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1. INTRODUCTION .

o Ele
Y

1.1 Summary .

It is known that large space structures will be subjected to

o

thermomechanical loadings and environmental conditions which are likely to

degrade the constitutive properties of the structural materials, thus leading

bon 3% BN}
L
i

to possible failure of these vehicles. Therefore, it is desirable to develop

;5 new analytical models which are capable of accounting for these degraded é
;\ properties so that design procedures can be improved. There are three :
t; important aspects of such an effort: selection and development of :
- constitutive models applicable to large space structures, construction of R
- analytical models and experimentation to determine the precise nature of the \
ii material parameters to be utilized in the analytical model. These three ‘

components of the research must be tied together into a single concise package )
EE; in order to obtain a useful model. ?
. This research project is a three year effort to develop an analytic model |
> capable of predicting the response of space structures with degrading material N
r properties under quasi-static as well as dynamic cyclic thermomechanical {

loading conditions. The research was funded by the Air Force Office of

Scientific Research under contract no. F49620-83-C-0067.

.’:

g 1.2 Statement of Work

~ Models have been developed for predicting the thermomechanical response :
N :

of large space structures to cyclic transient temperature loading

w7

conditions. The research was conducted in the following stages:

.

1) selection and specialization of thermomechanical constitutive
equations to be utilized in the analysis of large space structures;
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2)

3)

4)

5)

6)

construction (where necessary) of coupled energy balance equations
(modified Fourier heat conduction equations) applicable to the
constitutive models selected in item 1);

casting (where necessary) the resulting field laws into coupled and
uncoupled variational principles suitable for use with the finite
element method;

finite element discretization of the variational principles for large
space structures;

experimentation to determine material properties to be utilized in the
constitutive models; and

parametric studies of the quasi-static and dynamic response of large
space structures undergoing thermomechanically and environmentally
degraded material properties.

The experimental effort (discussed in 5) was supported in part by DOD

equipment grant no. 841542. The total research effort outlined above spanned

a period of three years. The following section details results obtained

during the contract period.
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2. RESEARCH COMPLETED TO DATE

2.1 Summary of Completed Research

1)
2)

3)

4)

5)

6)
7)
8)
9)
10)
11)

12)

o«
,n'"n 0 I

The following tasks have been completed during the contract period:

o

literature survey;

selection of constitutive equations for thermoviscoplastic metals at
elevated temperatures and polymeric composites with thermomechanical
load induced damage at temperatures below the glass transition
temperature;

construction of a coupled energy balance equation for
thermoviscoplastic metals;

casting of field laws for the material discussed in 2) into a one-
dimensional finite element computer code with two-way thermomechanical
coupling;

parametric studies using the model developed in 4) to determine the
thermomechanical response of representative metallic space structures
with degraded material properties;

development of generalized constitutive equations for metal matrix
composites with distributed damage;

experimentation to determine material parameters for the model
developed in item 6);

development of algorithms for composite truss-iike space structures
with damage induced and spacially variable stiffness loss;

_parametric studies for graphite/epoxy composite space structures using

item 8);

development of bounding techniques for hysteretically induced
temperature rise in thermoviscoplastic space structures;

development of an analytic method for modeling beam-like structural
components with damage induced stiffness loss; and

development of a finite element model for composite beam-like space
structures with elastic material properties and subjected to solar
flux heating and radiation boundary conditions.
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2.2 Literature Survey

A detailed literature survey has been completed as part of the research
effort [1]. This report, entitled "Large Space Structures Technology: A
Literature Survey," was included in the first annual technical report.
Briefly, the report details recent advances in the areas of materials,
structural solution techniques, damping, and preliminary design and
experiment. The results of this survey indicate that very little research is
available on the effect of material property degradation on large structural

response.

2.3 Selection of Constitutive Equations

Candidate material models have been selected for metals at elevated
temperatures and polymeric composites below the glass transition

temperature. These are detailed below.

2.3.1 Metals at elevated temperatures are currently modeled using continuum

mechanics with internal state variables (ISV's) [1-5], wherein the stress-

strain relation is of the form (for infinitesminal strains):

i I T
955 = Dijka(ekg = €k = Ske) (1)

where °ij is the stress tensor, €a is the strain tensor, D, is the linear

ijke

elastic modulus tensor, eil is the inelastic strain tensor, and slg is the

thermal strain tensor. In addition,

b f e, aThal)) (2)
ij ij ke kg

and
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8i5 = 2 lergTragy) (3)
where fij and n?j are appropriate functions of state, T is the temperature,
and a?j are a set of second order tensor valued internal state variables

modeling dislocation arrangement dislocation density, intergranular damage,
etc.

Although it has been demonstrated that numerous models fall within the
above framework (6], the special cases of equations (1) through (3) utilized
thus far are a classical plasticity model developed by Allen and Haisler [7,8]
(see Appendix 6.2), a single internal state variable viscoplastic model
developed by Cernocky and Krempl [9,10] (see Appendix 6.1), and a two internal
state variable viscoplastic model developed by Bodner, et al. [11-14] (see
Appendices 6.1, 6.3, 6.4, and 6.7). It is emphasized, however, that the
algorithms developed under this contract can be utilized with any model

capable of formulation according to equations (1) through (3).

2.3.2 Polymeric composites at low homologous temperatures can be modeled using

internal state variable theory as well. However, in this case the ISV's are

assumed to represent locally averaged measures of various damage mechanisms

such as matrix cracking and interply delamination. The constitutive equations

are given by [15,16]
R

- T n n -
%3 = 95 + Cijkl(ekl - Eij) + Iijkl Opg n=l,...,n (4)

where osj is the residual stress tensor, cijk] is the elastic modulus

tensor, I?jkl is the damage modulus tensor for each damage mode, and

n ranges from 1 to the number of damage modes. For example, matrix cracks,

interply delaminations, and fiber breaks each represent one damage mode.
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g
g The internal state variables are described by history dependent ISV .
- growth laws of the form i
_ ">
:’. N n . M \5
: 815 ®ijleker G 1o o) ()
-
S Equations of the form of (4) and (5) have been utilized in the analysis .
S of composite space structures in Appendices 6.5, 6.8, and 6.9. :_-{’Z
7
2.3.3 Metal matrix composites are expected to be utilized commonly in space .
- structural applications due to their high melting temperatures compared to :::Z
' polymeric composites. No appropriate constitutive equations for these -
materials were found in the literature. It was therefore felt that some
constitutive model development was warranted for this class of materials. The
distinguishing feature of metal matrix composites is the substantial inelastic .
(either elastic-plastic or viscoplastic) nonlinearity which occurs in the :
n matrix. On the other hand, chopped fiber metal matrix composites do not .
' exhibit the degree of layered anisotropy observed in laminated continuous ._ :
fiber polymeric composites. Due to these differences, the internal state in
metal matrix composites can be significantly different from polymeric :::
composites. Accordingly, a generalized model was developed for this F
. material. Although the model is an extension of previous research on T
polymeric composites [15], the mechanics of damage development are totally 5:
- different. The details of this model are given in references 17 ana 18. In
addition, a synopsis is given in Appendix 6.6.
The constitutive framework is based on a continuum mechanics approach -
‘ with constraints on the relations provided by thermodynamics and fracture - '
mechanics. The general model is applicable to materials with damage (such as ’: !
™ .
: .

1

M
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voids, cracks, etc.) and included inelastic effects such as plasticity [17]. )

)
\ TS
‘ The model is constructed -within the framework of continuum mechanics and :
§, thermodynamics. The governing conservation laws are integrated over a small
‘e
= local volume element which is assumed to have a statistically homogeneous
! damage state. The Helmholtz free energy can be expressed as
o
¥ nT0T = nEP 4 € (6)
-
.
~ TOT EP

where h is the total Helmholtz free energy, h- is the Helmholtz free

energy due to the elastic-plastic response in the absence of damage, and uf is

the energy due to damage. It is therefore hypothesized that

[
. eij’ aT) (7)

where €4j is the total strain tensor, egj is the inelastic strain tensor, and

aT is the temperature difference from the reference temperature.

' Furthermore,
' c_.c¢C I
‘.' UL - UL(Eij, 61-3-, AT, O.,ij) (8)
» where %5 is the internal state variable representing damage, which is defined
by

2 o, = i /u.n ds (9)
c::‘ 1-] VL 1 J

S
T where S is the surface area of cracks in the local volume V,, and u; and nj
<. are the crack opening displacements and normals, respectively. Constraints
a

imposed by the second law of thermodynamics give the following results [17]:
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a 0.. = p & (10)
'y 1J a€1J

Therefore, expanding equations (7) and (8) in Taylor series expansions in
terms of their arguments, substituting into equation (10) and truncating

higher order terms results in

g.. = 0O

I
i3 7 %3 " Cigkeltke 7 ke T ke T fke) (11)

where o?i is the residual stress tensor, e£j is the inelastic strain

tensor, te is the thermal strain tensor, and Cijkz is the linear elastic
modulus tensor. For the uniaxial case in which there is negligible
temperature change, the following form results:

o= o *E(c-cl - a) (12)

where E is the initial loading elastic modulus. Now define the initial

unloading modulus E such that (See Fig. 1):

I
- 80 _ . %e _ 3a
EU Y EL(1 de ae) (13)

It is assumed that at relatively low homologous temperatures the

inelastic strain remains constant when unloading, so that:

[
€ _
T_O (14)

€

Assuming linear elastic unloading of the matrix, the change in damage is

.proportional to the change in strain:

------
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3% = constant (upon unloading) = 8 (15)

Therefore, for unloading:

Ey = E_(1-8) (16)

The model described above provides the motivation for the experimental
research. [t is hypothesized that the two parameters that are defined in this
mode1 (aij and g) can be determined by experimental methods. By determining
the change between the initial loading and unloading moduli of the composite
in a uniaxial mechanical test, 8 (defined 1in equation 16) can be found. It

is also observed that ay (defined in equation 9) can be determined by

J
evaluating the amount of surface area in the composite. It is therefore
desirable to determine if a cause-and-effect relationship exists between the
microstructural damage (aij) and the stiffness loss (8).

The primary objective of the experimental effort was to develop a
technique for determining and evaluating damage in metal matrix composites.
This technique was required to be capable of detecting cracks and voids (free
surfaces) in the composite. These cracks are generally on the order of
microns in characteristic dimension, so that scanning electron microscopy was
required to measure the damage. Specimens were loaded to different levels and
the damage was studied at each increment. Once the amount of damage was
determined it could be input into the general constitutive model for metal
matrix composites.

The material used in this study was obtained from ARCO Metals Silag

Operation in Greer, S.C. The composition of the material is 6061 Aluminum

with a twenty percent volume fraction of F-9 silicon carbide whiskers. Plate

R
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was made from the materials by.a powder metallurgy process and cast into :‘E?.

‘ L
4

billets. The billets were then rolled, extruded or machined to the desired

W shapes. The SiC whiskers average two microns in diameter and twenty microns o)
& long. The composite has a T-6 temper. Tensile test coupons were machined in %;
! accordance with ASTM E-8 (Tension testing of metallic materials) to the e
N dimensions shown in Fig. 2. For the initial portion of the study all ijj'.‘
;E specimens were machined with the same orientation with respect to the plate :ﬁf

for the purpose of uniformity (with respect to the SiC whisker orientation).

A second phase of the testing involve the use of tensile test specimens ;:
E; oriented perpendicular to the initial specimens. Details of the experimental ;
procedure are given in Appendix 6.6.
EE It was shown in the development of the constitutive model that the damage §§
A parameter, ajge can be used to predict stiffness losses. Therefore, it was '
‘ the objective or the experimental research to measure stiffness loss and the ,
::..f associated microstructural damage as a function of strain level in order to t;
- qualitatively assess the applicability of the model to the A1-SiC metal matrix '
' composite. This experimental objective was carried out by determining the ‘l
’- initial loading and subsequent unloading moduli of tensile specimens oriented
;‘ parallel (0°) and perpendicular (90°) to the principle rolling direction of a \
- plate fabricated from 6061-T6 aluminum with silicon carbide whiskers. In
'.:' addition, scanning electron microscopy was utilized to characterize and t:
':: quantify load-induced changes in the microstructural damage associated with .,‘
the silicon carbide particles.
:f The results showed that the A1-SiC plate was anisotropic with E:
“ approximately 15-20% difference in the moduli of the specimens oriented in the 2\
0° and 90° directions. Also, the SEM photomicrographs indicated that the SiC (
b whiskers were oriented more or less parallel to the principle rolling ,_
. direction. E:::
a N
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There was very little difference between the initial 1loading and
subsequent unloading moduli of the 0° specimens, as shown in Fig. 3. Also,
there was no apparent load-induced change in the state of microstructural
damage 1in these specimens. On the other hand, there was a significant
reduction in the moduli of specimens oriented in the 90° direction, as shown
in Fig. 4. Furthermore, the photomicrographs revealed very obvious and
significant load-induced changes in the state of microstructural damage in the
90° specimens.

The results illustrate a clear cause and effect between the increase in
load-induced microstructural damage and a decrease in the elastic modulus of
the A1-SiC metal matrix composite. It is concluded from these results that
the constitutive behavior of a short-fiber reinforced metal matrix composite
can only be modelled by an appropriate treatment of the microstructural damage
associated with the fiber particles. Although the model developed herein is
capable of accounting for these effects, due to the qualtitative nature of the
results obtained, the constitutive equations for metal matrix composites have

not at this time been utilized to model the response of large space

structures.

2.4 Coupled Energy Balance Law

The energy balance law for thermomechanically coupled media of the type
described in Section 2.3.1 has been constructed [19] (see also Appendix
6.1]. This equation can be utilized to predict temperature rise in a
thermoviscoplastic medium subjected to cyclic mechanical loading. This

equation is in general a statement of conservation of energy and represents a

modification of the Fourier heat conduction equation given by
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_pCVT+qj,J.=or" —Ij
vy

where LN is the internal state variable modeling plastic strain, E“ is the <

thermal conductivity tensor, p is the mass density, C, is the specific heat, l._

q; is the heat flux vector, and r is the specific heat supply. !

The above result has been utilized to predict the thermomechanical

response of a single perfectly insulated truss element to cyclic mechanical —

loading (see Appendix 6.1). As shown in Figs. 5 and 6, substantial .
temperature rise (approximately 3.7°C) is predicted for each cycle. N .

In polymeric composites the majority of the strain energy lost to =
inelastic deformations may be expended in the creation of internal surfaces -; '
called damage. It is therefore assumed to be unnecessary to construct two- )

way coupled energy balance laws for these materials and the classical Fourier i
heat conduction equation is adequate for modeling the temperature field. - X
Therefore, the models developed herein utilize only one way coupling for ~ '.
polymeric composite media; that is, the temperature field affects the ' i
displacement field but not vice versa. _.
2.5 Space Structural Response Algorithms " '
Due to the nonlinearity introduced by the constitutive equations =2
developed in Section 2.3, as well as radiation thermal boundary conditions, I&: :

approximate techniques must be utilized in order to obtain results for =
geometries representing space structures. Accordingly, the following finite :'::‘-
element computer algorithms were developed during the course of the research 3 :
effort: -
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1) one-dimensional code for analysis of two way coupled thermoviscoplastic
media (see Appendices 6.3 and 6.4);

2) truss code for analysis of composite space structures with spatially
variable and history dependent damage (see Appendix 6.5);

3) two-dimensional continuum code for predicting quasi-static response of
elastic-plastic media to mechanical inputs (see Appendix 6.2);

4) frame code with one-way coupled thermal analysis for predicting response of
composite space structures to thermomechanical inputs (see Appendix 6.8);
and

5) beam code for analysis of beam-like composite space structures to spatially
and history dependent damage (see Appendix 6.9).

Details of the models are given in the various appendices cited above.

In addition, further information on the algorithm mentioned in item 4) above

is contained in reference 20.

2.6 Model Results for Large Space Structures

For purposes of illustrating the capability of the models developed under
the contract, several sample problems are provided here for representative
space structures. These examples fall into the following four categories: 1)
heat generation due to cyclic loading of metallic members; 2) frequency and
mode shape degradation of composite truss structures; 3) radiation induced
response of composite frame structures; and 4) degradation of dynamic response
of composite beams with damage. Results for these four examples are discussed

briefly below.

2.6.1 Heat generation in metallic members occurs due to coupling between

thermal and mechanical effects, as discussed in Section 2.4. Considerable
research was performed on this subject, as detailed in Appendices 6.1, 6.3,

6.4, and 6.7. These results are summarized here.
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It was found that for an insulated truss member composed of a
representative metal, when the member is intentionally loaded cyclically to
the postyielded state (in order to induce significant material damping) shown
in Fig. 5, a temperature rise of 3.7°K occurred on each load cycle, as shown
in Fig. 6. This was cause for further study, since a modal response of the
structure could eventually result in structural component melt-down.
Therefore, a subsequent effort was made to account for more realistic thermal
boundary conditions. This required that spatial variability of the field
parameters be incorporated into the model, so that it became necessary to
utilize the finite element method. This resulted in a highly complex
nonlinear and numerically stiff algorithm due to the viscoplastic constitutive
equations, as described in Appendix 6.3. Results indicated that for the case
of a truss member with insulated longitudinal boundaries and nonzero thermal
flux at each end, for the loading input shown in Fig. 5 the temperature rise

per cycle was reduced to 1.0°K per cycle, as shown in Fig. 7. Since this was

~still considered to be sufficient to lead to structural failure, it was

decided to incorporate the effect of nonlinear radiation boundary conditions
to the algorithm. As shown in Figs. 8 and 9, the temperature rise is quite
substantial for fifty cycles, even at moderate frequencies (cases I and II
represent different member coatings), reaching 90°K for a frequency of 5 Hz.
Finally, bounds on the predicted temperature rise versus stress amplitude are
shown in Fig. 10. Since this amount of heating is unacceptable in metallic
structures, it is concluded that the intentional use of metal inelasticity to
induce passive structural damping can possibly lead to catastrophic heating of
the structure. Therefore, attempts to induce damping via this mechanism

should be viewed cautiously.
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2.6.2 Degradation of modal frequencies and shapes can occur in composite space

structures wherein microstructural damage occurs as a result of the history of
loading. As an example, consider the truss structure shown in Fig. 11. This
beam-1ike structure is cantilevered at one end to simulate an antenna boom.
The structure is sixty feet long with bays ten feet long by three feet wide.
The structure is constructed from graphite-epoxy composite material with a
quasi-isotropic ply layup. Experimental research indicates that the material
may undergo up to 15 percent loss in stiffness due to cyclic thermomechanical
fatigue which causes a variety of damage modes in the structure. Additional
loss of stiffness may be attributed to elevated temperature and chemical
changes due to solar radiation and other environmental efffects. In this
model the properties are degraded spatially on an element by element basis as
a function of the stress history in the structure induced by long term
thermomechanical cyclic loading. Stress amplitudes were obtained by using
displacements corresponding to the first modal shape and the degraded
properties were compuééd by assuming a linear damage law bases on peak stress
amplitude. Because the boom is fixed on one end, the stresses are highest
there and stiffness degrades the most at the fixed end. Modal frequencies and
shapes were then computed for the five cases where the maximum degradation
within the structure was 5%, 10%, ..., and 25%. Fig. 12 indicates the
decrease in the fundamental frequencies of the first two resonant modes as a
function of this spatially induced damage. Fig. 13 shows that the shape of
the first mode undergoes no appreciable change in shape as the damage occurs,
which is due to the fact that the first mode is a symmetric mode. The second
mode shape, however, shown in Fig. 14, undergoes a substantial change in

shape. This result indicates that active control mechanisms which may be

- placed according to the original undamaged mode shapes may not be capable of

controlling all modes as the dynamic response of the structure changes over
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Fig. 11 Typical Space Truss Structure.
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long time periods. The control designer must be cognizant of these inodal
changes if he is to design a workable control system. Adaptive or robust
control systems will be required.

