
7 -i72 919 ROBOTIC MANIPULATOR 
CONTROL PERFORMANCE 

EALUATION(Ui 
1/2

AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB ON
M B LEANY AUG 86 AFIT/CI/NR-86-1730

UNCLASSIFIE0 F/G 13/9 Nt.

Ehhhhhhh9h9SiEhhhhchhhh



IL

1..

11I.25 11111 1.4 11111 1.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STAN4DARDS-1963-A

3%
IL.J % %



SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered), __"

REPOT DCUMNTATON AGEREAD INSTRUCTIONS
R DBEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

AFIT/CI/NR 86- 173D

4 TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Robotic Manipulator Control Performance j$X $P/DISSERTATION
Evaluation
E a6. 

PERFORMING OAG. REPORT NUMBER

1 7 AUTHOR(&) 0. CONTRACT OR GRANT NUMBER(s)

Michael B. Leahy, Jr.

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
5AREA & WORK UNIT NUMBERS

AFIT STUDENT AT: Rensselaer Polytechnic
Institute

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

1986
13. NUMBER OF PAGES
206

14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report)

UNCLASS

15a. DECL ASSI FICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

IS. SUPPL EMENTARY NOTES w3-7K,~P9
APPROVED FOR PUBLIC RELEASE: lAW AFR 190-1 E. W-LAVER

Dean for Research and
Professional Development
AFIT/NR

19. KEY WORDS (Continue n reverse side i necessary and Identify by block nuU 
PT

I... !

.m 20. ABSTRACT (Continue on reverse side If necessary and Identify by block number) L

~ '~ ATTACHED ...

DD I JA73 1473 EDITION OF I NOV 65 IS OBSOLETE 1 36 /6 /07

SECURITY CLASSIFICATION OF THIS PAGE (When Date ftered)

,,, - --'l -- " "* ' " ....... ... ' " -" ".-VW. . -
t%

• "%':,%.' ', '''-, , ¢' • . "". ' . "€'",. "''.". ' .".' . : ."'Z. ' . -"' ,e, ,.'%, 4. . %., :U# ¢e ,'e,7111;.4% Nw % ,, -r' w.'. - ... . ... . . . -.. .,. .. . ,. . . .. . . . . we . , , •• '. .,w



4 ROBOTIC MANIPULATOR CONTROL

PERFORMANCE EVALUATION

by

Michael B. Leahy Jr.

A Thesis Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY ',.

Major Subject: Electrical Engineering k "

Approved by the
Examining Committee:

George Saridis, Thesis Advisor

B y -------

Stel hen'J. De by, Member
W.I . v Codes

Alin A. Desrochers, Member

Robert B. Kelley,,ember

Rensselaer Polytechnic Institute
Troy, New York

August 1986
(For Graduation December 1986)

V -- LA



CONTENTS

Page

LIST OF TABLES ......... ...................... iv

LIST OF FIGURES ........ ..................... vi

DEDICATION .......... ........................ ix

ACKNOWLEDGEMENT ........ ..................... x

ABSTRACT .......... ......................... xi

1 INTRODUCTION ......... ................... 1
1.1 Motivation ......... ................... 1
1.2 Objective ........ ..................... 1
1.3 Problem Statement ....... ............... 2
1.4 Method Of Approach ..................... 4
1.5 Contribution And Summary Of Results ... ...... 7
1.6 Organization ......... .................. 7

2 LITERATURE REVIEW ........ ................ 9
2.1 Real-time Control Systems ..... ........... 9
2.2 Performance Characterization ... .......... .21
2.3 Efficient Dynamics ..... ............... .23
2.4 Real-time Results ...... ............... 26
2.5 Calibration Uncertainty .... ............ 31
2.6 Summary ........ .................... 38

3 A HIERARCHICAL ROBOTIC EVALUATION ENVIRONMENT . 40
3.1 Introduction ....... .................. 40
3.2 Control System Development .... ........... .41
3.2.1 Motivation ............................... 41
3.2.2 A Hierarchical Computer Control System ...... .. 42
3.2.3 The RAL Hierarchical Control System . ...... .. 44
3.3 Efficient Dynamics Development ... ......... .. 51
3.4 Evaluation Environment Software Development 52
3.4.1 Organizer Level Software ........ 54
3.4.2 The RAL Real-Time Robotic Algorithm Exerciser 56
3.5 Summary ........ .................... 60

4 EVALUATION OF DYNAMICS FOR ROBOT CONTROL ...... .. 62
4.1 Introduction ....... .................. 62
4.2 Method Of Approach ... ............... 63
4.3 Computed Torque Technique Dynamic Models . . .. 71
4.4 Dynamic Model Simulation Evaluation . ...... .. 75
4.4.1 Effects Of Inertial Coupling ... .......... .. 76
4.4.2 Effects Of Coriolis And Centrifugal Forces . . 78
4.4.3 Effects Of Actuator Inertias ... .......... .86
4.5 Dynamic Model Real-time Evaluation .. ....... .. 88
4.5.1 Effects Of Inertial Coupling ... .......... .. 89

ii



4.5.2 Effects Of Coriolis And Centrifugal Forces .90

4.5.3 Effects Of Actuator Inertias...........91
4.6 Discussion....................105
4.7 Summary.....................109

5 COMPENSATION OF UNMODELED MANIPULATOR DYNAMICS . 112
5.1 Introduction...................112
5.2 Method Of Approach................113
5.3 Computed-torque Compensation Techniques . 119
5.4 Improved Inertial Modeling Evaluation ... 125
5.4.1 Simulated Open-loop Torque Evaluation .... 126
5.4.2 Real-time Torque Comparison....................126
5.5 Unmodeled Force Compensation Evaluation ... 129
5.5.1 Nonlinear Friction Compensation.........136
5.5.2 Doubled Pole PD Feedback Loop..........137
5.5.3 PID Feedback Loop................138
5.6 Discussion....................146
5.7 Summary.....................149

6 CALIBRATION UNCERTAINTY..............152
6.1 Introduction...................152
6.2 Problem Statement................153
6.3 Method Of Approach................155
6.4 General Theoretical Development.........155
6.4.1 Joint Space Uncertainty............156
6.4.2 Cartesian Space Uncertainty...........157
6.5 PUMA Case Study................159
6.6 Numerical Example................162
6.7 Uncertainty Reduction..............164
6.8 Discussion....................165
6.9 Summary.....................166

7 CONCLUSIONS AND FUTURE RESEARCH..........168
7.1 Summary Of Results................168
7.2 Recommendations For Future Research ....... 171

APPENDIX 1: Additional Fast ICI Figures .......... 174

LITERATURE CITED.....................197



LIST OF TABLES

Page

Table 3.1 RHCS ORGANIZER LEVEL SOFTWARE ......... 45

Table 3.2 RHCS COORDINATOR LEVEL SOFTWARE
MAN IPULATOR I NDEPENDENT
SUBROUTINES and FUNCTIONS...........48

Table 3.3 RHCS COORDINATOR LEVEL SOFTWARE
MANIPULATOR INDEPENDENT FUNCTIONS
PUMA SUBROUTINES...............49

Table 3.4 EFFICIENT DYNAMICS SOFTWARE
SUBROUTINES and FUNCTIONS...........53

Table 3.5 EVALUATION ENVIRONMENT ORGANIZER LEVEL
4,1 SOFTWARE SUBROUTINES and FUNCTIONS . . . . 55

Table 3.6 R3AGE COORDINATOR LEVEL SOFTWARE
SUBROUTINES and FUNCTIONS...........57

-~Table 4.1a CHAPTER 4 DATA KEY.............65

Table 4.1b CHAPTER 4 SYMBOL KEY............66

Table 4.2 POWER RANK FORMULATION...........70

Table 4.3 ALGORITHM SIMULATION POWER RANKING
VARIATIONS DUE TO INCREASED NEWTON-EULER
SAMPLING PERIOD FAST TRAJECTORY ........ 79

Table 4.4 ALGORITHM SIMULATION POWER RANKING
VARIATIONS DUE TO MODELING ACTUATOR
INERTIAS FAST TRAJECTORY...........87

Table 4.5 ALGORITHM REAL-TIME POWER RANKING
VARIATIONS DUE TO MODELING ACTUATOR
INERTIAS FAST TRAJECTORY...........92

Table 4.6 ALGORITHM POWER RANKING SIMULATION AND
REAL-TIME COMPARISON FAST TRAJECTORY .. 106

Table 4.7 ALGORITHM POWER RANKING SIMULATION AND
REAL-TIME OVERALL COMPARISON .........1l

Table 5.1a CHAPTER 5 DATA KEY.............116

9Table 5.lb CHAPTER 5 SYMBOL KEY...........117

VTable 5.2 COMPUTED-TORQUE FEEDBACK LOOP TRANSFER

iv



FUNCTIONS . ............... 120

Table 5.3 ALGORITHM REAL-TIME POWER RANKING
VARIATIONS DUE TO INERTIAL PARAMETERS
FAST TRAJECTORY...............128

Table 5.4 ALGORITHM REAL-TIME POWER RANKING
VARIATIONS DUE TO COMPENSATION TECHNIQUES
FAST TRAJECTORY...............139

Table 5.5 ALGORITHM REAL-TIME POWER RANKING
OVERALL COMPARISON............151

Table 6.1 EXPERIMENTAL CALIBRATION ERROR DATA . . . 163

Table A.1a APPENDIX A DATA KEY ............ 174

Table A.lb APPENDIX A SYMBOL KEY...........175



LIST OF FIGURES

Page

Figure 3.1 RAL Hierarchical Control System . ..... .46

Figure 3.2 RHCS Control Flowchart ... .......... .. 50

Figure 3.3a R3AGE Block Diagram page 1 . ....... 58

Figure 3.3b R3AGE Block Diagram page 2 . ....... 59

Figure 4.1a Fast Velocity Trajectories and Symbol Key 67

Figure 4.1b Fast Position and Acceleration
Trajectories ..... ............... .. 68

Figure 4.1c Newton-Euler Feedforward Dynamics
Computed-Torque Block Diagram . ...... .74

Figure 4.1d Lagrange-Euler without Coriolis and
Centrifugal Feedforward Dynamics
Computed-Torque Block Diagram . ...... .74

Figure 4.2a Joint 1 Fast ICi Sample Rate Comparison 80

Figure 4.2b Joint 2 Fast ICI Sample Rate Comparison 81

Figure 4.2c Joint 3 Fast ICI Sample Rate Comparison 82

Figure 4.2d Joint 4 Fast ICI Sample Rate Comparison 83

* Figure 4.2e Joint 5 Fast ICi Sample Rate Comparison 84

Figure 4.2f Joint 6 Fast ICl Sample Rate Comparison 85

Figure 4.3a Joint 1 Fast ICI Position Error . .... 93

Figure 4.3b Joint 2 Fast ICl Position Error .. ..... 94

Figure 4.3c Joint 3 Fast ICl Position Error...... 95

Figure 4.3d Joint 4 Fast ICi Position Error.o.... 96

Figure 4.3e Joint 5 Fast ICI Position Error .. ..... 97

Figure 4.3f Joint 6 Fast ICl Position Error .. ..... 98

Figure 4.4a Joint 1 Fast ICI Velocity Error . ..... .99

Figure 4.4b Joint 2 Fast ICi Velocity Error . . . . 100

vi



Figure- -. 4 Jont3Fat---elciyEro---. 0

Figure 4.4d Joint 4 Fast IC1 Velocity Error . . . . 102

Figure 4.4d Joint 4 Fast IMi Velocity Error . . . . 102

Fiue44 on atI.Vlct ro 0

Figure 4.4f Joint 6 Fast ICi Velocity Error . . . . 104

Figure 5.la Diagonal Inertia, Gravity and Friction
Feedforward Dynamics Computed-Torque
Block Diagram...............117

Figure 5.1b Diagonal Inertia with Gravity Feed-
forward Dynamics Doupled Pole Feedback
Loop Computed-Torque Block Diagram . . . 118

Figure Si1c Diagonal Inertia with Gravity Feed-
forward Dynamics PID Feedback Loop
Computed-Torque Block Diagram ....... 118

