (1.13)

where the infinitesimal strain is defined by "

JE u
ax

In this simplified one-dimensional model, all variables (except for T) are

independent of r and 0.

Given initial conditions for cik , T , and u, as well as boundary conditions

for T and u, this is a well-posed mathematical problem. It has been shown in

[2 1 to be thermodynamically consistent as well.

We make the following observations at this time. First, (1.10) implies

that a is a function of time alone. Secondly, in the special case where the f"

do not explicitly depend on T or E but only on (t a) , then

crj - crj (t ; o(t )). If a were known, then (1.8) becomes a single, non-linear

parabolic differential equation for the temperature T in terms of c. This

analysis has been carried out in [ 3 ]. Following this approach, we will obtain

the asymptotic behavior of T directly from the system (1.10)-(1.13).

Section 2. Radiative and convective boundary conditions.

Using (1.9) we can simplify (1.11) to

ao&, - abT - pcv T + k AT - 0 (2.1)

In order to include the thermal radiation boundary conditions along the lateral

surface of the rod, we integrate (2.1) over the cross-sectional area of the rod,

which we shall assume to be constant. Letting x denote the axial coordinate,

we have

A o&l -A otT -A PCv + kATXX -

w

" -2.4
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I -k f(r-)do 0 - kCPL - Cq,

where q, is the normal component of the thermal flux along the lateral sur-

face of the rod, C is the circumference of the rod, and A is the cross-sectional

area of the rod. T is now interpreted as a radial average of the temperature

over the cross-section of the rod.

It is clear the term Cq, acts as a "sink" for thermal energy. In deep space,

we model the thermal flux due to radiation by the Stefan - Boltzmann radia- -

tion condition

- k k - k.e(T 4 -TD) - kseT 4 -Q (2.2)
an

where TD - 0 K is the deep space ambient temperature, and

k, 5.775x10 1- is Boltzmann's constant. e is an order one constant, called

the emissivity, which measures the effect of the surface coating on black body
radiation, and Q measures the solar, earth, and deep space thermal flux I

incident on the rod.

We linearize (2.2) about T - TR to obtain the convective boundary con-

dition

qn k.eT4 + 13(T -TR)-Q (2.3)

with -'

f-4k, eT .

By convexity,

k. eT 4 > k eT 4 + 4ks eTR3(T - TR) (2.4)

if T > TR. If we therefore choose s- 4kseTR in (2-3), less heat is radiated

away, and we obtain an upper bound for the temperature increase. On the

other hand, if we choose 13 large enough so that

k s eT4 + (T - T) > k eT 4  (2.5)

#..

-. .

•1 °' " % " " ' ° " W" ." o° °° , - ,e .- " , . , '. ". °' •'e•'. . " "'. ,'" "' " °' "e ''. .'°. '. ."' "- ". .°. ',°'., ".. 
°

' '
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over the range of temperatures realized, then we obtain a lower bound. The

sharpest lower bound of this form is obtained when

k, eT4 + 3(T -TR)-kseT 4

'-". at T - T a. These observations follow directly from the maximum principle.

Section 3. Further reduction of the equations.

From the boundary conditions (2.3), introduced in the previous section,

we have

C
-pc v  + kT, - &T + a& 1 =, + - (361)

-+ [k, eTR4 + J3T -_TR)0.

(For a solid rod, R - radius of the rod. ) We write this as

2 kT,, + &,&T + (T - TR) = (3.2)
R

& -2 k e 4 + 2Q

Introducing a new dependent variable O(x t) = exp(O(t XT - TR),
PCv

we have

O_ k a20 +.2...O = F(t) (3.3)
atF v -xT PCv R

where

01 1

PCv PCV R pcv

_ 2k* eT o- TR
R pcv PCV

The modified temperature difference 0 has been introduced previously in [3]

•Since

N I " ,.**

• .'€' . ... .' o'k .o .," o ... )' " - . .- " -... . ,. .. " . . .. - ') "..- . . ,.-. .'&" ". 14. ."
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Ola (t ) <<I
PCv

we have that 0 T - TR. If we integrate both sides of (3.3) with respect to

t, and divide by t, we obtain n

af t-'(O(x ,t ) - (x ,0)) - ..__±.t- f e(x ,r d T] '.:

PCv 0

+t tlfF&)dr""pcv R -'.

As r--oo, with 6 bounded, this reduces to

2(3 <0> k > x <F >
R pcv PCv

where

t

< > (x) - limt-fO(x,r)dr (3.5)

and

t cta(T) (r()&i(r) 2___"_

<F > - limt - 1 exp( ) )  + 2Q (3.6)t- o cv PCv R pcv

2kS eTp- ohT 7 ", -PC R --FCT V

limt - 1 fexp( O(r)) a(r)&-(-) 2+ 2 d "r
t -00 0 PCv PCV R pcv R pcv  l.

are the asymptotic mean values of 0 and F respectively.

Note that as R --,0, < F > becomes negative, and therefore T < TR.

* Conversely, as R--oo, < F > becomes positive, and therefore T > TR. Intui-

tively, thin rods radiate away energy through the lateral surface area more

quickly than thicker rods.

*ALL

,
4 ,- - - -': "" "" "" ".'.. ''":-, ". .' -- ' ;,'--". ." .- ".". -.- ". - .- " .- '.".-".-.- -,' .', ," .- "- -".?,-'
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In the materials under consideration, a&1 > 0. Since the integrands of

(3.5) , (3.6) are bounded, the above limits exist. For simplicity, consider the

following boundary conditions for the temperature T, T(0,t) - TR and

5 T.,(l,t) - . The second boundary condition results from symmetry, for a

bar of length two units. (More general boundary conditions will be considered

in the next section.) This implies that 0 satisfies the boundary conditions

< 0 > (o) = (3.7)

and

< 0 > 'M 0 o(3.8)

The solution of (33), subject to the boundary conditions (3.7),(3.8) is

PCv R < coshX( -(3.9)< > (X) < - F > I1-(39

where :.',"

(20)1/2

Rk

Note that if we ignore the spatial variation of the temperature, that is .

assuming that T., - 0, we have

pcv R< 0 > (X) - < F >,,:
U

which is a good approximation to (3.9) away from the ends of the rod, if X is

large. This accounts for the close approximation observed between the spa-

tially homogeneous solution and the spatially varying solution with boundary

layer in [ 4 ]. We remark that (3.9) yields x -X - 1 as a measure of the asymp-

totic thickness of the boundary layer for the boundary conditions considered

above.