Numerous other results are presented in Appendix 6.5. For example, it is
shown that if the material properties degrade on only one side of the
structure, as might happen due to solar radiation, the mode shapes are
completely changed.

In conclusion, these preliminary results seem to indicate that small
changes (or errors) in material properties as they change or degrade due to
fatigue damage, etc. may produce significant changes in predicted frequency
and modal response. Correspondingly, this affects the ability to design
effective control systems and places an even greater burden on the control
designer to develop systems which account for these structural changes. It is
clear that an understanding of materia) behavior in space environments and its
jmpact on structural response is very important to successful design and

development of large space structures.

2.6.3 Radiation induced response of composite frame structures is caused by

thermal strains resulting from solar and earth radiation. The thermoelastic
boundary value problem is complicated by several factors. First, a one way
coupling between temperature and displacements exists. It is one way coupled
in that displacements depend on temperatures. Secondly, the problem is
nonlinear due to the introduction of radiation boundary conditions. Thirdly,
there are constantly changing thermal loading conditions due to varying earth-
structure-sun orientation. Finally, geometrical factors such as shadowing and

interelement radiation and conduction exist. These factors combine to create

a highly complex problem, as shown in Fig. 15.
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Past research indicates that a structural member, modeled as a thin-

<
walled graphite/epoxy tube under a constant solar flux, experiences a n

: significant temperature gradient through its cross-section due to the 1low g
B RS
) thermal conductivity of the material. This gradient leads to bending in the *

structural member itself, a condition normally neglected in thermal/structural !E

analysis models. This response is important for two reasons. First, the
bending of a structural member reduces the maximum buckling load that member
can sustain. Second, thermally induced vibrations may lead to fatigue, which —
N is important in predicting the long-term behavior of the material.
: The purpose of this research was the development of an integrated, one- e
way coupled thermoelastic model for transient analysis of large composite
- space structures. The primary load source is thermal strains induced by solar

and earth radiation. Therefore, the model must be capable of transforming

k"

these thermal loads into their mechanical equivalents. Due to the presence of i'

? radiation and temperature dependent material properties, the model is highly EE
N nonlinear.
i The thermoelastic analysis is a completely numerical one. The model 1
satisfies all the requirements for a fully integrated thermal/structural %
analysis model. These are: a common f%nite element methodology, utilization of :j
' a single geometric model, improved thermal analysis, minimized data transfer =
E between analyses, and a thermal analysis fully integrated into the structural i
3 analysis. However, the model is unique in two key areas. First, temperature ;j
- gradients across member cross-sections are accounted for. Thermal moments and .
. extensions are calculated directly form integration of the resulting Si
temperature fields. Second, structural members are modeled with beam elements :E
. enabling bending in the structural members themselves. -
.
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j In performing the thermoelastic analysis, it is assumed that temperatures

R Y
.
V‘ r.. ‘}ﬁ ,"’

[ and displacements are one-way coupled. That is, temperature fields within

¢

« -
[ ]

o structural members may be determined independently, then used as input to the N
'\‘a r
2 structural analysis. The algorithm is as follows. For a given time step, the ;‘
| proper heat loads are evaluated. Then, finite elements are used to construct s
~ N
the temperature field through member cross-sections. A standard two- Z:'
"= -~
dimensional finite element formulation is applied to the following equations ,'\vf

- governing heat transfer in the domain of a cross-section, (see Fig. 16):
2
.- pCVT’t= (sz,z),z+ (kyT,y),y+ Q on A (18) :j_._
h -
3 KT .n+k.T n=gq+ h(T.-T) + eS(T2-T% on B (19) 3
K 2,22y ,yy a r ~
pe,
{.
W7 ":‘
i Here A is cross-sectional area, B is the boundary, t is time, p 3Js material )
density, C, is the specific heat, k, and ky are the thermal conductivities, T
= is temperature, Q is internal heat generation, n, and n, are vector normals, q \
"R
. is the flux, h is the film coefficient, e is emissivity, S is Boltzman's -
| constant, and Ta and T,. are ambient and reference temperatures. The resulting -
temperature field is then converted into bending moments and extensions using :
lf.‘
- the following equations: "
I T ol
o p'= [ Ea(T-T )dA (20) o
o A .
% M= [ Ear(T-T.)zdA 1 ii
$ Y { ar(T-T,)2 (21) o
v 3.
1 <+
1= [ Ear(T-T.)ydA 22 8
Mz' { “T( - O)y (22) -
P ,::-:;
R
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the coefficient of thermal expansion, T is the current temperature field, and

To is the initial temperature field or the temperature field in the

unstrained state. The thermal force and moments about the local y and z axes
are given by PT’ MyT, and MZT , respectively. These loads are initially
calculated in the local coordinates of their cross-section, then transformed
into global coordinates to be used as forcing functions in the structural
analysis. The structural analysis portion of the model is for linear space

frame geometries. It is the result of applying the standard finite element

formulation to the governing differential equations of beam motion:

(oAU,y) sy - (EAU, ), = P, (23)
(I48s¢)sy - (JGO,. )y, =0 (24)
(oAv’t)’t * (EIZV’xx)’xx - MzT’xx (25)
(oAWst) sy + (ELMs ) = M (26)

Here u,v and w are displacements in the x,y, and z coordinate directions, o
is the rotation about the x axis, Im is the mass inertia of a cross-section,
G is the modulus of rigidity, J is .the polar moment of inertia, Iy and Iz
are the bending inertias about the y and z axes, and PT, and MyT, and MZ are
given in equations (20), (21), and (22). Once the deformations and stresses
are determined, time is incremented and the process repeated. Forward

integration in time, within the structural analysis, is via the Newmark

method. The thermal analysis utilizes the Crank-Nicholson method. The final

algorithm is described schematically in Fig. 17.
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; The boom shown in Fig. 11 was analyzed for two physical cases. In case ;
l'“ one, the structure was assumed to be in thermal equilibrium and stress-free in ;
~ sunlight. At time t=0, the structures moves into shadow. In case two, the L
< opposite occurrs, that is, the unstressed structure moves from shadow to E,
- sunlight. The maximum axial stress divided by the yield stress is plotted y
| . against time for a typical member in Figs. 18 and 19. It can be seen from the é
: ié results that bending stresses are not negligible, indicating that the :
- structure must be treated as beam-like rather than truss-like in nature.
é R Furthermore, the long time necessary to induce significant stresses indicates ?
: " that even though the transition from shadow to sunlight is assumed to be ;
< instantaneous, no inertial effects are induced by radiation. Further results I
: from this portion of the research are given in Appendix 6.8. E
5
I ii 2.6.4 Damage in composite beams can substantially alter their dynamic ]
L 2 response. Fibrous composites are known to undergo a small but significant 5
f - amount of stiffness loss due to load induced microcracking. This stiffness
. !. loss usually occurs over several hundred thousand load cycles. Due to the '{
E . stress dependent nature of the damage, the stiffness 1loss 1is spatially i
ﬁ CE variable and concentrated in the areas of high stresses. This spatial change E
- in the material properties of the structure results in appreciable changes in i
. the dynamic response of the structure. g
i: Although the authors have previously developed a qualitative method for i
a predicting response of structures of this type (see appendix 6.5), it is not
B s

possible to construct a precise history dependent structural algorithm for
complex space structures due to the excessive computational times required to )
obtain accurate resuits. A more accurate method has now been developed for a

single beam member with various boundary conditions. Since this model carries
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structures, it is possible to determine the actual structural response for a

load input of several hundred thousand cycles. the following is a brief
description of this procedure.
The well known partial differential equation for the free vibration of a

beam is

2 2 2

] 3 W 3

(1Y) +on ¥ (27)
3X2 3X2 2

at

L3

where E is Young's modulus, I is the moment of inertia of the cross-section, A
is the cross-sectional area, o is the mass density, y is the transverse
displacement, x is the axial coordinate, and t is time.

A number of solutions to the above differential equation are available in
the 1literature for both uniform (constant cross-section) and nonuniform
(variable cross-section) with different boundary conditions. Most of the
solutions are for beams with homogeneous material properties. These solutions
have been obtained by assuming that the stiffness of a structural element is
constant in time and therefore independent of loading history. Neither
material damage nor environmentally caused degradation are considered in these
analyses.

Due to the occurrence of load induced and history dependent damage in
composite mateials, these previously obtained results represent unrealistic
approximations of the actual structural behavior. In particular, the resonant
frequencies and mode shapes of the structure can be severely altered by the
introduction of spatially variable damage and environmentally caused
degradation, the stiffness of a structure is no longer a constant, since it
will change substantially according to the stress distribution and the history

of external loading. The stiffness 1oss may change the natural freguencies
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and mode shapes substantially. With the material damage and enviromentally
caused degradation involved, the differential equation becomes difficult if
not impossible to solve in closed form.

The concept of internal state variables (ISV) is introduced to represent
the history dependent change of stiffness. An internal state variable D is
utilized as a local ISV representing the damage state together with the ISV
growth law, the finite element solution technique can be modified to account
for the history dependent stiffness of the beam element, with resulting field

equations

(M] (y} + [K](y} = (O}

L
My g -Of NiN 50A(x) dx

5= of " E(e D) 10N ax (29)

The above set of second order ordinary differential equations for each element
is combined to represent the eigenvalue problem for the beam structure.

The occurrence of damage will cause the loss of stiffness, that is the
stiffness is history dependent. Experimental results indicate that the time
scale of damage and degradation is very long compared to the first fundamental
frequency of the structure. Therefore, the mathematical algorithm is treated
as linear with slowly varying coefficients. In this research, particular
interest was placed on the natural vibration solution of a beam structure
with history dependent stiffness and the investigation of the possible effect

of material damage and stiffness reduction on the natural frequencies and mode

e .».x'-\"s."\.x\' .‘\'\‘*.-‘x\"\\\ KRR NS



shapes of planar beam structures with various boundary conditions (free-free,
clamped-free, clamped-clamped and simply supported).

The research also focused on the investigation of the internal state
variable representation of the damage phenomenon. The damage in a composite
material includes a sequence of microstructural and macrostructural events
such a microvid growth, matrix cracking, edge delamination and fiber
fracture. The most significant effect of damage on the material properties is
that the stiffness will be substantially changed during the life of the
component. The constitutive equation for a composite material could be

represented as
o= E(e - eT) (30)
where £ is Young's modulus, which will change according to the damage D as
E = Eo(l - D) (31)
where the subscript o represents the initial condition. The damage D is an
internal state variable describing the damage phenomenon during the life of

the composite structure, which is governed by the internal state variable

growth law
D= f(e, T, D) (32)
A typical result for the degradation if the frequency of the first mode

of the simply supported composite beam shown in Fig. 20 is shown in Fig. 21.

Further results are shown in Appendix 6.9 However, it was found that the

.
P

)

YN



UV L\
<4

< W

NN

-

[ b

W

e
Y

3
!
ﬂ

]
N

v
".

:’1-{"‘
e
)

" |
[ M
[

-

- >
A '$
N

<

o Fig.l Simple Beams Fig.2 Load History %
~ :
4-I

i.
l’ i3
I"‘ -
n.‘, -y
q.', *o3
.

_/ A, Er

7| - R
N\ _— A:’—/. E,‘-/

rvw
.

v"f
e
\

<1
™

’
[ 4
va 7y 0

e —L -

3
> -
.\: )
<
> X
. 2 5
< -
L4 g
" v
Fig 20 Heterogeneous Beam with Spatially Varying A
i Cross Section Properties *
i
43 ::':

o Feite e e ey e s e,
N AN IS ISR I AR A I e SR et TN e S T T T R T T
2 . R 4 R b * - N W, =



hay] BRI WA ISR AN EEERAUCAY B R P A M S RO B R {3

D |
.
ot

.
a

)
.,

A TRl il
e A
L
-

A103sTH ofaey Louanbaig 1z ‘814

A A

Nou

L-O
<
m
QY]

I el e el e e A i e e - 166 N

-+
N

.
6))
[}
Ji
‘

m_
v_
3
w

Y
<

'

-.._

v

.
N
(03]

T

d - amm
~

»
*/
.\'.|

NN N T 9°66

i
ST » C%/m

/"
/
/

~ ~ .
. / N ~ 1 -
. ///”// - - T 8 66
.
Tl T v/t
/l“ﬂ //: R\ \wN v/
-ull”::// T~ ) o\!\uﬁﬁ —
#ul’*: . S .
—— o «6\.«8
- - - - - - i e .. o U N . Y OOM
L ]
e AhNARIr; SRATRNAY  CRERRAR: | CINnty  CIIOUED PAAADINN SUOGONC] METERIG: SICTOT




s s ave @

MR

FOVRNR -

.\4

L 4
o

s ¥
‘,

". s,
2

LA AN S DY o T S A B il A DAY b Qe SR04 - e v h A A AL A GG & SR AN

mode shapes are not substantially affected by damage. We believe that this
was due to the assumption that the damage was assumed to vary through the
thickness due to bending stresses. An experimental effort is currently

underway to determine the accuracy of this assumption,

2.7 Conclusions
This research effort has resulted in a number of important conclusions.
We summarize a few of these as follows:
a) in metallic structures wherein material inelasticity is utilized to produce
passive damping, thermomechanical coupling can lead to castastrophic

heating of the structure;

b) moderate changes in stiffness of composite structural members can Tlead to
substantial changes in frequencies and mode shapes of the structure;

c) solar and earth radiation in composite structures can lead to thermal
gradients which lead to substantial bending in large space structures, thus
negating the efficacy of truss analysis; and

d) in metal matrix composite members there is a qualitative comparison between
microstructural damage and macrostructural stiffness loss.

It 1is the general conclusion of these researchers that material

inelasticity and temperature effects cannot be disregarded in modelling the

dynamic response of large space structures.
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A Prediction of Heat Generation in a

Thermoviscoplastic Uniaxial Bar
by

David H. Allen

Abstract

A thermodvnamic model is presented for predicting the thermomechanical
response, including temperature change, in a uniaxial bar composed of a
thermoviscoplastic metallic medium. The model is constructed using the
concept of internal state variables, and it is shown that this general frame-
work is capable of encompassing several constitutive models currently used
to predict the response of rate sensitive metals in the inelastic range.
Results.are obtained for monotonic loading which agree with predicted re-
sults previously obtained by Cernocky and Krempl for mild steel at room
temperature. The model is then utilized in conjunction with Bodner and
Partom's constitutive equations to predict temperature change in Inconel

(IN) 100 subjected to both monotonic and cyclic loading at 1005°K(1350°F).

Introduction

It has long been known that mechanical and thermodynamic coupling ex-

ists in solid bodies [1,2]. However, in elastic bodies this coupling is

negligible except when mass inertia is not negligible due to flux of heat generated

through the boundary of the body [3]. However, in thermoviscoplastic metals
the conversion of mechanical energy to heat may be singificant even under
non-inertial conditions, especially since material properties become ex-
tremely temperature sensitive in the inelastic range of respomnse [4-11].

Similar research has been performed on non-metallic media {12-15].
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General continuum mechanics models have been formulated for brﬁad classes
of materials [16-19]. However, to this author's knowledge only recently
has attention been paid to the coupled heat conduction equation for thermo-
viscoplastic metals [11,20]. Recently, Cernocky and Krempl [11] have pro-
posed a model for predicting the temperature rise in a class of thermovis-
coplastic metals, with special emphasis on test coupons subjected to either
homogeneous uniaxial or torsion loadings. In this paper an alternative ap-
proach to that proposed in [!1] is discussed. This method uses the thermo-
dynamics with internal state variables originally reported in [17] and dis-
cussed elsewhere in detail for metals [18,21,22], with development of the
multidimensional coupled heat-conduction equation in [20].

The research herein is presented in three parts: field formulation
in one-dimensional form; development of the governing equations from addi-

tional constitutive assumptions; and numerical results for selected problems.
Thermodynamics of a Uniaxial Thermoviscoplastic Bar

Consider a slender bar which is subjected to a homogeneously applied
deformation field such that the resulting stress field is evervwhere uniax-
ial in the xIEx coordinate direction, as shown in Fig. 1. Rigor would re-
quire that the possibility of finite deformations be considered. However
this condition is covered in detail elsewhere [17,18,20,21,22], and for
purposes of simplicity only infinitesimal deformations will be considered
herein. For notational simplicity, then, the observable mechanical state

variables are

u = u, = deformation field, ()

€ = Ell = {nfinitesimal strain field, and 2)

3 = 011 = stress field (3)
2
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Although transverse components of deformation and strain may occur, it is
assumed that they are not necessary tc characterize the uniaxial stress J.
The mechanical state variables (1) through (3) are adjoined with the

thermodynamic state variables:

e = internal energy per unit mass; (4)
r £ heat supply per unit mass; (5
s = entropy per unit mass; - (6)
T = absolute temperature; and (7)
q = q = heat flux in the X coordinate direction’, (8

where it is assumed in (8) that the bar is isotropic and long and slender
with perfectly longitudinal boundaries so that the heat flux is one-dimen-
sional.