Figure 5.2 Feedback Loop Step Response Comparison .120

Figure 5.3a Joint 1 Fast ICi Inertial Parameter
Comparison.................130

Figure 5.3b Joint 2 Fast IC1 Inertial Parameter
Comparison................131

Figure 5.3c Joint 3 Fast IMi Inertial Parameter
Comparison.................132

Figure 5.3d Joint 4 Fast IC1 Inertial Parameter
Comparison.................133

Figure 5.3e Joint 5 Fast IC1 Inertial Parameter
Comparison................134

Figure 5.3f Joint 6 Fast IC1 Inertial Parameter
Comparison................135

Figure 5.4a Joint 1 Fast IC1 Errors..........140

Figure 5.4b Joint 2 Fast IMi Errors..........141

Figure 5.4c Joint 3 Fast ICI Errors..........142

Figure 5.4d Joint 4 Fast IMi Errors..........143

Figure 5.4e Joint 5 Fast ICI Errors..........144

Figure 5.4f Joint 6 Fast IC1 Errors..........145

vi i



Figure 6.1 Calibration Error Probability
Distribution with no Uncertainty . . . . 163

Figure 6.2 Calibration Error Probability
Distribution with Maximum Uncertainty 163

Figure A.la Joint 1 Fast ICI Open-loop Torques . . . 176

Figure A.lb Joint 2 Fast ICI Open-loop Torques . . . 177

Figure A.lc Joint 3 Fast ICl Open-loop Torques . . . 178

Figure A.ld Joint 4 Fast ICI Open-loop Torques . . . 179

Figure A.le Joint 5 Fast ICI Open-loop Torques . . . 180

Figure A.lf Joint 6 Fast ICl Open-loop Torques . . . 181

Figure A.2a Fast ICI Open-loop Hybrid Torques . . . 182

Figure A.2b Fast ICI Open-loop Hybrid Torques . . . 183

Figure A.2c Fast ICl Open-loop Hybrid Torques . . . 184

Figure A.3a Joint 1 Fast ICl Position Error . . . . 185

Figure A.3b Joint 2 Fast ICI Position Error . . . . 186
.F3

Figure A.3c Joint 3 Fast ICI Position Error . . . . 187

Figure A.3d Joint 5 Fast ICI Position Error .... 189

Figure A.3d Joint 4 Fast ICi Position Error . . . . 189

Figure A.3f Joint 5 Fast ICI Position Error . . .. 191

Figure A.4a Joint 6 Fast ICI Velocity Error . . . . 192

Figure A.4a Joint 1 Fast ICl Velocity Error . . . . 191

,Figure A.4c Joint 2 Fast IC Velocity Error .... 192

Figure A.4d Joint 4 Fast ICl Velocity Error . . . . 194
Figure A.4d Joint 4 Fast ICi Velocity Error . . . . 194

Figure A.4e Joint 5 Fast ICl Velocity Error . . . . 195

"-"Figure A.4f Joint 6 Fast ICI Velocity Error .... 196

viii

'" .,?.. >.+-.-+,-+.,-.'..'..,'...-'....°-;.;.;.;...+,:.+ -"-.,-'. :%v .'.. --,. ,.:,. v .-,",+. :+. ,,,- . ,"v -. ,,--. .-%'



DEDICATION

This disseration is dedicated, with love, to my wife Mary

Jean, my parents Michael and Joan, and my young son Michael.

4.

ix

w7



- ~ACKNOWLEDGEMENTS

I would like to extend my sincere gratitude to Dr. George

Saridis for his advice, ideas and support. I would also like

to thank the members of my doctoral committee, Dr. Alan

Desrochers, Dr. Robert Kelley, and Dr. Steven Derby, for

Vtheir guidance.

To everyone in the RAL who lent a hand when things looked

bleak, I extend a harty thank-you. I would especially like

-. to thank four friends; Chris Seaman and Bob Balaram who

welcomed me to the lab and provided much needed guidance and

support during my first year, Kimon Valavanis for his advice

and inspiration and, Steve Murphy who was always there when I

needed someone to talk to and whose editorial skills I

exercised fully in the preparation of this document.

I would also like to thank Alessandro De Luca for the lengthy

discussions which broadened my horizons both intellectually

and culturally.

A special thanks to Chris and Steve for their assistance in

renovating my first house, don't make the same mistakes

"4.1

twice.

Finally I would like to thank Trisha and Teal for their

equation typing, figure labeling, and all their help in

putting together the RAL reports and conference papers that

proceeded this paper.

x

4 .



ABSTRACT

A robotic manipulator dynamically based controller

performance baseline is established by the creation and

utilization of a hierarchical robotic evaluation environment.

Creation of a hierarchical robotic evaluation environment

provides an original solution to the problems that previously

constrained real-time evaluation of modern manipulator

control schemes. Utilization of that environment fulfills

the critical robotic research requirement for experimental

application of proposed theories-. The performance baseline

is established by simulated and experimental evaluation of

feedforward dynamics and feedback loop design for joint

motion high speed trajectory tracking robot control. The

real-time performance produced by application of all proposed

robotic control techniques to harmonic and gear driven

manipulators can be extrapolated from the baseline. A

feedforward loop composed of uncoupled inertia and gravity

dynamics exhibited the best tracking accuracy. Forces

unmodeled by those dynamics can be effectively treated as

disturbances to the feedback loop. Dynamic based control

techniques exhibited the potential to control high speed

gross motion of a manipulator without additional sensor

devices .,, A theoretical basis for calculation of calibration

uncertainties has been developed to assist the further

evaluation and integration of modern control techniques into

a hierarchical intelligent control system.

xi



CHAPTER 1

I NTRODUCT ION

1.1 Motivation

Industrial manipulators are currently controlled by

individual single joint PD and PID feedback loops [611.

Those methods are adequate for slow repetitive motions that

can be programmed off-line or taught to the manipulator.

However, they are inadequate for implementation at the

hardware level of a hierarchically intelligent machine

([1051,[86]) operating autonomously in an uncertain

environment. The motivation for this research is the search

* for a gross motion robotic manipulator control scheme whose

performance is suitable for implementation in such a

hierarchically controlled intelligent machine.

1.2 Objective

Performance evaluation of currently proposed

manipulator control techniques would reduce the search for a

gross motion control scheme applicable to intelligent

machines. The objective of this research is the

establishment of a dynamically based controller performance

baseline by the creation and utilization of a hierarchical

robotic evaluation environment.
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1.3 Problem Statement

A major deficiency in current robotic manipulator

control research has been the lack of thorough real-time

evaluation of the proposed algorithms. Most results

published in the literature are simulation studies of

algorithm performance over one arbitrary trajectory [561.

Knowledge of currently proposed control techniques

effectiveness in real-time environments would be invaluable

for modifications of existing control strategies and design

of new control methods.

Real-time evaluations have been principally

constrained by the following factors:

- -1. the speed of the computers originally supplied with

existing manipulators is insufficient for the degree of

computation required,

2. the programming languages developed for robot arms lack

the necessary flexibility,

3. the manipulators may have existing hardware control loops

that must be bypassed or accounted for.

Development of a system which eliminates these problems and

thus permits real-time testing is necessary to advance the

state of the art in robot control methodology.

In conjunction with the development of modern

robotic control methods have been the efforts of Saridis

[86-7], Valavanis [105] and others to develop mathematical

theories for the architecture and control of a hierarchical

IiV
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robotic work cell control. Those mathematical theories will

govern selection and application of manipulator control

techniques. Further development and testing of those

theories requires real-time robotic control systems organized

in a hierarchical fashion.

The intelligent work cell hierarchy must select

appropriate manipulator control methods based on operational

task and environment. A missing link in that development is

the ability to convey information about the level of

precision in manipulator end-effector position and

orientation to the upper levels of the hierarchy. Knowledge

of manipulator end-effector position and orientation is

clouded by uncertainty. A major source of that uncertainty

is manifested in manipulator calibration. Calculation of

that uncertainty is required so that the hierarchy can

compensate for the lack of precision by selecting an

appropriate controller.

Knowledge of calibration uncertainty also enables

the segregation of manipulator uncertainties. The effects of

inertial parameter and load uncertainty on controller

performance must be separated from calibrationinue

effects. Knowledge of the effects of operational environment

aberrations such as parameter and load variations on

controller performance are essential for an intelligent

decision process.



1.4 Method Of Approach

The problems stated above are addressed in a

sequential fashion. Each new development forms the

foundation for the next step in the evaluation of gross

motion robotic manipulator control for implementation in a

hierarchical intelligent work cell. The first step is the

development of a suitable evaluation environment.

An original solution that eliminates the real-time

evaluation constraints detailed in the previous section is

presented by creating a hierarchical robotic evaluation

environment. That solution requires the development and

'tintegration of three major components: a hierarchical

manipulator control system, customized efficient algorithms

for computation of manipulator dynamics, and software

libraries that support simulation and real-time modern

control algorithm performance evaluation. The principle of

decreasing intelligence with increasing precision is applied

to the design and implementation of a three stage

hierarchical control system for a six degree of freedom PUMA

manipulator. The PUMA dynamical formulations are studied and

symbolically reduced to produce the necessary efficient

dynamics algorithms. Modular software is developed in PDP

assembly language and VAX FORTRAN to empower the hierarchy

with the ability to simulate, control, and analyze the

effectiveness of proposed manipulator controllers. The

developed environment is utilized to conduct two case studies
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that reduce the scope of the rearch for control techniques

suitable for the intelligent work cell of the future.

Manipulator dynamics play a vital role in arm

simulations and numerous proposed modern robotic control

techniques ([561,[77],[841). Therefore the logical first

step in real-time control implementation research is an

evaluation of the effects of dynamics on robot control. The

computed-torque technique ([77-81,[57]) provides a

mathematically well defined, dynamically dependent basic

control algorithm for the study of the effects of dynamics on

real-time robotic control. The performance of the

computed-torque algorithm using four forms of dynamics in the

feedforward loop is evaluated by both computer simulation,

and real-time implementation over six different operational

configurations. The dynamical formulations employed in the

controller are: complete Newton-Euler, and three reduced

forms of Lagrange-Euler: full, block, and diagonal inertia

matrix, all with gravity but without Coriolis and centrifugal

terms. By evaluating PUMA manipulator performance variations

the effects of computed-torque feedforward loop neglected

dynamics on gross motion joint control are exposed.

In the first case study computed-torque control

technique efficacy is proven insufficient for gross iotion

control of the PUMA. Forces unmodeled by Lagrange-Euler

techniques are a vital component in the actual dynamics of a

PUMA manipulator. Their effects, especially on the small

.N6
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links, are too pervasive to be eradicated by the computed

torque feedback loop employed in chapter four. Therefore,

the second case study investigates modifications to the

original computed-torque law that provide compensation of

unmodeled manipulator dynamics. New inertial parameters [94J

that better model the actual arm dynamics are evaluated.

Friction compensation is implemented by an additive torque

switching function whose limits have been defined by a

performance characterization of the PUMA [431. The bandwidth

of the PD feedback loop is increased. A PID feedback loop is

inserted in place of the PD loop. The results from

evaluation of those modifications, over operational

configurations identical to the first case study, are

compared and contrasted to gain insight about the optimum

method for compensation of unmodeled forces. Those

evaluations reveal the capabilities of non-sensor based

controllers to compensate for unmodeled PUMA forces.

An original solution to the calibration uncertainty

calculation problem is developed. A theoretical basis for

the employment of the Entropy function as a measure of

calibration uncertainty is established. The selection of the

Entropy function incorporates uncertainty information into

the mathematical formulation of an intelligent work cell

([1.051,[86]) and permits the evaluation of the ramifications

of environmental aberrations on gross motion manipulator

control methods.
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1.5 Contribution And Summary Of Results

The main contributions of this research are as

follows:

1. An original solution to the constraints restricting

real-time implementation of modern control techniques on

a six degree of freedom revolute manipulator.

2. Evaluation of dynamic models for simulated and real-time

control of a six degree of freedom revolute geared

manipulator.

3. Evaluation of feedforward and feedback techniques for

compensation of six degree of freedom revolute geared

manipulator forces unmodeled by Lagrange-Euler dynamical

models.

4. Development of the theoretical basis for application of

the Entropy function as a measure of manipulator

calibration uncertainty.

These efforts have significantly enhanced the real-time

manipulator control database while providing the control

system foundation essential for continued development of an

intelligent machine.

