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SIGNIFICANCE AND EXPLANATION

Many elastic materials, such as rubber, can be subjected to large volume-preserving
deformations, but show little compressibility. Such materials are often modelled as incom-
pressible elastic solids. In this paper, the authors study the initial-boundary value problem
for the differential equations describing such materials and prove that it is well-posed.

4.?

6%.

Accliori For

NTIS CRA&I

UTIC TAB IU~an,,o'v" id [3 II

U tin-i-t ;-d

B y .. . . .

U, t ib.,to I

,c

* il k ' ,, ..

The responsibility for the wording and views expressed in this descriptive summary lies
with MRC. and not with the authors of this report.

. . 'r, '. ,' -.' , Z''. ':.--,.'-"-,- " "4 ,' ." " ... '." , ",%''. '.,',, ,' .°,u'u ,." ." . 2 .u
" . 

" = x - "-, u"- ", 
" 
"-'- .'"Z- ..-4-

." _%. :, ,tZ,.,:. .':.' .'..'-,'-. '%'-.'..'..'..%'.." .':" %.."."-". % : .: ?z - . . . ¢ .- X% - -* 
"
-"''.'':>



- . - •.. . . .. . ..- -. • o .

AN EXISTENCE THEOREM FOR THE DIRICHLET

INITIAL-BOUNDARY VALUE PROBLEM V

IN INCOMPRESSIBLE NONLINEAR ELASTICITY
N

William J. Hrusa and Michael Renardy 2

1. Introduction and statement of results %

The goal of this paper is to show how energy methods can be applied to establish the
local (in time) existence of classical solutions to the Dirichlet initial-boundary value prob-
lem in incompressible nonlinear elasticity. For compressible nonlinear elasticity, the initial
value problem posed on all of space was solved by Hughes, Kato and Marsden 17] using
methods of semigroup theory, and the Dirichlet initial-boundary value problem was solved
by Kato [8], Chen and von Wahl [31 and Dafermos and Hrusa [4]. Schochet [141 proves an
existence theorem for the initial value problem in the incompressible case by considering
incompressible materials as a limit of compressible materials and deriving uniform esti-
mates which allow passing to the limit. His proofs are based on ideas of Klainerman and "..
Majda [9,10], who considered the incompressible limit in gas dynamics. A direct existence
proof for incompressible elasticity (without using approximation by compressible materi-
als) is given by Ebin and Saxton [5]. The results of Renardy [131 can also be applied to
incompressible elasticity. In this way, an existence theorem for the incompressible initial
value problem is obtained, but it is not proved that solutions of the incompressible problem
are limits of solutions for the compressible case. To our knowledge, there are no previous
results on initial-boundary value problems for incompressible elasticity.

In all the papers quoted above, energy estimates play an essential role. A first order
energy estimate can always be obtained by considering the physical energy of the elastic
body, which is the integral of an expression involving first derivatives of the unknown de-
formation function. Bounds on this energy, however, are not strong enough to be useful in
an existence proof. The idea is to differentiate the equations of motion and consider the
analogues of the energy for higher derivatives of the solution. The a priori bounds thus
obtained are then used in a contraction argument establishing the existence of a solution.
There is an essential difference here between the initial value problem on all of space and
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the initial-boundary value problem. For the initial-value problem one may differentiat
the equations with respect to spatial variables as well as time. For initial-boundary value
problems, however, differentiation with respect to spatial variables "destroys" the bound-
ary conditions; in other words, we do not know anything about spatial derivatives of the"
solution on the boundary. Since the boundary conditions are important in the integrations
by parts leading to the energy estimates, we have to limit ourselves to differentiating with
respect to time. This leads to energy estimates for time derivatives of the solution. Esti-
mates for spatial derivatives must be obtained in a different fashion. For equations such as
those of elasticity this is done by using elliptic regularity results to estimate spatial deriva-
tives in terms of time derivatives (see 13],[4],[81). In the present paper, we show how this
method can be applied to the Dirichlet initial-boundary value problem for incompressible
elasticity. We shall prove an existence theorem, but we do not address the question of
whether or not our solution is the limit of solutions for compressible problems.

We consider a homogeneous hyperelastic body with reference configuration fl and
unit reference density. By x we denote material coordinates, and by y(x,t) we denote the
spatial position at time t of the particle with material coordinates x. We use the notation
F, = ayi/az and we write ax'/oy i for the components of the inverse matrix F- . The
equation of motion is as follows:

_ti  ap ax a2W(F) a 2yi (1.= +  __+ f11

Here W = W(F) is the stored energy function, p = p(x,t) is an unknown pressure, and
f = f(z,t) is a prescribed body force. Throughout this paper we adopt the Einstein
summation convention. The motion must satisfy the incompressibility constraint

det F = 1. (1.2)

We seek a solution to (1.1) and (1.2) subject to the initial conditions

Y (X,0) =YO W, (X, 0) = Y I W, (1.3)
and the Dirichlet boundary condition

y(x,t) = x for t > 0, xE ial. (0.4)

In order to make the pressure unique, we shall normalize it by

Jp(xt) dx =0. 1)

We make the following smoothness assumptions:
,5 (SI) 0I is a bounded domain (i.e., an open, connected set) in R 3 with a boundary of class'

C 3 ,1 .

1 We could weaken this assumption and impose a "Sobolev-type" regularity on the

boundary.
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(S2) The stored energy function W is of class2 C s .

(S3) The initial data satisfy' yo E H 4(fl), yj E H'(fl).
(S4) For some T > 0, we have

2
f E fl C O, T;;H2-k(n)),

k=0

and the third order time derivative (in the sense of distributions) of f lies in
L'(10, T]; L2 (fl)) •

Moreover, we assume that the elastic energy satisfies the strong ellipticity condition.
(E) With

A - , (1.6)aF aF

we have

for some positive constant C and all vectors , 17 E R3 .
Finally, we have to assume compatibility of the initial data with the boundary and

incompressibility conditions. The following compatibility conditions are required.
(Cl) yo = x and y, = 0 on afl.
(C2) det Vyo = 1, and yj satisfies the following equation, which is obtained by differenti-

ating the incompressibility condition with respect to time:

ay t = 0. (.)"