In-accordance with the theory of internal state variables [17]), ob-
servable state variables (1) through (8) are now supplemented with inter-
nal state var;able growth laws in order to characterize the state of inel-
astic bodies:

o, = scalar valued internal state variables, k =1, ... , n; 9
where n is the number of internal state variables required to characterice
the state of the body. The precise nature of (9) will be discussed later.

Parameters (1) through (9) are assumed to be functions of space (x)
and time (t), and are assumed to be sufficient to describe the uniaxial
state of the bar at all times. These parameters are constrained by:

a) the conservation of mowmentum,

30
50 (10)

where inertial effects and the body force are assumed to be negligible;

b) the strain-displacement relation,

ou
s--a-; ; (1)
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¢) the balance of energy, :‘j
C L B
ce - 0t +<3 = pr . (12) .
ox AN
l. .’.$
”" where » represents the mass density; and .d:'{
d) the second law of thermodynamics,
L . or .3 g
w = - s e > .
. pY £ ps Tt 2 (T) >0 3 (13)
} . where Y is called the internal entropy rate per unit mass.
- As detailed by Coleman & Gurtin [17], equations (10) through (13) are
'_ now supplemented with the following constitutive assumptions: :‘_".:
3 o = o(e, T, 3T/ox, o) (14) f-
* e =e(c, T, 3T/3x, o) (15)
s =s(e, T, 3T/3%, o) (16) )
ﬁ q = q(c, T, 3T/3x, cv.k) ; and (17
o = o (e, T, 3T/3%, &) ~oas)
. where it is obvious that equations (14) through (18) satisfy the principle
: of equipresence [23]. Equations (10) through (12) and (14) through (18)
L4
describe eight +n equations in the eight +n field variables u, &, 07, e,

r, s, T, q, and o described in (1) through (9). These are adjoined with

o boundary conditions on the surfaces x = 0 and x = L to prescribe the one-
% dimensional field problem.
o

As detailed elsewhere {17,18,20-22], the second law of thermodynamics
({inequality (13)] will constrain constitutive assumptions (l14) through (18).
This is accomplished by defining the Helmholtz free energy:

[~ h = h(e, T, 3T/3x, ak) =m¢ -Ts m>e =mh +Ts , 19)

which together with the Clausuis-Duhem inequality will lead to the conclu-

sions that
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n:'.
h = h(, T, Q'k) ’ (20)
i i~
- — = 21
-] 3'1' S(eo T, Q-k) ’ ( )
-
-
3 G = ﬁ
P3 , and : (22)
N q = -k 32— +0 [ . (23)
ox X
1 1
:::: where k is the coefficient of heat_ conduction in the x) coordinate direc-
- tion. Therefore, equations (19) through (23) replace equations (14) through
(18) as more concise statements of the constitutive behavior, and it can
;«. be seen that specification of the Helmholtz free energy will complete the

description of the field problem.

> Combination of equations (12) and (19) through (23) will result in the

coupled heat conduction equation:

. 2 . < . 2 .
:IE p%ak-m%ak-prme-or%}T+%-pr. (24)
where summation on the range of k is implied.
! Henceforth in this investigation it will be assumed that there is
f:f' no internal heat source (other than material dissipation) so that r = 0
in equation (24). In addition, it will be assumed that
g boundary conditions are applied in such a way
" that heat flux is negligibly small and q 3 O in equation (24). This last
h assumption is not valid under most physical circumstances. However, it
:Zj can be said that on the basis of heat conduction equation (24) neglecting
- heat flux will result in an upper bound for the temperature rise during
ﬁ mechaﬁically induced energy dissipation. Inclusion of this term results
- in a spacially dependent boundary value problem which is bevond the scope
i :." of the current research. However, the one-dimensional model proposed herein
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does encompass the heat flux phenomenon, and, as such, will be the subject

of a future paper by the author.

Development of Governing Equations from

Additional Constitutive Assumptions

In order to construct the Helmholtz free energy function the elastic

strain is first defined to be
Fre-a -3 , (25)
where o is the total inelastic strain in the X coordinate system [24],
a is the coefficient of thermal expansion in the X, coordinate direction,
and 8 £ T - T_, where T is the initial temperature at which no strain is ob-

R
served under zero mechanical load. The inelastic strain %y will be discussed -
in greater detail in the next section.
It is now postulated that the Helmholtz free enerzy may be expanded

about the initial configuration in terms of elastic strain and temperature

as follows:

EL_ E v
h=h+35e -8 (26)

where the subscript R denotes the equilibrium value, 2nd

hR = free energy in state R = constant, (27)

E = Young's modulus in the x, coordinate system, (28)
- Zh 2 .

Cv £ -T(3"h/3T") = specific heat at constant volume. (29)

Note that although the first order terms in EE and 8 have been neglected

due to symmetry conditions due to the form of equation (25) coupling is
retained between total strain, inelastic strain and temperature. Note also

that the energy dissipation due to microstructural change has been neglected

in free energy equation (26) because this mechanism has been shown to contribute
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only a small portion of energy (<10%) to the dissipation process [25].
Further, the fracture energy loss due to microvoid growth, grain boundary
sliding, and intergranular macrofracture is neglected due to the small
strains considered herein.

Although the second order Taylor series expansion of the Helmholtz
free energy given in equation (26) may not be adequate for characterizing
the response of many materials, it will be shown in the next section that
the above equations are a suitable framework for describing the material
behavior of the class of materials considered herein.

Substitution of equation (26) into energy balance law (24) and uti-

lizing equation (25) will result in the coupled heat equation:

L] -_2. —: O‘
{(Ee - Eal + EGIR)al + Ea TT] - Ealc DCVT 0, (30)

where the terms in brackets arise due to inelastic response and the following
term is the classical elastic coupling term [3]. Equation (30) may be written

in the following equivalent form:

T - (Ege - Eal + EaTR)al - EaTc
—2
pCv - EaT

(31)

In order to obtain the stress-strain relation the Helmholtz free energy
equation (26) may be substituted into equation (22) to obtain

o =E(c - a, - afd) (32)

1
Equations (31) and (32) together with internal state variable growth
laws (18) will be sufficient to characterize the response of the uniaxial

bar subjected to uniaxial homogeneous mechanical loading considered herein.
Selected Problems and Numerical Results

It has been shown that stress-strain relation (32) together with in-

ternal state variable growth laws (18) are equivalent to several models

R A R
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recently proposed for thermoviscoplastic metals [24]. These include Cer-
nocky and Krempl [11,26], Valanis [27], Krieg, et al. [28], and Allen and
Haisler [29]. It can also be shown that several others are in accordance
with the model developed herein [30-34]. To illustrate this point two
models have been selected for further discussion.

Cernocky and Krempl's stress-=strain relation may be written in the

following uniaxial form:

g + K(0, €, T)O = G(g, T) + M(d, €, T)[E - aT]
where ’

E = M/K ’ (34)
and parentheses imply dependence on the current values of the quantities
enclosed. Equations (33) and (34) can be shown to be in agreement with

stress-strain equation (32) by defining the inelastic strain oy such that

&1 = [0 - G(e, T)]/M(T, €, T) (35)

so that

t
al(t) - S al(t')d:' (36)

R

where tR is the reference time, t' is a dummy variable of integration, and
t is the time of interest. Thus, since G, K and M are not history depen-
dent, Cernocky and Krempl's model is a single internal state variable model
and equations (31), (32), (35) and (36) describe the uniaxial bar problem
using Cernmocky and Krempl's model.

To illustrate this point an example problem is now considered. Sev-
eral uniaxial bars composed of mild steel are subjected to constant strain
rates at room temperature with material properties as described in Table

2 of reference [l1]. Stress-strain behavior and resulting temperature
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rise are shown in Figs. 2 and 3. These results were obtained bv integrating
ii equations (31) and (35) with a stable and accurate Euler forward integra-

) tion scheme. Due to the rate insensitive nature of mild steel at room tem-
é? perature, the predicted results are identical for strain rates ranging from
!! 0.001 sec-1 to 1.0 sec-l. The negligence of heat flux over suéh a wide
> range of strain rates is valid only under adiabatic conditionms.

'i; It is significant to note that the results obtained in Figs. 2 and

;' 3 are identical to those obtained by Cernocky and Krempl [11]. This is

:i due to the fact that the assumed internal energy rate described by equa-

:: tion (14) in reference [l11] can be obtained in the uniaxial form by util-
= izing equations (19), (21) and (26) in this paper. Further, energy balance
S; equation (55) in reference [l1] can be shown to be identical to equation

(26) derived herein by substituting equation (32) in this paper. Finally,

Ii it should be pointed out that under non-adiabatic conditions neglecting

) the heat flux in the results obtained herein causes increasing overesti-

mation of the temperatures shown in Fig. 3 as the input strain rate decreases.

.' Bodner and Partom's model [35,36] may also be written in the uniaxial

form described by equation (32), where

2y |n
. 2 c n+l )
= %75 P ToT & | - <“2'5>(GT) » G7)

where Do and n are experimentally obtained material constants and

. . . az = ZI r
:{ a, = m(zl - az)c a, - AZ, —Z—l— ’ (38)
"h
b, where az is an internal state variable representing drag stress and m,
¢
n

ZI, Zl. A, and r are experimentally determined material constants. Although

equation (38) contains stress g, it can be written in the form described
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by equation (18) by direct substitution of equation (32). Thus, Bodner
and Partom's model contains two internal state variables in the form de-
scribed above.
Results are shown in Figs. 4 through 7 for uniaxial bars of IN
100 pulled at various constant strain rates at an initial temperature of
1005°K (1350°F). Experimental data were obtained from Reference [37],
and the material constants described above are tabulated in Reference [38].
The stress-strain curves shown in Fig. 4 are identical to those previously
obtained [38].
As a second example using Bodner and Partom's model a uniaxial bar
of IN 100 with material parameters as désaribed in Refs. [37] and [38]
is subjected to the cyclic strain history shown in Fig. 8 and at initial
temperature 1005°K (1350°F). Analytic stress-strain behavior is compared
to experiment in Fig. 8 and predicted temperature change is shown in Fig. 9.
Finally, a uniaxial bar is subjected to the multicycle test described
in Fig. 10, with resulting temperature rise shown in Fig. 11 It is observed
that the model predicts a mean temperature rise of approximately 3.7°K
(6.7°F) per cycle. The linear increase in mean temperature with time is

predicted due to the cyclic saturation of the material on the second cycle,

which is in agreement with experimental observations at elevated temperature.

Conclusion

A model has been presented herein for predicting the temperature rise
in uniaxial bars composed of thermoviscoplastic metallic media. The model
is also applicable to multiaxial conditions, and this has been reported to

some extent in reference (20]. Although the prccedure used here differs

from that proposed in reference [11], it has been shown that the predicted
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\‘2 temperature change is identical to results obtained by Cernocky and Krempl
i when their mechanical constitutive equations are used. However, it has been
n shown herein that the introduction of internal state variables leads to a
::S more general model which may be used with virtually any chermoyiswplastic
! model currently used for metals [24].
R It has been found in the current research that significant heating may
: occur under adiabatic conditions, expecially during cyclic loading, in ther-
- moviscoplastic metallic media. The significance of this heating is compounded
f".t by the fact that material properties often become extremely sensitive in the
= inelastic range of behavior. This issue has not been considered herein, but
o
- it certainly warrants study when transient temperature models become available.
: Two important questions have not been answered in this research: 1)
what effect does the inclusion of the heat flux term have on the predicted
i results; and 2) what, if anything, does the present model have to do with
e experimentally observed results? The first question can only be addressed
; if spacial variation is admitted in the field parameters. The author is cur-
! rently studying this question and hopes to present results in a future paper.
. The second question cannot be answered at this time since it requires ex-
tremely sophisticated experimentation. Although experimental results have
" been obtained detailing heat generation in inelastic media, it is not pos-
.. ’ sible to compare the current model since additional complex tests must be
k_ performed in order to characterize the thermoviscoplastic materi-" parameters.
‘,.' The author also hopes to address this issue in a future paper.
¥
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i In this paper a new and efficient alternative to subincrementa-
.:; tion is developed for analysis of solid media with rate independent !g
o )
'\' elastic-plastic material behavior. This alternative method is not .‘,§
unlike the subincrementation procedure in that it represents an Euler v
o X
. integration of the nonlinear constitutive equations. However, it :;
:‘; takes advantage of the fact that the Euler integration procedure as-
- sumes proportional loading steps so that when the uniaxial stress- -
»
b strain curve is idealized as a piecewise linear relation very large _,
::: forward integration steps give accurate results. The new procedure, \:-
] which we call the zeta method, is equally appropriate for cyclic ;
. U
:'_'. loading with combined isotropic and kinematic hardening. However, :f:
i
due to the nonuniqueness of the monotonic uniaxial stress-strain re- ._E
.
lation in rate dependent media, the method is not appropriate for use o
in viscoplastic media. f
Although the algorithm deals only with the evaluation of a clas- E'-
sical plasticity based constitutive law, numerical results are re- ._
ported herein for an assortment of problems by the finite element
method. It is shown via these results that the zeta method discussed .\
herein provides not o:.ly accuracy which is superior to the subincre- DG
mentation method, but the resulting algorithm also shows improved \“-
B
numerical efficiency. DR
{
5
3
-1 -

e e P T PR S Y
R O R IO
AR LA K SR, ST AR A S S S ' o -




Gl Sall Gl S g Sa i AR NP S e R e DI Tt B

INTRODUCTION

In recent years the analysis of elastic-plastic solids which behave
Ea according to classical rate-independent incremental plasticity consti-
tutive models has become quite commonplace. By far the most often used
method for nonhomogeneous boundary value problem solutions is the finite
- element method. By the nature of the kinematics and material behavior
this is a nonlinear field problem, and a considerable body of research
has been generated dealing with efficient numerical solution of the
nonlinear boundary value problem. One efficiency measure adopted solely
ol to improve material models and independent of large deformation behavior
0 is the subincrementation method [1-3].

In this paper the subincrementation method will be briefly reviewed
'I and an alternative procedure will be proposed. It will be shown that
i this new method gives both improved accuracy and efficiency over the sub=-

incrementation method, and this contention will be supported via several

.i numerical results.

REVIEW OF THE ELASTIC-PLASTIC FIELD PROBLEM

An elastic-plastic medium subjected to an isothermal loading must

in general satisfy the following conditions at all points in its interior
o V and on its surface B: (1) conservation of linear and angular momentum,

(2) conservation of mass; (3) strain-displacement relations; (4) the

. E’r
T

- first and second laws of thermodynamics; and (5) stress-strain relations
(constitution). Of course, there are additional constitutive relations )
:i [4]), but these need not be considered in order to characterize the mech-

anical response when internal heat generation is negligible. It will
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be assumed that the above restriction holds for the media considered
herein, although the method to be considered here applies equally to tran-
sient temperature phenomena.

Condition (5) is the main topic of the discussion herein. In this
paper we consider only elastic-plastic media: that class of materials
for which the stress (or strain) tensor can be considered to be a time
independent functional of the strain (or stress) temsor, that is, stress
is dependent on the entire history of strain but independent of the time
scale. It has been shown that this functional form can often be written
in an equivalent differential equation form [5]. One common strain for-

mulation is of the general type [6]
495 = G519 ¢ (1

ij

and strain tensors, respectively, and Cijkl’ called the effective mod-

where for small deformation O,, and eij represent infinitesimal stress

ulus tensor, is the repository for history dependence via its dependence
P
on the equivalent uniaxial plastic strain, € , which is a metric in the

space of plastic strain defined by
€ (t) (t)
i_‘] 5

det ‘/— de (2)

where t represents time and

EP(t)

P _
deij = deij - Dijkldokl . (3)

and Dijkl 1s the elastic modulus tensor, assumed to be independent of
deformation. In a uniaxial sense the effective modulus tensor C

ijkl
may be thought of as a secant modulus.

-
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i It should be noted that for finite deformation equations (1) may

still be applicable if oij and Eij are replaced by frame indifferent
- quantities consistent with hypoelasticity [7]. Note also that under
certain simplifying assumptions equations (1) reduce to the classical

N Prandtl- Reuss equations [8,9].

. It has been shown that equations (1) are consistent with the first
and second laws of thermodynamics [10-12]. Therefcre, since the energy

g balance is trivially satisfied in an isothermal domain with negligible

internal heat generation and conservation of mass is satisfied if the

b density is timewise constant during infinitesimal deformation, we need
consider only conditions (1), (3) and (5) here.

- In the finite element method conditions (1) and (3) are usually

. satisfied via an incremental variational principle integrated over the

il domain of interest. The discretization process then entails reducing

oo the volume integral for the variational principle to some sub-domain

aptly called a finite element. The integration over the volume of each

oy element is usually sufficiently difficult to require numerical integra-

. tion, and for this purpose a quadrature procedure is generally employed.
Thus, the integration is reduced to evaluation of the integrand at a

" finite number of integration points within an element.

The volume integration of each element yields a set of matrix equa-

‘. tions which are assembled into a global set of matrix equations. These

R equations are nonlinear even during infinitesimal deformations due to

the nonlinearity of equations (l1). Therefore, an iterative technique

L
« a

is generally used to solve the global equations on each load step, and

the constitutive equations (1) must be solved several times for all
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integration points on each load step until convergence occurs.*
SOLUTION OF THE CONSTITUTIVE EQUATIONS

It has become common practice in the literature to incrementalize
equations (1) by simply replacing differentials doij and dei. with in-

crements Aoij and Aeij, respectively. However, since the integrand

depends on the strain tensor during the load increment, an important

task becomes the integration of equations (1) over some input increment

in the strain tensor, viz.:

Gij (sij (t+AL)) (t+At)

€,
ij
- _ —P
Aoij = [ doij = Cijkl (e )de:kl , (4)
oij (Eij (t)) eij (v)

where t represents the time at the start of a load increment, and t+At

is the time at the end of a load increment.