Since p,cv ,S , R , and k are all known , the spatial dependence of

< 0 > (x) is determined. Only the magnitude is a function of the loading

history, through < F > • The fine structure of the material properties has

*~ .* - °
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been averaged out, and the asymptotic form of the history dependence takes

the form of a single scalar quantity < F >. Many internal state variable

models for the stress history can therefore be considered. The distinctions

between the models are lost, or more precisely averaged out, in this analysis. S

The crucial term to estimate therefore is < F >. If a(t ) is periodic, and if

&I is a periodic, then (3.6) reduces to

< > - exp( 2 k eT 'r (3.10) "

< PCv PCV Rpcv ,e

where P is the period of a and &I.

A case of particular interest is the Bodner model [ 5 1 for metals , in

which

2 a I n +1 101212n&I - -Dol-l- - --- (3.11)

At saturation, the drag stress o2 - Z2 is constant, and < F > becomes a

functional only of a.

- fexp ca(r) xp (3.12)
0 jC

2 D~(I n +1 62 12nf 2 keT+ 2Q d
2 Dolo(,r)lexp  n 77 I n_ 2 ,k, eT 2Q+ 2

3 pcv - - ' R pcv Rpcv

Since

t t .

< > - limt-f@(x,r)dT = limt-'fexp( ((r) XT -TR)dT
t -'O 0 PCv

.

we can recover a mean temperature T by

- <6> (x) limt-1fexp dr +TR (3.13)t0 0 PCV

*.

.* * . .. w.. V
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Fixing the geometric parameters I C, A }, and fixing the material param-

eters {Cp,Cv ,Don ,,k }, one can compute the dependence of < 0 >
'Adand on o(t ) and Q . With a periodic, (313) simplifies as before to an

integral over the period. A comparison of analytical results with experimental

and numerical data is contained in section 7 for a particular case of periodic a

,as illustrated in fig. 2.

Because (3.3) is linear in 0, we can obtain explicit representations for 0 in

terms of series. Information on the growth of boundary layers, and an explicit

compliance relationship between strain and stress will also follow from an
analysis of (3.3). First we derive a series representation for 0.

Section 4. Series expansion of the modified temperature difference.

We consider the solution of problem (3.3)

80_ k 820 20

with initial conditions

(x ,0) - 0

and slightly more general boundary conditions ( with a parameter )
--

at x-0 and

ax

at x-I. We write the solution of this problem in the form

a..- :. 0(X' t ) 0_ , (t~e (X.

Substituting this into (3.3), we have

4 4.

-- a . .f. . . . . .4 " ' . ' ' ' ' . " " ' . " " . . . . . a .. 4-+ : - ' ..

AL,

.1 4 . ... *7
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)=1 1( pcv R-'x -

E On Co)* (x 0 (4.2)
n-1

with boundary conditions

0, (t )t '(1) -0 (4.3)
n-1

On (t) k*n n(O ) - 0 (4.4)

We solve (4.1)-(4.4) by assuming that

On'(t )+ P e. 'On' 2n3 e (t)-d F (t) (4.5)PCv pcv R

"(x ) + 4 .(x)- 0 (4.6)

Therefore,

k 6'ttfnx) n(t )IN"(x )+ 2 n 6(t )tftn xl
n=1I PCv PCvR

-k" 
n(x ) F (t) 

. "

This will satisfy (4.1) if and only if

dn n (x) - 1 (4.7)

n=1

on the interval 0 < x < 1. Equations (4.3) , (4.4) , and (4.6) determine can
uniquely. One can easily show

.(x) =COS( I -x )od

where

U



13-

k --. " Cot (L-%(4.8)

Asymptotically,

(A),, -. fl iT .

We note that o, is nonzero, so that O()x 1 is not an eigenfunct ion.

Therefore, (4.7) determines the coefficients d, by

God, cos(1-xw = 1 (4.9)

1

The eigenfunctions a (x) - cos(l-x )can are a complete orthogonal basis, con-
sequently

-2w, +4sin2on (4.10)

Asymptotically, 

I

2sino,, 2-

From (4.2)

0, (0) - O. (4.11)

The solution of (3.3) can be written down concisely as

OD t,-(x, t d nfexp(--y(t-s ))F(s )ds cos(l-x )ca (4.12)

n=I 0

where

-'..

5/

.€1

° ° • "I
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Y'2 4- + 20

Pcv pcv R

k
-,r - cot (On

and dn satisfies (4.10).

Section 5. Boundary Layer Model.

In order to examine the behavior of the boundary layer, we expand the

function O(x, t ) in terms of the small parameter Y2 _ . We define the
pcv

stretched coordinate y -x. This implies that a, - y-a, and that there- -J

fore

Ot -Of+ 2(3 - F(t) (5.1)

e(y, )- o h

Y- O -1, t) - 0

k y-00, t) - WO(o, t) - 0

In the usual way, we write

n -

For n-0 this reduces to

0p 00, if.+ 00 -oF(t) (5.2)

Oo(. 0)-0

with boundary conditions

U
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., 0o(c0, t )-O

* which implies that 00 - 00(t) and that

-0 ) - 0 ))d r (5.3)

Equation (5.3) describes the evolution of the modified temperature difference 0

under insulated boundary conditions at the ends of the rod. For n> 1 , we

obtain a coupled set of linear differential equations

Ont -On.-0 (5.4)

k e , ( o, 0) - 0.(o, t) . 0

This can be solved using Laplace transforms, which yields

k T r t Qt.'

Note that if 00(t ) > 0 then each tern' alternates in sign.

The first order approximation is therefore

- .
p

O(X ,t ) 0" O(i + YO(x .t )(5.6).".

u~tlx 2

0 0(i - o 1exp(- x)0(t r)drA

y2The integrand is negligible except when . is of order one. This leads to a .

boundary layer which is described for small time by

x y v rtIl

~~fib
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We also obtain the following result,

O(O,t )-9 0 (t ) - 0 -(
k

which to leading order computes the temperature as a function of time of the

left endpoint of the bar. The first order correction is in fact monotonic in x if

0 o(t ) > 0. Equation (5.7) shows that the first order term overcorrects and

that the next term (of opposite sign) attempts to compensate for this.

This singular perturbation analysis predicts the behavior of the rod for

small time, in contrast to the analysis of section 3 which predicts the long-

term average behavior.

Section 6. Integral representation of (x ,t) by means of a Green's
function. Derivation of the Compliance Relation.

By taking the Laplace transform of (3.4) with the boundary conditions

introduced in the previous section, we obtain the following expression for the U
Laplace transform of 6

k(x,s) - (s + 203 )-,f (s)C(x,s) (6.1)pcv R

- Oo(x,s)C(x,s)

where 0o was defined in (5.3) and .1..