(C3) The initial values of j and a 3 yi1 t3 , henceforth denoted by Y2 and Y3, vanish on afl. "
The last condition requires some explanation. The initial values for j and a 3 y/8t 3

have to be determined from the differential equation. However, in order to find j from
the equation, we must first find the pressure at time t = 0. The procedure for this is as
follows. First we differentiate the incompressibility condition once more with respect to
time to obtain :1 a

4zr* ayi aa az a t a 0 (1.9)

From this, the quantity
49j ax,ax0 ayt  (1.10) .
ax" 49yi

We always think of W as being defined even for det F # 1. This can always be

achieved by extension.
s In our notation for Sobolev spaces, we do not distinguish the number of components

of the function, i.e. H 4(fl) may be a space of scalar-, vector- or matrix-valued functions
depending on context.

3 ."

. . ,. , , ." . "  , . . , .- %."4 P 'W. ' €," w* F -e 
'  

. " 
'  

,.- V --- "m,' - ".".- m'A -'~v.V ' ", " W - '."% -%*. . ,', * j,
,.',,,. , ,., , ' ,',,'., ,, , ,',-- -, - - ". 'W]j" .,-. ,. ,., ,,, * # ', ..... , , , . , .,%-% .- ,w %',".-., ' * ., .

" - -E--M .7 . ,2,",. -01, Y. ,, . % .. , .",. ,. .,A. '.A-. .PE.A-.- .' .' .. ,".nr",-.,-X.," .-.- '- .'- .- .



is known at time t = 0. If we now apply the "divergence operator" (dx'/dy')(19/azx) to
the equation of motion (1.1), we obtain an elliptic differential equation for p, which has
the form

4yx a 8-" d g (1.11)

49, 9x 1ay, 9' I g
where g is known at time t = 0 and lies in H'(ft). On the boundary Ofl, we multiply
equation (1.1) by (az"/ay')n.,, where n is the outer unit normal. Since (1.4) implies that
j must vanish on anf, the appropriate boundary condition for p has the form

ay i nz[ ap - h, (1.12)

where h is known at time t = 0 and lies in H / 2 (afl). Equations (1.11) and (1.12) form
a Neumann-type boundary value problem for p (in fact, they are the Neumann problem
if we transform to Eulerian coordinates). This problem has a unique solution p E H3 (fl)
subject to the constraint (1.5), provided the right hand sides satisfy the condition

r rg gdz h hdS. (1.13)

To verify that (1.13) holds we must show that the second term on the left-hand side of
(1.9) has integral zero over fl. If we transform to Eulerian coordinates, with u denoting
to the velocity field, we obtain for the integral in question

J(Vu) :(VYu)T dy - (u- V,)(divy u) dy = 0. (1.14)

After having solved for p at time t = 0, henceforth denoted Po, we can insert it into (1.1)
and compute P at time t = 0. Differentiating (1.1) once with respect to time, we obtain
in an analogous fashion a Neumann problem for 0, which we must solve in order to find
a3y/at 3 at t = 0. Condition (C3) means that the so computed initial data for j and
a3y/at 3 must vanish on o1.

We now state our main result.

Theorem:
Let the hypotheses (S1)-(S4), (E) and (C1)-(CS) be satisfied. Then there is a T' t:

(0, T] such that the problem (1.1)-(1.5) has a unique solution (y, p) on Q x 0. T" with the
regularity property

4 4

y flC4 --k(TjHk)) Ef C 4 -1( O. T' Hi k-I(I)
k=O k=2

4
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Remarks:
1. It follows from the Sobolev imbedding theorem that the solution satisfies y E C2 ,

p E C' and it is therefore a classical solution of the differential equations.
2. The result can be modified to accommodate Dirichiet boundary data other than y = X

provided appropriate smoothness and compatibility conditions are satisfied.
3. The result can be extended to viscoelastic materials for which the leading order terms

in the differential equation are like those in the elastic case, e.g. K-BKZ materials
(see 113]).

4. It follows from (1.2) and (1.4) that the mappings z -- y(x,t) are actually globally
invertible, see 12] and [12].

5. If more regularity of fl, W and the data is assumed, and the appropriate additional
compatibility conditions are satisfied, then the solution also has higher regularity.

2. Outline of procedure

The solution of (1.1)-(1.5) will be obtained by a contraction argument which involves
solving a sequence of linear initial-boundary value problems. There are, of course, nu-
merous ways to formulate (1.1)-(1.5) as a fixed point problem; for technical reasons the
precise form of the fixed point problem is a very delicate issue. Since the incompress-
ibility constraint is not in quasilinear form, we shall work with a differentiated version of

As noted in the introduction, we differentiate with respect to time because of '
the boundary conditions. We shall actually differentiate (1.1) twice and (1.2) three times.
This yields a linear initial-boundary value problem for j and A. Bounds for y, 0, p and p
will be obtained via elliptic estimates.

Assuming that (y,p) is a sufficiently smooth solution of (1.1)-(1.5), we introduce the
notations u := y, z := - (y - z), q := , and 4 := , where A is a positive constant to
be chosen later. The original system (1.1), (1.2) can now be written as follows: .

P p 4z° a2w(vy) a2y'
8z0 81/ + F8F 8xax - (y'- z') + , (2.1) .

det (Vy) = 1. (2.1)2

After differentiating once with respect to time, we obtain

S ,2W(Vy) 4_2U -/

z':' 8y' + 8Fi8FJ ax'a9zx

8p 8Cz k axO 8 3 W(Vy) auk 9 2y .
+ +U - u' + f', (2.2),

dis' dx a

- = 0. (2.2)2

5
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Differentiating once more with respect to time, we obtain

+ € OxO - a 2W(Vy) 0 2zI

_A2W(VY) a2y k OX# ;=
Y) - axa +9 2

a 8FAaF) ax'ax a ayk a ay i

ap axa a8ua alll aFx6 du aaFCaFp k k] aXPax
-2 - - k - Y +b

5;; wy-1 5-X-- k wx-, ay' +x adyk LY X aari
43 W(Vy) auk a 2 u' aW(y) a2 j

+2- 3~ 8 4 x a5; a,; + aW 8F Y8F a z + A k Y_

+ W- z - 2y'+ + , (2.3)1
aF~i aFJaF~kaF.'ax'y ax6 aXW a XR

az dxa dy y' ax' ax" a o I' da Cuj ox) _o. (2.3)2..Z

In differentiating terms like 8ax"/ay we have used the identity

at-F-1 = -F-1tF-1. (2.4)