Equations (4) definitely present a uniqueness problem since the

strain tensor may be cycled during the time increment At. In order to

avoid this difficulty a sufficient condition may be adopted which is
not unlike the condition required to obtain the Mises-~Hencky deforma-

tion theory [15] from the Prandtl-Reuss equations. It is assumed that

during the time increment At all components of the strain tensor increase

monotonically via the relation

_P
dskl = Kklde ’ Kkl = constants ’ (5)

where dEy must be a monotonically increasing function of strain during

plastic loading over the time increment At. Substitution of equations

(5) into (4) yields

*For a more complete discussion of the finite element method applied to
elastic~plastic media, see references [13] and [14].
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~pP t+At
ﬁ (eij )
L _ ~P —P
by, = f €y EOKde (6)
C b t
> € (g;.)
w 1
which is obviously a unique relation due to the monotinicity of the
!E plastic strain increment during the time increment At. Now define the
ﬂ% following fourth order tensor which is constant over the time step At:
- T (t+At)
s 1 ~P. ~P
! T —
CiJkl =7 Cijkl(e )de . (7
€ =
- e (t)
- Then substitution of definitions (7) into equation (6) gives
= =c' -
2 Acij c! leklAE JklAekl R (8)
- which is the exact incremental relation which should be used with the
ii incremental variational principle. It should be noted that equations
:3 (1) and (8) are by no means equivalent since C!'kl can be seen from
"2

definitions (7) to represent an average effective modulus tensor during
the time increment At. Unfortunately, equations (7) cannot be integrated

precisely because the upper limit of integration EP(t+At) cannot be de-

termined until equations (8) have been evaluated.

:E It will be recalled that the equivalent uniaxial plastic strain

- can be shown to be equal to the axial plastic strain when a bar is pulled

;2 uniaxially [16]. Now define the equivalent uniaxial s:ress

- _ o} o 1 K
5 ° = [% g5 - _13(_K 857 045 - _13(_1( 6ij)] ' (9) :
> which can also be seen to be equivalent to the axial stress when a bar y
i. is pulled uniaxially [16]. Thus, the information required to charac~- p’
Eﬁ terize equations (6) is obtainable from a single monotonically increasing i
> 3
i !
’ d

e
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equivalent uniaxial plastic strain diagram as shown in Fig. 1. Note

'

that the curve shown represents nothing more than a uniaxial stress-

I'g

o strain diagram with abscissa transformed via definition (3). In addi-
. .f
o
tion, for combined isotropic-kinematic hardening the ordinate in Fig.
' 1 should be transformed as well [17].
4
23
v It is apparent from Fig. 1 that for a continuously work hardening
< material the relation between the equivalent uniaxial plastic strain
LAY EP and the slope of the uniaxial stress-plastic diagram is unique, that
- is,
- do
G -C_P = F (-—_—1;> ’ (10)
de
where F is a bijective mapping. Therefore, the effective modulus tensor
may be written alternatively as
| - do\ _ ~
€ijk1 (dEP) = Cia e an
<
T Thus, because the effective modulus tensor Cijkl is a nonlinear function
i of the plastic secant modulus dE/dZP, integration of equations (7) is
'ﬁ not a trivial task. In order to avoid this numerical complexity it is
: not uncommon to simply approximate the effective modulus tensor by
y - C, g &) = C o E(E)) (12)
S ijkl ijkl '
- thus reducing integration of equations (6) to
: ‘: —p —p —p
o = = » 1
N Aoij Cijkl(c (t)K ,0¢ Cijkl(c (t))le, (13)
: EB which is Euler's method of forward integration. Obviously, since this

is nothing more than a simple first order Taylor series expansion its
accuracy will depend on the relative nonlinearity or curvature of the

.. uniaxial stress-plastic strain curve during a given load increment.

‘: This condition is illustrated for the uniaxial case in Fig. 2.
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ll In many computer codes the uniaxial stress-strain diagram is input
in piecewise linear fashion as shown in Fig. 3. While it is not clear
.
gﬁ that this piecewise linearization is motivated by anything beyond sim-
plification of input data, it has the added benefit that it helps alle-
§ &y viate the numerical integration problem noted above and described in
& Ej Fig. 4. 1In fact, so long as the plastic strain increment AEP does not
P ! subtend a slope discontinuity during a load step equations (11) indi-
EE cate that approximation (12) will reproduce the piecewise linear curve
. exactly. Therefore, the accuracy of equations (13) is limited only by
W
- the accuracy with which one can reproduce the exact curve of stress versus
:% plastic strain with a piecewise linear curve. Mathematically, the slope
B continuity condition is satisfied if one can find values of the equiva-
u lent blastic strain at slope discontinuities E?, as shown in Fig. 3,
- such that for the current load increment
>
RGN . (14)
- for all equivalent plastic strains in the range
- T) < < Tty . (15)
However, condition (l4) cannot be a priori guaranteed in practice be-
E: cause in a non-homogeneous boundary value problem the equivalent uniaxial
“ plastic strain varies spatially. Whereas one integration point may
Eﬁ undergo a very small or even zero (elastic) plastic strain increment
during a specified increment in surface tractions, another point under
high stress concentration may undergo a plastic strain increment which
ru

subtends one or more discontinuities in the piecewise linear equivalent
. uniaxial stress versus equivalent uniaxial plastic strain diagram. Thus,

as can be seen from definitions (2) and (3) the equivalent uniaxial
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plastic strain increment can be determined only after the stress incre-

F &

ment tensor has been found.

REVIEW OF THE SUBINCREMENTATION METHOD

In order to improve the accuracy of approximation (13) subincremen-

-
[

e aPRPY e e o o o
S R

. tation has been proposed [1,2]. In this method Stricklin, et al. define
k ;: the equivalent uniaxial strain increment
AT — 2
é = de = \J'§ deijdeij . (16) {
a :j This quantity is evaluated over a specified load step and is then
i “ compared to an input parameter called the allowable total strain incre-
E{ ment (d_AL) as follows
“ w=d (a7
i depr
f;: where M is rounded off to the nearest integer greater than zero. Equa-

tions (6) are then evaluated M times for the strain subincrement

Doyl S . _ij

Acij =5 ’ (18)
o
,ﬁ and on each subincrement the effective modulus tensor is updated to
- reflect the current equivalent uniaxial plastic strain. Based on numer-
P‘.
“ —

ical evidence, Stricklin suggests that d AL should be no greater than

0.0005 in./in., although our experience indicates that values as small

as .00005 in./in. are sometimes required to maintain accuracy of solu-

tion.

In order to illustrate the effect of subincrementation let us ex-

amine a single example. Suppose we consider a bar subjected to a grad-

ually increasing homogeneous uniaxial stress state. Because conditions




) ‘

P

LARE PESSEARRA .~ o s s S " g

P

.
ele A

.

R RS

AT

» »
| P i S S N}

_J-.))P

.-

X . .~

4

v

~w
.

r

~9

¢

W

v
A

Sy |

,.
£y
I

&

A

~
F'y

o

(1) and (3) are satisfied trivially we need only consider approximate
constitutive equations (13). Since the input material properties will
be described via a piecewise linear equivalent uniaxial stress versus
equivalent uniaxial plastic strain diagram as shown in Fig. 3, and be-
cause this boundary value problem is equivalent to the experiment which
produced the material input data, an exact analysis using equations
(13) should reproduce Fig. 3 precisely. In fact, using subincrementa-
tion will yield the results shown in Fig. 4 when a single slope discon-
tinuity is encountered in a given load step. It can be seen from the
figure that the total error is incurred during the plastic strain sub-
increment subtending the slope discontinuity. The effect then of sub-

incrementation is simply to improve the approximate integration of equa-

tions (6).
A PROPOSED MODIFICATION

It is apparent from the above discussion that subincrementation
will often require multiple evaluations of equations (13) for each inte-
gration point. Since these equations must be evaluated at each inte-
gration point in the body and often several times for each load step
in order to obtain equilibrium convergence, considerable computational
time can be spent in this process. Detailed herein is a numerical pro-
cedure for integrating equations (7) which is both more accurate and
more computationally efficient than subincrementation. We call this
method the zeta method.

The method proposed here is a simple extension of a procedure uti-
lized by Krieg and Duffey [18)] for the transition step from elastic to

elastic-plastic material behavior. The primary extension is that each
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'i, subsequent slope discontinuity in the piecewise linear equivalent uni-
i stress versus equivalent uniaxial plastic strain diagram is treated ex-

actly like a subsequent yield surface. Since equations (13) are exact
;‘_: under conditions (14) and (15), no subincrementation will be required
)

to obtain precise results between slope discontinuities.

In order to see how the zeta method works, consider a material point

o which is in a post-yielded state at time t and with equivalent uniaxial
l,."
v plast strain EP(t) » as shown in Fig. 5.

-

-
.

"-

According to Krieg and Duffey [18], the value of the stress tensor

at the material point necessary to bring the equivalent uniaxial stress

| A

state to the i+lth slope discontinuity is defined by

- i+l _ t

oij = Oij + ¢ Ao (19)

2.

A

) where Aoij is the increment predicted by equations (13) using the input

i total strain increment Aeij and ¢ is a scalar factor to be determined.

In order to determine zeta definitions (19) are substituted into

the yield criterion used in the model. For example, if von Mises'

. yield criterion is utilized, equations (19) will result in
- - (o, +00,.) ~ (0, +c00,,.) .
. 3 t KK KK t KK KK - 2 , -
e 2 (%3 * ;Aoij 3 513 o * GAoij 3 Gij (0,407 O) >
- Solving the above equation for zeta will result in .
. ZB* V2 - sac) ) ”
s~ 2A ’ o
- where !
. K
z ~ Ny
L8 N
R A= AoijAo TR (22) ;
i B = ZoijAcij , (23)
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and

2

C=o0,.0,.- (0,.) . (24)

ij i3 i+l
Utilizing equations (21) through (24) the value of zeta may be

obtained. If zeta is greater than or equal to unity, the input total

strain increment will not take the equivalent uniaxial stress beyond

the next slope discontinuity and the results of equations (13) may

be considered correct. In other words

~

L2 1 =00, =00, . (25)

If, on the other hand, zeta is less than unity, the predicted stress
increment tensor is incorrect and equations (13) must be modified.
This is accomplished by first constructing the input strain increment

necessary to bring the equivalent uniaxial stress to the slope discon-

tinuity:
i+l
Aeij = C Aeij ’ (26)
where Aeij is the input strain increment. The values of Ae;;l are
then substituted into equations (13) to produce
Aoi}l NG (t))Aei+l , @7

the remaining portion of the stress increment tensor is calculated

by first determining the remainder of the input strain increment
2, = - poe (28)
1j - S8y o

noting from definitions (26) and (28) that

i+l R
Acij = Aeij + Acij . (29)

. AR, ,
The remainder of the strain increment tensor Acij is then substituted

into equations (13) to give the remainder of the stress increment tensor
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Aoij = Cijkl(eiH)Aeij . (30)
Thus, the total stress increment temnsor is given by

it} R
Ao = Ao + Ao, . 31
ij ij 1] (1)

It is easily verified that the above procedure will result in an equiv-
alent uniaxial stress and equivalent uniaxial plastic strain [utilizing
definitions (2) and (3)] which lie on the equivalent uniaxial stress
versus equivalent uniaxial plastic strain diagram. It should also be
pointed out that although the actual yield surface is updated through-
out plastic loading, the equivalent uniaxial stresses corresponding to
slope discontinuities should at no time be altered.

Although the above procedure has been discussed here only in the
context of isotropic hardening, it is also applicable to more complex

yield criteria and work hardening rules [19,20].

COMPUTER CODE FLOWCHART

The following chart outlines in abbreviated form the application

of the § method for a given increment in the total strain tensor Acij
and equivalent uniaxial plastic strain at the start of the step E?(t).

a) Set Aoij =0,
—P
b) Evaluate Cijkl(e (t)).
¢) Obtain Aoij using equations (13).

d) Determine 31+1 from Fig. 5.

e) Calculate A, B, and C using equations (22) through (24).

f) Determine zeta useing equation (21).

g) If L > 1 go to step q).

e e EEEEE s a # 4 & & &_SgEEeY p ¢ 0 0
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3

i) Determine Aoi;l using equations (27).

h) If ¢ <1 evaluate Aei using equations (26).

E A

i+l
Set Ao, = Ao, + Ao ..
3) Set Boyy = hoyy * B0y
.
:E k) Calculate AEI;j using equations (28).

R
ij°

'3 m) Calculate Aeij using equations (3).

1) Set Ac,. = Ac
1)

n) Determine A-C_P using equation (2).

o) Set EP(t) = Ep(t) + AEP.

-
o P) Go to step b).
. 1) Set Aoij = Aoij + Acij.
-
P
] DISCUSSION OF RESULTS
52
in this section the results generated using the zeta method as
i well as the subincrementation method for solving the constitutive equa-
o~ tions of classical plasticity are presented. Both solution techniques
-~
N

“»

have been incorporated into a finite element computer program which

uses constant strain triangular elements. The formulations have been

IR

P
G,
.
af

cast into a 2-dimensional plane stress format.

s
b %

:; In order to compare the efficiency of the two different methods '-':;
- their respective solution times will be compared. This was accomp- !
.-:‘- lished by using the built in timer (clock) subroutine used in the :::‘

N
;;_‘ Fortran—H Extended language available on the AMDAHL 470 V6 located ::.d
& on the Texas A&M University campus. Two times will be given in the !
E:: analysis: 1) time spent using the constitutive package, and 2) total _::.
3 time spent in solving the specified boundary value problem. :::%
ﬁ Two boundary value problems have been selected for comparing the ?
_:.; two constitutive packages: a highly yielded uniaxial bar subjected :
~

7l
]
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i» E PR L OO P



LA 20 29 20 20 0 A iy Aar Srg B <e bl i il RS A Rt AhA Ll aniibARBMRI A 200 uP WA JAa it It A DR I R R R 4 S I BRSO 4 ) e T TR AN R R g TR
- - - - - - -

4
j i
5 b
;: - to uniaxial tension only and a thick walled pressure vessel subjected
E i to internal pressure sufficient to yield a broad band of the vessel.
. Both specimens are assumed to be made of 5086-H34 aluminum with piece-
;E wise linearized room temperature properties shown in Figure 6. The
finite element mesh used for the uniaxial bar as well as the load
K
}f s input diagram are shown in Figure 7. Only two elements are necessary
r '_..'_. to represent the bar because the boundary value problem is homogeneous.
However, if the problem was inhomogeneous then mesh refinement would
.—\' be necessary to increase the accuracy of the solution. It should
T nevertheless be pointed out here that the number of elements used in
- s.; the mesh is directly proportional to the computational time required
“: v in the constitutive package. Another factor influencing the computa-
b tion time is the non-linearity of the given stress strain curve. In-
: i creasing the number of piecewise linearities in the idealized uniaxial
:: o stress strain curve will increase the computational time required by
: :::; the zeta method. Although this increase in piecewise linearizations
-
= . will not greatly affect the computational time required by the subin-
‘ s crementation, it will have an adverse affect on the accuracy of this
-
N method.
: - The results of the uniaxial bar test are shown in Fig. 8 and the
i comparative solution times are given in Tables 1 and 2. Fig. 8 shows
the output axial displacement versus time for the zeta method as well
c as the subincrementation with various allowable errors in equivalent
.'r:f .J:'. uniaxial strain shown in parentheses. Table 1 shows a comparison of
f - solution times for each load step, while Table 2 gives a more detailed
' g comparison of solution times for the final time step. Several dif-

. ferent cases were run using the subincrementation code in order to
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Figure 7. Uniaxial Bar Finite Element Mesh
And Input Load Diagram
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TABLE 2:

COMPARISON OF SOLUTION TIMES FOR

1

THE LAST LOAD STEP ON THE

UNIAXIAL BAR

:_ SOLUTION TIMES (sec)
-l

. TIME ZETA SUBINC SUBINC SUBINC SUBINC \
.-: METHOD (0.005) (0.0005) (0.0001) (0.00005)

CONSTITUTIVE 0.063492 0.0027 0.0555 0.18764 0.37684

. SUBINC/.063492 .043 .716 2.955 5.935

b TOTAL TIME (SEC) 0.0968 0.00798 0.07761 0.22315 0.40994

F SUBINC/.0968 .0824 . 802 2.305 4.235
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w
BN illustrate the difference in solutions and comparative times for dif-
k i ferent values of the allowable uniaxial stress increment dEAL used
| in determining the number of subincrements. In general, increasing
! ﬁ the required accuracy of the subincrementation method also increases
l n the computational time.
E - The results of this test show that in order to obtain solution
$ ',:.' accuracy by subincrementation which is comparable to the zeta method,
= the allowable strain increment must be of the order of 0.00005 in/in.
:': In fact, the larger the allowable strain increment the less solution
o time required, and in fact for dEAL = 0.005 and 0.0005 the solution
.52 time was less for the subincrementation method. However, the resulting
':_ accuracy was very poor. Table 1 indicates that subincrementation

(—E-AL = 0.00005 in./in.) requires 3.171 times as much computer time as

the zeta method for the uniaxial bar problem. Although this is a

rather large difference in relative times, since only a two element

\-‘ problem has been run, the difference in actual cost is small. However,

. on an extremely large scale problem obvious savings would result.

) The finite element mesh used for the thickwall pressure vessel

is shown in Fig. 9 and the load input diagram is shown in Fig. 10.

.- The results of this test are shown in Fig. 11 as well as Tables 3 and

::E: 4. These results are for the final pressure of P = 30,000 PSI. It '

~ should be noted that if one applies increasing pressure to the speci- 1

RS

A men then more of the elements will yield in the outer regions of the ‘

,‘ thickwalled pressure vessel, resulting in a higher solution time be- ;‘

) cause more time is spent in the constitutive package and more time ?