((xs~-l- 0cosh I l-X~v~ .G_C1 , (X=c + 2 X.lv) (6.2)
khs otasin -h%( -"i[ha ( ( P"

Inverting this, we obtain

O(x) G (x t )*Oo(t ).

Using (1.9) and the definition of 6 we have

- E-'a + c 1 (t ;o(t ))+ exp(- O xt ))6x,t ). (6.3)
PCv

S.' - d o] p..

%9.'

r., . " . " , , - . - - " - ," . -" " . -,. " " -* " " " " " " " " - "" " ' " "- '* - " " " , " " " " " " " -*
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In the simplest case, oil is obtained by integrating

&I f (t;o(t )).

and 0 depends on a through F. Equation (63) yields the compliance relation-

ship between the strain c and the stress a. Further details may be found in [
31.

Section 7. Numerical Results

7 In order to verify the accuracy of the asymptotic result (3.9) , we com-
puted upper and lower bounds for the asymptotic average modified tempera-

ture difference for the parameters given in [ 6 1 with the results shown in fig.

1. The value for the emissivity is 085 and oma - 346.8 MPa corresponding to

a 1% maximum deformation at 5 hz.

The cyclically saturated stress-strain curve used to compute < F > for

? the case a. - 336.5 MPa is given in fig. 2. The values for a,, F2, and the

* remaining parameters needed to compute < F > and < 0 >, were taken

from numerical data supplied from reference [ 6 ].

The parameters in [ 6 1 describe a hollow cylindrical bar, of uniform

cross- sectional area equal to I in.2 , orbiting at an altitude of 4080 km.,

painted with a high emissivity coating (IITRE-SI3GLO) white paint, with full

exposure to the sun. Under zero applied stress, equilibrium of thermal flux

occurs at 72 deg. Fahrenheit (295 deg. Kelvin) for which the thermodynamic
parameters of the metal 6061-T6 aluminum were experimentally determined [

7].

We also can compute the behavior of the thermal boundary layers near

the ends of the rod. In equation (3.3) the diffusion constant

Y (k k)1 /2 2.3X1O4 . This quantity typically is of the order of 10- 3 to

10-5 in dimensionless units. This leads to very sharp boundary layers, and

exponential decay to the asymptotic temperature state.

We also mention that other constitutive laws than (3.11) have been

derived which describe the behavior of metal-matrix materials. Since the

parameters are experimentally determined by a parameter fitting procedure,

0d
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essentially the same results will be obtained for the asymptotic temperature

rise.

The interested reader is referred to [ 8 ] for a discussion of several of these

models.

Section 8. Wave Dispersion in the Isothermal Case.

Consider the equations of motion for an uniaxial rod of infinite length

with constant cros-section, temperature, and density:

PUtt - ( I)

ax

a - E(E - oil) (82)

=f"(o1 (8.3).?

where

au

T,-.

is the infinitesimal strain, and or, is the internal state variable describing ine-

lastic strain. These equations are limiting cases of equations considered in sec-

tions 1 - 6, with inertial effects added.

We can combine equations (8.1) and (8.2) into

putt - -LE ( au - &I1)] - Eu E alr1  (&4)
ax ax

Writing (8.3) and (8.4) as a system of 3 first order partial differential equa-

tions, we let uI = u , U 2 - Ut, and U3 = r1. Consequently

pu2.t - Eu 1.- Eu3 , = E(u -u 3)., (8.5) .

U f (E (u I - u 3 )) (8.6)

with the compatibility condition

ult -u 2.x (87)
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Since the quantity u1 I u 3 figures predominately in equations (8-5) and

(8.), we define new independent variables :w I u IU3 U 3

and we have

PW 2,t Ew1  (8.8)

Eliminating WU, in (WO1), by (8.9), we obtain

p.PW 2.t Ew Ix

W3 Uf(Ew 1)

W L - 2 .x -- (Ew 1)

which we write in canonical form

W Lt - W2 .x = (Ew) (8.11)

W 2 E1 W -~x0 (8.12)

W . + f(E 1  (8.13)

The characteristics of (8.11)48.13) are given by

dx '
77-.

where X = 0, ±(kE)1/2 . We therefore have 3 constant characteristic waveZ
P

speeds. As we shall see, because of the nonlinearity induced by oe , waves

% propagate with a continuum of wave speeds. S.

We seek traveling wave solutions of (8.1048.(13) , that is we seek solu-

* . tions of the form w, - W, (x - ci) w, ( ) where c - constant is the wave

k speed. Substituting this in the system of partial differential equations, we

NN, arrive at a first order system of nonlinear ordinary differential equations.
N.
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-C 1 - , 2= - f(Ew 1) (8.14)

-c' 2 -- 0 (8.15)p U

- ,= + f-(Ewl) (8.16)

where dot signifies differentiation with respect to = x -ct. Equations
(8.14)-(8.16) decouple very nicely by using (8.15) to eliminate w 2 from (8.14).

We therefore obtain

-c,I + _E;; 1 - f-(Ew 1)
PC

or

(C2 _ E) N, I cf- CEw 1)"."

P

which reduces to

(c 2 - E)(E- 1) = Ecf (Ew 1) (8.17)

p

The quantity Ew is of particular interest, since

Ewi = E(uI - U3 ) = E(u, -& 1 )= a
*1%

Consequently, (8.17) can be written as

do cE (8.18)
d1 C2 Ef(o)

P

If c 2 =E then the wave is traveling at sonic speed and & may be unbounded.
p

We consider only the subsonic case in this paper.

It is interesting to note that the equation describing the propagation of the

stress wave u(x --ct ) decouples from the rest of the equations. Equation (8.18)

may be solved, for a given f, for a continuum of wave speeds c. We inter-

pret the quantity
'o

a , ° - . , - o ° , o - • - - - . . - . , , o - • ° . ° . , " . % ° o " o . ° °

4.....*. , . . '9, '; ,
' ,

" ''. ,".' ", :5, '. 7" " ,,", ._,5: o.., , . _ _, -".¢.-.:' : -, . , ;;,N '
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A (c) = cE
c2 - E

p

as a nonlinear amplitude. In the Bodner model, for example,

f2 a n+1 12 8.19).- t f W=) - Do- bexp( 2 2 (.9

where Do, n, and Z2 are material parameters.

