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W PROTON BEAM DEPOSITION, HEATING, AND
[ RADIATION FROM AN IRON PLASMA

fﬁ I. Introduction
R
}g‘ With current charged particle beam technologies, it is possible to
e bombard ctargets with intense proton beams. The interest in charged
31 particle beam-target interactions is enhanced by the expectaticn that the
\) beam-target energy coupling can be understood and modelled, to first
oy approximation, in terms of well understood classical, linear processes, as
el opposed to the non-linear effects involved in laser-target coupling.1
:;t Thus, much effort 1is directed toward investigating these phenomena.
£ ; Significant applications of this research include the use of ion beams for
;jQ x-ray generation, inertial confinement fusion, and weapons lethality and
b vulnerability studies.
:3‘ '
f? II. Theoretical Model

v The interaction of a monoenergetic one MeV proton beam with a planar
‘;. aluminum slab of 15 uym thickness has been previously investigated.2 This
}k{ beam was assumed to consist of a square-shaped pulse of 10 nanosecond
3‘ duration with a flux of 1026 protons cm 2 sec”'. The beam intensity on
o target was 1.6x1013 W/cmz, which is comparable to intensities available
K with current pulsed-power generators.
5% In the present study, the interaction of this same proton beam with a
53 planar 8.0-um-thick iron slab is treated. This distance approximately
= corresponds to the range of a one MeV proton in cold solid density Fe3.
%;2 The scheme for treating the proton beam-iron slab interaction is
:ﬁq fundamentally the same as that described in Ref. 2 for treating the proton
&h beam-Al 31ab interaction, The hydrodynamic response is treated via a one-
;w dimensional model with a sliding-zone version of flux corrected
3} transport. A special gridding algorithm moves 2zones in a Lagrangian
,gﬁe fashion and adjusts the mesh in order to resolve steep gradients in the
‘<? flow. A single temperature model is employed, since equilibration times

are generally short compared with nydrodynamic timescales in this problem.

A collisional radiative equilibrium treatment is used to obtain the atomic

Manuscript approved June 27, 1986.
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level populations. Radiation transport is treated with a hybrid scheme

which uses multifrequency ray tracing for the continua, and a probability-
of-escape method for lines. The radiation transport 1is coupled self-
consistently into the 1ionization dynamics. The proton stopping power
includes contributions from bound atomic electrons, free plasma electrons,

and plasma ions., These features are discussed in detail in Ref. 2.

The Fe atomic model used in this calculation did not have excited
level structure in ionization stages below Fe XVI., Only ground states were
carried for stages I through XV. While this lack of level structure and
the resulting omission of 1lires from the radiation transport scheme can
modify the energy balance in regimes where these lower stages are highly
populated, it is estimated that the effect is less than a factor of twoc on
the energy lost due to radiation.

A major difference between this work with Fe as the target material
and the previous work with Al as the target material is in the treatment of
the bound electron stopping power. For the proton—Al+q interaction, where
q is the lionic charge, detailed stopping power cross sections are
available;u for the proton-Fe*q interaction, no such data are currently
available. In the present treatment, stopping power due to bound electrons

is calculated from a method proposed by Mehlhdrn.s

In this approach,
stopping power is calculated from the Bethe equation (which is valid at
high projectile energies) and from the LSS model (which is valid in the low
projectile energy regime); then the stopping cross section is taken to be

the lesser of these two results; i.e.,

Sb(E) = min [S (E), SLSS(E)] .

Bethe

Mehlhorn5 has found that, by including shell corrections in the Bethe

equation, he can adequately represent cold target stopping power results.
By applying this model to cold solid density Fe, it has been verified that
the Andersen—Ziegler3 results for proton stopping power can be reproduced

very well,

5

The Bethe model for the stopping cross section is given by

4122 (z-7)e"

Sgethe (E) = 2 {1nA - 8 igo bi[log(E)] b,
mV
2
2mmV 2
Y Where A = —<T—>—-Y .
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;SZ Here ZB is the effective charge of the projectile ion, Z is the atomic
el -

_$: number of the target, Z is the average charge of the target ions, e and m
Qb

Qz are the electron charge and rest mass, E and V are the projectile energy
.‘»‘.'
N and velocity, 3 = V/¢, where ¢ is the vacuum velocity of light, <I> is
gi? the average ionization potential of the target ions, and the bi are least-

h‘
:_} squares fit parameters derived by Andersen and Ziegler3 to calculate shell
'

:.4 corrections to the Bethe stopping power.