ﬁ in iterating on the correct nonlinear solution. i
¢
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RADIAL
LOCATION

2.0
2.2222
2.4444
2.6666
3.0
3.3333

4.0

CONSTITUTIVE
PACKAGE TIME (SEC)

SUBINC/.691703
TOTAL TIME (SEC)

SUBINC/3.1546827

TABLE 3:

RADIAL DISPLACEMENTS AND SOLUTION

TIMES FOR THICK WALLED PRESSURE VESSEL

ZETA
METHOD

0.01324344
0.01167517
0.0105329

0.00971329
0.00883162
0.00821108

0.00728626

0.691703

3.1546827

RADIAL DISPLACEMENT

SUBINC
(0.001)

0.01285087
0.01133769
0.01026293
0.00947785
0.00862648
0.00802864

0.00714737

0.6132077
.886
3.0397627

. 964

SUBINC
(0.0005)

0.01289475
0.01137959
0.01029393
0.00960516
0.00866162
0.00806262

0.00717933

0.6854118
+ 991
3.1661748

1.003

(IN)

SUBINC
(0.0001)

0.01292329
0.01141027
0.01032073
0.00953320
0.00868949
0.00809172

0.00720508

1.056744
1.527
3.61964

1.147

SUBINC
(0.00005)

0.0129211

0.01140665
0.01031638
0.00952741
0.00868414
0.00808688

0.00720022

1.503111
2.173
4.0580

1.286
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TABLE 4:
COMPARISON OF SOLUTION TIMES FOR
THE LAST LOAD STEP ON THE

THICK WALLED PRESSURE VESSEL

SOLUTION TIMES (sec)

TIMES ZETA SUBINC SUBINC SUBINC SUBINC

METHOD (0.001)  (0.0005)  (0.0001)  (0.00005)
CONSTITUTIVE
PACKAGE TIME (SEC) 0.476943 0.398788 0.468156 0.838656 1.278211
SUBINC/. 476943 .830 . 982 1,758 2.680
TOTAL TIME (SEC) 1.662752 1.565564 1.665976  2.143309 2.579693
SUBINC/1.662752 . 941 1.002 1.289 1.551
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The results of the test are basically the same as those for the
uniaxial bar. From Table 3 it can be seen that for comparable solu-
tion accuracy the subincrementation method takes 1.527 to 2.173 times

more constitutive time (depending on EiL) than the zeta method and

1.147 to 1.286 times greater total time. Closer examination shows

that even for the smallest EiL = 0.00005 the solutions still differ
from the zeta method and that there is no noticeable difference be-
tween solutions for de, =0.0001 and dc = 0.00005. In fact, the
results tend to be less accurate for dEiL = 0.00005. This can be at-
tributed to numerical roundoff error because the increments in the

strain are so small that further improved accuracy is not possible.

By constrast, there is no numerical roundoff error apparent in the

zeta method.

CONCLUSION

The objective of this researc has been to produce an alterna-
tive to subincrementation which results in a substantial improvement
in computational efficiency. This new method has been shown by ex-
ample to give not only improved efficiency, but also slightly greater
accuracy of results. The following general conclusions can be made:

1) in order to produce results by the subincrementation method

which are comparable in accuracy to the zeta method, signi-
ficantly greater computation time is required by the former

method;

2) increasing required accuracy in the allowable equivalent uni-

axial strain increment (A AL) can lead to roundoff error when

subincrementation is utilized;
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3) subincrementation necessarily produces errors in predicted

'- stresses whenever a slope discontinuity is subtended in the

' uniaxial stress-strain curve;

A 4) the zeta method follows the uniaxial stress-strain curve ex-
actly;

5) both subincrementation and the zeta method approximate the

load path to be radial during each load increment,

6) piecewise linearization, although merely a numerical conven-

ience in subincrementation, is necessary in order to utilize

the zeta method;

s a
2
e

7) the zeta method can be used with cyclic hardening models of

"

plasticity; and

L |
&>

. 8) the zeta method may not be appropriate for use in rate depen-

i’ dent viscoplastic media.
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i ABSTRACT
- The thermomechanical response of a uniaxial bar with thermoviscoplastic
E€. constitution is predicted herein using the finite element method. After a
% brief review of the governing field equations, variational principles are con-
" structed for the one dimensional conservation of momentum and energy equations.
These equations are coupled in that the temperature field affects the displace-
- ments and vice versa.
;. Due to the differing physical nature of the temperature and displacements,
= first order and second order elements are utilized for these variables, respec-
< tively. The resulting semi-discretized equations are then discretized in time
Et using finite differencing. This is accomplished by Euler's method, which is
. utilized due to the stiff nature of the constitutive equations.
li Tﬁe model is utilized in conjunction with stress-strain relations devel-
< oped by Bodner and Partom to predict the axial temperature field in a bar sub-
h jected to cyclic mechanical end displacements and temperature boundary condi-
; tions. It is found that spacial and time variation of the temperature field
. is significantly affected by the boundary conditions.
%
TABLE OF SYMBOLS

S

\,- ~ t - time

§ éi P - axial internal resultant force

! R px - axial externally applied force per unit length

? ﬁ; x - axial coordinate dimension

3 0 - axial stress component

e
>

- cross-sectional area
T - end traction in units of force per unit area

- surface area
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Table of Symbols (cont.)

Sc - area of the longitudinal surface of the bar

€ - axial strain component

u - axial displacement component

a, - internal state variable representing axial inelastic strain

E - Young's modulus in the axial coordinate direction

a -~ coefficient of thermal expansion in the axial coordinate direction
T - temperature

T - reference temperature at which no deformation is observed at zero load
a, = internal state variable representing drag stress

q -~ axial component of heat flux

k = coefficient of axial thermal conductivity

C._ -~ specific heat at constant elastic strain

p -~ mass density

r -~ internal heat source per unit mass

L -~ length of the bar
INTRODUCTION

It is well known that mechanical and thermodynamic coupling are signif-
icant in metallic solids [1-11]. The author has recently developed a model
capable of predicting this coupling effect in thermoviscoplastic metals [12].
In the previous paper a cyclic strain control loading on a sample of IN100 at
1005°K (1350°F) was used to predict a temperature rise of approximately 3.7°K
per cycle when the strain amplitude was 27 and the specimen was adiabatically

insulated.

The focus of the current research is to consider the effect of thermal

boundary conditions on this same process. The introduction of these
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conditions causes the strain and temperature fields to be inhomogeneous even
though the stress field is homogeneous if the bar is prismatic. This spacial
variation in the field variables causes the process to be difficult to model
because the thermomechanical constitutive equations are highly nonlinear stiff
differential equations. In this paper the finite element method is utilized
to spatially discretize the dependent variables displacement and temperature,
and the finite difference method is employed for timewise discretization.

This process results in a set of highly nonlinear algebraic equations.

Since the thrust of this research is to obtain accurate results without
regard to numerical efficiency, the results are obtained via the relatively
inefficient but accurate method of simply utilizing successively smaller time
steps along with refined spatial mesh to obtain a convergent and therefore
accurate solution for the temperature and displacement fields both spatially
and as a function of time for a cyclically imposed end displacement.

The physical interest in the problem is to determine the effect of
temperature boundary conditions on the predicted temperature rise in a bar sub-
jected to cyclic mechanical loading. It is found from the analysis that the
introduction of these nonadiabatic boundary conditions causes significant axial
temperature gradients. Since nonadiabatic conditions cannct be avoided in
experimental research, it is concluded that experimental tests of this type

should be viewed with caution when their purpose is to construct constitutive

relations.

PROBLEM SOLUTION

Field Problem Description

The following field equations are given:
a) equilibrium [13],

oP = P, x) , (D
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where the axial resultant P is defined by

e

.- P Ef odA . and (2)
'f.'-‘ A

Ef T, ds (3

S

c

b) strain-displacement relation

du

€ = 'a_x' ’ (4)

¢) thermomechanical constitution,

0=E[E-0.1 -a(T—TR)] . (5)
r‘: . 3ai
NN ¢~ e Ty o) o, 1=l , and  (6)
LAY
Y
ﬁ .
T
i s T - .
= q=-ky s )
.
W
L:- d where z is the total number of internal state variables; and
- 'E d) conservation of energy
N
e
L-. ‘. Ja
N - 1 oT %€ _ 9T _ 3q -
N [(Ee Eal+E<1'r) t+£0. ’1‘a Eon'ra pCvat ax+pr-0 . (8)
:::: ., The conservation of mass is satisfied trivially and the second law of thermo-

dynamics has been previously shown to be satisfied by the above equations [l4-

L 342
t
L

16]. It should be noted that equilibrium equation (1) satisfies equilibrium

¥
-
.
v

XX

in the axial coordinate direction only in an average sense over the cross-section.

X,
R
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The above 6+Z equations (excluding definition (3)) define a nonlinear

initial-boundary value problem (together with appropriate thermal and mech-

-
o+

anical initial and boundary conditions) in which the following dependent vari-

r g

b

ables are sbught as functions of x and t: o, €, u, q, T, P, and ai.

For convenience the domain is defined to be of length L, so that boundary

B

and initial conditions are of the form:

wlrala el e AR N A e e R v T

.‘.
LS
> !
u(x,0) = “B = known i
b initial conditions ; 9 ¢
b -
S T(x,0) = T. = known :
h 0 &
L~ p
n !
and i
Lo 0
t T u(g,t) = u = known or P(g,t) = Pg = known
Il essential u(L,t) = u, = known or P(L,t) = Pt = known natural
b boundary boundary
)
: Q: conditions T{0,t) = TS = known or q(G,t) = qg = known conditions. (10)
I - oL - L
T(L,t) = Tt = known or q(L,t) = q = known
TS
E
F ;: It is now assumed that 0 = g(x) so that equation (2) reduces to
S P = OA . (11)
E ~.. ‘
: < Therefore, substituting (4) into (5) and this result into (11) gives
o
L P=fAlY oo -a(T-T.) (12)
] ,l':d ax 1 o R ‘
o
i ii The above result is now substituted into (1) to obtain
_— 3 du
. 3% {EA[ax al - oT - TR)]} ‘Px(x) » (13)

.
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which represents the differential equation relating displacements and temper-

ature to the applied load px(x).

L% ]

Equations (4) and (7) are next substituted into energy balance law (8)

*

and this result is integrated over the cross-sectional area A to obtain

T

o9n »
du _ 1 2 o OT] 3%u 3T
A [(E o Eal + EQTR)"gg + Ea“ T 5?] AEx T Yo% A pCv T
] oT \ _
?! +Aa—x<k a—x)— APT R (14)

where it has been assumed that all field variables depend on x and t only.

Now define

=
- - T 4 = —x 9T
- Q= q dA = -f k ‘E{ dA = -k % A . (15)

II A A

:{ Careful inspection of equations (13) and (14) will indicate that these

T

equations, together with internal state variable growth laws (6) and initial
Ii and boundary conditions (9) and (10), represent a well-posed boundary value prob-

lem in terms of the 2+:z dependent variables u, T, and a .

T
[

Solution Procedure

< x < :
Xe Xe+1

[
b :g The field problem is to be solved analytically using the semi-discretized
: iy finite element technique with timewise finite differencing. In order to ac-
E x complish this, differential equations (13) and (14) must first be written in
\ 5: a suitable variational form,

.
E ] Variational Equations
i i; Consider first equation (13). This governing equation is integrated against
) p: a suitably smooth test function v = v(x) over the domain of some element Qe:
E -
|
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N

3 du =
i [ VE{EA[E_QI-G(T-TR{I}+px dx =0 . (16)

A Integrating by parts results in

X
Tetl e+l

ov | Ju _ du _
- f EAX[Tx-al-a(T—TR)]dx-- VEA[a_X_al O.(T-TR)]
X

xe e

X
e+l

e - v pxdx . a7)

X

Substituting equation (12) into the boundary term thus results in

'. - xe+1
av | du
'[ EAE[&'%*““'TR’]“‘

. e+l
e -v(xe+1) P(xe+1) + v(xe) P(xe) - [ v pxdx . (18)

. X
: e

Now consider equation (l4). Once again the governing equation is inte-
- grated against a suitably smooth test function w = w(x) over the domain of the
- element § :
‘ e

X
e+l 3

\J Bu 1 2 BT
Q w <A (EX-EQI+EaTR)§t—+Ea T 3¢

3%u oT d 3T
gy _ v_a_t+A§(ka—x)+Apr dx = 0 . (19)
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Integrating the heat flux term by parts results in

x
e+1 aa
ow 9T du 1 2. OT
-kA 3% Bx + wA (E 3% EO.I + EG.TR)—at + Ea“T 3t
x
e
cEor 28 iy - wix L) Qx L) - wx) Qx)
atox e+l e+l e e
xe+1
+ a(oc X - por)ax (20)
WA\PY S TP ?
x

where equation (15) has been substituted into the boundary terms.

Finite Element Spacial Discretization

Quadratic displacement and linear temperature fields are now chosen within

each element:

3
e e
u(x,t) = L ug wi » X <x < X o4l , and (21)
i=1
2
T(x,t) = L TS ¢° X <x <x (22)
’ i=1 i’"i e e+l ’

where ui = ui(t) and T: = Ti(t) are the nodal displacements and temperatures,
respectively, and qf = uf(x) and ¢§ = ¢§(x) are quadratic and linear shape
functions, respectively [17].

Appropriately, v and w are endowed with the properties of u and T, respec-

tively, so that

e e o e . e e v :
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.n v = wi i= 1,2,3 |
_ e I
w = ¢, i=1,2 . (23) !
o 1 :
2 |
i |
{
(
Ry Time dependence in equations (6) and (20) is handled via finite differ- |
ij encing. Although higher order approximations may be used, Euler forward dif-
o
ference approximations are now entered for the time rate of change of ai, T;, i
b e |
I and u_.
- m )
c: oo . . :?
[ ‘a"t_ (x,t) = [ak (x,t + At) - Ok (x,t)])/At, k=1, ...'.Z (24) ¢
2
2 ar® ' !
m ~ e e = o
.. a0 (O = [T (t +4c) ~T (£)]/ae, : m=1,2, and  (25) y
. 4
i )
| ae . . l
:j ic (t) = [um (t + At) =~ u (t))/Ae, m=1,2,3. (26) ]
o ]
i Ii Substitution of equations (21) through (26) into equations (18) and (20) i
S
t will result in (See Appendix.) ;
N
S i
P A
,. [ . ! . [
P - 1 K i S u® F¢ i
» '..‘. ]' - 2l m~———
: | . Q1)
i K i s°¢ ¢ e
‘: -
- 2x3 2 5x1 5x1 {
- N————’
- 5x5

where all nonlinearity is contained in [?], {F®}, and {F%), and all terms are

[ T%

as defined in the appendix.
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Global Assembly and Boundary Conditions

Global assembly is accomplished in the standard way using the Boolean

matrix [17]. Interelement continuity is guaranteed by setting

PS + Pf‘” =0 , and (28)

e e+l
¢, + ¢1 =0 . (29)

Boundary conditions are implemented in the standard way: 1) essential

boundary conditions are handled by placing one onthe diagonal of the

appropriate row and zeros off diagonal in the stiffness matrix, and the speci-
fied value of the essential variable on the right hand side; and 2) natural

boundary conditions are implemented directly to the right hand side.

Solution of the Nonlinear Algebraic System

Initial conditions are used for the first time step. The time step At
is supplied for each load increment and boundary conditions are incremented
directly from supplied input functions.

The internal state variable a, is handled in equations (A8) and (A22) by
using equations (24). o is initialized according to reference 18. The non-

linear stiffness matrix [?] is initialized using nodal temperatures and displace-

ments from the previous time step. The displacements and temperatures at time

t+¢At are then estimated directly and without iteration by utilizing equations (27)

for very small time steps.
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EXAMPLE PROBLEMS

In order to completely define an example problem it is necessary
to specify internal state variable growth laws (6). Numerous models
have been proposed for crystalline metals [18,19]. Since it is not the
purpose of this research to compare these models, a relatively
established model proposed by Bodner and Partom [20] has been chosen.
This model contains two internal state variables: the inelastic strain

(a1) and the drag stress (°2)° The growth laws for these variables are

given by
& = _Z_D o fn+1 (e} 2n
1 V3 o Ta] exp n e (30)
and
. . 0.2 -2 T
Q, = m(Zy, - ) oQay - 'Al Z1 (-——Z—l—l) ) (31)

where DO’ n, m, 2 Zl, A1 and r are experimentally determined material

I
constants,

For the purpose of modeling the temperature gradient in a specific
component, a hypothetical problem has been chosen using material
properties representative of Inconel 100 at 1005° (1350°F). The
material and geometric properties are given in Table I. The geometry is
representative of a cylindrical uniaxial bar which is 2.50 inches 1long
and 0.25 inches in diameter. It has previously been shown that Bodner
and Partom's model accurately predicts the stress-strain behavior of

IN100 under uniaxial loading conditions for both monotonic and cyclic

strain controlled loadings [12,18].
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a =
k =
E =
A =
T, =
L =
D, =
n =
m =
Z1 =
z; =
r =
Al =

Table I.
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~

5.032 MPa/°K "

13.14 x 10°° in/in/°K a
21.0 x 10" Mpam?
sec®K

146.86 x 103 MPa

7.12557 x 10~ m?
1005°K

.06350 m

10 x 103 in/in

0.70
2.57

1015.0

600.0

2.66
0.0019

Material Properties for IN 100 at 1005°K (1350°F)
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Utilizing the material properties described above, the

LA

following effects have been studied using the model developed

t“

> herein:

1) the effect of variation of strain rate on the stress-

"

" strain behavior of a monotonically extended uniaxial bar which is
. insulated on the longitudinal boundaries (Fig. 1);

- 2) the effect of strain rate on the time dependence of

5 - temperature at the midpoint of the bar described in 1) (Figs. 2-
E 4);

. 3) the spacial temperature variation for the case described
AN

o above (Fig. 5); and

i 4) the effect of end temperature boundary conditions on the

E W temperature at the center of a uniaxial bar which is held at
% fixed temperature at the end points and subjected to c¢yclically
i imposed end displacements (Figs. 6 and 7).