Instead of using (2.3)2 directly, we shall differentiate this equation once more with respect
to time and apply some transformations to it. In doing this, we use the identity

a ax -0, (2.5)
X ayi

which is obtained as follows. Employing (2.4) with 8/at replaced by d/cx", we find

z ay, - a ~y ' o'a - -tr (F- y. (2.6)

a~x- dyi -y dx& 1ax 9 tr F 1 6 ayi

It follows from (1.2) that
OF_

tr F- 0. (2.7)

Using (2.5), we can rewrite the first two terms in (2.3)2 as

z- ' -, A(y -  x ) ax (2.8)
xa O[y' ay i

After differentiating with respect to time, this expression becomes

a i a' t ax u ax] (2.9)

6

.. % '%.. . J' ad.~ , 'M . ' ~~jS*aaJ t  
*

*. F j. . .. .. % % % %

%_*II € . _ . , , . -. '. ' ' - ' -% . o'%. "OM" _ - _%,. ' . - .. ' . ., ' ' ., , . ' .-. ' , . ' . .. ' . . ' .. ' . ' -



%i

For dealing with the last term in (2.3)2, it is convenient to transform to Eulerian coordi-
nates. In these coordinates the term is simply equal to

(VYU) : (V 1 U)T = divy [(u. Vy)u] (2.10)

(V, and denote Eulerian space and time derivatives, while d - + (V V,) denotes

the material time derivative). In (2.8), we set v = (u. Vy)u and take the material time
derivative. We obtain

d v = div [ + (u V1 )v - (v. V)u]. (2.11)

To proceed further, we note the identity

divy [(u. Vy)vl = divy [u divy v + (v. V,)u]. (2.12)

Using this, we find .'-
V-

ddiv v =div1 + u divv = div (f. Vy)u +(u Vy)d +udivy vdt

r 1 '%
= divy [2(d - Vy)u + u div, v.

=divy [2(-d Vy)u - 2[((u" V,)u) " Vy]u + u[(Vyu) (VYUt)T]]. (2.13)

By transforming this back to Lagrangian coordinates and putting it together with (2.9),
we fi:ally obtain

ax, a'a U. a-
a- -a l + Au' -3[zJ + A(y )] 8 .
43y' Oxa P

4"

+2u "  u'- - - -a0ay c za = O. (2.14) ,OYk Ox P o x,1 oIXO 49 k oJXI 49y ..

We now describe the basic iteration scheme. Given functions y(,), Z(f), P(n) and O(n)
- on fI x I0,TI. we determine y(n+) Z(n-+), P(n,-I) and @(_I) as follows. First, we set

U(n) : (,) and q(n) := 0(n). For technical reasons we also need to introduce a function
fl(n) which is another approximation of u possessing better regularity properties than u(,).
We set

I (U(n), Y (X) J z(n)(x, r) + A(y(n)(x, r) - x) dr(2.15)

where H1 is the projection operator from an appropriate product of Hilbert spaces onto the
diagonal.

~7 7



We then determine z(.+,) and 0(n+1) by solving a pair of equations related to (2.3)i
and (2.14). To describe this pair of equations, it is convenient to denote the expression on
the right-hand side of (2.3), by

G(y, VY, V 2y, u, Vu, V 2u, z, Vz,f, x).

We replace equation (2.3)1 with

9ax(+,) dZ ' + arr2W(Vy) a a'

8xa a Y(,, ~FaF 3j axaxo

+G'(y(n), VYI(n), V 2y(n), U (n), VU(n) V2U (n), Z(n), VzV(), .f, X). (2.16)"

In the analogue of (2.14) we shall use fi(n) rather than U(n). More precisely, we replace
(2.14) with

ax* a9 {Znj ± n~ a ) 9X~
(n"+ 1 + i-3 [Z + A(Y-) a

+4k 'aU° axc () () a aU( ayj+ak aX ail(n aY~ 4axi -In) ax# (n) ao(n)

a~n x6 y(n)(n
= -- zn+1) - Hi(f, V, y, Vy, z,x) w (2.16)2ay',n) ax- ",

If we impose the initial conditions

Z (+,)(X,0) = Zo(X) = Y2(X)- A(Yo(X)-), z(n+,)(X,0) I (X) Y 3 (X)-A yI(x), (2.16)3

the boundary cor ,ions
Z(n)= 0 for x C anf, t > 0, (2.16)4

and the normalization

f4(n.4 ,(X,t) dx= 0, (2.16)s

the problem (2.16) can be solved uniquely for Z(,+i) and 0(,+I).
Finally, we obtain Y(n+i) and P(n+) by solving a nonlinear elliptic equation. For each

t E 0, T'J, we consider the boundary value problem

oPxn' ax-,+, + V~l arnv]+ 1)xao Ay,+)x' ,,+,
_____ +__ _ a w v ~ l ) ~ 4 1  A (y ' x') z f f', (2.17) 1

det V y(, 1 (2.17)2

.. .. . . . . . .. .. . .. ... .. ..... -. ........ . .- . . .. ... - .. .. . . . . . . .. . .#.: +l; . . Ev 4% .* ..+ .. :: +A*A * 
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P(n-1) 01 O,(2.17)3"lf

y(n+l)(x,t) = x for x G df. (2.17)4

Using the implicit function theorem and standard results for linear elliptic equations, we

can solve this boundary value problem for Y(,+) and P(n-,-). By formally differentiating
(2.17) with respect to time, we can obtain estimates for y, j, and f. The formal differ-

entiation with respect to time can be justified rigorously by taking appropriate difference
quotients and passing to the limit.

To implement the procedure outlined above, we must solve linear initial-boundary
value problems of the form

.01

-- + A3 X acGx G +G1, (2.18),

,, ' o g')o o
XI a / (2.18)2

where G', H' and the coefficients xQ, AO'O are given. The solution of (2.18) is discussed in
section 4 and will be based on the Galerkin method. In section 3, we discuss the needed
results for elliptic systems. In section 5, we use the contraction mapping theorem to show
that the iteration converges. The limit will provide the solution we seek.