1.6 Organization

This dissertation consists of seven chapters

organized as follows: Chapter two reviews the literature

Vpertinent to the creation and application of the hierarchical

robotic evaluation environment. Chapter three documents the

.%5

.p
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developmental history of that environment and presents an

overview of the main components. Chapter four presents the

-4 research and conclusions on evaluation of dynamic models for

robot control. Chapter five evaluates the effects of

feedforward and feedback compensation techniques on efficacy

of a PUMA under computed-torque control utilizing the optimum

dynamic model of chapter four. The theoretical basis for the

utilization of the Entropy function as a measure of

manipulator calibration uncertainty is developed in chapter

six. Conclusions and suggestions for future research are

presented in Chapter seven. Appendices contain evaluation

data not presented in the chapters.



CHAPTER 2

LITERATURE REVIEW

In this chapter research pertinent to the

development and application of a hierarchical robotic

evaluation environment is reviewed. Research published prior

to the development of that environment is grouped into

sections on; real-time control systems, performance

characterization, and efficient dynamics. Earlier efforts on

real-time joint space gross motion control are reviewed.

Previous research on techniques to quantify uncertainty in

manipulator calibration is the final area of review.

r2.1 Real-time Control Systems

The first study of the developmental issues of a

real-time control system at the Rensselaer Polytechnic

Institute Robotics and Automation Laboratory (RAL) was

completed by Valavanis in May of 1983 [1021 and advocated

breaking away from VAL. The manipulator system studied at

that time was the PUMA-600 installed in the lab. The

PUMA-600 is a six degree of freedom revolute manipulator

mechanically similar to the PUMA-560. A PUMA-600, like most

industrial robots [61] is equipped with its own dedicated

controller and programming language. A thorough description

4 of the original control system was presented by Valavanis

[102]. The PUMA-600 control system is composed of an

LSI-11/02 which interfaces to the six joints via six Motorola

9 AI.%
r
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6503 microprocessors [1001. Control of the robot is

accomplished through the VAL programming language [101-2].

That system does not allow interfacing with other robots and

has the following disadvantages:

1. the inability to close the control loop back to the

computer level,

2. the limited computational power of the LSI-11/02, and

3. the fixed 28ms sampling intervals.

Those limitations prohibit employment of the existing PUMA

control scheme for testing of modern control methodology.

The PUMA-600 real-time control system first

proposed by Valavanis consisted of the following hardware

modifications:

1. replace the LSI-11/02 with an LSI-11/23,

2. connect the Q-bus of the LSI-11/23 to the unibus of a

VAX-11/750,

3. increase the PUMA system memory size to 128KB,

4. modify the hardware to permit velocity and acceleration

feedback to the control computer.

Valavanis proposed the creation of a robotic language basedS.

on the code in the joint microprocessors, which would include

communication protocol, so that the user could break away

v from VAL. The driving force behind this proposal was a

*desire to duplicate the suboptimal manipulator work done by

Saridis and Lee [88], on a MIT arm at Purdue, on the RAL

< < , < .. . . :.. -_4.. , . ... . . .-. .... ... , . ,........... . -..



PUMA.

The proposed system was an ambitious plan beyond

the scope of the original researchers immediate goals. The

decision was made to design and implement an intermediate

level system that would further enhance the knowledge

framework required to develop the proposed hierarchical

system. The first working PAL real-time control system was

developed by Valavanis, Walter and Leahy ([491,[50I1,[1041)

and was operational in 1984. Their approach created a

dedicated non-hierarchical control system by disconnecting

the existing computer controller and connecting a VAX-1l/750,

running under the VMS operating system, in it's place. The

VAX communicated with the existing hardware level by a DR11-W

DMA link to the arm interface board. That system broke away

from VAL and duplicated the control commands with a library

of modular FORTRAN subroutines. The trajectory planning and

inverse kinematic functions of VAL were not required and

therefore not duplicated. The VAX/PUMA system had several

advantages over the existing controller:

1. the superiority of the VAX-11/750 over the LSI 11/02 used

by VAL,

2. the control loops are closed back to the computer level,

3. the joint microprocessors are employed only as buffers

bypassing the supplied control loop, and

.21.
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4. the increased power and flexibility of FORTRAN over VAL.

The VAX/PUMA control system enabled the first real-time

evaluations of several modern joint space robotic control

techniques [1041.

Researchers at Unimation lead by Shimano sought to

overcome the problems of the VAL language by the development

of VAL-II [911. VAL-II was designed to support network

-. communications, real-time trajectory modification, general

sensory interfaces and concurrent user-program execution.

PUMA-560 manipulators are equipped with VAL-II. The original

PUMA hardware is modified by installation of a LSI-11/23 as

the host computer and a connection to a supervisory system

"' through a local network via RS-232C serial lines. The

addition of the LSI-1/23 allows for complex algorithm

programming due to its floating point capabilities. The new

language also provides standard arithmetic operations,

. operators, and control structures commonly found in

high-level "structured" computer languages. The path that
S

the manipulator is instructed to follow can be altered in

real-time but only by the addition of cartesian data at 28ms

intervals. Even with all its improvements VAL-II still is

unsuited for testing of modern control techniques.

The topic of robot language has been very active.

Development of other languages for real-time control systems

proceeded in parallel with VAL-II. Gruver, Soroka et.al.

review the capabilities of commercially available languages

--A
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[25]. Their developers were primarily concerned with easing

the program task for robotic system users and not with

evaluation of modern control techniques. Most languages

assume that the controller is a fixed element using standard

industrial PD control techniques. Like VAL-II those

languages support the industrial environment but not the

research environment for modern controls.

Researchers at Purdue, University of Toronto, and

JPL are also active in real-time control research employing

PUMA arms. They created their own real-time control systems

and languages at the same time that the RAL VAX/PUMA system

was under development. The JPL system [7] is part of larger

hierarchically based control station which includes TV

monitors, a graphics system for informational display, alarm

sound generators and control mode switches. Like the RPI

system the JPL PUMA controller connects directly to the arm

interface board, bypassing the LSI-11/02 and VAL. Unlike the

RAL system their PUMA-560 is controlled by a NS 16000

microcomputer.

Under the direction of Goldenberg researchers at

the University of Toronto have designed a non-hierarchical

PUMA control system [59]. That system is characterized by

the original PUMA controller LSI-11/02 running under an RT-l1

operating system with a serial connection to a PDP-11/23 Plus

system. Programs are developed on the PDP and sent to the

11/02 for execution. There is no other provision for

eI. -N;
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inter-system communication. Most system software is written

in FORTRAN and the RT-11 kernal software had to be modified

so that interrupts could be processed correctly. The

software is based on modules not subroutines and is written

inefficiently. The limitations of using an operating system

in a real-time controller coupled with the slow speed and

lack of full floating point support of the 11/02 greatly

restrict the user's ability to implement modern control

algorithms with this system. In fact only primitive single

joint movement algorithms have been tested.

Meanwhile, at Purdue, Hayward, Paul and others [26]

were developing RCCL: A Robot Control "C" Library. As was

the case for the VAX/PUMA system, RCCL is not a language but

a series of subroutine calls that allow control of a robotic

manipulator. After that point the similarity ends. RCCL is

written in the "C" language and runs under a UNIX operating

system equipped with specialized real-time device drivers and

kernel code modifications. RCCL completely duplicates and

expands on the functions provided in most robot languages

while allowing development of modern control techniques.

Under RCCL control four processes are executing concurrently.

The user process runs under the time shared environment on

their VAX-11/780 and executes the user's "C" algorithm

containing RCCL subroutine calls. A motion request queue
allows the user process to communicate with the ne;:t level,

called the setpoint process. The lowest level is the servo



process which controls the position or torque of the

* manipulator. The key to the real-time capabilities of the

system is the real-time communications channel which allows

communication between the servo and setpoint process at

speeds suitable for real-time modern control. Both a

Stanford arm and a PUMA-600 are currently controlled by RCCL.

- In a break from the design philosophy of the RAL and JPL

systems the PUMA servo process still employs the LSI-11 to

supervise the joint microprocessors and perform the arm

calibration. Although potentially powerful enough to support

testing of all proposed real-time control techniques the RCCL

system has been designed to support cartesian control

algorithms that employ force and torque control. Published

results that utilized this system have only involved forms of

cartesian force cor.rol ([51,[581).

The National Bureau of Standards has also developed

a real-time control s- :em (RCS) ([61,[671) composed of four

levels. RCS serves as a major subsystem in their Automated

* I-Manufacturing Research Facility. Work at NBS is driven by a

desire to create guidelines for standardizing interfaces to

robots for easy implementation of a hierarchical control

system. As in VAL-II, communication between the the arm

controller and the external computer is by an RS232

communication link. The four levels of the RCS hierarchy

'VY subdivide a general instruction in the manner of increasing

precision with decreasing intelligence as proposed by Saridis

'Wk,Jdi
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[86]. RCS supports the types of motion control commonly seen

in industrial robots. The manipulator employed as a test

case is a Cincinnati Milacron T3 employing the existing servo

control but modified to allow control by the RCS. The

inability to bypass the existing servo control, coupled with

the lack of computational complexity and flexibility

prohibits the performance of modern robotic control algorithm

evaluation on the RCS.

In the same time frame as the other system

-~ developments, researchers at Georgia Tech have been creating

a hierarchical control system for the study of the

methodology for the coordinated control of two robot arms

[1-2]. Their system is built around 16 Intel 8086

microprocessors and an Intel 8089 I/0 processor. The two

robot test case is composed of a PUMA-550 and a PUMA-560.

Their design takes the approach followed by JPL and RPI one

step further by replacing even the joint microprocessors.

.' . Each joint now has an axis computer defined as an 8086-based

system in minimum mode. Each arm has two prediction

computers composed of 8086 based systems in maximum mode.

The prediction computers plan the trajectories and send joint

commands to the axis computers. The top level of the

hierarchy is called the Multi-Arm Coordination Computer,

MACC, which is an 86/14 single card computer including RAM, a

numeric processor and a fixed/floating point arithmetic

processing unit. The MACC executes a coordination algorithm
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to calculate the new desired slave arm position based on

information from the prediction computers. Trajectory

modifications are sent to the five slave axis computers by

the 1/O processor. The system is still in the developmental

stage and only control via conventional servo techniques has

been applied. Even for that simple program the transfer of

command modifications to the appropriate axis computers

required Bins with total sampling times of 2Oms.

Implementation of modern single arm control techniques was

P considered beyond the scope of the current research efforts

but the system seems to have the potential to support such

work.

The amount of work in the area of real-time control

systems has expanded greatly within the last year.

aaResearchers at Ohio State University are developing operating

system primitives and a real-time control system for a six

legged robot ([76],[891). As in the case of the Georgia Tech

system, 16 8086 based single board computers are being

hierarchically arranged. The operating system under

development is called GEM: generalized executive for

real-time multiprocessor applications. Employment of this

system for study of real-time modern control was suggested

but has not been implemented.

Two groups of researchers are examining the design

of manipulator control systems based on arm dynamaics. Niagam

and Lee [73] researched the topic of cost effective

wv-ve
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architectures using currently available microprocessors to

compute real-time joint torques based on dynamics. They

performed a feasibility study to verify that special purpose

architectures are required to meet their sampling rate

constraint of 3ms in a cost effective manner. Their proposed

architecture uses six microprocessors to accomplish the

efficient computation of the Newton-Euler dynamics with a

seventh processor used to coordinate host communications.

That proposal is a refinement of the earlier work of Lee,

Mudge and Turney [57] who proposed development of a special

purpose processor for accomplishing the same task. In both

cases the controller functions as an attached processor

controller in a hierarchical environment. The proposed

systems were not operational at the time of their last

report.

Zheng and Chen designed a loosely coupled

multiprocessor system based on dynamical control of a

manipulator [1121. The multiprocessor system is composed of

a PDP-11/23 serving as the central processor and PDP-1l/03's

employed as satellite processing units. The computers

communicate with each other over DEC DRV11 parallel interface

modules. Satellite processors are able to communicate with

each other directly. Their work on the Newton-Euler state

space equations produced a computation scheme which allows

the individual joint forces and moments to be calculated in

parallel on satellite processors and then sent to the central



19

poesrfor cmuigthe final torus A two lik robot

was used to test a FORTRAN program that computed the applied

torques. Use of the central and two satellite processors did

decrease the computational time by half. However, the

computational time of 47.1 ms is still excessive and is a

function of the limited speed of floating point calculations

especially in the LSI-11/03's which only have the DEC

floating point instruction set [811, not full floating point

capability. That basic limitation will prevent even assembly

language code from executing efficently.