. . The slight instability shown at the lowest strain rate in Fig.
£ 1 is numerical rather than an actual material instability,. This
-

3. may be corrected by using slightly smaller time steps. However,

- - this was not done herein because of the massive computation time

: o required with the current algorithm. Furthermore, this numerical
iz instability has little effect on the predicted temperature field.
»

- The opposite signs for temperature change in tension and
a compression shown in Figs. 2 through 4 is caused by the well-
: ; known bulk deformation effect of thermoelastic coupling, which is

13
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described by the second derivative on displacement in equation

¥

(14). Of course, after yield, both tensile and compressive

loadings cause heating due to entropy generation caused by the

a
P

Ll

fnelastic strain, which is described by the leading term in

equation (14).

I |

- It is found from the analytical results that if a specimen
!-\
o
is mounted in an experimental apparatus which has massive grips
”
. simulated by a fixed temperature boundary condition there can be p
i
. substantial axial temperature gradients induced in a time :
.‘.“ .
dependent boundary layer near the ends of the specimen. As shown \
-Q in Fig. 5, this boundary layer occurs over a small region near ;
- the end of the bar for moderate strainrates and for the material .
considered herein. These boundary conditions do not appear to
[ 3
> substantially affect the predicted stress-strain behavior (Fig.

1), especially when the strain measurement is taken between the

thermal boundary layers rear the grips. Therefore, it would

L]
«

appear that the standard procedure for obtaining stresses and

2
Bae ey 8 8 Y

strains in uniaxial bars is not substantially affected by

R |

mechanically induced axial temperature gradients when the grips

v

are at fixed temperature equivalent to the initial specimen 5

- temperature and the bar is loaded monotonically. However, it

should be noted that massive grips which are mounted outside a

" furnace could, by their much lower temperature than the initial
5 specimen temperature, induce significant error in predicted .
A <
. 3
N
~ 14 y
. !
4
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N N T L e s e
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strains if the strain is measured by dividing relative displacement by some
gage length.

The final example demonstrates that under cyclic loading conditions the
above conclusions may not necessarily be true, especially when the specimen is
subjected to high-cycle fatigue and at high strain rates. There is definitely
a trend towards an increasing mean temperature in the bar, and this mean tempera-
ture is strongly affected by the thermal boundary conditions as well as the
loading rate. Although it would be interesting to determine the mean temperature
rise in a cyclic fatigue test, the current algorithm precludes this analysis due to
the extremely large computer times necessary to predict only a few cycles of
response (approximately 43.8 CPU minutes on an Amdahl 470/V6 for the example
demonstrated in Figs. 6 and 7).

Example 3 also demonstrates another interesting phenomenon which may be
significant in large space structures. If the bar is perfectly insulated the
mean temperature rise per cycle for the relatively slow loading rate shown in
Fig. 6 is 3.7°K, whereas if the ends of the bar are held at a fixed temperature of
1005°K, the mean rise is 1.0°K per cycle. Faster loading rates show less difference
between the adiabatic result and the fixed end temperature result. Since many
of these structures are expected to be extremely flexible truss-like configurations,
a typical metallic member which undergoes some yielding (which might be desirable
in order to induce natural damping) might in fact undergo substantial enough
heating during vibrational response such that the material properties could be
adversely affected, thus resulting in a material related failure of the structure.
However, further investigation is needed on this last issue since it is expected
that the primary form of heat flux off of space structures will be via radiation

on the longitudinal surfaces of the truss member. Since the current analysis

- - &
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has treated these surfaces as insulated, no general statements can be made at

this time regarding thermomechanical heating in space structures.
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CONCLUSION

The current research has attemped to demonstrate the effects of
mechanical loading on one-dimensional temperature gradients in a class
of viscoplastic media. Due to the nonlinearity and stiffness of the
field equations, it was necessary to utilize a numerical algorithm.
This algorithm has been shown to be very inefficient for solving even
one-dimensional examples. Therefore, it is apparent that significant
refinement of the procedure will be necessary before multi-dimensional
analyses can be performed by this method. Specifically, it would be
significant to determine the effect of transverse temperature gradients
on the stress-strain behavior of constitutive specimens. Furthermore,
the effects of thermal boundary conditions on the longitudinal surface
needs attention. The author 1is currently studying a perturbation
technique for more efficient solution of these issues.

The above points notwithstanding, the current research demonstrates
some important results. These are:

1) The axial temperature gradient in a viscoplastic uniaxial ba“
is strongly affected by the thermal boundary conditions on the ends.

2) The end temperature boundary conditions can cause temperature
gradients which are substantial enough to induce spacial variations in
stress and strains which invalidate the standard procedure of using
average quantities, although when grips are mounted within a furnace at
spacially constant temperature, it appears that the standard procedure

is accurate.
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3) There is a trend toward increasing average temperature in
cyclically loaded bars; whether or not this effect is significant is
strongly dependent on the thermal boundary conditions and the loading

- rate.



| el ok R o IR Al o s e A5 Ro R0 hy L AL Al Sl Sl R S IE Sl e 4 Wil i i ieg- A8 o o o b s d

o RS

ACKNOWLEDGEMENT

ae

The author gratefully acknowledges the support provided for this

b .
<. research by the Air Force 0Office of Scientific Research under contract
no. F49620-83-C-0067.

[ 7

L

Lo

.‘ “

p -

k.7

p' -

3

¢

T TNV N v
s | aNS

I

b




"/ N 2 B NN

t

Aaaa &Y,

JIl/

2

-~
LR S e e e e

-" L.

W'

r
F.

']‘515"

p

AL

4
-

.. -
s
e

.
-"

"1

"
e

QAN

()
A,

P |

.-
&
«*e

<

L 4
S

[1]

[2]

[3]

(4]

[5]

(6]

(71

(81l

(93

(10]

(1]

(12]

[13]

REFERENCES

J.M.C. Duhamel, Memoire sur le calcul des actions moleculaires
developpees par 1les changements de temperature dan 1les corps
solides, Memoires par divers savans, vol. 5, pp. U440-498, (1838).

F. Neumann, Vorlesungen uber die theorie der elasticitat der festen

Korper und des lichtathers. Leipzig, 107-120, (1885).

B.A. Boley and J.H. Weiner, Theory of Thermal Stresses. Wiley, New
York, (1960).

O.W. Dillon, Jr., An experimental study of the heat generated
during torsional oscillations. J. Mech. Phys. Solids, vol. 10,
235-244 (1962).

O.W. Dillon, Jr., Temperature generated in aluminum rods undergoing
torsional oscillations. J. Appl. Mech. 33, vol. 10, 3100-3105
(1962).

O.W. Dillon, Jr., Coupled thermoplasticity. J. Mech. Phys. Solids,

vol. 11, 21-33 (1963).

G.R. Halford, Stored Energy of Cold Work Changes Induced by Cyclic

Deformation. Ph.D. Thesis, University of Illinois, Urbana, Illinois

T T I S TR
(‘.( U R.d’." "

(1966).

O.W. Dillon, Jr., The heat generated during the torsional
oscillations of copper tubes. Int. J. Solids Structures, vol. 2,
181-204 (1966).

W. Olszak and P. Perzyna, Thermal Effects in Viscoplasticity. IUTAM
Symp., East Kilbride, 206-212, Springer-Verlag, New York (1968).

J. Kratochvil and R.J. DeAngelis, Torsion of a titanium elastic
viscoplastic shaft. J. Appl. Mech. vol. 42, 1091-1097 (1971).

E.P. Cernocky and E. Krempl, A theory of thermoviscoplasticity
based on infinitesimal total strain. Int. J. Solids Structures,

vol. 16, 723-741 (1980).

D.H. Allen, A prediction of heat generation in a thermoviscoplastic
uniaxial bar. Texas A&M University Mechanics and Materials Center
Report no. MM 4875-83-10 (July 1983), (accepted for publication by
Int. J. Solids Structures).

D.H. Allen and W.E. Haisler, Introduction to Aerospace Structural

Analysis. John Wiley (1985), in press.

‘e TN R I L L B T T L S S T T ) e
‘\'-. - . 4.."- {..'p ¢.‘{'.].’, .'.-.~- .._.-'._'- o, S . \-,.~ ‘-I_ -




b Viscoplastic Strain-Hardening Materials," J. Appl. Mech, Vol. 42,
385-389 (1975).

L
o~ !
> [14] B.D. Coleman and M.E. Gurtin, Thermodynamics with internal state '
-2 variables. J. Chem. Phys., vol. 47, 597-613 (1967). |
N [15] J. Kratochvil and O.W. Dillon, Jr., Thermodynamics of crystalline
= elastic-viscoplastic materials. J. Appl. Phys., vol. 41, 1470-1479
) (1970).

:f: {(16] D.H. Allen, Thermodynamic constraints on the constitution of a

- class of thermoviscoplastic solids. Texas A&M University Mechanics
and Materials Center, Report no. MM 12415-82-10, December (1982).

=

o [17] J.N. Reddy, An Introduction to the Finite Element Method. McGraw-
Hill, New York (1984).

i: [18] T.M. Milly and D.H. Allen, "A Comparative Study of Nonlinear Rate-
Dependent Mechanical Constitutive Theories for Crystalline Solids

. at Elevated Temperatures, Virginia Polytechnic Institute and State

Unjversity, March, 1982 (M.S. Thesis).

{19] D.H. Allen and J.M. Beek, "On the Use of Internal State Variables
in Thermoviscoplastic Constitutive Equations," Proceedings 2nd
i Symposium on Nonlinear Constitutive Relations for High Temperature

Applications, June, 1984,
N [20] S.R. Bodner and Y. Partom, "Constitutive Equations for Elastic-




« TSV ST iy A ke W DA A DA RN ah el ek Sl e S fo . And S B el

APPENDIX

Substitution of equations (12) and (21) through (23) into variational principle

%
"J.}.

(18) results in

2
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- x
e+l leJe

- e = i _
. Fi / EA e ( a, + OLTR)dx

vy,
%

e+1
e
—P(xi) - f \pi pxdx . i=1,2,3. (AS5)

by |

-

L ard

Similarly, substitution of equations (21) through (23) into equation (20) re-

sults in

. vt
(W A’,J'.

v
A

A I}

. 3 m=]
3 _:.
N
N 2 2 3
\
- ez 1%%)2 ouys dx =
. j3) otox m'm
. - j=1 n=1
N
4
: N e e vetl e 9 2 e e
¢>i(xe+1) Q(xe+1) - ¢i(xe) Q(xe) + ) f ¢i AleC, —t(z Tm¢-m>- pr| dx,
- e
Ay i=1,2. (A6)
.. Equations (A6) may be written in the following form:
FEN
R
o
' ‘ 3 <€ e 2 =€ e fe+1 e 2 e [ 2 dT:l €
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2 e e 3 d\.xm dwm 2 dTm e
;- Raa WL B WL ral ol e WA Tl A e
b =] m=1 m=1
£
5
\.:i X e+l e aal (A7)
-- xf ¢ A(-Ea) + EoT ) z— - Q(x;) i=1,2,
S e
bt
' .A‘J
— where
¢
;o e Yo+l . dw:ﬁ 3a,
s de ijzxf AE¢13;_—Bt—dx i=1,2; j=1,2,3; and (A8)
. e
r
. X e e
e e+1 d¢. d¢.
5% = - —1_J = = (A9)
. 554 = J et da 5 o112 5-1,2
N xe
AN
N e
r % Time dependence in equations (6) and (A7) is handled via finite differ-
;-
j . encing. Although higher order approximations may be used, Euler forward dif-
‘j_ :':7 ference approximations are now entered for the time rate of change of or.i, T:f
- and u°.
AN o
SRS
K Baz e e
A — z - =
L s TR [ap (x,t + At) = o (x,t)}/ot, k=1, ...,z (A10)
: "' dT:x e e
. g0 () = [T (t +4t) - T (v)]/Ac, m=1,2, and (All)
Ko
. oo :
o T (®) = [u (£ +4t) - u (t)]/be, m=1,2,3. (A12)
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7 Substitution of (A10) through (A12) into finite element equations (A7) gives i
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3 . e 2 o e )
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::: J=1 ij 3 j=1 i3 3 i
p
) X 4l . 2 2 T:l(t + At) - TS(t) e
- + aeS 4 Ea?| & 156 L = )¢>
i .. 373 At m
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i . retl I
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A e
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The above may be written as follows:
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- e Ea? . e e, 2 e ee .
Dy, = - f a0 7 [TT @) (D7 + T5(1) 679, dx, i =1,2 ,  (al6)
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- e Fa? | e e e e e, 2 .
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i Equations (Al4) may be written equivalently as follows:
SB 3 =e e 2 =e ,e _=—e
“u z Kij uj + I Si. T, = Fi s (A23)
j=1 =1 M
.
w e e .
where Kij and Fi are as defined previously, and
o )
- Kij Kij + El Eikj Tk s and (A24)
- — 2 .
= ge + .
< sij S; ij + kil Cl_]k Kk D + Gij + Hij (A25)
o The above equations may be adjoined with equations (A2) to obtain the following
ii set of nonlinear equations for each element.
2 [ ]
“ k® | s u® Fé
-:.‘ : *
N ! B (a26)
y el e ™ |
. : - 2x3 2x2 < 5xl 5x1
'3,: Y
Sy 5x5
-

where all nonlinearity is contained in [?], {Fe}, and {fe}. Equations (A26)

are identical to equations (27) in the main text.
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PREDICTED TEMPERATURE FIELD IN A THERMOMECHANICALLY
HEATED VISCOPLASTIC SPACE TRUSS STRUCTURE

D.H.

Allen*

W.E. Haisler®#*
Texas A&M University
College Station, Texas

Abstract

This paper focuses on the effect of
thermomechanically induced heating on the
response of a single member of a space truss
structure which behaves viscoplastically. The
governing equations are given for a typical truss
member, wherein material {nelasticity is
reflected in constitutive equations via a set of
internal state variables, each characterized by a
history dependent growth law. The governing
equations are coupled {n the sense that
temperature and displacement are dependent on
each other. This difficulty, together with the
fact that the inelastic constitutive equations
are nonlinear and numerically stiff, requires
that a computationally complex semidiscretized
finite element spatial technique be utilized to
obtain a solution. This procedure, detailed
herein, is utilized to predict the response of a
typical metallic space truss member under
vibrational or cyclic loading. Particular
interest i{s placed on the temperature rise f{n
such a member due to hysteretic loss durirg
structural vibrations and in the presence of
complex thermal boundary conditions
representative of space conditions. Example
cases are constructed for a typical cylindrical
bar of 6061-T6 aluminum bvoth with and without
special coatings. Results i{ndicate that
significant, possibly even catastrophic, heating
can occur due to thermomechanical coupling.

Nomenclature

t - time

P - axial internal resultant force

px - axial externally applied force per unit
length

x -~ axial coordinate dimension

o - axial stress component

A - cross-sectional area

1'x - end traction in units of force per unit area

*pssistant Professor, Aerospace
Engineering, Member AIAA

*#Professor, Aerospace Engineering,
Associate Fellow AIAA

$ - surface area
S
€ - axial strain component
u - axial displacement component
a, - internal state variable representing axial
inelastic strain
E - Young's modulus in the axfal coordinate
direction
o - coefficient of thermal expansion in the
axial coordinate direction
T = temperature
TR - reference temperature at which no
deformation is observed at zero
load
a, = intefnal state variable representing drag
stress
-
qQ - heat flux vector

q - axlal component of heat flux

k - coefficient of axial thermal conductivity
Cv - specific heat at constant elastic strain
p - mass density

r - internal heat source per unit mass

L - length of the structural element

Do' n, m, 21. ZI' Z,, r - material constant u.sed
in Bodner and Partom's model1

qc ~ flux on longitudinal boundary

¢ = absorbding portion of perimeter of an element
normal to longitudinal axis

Qs ~ solar radiation flux

Qg - earth radiation flux

e ~ area of the longitudinal surface of the bar
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-
8g - absorptivity conditions on the longitudinal surface of the
truss component are significant enough to carry L
FE - earth radiation view factor off all heat generated due to hysteretic loss. o
The paper first reviews the governing fleld -
As - incident angle of solar radiation on equations, then briefly discusses the procedure
whereby a numerical algorithm i{s constructed for .
structural component modeling the probleam. This s followed by a =
detailed discussion of the {mplementation of ._
A = incident angle of earth radiation on thermal boundary conditions. Finally, example
results are obtained for representative space
structural component structural components. :::{
o, = Stefan-Boltzmann constant = 5.775 x 10 " gk
4 Coverning Field Equations
MPa m/sec/(°K) m
The governing flield equations were presented N
TD - deep space temperature in reference 5 for quasi-static conditions. For 3
problems involving inertial effects, the
governing equations are as follows: .
Introduction a) equ111bp1um6' A
It i{s well known that in viscoplastic metals 3P = p _(x) (1) -
) a certain amount of mechanically induced ax o
X nysteretic mechanic energy loss is converted to o
F heat, thus resulting in a tespgrature rise in the where the axial resultant P is defined by
;: medium. In recent research®’” a model has been
- developed for predicting this effect by utilizing P .‘/;qg (2) -
) thermodymanic constraints together with Ve
consﬁitut.ive equations of internal state varjable Py E T. ds 3) -
type . Furthermore, {t has been3shown that in a x X h
: perfectly insulated uniaxial bar~, as well as in Sc N A
B a uniaxial bar with {nsulated_ longitudinal b) strain-displacement relation
. surface and fixed end temperature”, significant :
L temperature rise can occur in the component -3 (4)
\ during cyclic loading. € a—“ .-
The purpose of the current research {3 to x .
simulate the response of a typlcal metallic space ¢) thermomechanical constitution, .
v, truss structural element (see Fig. 1) in the
. postyfelded state and to determine {f significant o=E{e-a,-a(T-T)] (5)
heating occurs when this component is subjected 2
‘ to eyclic mechanical loading. This problem is of &1- 2 D g  exp |-fokl _(_1_2_ n -
interest because a certain amount of material i TeT 2n J\o (6)
inelasticity is desirable in order to produce .
passive structural damping. The factors of . . 0z \T ‘.
r interest in this simulation are the effects of uz'm(zl-az)"“l'Alzl ( 2 I) 7 -
r, thermal boundary conditions and loading rate on Z‘
r. the thermal response. In particular, it is of
£ interest to determine {f radiative boundary N
¢ o
> q=-k 3T (8) N
. O’C(T‘-T;) x X s
! / where a, and a, are the internal state variables
\ (ISV) represenzting inelastic strain and drag 1
.- \\ stress, respectively, {n the qonstltutlve model
:' ~ developed by Bodner and Partom . Several other
¢ constitutive models have been developed for
¥ -~ viscoplastic metals, and these are reviewed in .
f references 1 and 8, Finally, &
' d) conservation of energy3'5.
" [(Ee—EaﬁEoTR)m + EaZT_31]~EaTg£ -p( 3T-3q+or=0 _*
i at at at 3t 3ax N
’ 9)
: Conservation of mass {3 satisfied trivially X
(under the assumption of small motions in a oY)
! closed system), and the second law  of P
thermodynamics has been previonﬁs]"y shown to be
: satisfied by the above equations™' . .
N The governing equations are adJolne% with o
; appropriate initial and boundary conditions” such
N that a well-posed boundary value problem is
) Fig. 1. Typical Space Truss Structural Element. constructed in terms of the following dependent .-
.l , .
\
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variables which are sought as functions ot x and
t: o0,¢,4,q,T,P, a4y, and a Due to ISV growth
laws (6) and (7) (as uelf as radlative boundary
conditions), the problem {s nonlinear.

