

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

4"

's"

I

A High-Level Design for Pan
Robert A. Ballance t

June, 1985

1. Overview

-> Pan is a multilingual language-based editor for manipulating tree-structured documents. The

editor supports both tree- and text-oriented operations. The expected use of this system is as the
front-end for a development environment in which experienced developers use several languages
while creating a complex program or other document. One task of the front-end is to gather and
make available information about the document for use by the developers and by other tools.

Multiple languages are handled by separating the language-specific information from the
generic utilities supplied by the editor. Language-specik information, in the form of a language
description, is preprocessed into tables for use by the editor. The editing component itself is table.

, driven. New languages can be added to the system by creating and loading a new set of tables.
Pan is designed to handle different languages in different editing workspaces; switching workspaces
within an editing session allows the user to edit different languages.

There are two major components to the Pan system: the editor and the table generato rThe
editor supplies editing operations while checking that the document meets the requirements of the
language in which it is written. These requirements fall into three categories: lexical, syntactic,
and contextual. (Contextual requirements are often called the 'static semantics' of a language.)
l1formation concerning errors or inconsistencies in the document is communicated to the user
during the course of editing.

The editor uses both the concrete representation of a document (the representation as seen by
a user of the system) and the abstract syntax of the document to implement its editing operations.
The correspondence between the two representations is maintained by an incremental scanning
and parsing system. The abstract syntax is in the form of an operator/phylum tree[4]. Contextual
constraints are enforced using only the abstract syntax. Other tools in the environment may add
information to the internal tree representation; it is the structure of the tree which is of primary
interest to tle editor.

The table generator takes a language description, checks it for consistency and for the prop-
erties required by the algorithms used in Pan, and then generates the tables used by the editor.
In fact, the table generator is a collection of tools, many of which already exist in the UNIX'
programming environment.

2. The Editer 0

The editor includes the basic utilities, a general-purpose text editor, a display manager, and -............. -4
components for incremental lexical analysis, incremental parsing, and incremental contextual con-
straint checking. The user interface of the editor makes use of the workstation environment by

t Sponsored by the Defense Advanced Research Projects Agency (DoD), Arpa Order No. 4031, .;odes

monitored by the Naval Electronics System Command under Contract No. N00039-82-C-0235. 1 I or
' UNIX is a trademark of AT&T Bell Laboratories.

supporting mouse/menu interaction along with keyboard interaction. Multiple windows into dif.
ferent edit workspaces are anticipated.

The basic utilities supply editing workspaces (buffers), interactions with long-term storage,
undo processing, a help system, and command definition facilities. The editor is extensible and
eustomisable while integrating mouse and menu forms of interaction. The design allows the user
to override most system configurations with workspace-local customisations affecting the contents

of menus, display options, end bindings of commands to key stroke sequences. Initially, documents
are being stored as specially formatted files in the UNIX file system.

The ability to undo commands is provided by a set of conventions for communicating infor-
mation to an undo processor. The undo processor is invoked by the "Undo' command. This
design allows different undo strategies to be investigated. The initial strategy to be implemented
simply restores the workspace to the state prior to the command; only the most recent command

is undoable.

C.innmad delaitim fiitiw allow uew commands to be added to the editor. Users are free
t develop their a hbmries of commands. The definition facilities include procedure definition,

accumulation of help and undo information, and specification of initial bindings. A general help
facility is provided as a part of the editor.

A general-purpose text editor is included in the design. The text editor operates on an active
region of text which could be the entire document. in this cue, the entire system functions as a
display-oriented text editor.

Operations upon text are themselves implemented as operations on 'text-regions'; the elemen-
tary editing operations are 'Insert-Region' and 'Delete-Region'. Character-oriented operations
are modeled as operations on single-character regions. Internally, text-regions are implemented
using linked lists of contiguous arrays of characters. This representation permits one to designate a
particular character in the region without updating the designation until it is used. For this reason,
the designation is called a sticky-pointer[32; the pointer sticks to its designation. Sticky pointers
we used to implement text-regions, to implement undo operations, and to maintain the mapping
between tokens and the textual representation when necessary.

The display manager and the user interface take advantage of bit-mapped graphics and a
mouse. Initially, the display manager will be text-based, with the intention of substituting an object-
oriented display manager at a ister time. The user interface is itself defined using the extension
facilities of the system, allowing interface designers the ability to experiment with alternative
dialogues between system and user.

ncremental lexical analysis maps a textual representation to the basic lexical units of the
language under consideration. Pan provides a generic interface for communicating with lexical

analySers. The actual code for detecting lexical units can either be supplied as a hand-written
analyser or as a specification for the fez[S: lexical analyer generator. The result of incremental
lexical analysis is a list of tokens together with information as to how the token sequence has
changed. This information is used by the incremental parsing algorithm to reprse the affected
area. Tokens not relevant to the parser re screened out by the incremental lexical analyser. These
are placed on in a seprate data structure where they can be attached to nodes in the abstract

syntax tree.