{0

, -

N v = (183712,

34

AL

%f The LSS model is described by the following equations:5

b 0.0793 2.2/3 (z-1)2 (1en)3? &
b Sss(®) = | —=73 . 5733 s | R " Ve

~Y L (z + (2-2)¢7%) A L

N B 2

< 2,(2-2) (1+A)e 2/3 2/311/2
20! where E = = X [ 25+ (z- AR ,
o 0.4683x10 “A
.;: 2 [2.273 + (z-1)?/3)

R = (1+4) B

S Lo HmA 0.219 x 1079
;Qi A = A2/A1, where A2 is the atomic weight of the target ion, and A4 is the
*ﬁj atomic welght of the projectile ion,

xl The effective charge of the projectile ion is assumed to be given by
- the Brown and Moak® relation

\ig)
K

- 0.69 7

f; Zg/Z, = 1 = 1.034 exp [-V/(Z] X))
'..,-;
;?; wnere Z, 1s the atomic number of the projectile ion and Vb is the Bohr
o veloeizy 2.188 X 108 cm/sec.

ey
o To calculate an average ionization potential for a target 1ion of
éi charge q, a2 scheme proposed by Mehlhorn5 was adopted;
R
B
Kra 1> = (z/zn)2 <L >,
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where Zn is the atomic number and <In> is the average ionization potential
of a neutral atom with the same electronic configuration as the target ion

of charge q.

Once the stopping cross section is obtained, the stopping power due to

bound atomic electrons is given by

dE p(x)
[H]b- o S, (E)

where p{x) is the mass density of target ions in the plasma at position x,

and my is =he mass of the target ion.

Stopping power due to free plasma electrons and plasma ions 1is
calculated from the same models as used in the previous treatment of an Al
tar‘get.2 Enrhanced stopping power due to collective beam effects |is

included, although in the case treated here, this effect is small.

III. Results

Some results of the proton beam=-Fe slab target interaction simulation
will now be given. Figure 1 shows the density, temperature, and average
charge variations at the front and rear surfaces of the plasma as the
interaction evolves. At the front surface, temperature and Z rise very
quickly and attain approximate steady state values within the first few
nanroseconds. The density drops rapidly at first, then drops more slowly at
later times, but it is always decreasing as the plasma expands. There {s
some slight cooling and a noticeable drop in Z after %the beam is shut off
at 10 nsec. The temperature and Z rise at the rear surface is much more
gradual and does not begin to level off until near the end of the beam
pulse., The density decreases here also as the plasma expands. The peaks

in the rear surface plots at early times are due to the arrival of a shock

wave.,

Density and temperature profiles at different times in the plasma
evolution are shown in Fig. 2. In these plots, the beam is incident from
the right. The expansion of the plasma with time is easily discerned. At
early times, there are significant gradients near the rear surface. As

time geces on, these variations disappear and the plasma becomes more
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uniform, especially at about 13 nsec, three nsec after the beam has been
turned off, After three nsec, the temperature throughout most of the
rlasma remains fairly steady. At 1.7 nsec, the beam is stopped in the
plasma interior and does not reach the backside to heat it up. This is
also true at later times; tne temperature Increase at the rear surface
arises from heating due to radiation transport from the interior of the

plasma.

Calculated front and rear spectra at these times are displayed in Fig.
3. The 1lack of level structure in the lower ionization stages is
demonstrated by the paucity of lines in Fig. 3a and in the rear spectra in
Tigs. 3b and 3c. Lines appear in the spectra when the plasma gets hot
enough so that ions with level structure have a significant abundance. The
peaks in the rear spectra, except at the lowest photon energies, arise from
radiatien from the plasma interior "shining through" opacity "windows",
The dominant contribution to the front surface spectra generally comes from
the outermost zone, although "shine-through" contributions from the
interior can produce some peaks in the curve. As can be noted from Figs. 1
and 2, the plasma is nearly uniform at 13.15 nsec; hence the front and rear
spectra are very similar. The front spectra becomes more intense at the
higher frequencies up to 10 nsec, but, as might be expected, the 13.15 nsec
front spectra is less intense than at 10 nsec¢ due to plasma cooling after

beam shutoff.