In the estimates derived in the following two sections it is important to keep track of
the quantities on which the constants appearing in the estimates depend. In the remaining
sections, we always regard fl, W (and hence the constant in the strong ellipticity condition),
the forcing term f and the initial data as given once and for all. We shall therefore not
explicitly point out any dependence on these quantities.

3. Elliptic estimates

In the proof of our theorem, we shall have to solve linear elliptic systems of the form

'A B 0€ A a~ J  _z ' R',
aBo Az' (3.1)1

az
t

-s (3.1)2

z 0 on an, (3.1)

JP dr 0. (3.1)4

For our purposes, it is particularly important to understand how the solution (z, 0) depends
on the norms of the coefficients X A B. For convenience we introduce a parameter

K which controls the size of the coefficients.

9
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We make the following assumptions:
(S1) The coefficients X9 and Af' are in H 2 (0), and BP3 is in Hl(fl). Moreover, we have

11X112 + IlAIl 2 + IlBl 1 I__ K.
(S2*) For some given integer k with -1 < k < 1, we have R E Hk(fl), S E Hk+l(fl).

(I) The coefficients x* are the components of F- 1 , where F is the gradient of a globally
invertible mapping y(z) with det F = 1.

(E) We have A ' = A and the strong ellipticity condition (1.7) holds.
(C*) fg dz= = 0.

The following lemma holds:

Lemma 1:
Let assumptions (Si), ($1*), (S2*), (I), (E) and (C') hold. If \ > 0 is chosen

sufficiently large relative to K, then the problem (8.1) has a unique solution. We have .
z E Hk'"(fl), € E Hk+1(fl) and an estimate of the form

IljZlk+2 + 111k+1 -< C(IIRIIk + hISlk+l) (3.2)

holds. The constant C depends solely on K and A.

The proof employs standard techniques in elliptic theory and we omit details. One
first obtains the existence of a unique weak solution by using Girding's inequality and a
standard variational argument. Higher regularity is obtained by using the fact that the
system (3.1) is elliptic in the sense of Agmon, Douglis and Nirenberg 11]. The regularity
results as stated in [11 only apply to solutions which a priori satisfy z E H 2(fl), p E H'(0)
(as stated in [1], the coefficients would also be required to be of class C2 , but it is clear
from the proofs in [1] that this is'not actually required, since H 2(fl) is an algebra in three
spatial dimensions). Regularity of weak solutions is proved by Giaquinta and Modica [6
in the case of traction boundary conditions. As they remark, their techniques can also be
applied for Dirichlet conditions.

For future use, we note that if f, g and the coefficients (regarded as taking values in
the appropriate Sobolev spaces) are continuous (or bounded measurable) functions of a
parameter t, then this property is inherited by the solution.

We also have to consider the solution of the nonlinear system (2.1) (with the boundary
condition (1.4) and the normalization (1.5)) for given z and f. At the initial time t = 0 we
have the solution y = yo, p = po for z = zo (the initial value of z) and f = fo(x) = f(x,0).
By using lemma 1, the implicit function theorem and the regularity theory of Agmon,
Douglis and Nirenberg [1], we obtain the following result.

Lemma 2:
Let A > 0 be chosen sufficiently large (relative to the data for the original problem). If

z and f lie in H'(fl) and IIz-zoll1, 'If-fo! I are sufficiently small, then (2.1), (1.4), (1.5)
has a solution (y,p) E H 3 (fl) xH 2(fl). Within a neighborhood of (yo, po) in H'(fl) x H2 (fl)
this solution is unique and it depends smoothly on z G H'(fl) and f C H'(f1). If moreover
z E H 2 (n), f E H 2 (0), then y C H4 (fQ). p G H 3 (f) and we have an estimate of the form 'A

IIYI14 + IPI3 < C(l + lIHZ12 - I!fT12), (3.3)

10
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where the constant C depends only on A, 1iz - zollI and 11f - follI.

4. A linearized problem

We seek a solution to (2.18) which satisfies the boundary condition

z = 0 on afl, (4.1)

initial conditions
z(X,0) = Zo(z), i(z,0) = z,(z), (4.2)

and the normalization I.

fd(x,t) dx = 0. (4.3)

As in section 3, it is imperative to understand how certain norms of the solution
depend on corresponding norms of the coefficients. We use two parameters K and L to
measure the sizes of X? and A'. . In addition, it is convenient to introduce a parameter
U which measures the sizes of G and H.

We make the following assumptions:
(SI') The coefficients XP and A@9 lie"11n W 2 ,00([O,T];H'(fl)) n W,0([0,T];H2 (fl))

fL°°([O,T];H 3 (fl)) with norims bounded by L. Their norms in L°°([O,T;H 2(fl))
are bounded by K.

(S2') G E C([O,T];L 2 (fl)), G E L'([O,T];L2 (f))) and the norms are bounded by U.
(S3') H E W 2 '1 ([O,T];L 2 (0)) n L'(1O,T];H 2 (fl)) and the norms are bounded by U.
(S4') zo E H 2 (fl), z E H'(n).

(E) We have A"P = An'" and the strong ellipticity condition (1.7) holds.
(Cl') zo and z, vanish on anf.
(C2') z, satisfies (2.18)2.
(C3') H vanishes on 8n.

(I) The coefficients x ' are the components of F-(t), where F(t) is the gradient of a
globally invertible mapping y(x, t) with det F = 1.
We note that it follows from (I) that

CIC i= 0.

The goal of this section is the following lemma.

Lemma 3:
Let assumptions (Si), (SI')-(S4'), (E), (Cl')-(CS') and (I) hold. Then the initial-

boundary value problem defined by (2.18) and (4.1)-(4.3) has a unique solution (z,O) de-
fined on f) x [0, Tj with the regularity property

k=O

4 , I -
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Moreover, the solution obeys the a priori estimate

Elz,,O](t) < r(U,K,T,T. L) + A(U,K,T,L) f E[z,0](s) ds Vt E [0,T], (4.4)i

and hence
E[z,0](T) _ r (U,K, T,T L) exp(T- A(U, K,T,L)), (4.4)2

where

E[zm =.(t) :=.max )i k-k + tI0(.,S)II2. (4.4),

r and A are functions which are bounded on bounded sets.