Solution Procedure

As described in detalil in reference 5 for
the quasistatic problem, the solution is obtained
using the semi-discretized finite element
technique, wherein finite elements are
constructed spatially, and finite differencing is
used {n time. The result is a time marching
algorithm which is reviewed here briefly.

First, equations (4) and (5) are substituted
into (2) and this result is substituted into (1)
to give the following equilbrium equation:

3__{&[32 - ul-a(T—TR)] }-— P, (x) (10)
Ix ax

Next, equation (4) {s substituted into equation
(9) to obtain the coupled energy balance law:
Ea_u-Eul+EoTR) 3 4ea’TaT ] -EaTa%u
ax - > at at atax
-pC, 3T - V:q +pr = 0 (1D

The §%%u1t is a set of two coupled partial
differential equations in terms of axial
displacement u=u(x,t) and temperature T=T(x,t).

Variational Principles and Finite Element

Discretization

Selecting a suitably smooth test function
v=v(x) over the domain of some element Q_:
x_ < x<x one may construct the ollowing
variationé& principle from equation (12)

f e+l gy av[au-al-o(T—TR)] dx =
Xet]
1)P(x PR (x ) & vp, dx Q12)

where the boundary terms result from the standard
integration by parts.

The variational principle for heat equation
(11) 1is constructed by first {integrating this
equation against a test function w=w(x) on 2, to
obtain

[(Ec-Eal+EaT )% 14EaT ar]-sar 2%y
at 3t Ixdt

-pCv aT + V-q + pr} dv = 0 (13)
at
Integrating the flux term by parts, assuming that
nonaxial components of flux are negligible, and
substituting equation (8) will thus result {n
X

et
w a|(E3u-Ea +EaT, 3 4 Ealr ot
ax at at
e 2
-AEaT 37u - AoC 3T - kA 3w T {dx
ItaIx at Ix Ix
Xet1
'-U(xe+l)Aq(xe+l) + w(xe)Aq(xe)- cw chx
x x
e+l e
+ | wA foC 3T - por)dx &)
N )
Var{ational equations (12) and (14) are now
discretized by assuming the following

displacement and temperature fields in a typlcal
element (superscripted e):

L SLUIFILES

o oS¢ < x<x (15)
u(x.t)-i_lu1 (t vy x) X< X

e+l

T(x,t)=} r: (c)¢‘;(x) X, < x<x (16)

e+l
i=]

where | ® and T® are nodal displacements and

temperatures, respectively, and wi and o are

quadratic and linear shape runctions.
respectively’. Furthermore, v and w are endowed
with the properties of u and T. Note that a
higher order element must be used for
displacement than temperature due to the fact
that temperature produces strain rather than
displacement.

Timewise discretization {s implemented via
the following backward finite difference
equations:

e ~ e e
a1 (t)-[Tm(t)-Tm(t-At)]/At n=1,2 Qan
dt
d“: (t)i[u:(t)—u:(t-At)]/At o=1,2,3 (18)
de

The above equations require small time steps In
order to guarantee numerical accuracy. However,
they are unconditonally stable which s necessary
because ISV gr?uth laws (6) and (7) are
numerically stiff

Substitution or equations (15) through (18)
into the governing fleld equations in variational
form will result i{n the following algebraic
equations:

3x3§ 3x
K 5o {} . {s} (19)
ke |s® T® Fe
2x3 252 Sx1 5x1
5x5

where ([K%], [s%3, (k®], (s®], and (F®} are as
described in reference 5, and

='e _~e "eg-l
F (G F (" c¢i q. dx 0)

X

where Fi is asedefined in reference 5. The last
term in the above equation accounts for thermal
flux boundary conditions on the 1longitudinal
surface of an element.

After global assembly and imposition of
boundary conditions equations (19) can be solved
in a time marching scheme in order to obtain the
nodal displacements and temperatures as functions
of time.

Global assembly of the element equations is
accomplished én the standard way wusing the
Boolean matrix”.

Imposition of Boundary Conditions

For a typical space truss structural
element, the boundary conditions are assumed to
be of the following type:

u(o,t) = ut = known
u(p,t) = ut = known @1
T(0,t) = T: = known
T(L,t) = T: = Known
. . e RIS SN
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and
C. = 900 J/kg/°K (0.215 Btu/lb/°F)
qc'.us[.qs cos xs+FE(l'az)qscosxewl-‘.qﬁcosxe] v -6 6
4 o b (22) a = 23.8x10 tn./{n./°K (13.2x10° in./in./°F)
+ ase(T -Tp )

= 1.27 x 10-u MPa mZ/sec/°K
where the first term in the above equation is the

. °
:' solar radiation flux absorbed by the body, the (73.4 Btusft/h/°F)
I'. d
o second term is the solar radiation flux refl:gt:d B 1.0 x 103 MPa (10.3 x ‘06 bs)
- by the earth and absorbed by the body, the .
;{ term is the earth radiation flux absorbed by the A « 6.45 x 10 m2 (1.00 1n2)
s body, and the last term (s the flux radiated by
the member to space. TR » 295 %% (72°F)
’, The above boundary conditons may be
t implemented to the Q}acretlzed global equations L «3.66 @ (12.0 FT)
" in the standard way’ . Although equation (22)
. technically includes the unknown temperature D =10 x 103 n/m
- field, the component temperature {s treated as a o
sy known quantity in this term for each time step. A‘ - 1.685 x 10-7 sec -1
This approximation {s acceptaq%F due to the fact

that the numerical stiffness of constitutive
equations (6) and (7) requires extremely small
time steps in order to obtain an accurate

n = 2.355

IR

P
.

1

m = 0.1770 MPa~' (1.2205 ksi™')

- solution. . ) .
:5 EXAMPLE PROBLEMS ‘ Z, = 620.1 MPa (89.93 Kst)
- A typical structural element has been z; = 0.
modeled with properties shown in TABLE 1. The
material properties were obtained experimentally r =0,
in the Mechan 55 and Materials Center at Texas 3 3
A&M University © for Al 5086 at room temperature, p = 2.66 Mg/m” (0,096 1b/tn.”)
which is similar to Al 6061-T6.
Sample cases were constructed for various ¢ = 0.0508 m (0.8333 Ft.)
cyelic loading rates for two different sets of
thermal boundary conditions, as described f{n Z = 387.8 MPa (56.25 Ksi)
TABLE 2. Both cases are considered to be "worst °
cases" 1in that the component 1is {n a maximum TABLE 1. Material and Geometric Properties for a
radiation flux condition at the maximum Typical Truss Structural Element (from reference
equilibrium temperature during one orbital cycle. 1),
The two cases differ {n the emmissivity and
absorptivity values for the component due to CASE I CASE II
differences in surface treatment of the
component., For case I, the component is a, 0.20 (degraded) 0.3218 (degradedq)
anodized, and for case II, the component |s
paint?g with high emmissivity ITTRE-S13GLO white € 0.8% Q.24
paint -, .
We now consider two elements {n a large A 0° 0°
space structure (see Fig. 1). Both elements are 3
constructed of the same material and are q 1.39 MPa m/sec 0
geometrically identical. However, element one is 3
painted with the high emmissivity paint described e 0.20 MPa m/sec 0.20MPa m/sec

above and s in full view of both earth and sun,
whereas element two (3 anodized and {s in view of

(4,080 km altituge)
earth only. For this case, as described in Table

2, the components have identical equilibrium A 0° Q°

temperatures T, = 295°K(obtained by setting qc-o &

in equation (27)). Ty 0°K 0°K
In both cases the structural members have

been subjected to 50 cycles of loading at three 1 0.30 0.30

different frequencies: 1 Hz, S Hz, and 25 Hz.

These frequencies have been selected as Fa 0.4 0.4

representative of resonant frequencies In a -

representative space structure. For example, a TEQ 296.2°K (73.6°F) 296.2°K

typical structure analyzed in reference 14 has =

resonant frequencies of 4.1 Hz and 3.4 Hz {n the
first two modes. Because the resonant frequency
of the first mode 1{in the structural element

itself s 240 Hz, 1inertial effects may be CASE II - Chromic anodized surface
neglected in these examples. :

Results for the cases described above are
shown In Figs. 2 through 8. [n Figs. 2 through 4 TASLE 2.
the cyclic stress-strain curve 1S shown at the

CASE T - Surface painted with S13GLO white

Thermal Properties for Example Cases I
and Il (from references 12 and 1'3).
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location x=L/2 for CASE I and at all three

" loading rates. It {s found that in all cases the 0.0
‘-: specimen reaches cyclic saturation after [
S, approximately five cycles. Thereafter, the s
hysteretic energy loss per cycle becomes a
M constant value.
In Figs. 5 through 7 the temperature rise is e
plotted for both cases at all three loading
rates. As expected, the amount of temperature . 30.0

rise |increases dramatically with loading rate.

(‘k For  example, after 50 cycles the total 200
% temperature rise at x=L/2 1s 17.5°K(1 Hz),
62.5°K(5 Hz), and 119.7°K (25 Hz) for case I. o
Furthermore, it is apparent that while neither s ’
. surface treatment can be regarded as resulting in f
negligible heating; at the higher loading rates. a
the anodized surface treatment produces g
. temperature rises which are significantly higher 0 e
"_-, than those where the surface is painted with
ITTRE-S13CLO paint. Finally, {t is believed by 200
" these researchers that the nonlinear nature of ’
the average temperature rise per cycle suggests
- that the temperature rise asymptotically -38.0
.':« approaches some upper bound, although this belief
T cannot be corroborated at this time due to the -40.0
large computer times required in the current
- algorithm, .0.0
o Fig. 8 shows that the spatial temperature ’
- variation at 5 Hz 1is approximately spatially
homogeneous. Apparently, a very thin boundary '“-°° .
- layer forms near the end of the component, and ~0.01 ~0.008 s.‘?""'::u 0.008 0.010
-, this boundary layer has 1little effect on the .
3 temperature at x=L/2. In fact, Subsequent
investigations by the authors have shown that, at . - -
i least for the geometry and physical conditions Fie. 3 g::iig zz::i:gsg:}:gdczv; :; xlr2 for
v, considered herein, identical results may be *
. obtained more efficiently by neglecting spatial
variations in displacement and temperature. 0.0
. s0.0 [-
. ( s0.0

y _ et g " :
- -
g ® 40 !
- 8
Sg e -
" ! N L
E ® -1w0.0 ..
@ 10.0 \"
«10.0 !
o -20.0 \;.
'Q . ! ~
S -20.9 . -30.0 !
-
l." ‘.‘
O -30.0 - -40.0 f- :J
~"_ t ,‘-:
o -80.0 X
> L3 )
a / -00.0 b !
0 E _—— — 4 -0.010 -0.008 0.000 0.008 0.010 .
+0.01+0.008 -0.008 -0.004 -0.002 0.000 0.003 0.004 0.008 0.008 0010 STRAIN o
.. STRAIN >
2
o Fig. 4., Cyeclic Stress-Strain Curve at x=L/2 for :
Fig. 2. Cyelic Stress-Strain Curve at xalL/2 for Case I Coating Loaded at 25 Hz.

o Case I Coating Loaded at 1 Hz.
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Conclusion

The current research has attempted to
predict the response of a typical space
structural element which i{s viscoplastic and is
subjected to various cyclic loading conditions (n
the presence of radiation boundary conditions.
Several general conclusions can be made as a
result of this reasearch:

1) significant temperature rises may occur
due to hysteretic loss, although the precise
amount depends on loading rate and surface
treatment;

2) the special paint ITTRE-S13GLO appears to
produce significantly lower temperature rises
than anodized surface treatment;

3) the temperature rise appears to be
approaching an upper bound which is loading rate
and surface treatment dependent; and

4) the thermal boundary layer which forms
near the end of the member appears to have little
effect on the far-field temperature rise.

These conclusions indicate that future
research on this subject should perhaps
concentrate on spatial variations in the radial

direction rather than the axial direction. More
importantly, these results indicate that an
inelastic structural component may undergo
temperature rises during structural vibrations
which are so substantial that the material
properties of the component may be further
degraded, thus leading to failure of the

component and perhaps even failure of the entire
structure.
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Avstract

In this paper the effect of degradation of
material properties on structural frequencies and
mode shapes of Large Space Structures (LSS) is
investigated. The difficulty and cost of
maintenance of LSS make it a necessity to design
these structures to operate with a certain amount
of load-induced damage. This damage s commonly
observed in fibrous composite media.

Sensitivity studies conducted on
representative space truss structures indicate that
degradation of material oproperties may have a
significant effect on the structural mode shapes
and frequencies. For even small amounts of
reduction {n stiffness (10%), frequencies and nodal
locations may change significantly. It {s clear
that these effects must be taken into consideration
when designing control systems for Large Space
Structures,

Introduction

Due to economic constraints, it is projected
that advanced high strength-to-weight ratio
aerospace materfals will be utilized {in future
generation space structures, Such materials
include polymer and metal matrix fibrous
composites, which are known tg émdergo a certain
amount of load induced damage.”’ These materials
are also expected to undergo a certain amount of
environmentally induced damage or degradation, thus
resulting in significant stiffness losses.

Experimental research on advanced composite
materials indicates that the material may undergo
up to 15 percent loss in stiffness due to
thermomechanical fatigue, which causes a variety of
damage modes {n the structure. Additional loss of
stiffness may be attributed to elevated temperature
and chemical changes due to solar radiation and
other environmental effects. This reduction in
stiffness affects the dynamic response which {n
turn s critical in the development of control
systems for LSS. In this paper, 3sensitivity
studies will be presented which investigate the
effet of stiffness loss on structural frequencies
and mode shapes.

The advent of the space shuttle has made
possible the development of LSS. Control systems
for stabilizing and maneuvering these very large
space structures, especially those for precise
pointing, will require extension of current
technology.

Research Assistant, Aerospace Englneering
#%  pProfessor and Head, Aerospace Engineering
Associate Fellow AIAA
#%#% pss{istant Professor, Aeroapace Engineering
Member ATAA

Although large size by itself does not arouse
concern, Sstructural flexibility resulting from
minimizing the structural weight in non-
gravitational flelds may present problems.
Extremely large structural flexibil.ly may result
in large amplitudes and low freguencies (.01 to 10
Hz) which may create new complications for control
designers.

AS an example of the precision requlred1 , a
typical radiometry application may utilize a 200
meter antenna with an effective beam width of 0.01
degrees and have requirements limiting the
vibratory beam shift to less than 0.005 degrees and
dynamic surface distortions to less than 1mm,.
Maneuvering or maintaining the altitude of such a
satellite leads to flexible body motion which must
be well predicted and controlled.

The importance of interaction between control
systems and vibratory response has cauagg
considerable research in LSS control systems.
The current practice of guaranteeing a large
separation between modal frequencies and the
bandwidth of control will not be adequate in future
applications. The combination of large size and
payload-weight restrictions will drive structural
frequencies down and the need for more accurate
pointing will drive the control system bandwidth
up. When sufficient frequency separation becomes
impossible, there exists a need for adaptive
control systems. This leads to further research in
the design of structural control systems actuator/
sensor placement, and distributed sensing and
actuation as opposed to co-located sensors and
actuators.

Techniques for achieving modal control of LSS
will require a more accurate knowledge of modal
characteristics. Opt imum sensor  and actuator
placement will be greatly influenced by modal
effects which must be known to a greater degree of
precision.

Problem Summary

In order to inveatigate the possible effe~ts
of material degradation on the dynami{: response of
LSS, a representative space truss structure nas
been selected in the shape of a long boom as shown
in Fig. 1. Using several loading histories, stress
distributions have been obtained for each truss
memver. The resulting stress distributions can be
used in a material damage model to define material
degradation and resultant stiffness reductions.
Using the reduced stiffness properties, modal
analyses have been conducted on the structure to
show the effect of material degradation on natural
frequencies, mode shapes and nodes. Details of the
finite element model, material degradation model,
and numerical results are presented below.

v

o8

ny.

E
)

o e
»
oM N

ey |

[..

P

¢ o

3
.
.

s

s

-
Pacaca ¢ QYN 3°2°2° 5 J S P FEET 5 %"t

i
'
,
.
.