Note that the f, given by (8.19). has the property that

a = of (a) > 0. This implies that any traveling wave solution of (8.18)

o(x --cf ) with compact support must be discontinuous. This follows by noting

from (8.18) that
/ __.a0  doa cE

= - - afa) A(c)af (a) (8.20)
C T

For a given c, A (c) is either positive or negative but has fixed sign. Conse-

quently the amplitude of a is monotonically increasing or decreasing, which

implies that a continuous stress field o may vanish at most once. Given a

smooth initial stress field with compact support, a single wave speed is not pos-
sible, and the disturbance propagates in a continuum of admissible wave speeds

with nonlinear interactions.

The inequality

Io& - of(o) > 0

which is responsible for the dispersive effects, is also responsible for the

conversion of strain energy into heat in thermoviscoplastic materials (cf. 3.9,

3.10). This dispersion also teods to drive an initial impulse towards a quasi-
static state where

PUtt u Ox - 0

justifying the assumption of spatial homogeneity in one dimension.

Z ,
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Note that we can recover the initial displacement field by

OoX ) 0%
Uo'(X) -(X + a(xA)). (8.21)

For t > 0, we can recover u (x ,t ) by integrating

Uu - - + oc .. :'

Note also that the wave speed c - 0 is prohibited, for if c -0 then a - o(x)

which implies that A.. 0 which can only happen if f -0 identically in
at

(M3). Therefore for smooth traveling wave solutions of (&I ) -(&3) W)
0 < Cl < C )/ (8.22) 2

p

Section 9. Conclusions.

In terms of the modified temperature difference 0 , we have derived

upper and lower bounds on the asymptotic average temperature difference.
With (2.4) we obtain upper bounds, and with (2.5) we obtain lower bounds

via the maximum principle. The lower bounds are sharper, and with the

parameters described in section 7 , a frequency of 5 hz (corresponding to am..
of 346.8 MPa) an upper bound of 84.30 K and a lower bound of 61.9* K on

the temperature change are obtained. The upper and lower bounds obtained in

this paper are in close agreement with the numerical results obtained in refs. [
4 ] and [ 5 1 Temperature increases on this order can lead to material failure

of AL 6061-T6, suggesting that material inelasticity be used with caution
when operating near yield strength for metal matrix materials.

Explicit series representations for O(x t ) ih terms of the stress, through
F (t), are derived. The compliance relation involves convolutions as expected ,

but is not a pure convolution due to the presence of the internal state variable

describing inelastic strain.

The asymptotic average modified temperature difference , given by (3.9)
has a certain canonical form. The amplitude depends on geometric and

P-.:
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material parameters (constants) in a simple way, and depends on the particular

model used only through the scalar term < F >. The longitudinal varia-

tion is nearly constant, except near the ends of the rod where boundary layers

pform. These boundary layers are described in Section 5.

Boundary layers are expected to form in the radial direction, but these
will serve primarily to reduce the temperature on the outside, leading to less

of a heat loss than otherwise predicted. Therefore the temperature differences
in the interior will be larger than the average temperature difference in the

cross section. Boundary conditions at the ends of the rod do not substantially

affect the thermomechanical response outside the boundary layer for the struc-
Ktural configurations considered in this paper.

The uniaxial (one-dimensional) case we have considered in this paper is

A. much simpler than the full three-dimensional problem (1.1) - (1.6). This

simplification allows us to obtain much stronger results however. We incor-

porate time-dependent effects, full thermal - mechanical coupling, and non-

linear black body radiation conditions to obtain rigorous bounds on the asymp-
totic mean temperature rise. In those cases where longitudinal effects dom-

inate axial effects and the resultant quantities are approximately uniaxial, the

analysis presented in this paper is expected to be qualitatively correct. *

Finally, the dispersive effects due to material inelasticity are discussed in

Section & It is found that dissipation and dispersion effects generally inhibit

the formation of traveling waves, and tend to drive the impulse into a quasi-
static state, thereby justifying the neglect of inertial effects in sections 1-7.
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Abstract a? coefficient of thermal expansion

A finite element model is outlined for an c emissivity
integrated thermoelastic analysis of large 0 rotation about x axis
composite space structures. The model allows for P density
temperature gradients within structural member a Boltzman's constant -
cross-sections and for bending of the members
themselves. Nonlinear effects such as radiation Introduction
boundary conditions and temperature dependent
material properties are also Included. Once the In the next few decades large space
model Is outlined, a preliminary investigation structures will be placed into earth orbit.
into the importance of thermally induced forces Because these vehicles will not face the launch
and moments is carried out. The problem chosen environment but are to be either deployed or
is that of a long cantilevered lattice beam in a constructed from materials carried into orbit,
geosychronous orbit. For the structure and design will be based on criteria previously
loading chosen, no significant dynamic responses, considered secondary. These criteria combined
such as vibration, occurred. In addition, with new performance requirements will result in
thermally induced axial forces were the large lattice-type structures which utilize high-
predominant type of loading. For this problem, strength, low-density materials such as graphite
thermally induced moments could be neglected, fiber/polymeric matrix composites.
The magnitude of axial stresses generated by the Under anticipated thermal loading
transition from shadow to sunlight is on the conditions, structural members made from advanced
order of 30% of yield stress. fiber/matrix materials respond quite differently

compared to those made from the more traditional
metallic materials. Past research indicates that

Nomenclature a graphite/epoxy Structural member modeled as a
slender thin-walled tube experiences a

A cross-sectional area of a structural member significant temperature gradient around its
B boundary of cross-sectional area perimeter.' In addition, such a member will have
Q specific heat a negligible temperature gradient along its

" length.' Both these responses are due to the low
E Young's Modulus thermal conductivity found in fiber/matrix
G Modulus of rigidity materials.

Im ass Inertia A large temperature gradient through a
I structural member's cross-sectton produces
IyI z moments of inertia about y and z axes bending. This is important for two reasons.

First, bending reduces the maximum allowable load
. J polar moment of Inertia a member can sustain. Second, bending may lead

k thermal conductivity to fatigue which is important in predicting the
L length of a structural member long term behavior of the material.'