It is important to note that r depends on L only through the combination T. L, and
therefore r can be controlled for large L by making T small.

For the proof of the lemma, we first note that by subtracting from z the reference
function ft 

"

f H (., r) dr

we can reduce the problem to the case H = 0. From now on we shall therefore assume
H = 0. In order to solve (2.18), we differentiate once more with respect to time and then
apply a Galerkin method to the time differentiated equation. Differentiation of (2.18) with
respect to time yields

=a3Z' + A " a2ij
,at3  =-X a i '. aX.:

-a + (4.5)1

X%- + × = 0. (4.5)2

Because of (I) the latter equation can be rewritten as

ax- X + iz =0 . (4.5);

Moreover, recall that F. is the matrix inverse to X'. We can write (4.5)2 in the form

, _0. (4.5);"

In order to solve (4.5), we must prescribe initial data for i. which need to be de-
termined from (2.18)1. We must therefore find 0 at time I 0 0. For this purpose, we
apply the operator x to (2.18),, and we multiply by Xn, on the boundary fO). In
dealing with the term involving P, we use (4.5)2- and the fact that 4P should vanish on the

12
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boundary. The initial values of z and i are known. In this fashion, we obtain a problem
of the following form for 0:

X .49 [ X ] (4.6),-
xI xi ny on X ax f. (4.6)2

x Lx,  I o
When transformed to Eulerian coordinates, this is simply the Neumann problem. Subject
to the constraint (4.3), there is a unique weak solution 0 E H I(fl) for every h E L2 (n) (this
is known as the Hodge projection theorem). We therefore have a unique initial condition 4
Z2 E L 2 (J) for i which is consistent with the initial data (4.1) and boundary data (4.2).

Instead of considering (4.5), directly, we shall deal with the equation

x'T  + =Gn 'o (4.7)

where tand are expressed in terms of s - Az by the following elliptic problem obtained

from (2.18):

ii - \zi X + A zi az Ais + G1,  (4.8), 1:
Xtc(t) i43 ,t) t uniqr) wa s E (fl ) fo E )(

s axo ~ r dr + X (l, I.l (4.8)2.

The latter equation has been obtained by integrating (2.18)2 (with g = 0) with respect to
nstime. Of course we shall eventually show that = z for the solution we construct, and

hence (4.7) is equivalent to (4.5) 1, but the approximations we are using for i and z will '

actually differ. It follows from the elliptic estimates discussed in the previous section that I
(4.8) (with the boundary condition i = 0 and the normalization fn $(x) dx = 0) can be -.

solved for i and if A is chosen appropriately. Moreover, an estimate of the form -PI£}L-J-0,TJ; "(n)) + AI*I-(O,TG;9 a (0))

_C (Ili - AzI L-(1oT];L2(n))+ IGII L-(0,T];L2(0)) + Ilzolla(0)) (4.9)

, ~holds. ,.
i ~Let now 1 " be the space of all divergence-free vector fields in H'(fl) and let :,

(C ,,C2, C3,....} be a basis for 1V. Moreover, let V (t) = F(t) 1 = {w E H I(fl) L F-(t) w E

V), and let r/,,(t) = Flt)e,. Let V,, = span 16,, C2, .... in} and Vn(t) =F(t)Vn. We seek
an approximate solution of the form olb

from (2.18):(0(410

[=1

• 13'*
-1 I'd"
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(i.e., z E Vn(t)), which satisfies the following approximate version of (4.7)

W1 a(Zn)% _94 A.~zl ___ G8()
a3 c a a ± 2 ax? A a(na -t) 0 (4.11)

for every w E IV,. Here n and in are determined from (4.8) with z on the left side of
(4.8), replaced by z,, and (.,.) denotes the inner product in L2(fl). Finally, we define
initial data by

z.(x,O) = Zo(x) = Zo(z), .(x,O) = zn1 (x) = P'zj(x),

i.(xO) = Zn2(x) = F(x,o)F-(x,O)z.,(x)+P(z()-p(X,o)-(x,O)z.,1 (z)'n1 (4.12)

Here P' is the projection in V(0) onto the subspace Vn(0) and PO is the projection in
L 2 (fl) onto Vn(O).

Equation (4.11) is a linear system of ordinary integro-differential equations for the
coefficients anft(t), which can be solved by standard methods. Hence a solution to (4.11)
with the initial data (4.12) always exists. To obtain an energy estimate for this solution,
we set

-1= (n - PF-'I,) = Z ,fK(t) (4.13)
1

and integrate from 0 to t. This yields

f/ lin(x,t) 12 + A-6 49(4 )' Op.) dx -,
2 49X ____ __

112 lZl=l 2 (n) + (F(t)F-'(t)(t),n(t)) - (F(O)F-'(O)zn1 ,z, 2 )

-f (P(r)F-'(r)n(r)- -'(r)F-(r)F(r)F-'()() + F(r)F- (r)in(T),in(r))dr

1!(a(z,,,)', A #azn,) + ! ft((+,)' _____, ,  .-. ",

ft t

I N"T) > + I a xn) ' ', )> dr (414
+ A (.

2 i~xcl .,5 0 + 2 )  
.XCx'

- (z,),( , ,A-0 ) dr '.

+ k F , ,Au a9----f- ) dr T

+ Pfo F'xrn x 3 xlx0 +  d. (4.14)

From this it follows that we have uniform bounds on the norms of in in L' (1, TJ: L'(1))
and in in L'°(1,T]; H(fl)). After passing to a subsequence. we may therefore assume

,-0.



weak-* convergence in those spaces. An argument along the lines of Chapter III, §1 in 1151
can be used to show that the limit z is in fact a solution of (4.7) and (2.18)2. Obviously,
i E L 0(IO,TI;L 2(fl)) and i E L ([O,T];H'(f1)). Moreover, it can be shown that i is
weakly continuous into L 2(fl) (and in that sense assumes the given initial data), that 0 is$ i
in L' ([O,T];L 2(fl)), and that

a3zi + a? a,2t- I x"

lies in L'(10, T]; H-(n)). The latter need not be true for each of the two terms separately.
The reason for this is that the Hodge decomposition can not be applied in H- 1 . In this
respect the initial-boundary value problem differs from the problem on all of space.