Turner is leading another group of researchers

interested in multiprocessor real-time control systems [991.

They have simulated a four microprocessor system designed to

allow either force or position control at high servo rate

speeds. In a break from most other controller designers they

propose that single microprocessors not be employed to

control each joint. They claim that single joint

microprocessors impose severe constraints for multi-input

multi-output control strategies, an example being the 5.8ms

of interprocessor communication time in the system designed

'4 by Zheng.

'4. Turner's system consists of language, dynamics and

servo processsors and a path planner. The PDP-11/60 language

~ processor handles executive, file manager, interpreter and

other high level functions along with interfacing to the

outside world. The unique part of the system is the dynamics
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processor which calculates the joint couplings for control

*purposes in parallel with the path planner. Both the path

planner and dynamics processor are 32 bit bit/slice

4 processors. The servo interface is a 16 bit bit/slice

machine. Like the RCCL system only modern force control

algorithms can be tested on this system. The position

control mode is too crude for implementation of modern

position control techniques.

Turner's simulation results are quite impressive

but their control scheme is nothing more than a sophisticated

VAL scheme. In place of the hardware PD loop they implement

Salisbury's active stiffness controller 1821. The parameters

used by that controller are all calculated in open-loop

fashion from the desired values. Inertial, gravitational and

coordinate transformation values don't reflect actual arm

position. By calculating the open-loop values in parallel

with the servo loop the authors are able to produce their

high speed values, but as with VAL the loop is not closed to

the computer level.

Dupourque makes a case for controlling six degree

of freedom robots with no external hardware and a single

processor [181. His "Robot Operating System" uses a 16 bit

Motorola 68000 running at 8mhz and an interface card to

receive and send analog inputs and outputs. That system has

no floating point functions so extensive use is made of

look-up tables. In its current state of development this



21

system can not support real-time evaluation of modern robotic

controllers.

2.2 Performance Characterization

In order to conduct worst case real-time tests,

worst case data must be available. In their first attempt at

real-time control of the PAL PUMA-600 the authors of [1041

arbitrarily selected a set of trajectories to track, that

forced each joint to traverse 90 degrees in 1.5 seconds. No

data existed to validate whether in fact the peak speeds

required by those trajectories where reachable by every

joint. If the speeds were unobtainable then velocity

tracking would be impossible. Analysis of the velocity error

results from that study reveal that several joints peak

velocities were well below the desired. Another important

aspect of PUMA-600 performance that needs to be categorized

is the effects of friction. Simulation studies of algorithm

performance commonly ignore the effects of friction in their

analysis. Friction is a powerful force on a PUMA. A means

of accounting for friction may be necessary to obtain

satisfactory real-time performance of certain control methods

([551, [64],[78], [1071, [109]).

In order to answer these questions a performance

.5. characterization of tht PUMA-600 was undertaken in the PAL

[43]. Step input tests were performed to find the minimum

current levels required to just overcome the effects of

friction. Gear friction was found to vary along the gear

*5Z
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train and not to contain distinct static and dynamic

components. The proposed friction compensation model was a

switching function which adds a constant value to the

* uncompensated current in that direction. The variations in

friction value must be modeled as uncertainties in the

operational environment.

In real-time control articles presented at the 1985

IEEE International Conference on Robotics and Automation the

issue of friction compensation of a PUMA was addressed and

Backes, Leininger and Chung [5], and Zhang and Paul 11111

model friction in an identical fashion. Also at that

conference Mukerjee and Ballard presented a tabular approach

to the friction problem [70]. To support open loop control

they proposed modeling manipulator friction as the sum of

coulomb, viscous, and transmission components and tabulating

these values in separate look-up tables searched by measured

forces, moments and positions. That approach requires the

installation of additional measurement devices to produce the

advantages of ordinary closed loop control.

The maximum achievable individual joint velocities

were found by applying the maximum current to each joint

motor and measuring the steady state velocity. Peak

velocities from the first real-time study were found to be

unrealizable for the large joints. Small joint velocities

can exceed 4.0 rads/sec. Armed with this information a set

of realistic maximum joint trajectories can be derived.

% %

4IM
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2.3 Efficient Dynamics

All non-adaptive modern robotic control techniques

utilize some form of manipulator dynamics in their control

laws. A major stumbling block in the drive for real-time

implementation has been the computational complexity of these

formulations [281. Bejczy and Paul were the first to employ

symbolic state equation techniques to reduce the complexity

of the Lagrange-Euler formulation [9]. By geometric and

numeric evaluation of the symbolic Lagrange-Euler equations

they significantly reduced the computational requirement for

a Stanford-Scheinman arm with fixed wrist, and provided

insights into general reduction techniques. Bejczy and Lee

expanded upon the brief presentation in [9] by discussing

ways of reducing the complete Lagrangian formulation through

matrix, vector, numerical and significancy analysis [8]. A

reduced set of equations for a specific manipulator was not

presented.

The most common technique suggested for reducing

dynamical complexity is the elimination of the Coriolis and

centrifugal terms in the Lagrangian formulation ([1041,[551)

since they require the greatest computational burden [281. A

further simplification commonly suggested is to diagonalize

the inertial matrix. Paul, Zong and Zhang derived a reduced
..

set of equations for PUMA-600 diagonal inertial and gravity

vector values using significance analysis [79]. Those

equations were accurate to within ten percent for inertial

%'
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values and one percent for gravity vector terms.

In a recent work Isaguirre and Paul proposed a set

of equations for computation of the inertial and

gravitational coefficients based on the relationships between

the links [321. A reduced model for the inertial matrix is

also proposed. The reduction of the unloaded PUMA-600

equations to 65 multiplications and 41 additions is

impressive. However, the effects of a load are included as

additive terms to the unloaded equations, resulting in an

additional 160 multiplications and 101 additions.

.Analysis of the effects of their reduced equations

-4. on coefficient accuracy, and reduced model on interjoint

coupling are not thoroughly discussed. Paul's model for the

PUMA is different than the one used in the RAL so the

principles behind his work are applicable but the equations

are not exact.

Another reduction approach is to tabularize the

values, store them in memory and employ various forms of

table look up to determine the needed values. Hollerbach

discusses the problems associated with these approaches and

also proposes a recursive formulation for the Lagrangian

formulation [28]. Use of full Lagrangian dynamics for

real-time control is still not within the power of existing

-A... systems.

N4~*
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*For our studies the need for complete dynamics

could be satisfied by the Newton-Euler formulation first

proposed by Luh, Walker ana Paul [63]. Although much more

compact than the Lagrangian formulation the basic

Newton-Euler computations still require 852 multiplies and

738 additions [281. The number of computations could be

simplified by accounting for the structure of the specific

manipulator.

Hoilerbach and Sahar discussed the reductions in

Newton-Euler formulation computational complexity possible

for manipulators with spherical wrists [29]. Their reduced

Newton-Euler formulation for a six degree of freedom rotary

manipulator with no offsets and a spherical wrist requires

408 multiplications and 324 additions. By also assuming

precomputed inverse kinematics and simplified inertial

parameters the computations were further reduced to 194

multiplications and 138 additions. Kanade et. al., expanded

on that work in search of a set of custom Newton-Euler

equations for their direct drive II arm [331. The

computational savings from a series of generic reduction

measures is clearly presented. Newton-Euler equations for a

general six degree of freedom rotary manipulator with

parallel/perpendicular axis, spherical wrist and diagonal

inertia require 393 multiplications and 305 additions.

Additional reductions depend entirely on the specific

structure of the manipulator.

=
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Horak developed a general manipulator full dynamics

symbolic model that combines the most desirable aspects of

both Lagrange and Newton-Euler formulations in a fast

computational scheme [301. Lagrange-Euler non-matrix

equations are utilized to model the first three links. The

recursive Newton-Euler formulation is employed to model the

wrist. Application of this method to a Stanford arm produced

a full model with 361 multiplications and 256 additions. The

authors's claim of an additional factor of two computational

savings, over Luh's [63] method, from application of good

coding techniques is invalid since the same principles were

not applied to both algorithms.

Since the control system proposed in this thesis is

only capable of sequential computations the recent efforts in

parallel computation of dynamics ([621,[751) will not be

discussed.

2.4 Real-time Results

Although a large body of simulation knowledge has

been created, studies of real-time performance have been

scarce. Only researchers at:

1. Rensselaer Polytechnic Institute, RPI

2. Massachusetts Institute of Technology, MIT

3. Carnegie-Mellon University, CMU

/,%1Y
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4. University of California at Davis, UC Davis,

5. Tokyo Institute of Technology
n'.

have presented results from attempts at real-time joint space

control of a robotic manipulator using modern techniques.

At the Tokyo Institute of Technology Furuta, Kosuge

and Yamakita [21] have applied a nonlinear feedback technique

which allows the design of optimal control law with quadratic

constraints to a PT-300 manipulator. The PT-300 is

mechanically equivalent to the GCA/DKP 300V manipulator. The

optimal control formulation produced a PID control law that

has been employed to control the three positioning degrees of

freedom over one slow trajectory.

At UC Davis, Anex and Hubbard have applied an

adaptive control technique to a RHINO XR-2 manipulator [4].

The adaptive technique studied was proposed by Horowitz and

Tomizuka [311. Several modifications to that algorithm had

to be made to allow for real-time control testing. The

results presented were from simple, slow, single joint motion

of the bottom two links. Those specific findings are flawed

by the author's claim of a 530 Hz control frequency while

only calculating the velocity every 93.4ms. The observations

about real-time implementation derived from those preliminary

findings should help in future evaluations of adaptive

control techniques.

ZN ,

-- 6 -



28

The first real-time joint control results for a six

degree of freedom manipulator were published by Valavanis,

Leahy and Saridis [1041 in 1985. That work was completed by

the summer of 1984 and consisted of an evaluation of four

modern control algorithm's effectiveness in tracking one

trajectory with an unloaded PUMA-600. Simulation and

real-time results were compared and contrasted. The VAX/PUMA

system described earlier was employed for real-time testing.

The four techniques tested were:

1. computed torque with simplified dynamics,

2. computed torque with complete dynamics,

3. the optimal/PID technique developed by Luo [66], with

simplified dynamics, and

4. adaptive control using perturbation equations of motion

developed by Chung and Lee [141.

The general conclusions reached by that study are valid but

the specific results were flawed by the following:

1. the fastest sampling speed of 50ms is unacceptable for

real-time control of a PUMA with any degree of accuracy,

-' 2. the varying sampling speeds between the different

-- algorithms made comparisons difficult if not invalid,

3. only one operational configuration was tested.

That work was designed as a case study of the VAX/PUMA

.. " control system, not an exhaustive evaluation. Further

research at the RAL revealed that conceptual and coding

"V
4~ 1

"5,
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errors existed in the Newton-Euler dynamics, the optimal/PID,

and adaptive algorithms. Characterization studies of the arm

also showed that the velocity trajectory was unachievable

[43]. Although flawed, the first attempt at real-time joint

space control does provide excellent insights into the

problems associated with real-time implementation of modern

control methods.

The 1986 IEEE International Conference on Robotics

and Automation witnessed the publication of three new papers

in the area of real-time joint space control. Leahy, Saridis

and Valavanis presented a study on the effects of dynamics on
'A

robotic control [52]. The errors in their earlier research

[104] were corrected by creation of a hierarchical robotic

evaluation environment. That paper discussed the application

of a computed-torque technique employing four forms of

feedforward loop dynamics. Actuator inertias were not

considered and small link torque to current conversion

factors were altered based on experimental data to enable the

small links to track the desired trajectory. The effects of

neglected dynamics on simulated and real-time performance

were clearly illustrated. The author's claimed that

utilization of uncoupled dynamics in the feedforward loop

produced the best overall control algorithm performance and

that simulation results did not accurately predict real-time

performance.

.4
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Although those simulation results are accurate the

real-time data is invalidated by implementation errors. The

dynamic model and control system reference frames were 180

degrees out of phase for links 1 and 3. Also the conversion

factors utilized to convert torques to motor currents

incorrectly modeled the gear ratios and A/D convertor current

to counts ratio. Subsequent research has corrected both of

those errors.
At MIT An, Atkeson, and Hollerbach investigated the

application of feedforward control to the MIT direct drive

arm [3]. The primary purpose of that study was to verify

their inertial parameter estimation technique. They

demonstrated that velocity feedback is an essential part of

any manipulator control law and that the addition of

feedforward complete manipulator dynamics had a significant

impact on tracking accuracy. Feedforward dynamics improved

the performance of the first two links. For the light third

link unmodeled dynamics like friction became significant and

.-2 reduced the role of the feedforward terms.

