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PROTON BEAM DEPOSITION, HEATING, AND
RADIATION FROM AN IRON PLASMA

I. Introduction

With current charged particle beam technologies, it is possible to

bombard targets with intense proton beams. The interest in charged

particle beam-target interactions is enhanced by the expectation that the

beam-target energy coupling can be understood and modelled, to first

approximation, in terms of well understood classical, linear processes, as

opposed to the non-linear effects involved in laser-target coupling.1

Thus, much effort is directed toward investigating these phenomena.

Significant applications of this research include the use of ion beams for

x-ray generation, inertial confinement fusion, and weapons lethality and

vulnerability studies.

II. Theoretical Model

The interaction of a monoenergetic one MeV proton beam with a planar

aluminum slab of 15 Pm thickness has been previously investigated.2  This

beam was assumed to consist of a square-shaped pulse of 10 nanosecond

duration with a flux of 1026 protons cm 2 sec -I. The beam intensity on

target was 1.6x10 13 W/cm2, which is comparable to intensities available

with current pulsed-power generators.

In the present study, the interaction of this same proton beam with a

planar 8.0-m-thick iron slab is treated. This distance approximately

corresponds to the range of a one MeV proton in cold solid density Fe3 .

The scheme for treating the proton beam-iron slab interaction is

fundamentally the same as that described in Ref. 2 for treating the proton

beam-Al slab interaction. The hydrodynamic response is treated via a one-

dimensional model witn a sliding-zone version of flux corrected

transport. A special gridding algorithm moves zones in a Lagrangian

fashion and adjusts the mesh in order to resolve steep gradients in the

flow. A single temperature model is employed, since equilibration times

are generally short compared with hydrodynamic timescales in this problem.

A collisional radiative equilibrium treatment is used to obtain the atomic
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.4f



level populations. Radiation transport is treated with a hybrid scheme

which uses multifrequency ray tracing for the continua, and a probability-

of-escape method for lines. The radiation transport is coupled self-

consistently into the ionization dynamics. The proton stopping power

includes contributions from bound atomic electrons, free plasma electrons,

and plasma ions. These features are discussed in detail in Ref. 2.

The Fe atomic model used in this calculation did not have excited

level structure in ionization stages below Fe XVI. Only ground states were

carried for stages I through XV. While this lack of level structure and

the resulting omission of lines from the radiation transport scheme can

modify the energy balance in regimes where these lower stages are highly

populated, it is estimated that the effect is less than a factor of two on

the energy lost due to radiation.

A major difference between this work with Fe as the target material

and the previous work with Al as the target material is in the treatment of

the bound electron stopping power. For the proton-Al+ q interaction, where

q is the ionic charge, detailed stopping power cross sections are

available; 4 for the proton-Fe+ q interaction, no such data are currently

available. In the present treatment, stopping power due to bound electrons

is calculated from a method proposed by Mehlho~rn.5  In this approach,

stopping power is calculated from the Bethe equation (which is valid at

high projectile energies) and from the LSS model (which is valid in the low

projectile energy regime); then the stopping cross section is taken to be

the lesser of these two results; i.e.,

Sb (E) - min [SBethe (E), SLss(E)]

Mehlhorn5 has found that, by including shell corrections in the Betne

equation, he can adequately represent cold target stopping power results.

By applying this model to cold solid density Fe, it has been verified that

the Andersen-Ziegler3 results for proton stopping power can be reproduced

very well.

The Bethe model for the stopping cross section is given by
5

2 -441. BZ(Z-Z)e 4 2

k.S (E) - 1nATZ (ZZb 82-i- log(E)J1 }
Bethe mV2  {inA

21tmV 2 yv2

where A- < >
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Here ZB is the effective charge of the projectile ion, Z is the atomic

number of the target, Z is the average charge of the target ions, e and m

are the electron charge and rest mass, E and V are the projectile energy

and velocity, - V/c, where c is the vacuum velocity of light, <I> is

the average ionization potential of the target ions, and the bi are least-

. squares fit parameters derived by Andersen and Ziegler 3 to calculate shell

corrections to the Bethe stopping power.

2 ( 2 -1/2

The LSS model is described by the following equations:
5

0.0793 ZB2/3 (Z-Z) 1/2 (I+A) 3/2  /E
S, (E) - f 2/ -1/ -A
LSS ( B 2/3 +7\)2/3)3/4 1/2 R L

where E Z B(Z-Z) (1+A)e 2  2/3+ I/2• hr L -8 X x[ ZB  (Z) 2 3  ,
0.4683xlO- A B

L - (1+A) 2 [ZB 2/3 + (Z-i)2/3 ]
L w 0.219 X 10 1

A A2/A1 , where A2 is the atomic weight of the target ion, and A, is the

atomic weight of the projectile ion.

The effective charge of the projectile ion is assumed to be given by

the Brown and Moak 6 relation

0.69

ZB/Z 1 - 1.034 exp [-v/(z1 X b

where ZI is the atomic number of the projectile ion and Vb is the Bohr

velocity 2.188 X 108 cm/sec.

To calculate an average ionization potential for a target ion of

charge q, a scheme proposed by Mehlhorn5 was adopted;

-["<1 > - Z Z <1 > ,
q n n
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* where Z, is the atomic number and <In> is the average ionization potential

of a neutral atom with the same electronic configuration as the target ion

*of charge q.

Once the stopping cross section is obtained, the stopping power due to

bound atomic electrons is given by

[LE .p(x) Sb(E )

db I

where P(x) is the mass density of target ions in the plasma at position x,

and m, is the mass of the target ion.