To see the weak continuity of i, we first note that (w, FTp) is continuous for every
solenoidal test function w. Therefore, PFTi is weakly continuous, where P denotes the
Hodge projection in L2 (fl). Let now i = Fv. Then it follows from (4.5)2 that

- F- F-I = P(v - F-IFF-i), (4.15)

and hence v - Pv is continuous in L (fl) as a function of time. As a consequence, PFTFPv
is weakly continuous, and since the operator PFTFP is invertible on PL2 (f), Pv is weakly
continuous. It follows that v and hence i is weakly continuous.

In order to show that we actually obtain a solution of (2.18), we have to prove that
= and i = z. By integrating (4.7) with respect to time, we find

az'

J -'-

o @ A V O G i+J i =~ -i + OO~

- a +., a ,  a ) dr. (4.16)

In view of (4.8), we can rewrite this as

a azj aP. ;
-x)+ A3 ax- - ..)

+ ft a ao ) + ai' aa d- 0. (4.17)

Similarly, by integrating (2.18)2 and using (4.8)2 we obtain

k ( ail az,. to ail az,.

x- ) = f g--- ) dr. (4.18)

It follows from the elliptic uniqueness result established in the previous section and a
% straightforward perturbation argument that , = z and = 0.

It remains to be shown that £ is actually strongly continuous into L2(fl) and that i
is strongly continuous into H1 (fl). To do this, we first rewrite (4.7) in a different form

15 ;I
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by first multiplying the equation by FT (this transforms the 4-term into V ) and then
substituting i = Fw (this transforms the incompressibility condition into div w = 0. We

can then apply the technique on pp. 276-279 of [11], which employs mollifiers with respect
to time. This is why it is important to write the incompressibility constraint in a form
which persists under such mollification.

Finally, to obtain the a priori estimate (4.4), we proceed along the lines of the deriva-
tion of (3.15) in [4]. The basic idea is that by virtue of the weak-* lower semicontinuity
of L°-type norms, (4.14) yields an energy inequality for z. Using this inequality together
with (4.9) standard Sobolev estimates, and Gronwall's inequality, we obtain (4.4). See
section 3 of 141 for the details in a similar situation. Of course, in the derivation of (4.4),
we must account for the fact that we have subtracted the reference function fo H(., r) dr
from z.

5. Convergence of the iteration

In this section we prove that the iteration outlined in section 2 converges in an ap-
propriate space of functions. The iteration involves the quadruplet of functions (y, z, p,
Let T > 0 and M > 0 be given (later, we shall choose T small and M large). We denote by

IIY11k,1 the norm of y in Wk,°([0, T]; H'(fl)). By Z(T,M) we denote the set of all (y,z,p,O)
which satisfy the following conditions:

0Il4,s + IIpI 1,3 + I2p,2 < M 2  (5.1)2

01z11o,2 + 1+ 2 - M 2, (5.1)3

I1011o,1 <_ M, (5.1)4

y(z,o) = yo(z), (5.2)2

Y(,)= ,,W (52)

det Vy = 1, (5.3)

y = x on alfl, (.)

z = 0 on al, (5.4)2

Clearly the set Z(T, M) contains (yo, zo,O,0) (provided M is chosen large enough), hence
it is not empty. If (y, z, p, 0) E Z(T, M), we have

u = 9 e L' (10, T]; H 3 (n) n H1(fl)) r) W' (!0, Tj: H 2 (f) q HI(O))

( L2 (,TI;H 3 (fl) n H'(fl)) n H1(0, T]; H 2 (fn) r H((fP)) X1 . (5.5)1
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On the other hand we have

-t t
yl(x) + z(x,r) + A(y(x,r) - x) dr

C H1 ([O,Tj;H 2 (0) n H'(0l)) n H2 ([O, TI;Ho(fl)) =: X2 . (5.5)2

We now choose IH in (2.15) to be the orthogonal projection of the Hilbert space X, x X 2

onto the diagonal X, n X2 . Let E be the mapping defined by the procedure of section
2 that takes (y(n),Z(n),P(n),0(n)) to (Y(n+1),z(n+),P(n+),0(n+1)). It follows from the
results of section 3 and 4 that E is well defined if M is large enough relative to the initial
data, T is small enough relative to M and A is sufficiently large. The reason why T must '. -

be small relative to M is to ensure that IIzn+I(., t) - ZolI remains small enough so that
lemma 2 can be used to solve (2.17).

We shall show below that if M is increased and T is reduced accordingly, then
(Y(n),Z(n),P(n),0(n)) converges (in an appropriate sense) to an element (y,z,p,O) of
Z(T,M) as n - oc. We shall then show that the pair (y,p) is a solution of (1.1)-(1.5). In
the proofs of lemmas 4 and 5 we need to solve the nonlinear elliptic problem (2.17) as well
as several linear elliptic problems of the form (3.1). The parameter A must be large enough
so that these problems can be solved. Examination of the proofs of lemmas 4 and 5 reveals S

that for each problem of the form (3.1),. ix?'112 + IIA, II2 + IIB I 1 remains bounded as
M gets large, provided T is small enough relative to M. It is therefore possible to select
A sufficiently large (relative to the data for the original problem (I.I)-(1.5)) so that no
matter how large M is made, all of the elliptic problems occurring in the proofs of lemmas
4 and 5 can be solved provided T is small. We now fix such a A once and for all. Moreover,
from now on we shall always assume T is small enough (relative to M) so that E is well
defined.

Lemma 4:
If M is chosen sufficiently large and T sufficiently small relative to M, then E2 maps

the set Z(T,M) into itself.

Proof:
Let M,T > 0 and (Y(n),Z(n),p(n),0(n)) be given and set (y(n+)),Z(n+),p(n+1 ), 6

I0(n+l)) = F.(y(n),z(,),p(,)90(,)). Let U(-), 1(n), q(n), G and H be as in section 2. We
,d first apply lemma 3 to obtain an a priori estimate for Z(n+i) and 4 (,+ ). For this purpose

we identify AP with '9-- (Vy(n)) and X?' with -- Observe that
8 F- 8 Fp' 8y.)

a2W

IiA?3iio02 (VYO)1w

oT  .'3, .