Researchers at CMU conducted an evaluation of

computed torque performance on the CMU direct drive II

manipulator [35]. Like the RPI study the effects of

S-neglected dynamics on algorithm efficacy were evaluated.

Like the PUMA, the direct drive II manipulator is sensitive

ft . to the dynamic model employed in the feedforward loop.

However, the inclusion of more complete dynamics enhances

ft.
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direct drive arm performance. Incomplete manipulator

modeling lead to large tracking errors in this study. Both

inertial coupling and Coriolis and centrifugal forces have a

significant effect on manipulator performance. That result

is due to the lack of friction and gearing effects coupled

with the subsequent higher velocities achievable by a direct

drive manipulator. Excellent tracking performance was

achieved by individually tuning the feedback gains for each

joint and a 2ms sampling time. That research verified that a

direct drive manipulator is an excellent approximation of the

Lagrange-Euler dynamics model previously utilized in modern

manipulator control algorithm simulation studies [56].

2.5 Calibration Uncertainty

In modern industrial applications the manipulator

is an integrated component in a work cell consisting of

fixtures, part transportation systems and other robots. All

of those devices are designed and calibrated independently.

Efficient work cell performance requires the determination of

the exact position and orientation of the manipulator. The

procedure to determine manipulator position and orientation

is dominated by uncertainty.

.V
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Brooks defines the three major sources of

uncertainty in a manipulator based work cell as [11]:

1. the manipulator,

2. the objects to be manipulated, and

3. the introduction of these objects into the work

environment.

To quantify the ramifications of inertial parameter and

object uncertainty on the repeatability of modern gross

motion control algorithms knowledge of the manipulator

uncertainty is essential.

Most manipulators require a calibration procedure

to align the individual joints with some external reference

frame common to all work cell components. Manipulator

, .,)uncertainty is a function of the resolution of the joint

positioning system instrumentation and errors produced by

that calibration procedure. Calibration is generally based

on an ideal set of kinematic parameters. Uncertainty in

manipulator calibration is primarily the consequence of

manufacturer's tolerances in robot fabrication. Those

tolerances i.- oduce uncertainty into the values of the

kinematic parameters utilized in manipulator calibration.

That uncertainty is reflected into the alignment of the

individual joints with the common reference frame.

End-effector position is dependent on the individual joint

angle values. Consequently, calibration uncertainty results

in uncertain knowledge of the absolute end-effector position.
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Previous research on calibration uncertainty has

centered on its elimination, not quantification. Several

calibration procedures which reduce kinematic inaccuracies

have been investigated ([191,[601,[701,[921). All of these

procedures utilize specialized measurement devices to account

for manufacturer's fabrication tolerances. Those methods are

well suited for industrial applications where the environment

is well defined and the task is repetitive. In such

environments uncertainty elimination techniques can be

applied in the initial setup of the work cell to

significantly decrease the uncertainty. Even with

compensation for manufacturer' s fabrication tolerances,

calibration of the manipulator will still produce a degree of

uncertainty dependent on the resolution of the joint angle

measurement instrumentation used by the control system. No

technique available for measuring uncertainty has been

applied to the calibration problem.

There are two basic techniques for quantifing the

level of uncertainty: bounding or probabilistic. In his

research on robot planning Brooks treats measurement

uncertainty by determining or assuming bounds on the

measurement error [11]. An uncertainty is represented as:

-R < measurement error < S (2.1)

Where:

R = a lower error bound

S = an upper error bound
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If the degree of measurement error is dependent on the

measurement itself the uncertainty can be expressed as:

- R(m) < measurement error < S(m) (2.2)

Where:

m = the measured value

R(m) = A lower measurement dependent error bound

S(m) = An upper measurement dependent error bound

Therefore the true physical value, v, that a sensor reading

of m represents is defined as:

m - R(m) < v < m + S(m) (2.3)

An illustrative example is presented in [111.

A problem with the bounded approach is the lack of

information provided about the relative occurence of error

values inside the bounded limits. For that reason

uncertainty has usually been treated in a probabilistic

manner. A distribution function is assigned to an event to

represent the level of uncertainty involved in the occurence

of that particular event being selected from a set of all

possible events.

A brief review of the history of uncertainty and

its probabilistic measure has been conducted by Saridis [85]

and Sanderson [831. The development of the Entropy function

as a measure of uncertainty is clearly defined. The

utilization of Entropy as a measure of uncertainty dates back

as early as 1763. Since then, Entropy has played an

important role in several fields, most notably, statistical
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thermodynamics and information theory.

If the probability of an individual random variable

being selected from the set of available random variables can

be expressed as:

P(X-X1 ) P(x) ! 0 (i-l...n) (2.4)

n
1 P(xi) Si (2.5)

Where:

X = The random variable

xi  = The discrete values of X

n = Number of discrete values of X

P(X=xi) = Probability that X equals xI

Then the Entropy of that probability distribution is given

by: n

H(X) = - P(xi) log 2 P(xi) (2.6).
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In the case of an event being defined by the

occurence of more than one random variable the joint

probability on the joint sample space is defined as:

P(X=xi, Y=y j ) = P(xi, yj ) 0 (2.7)

n m

i P(xi , yj) = (2.8)
Zi= j=1

Where:

X, Y = Random variables

X, yj = Discrete values of X and Y

n, m = Number of discrete values of X and Y

P(X i , y.) = Probability X=x. and Y=yj

Then the Entropy of that distribution is expressed as:

n m inl y( 2 9H(XY) = - j P(xi, y.) log 2  (2.9)

If occurance of the individual events is independent than the

4 Entropy becomes:

n m
H(XY) =- P(xi)  P(yj) log P(xi) P(yj) (2.10)

n m
H(XY) = - Z P(xi) log P(x.) - 7 P(y.) log P(yj) (2.11)

= j=1

H(XY) = H(X) + H(Y) (2.12)

The additive property of the Entropy function [231 makes it

an ideal performance measure for multileveled command

structures operating in uncertain environments. Saridis has

applied the concept of Entropy as a unifying performance

00
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function among the three levels of a hierarchical intelligent

robotic system [85-61.
4.

Sanderson has studied the utilization of Entropy as

a common measure for evaluating the performance of part

assembly system designs [83]. In that research he utilizes

the concept of Entropy as a measure of the uncertainty in

position and orientation of parts in an assembly task.

Sanderson first defines parts Entropy for a one dimensional

example analogous to equation 2.3. If the position

probability is represented by a uniform distribution then the

Entropy function is a maximum. Intuitively that makes sense

since a uniform distribution provides the least amount of

information on where the part is located and therefore

produces the highest level of uncertainty.

Sanderson also demonstrates that knowledge of an

estimate of part position produced by some measurement device

reduces the part position uncertainty. The position

probability can now be conditioned by the position estimate.

The resultant conditional probability can be expressed as:

P(X=xilY=y j) - P(xily j) = P(xi, yj)/P(yj) (2.13)

Where:

xi  represents the part position

P(xi, yj) and P(yj) are as defined in eq. 2.4 and 2.8*4w

P(xilY j) is the probability X=x i given that Yyj

yj represents the estimated part position from a sensor reading.
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The uncertainty of a part position conditioned on it's

estimated position can be expressed by conditional Entropy

defined as:

H(XLY) - Z P(xilY j ) log 2 P(xilyj) (2.14)
i-l

Knowledge of estimated position doesn't eliminate the

uncertainty but reduces it to a dependence on the range and

resolution of the sensor system.

For a uniform distribution the probabilistic and

bounded techniques for uncertainty measurement convey an

equivalent amount of information. However only the Entropy

measure can utilize new information to learn the distribution

of the positions and therefore reduce the level of

uncertainty on-line.

2.6 Summary

The original VAX/PUMA system is inadequate for

continued real-time control research. Other real-time

control systems operational in the fall of 1984 were not

hierarchically based. Proposed reduction methods for

Lagrange-Euler dynamical computations were insufficient.

Newton-Euler reduction techniques had not been applied to a

PUMA-600. Efficient computational forms of manipulator

dynamics are essential for real-time implementation of

proposed gross motion robotic control methods. The PUMA-600

has been characterized sufficiently to allow friction

-.
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compensation and generation of achievable trajectories.

Uncertainty quantification techniques have not been applied

to manipulator calibration. Development of the theoretical

basis for utilization of the Entropy function as a measure of

calibration uncertainty would extend the unification of

intelligent machine performance characterization to the

.~ ~.lowest level.

The requirement for development of a hierarchical

robotic evaluation environment and it's application to

conduct a more complete and thorough real-time evaluations of

modern control methods for large range robotic movement

clearly exists. The development of such an environment is

the subject of the next chapter.



CHAPTER 3

A HIERARCHICAL ROBOTIC EVALUATION ENVIRONMENT

3.1 Introduction

A major contribution of this research is an

original solution to the problems that have constrained

real-time evaluation of modern manipulator control

techniques. That solution is a hierarchical robotic

evaluation environment composed of three major integrated

si components: a hierarchical manipulator control system,

customized efficient algorithms for computation of

manipulator dynamics, and software libraries that support

simulation and real-time modern control algorithm performance

evaluation.

The principle of decreasing intelligence with

increasing precision is applied in the design and

implementation of a three stage hierarchical manipulator

control system. A study of the PUMA dynamical formulations

.1w. produces the necessary efficient dynamics algorithms. To

support evaluation of modern control techniques, libraries of

support software are developed. These libraries permit

simulation evaluation of proposed algorithm effectiveness and

allow the control system and custom dynamics to be integrated

into a real-time robotic algorithm exerciser. A detailed

summary of these components' development is presented in this

chapter. Detailed documentation is provided in

([37-41], [44-51, [48])

40
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3.2 Control System Development

The key component of any real-time robotic

evaluation environment is the manipulator contiol system.

Consequently the first integrated component to be developed

was a hierarchically based PUMA control syztem.

3.2.1 Motivation

Although the VAX/PUMA manipulator control system

was utilized for the first real-time evaluation of four

modern control techniques [103-41 it had several major

limitations [481:

1. When the VAX/PUMA system was installed, VAL was

-- inoperative. In order to run VAL, cables and cards had

to be disconnected and reconnected. That process was

inconvenient and hard on the equipment.

2. The parallel data transfers via the DR11-W are

inefficient without the development of custom device

drivers. The minimum interface time for a read and write

.1' operation was 40ms.

3. The time shared nature of the VAX resulted in

unpredictable sampling times and use of real-time

priorities adversely affected other researchers

productivity.

4. The VAX served as both the organizer and coordinator of

the control system.

These limitations prevented the comprehensive evaluation of

C -
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modern control techniques on the VAX/PUMA system.

3.2.2 A Hierarchical Computer Control System

In order to permit comprehensive robotic algorithm

evaluation the VAX/PUMA control system was completely

redesigned [361 under the following constraints:

1. usage of the existing operating system and languages on

the RAL VAX,

2. switch selectable VAL controller, and

3. minimal additional hardware.

The switch selectable VAL constraint is imposed so

that other PUMA related research could proceed concurrent

with redesign of the original control system. The other

constraints are due to economic considerations.

The control system redesign was heavily influenced

by the original controller proposed by Valavanis [102],

function guidelines for a robot controller suitable for

inclusion in a manufacturing system proposed by researchers

at the Carnegie-Mellon Robotics Institute [221 and experience

with the VAX/PUMA system [501. Due to the difficulties

encountered with the DR11-W interface the decision was made

to develop a loosely based hierarchy using serial links.

That effort produced a Hierarchical Computer Control System

(HCCS) for the PUMA-600 robot arm [36]. The HCCS hierarchy

had three levels; organization, coordination and hardware

control. Organizer responsibilities were handled by a

VAX-11/750, which communicated over a serial link with the
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coordinator, a LSI-11/23 installed in place of the original

LSI-11/02 computer. The hardware level remained unaltered.

Now VAL could be operational when the HCCS was not.

Selection of the LSI-11/23 as the coordinator computer

allowed system development on a popular, well supported bus

structure that is upward compatible to the growing family of

PDP-11 products. PDP assembly language programs could also

be written, compiled and tested on the VAX operating in MCR

mode [106]. Software and hardware were sufficiently

developed by January 1985 to permit Bang-Bang control of the

PUMA-600 [36].