In this paper, the development of a finite
MT thermally induced moment element model capable of performing an integrated
ft direction normals thermoelastic analysis is outlined. This model

is specifically designed for lattice-type
PT  thermally induced axial force structures made from low conductivity materials,
q normal incident flux wherein the temperature distribution within a
T temperature structural member varies through its cross-
TO  temperature in an unstrained state section but not along its length. In addition,

preliminary studies are carried out to determine
Tr  radiation reference temperature the significance of thermally induced bending and

extension. For this purpose a typical space
t time structure is developed and its thermal/structural

" u,v,w displacements in coordinate directions responses examined for two different load cases.
xy,z coordinate directions Further details are contained in reference 4. "

#Graduate Research Assistant, Aerospace Background
Engineering, Student Member AIAA

"4Assoeiate Professor, Aerospace Epgineering, A general thermoelastic analysis of a large
Member AIA space structure is complicated by several

"**Professor and Head, Aerospace Engineering, factors. First, there is the coupling between theAssoCitae Fellow, AIAA temperature field and the displacement field.
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boundary conditions and temperature dependent dependent material properties, namely k. k,
material properties. Third, the thermal loading and c . Solving the nonlinear heat tanstir
is constantly changing due to varying earth- problei in a single cross-section per member is
structure-sun orientation. Finally, geometrical prohibitively expensive. However, it is expected
factors such as shadowing and interlement that the repetitive nature of the proposed
radiation can exist. lattice structures will allow a greatly reduced

In the model developed herein, several thermal analysis wherein the results from a few
simplifying assumptions are made. To begin with, selected cross-sections are used throughout the
the temperatures are assumed to be independent of structure.
4 formation, that is, uncoupled. This allows the

~ temperature field to be solved for first, then
* used as input to the structural analysis.

Second, all structures are assumed to be of open Eva.ua,. T---a Ld
lattice-work construction with long thin members I L

sparsely located. This allows for the omission i
Jof the interlement radiation and shadowing. The

structural members are modeled as thin-walled Valuwa the Temfture 71ields

cylinders of constant cross-section and materiali 2h jyo CrSe s-=time
properties. Furthermore. because temperatures
within these members vary through their cross-

e section and not along their length, each member
may be treated as an isolated body, absorbing caIeaU)te N. HT.. PT TIM
thermal radiation and in turn emitting its own for Selettw Ca S-ects*" StopT

", radiation. See Fig. 1.

SOLAR RADIATION fraem 4,; N.F

late Global C@oediaita

ivliuae Delamm Ies.

STRUCURALFigure 2. Algorithm SchematicST4C 
l

MEIOER
MEMBERSOLAR RADIATION

/EARTH REFLECTED
RADIATION & 4 1 4

~~ EARTH EMITTED/

( ~ RADIATION

Figure 1.* A Structural Element in Space CONDUCTION CONDUCTION
Environment

The thermal loading Is also simplified by/
*requiring all structures to be In a high earthOUE

orbit. At high altitudes earth emitted and earth RADIATION
, reflected radiation are negligible. Furthermore,
* if structures are assumed to have a space-fixed Figure 3. Heat Transfer in a Selected Cross-

orientation, the solar flux is both constant in Section
magnitude and direction during the sunlit portion
of an orbit. )T

Model Development pept ay y z - in )

The finite element model consists of five -T 4
sections. The algorithm, shown schematically in ky - nn + k Z n qm * co(T - T 

)

Fig. 2, is as follows. On a given time step, the y ay y.Z a:z
proper thermal loads are evaluated. Then, finite on r C2)

elements are used to construct the temperature
fields through selected cross-sections. The two- Within a cross-section heat 13 transferred

" dimensional heat transfer problem within a cross- by conduction around the perimeter and radiation
section is shown in Fig. 3 and governed by from the Inner surfaces. In addition, heat is "'"
equations (1) and (2). These equations neglect lost to space through radiation from the outer
internal heat generation but include temperature surfaces. The resulting temperature fields are

2



equating the flux and radiation boundary terms in 5, it is apparent that all twelve members can be

equation (2). assigned to one of three groups based on their
orientation with respect to the direction of the

solar flux. This grouping is shown in Table 3.

Case 2 It should be noted that if cross-sectional or
material properties varied from member to member

In this case, a transition from shadow into additional subgroupings would be necessary. For

sunlight is considered. Here, the boom is this simplified case, modeling only one cross-

undeformed and at an initial uniform temperature section from each group Is needed for determining

of 100 degrees Kelvin. At time t-0, the boom the temperature distribution in a bay.

moves into sunlight: and deforms. In a Therefore, the thermal analysis of the entire

geosychronou3 orbit, penumbra effects are ignored boom has been reduced to examining three member
and the solar flux is applied instantaneously and cross-sections.
uniformly along the length of the boom. The
solar flux is considered to act in the negative z
direction with respect to the global coordinates Table 3. Cross-Section Numbers for

in Fig. 4. Its magnitude is given as 1.4 kW/m . First Bay Elements

Element No. Cross-Section No. ..

Table 2. Orbital Data ""-__
12

GEO LEO 2 2

3 1
" Period (Sec): 86,400 5,400 4

5
Altitude (km): 35,800 280 6 1

7 3
Umbra (Sec): 4,200 2,200 8 1

9 3
Penumbra (Sec): 130 8 10 2

__ __ _ __ _ __ __ _ __ _11 2
12 1

Finite Element Model

Structural modeling of the boom is

straight-forward. The finite element
representation of the boom uses one space frame Z
element per member. This results in a mesh of 33
nodes and 93 elements. The mesh of the first bay
is shown in Fig. 5.

I,

81 2-I

10 1
4

S 12
X

Figure 5. Finite Element Mesh for the First Bay

By comparison, thermal modeling of the ."J

structure appears quite complex. However, it can Figure 6. Finite Element Mesh for a Selected

be greatly simplified. Because each bay is Cros-Section
identical to the next, and the incident flux is
both uniform along the boom's length and constant
with time, only one bay need be modeled. The finite element representation of a

cross-section is shown in Fig. 6. Here only half

Thetemperature distribution in the bay is then the cross-section need be modeled I' the local
applicable throughout the boom. In addition, the axes of the cross-section are aligned with the
thermal analysis of the bay may be simplified, solar flux vector. The 08h used consists of 48
Upon examination of the first bay, shown In Fig. constant thermal gradient elements and 39 nodes.

4I



then converted into moments and axial forces
using the following relations . 1.

P a EaT~(T-To)dl (3)A

T4 a Ta.(T-To)Yd0 (5) 'o.