;5 where “pmn are a set of r {nternal state
L
N var‘lab].e:a‘2 which are given by the following set of

ISV growth laws,

i <.’pmn = npmn(ckl'T'aqu) (3

At low homologous temperatures these
materials are assumed to be rate insensitive so
that the above model will result in quasi-elastic
(rate independent) equations in which inelasticity
i3 reflected only through the slowly degrag19s
modulus tensor. Experimental evidence '
indicates that the time scale for .egradation of
c' Kl is very long compared “0 the frequencies and
moéé Shapes of representative structures,. It 1s

-

' RS
therefore sufficient for many space structural ;?
applications to treat equations (1) in the degraded -

b state only. o

o - o

- , - The streas-strain relationship for the truss b

— - elements is a one-dimensional approximation of

] ™~ equations (2) given by

! ]

-~ - ] -

h 0 = E (cxx € ) (4)
where o and ¢ are the unlaxial stress and

0 XX XX

- strain, c'__ is the thermal strain, and E' {s the

- axial stifFfess of the truss element given by

r{ E' «E (1 - a) (5)

‘o Fig. 1 Space Truss Structure

where E is the undegraded axial stiffness and o Is
a scalar valued parameter representing the
integrated effect of all damage modes such as

Model Description matrix cracking, interlaminar fracture, fiber
breakage, and fiber-matrix debonding.

t

Material Degradation Model

Experimental research on composite matarials
The process of ultimate failure of composite indicates a power law dJdegradation of ?¥1?§

)

- materials is preceded by a sequence of stiffness as a function of stress history.
"~ microstructural and macrostructural events which Hence the damage ISV growth law 1s assumed to be of
are termed as damage. These events may be due to the form
- transverse cracking, delamiq;}épn, fiber bdreaking . n
. and fiber-matrix debonding. The mechanical a = k1 (o/omax) (6)
. response of the structure is affected by this
damage. Global material properties like stiffneas where k, and n are material parameters, % ts the
and residual strength may be substantially alteggg maximum stress in the structure, and o {s €ﬁe axial
o during the 1life of the structural components. stress in each truss element, For constant stress
{J Some of the analytical studies q?r modeling damage amplitude, equation (6) may be {ntegrated in time
b include 3 shear lag concept, fracture based to give the following approximation
concepts,, ,_,, and internal state variable n
- theories., Although important progress has u(t1) - k', [o(t1)/omax] (7
been made, current understanding of damage 18 not
- complete. where k', and n' are material parameters which may
be time éependent.
Damage in polymeric composites is modelled {n
< this paper as a load hiatory-dependent reduction {n A power law form of damage is used herein ror
ﬂ; stiffness In each structural element. The internal simplicity and for an {nitial attempt at modeiling
L state variable theory (ISV) is used for modeling the structural response with damage. In reality

mechanical  behavior and 125?5 stress  strain the damage laws will be more complex 13nd are
relationship is of the form, currently being developed for future work.

--‘
-~ -c -e T
B % c 15Kkl (CR (M Finite Element Model
In this case, the ISV are assumed to be Figure 1 {llus*rates the geometry of the
2\ second order tensor valued and to enter only representative gpace truss used to simulate an
i; through the modulus tensor, C'Ukl is the antenna boom. This structure {s sixty feet long
erfective modulus tensor given by with 10 bays, six feet long by three feet wilje.
p b The finite element model has 124 space sruss
N - - - '
- C 13Kl cijkl P mok11 a P LIPS (2) clements and 44 nodes. In the initi{al undegraded
. configuration, the material properties are the same
v . for all members with the following values:
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Material type: Graphite epxy (Hexel)
Young's modulus E = 21.5x10 531

Cross sectional area § 1.0 in

Density = 0.065 1b/in .
Coefficient of thermal expansion = 2x10
Reference temperature = 89.6°F

6 1n/in/F

Each truss member is idealized with a
standard s8ix degree of freedom truss element cf
constant cross section. Because the structure {s
idealized as linear with slowly varying material
properties, conventional linear finite element
methodology may be used t?6ypfte global equations
of equilibrium of the form

(M1{Q} + [K){q} = {Q} (8)

where [M] {s the mass matrix, [K] is the stiffness
matrix, {q} is the nodal displacement vector, and
{Q} 1is the nodal force vector. The stiffness
matrix [K] is dependent on the spatially variable
damage state a which varles from element to
element. Standard eigenvalue extraction may be
performed; in this case, subspace f{iteration was
used to obtain the first five frequencies and mode
shapes.

Spatial Distribution of Degradation

The spatial distribution of degradation and
stiffness reduction of LSS will be complex and
dependent on loading and environmental history.
For the present {nvestigation, wherein material
degradation is assumed to be a function of stress
history, it was necessary to make some assumptions
about the corresponding stress history and spatial
distribution of stresses within the LSS.

Two approaches were used to obtain candidate
stress histories/distributions for predicting the
stiffness degradation. In one case, the stress
distribution was obtained for an assumed thermal
load history/distr{bution. Secondly, a modal
approach was used wherein [t was assumed that
primary degradation occurred in the first two
bending modes of the structure, After computing
the mode shapes for the first two undegraded
bending modes, the nodal displacements were used to
compute a corresponding stress distribution.

In each case, the degradation model given by
eguation (7) was ¢then used to obtain degraded
properties four each truss member assuming that the
element stressed the moat was degraded a specified
percentage. The resultant structure with degraded
properties nhas spatially variable stiffness that
varies from olement to element. Mode shapes and
fregien~ies <ere then computed with varylng maximum
percentages of degraded properties.

Discussion of Results

Natural frequency and mode shape responses
nave been obtained for several stress-induced
dmegridation test cases as described above for the
representative space truss structure shown in Fig.
1, Thi3z particular truss structure geometry,
representing a segment of 4 boom, {3 similar to
ones being used for other PACOSS related work.
Assuming the boom is fixed on one end (at x=0), the
five lowest frequencies (for the virgin structure)
are equal to 3.4 Hz, 4.5 Hz, 4.6 Hz, 19.2 Hz, and
20.3 Hz. The first mode {s a combined torsafon-
inplane shear mode, the next two modes are bending

AN NLAIA Bad ol W

modes about the z and y axes, respectively, and the
fourth mode is a pure torsion mode.

The first case considers the boom structure
shown in Fig. 1 (which is assumed to be fixed on
one end) with a thermal gradient over the cross-
section. It is likely that one surface of the
space structure will become significantly hotter
than the other surface due to solar heating,
attitude of the structural elements and shadowing
effects. To investigate the effect of this thermal
gradient through the depth of the truss, the
stresses {n each element were calculated by
specifying a temperature of 122°F for the members
on the top surface, 80.6 F for the ..embers on the
bottom surface and 100%F for the diagonal members
connecting the top and bottom surface. With this
thermally-induced stress distribution, the axial
stiffness of each element was degraded by using
equation (7). The maximum level of degradation
(loss of stiffness) was set to a prescribed
percentage for the element with the highest stress
and remaining elements were degraded according to
their stress level by using equation (7). The
value of n' in equation (7) was assumed to be 0.75.

In Fig. 2 the first three natural frequencies
are plotted for different levels of damage. The
effect of damage on the natural frequencies Iis
clear. Increasing the level of damage reduces the
stiffness of the space truss and this {n turn
drives the natural frequencies down significantly
even for modest damage states. For a maximum loss
of 25% in axial stiffness (for the highest stressed
members), the first three natural frequencies are
reduced by about 8%. Since mode shapes are
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important for designing the control systems of the
large space structures, it {s desi{rable that they
be constant with time. Although it was found that
there was no appreciable change in the first mode
shape between the undegraded and degraded cases,
higher modes were altered due to material
degradation. Figure 3 is a plot of the 2z
displacement for the second mode shape along the
length of the space truss (z=0, y=0). Significant
changes in the mode shape and node locations as a
function of percent degradation are observed. The
sign of the modal displacement is reversed near the
free edge for the degraded and undegraded cases and
the location of the node (zero displacement)
changes appreciably. Figure 4 is & similar plot of
the y displacement along the length of the space
truss for the third mode.

The value of n' in equation (7) was varied
from 0.25 to 1.0 to study its effect on the mode
shapes. It was found that the trend in mode shape
changes was similar for different n'. Figure 5
{llustrates this point, Here the 2z displacement
for the second mode {s plotted along the length of
the space truss for different values of n' (maximum
reduction in axial stiffness was 20%). The plot
indicates that increasing n' (l.e., decreasing the
nonlinearity of the degradation model) tends to
increase the changes in the modal displacements.
Such nonlinearity becomes increasingly important
when stresses vary spatially over the structure,
i.e., some members are highly stressed compared to
others.
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The next two 3ample cases consider the
sjituation where we assume that primary degradation
occurs in the first two bending modes. For
simplicity, it is assumed that damage occurring in
one mode does not affect the damage in any others,
f.e., no damage induced coupling of modes. In
reality, this may not be the case and will be
considered in future research.

In the first case, we consider the case where
degradation has occurred in the first bending mode,
t.e., degradation {s based on stresses calculated
from the modal displacements corresponding to the
second mode shape. Figure 6 shows the resulting
first three natural frequencies for different
levels of damage. For a maximum reduction in
stiffness of 25% the first three natural
frequencies decrease by 8.6%, 9.2% and 7.6%,
respectively. There is little change in the first
mode shape for the degraded and undegraded cases.
Figure 7 is a plot of the z displacement for the
second mode shape along the length of the space
truss and shows that the modal displacements change
quite drastically for the degraded structure. The
displacement at the free edge (s nearly 30 times
the magnitude of the undegraded case for a maximum
damage of 25% (the sign of the displacement is also
reversed) and the location of nodes also change
considerably. - Figure 8 indicates similar changes
in the y displacement for the third mode shape.
The fourth mode (torsional) s relatively
unaffected by the degradation of material stiffness
properties. This 13 as expected because the
present analysis assumed that primary degradation
occurred in the first two bending modes. Different
results would be expected if significant stiffness
reduction occurred in the primary torsion mode.
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Results have also been obtained for the case
where damage {3 assumed to occur in the third mode
(second bending mode). As in the previous examples
there 13 no appreciable change in the first mode
shape between the undegraded and degraded cases.
The z displacement corresponding to the second mode
shape {s plotted in Fig. 9 for different levels of
damage. The displacement at the free edge is very
large {n the damaged states as compared to the
undegraded state. Figure 10 illustrates similar
results for the third mode shape. These results
show that the mode shapes and node points may
change significantly for even small damage amounts.

Conclusions

This study has attempted to investigate the
possible effects of material damage and stiffness
reduction on the modal response of LSS. Large
space structures constructed of fibrous composites
will experience some stiffness reductions produced
by load-induced and environmentally-induced damage
of the material. To what extent this will occur is
uncertain at this point but even small damage
amounts appear to be significant.

The present work has shown that load-induced
degradation of material properties may have a
significant effect on the structural frequencies
and mode shapes. For the representative boom
structure considered here, even small amounts of
material stiffness degradation (10%) produce
frequency and node shifts which appear to be
significant. It is not {nconceivable that mode
shapes, node locatlons, and frequency distributions
will change over the plant design life in such a
way that the structure response {s very much
different from the virgin structure. Such changes
in plant response would require "robust"™ control of
3 nature which may not be possible with present
technology. Consequently, it is Iimportant that
these effects be taken into consideration when
designing the control asystems for large space
structures.

Although preliminary, this study suggests the
need for a more accurate knowledge of the physical
nature of material degradation in fibrous
composites, its influence on structure stiffness,
and how material degradation will affect the long-
term modal characteristics for large space
structures.

Acknowledgement
This work was aponsored by the Air Force
Cffice of Scientific Research under Contract No.
F49620-83-C-0067.
References

1. Herzberg R.J., Johansen K.F., and Stroud R.C.,

"Dynamics and Control of Large Satellites,”
Astronautics and Aeronautics, Vol. 16, Oct., 1978
pp. 35-39.

2. Skelton R.E., "Algorithm Development for the
Control Design of Flexible Structures," NASA-CP-
2259, 1982.
3. Skelton R.E., "Large Space System Control
Technology Model Order Reduction Study," NASA-CP-
2118, 1979.

Z DISPLACEMENT

Y DISPLACEMENT

7.0
Y

-]
-
LEQEND

® O=N0 DAMAGE

- O= 8% DAMAOGE
A=10% DAMAGE
+e18% DAMAGE
X = 20% DAMAGE
o= 2% DAMAGSE

e

L4

0O TP 146 318 268 360 432 S04 76 648 TR0
HORIZONTAL POSITION

Fig. 9 Effect of Degradation on Second Mode
Assuming Third Mode Damage State

e
e
°
-
e
<
]
° T v - T
TR 144 218 2080 360 432 $04 48 T30
HORIZONTAL POSITION
LEGAND

° Ow MO DAMAGE
- O= 8% DAMAGS
. 4= 10% DAMAGE

+=15% DAMAGR

X = 20% DAMAGE

o= 20% DAMAGE
d
<

Fig. 10 Effect of Degradation on Second Mode
Assuming Third Mode Damage State

Al * e AR A - o A A A




L

R

EAC R i il A

4, Hroner G.C.,"Optimum Damper Locatlion for a
Free-Free Beam," NASA-CP-2168.

5. Reifsnider K.L., Schultz K., and Duke J.C.,
"Long-Term Fatigue Behavior of Composite
Materials," Long-Term Behavior of Composites, ASTM
STP 813, 1983, pp. 136-159.

6. Reifsnider K.L., and Jamison K., "Fracture of
Fatigue-Loaded Composite Laminates,"” Int. J.
Fatigue, pp. 187-197, October 1982,

T. Masters J.E., and Reifsnider K.L., "An
Investigation of Cumulative Damage Development {n
Quasi-Isotropic CGraphite/Epoxy Laminates," Damage
in Composite Materials, ASTM STP 775, 1982, pp. U0-
62. ,

8. 0 Brien T.K., "Characterization of Delamination
Onset and Growth in a Composite Laminate," Damage
in Composite Materials, ASTM-STP 775, 1982, opp.
140-167.

9. Whitney J.M., "Fatigue Characterization of
Composite Materials," Fatigue of Fibrous Composite
Materials, ASTM-STP 723, 1981, pp. 133-151.

10. Highsmith A.L., Stinchcomb W.W., and
Reifsnider K.L., "Stiffness Reduction Resulting
from Transverse Cracking {n Fiber-Reinforced

Composite Laminates,” VPI-E-81.33, Virginia
Polytechnic Institute, November 1982.
11, Chou P.C., Wang A.S.D., and Miller H.,

"Cumulative Damage Model for Advanced Composite
Materials,” Material Laboratory Air Force Wright
Aeronautical Laboratories, Report No. AFWAL-TR-82-
4089.

12. Allen D.H., Groves S.E., and Schapery R.A., "A
Damage Model for Continuous Fiber Composites - Part
I: Theoretical Development,"” Texas A&M Mechanics
and Materials Center, Report No. MM 5023-84-17,
Feb. 1985.

13. Groves, S.E., Allen, D.H., and Schapery, R.A.,
"A Damage Model for Continuous Fiber Composites -
Part II: Model Applications, "Texas A&M Mechanics
and Materials Center, in preparation.

14, Schapery, R.A., "On Constitutive Equations for
Viscoelastic Composite Materials with Damage,"
National Science Foundation Damage Workshop, May i-
7. 1980.

15. Mikulas M,M., Bush H.G., and Card M.F.,
"Structural Stiffness, Strengt’:, and Dynamic
Characteristics of Large Tetranedral Space Truss
Structures,” NASA TM X-74001, March 1977.

16. Bathe K.J., and Wilson E.L., "Numerical
Methods in Finite Element Analysi{s," Prentfce-Hall
Inec., 1976.

17. Zienkiewicz, 0.C., "The Finite Element
Method,” Third Edition, McGraw-Hill Book Company,
1978.

gr..

h
et
Ly

-
[

T
_r

Y

1«
‘s e

e

RO

b AR

»



e Yy R s W

a

-

.-
)

v
i

I

o ——t - rm

-

’

TUNNS

N O R e e e

Sy % "1 5 T F

¥er

v e v e -~

Appendix 6.6




-
-

AaaatA A A g Y g e At A e e A

A Fractographic Study of Damage Mechanisms in
Short-Fiber Metal Matrix Composites

by

David H. Allen, Associate Professor
Charles E. Harris, Assistant Professor
Eric W. Nottorf, Graduate Student
and
Graeme G. Wren, Graduate Student

Aerospace Engineering Department
Texas A&M University
College Station, Texas 77843

to appear in

Fractography of Modern Engineering Materials:

ASTM Special Technical Publication

1986

B P N e
PR T e Ve

WPV Y

iR st arl e el aUsavi o nd el o AR bl

AR -

B e S S R T A e R R AT
s B e e e R et At a it aNat aka R b ad aAata Al

B SO _}
T st e e R R




[ it A s B A
.....

T

|y

A

ABSTRACT

;-‘
.

A general constitutive theory is formulated for a short

-‘ -‘

fiber metal matrix composite. The constitutive theory is

ry
[ 4

based on continuum mechanics with constraints provided by
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Y

fracture mechanics and thermodynamics. The basic premise

of the constitutive theory is that load-induced

7l

«

microstructural damage associated with the inclusion of the

fibers in the metal matrix results Iin a loss of material h

stiffness.

‘e The concept of the damage dependent constitutive theory
-
was evaluated by an experimental investigation of the F
2
P miecrostructural damage in an aluminum 6061-T6 matrix with

silicon carbide (SiC) whiskers. The primary objective of J

the investigation was the identification of microstructural

Ve

- damage such as voids or cracks that were associated with

the presence of the SiC whiskers.

Iy The results of the experimental investigation include
. measured reductions in the elastic modulus of tensile

-

-

specimens which were loaded beyond yield and unloaded.

’! Also, there was an associated change in the extent of the

microstructural damage. These results lead to the
ﬁ, conclusion that the effect of microstructural damage must
o be included in the constitutive relationship in order to
i fully describe the behavior of a metal matrix composite.
-
.‘A
-
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INTRODUCTION -

In recent years, metal matrix composites have received

increasing attention as a viable material for structural

applications. Along with the normal advantages associated -
with tailorability of directional strength, these compos-
ites can be used at elevated temperatures that would ad- ﬂ
versely affect the integrity of conventional polymeric ma-
trix composite systems. Metal matrices also offer higher
strength and stiffness than polymeric matrices over a broad .
range of temperatures. Further advantages of metal matrix -
compo