Employment of the HCCS for preliminary testing of

simple real-time control algorithms exposed several major

system limitations:

1. sampling rates were compatible with the VAX/PUMA system

due to slow floating point execution,

2. insufficient memory,

3. limited serial interface speed, and

4. manipulator dependent software.

The hardware limitations have been overcome by the

purchase of an FPF11 floating point processor, better use of

the memory management unit and a DMF32 serial interface unit

installed in the VAX. The original HCCS software was

modified to be manipulator independent. Those modifications

culminated in the creation of the RAL Hierarchical Control

System (RHCS). A complete description of system hardware and

-S.
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software is contained in the RHCS user's guide [41]. An

overview of the RHCS system is presented next.

3.2.3 The RAL Hierarchical Control System

The RHCS was designed to provided the following

capabilities [411:

1. the VAL controller is switch selectable,

2. the system primitives that control the manipulator form a

library of modular subroutines callable from higher level

languages,

3. the sample rate times can support real-time modern

control evaluation,

4. the user interface is upward compatible with the VAX/PUMA

system,

5. the system adheres to the principles of hierarchical

control proposed by Saridis [86], and

6. coordinator and organizer level software and hardware are

primarily manipulator independent.

The PUMA manipulator RHCS link block diagram is

shown in figure 3.1. Under RHCS the control task is divided

among the three levels of the hierarchy [41]. The organizer

level is responsible for overall organization of the task and

user interface through the power of the VAX. At the

coordinator level organizer commands are translated into a

series of control sequences to the manipulator hardware. The

hardware level completes the desired command using

manipulator dependent electronics. Only the hardware level

Ile.,
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abilities were resident in the original standalone robot

controller. To empower the system with the abilities of a

three stage hierarchy, libraries of organizer and coordinator

software were developed.

A library of manipulator independent subroutines

has been developed to implement the organizer level

functions: downloading programs, interlevel communication,

manipulator calibration control and system protection. The

subroutines are written in VAX FORTRAN and make extensive use

of VMS system calls. Table 3.1 lists these subroutines and

their functions.

TABLE 3.1

RHCS ORGANIZER LEVEL SOFTWARE

DLOAD: Download programs to the coordinator

PDPCOM: Support interlevel communication

PDPINO: Support interlevel general data transfer

OFRVAX: Control recovery from range violation

PUMACAL: Control PUMA manipulator calibration

The coordinator level functions: hardware control,

interlevel communication, manipulator calibration and system

protection are performed by a library of coordinator level

subroutines. All coordinator subroutines are written in PDP

assembly language for maximum speed advantage and have been

developed on the VAX using the RSX1l VERSION 1.0 compilers

. -. .. .
°°°~
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[1061. Maximum utilization of the powerful LSI-11/23

addressing modes and the floating point processor has been

accomplished. The assembly language subroutines have been

created so that they can be called from higher level language

programs. The new subroutines are similar to the ones

written for the original system in both mnemonics and calling

format. Only the coordinator level control software is

manipulator dependent. Because of the proprietary nature of

the arm interface, control programs are not available for

general distribution without a legal release from Unimation.

Tables 3.2-3 lists the RHCS coordinator level software and

their functions.

By employment of a WCMODE, REPOS, ASTOP sequence

the manipulator can be moved to any desired position without

the restrictions of VAL's controller. Those three routines

provide the control functions necessary to implement modern

control algorithms under the RHCS. A flowchart of a general

manipulator control law implementation employing the RHCS is

displayed in figure 3.2.

To utilize the RHCS the user must write two

programs, one for the organizer and another for the

coordinator. As in the VAX/PUMA system, the user must call

the PUMACAL subroutine before any attempt to load and execute

.d" an arm control algorithm. After calibration the organizer

program generally ends up being a series of reads, writes,

and PDPCOM calls. If a higher level language program is
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TABLE 3.2

RHCS COORDINATOR LEVEL SOFTWARE~MANIPULATOR INDEPENDENT

SUBROUTINES and FUNCTIONS

COMMUNICATION

RDVAX: Read from organizer

SDVAX: Send to organizer

PDPVAX: Synchronized communication with organizer

INTERRUPT

ETIMER: Enable timer

DTIMER: Disable timer

PROTECTION

OFRPDP: Detect range violations and stop arm

O"
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ITABLE 3.3

RHCS COORDINATOR LEVEL SOFTWARE
MANIPULATOR INDEPENDENT FUNCTIONS

PUMA SUBROUTINES

CONTROL

BASIC

WRVECT: Write vector to hardware level

WRSCLR: Write scalar to hardware level

REVECT: Read vector from hardware level

RESCLR: Read scalar from hardware level

ENCANG: Convert encoder count to joint angles

USER

WPMODE: Write posmode command and data vector

WCMODE: Write current mode command and data vector

*WRCJNT: Write current mode command and data

WCSTOP: Stop an individual joint motion

ASTOP: Stop motion of all joints

REPOS: Read all joints angular position in degrees

RREPOS: Read all joints angular position in radians

HPBOFF: Enable mechanical brakes

V. m
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ORGANIZER COORD I NATOR

SEND START - RDVAX
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Figure 3.2 RHCS Control Flowchart
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written for the coordinator level no system calls can be used

and only the functions supported by an RSXl1-M version of

that language are allowed. All coordinator level programs

upon completion must call COHEAD so that the system is ready

to load and execute the next program.

Abstracts and calling formats for each organizer

and coordinator subroutine are provided in the RHCS user's

guide [41]. Listings of the organizer subroutines are

contained in [37].

3.3 Efficient Dynamics Development

The RHCS supplies the tools necessary for

controlling the PUMA without VAL in a hierarchical based

intelligent work cell. Real-time evaluation of modern

dynamics based robotic control methods presents the

additional requirement of efficient computation of those

dynamics. To fulfill that requirement custom Lagrange and

Newton-Euler dynamics algorithms have been developed.

Efficient algorithms for the computation of

Lagrange-Euler dynamics are realized through the use of

REDUCE2 [271 and numerical significance analysis. The

inertial matrix and gravity vector calculations developed in

house [44] are more efficient than those proposed by

Isaguiree and Paul [32] and the effects of the reductions are

well documented.

"p ~ -. -. -
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The structure of the PUMA-600 is also used to

significantly reduce the number of Newton-Euler computations

[441. Original work with real-time forms of the Newton-Euler

equations ([511,[104]) has been expanded to encompass a set

of reduction techniques similar to those suggested by Kanade

[33] and Hollerbach [29]. The resultant set of custom

PUMA-600 Newton-Euler equations are more efficient than the

model proposed by Horak [301. The first set of dynamic

formulations sufficient to support 14ms sample rate real-time

evaluation of dynamics based manipulator control techniques

is now available.

-/ Both the Lagrange and Newton-Euler customized

algorithms have been coded in VAX FORTRAN for simulation use

and in PDP assembly language for utilization in association

with the RHCS. Table 3.4 lists these subroutines and their

functions. Listings of all efficient dynamics algorithms are

contained in [381.
y.

3.4 Evaluation Environment Software Development

Comprehensive evaluation of modern robotic control

- methods requires an environment that supports both their

simulation and real-time implementation. With the successful

deployment of the RHCS, and creation of custom dynamics

algorithms the foundation necessary to support comprehensive

I., evaluation of modern robotic control techniques on a PUMA

manipulator is firmly established.

.p%
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TABLE 3.4

EFFICIENT DYNAMICS SOFTWARE
SUBROUTINES and FUNCTIONS

ORGANIZER LEVEL (VAX FORTRAN)

RBTFLE: Complete Lagrange-Euler dynamics

RBTCNE: Complete Newton-Euler dynamics

CPDGCST: Calculate LE dynamics constants

COORDINATOR LEVEL (PDP ASSEMBLY)

RBTMNE: Complete Newton-Euler dynamics

FLEDG4: Full Lagrange-Euler Inertial matrix, and

gravity vector

DLEDG4: Diagonal Lagrange-Euler Inertial matrix,

and gravity vector

GDGCST: Read and store LE dynamics constants

"."
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The environment necessary to support simulation and

real-time implementation has been designed under the

following criteria:

1. permit evaluation of any algorithm on any manipulator

connected to the VAX via a RHCS link,

2. support testing of both joint and cartesian space control

algorithms,

3. store test results in VAX files in a format suitable for

graphical analysis,

4. allow a wide range of operational environments to be

used,

5. allow user selectable sampling speeds in 7ms intervals,

6. allow user selectable loading configurations, and

7. be user friendly.

Libraries of modular organizer and coordinator level software

have been developed to satisfy those criteria. Listings of

the contents of those libraries are contained in ([371,[391).

3.4.1 Organizer Level Software

To enable the interactive specification of

operational configuration additional organizer level

functions have been provided. Modular VAX FORTRAN

subroutines permit selection of trajectories, sample rate,

initial condition, manipulator loading, and storage and

formatting of error data. Table 3.5 lists those subroutines

and describes their functions.
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TABLE 3.5

EVALUATION ENVIRONMENT ORGANIZER LEVEL SOFTWARE
-SUBROUTINES and FUNCTIONS

GENERAL

.  SLCTIC: Select initial condition

SLCTLD: Select link6/load configuration

6 : SLCTMN: Select manipulator

SLCTTJ: Select joint space trajectory

SLCTTX: Select cartesian space trajectory

SIMULATION

SEOUT: Store error data

SRGTST: Test for range space violations

R3AGE

REOUT: Read error data from the coordinator

ADOUT: Read additional data from the coordinator

°6
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In simulation studies the evaluation is conducted

strictly on the organizer level. Manipulator motion is

simulated by a fourth order Runge-Kutta integration of the

inverse efficient complete Lagrange-Euler PUMA dynamics

([38],[741). Real-time evaluation involves a complex set of

interactions between the organizer and coordinator levels.

To eliminate that complexity and allow user friendly

real-time evaluations, the RHCS, custom dynamics, and

evaluation support software have been linked together to form

R3AGE, The RAL Real-time Robotic Algorithm Exerciser. The

R3AGE user's guide provides detailed utilization information

[40].

3.4.2 The RAL Real-Time Robotic Algorithm Exerciser

The hierarchical principles embodied in the RHCS

were expanded upon in designing R3AGE. Manipulators

interface to the R3AGE environment through an RHCS

communication link. The organizer and coordinator functions

of the RHCS are the backbone of the algorithm exerciser. A

flowchart of R3AGE organizer and coordinator level

interaction is displayed in figure 3.3. Under the evaluation

environment invoked by R3AGE, organizer and coordinator level

interaction is transparent to the user. To support that

interaction coordinator level subroutines which support; test

configuration, error data output, custom dynamics, and

trajectory point update have been developed. Table 3.6 lists

those subroutines and their functions.

- ,
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TABLE 3.6

S. - R3AGE COORDINATOR LEVEL SOFTWARE
V." SUBROUTINES and FUNCTIONS

MAGE: Interface joint space control algorithm to

organizer level

MXAGE: Interface cartesian space control algorithm to

- Morganizer level

GETTRJ: Transfer joint space trajectory point data into

user memory space

GETXRJ: Transfer cartesian space trajectory point data

nto user memory space

FRICTC: Compensate for manipulator friction

TESTST: Move manipulator into initial condition by

position mode

EOVAX: Transfer position and velocity error data to

organizer

-.
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R3AGE creates a user friendly environment that

supports evaluation of manipulator control algorithms up to

27KB in length with a 4KB stack. Sufficient memory space for

storage of 500 point position, velocity and acceleration

trajectories, and error data, for a 6 degree of freedom

manipulator is provided. R3AGE can be operated in

interactive or automatic modes from a VAX terminal. In

automatic mode the evaluation procedure is driven by commands

stored in a file created by an automatic test file builder

(BLDATF) ([371,[401). Screen interaction under BLDATF

duplicates that of R3AGE.

3.5 Summary

A three stage hierarchical control system for a

PUMA manipulator has been developed. The RAL Hierarchical

Control System (RHCS) provides the control primitives and

communication protocol necessary for implementation of

proposed theories for creation of hierarchically based

intelligent work cells [861. The control system software is

upward compatible to the whole family of PDP systems. The

RHCS organizer and coordinator levels are manipulator

independent. Modifications to hardware level commands permit

*multiple non-identical manipulators to be networked by a

4. series of RHCS links.