The incremental parsing algorithm allows changes in the external representation (the text)
to be relected in the internal representation (the abstract syntax tree). The algorithm uses a
bottom-up (LALR) parser to perform the actual parsing.

b order to parse a change incrementally, the state of the parser (at any point) must be recov-
ersble. When certain relationships hold between the abstract syntax, the external representation
of the abstract syntax, and the grammar used to pare the external representation, the state of the

.* parser can be recovered from the abstract syntax tree, while the abstract syntax tree can be derived
directly from the parse tree. These relationships can be checked at table generation time, so that

, the actual conversios amount to simple table lookups. The actual parse tree is never explicitly
represented. This is important because the tree that is generated directly from a bottom-up parser
is generally much larger and more complicated than an abstract syntax tree. The incremental
parsing algorithm of Jalili and Gaf1ier(S bas been Asen for Pan. It can be extended easily to
perform the necessary transformations.

Error recovery during parsing will use the panic mode method proposed by Robert Corbett
in Ill. When an error s detected, the recovery algorithm isolates the affected area and contimes.
The tokens isolated during recovery, together with a message describing the error, will be attached
to an 'error node in the abstract syntax tree. The user will then be able to select that node in
order to see the message.

Pan provides a general notion of 'attachments! to nodes in the abstract syntax. Some tokens,
such as comments, are in fact attached to nodes as system-known properties. Operationa to add or
delete attachments are included in the repertoire of editing operations. Other tools can attach other
information, provided that they ignore any attachments that they don't recognize. Attachments
themselves may be either Oprefix or 'postfix'. To attach lexical items such as comments, the
lexical item is declared as an attachment. When encountered in the token stream, the token is
either attached (postflx) to the top node in the tree-building stack, or is placed on a separate
stack. As nodes in the abstract syntax tree ae created, the attachment stack is consulted, and
if the created node accepts the kind of attachment on the stack, the connection is made and the
attachment stack popped.

Using an operator/phylum tree allows the actual structure of the internal tree to be hidden
from the user. Each node in the tree is represents an operator in the abstract syntax; groups of
operators are called phyla. Commands which traverse trees can be defined in terms of either the
operators or the phyla, such as "Next-Function', instead of being defined solely in terms of the
tree structure ('Next-Sibling').

Contextual constraints are specified and checked using a new method modeled on logic pro-
gramming. In this model, a database of information is built up during editing; the information in
the database can then be consulted by the contextual constraints during constraint enforcement.
A description of contextual constraints includes the global (context independent) axioms of a Ian-
guzge, the definitions of facts to be entered in the database, and the actual constraints. Both fact
definitions and constraints are attached to the rules in the abstract syntax.

The dstabase itself is logically structured to reflect the naming rules of a language-in a

3

programming language, these are the scope rules. The constraint checker ensures that the database
structure is up to date before evaluating other constraints. As facts are added and deleted from
the database, a dependency tracking mechanism will ensure consistency. This model relieves the
author of a language description from explicitly defining dependencies as is the caue with attribute

*grammars. In addition, a user of the system (or other tools, including the editor itself) can access
the database to get information about the document.

. ,anguage Descriptions

To add a new language to the repertoire of languages know by Pan, one must provide infor-
mation about the lexical, syntactic, and contextual structures of the language. This information
is gathered together as a language description. The description has separate parts for each of the
above aspects, plus parts for information about external representations and pretty printing.

-hel~mid &ijok d a language can be either a lex-lke specification (which will be pro.
cessd by le) or the designation of a procedure. In the latter case, a hand-coded lexical analyzer
is being supplied. Associated with the token definitions is such information as whether the token
is to be screened from the parser. Also provided ae standard routines for detecting lexical items
not easily specifiable by regular expression such as nested sequences of brackets.

The syntactic description has three subparts: the abstract syntax, the external representation,
and the grammar to use for generating a parser. This latter grammar will be passed to a parser
generator to create the actual parse tables. The relationships among those three descriptions
required for incremental parsing will be enforced prior to table generation.

The contextual constraint definition consists of clauses attached to rules in the abstract syntax,
of axioms independent of the syntax, and of other information required by the evaluator.

4. Implementation

Pan will be implemented on a SUN workstation2. The primary implementation language will
be LISP, with recourse to C for low level routines and access to the screen.

S. References

1. Robert Paul Corbett. Static Semantics and Compiler Error Recovery. PhD thesis, Electronics
Research Lab, College of Engineering, University of California, Berkeley, CA., 1985.

2. Michael J. Fischer and Richard E. Ladner. Data Structures for Efficient Implementation of
Sticky Pointers in Test Editors. Technical Report 79-06-08, Department of Computer Science,
University of Washington, Seattle, Washington, 98195, June 1979.

5. F. Jalili and J. H. Gallier. 'Building friendly parsers.' In Proc. ACM Ninth Symposium on
Principles of Programming Languages, pages 197-208, 1982.

4. G. Kahn, B. Lang, B. Mil se, and E. Morcos. 'Metal: a formalism for specifying formalisms.'
Science of Programming, 3:11-188, 1983.

2 SUN workstation is a trademark of Sun Microsystems, Inc.

4

. M. S. Leek and E. Schmidt. "Lex-a lexical analyzer generator.' In UNIX Prorammer'
Manual: Supplementary Document#, Computer Science Division, Department of Electrical
Engineering and Computer Science, University of California, Berkeley, California, 1984.

96

%

%

'A'
A.°o - ° •

Aq ' - "' - " b '
" '

"." " " " " " ° ' " " - ' - * . '' . , * . , . . . - . . . - -