These loads are initially determined in the local
coordinates o their cross-section. Later they
are transformed into the global coordinates of 2.5 u /4 n

the structure to be used as input for the 4A 1z
structural analysis. The structural (or
deformation) analysis is for linear elastic space Figure 4. Ten Bay Lattice Boom
frame geometries. It is developed from
application of ' standard finite element
formulations t? &he following governing equations Table 1. Material Properties for
of beam motion" . Graphite AS/Epoxy Composite

(uAaP T
- T (K) k (w/m/K) a (J/Kg/K)(PA 2 -U )u - _!(EA ) - L 0 (6) .-

t at~ ax~ Ij) ax-______________

0 0.0 0.419

aa a 20 3.834 338.0
J( -) - -(J -) - 0 (7) 170 5.993 479.0220 8.*032 620.0

2 2T270 9.71 4 783.'0

v 2 a2v) a2T 330 10.14 976.0

* t~vA mt) - - (El )- 8 400 11.14 1080.
a 2 2 z ax2  ax2  810 16.98 1660.

a 2  2  aMT E . 4.5 X 101 N/mu
_(pA &w --!(E--- a (9)

t (A )- (By ax? ax2  G - 1.5 x 010 N/m2

p- 1. 633 x 10 Kg/u3

Once the deformations are determined, tm is
incremented and the process repeated. a - 0.916

e - 0.800
Problem Summary7

OT - 7.290 x 10
- 7 m/m/K

In order to demonstrate the model's use and
as an initial investigation Into the significance
of thermal loads, consider the following problem. -.
A long cantilevered boom structure is In a Two load cases are examined. The first
geosychronous orbit about the earth. During an consists of the boom structure originating In
orbit, the boom moves from earth's shadow into sunlight and moving into shadow. The second
sunlight and back into shadow. While examines the same boom moving from shadow into
transitioning from one thermal environment to sunlight.
another. the boom undergoes deformation and
possibly vibration.

The structure, shown in Fig. 4, is 50 m Case 1
long and composed of ten Identical bays of
triangular cross-section. Each bay is 5 m long For the first case, the structure Is
and 2.5 a on a side. The structural members considered to be In thermal equilibrium and
themselves are thin-walled cylinders and, except stress-free In the sunlit portion of its orbit.
for length, identical to one another. The cross- This would correspond to an assembly in sunlight.
section diameter is 0.1 m and the thickness is At time t-0, the structure moves into shadow and
.004 m. All members are assumed to be made from deforms until reaching a new thermal equilibrium.
Graphite AS/Epoxy with the properties given in Because the structure is In a geosychronous
Table 1. It should be noted that these orbit, the time to cross the penumbra is
properties are for a quasi-isotropic lay-up, negligible and the transition into shadow is
Very little information Is available on considered instantaneous. See table 2.
properties or Oomplex lay-ups. Furthermore, all Initial cross-secttonal

temperature gradients are neglected and the
initial temperature of each member is Its
radiation equilibrium temperature, found by

3



Discussion of Results S .M1.

For both load cases, examples of thermally "

induced loads versus time are presented. These ,

curves represent the induced mechanical loads FE

applied throughout the structure. Also, the a

resulting axial stress history In a selected !"

member is given as a ratio of maxlua axial
stress over yield stress. This stress is further

L into bending stress and stress due to

N extension. For Graphite AS/Epoxy, yield stress is
approximately I GPa or 150 ksi. .

Case 1 X

In Fig. 7 the axial force vs. time induced
in all members using cross-section 1 is given.
As expected, the magnitude of the compressive
force increases smoothly as the cross-sectlon 4
cools. Because a uniform initial temperature was e.0 4.0 e.0
assumed, the induced moment in this cross-section TIME (SEC*IO00)
is negligible. Forces and moments induced in the
other three cross-sections behave similarly. Figure 8. Ratio of Maximum Axial Stress to Yield

The resulting axial stress for such a Stress in Element I ror Case 1
loading is given in Fig. 8 for structural element
number 4. This element is located at the
cantilevered end of the boom and is expected to Case 2

carry a higher level of stress. It is evident
that stress levels are not overly large for the For case 2, both axial forces and bending
structure chosen. At a time corresponding to soments are -oduced by the thermal loading. For
that required to cross the umbra, the maximum cross-section I , the induced loads are given in

'4 axial stress in element 4 is 20% of yield. In Figs. 9 and 10. The axial force increases %
addition, stress increases smoothly with the smoothly and approaches its steady-state value at

applied load Indicating no oscillatory motion, around 8000 seconds. This is then the time

o!

*0 1
SW

j
"--,1

- I. -
o

TIME (SEC*IO00)

0.0 4.0 4.O Figure 9. Induced Axial Force in1

TIME [gEC"IO00) Cros3-SeCttonI

-" ~for Case 2 ',

"'" required fr the cross-3Oction to regain thermal -

Figure 7. Induced Axial Force In Cro33-SOCtion equilibrium. The induced thermal moment behaves
for Case I quite differently. An early peak is reached ,'

within the first 500 seconds due to the lag In".
the heat transfer around and through the cross-1
section. At this point the temperature gradient
is at its largest. After a peak value is .

.. reached, the moment deoreases to Its steady-state ":

-,%

5'5
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value at 8000 seconds. The results from the

other two selected cross-sections differ only in Conclusions
, magnitude.

Figure 11 gives the maximum axial stress This study has attempted to investigate the

induced in structural element 4 by the loads significance of thermal loading on large com-
above. Steady-state stress values are on the
order of 30% of yield. Also, the stress posite space structures by examining

increases smoothly, indicating no oscillation. thermoelastic responses. For this purpose, an
It is interesting to note that the stress, and integrated finite element model for performing an
therefore deformations, are in phase with the uncoupled thermoelastic analysis was outlined.

* • temperature gradients within members and for -

o nonlinear effects such as radiation boundary1conditions and temperature dependent material
properties. Initial studies using this model

were carried out to determine the significance of
thermally induced loads. Although only limited
studies have been carried out, several
conclusions concerning thermal loads have been
reached.

0 First, the present research indicates that
a for the structure modeled herein, there is no

significant dynamic response due to the thermal0 loading associated with entering and exiting
z earth's shadow. Although the thermal environment

changes instantaneously, thermally induced axial
forces and bending moments are produced in a much
slower ramp type fashion. These loads require
several thousand seconds to reach their steady-
state values. It has been estimated that even
very large flexible structures will have their
first fundamental fgequencies in the range of
0.01 to 10.0 hz. The fundamental periods

0.0 4.0 6.0 corresponding to these frequencies prove much too
TIME (SEC*10O) small to allow excitation from the induced

thermal loads.
Figure 10. Induced Bending Moment in Furthermore, in both cases studied, the

Cross-Section 1 for Case 2 axial forces are predominant. However, the
thermally induced loads are very dependent on the
initial reference state chosen. Choosing a

*reference temperature near the steady-state
temperature reduces the induce axial forces while
leaving the bending moments. unchanged.