.4%
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Symbolic reduction and significance analysis has

produced a series of dynamics algorithms with computational

? efficiency sufficient to support RHCS implementation of

dynamics based modern control techniques. Libraries of

software that support simulation and real-time evaluation of

• "modern control techniques have been developed.

An original solution to the problems constraining

real-time evaluation of modern robotic control techniques was

created by integration of the RHCS, efficient dynamics, and

evaluation support software, into the RAL Real-Time Robotic

Algorithm Exerciser (R3AGE). The environment created under

R3AGE supported the real-time evaluation of dynamics for

robotic control presented in the next chapter.

.pI
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CHAPTER 4

EVALUATION OF DYNAMICS FOR ROBOT CONTROL

4.1 Introduction

A large class of manipulator control techniques

p utilize some form of dynamical modeling in their control laws

[56]. Those techniques assume a degree of modeling accuracy

sufficient for cancellation of the effects of the as.tual

dynamics by the mathematical expression of the manipulator

dynamics contained in the control law. If that assumption is

valid, any tracking errors may be asymptotically driven to

zero. Therefore, knowledge of the effect of neglected

dynamics on control law effectiveness would be an invaluable

aid in real-time implementation of modern robotic control

techniques.

The computed-torque technique is the most basic

representation of the dynamically dependent control

philosophy. The heuristic global linearization scheme of the

** .,.computed-torque technique produces a control law analogous to

the mathematically based exact linearization 1951, nonlinear

feedback [201, and optimal control methods [651. Knowledge

p about the effect of dynamics on robot control can be obtained

from evaluation of the performance ramifications produced by

varying the manipulator representation contained in the

'P computed-torque control law.

62
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In this chapter a significant contribution in the

area of manipulator control research is made by the

evaluation of dynamics models for simulated and real-time

control of a six degree of freedom PUMA manipulator. Those

evaluations form a manipulator control performance database.

The effects of inertial coupling, Coriolis and centrifugal

forces, and actuator inertias are identified by analysis of

their impact on the accuracy of the computed-torque control

algorithm. Different feedforward loop manipulator dynamical

4models produce the best simulated and real-time controller

performance. Complete dynamics in the feedforward loop

produces the optimum simulation performance. Simulation

tracking accuracy degrades as a function of model

incompleteness.
. Utilization of uncoupled dynamics in the

feedforward loop produces the best overall real-time control

algorithm performance. Real-time tracking accuracy degrades

as a function of model completeness. Forces not modeled by a

Lagrange-Euler formulation dominate the real dynamics of the

PUMA manipulator. A new representation of the real PUMA

dynamics is identified for realistic simulation of modern

control algorithms and improved real-time performance.

4.2 Method Of Approach

The computed-torque technique ([55],[78]) provides

a mathematically well defined, dynamically dependent basic

control algorithm for the study of the effects of dynamics on

UwU
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real-time robotic control. The dynamical formulations

employed in the controller are: complete Newton-Euler, and

three reduced forms of Lagrange-Euler: full, block, and

diagonal inertia matrix, all with gravity but without

Coriolis and centrifugal terms. By evaluating PUMA

* manipulator performance variations the effects of

computed-torque feedforward loop neglected dynamics on gross

motion joint control are exposed.

To obtain comprehensive information about the

effects of dynamics on algorithm performance the four

algorithms have been evaluated over six different operational

environments. The six test configurations can be subdivided

into two blocks:

1. slow trajectory unloaded, and

2. fast trajectory unloaded.

Each block consists of three separate trajectories with

identical velocity and acceleration profiles but different

initial positions. The three sets of initial conditions

(ICOIClIC2) are displayed in table 4.1 along with a data

key. The fast trajectories shown in figure 4.1 are derived

from a performance characterization study of the PUMA arm

[43]. The actual position trajectory is the sum of the

incremental base trajectory and the selected initial position
*"

[40]. The peak velocity of each joint is achieved while

avoiding real-time acceleration and torque saturation effects

[431. The slow trajectory has identical final positions but

% %
% -..
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TABLE 4.la CHAPTER 4 DATA KEY

TITLE = XCTISMT

X - Test type.

S - Simulation with actuators inertias

N - Real-time with actuator inertias

CT - Control algorithm identifer.

10 - Newton-Euler dynamics

12 - Diagonal inertia dynamics

13 - Full inertia dynamics

14 - Block inertia dynamics

I - Initial condition specifier

0- ICO (0,-90,90,0,1,0,)

1 - ICl (0,-135,135,0,1,0)

2- IC2 (90,0,0,90,90,90)

S - Trajectory speed specifier

0 - Slow speed

1 - Fast speed

M - External load specifier

0 - unloaded

1 - fully loaded(2.3kg)

T Sampling time specifier

1- 7ms

2- 14ms

3 - 21ms

Iq
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TABLE 4. lb CHAPTER 4 SYMBOL KEY

Figure 4.2 Symbol Key

0 S101102

5101103

Figure 4.3 and 4.4 Symbol Key

Q X101103

x121102

P x131102
o 4

.-4 * X141102
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FAST BASE TRAJECTORIES

SYMBOL KEY

G1 Joint 1

o Joint 2

'P Joint 3

Joints 4-6

k'5-

'.

VELOCITY

"' Tlme(Sec) l
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reduced velocities and accelerations due to a 25 percent

elongation of the trajectory time. Joint 3 trajectories are

reversed so that links 2 and 3 rotate in the same direction.

For initial condition 2 (IC2) the joint trajectories are

reversed to evaluate motion against gravity.

The four computed-torque algorithms are simulated

on a VAX-11/750 using a fourth order Runge-Kutta integration

routine with a one millisecond step size. The PUMA

manipulator is simulated by a complete Lagrange-Euler dynamic

model. Inertial arm parameters have been obtained from [441.

Actuator inertia magnitudes were derived in [941. Real-time

control algorithm evaluation is accomplished through

utilization of the RAL Real-Time Robotic Algorithm Exerciser,

R3AGE ([401,[481). A 14ms sampling rate is selected for all

algorithms except the Newton-Euler formulation which requires

21ms for real-time implementation.

To quantitatively compare the effects of dynamic

models on robot control algorithm performance the power

ranking formula shown in table 4.2 is employed. Controller

performance is compared in four categories; peak and final,

position and velocity errors. The normalized absolute error

values in each category are weighted and summed to produce a

relative indication of algorithm performance. The algorithm

with the best performance will display the highest ranking.

, Power rankings range frcri, zero to ten. A rank of zero

indicates maximum error in all four categories. Power rank

tK I
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TABLE 4.2

POWER RANK FORMULATION

PRCTi [1.0 - (SC 1 x NPPCTi + SC 2 x NFPCTi

+ SC3 x NPVc~ + SC4 x NFVcTi x l0

NPPCTi = PPCTi/MAX(PP j

NPVCTi = PVCTi/MAX(PVji)

NFPcTi = FPcTi/MAX(FPj )

NFVcTi = FVcT i/MAX (FV..)Ci Cl j

Where:

CT Control algorithm identifier

j = Control algorithms (10, 12, 13, 14)

i = Joint identifier (1-6)

PR = Power ranking

PP = Absolute peak position error

PV = Absolute peak velocity error
I..

FP = Absolute final position error

p/.. FV = Absolute final velocity error
n

SC = Scale factor Z SC. = 1.0
i=l

SC1 = 0.3

SC 2 = 0.3

SC 3 = 0.2

SC4 = 0.2

. .4

,-1, .- '...,..,. - '- .. -, .. .. .. - ; . .-. ,..-. - . . -. . .. ... . . _. .-. .. : . .. . .... ..- , .... -, - . .- .. -..
3 = 

' '
"-]""' " " ''"' " -7

,
k,-''[ . '-, ": . '' 7- L .'J. ,A ' J .;... r '.- ;*'-. ... ".-" -" -- .- - .' .... ... .... ".
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differences greater than three illustrate large variations in

at least one category.

Evaluations are conducted with and without modeling

actuator inertias. The effects of inertial coupling and

Coriolis and centrifugal forces on simulated and real-time

algorithm accuracy are analyzed for the included actuator

case. Variations in those observations resultant from

actuator modeling are then presented.

4.3 Computed-torque Technique Dynamic Models

The computed-torque technique employs both

feedforward and feedback elements to control a robot arm

([551,[78]) and is a special case of the optimal control law

[651. The feedforward component uses manipulator dynamics to

compensate for nonlinearities and coupling among the six

joints. The feedback component computes necessary corrective

torques to compensate for any deviations from the desired

trajectory.

.

....

S .

S.
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The computed-torque control law is:

T{t)-O~q) qd( t)+Kv (dt)-q{t))+Kp(qd(t)-q(t))]+h(q,q)+g(q) (4.1)

Where:

T(t) = Vector of joint torques

q d' &, q d = Vectors of desired position, velocity, and accelera-
tion in generalized joint coordinates

q, 4, q = Vectors of measured position, velocity and accelera-
tion in generalized joint coordinates

.(q) = n x n inertial matrix

Kv  = n x n derivative feedback gain matrix

K = n x n position feedback gain matrix
p
h(q,q) = Vector of Coriolis and centrifugal forces

g(q) = Vector of gravity forces

The Lagrange-Euler equation of motion for a manipulator is:

t(t) D(q)(t) + h(q,q) + g(q) (4.2)

where the overscore signifies actual values. Substituting

equation 4.1 into equation 4.2 produces:

A-..'.; d(q)q(t)+h(q,q)+g(q) = D(q)[qd(t)+Kv(qd(t)-q(t)) +. . (4.3)
K p(qdt)-q(t ))]+h(q,q)+g(q)

If the modeled and actual dynamics are equal equation 4.3

reduces to:

"(q)[e(t)+K v(t)+K e(t)] : 0 (4.4)

-. Where:

e(t) q (t)-q(t)
*1. ,

.Al
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Proper selection of feedback gains produces

characteristic roots of equation 4.4 with negative real

values driving the error to zero asymptotically. In order to

obtain a critically damped system for each joint subsystem

the corresponding elements in the diagonal feedback gain

matrices obey the relationship, Kv=2sqrt(Kp). In this study

the velocity and position gain matrices are equal for each

joint and have values of 20 and 100 respectively placing the

system poles at -10. Linear quadratic design techniques can

be employed to obtain a set of optimal gain matrices [651.

Dynamics based control laws can be implemented with

either Lagrange or Newton-Euler dynamics. A block diagram of

the computed-torque control law utilizing Newton-Euler

dynamics is shown in figure 4.1c. The control law that

diagram represents is obtained by substituting:
'iq(t) = q d(t) + K v(qd(t)-q(t) )+K p(q d(t)-q(t)) (4.5)

into the Newton-Euler dynamical equations.

A block diagram of the computed-torque control law

utilizing Lagrange-Euler dynamics without Coriolis and

centrifugal feedforward compensation is shown in figure 4.1d.

The control law is now:

T(t) : O(q) 'd (t)+Kv(qd(t)-q(t))+Kp(qd(t)-q(t))]+g(q)  (4.6)

WN
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Figure 4.1d Lagrange-Euler without Coriolls and Centrifugal
Feedforward Dynamics Computed-Torque Block Diagram
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For these evaluations four forms of dynamics

([561,[77],[84]) have been employed in the feedforward loop:

.. 1. Complete, using a Newton-Euler formulation.

2. Lagrange-Euler full inertia matrix without Coriolis and

centrifugal terms.

3. Lagrange-Euler block inertia matrix without Coriolis and

centrifugal terms with block inertia defined as:

11 012 013 0 0
D 21 022 023 0 0 0

blKD(q) = 0 0 0 0 0 0'031 D32 D33

0 0 0 044 D45 D46

54 055 056
" :="0 0 0 D Do 0 0"064 065 066

4. Lagrange-Euler diagonal inertia matrix without Coriolis

and centrifugal terms.

4.4 Dynamic Model Simulation Evaluation

Simulation studies revealed that the rank order of

algorithm performance is unaffected by trajectory speed. The

essential conclusions about the effects of dynamic models on

robot control algorithm performance are extracted from

analysis of controller effectiveness in tracking the fast

trajectory starting from different initial conditions. By

employing the various starting points, the masking of

important trends by gravity and other position dependent

forces is avoided.
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For links 2, 3 and 6 the basic shape of the error

profiles is independent of the initial conditions. Joint 1

error patterns exhibit no correlation between initial

I: conditions. For the highest ranking algorithm at any initial
condition, the degree of dominance becomes more significant
with increased load [49]. The best overall performance has

been obtained by utilizing the full inertial dynamic model.