,. ,W(VY( .)) a. U
+ I -(t01 12 dt, (5.6) '
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from which we conclude that JiAil 0,2 is bounded by a constant plus T times a continuous
function of M. A similar comment applies to IIXi'10,2. This means that these norms can
be controlled for large M by choosing T small.

Next we note that the appropriate norms of G and H, i.e. the quantity called U in
lemma 3, can be estimated by a function of M and T which stays bounded if T is chosen
small enough relative to M. The reason for this is that the terms appearing in G and
H actually have better temporal regularity than is required by lemma 3, and the desired
bound can be obtained using H61der's inequality. Employing the a priori estimate (4.4),
we find that

E[z(n+ 1),1 (n+ 1)]1(T) :_ r *(M, T) exp(T.- A *(M, T)), (5.7)

where r * (M, T) remains bounded if T is chosen small enough relative to M and A (M, T)
is bounded for M and T in bounded sets. It follows from this that Z(,,+) and 4(n+l)
satisfy (5.1)3 and (5.1)4 provided M is large and T is small.

To obtain estimates for Y(,+i) and P(n+1) we proceed as outlined in section 2, making
use of the results of section 3. Observe thatoT

IIz(n+l)(.,t) - z0111 < II(n+l)(.,r)llI dr < MT Vt E 10,T]. (5.8)

Thus if T is small enough relative to M we may use lemma 2 to solve (2.17) for Y(n,) and
P(n+l); we also obtain an estimate for IIY(n+1)114 + IIP(n+i)113 by virtue of (3.3). Formal
differentiation of (2.17) with respect to time yields an estimate for IIW(n+)ll3 + 110(n+1)112
by virtue of lemma 1. Of course, this procedure is not quite legitimate because we do not
know a priori that i(n+l) and P(n+i) exist as functions. However, the estimate can be
obtained rigorously through the use of difference quotients. This argument can be applied
once more to obtain a bound for IlY(n+1)l)2 + IlP(n+i)I0.

Putting all the pieces together, we conclude that
12121 12 12

l1Y(n+1)Io,4 + IIY(n+I)l)1, 3 + ItY(n+,)1! 2,2 + IIP(n+1)Io,3

+IIP(n+l)i1, 2 + 1lP(n+I)lli 2 -(M,T), (5.9)

where f remains bounded as M gets large, provided T is small enough relative to M. The
lemma now follows from (5.9) and our previous estimate for Z(n+l) and 0(n+i). We note
that if M is held fixed and T is reduced, then E will still map Z(T,M) into itself.

On Z(T, M), we define the following pseudometric:

d( (y, z, p,0), (j,iz,, )) = 11Y - 0)0,.3 + 11Y - 0)1,,2 -t 1P- A1110,2 + 11P - 0111,,

+liz - ^jlo)i + liZ - 4ll1,o. (5.10)

The convergence of the iteration scheme now follows from the following lemma. .
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Lemma 5:

I/M is chosen sufficiently large, and T sufficiently small relative to M, then the
mapping E: Z(T, M) - Z(T, M) is a contraction with respect to the pseudometric d.

Proof:
We use the same notation as in the proof of lemma 4. In addition, v t set Y(,)

Y(n+l) - Y(n), Z(n) := Z(n+l) - Z(n), P(n) := P(n+l) - P(n)s 4(n) := 0(n+1) - 0(.), G(n)G(Y(n),VYln),V21Y(n),U(n.lVU(,o, V2u (,OZln),Vz(n),Jz), H(n) := H(ft(,),Vfi(n,Y(n ) ,

Vy(n), Z(n), z). We now fix M large enough so that lemma 4 applies for sufficiently small
T. In the sequel we always assume T is small enough for lemma 4 to hold, but we may
have to choose T still smaller. Since M is now fixed, we suppress the dependence of all
estimates on M. It is convenient to define

E,(t) = riax,(IIZ(n) iI +1Z(n)II + 1IY(n)II3 + 11IY(n)II2 + IIP(n) 2 IA(n) I (s). (5.11)

A simple calculation gives the following problem for Z(,+)."

= 4( ,+1) 8x" a W 0 Z( +1)
(n+1O) cn- ay (V-+) (n .".

aoa (+,) o~ oao) ..';

a.0. ( n+I) a a)*aYC"1 ;x -~ +1

___ --------- (VY(n1) + H '), 0 n, (5.12)2Z(ax+ (x, n Z C(-+l) - H(.)

f4('()xnt d) =0. (T.2)
.4,.

W.n+)etiat for I0Z(,+l) -- , (5.12)2 y

Z(n +1) (z, t) = 0 for x E afl, (5.12)4 -:?

/'b(n+1)(X,t) dx=O0. (5.12)5 !

We now use (5.12) to obtain an estimate for !lZ(n+l)ll 1 I12(n. xl0 . We multiply (5.12), by :

Z(n+,) and integrate with respect to space and time, performing a number of integrations
by parts and utilizing the remaining equations in (5.12).

%
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After a routine (but rather long) computation we find that

!lZ(.+l)(.,t)ll, + 11(.+l)ll < Fr(T)E-(T) + A(T) j E,+I(s) ds, (5.13)

where F and A are continuous functions with r(o) = 0. Differences of the form U(n)
i(n+1) - f(n) can easily be estimated in terms of Y() and Z(n) by virtue of (2.15) and the
fact that 11 is a projection operator. The reason why E;(T) rather than En,(t) appears on
the right hand side of (5.13) is the nonlocal nature of the projection operator with respect
to time.

In order to assist the reader, we give the details of a typical calculation used in the

derivation of (5.13). In particular, we shall obtain a bound for the integral

( a2 w ~ a2W\z(n1)1(t) = (Z(n+1)(.,,)0, Fa Fi F(y(n+)) a F,'4F6 (VY()) axa--x (.,T)) dr.

(5.14)
To simplify the notation, let us set

1,2 ( V
------- :AF VY(n,) (X,r). (5.15)

We first apply the Cauchy-Schwarz inequality to the integrand in I(t). Next, we observe
that 42ZJ

110 I _ Cll',ll211z(n+)l J2  CMII'112  (5.16)

by standard Sobolev inequalities and the fact that I1z(n+,)112 < M. It follows from the
N:. assumed smoothness of W and standard results on composite mappings that

11 112 !5 CMIIVY(n)II2: <_CMIIY¢n)ll3, (5.17)

where CM is a constant depending on M. Employing (5.16), (5.17) and the elementary ."
algebraic inequality labl < 1 (a2 + b2), we find that

2I) we fitha
t 21

+c tY(n)I 3 dr < C TE,(T) + E", I(r) dr Vt c 10,T]. (5.18)
n!