* Therefore, it is not yet clear if thermally
% A induced moments, and likewise cross-sectional

temperature gradients, can be neglected.
Finally, the magnitude of the thermally

induced axial stress is less then 30% of yield

strss Although this cannot be neglected, it Is
%. not excessive. Also, these stress levels could

| / be very important in conjunction with stresses
:-rm".sRo s produced by manuevering and docking.CC :' -B HINI 4IIIIl
A-| UN ,oTOATUBS Although the study presented here is only a

A.. A A preliminary one, several important trends are

evident. However, the evaluation of thermally
IC <induced axial and bending forces depends on many

factors and will require more investigation in
order to determine their real significance in
thermoelastic responses.
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Abstract

The transverse vibration solution for both uniform and

nonuniform (variable cross-section) beams, with homogeneous or

nonhomogeneous (such as composites) linear elastic material

properties has been widely discussed and is well documented.

However, spatial variations in material properties due to history

dependent damage have not been previously considered. In this

paper, the internal state variable concept is introduced to

account for the cumulative stress-induced damage in a simple

composite beam structure resulting from a fatigue type loading of

several hundred thousand cycles. Furthermore, the transverse

vibration solution based on the history dependent material is

presented for a simple beam.

Introduction "e
rA number of analytical approaches to the well known partial

differential equation for the flexural vibration of a nonuniform

beam structure have been developed since Kirchhoff's work in

18791l]. He solved the vibration problem for wedged and cone-

shaped beams in terms of Bessel functions. With the invention of

the digital computer, the sophisticated mathematical approach is

replaced by numerical approximation without loss of engineeriing

accuracy. Since the early 1960's, numerous approximate solutions

for several profiles of nonuniform beams have been documented

using the finite element method[2,3]. Most of these solutions

iS
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were developed for beams with homogeneous material properties.

Some were for nonhomogeneous (composite) beams. They are all

restricted by the assumption that the section properties and

stiffness are constant in time. Neither material damage nor

environmentally induced degradation is considered. The use of

composite materials in space structures makes evaluation of

cumulative damage an important extension for beam problems. After

several months or years of service, it is expected that spatially

variable changes in material properties caused by cumulative

load-induced damage will create new complications for control

engineers.

Due to the occurrence of load induced and history dependent

damage in composites, these previously obtained solutions

represent inaccurate approximations of the actual structure after

a period of service. In particular, the resonant frequencies and

mode shapes of the structure can be severely altered by the

introduction of spatially varying damage Induced stiffness loss

[4]. These parameters in turn will have a substantial impact on

the active control algorithm employed for control of flexible

body modes. By introducing the damage parameter, the section

properties and modulus of the beam will vary in both space and

time due to the history of stress distribution. The stiffness

change can significantly shift the natural frequencies and mode

shapes. With the damage effects involved, the differential 4
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equation thus becomes difficult if not impossible to solve in 4--

closed form.

Experimental research on advanced composite materials 4N

indicates that the time scale for damage is very long compared to

the first fundamental frequency of the structure[5]. Therefore,

the mathematical algorithm for the governing equation is treated

as linear with slowly varying coefficients. The beam equation

thus becomes quasi-linear, which can be solved by a time

integration technique at each time incremant. It will then be

possible to predict actual structural response for a fatigue

type loading of several hundred thousand cycles through actual

time integration.

In this paper, particular interest is being placed on the 5

- natural vibration solution of a simple beam structure with ..

spatially and time varying stiffness caused by fatigue type

loading, and the investigation of the possible effect of material

damage on the natural frequencies and mode shapes of the beam

with various boundary conditions (simply supported,

clamped-free). The concept of an internal state variable (ISV)

is introduced to describe the history dependent damage growth

[8]. A single scalar parameter D is used as a local ISV

representing the damage state. Together with the internal state

variable growth law, the finite element solution technique is

modified to account for the time dependent stiffness of the beam

element.

. . . . . .
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Problem Summary

In order to investigate the possible effect on dynamic

response caused by material damage in beam structures, a

representive heterogeneous planar beam with a uniform cross

section is selected as shown in Fig.1. With the applied load

history along the transverse direction as shown in Fig.2 at one

of the nodes, under the assumption of no material damping, the

64 beam eventually will respond in the first fundamental mode which

will create fatigue type cyclic stress distribution for the

structure. Finite element modeling is implemented to trace the

dynamic stress distribution at each grid point. The history of

peak stresses is used in a simplified internal state variable

growth law, which thus quantifies the spatially varying stiffness

for the beam element. Using a spatially varying modulus E, aU
sensitivity study on modal analysis is conducted to show the

effect of material damage on natural frequencies, and mode shapes

of the heterogeneous beam. Details of the finite element model,

material damage model, and discussion of graphical results are

presented in the following sections.

Finite Element Model with Variable Section Properties

Fig.3 illustrates the simplified heterogeneous planar beam

with spatially varying modulus E(x,z,Dt), where it is assumed

.,* * . .* . g•? o
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that the beam is composed of composite material with

continuously varying section properties which could be

discretized as shown in Fig.3. The modulus weighted section

properties for the beam at any time are defined by[6]

1 E'

4) flE

* ji.z2 Ai (2)ZZ 1 0.

where E and A are the modulus and cross-sectional area of the

ith discrete portion, and E is the reference modulus. Theo

effective modulus can be approximated by

E - A E A (3)

:4.

where n is the number of laminates in composite.

Equation(4) is the well known governing equation for the

transverse vibration of an undamped planar beam

_ 2 )w 2 ~-2.1, 2(EI~x ) +m"2 f (x, t) (4)

where E is Young's modulus, I is the moment of inertia of the

cross section, A is the cross section area, m- fA is the mass per

unit length, ' is the material density, f is the distributed

force, and w is the transverse displacement. If we consider the

i
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spatially varying and history dependent modulus and section

properties, the governing equation can be rewritten as

-2 e 2 Wx [E (x,Dt)I (x,D,t)p ]+m(x)bt -f(x,t)(5)

where the parameter D is an internal state variable which

describes the damage of material, and t is time.

As mentioned before, the scale of time of material damage

is very long compared to the fundamental vibration frequency.

Thus, the governing equation is treated as linear with slowly

varying modulus and section properties. Using the semidiscrete

variational formulation at a given time step[?], the equations of

motion for a structural element become

' m iw +k iw f (6)

where kij and mij are the element stiffness and mass matrix,

respectively, and w is the transverse nodal displacement vector. P%

That is,

# *

jmJE(xDt)I (xDt)NN dx (7)
0

m m(x)NiNidx (8)*~~~ ia=.m i i a

i f(xt)Nidx

- mL



where Nare the shape functions. The beam is modeled by four

cubic elements. In order to account for spatial variation in

properties, five integration points are used to evaluate the

stiffness and mass matrices of each element. They are combined to

represent the coefficient matrices of the global equations of

motion for transverse vibration of the heterogeneous beam.