Figure 4 gives the energy history and partitioning of the beam-target
interaction; "dep" is the energy deposited by the beam, and "sum" is the
total energy remaining in the plasma in various forms. After the beam
shutoff at 10 nsec, the total, internal, and potential energies decrease as
the plasma cools; only the kinetic energy continues to rise as the plasma
expands. At early times, the energy lost by radiation 1is insignificant,
but by 13 nsec, this represents about a third of the deposited energy.
Thus, radiation represents a significant energy lcss. If the Fe atomic
model fnad included level =structure and 1line radiation in the lower
ionization stages, the radiation loss would be greater, particularly at
early times. However, as stated earlier, this lack of line structure is
presumed to have an effect of less than a factor of two on the radiation

loss.

P T B e e T P P L P e r e ac vt an e e
N T A T T A A S L T LT e e e
G4 S N SN oG :w_.)!!‘,_,_')‘.f_.-_,_.- . ..-\.r\.rﬂn._.\.,,\.f‘

R R N S e W DAL I AR



METETAVYL W ANSNTAIETN VR IR ISETEFTETIE T

Iv. Summarz

The interaction of a one-MeV proton beam with an intensity of 16

terawa::s/cm2

with a planar 8.0-um-thick iron slab has been simulated using
a fully self-consistent, one-dimensional hydrodynamic-ionization-radiation
transport code. An extensive atomic-level-structure model of Fe was
empleyed, and atomic populations as functions of temperature and density
were calculated from a <collisional-radiative-equilibrium assumption.
Radiation transport was treated with a hybrid scheme that combines a multi-
frequency formalism for the continuum with a probability-of-escape method

for the lines.

Profiles of the plasma density and temperature at various times in the
plasma evolution, and corresponding front and rear emission spectra at
these <Cimes, have been presented. Front and rear surface density,
temperature, and average ionic charge has been discussed, and the energy

partitioning among the various degrees of freedom has been shown.

Due to limitations of computer storage and other factors, detailed
atomic structure was only included for Fe XVI and higher stages. Since the
maximum average charge obtained was about 18, radiation 1losses are
underestimated throughout the simulation; however, it is estimated that the

error is less than a factor of two.

At these beam intensity levels, no K-shell emission was predicted, in
contrast to the earlier study of the interaction of the same proton beam
with an aluminum target.2 Many L-shell lines are present during the latter

part of the simulation.

There has been much interest recently in lasing schemes involving
2p53p-2p53s transitions in neonlike systems. One such transition is the
2p53p(V2,V2)o—2p53s(V2,V2)1 transition at 254,98 in Fe XVII. One of the
reasons for undertaking this study 1is to see if this transition can be
excited by proton oeams. The atomic model did not have detailed jj levels
for Fe XVII; the 3p levels were combined into twd groups according to the
spin of the 2p5(2P) inner shell. Nevertheless, it should be possible to
make some estimates of the feasibility of inducing this transition. After
about 5.5 nsec, these 3p levels had fractional population densities of “5-

6x1073 to ~1072, During this time, the ion density was of the order 1020,




f O 2 O 4

»

.l‘&v ‘; '; ‘n g o]

2

-‘)&. ."-.J‘ I & r

o  (
A Sl .,‘.’;,":,‘(-, '

AP

e

and the electron density of the order 1021. The temperatures in the plasma
during these times averaged about 180 eV, with some hotter zones rising
above 200 eV. Under these conditions, it should be possible to see scme

lasing in this line.
g

This =treatment is one-dimensional; hence, field effects and lateral
energy flow have been omitted. These factors could alter profile shapes
and magnitudes, and stopping power in the plasma, and thus affect the

results presented here.
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