Stopping power due to free plasma electrons and plasma ions is

calculated from the same models as used in the previous treatment of an Al

t target. 2  Enhanced stopping power due to collective beam effects is
included, although in the case treated here, this effect is small.

*. III. Results

S.'

-- Some results of the proton beam-Fe slab target interaction simulation

will now be given. Figure 1 shows the density, temperature, and average

charge variations at the front and rear surfaces of the plasma as the

interaction evolves. At the front surface, temperature and 2 rise very
quickly and attain approximate steady state values within the first few

nanoseconds. The density drops rapidly at first, then drops more slowly at

later times, but it is always decreasing as the plasma expands. There is

some slight cooling and a noticeable drop in Z after the beam is shut off

at 10 nsec. The temperature and Z rise at the rear surface is much more

gradual and does not begin to level off until near the end of the beam

pulse. The density decreases here also as the plasma expands. The peaks

in the rear surface plots at early times are due to the arrival of a shock

wave.

Density and temperature profiles at different times in the plasma

evolution are shown in Fig. 2. In these plots, the beam is incident from

the right. The expansion of the plasma with time is easily discerned. At

early times, there are significant gradients near the rear surface. As

time goes on, these variations disappear and the plasma becomes more

" -4



uniform, especially at about 13 nsec, three nsec after the beam has beer.

turned off. After three nsec, the temperature throughout most of the

plasma remains fairly steady. At 1 .7 nsec, -he beam is stopped in the

plasma interior and does not reach the backside to heat it up. This is

also true at later times; the temperature increase at the rear surface

arises from heating due to radiation transport from the interior of the

plasma.

, Calculated front and rear spectra at these times are displayed in Fig.

3. The lack of level structure in the lower ionization stages is

demonstrated by the paucity of lines in Fig. 3a and in the rear spectra in

Figs. 3b and 3c. Lines appear in the spectra when the plasma gets hot

enough so that ions with level structure have a significant abundance. The

peaks in the rear spectra, except at the lowest photon energies, arise from

radiation from the plasma interior "shining through" opacity "windows".
.0 The dominant contribution to the front surface spectra generally comes from

the outermost zone, although "shine-through" contributions from the

-- . interior can produce some peaks in the curve. As can be noted from Figs. 1

and 2, the plasma is nearly uniform at 13.15 nsec; hence the front and rear

spectra are very similar. The front spectra becomes more intense at the

higher frequencies up to 10 nsec, but, as might be expected, the 13.15 nsec

front spectra is less intense than at 10 nsec due to plasma cooling after

beam shutoff.

Figure 4 gives the energy history and partitioning of the beam-target

interaction; "dep" is the energy deposited by the beam, and "sum" is the

total energy remaining in the plasma in various forms. After the beam

shutoff at 10 nsec, the total, internal, and potential energies decrease as

the plasma cools; only the kinetic energy continues to rise as the plasma

expands. At early times, the energy lost by radiation is insignificant,

but by 13 rsec, this represents about a third of the deposited energy.

Thus, radiation represents a sign.iflcant energy loss. If the Fe atomic

model had included level structure and line radiation in the lower

ionization stages, the radiation loss would be greater, particularly at

early times. However, as stated earlier, this lack of llne structure is

presumed to have an effect of less than a factor of two on the radiation

loss.

I .



IV. Summary

The interaction of a one-MeV proton beam with an intensity of 16

terawatts/cm2 with a planar 8.0-pm-thick iron slab has been simulated using

a fully self-consistent, one-dimensional hydrodynamic-ionization-radiation

transport code. An extensive atomic-level-structure model of Fe was

employed, and atomic populations as functions of temperature and density

were calculated from a collisional-radiative-equilibrium assumption.

Radiation transport was treated with a hybrid scheme that combines a multi-

frequency formalism for the continuum with a probability-of-escape method

for the lines.

Profiles of the plasma density and temperature at various times in the

plasma evolution, and corresponding front and rear emission spectra at

these times, have been presented. Front and rear surface density,

temperature, and average ionic charge has been discussed, and the energy

partitioning among the various degrees of freedom has been shown.

Due to limitations of computer storage and other factors, detailed

atomic structure was only included for Fe XVI and higher stages. Since the

maximum average charge obtained was about 18, radiation losses are

underestimated throughout the simulation; however, it is estimated that the

error is less than a factor of two.

At these beam intensity levels, no K-shell emission was predicted, in

contrast to the earlier study of the interaction of the same proton beam

with an aluminum target. 2  Many L-shell lines are present during the latter

part of the simulation.

There has been much interest recently in lasing schemes involving

2p53p-2p5 3s transitions in neonlike systems. One such transition is the

%2p 5 3p(Y,)o-2p5 3s(y,) 1  transition at 254.9A in Fe XVII. One of the

%reasons for undertaking this study is to see if this transition can be

excited by proton oeams. The atomic model did not have detailed jj levels

for Fe XVII; the 3P levels were combined into twO groups according to the

spin of the 2p5(2p) inner shell. Nevertheless, it should be possible to

make some estimates of the feasibility of inducing this transition. After

about 5.5 nsec, these 3P levels had fractional population densities of -5-

6x10 -3 to -10- 2 . During this time, the ion density was of the order 1020,

.o
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and the electron density of the order 10 The temperatures in the plasma

during these times averaged about 180 eV, with some hotter zones rising

above 200 eV. Under these conditions, it should be possible to see some

lasing in this line.

This treatment is one-dimensional; hence, field effects and lateral

energy flow have been omitted. These factors could alter profile shapes

and magnitudes, and stopping power in the plasma, and thus affect the

results presented here.
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