Since M has already been fixed, we now suppress the dependence of C on Al in (5.18).
To obtain a bound for hY(n+l)1 3 + l1P(n+i)! 2 , we use the elliptic problem

8 0  8 P(,,+ ) 2W 82Y,
a81, ++) a' + aF 1F9 (VY(.+ 2 )) dz'x AY( 1)
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aP(n+l) / ax, ax, ( 2W
aZ dYln 2 + dY- +l )( --\F( F (VY(n+ 1 )

(a yw ( + 2) In ax F ' a-
92W( 9+) YI~

det VY(n+2) - det Vy(n+l) = 1, (5.19)2

Y.+(x,t) = 0 forxE fl, (5.19)

JP(n +,) dx =0. (5.19)

The terms which are expressed as differences in (5.19)1 can be rewritten in the form
BPA.y8  using the identity

V(Vy(.+2))- V(VY(n+l)) = VV(Vy(n+l) + i/VY(.+l)) dr) VY(.+,), (5.20)

which holds for any smooth function V. A similar procedure can be applied to (5.19)2-
Applying lemma 1 to (5.19), we obtain a bound for tIY(.+1)11 3 + IIP(n+1)11 2 in terms of
*IZ(n+1l)I 1. Similarly, by differentiating (5.19) with respect to time, we obtain a bound for

I (n+l)112 + 1P(n+,)ll. 
Combining all of these estimates and using Gronwall's inequality, we find that

;E,+I(T) < r*(T)exp(T. -A(T))E*(T), (5.21)

where r and A* are continuous functions with r *(0) = 0. It follows from this that E is
strictly contractive with respect to d if T is sufficiently small.

From lemma 5 it follows immediately that yn), Z(n) and P(n) converge in the metric
given by d. We can then conclude directly from (2.16)1, (2.16)5 that 0(n) converges in the
sense of distributions and consequently in the weak-* topology of LO[0, T]; H'(fl)). Let
(y, z,p, 0) be the limit of (Y(n), Z(n),P(n),, 5(n)) and let i be the limit of (n)). It is obvious
that (y, z, p, -) satisfies (2.16) and (2.17) (with the indices n and n + 1 left out). To verify
that we have in fact a solution of the original problem (1.1)-(1.5), it remains to be checked
that = z + A(y - x) (this implies as a consequence that fi = u) and 5 = qb. For this
purpose, we first note that by differentiating (2.17), twice with respect to time we obtain
(2.16), with z replaced by P - A(y - x) and 0 replaced by fi on the right hand side. Next
we inttegrate (2.16)2 with respect to time. This yields

Ox0 Ozt dx0 az;

t ax au' x az' Ox ao
~~~~o~y aaxy xcd*z0'ax" al xoz ai O +  axyk - a H'(fi, V ii, y. Vy, z,x) dr. (5.22)
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By differentiating (2.17)2 twice with respect to time, we obtain the same equation with z
replaced by - A(y - x) and ii replaced by u. The next lemma yields an estimate for s - u
in terms of z- + A(y -x).

Lemma 6:

Let X 1 , X 2 and 11 be defined as in (5.5) above. Then there is a constant C such that
for every u E X 1 and v E X 2 we have

IlU - (u,v)IIx, + IIv - (u,v)llx 2  CllU - VIIH(iO,Tj;H2(o)nHI(fl)). (5.23)

For the proof, we note that it follows from the definition of H1 that

Its ][u- l'l(u,v)]] t + liv - fl(u,v)Ii12 min I[rII , + Ilill (5.24)
uX ,-v=r+a 

(5.24)

Hence we want to show that the norm in XF+X2 is equivalent to that in H'(I0, T];H 2 (0)n
HJ(fl)). By the open mapping theorem, it is sufficient to show that the two spaces are
equal in the set theoretic sense, i.e. that H'(0,T];H2 (fI)nH'(11)) is contained in X1 -iX 2
(the reverse inclusion is trivial).

Let A be the Laplace operator on fl with Dirichlet boundary conditions and A = -A.
We have Ho(fl) = D(A 1 / 2), H 2 (fl) n H(fl) = D(A), and H3 (fl) n Ho(fl) D D(A3/2).
Hence

Y, = L 2 ([0,T];D(A3 / 2)) n H1 (1O, TI;D(A)) C X1 , (5.25)1

Y2 = H'(1O,T];D(A)) n H 2 (1O, T];D(A1 /2 )) = X 2 , (5.25)2

and it suffices to show that H'([0, T]; D(A)) C Y 1±rY 2 . By using appropriate extension
operators, we can further reduce this question to the analogous problem for temporally
periodic functions (with any given period larger than T) rather than functions on the
interval 10, T]. Hence let

W, = L2([O, 2irj; D(A3 / 2)) n H'(10, 27r]; D(A)), (5.26),

W = H,1([O,27r;D(A)) n H2(IO,27ri;D(A"/)), (5.26)2

W =7( H O, 27r1;D(A)). (5.26)3

The subscript p indicates that we are dealing with periodic functions.
We want to show that W C W -W 2. Let Ok denote the normalized eigenfunctions of

A and A the corresponding eigenvalues. For each w E IWV, we have an expansion

k ,1

and
(/ ) 4 ~,2 (528

kJ

22

_ , ' , • , , . • . . . .. .- . .. . .. . . ,- , - , . ,. , , , ' . . . . .. . . ,, ,. . , " q._



The desired decomposition is now obtained by setting

12± + 2k
Wk + I A (5.29)k- 2+IWi + 121+ 1

In particular, lemma 6 yields

fiu - U11L2(tO,T];H3(O)) : CIP - Z - A(Y - X)IIL2(1O,T];H2 (0)). (5.30) Ok.

In conjunction with the uniqueness statement in lemma 1 and a standard perturbation
argument, this implies that z = - A(y - z) and = as claimed.

Finally, the uniqueness of the solution of (1.1)-(1.5) follows from a calculation similar
to the proof of lemma 5.
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