[M]{WI+EK] fw}-{F} (9) ")

where {F) is the nodal force vector.

The Newmark integration technique is applied to solve for the

dynamic displacement response. After solving for local node

forces for each element by the displacement function approach,

the modulus weighted section property is again used to calculate

the local internal stress distribution at each time step:

(d (xy,D,t)-M(x,D,t)y/I (10)

where M is the effective nodal moment, and is the axial

stress due to bending . Assuming the damage occurs at the peak

stress on each cycle, the stiffness and mass matrix are updated

whenever the grid point stress reaches the peak value. Natural

frequencies and mode shapes are collected at a period of every

two hundred cycles by the Jacobian iteration method.

~"'A
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Material Damage Model U

Failure of continuous fiber composite structural components

is preceded by a sequence of microstructural and macrostructral

events such as microvoid growth, fiber-matrix debonding, edge U

delamination, matrix cracking and fiber failure, etc, which are

loosely termed damage. Experimental evidence suggests that matrix

cracking will predominate prior to the development of a

characteristic damage state[8]. A single matrix cracking damage

model in this beam problem will considerably simplify the -

solution procedure without loss of engineering accuracy.

The concept of an internal state variable is introduced

through constitutive equations to quantify the damage state of

matrix cracking density. Due to the history dependent reduction

in stiffness, the stress-strain relation is of the form

'ij "Cijkl¢ kl - kl ) ( )

is thermal strain, C is the effective modulusFkl ij kl

tensor which is given by[8J, and EiJ , iJ are the second order

strain and stress tensor, respectively.

, P p
C C - (12)

.1
.where is a set of material constants, am.are a set of



internal state variables with p ranging from one to the number of

damage modes, which are governed by the following ISV growth law: 46

bh

In the one-dimensional approximation to the planar beam

problem, a single scalar-valued internal state variable is used

to quantify the matrix crack density of the composite beam. The

constitutive equation thus reduces to

_ T

(7 x E-, ' ( X x( 4

where J , are the uniaxial stress and strain, is the

uniaxial thermal strain, and E' is the local axial modulus of the

beam E' is related to internal state variable D via the

following relation

E-E D(15)

where E is the undamaged modulus, D is the ISV which
0

quantifies the matrix cracking density, and ( is a material

constant which is determined experimentally.

Experimental research on graphite epoxy composites indicates that

the matrix crack density of a composite specimen under constant

f'atigue loading can be represented on a log-log scale by[9J

ii
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LnD-K + K Ln N (16)1 2

where N is the number of cycles of fatigue loading, and KI , K2
are material constants which depend on the stress in the lamina.

p."

After some mathematical manipulation, an internal state variable

growth law is derived

W, k,-, < 1( k' L i 1 )"
e N + e N -+LN-W)(

The last term of equation(17) is the correction term for

variable cyclic loading. In the present beam problem, the

external loading is held constant during the cyclic response. The

interior stress will decrease due to the loss of stiffness caused

by material damage. Thus, equation(16) represent an upper bound

of the damage state.

Equation(17) completes the description of the damage model.

Integration of this equation will generate the current value of

matrix cracking density, which is substituted into equation(12)

to calculate local current stiffness.

Discussion of Computational Results

Two cases of the beam problem are presented here:

clamped-free and simply supported. In each case the damage

-.



distribution changes due to the difference in stress

distributions. For each case, three(two in simply supported)

sample points were chosen to trace the history of local damage OI

and stiffness. Natural frequencies and mode shapes were collected

periodically via the Jacobian iteration technique. Assuming pure

bending in the beam structure, no damage occurs in the

neighborhood of the neutral axis. Each case is discussed

separately.

For the case of a clamped-free beam the maximum stress at

Q6 each sample point during a cycle is about 44.5 ksi at point 1,

31.1 ksi at point 2, 18.5 ksi at point 3 (Fig.l). Point 1
undergoes the maximum damage after one hundred thousand cycles of

loading. To the right of point 3, no significant damage occurs.

Fig.4 shows the local damage state history of the three chosen

points, where N represents the number of cycles. Fig.5 shows the

stiffness degradation of the points. Due to the creation of

spatially variable damage in the structure, the natural

frequencies decrease as shown in Fig.6. For higher vibration

modes, the natural frequencies decrease less than lower modes.

Although the maximum stiffness loss is at point 1, most of the

beam is not damaged. Therefore, there is no significant change in

the first five fundamental vibration mod-

For the case of a simply supported beam the maximum stress at

each sample point during a cycle is about 44 ksi at point 1, 36.4

ksi at point 2 (Fig.1). Point 1 undergoes the maximum damage
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after one hundred thousand cycles of loading. No significant U

damage occurs near the support. Fig.7 shows the local damage

state history of the two chosen points. Fig.8 shows the stiffness
m

degradation of the points. Due to the creation of spatiall

variable damage in the structure, the natural frequencies

decrease as shown in Fig.9. Although the maximum stiffness loss

is at point 1, most of the beam is not damaged. Therefore, there

is no significant change in the first five fundamental vibration

modes.

Conclusions

The current paper has attempted to develop a computational

algorithm for performing dynamic analysis of composite beams with

history dependent damage. Because the algorithm requires that the

entire load history be considered in order to evaluate the damage

state, it is necessary to perform the numerical scheme over

several hundred thousand load cycles. This procedure is very time

consuming, requiring approximately 22 CPU hours for each case on

a Perkin-Elmer 3210 mini-computer. Therefore, the implementation

of inelasticity due to damage presents a quite cumbersome

computational task.

The results for the two cases considered herein indicate that

although the fundamental frequencies of the structures are

significantly affected by damage, the mode shapes are not. This

'C "



result can have significance with respect to flexible control

algorithms. For example, point controllers could not need to be

replaced at some other point on the structure after damage has

occurred. On the other hand, previous research[4] has indicated

that for structures such as trusses which are primarily loaded in

uniaxial extension and compression, the mode shapes are

significantly altered by history dependent damage. The results

would seem to indicate that the difference in those results and

the findings here are that when bending causes through-thickness

variations in damage, the effect on mode shapes is significantly

decreased. It should be pointed out that while the model used

herein assumes that bending does in fact produce a through-

thickness damage gradient, there is no experimental evidence to

support this assumption. The authors are currently developing an

experimental effort to determine the through-thickness damage

gradient for various composite layups in bending. If experimental

evidence indicates that bending produces essentially homogeneous

damage through the beam thickness, then it is quite likely that

modification of the model to account for this effect would

produce significant damage dependent mode shapes for beams in

bending.
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