The comparison of fast trajectory IMi individual

position and velocity errors illustrated in figures 4.2-4 is

included as a worst case representation of error profiles.

Tables 4.3-5 present fast block power ranking comparison.

Additional data figures and tables are included in [491.

Listings of the computed-torque algorithms employed in the

simulation evaluation are contained in [391.

4.4.1 Effects Of Inertial Coupling

Inertial coupling between large and small joints

has a minimal impact on large link control accuracy.

-4.--,Repercussions from neglecting large link coupling in small

link control are significant for joints 4 and 5. Lack of

knowledge about large link motion produces alterations in

4:: both link 4 and 5 magnitudes and pattern of the velocity and

position errors. Link 6 effectiveness is not degraded when

large link coupling is ignored in the feedforward loop.

-pV
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Inertial coupling among the large links is a

dominant factor in large link control. Neglecting that

coupling causes excessive trajectory overshoot prior to the

midpoint and lag thereafter. The resultant peak position

- .~..errors are five to ten times larger than for links 2 and 3.

Aligning joints 2 and 3 produces the maximum impact on link 1

from neglected coupling.

Variations in link 4 and 5 control algorithm

performance attributed to ignoring inertial coupling among

the small links is minimal. Lack of small link coupling has

a negligible impact on link 6 error profiles.

A study of open-loop inertial coupling effects

demonstrated that large link coupling is the dominant

component in small link inertial torque composition and that

the small links exhibit minimal coupling among themselves

[441. Closed-loop observations reinforce those conclusions.

Therefore an inertial matrix defined as:

D 11 D 12 0 13 I0 0 0
D021 0 22 0 23 0 0 0

0 31 D 32 D 3 3  0 0 0

41 42 43 44- -

D 0 D 04D 0

L061 062 063 0 0 066J

should represent all the necessary inertial coupling

information while reducing control law computations.
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4.4.2 Effects Of Coriolis And Centrifugal Forces

The repercussions from ignoring nonlinear dynamics

are deduced by comparing simulated performance of the

Newton-Euler and full inertial algorithms. Large joint error

profiles are similar but peak position error magnitude is

dependent on initial condition. Small joint error profiles

are similar to those produced from utilization of the full

inertial feedforward loop. At certain initial conditions,

degradation from the increased sample period required by the

complete dynamics offsets enhancements due to model accuracy

for all links except the fifth. Inclusion of nonlinear

* . forces in joint 4 dynamics severely degrades tracking ability

from two of the three initial conditions independent of

sample period.

Table 4.3 illustrates the impact on algorithm

simulation power ranking from increasing the Newton-Euler

dynamics sampling period from 14 to 21 ins. Invariance in

full, block and dignlpower ranking demonstrates that one

of those algorithms still produces the maximum error in all

four ranking categories. A change in power ranking for all

p. algorithms indicates that the complete model now produces the

maximum error in at least one category. The errors

variations due to extending the sample period are

concentrated at the peaks with a maximum increase of 50

percent as illustrated in figure 4.2.
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TABLE 4.3

ALGORITHM SIMULATION POWER RANKING
VARIATIONS DUE TO INCREASED NEWTON-EULER SAMPLING PERIOD

FAST TRAJECTORY

21m g 14 ms

* DYNAMICS Newton Full Block Diagonal Newton Full Block Diagonal
4.. Euler inertial inertial inertial Euler inertial inertial inertial

JOINT 1 5.96 5.54 5.63 0.00 7.29 5.54 5.63 0.00

JOINT 2 8.69 9.17 9.19 0.00 9.13 9.17 9.19 0.00

JOINT 3 8.05 8.09 8.54 0.00 8.70 8.09 8.54 0.00

.' JOINT 4 3.36 6.30 1.76 1.30 4.52 5.53 0.63 0.20

JOINT 5 1.51 1.80 2.23 1.00 4.04 1.35 1.85 0.60

JOINT 6 0.00 3.34 3.26 3.31 0.24 0.28 0.16 0.23

ICl

JOINT 1 4.80 2.35 2.55 1.51 6.54 2.35 2.55 1.51

JOINT 2 8.79 8.97 8.94 0.00 9.10 3.97 8.94 0.00

JOINT 3 8.49 8.77 8.92 0.00 9.:, 3.77 8.92 0.00

JOINT 4 1.70 4.96 2.46 2.62 2."3 3.61 0.88 1.14

JOINT 5 4.40 4.16 0.14 0.28 6.Z9 4.16 0.14 0.28

JO:NT 6 0.00 3.34 3.27 3.34 0.24 0.27 0.16 0.26

IC2

JO:NT 1 0.03 6.19 5.86 2.A7 1.5i 5.32 5.50 1.40

JO:NT 2 3.87 9.06 9.10 0.00 9.25 9.16 9.10 0.30

JOINT 3 7.95 4.00 4.32 0.01 8.64 4.30 4.32 D.01

JOINT 4 2.47 5.10 1.94 1.67 3.90 4-19 1.30 ).95

JOINT 5 3.53 5.46 1.72 1.59 5.31 4.92 1.24 1-01

JOINT 6 0.00 3.31 3.44 3.76 0.l D.07 0.25 0.71

Pj.

Power rankings illustrate relative performance by scaling and
summation of the normalized peak and final position and
velocity errors produced by different algorithms over
identical trajectories. Power rankings range from zero to
ten with the best performing algorithm annotated by the
highest ranking. For additional information refer to table
4.2
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The most significant impact is on small link

performance. Large link coupling dominates small link torque

* composition [44]. Extending the sampling period decreases

the dynamics update rate increasing the error between the

actual arm model and its control loop representation. The

resultant large link performance degradation is responsible
.:4

for the variation in small link accuracy.

4.4.3 Effects Of Actuator Inertias

Table 4.4 compares the computed-torque simulation

performance with that of an identical simulation study where

the arm model ignored the actuator inertias 1521. Rank order

of large link performance is unaffected by modeling the

actuators although the degree of improvement from modeling

Coriolis and centrifugal forces for links 2 and 3 has been

significantly reduced. Reductions in peak position error

produced by actuator inertia modeling range from 0.0008 to

0.0075 radians depending on initial condition and link.

Final position error differences are negligible. The initial

ringing present in diagonal inertia without actuator

controller velocity error 152] has been eliminated.

Variations in small link performance due to

** actuator modeling are significant. Actuator inertias

dominate link 6 torque calculations eliminating the variation

in controller performance [52] previously observed due to

.3. neglected dynamics. Joint 4 inertial dynamics algorithm's

error profiles are unaltered but the peak errors decreased



87

TABLE 4.4

ALGORITHM SIMULATION POWER RANKING
VARIATIONS DUE TO MODELING ACTUATOR INERTIAS

FAST TRAJECTORY

w/o actuators with actuators
DYNAMIC Newton Full Block Diagonal Newton Full Block Diagonal

Euler inertial inertial inertial Euler inertial inertial inertial

'co

JOINT 1 7.50 4.74 5.05 0.00 5.96 5.54 5.63 0.00

JOINT 2 8.95 9.58 9.64 0.00 8.69 9.17 9.19 0.00

JOINT 3 8.40 7.66 8.23 0.00 8.0S 8.09 8.54 0.00

JOINT 4 9.07 7.12 0.66 0.52 3.36 6.30 1.76 1.30

JOINT 5 7.65 3.56 4.80 0.56 1.51 1.80 2.23 1.00

JOINT 6 8.46 0.35 3.93 5.34 0.00 3.34 3.26 3.31

ICI

CINT 1 6.44 2.24 2.28 1.08 4.80 2.35 2.55 1.51

JOINT 2 8.61 8.42 8.37 0.00 8.79 8.97 8.94 0.00

JOINT 3 8.14 8.68 8.95 0.00 8.49 8.77 8.92 0.00

JOINT 4 8.64 5.15 1.52 1.77 1. 4.96 2.46 2.62

JOINT 5 8.84 6.80 0.31 0.38 4.40 4.16 0.14 0.28

JOINT 6 8.72 0.36 5.01 3.19 0.00 3.34 3.27 3.34

IC2

JOINT 1 0.46 5.84 5.55 1.04 0.03 6.19 5.86 2.87

JOINT 2 9.24 8.61 8.56 0.00 8.87 9.06 9.10 0.00

JOINT 3 8.79 2.44 3.30 1.42 7.95 4.00 4.32 0.01

JOINT 4 9.09 9.61 0.04 0.43 2.47 5.10 1.94 1.67

JOINT 5 9.22 9.00 0.85 1.70 3.53 5.46 1.72 1.59

JOINT 6 9.05 8.60 0.00 5.36 0.00 3.31 3.44 3.76

Power rankings illustrate relative performance by scaling and
summation of the normalized peak and final position and
velocity errors produced by different algorithms over
identical trajectories. Power rankings range from zero to
ten with the best performing algorithm annotated by the
highest ranking. For additional information refer to table
4.2

%.%
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more noticeably than when nonlinear forces were accounted

for. Joint 5 position and velocity error peaks are reduced

by factors of 5 and 2 respectively while the importance of

nonlinear forces has been reduced akin to links 2 and 3.

Actuator inertias are the dominant component in

small link dynamics. The effects of inertial coupling and

nonlinear forces are now centered around a large constant

value, greatly reducing their significance.

The important trends in large link performance can

be simulated with or without modeling actuator inertias. Due

to the small mass of the last three links the actuators

inertias must not be ignored.

4.5 Dynamic Model Real-time Evaluation

Real-time evaluation of dynamic models for robot

control is conducted over the identical trajectories employed

in the simulation studies. Error data from five tests over

the same trajectory are averaged for more precise assessment

of each algorithm's capabilities. Efficient dynamic

algorithms have been obtained from ([381,[441). The

algorithms were evaluated with and without actuator inertia

Amodeling on a PUMA manipulator connected by an RAL

Hierarchical Control System link 148] to R3AGE: The RAL

Real-Time Robotic Algorithm Exerciser [401.

4
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Implementation changes and inclusion of actuator

inertias in the feedforward loop does not alter the previous

conclusion 152) that simulation studies do not accurately

predict arm performance. Diagonal dynamics in the

feedforward loop produce superior tracking for links 2 and 3

independent of trajectory speed. Full inertial coupling in

the feedforward loop produces superior joint 4 efficacy. For

the other links no model consistently produces the best

tracking accuracy. Small link error profiles are independent

of initial condition.

4.5.1 Effects Of Inertial Coupling

Rapid changes in acceleration highlight the

differences in the computed torque tracking ability due to

inertial dynamics. Analysis of open-loop torque composition

revealed the dominance of inertial forces for the first one

second of the trajectory, and gravity thereafter [441. Since

all models utilize identical gravitational force

representation performance variations are concentrated in the

first second.

Real-time results validate the simulation

prediction of insignificant coupling effects on link 6

performance. Simulation studies accurately forecast the

minimal effect of small joint coupling on large joint

performance.
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uncuplngIn sharp contrast to the simulation predictions

uncouling manipulator dynamics produces significant

improvements in controller performance for links 2 and 3.

Large link coupling induces vibrations in those links when

starting from the "ready" position.

Only when starting from initial condition 2 does

inertial coupling aid link 1 and 5 tracking accuracy. The

level of tracking improvement produced by neglecting coupling

when motion starts from the other two initial conditions is

significantly larger than the degradation experienced when

starting from the other. Coupling has negligible

'p..repercussions on link 6 efficacy. Only for joint 4 does

large link coupling consistently enhance performance.

Analysis of the closed-loop torques demonstrates

that inertial coupling in the feedforward loop reduces the

large joint control input. Diagonal dynamics produces the

highest control input and minimum error. That relationship

suggests a manipulator that resembles a series of uncoupled

second order systems and not a highly coupled multivariable

system.

4.5.2 Effects Of Coriolis And Centrifugal Forces

Modeling the complete dynamics in the feedforward

loop doesn't produce the variations in controller performance

predicted by the simulation study. Real-time individual link

V.' position error profiles produced by the complete and the full

.V inertial dynamics are similar for the first four links from

.....-..-
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two ofthe treinitial ofdiios threeedge of velocity

related forces in the feedforward loop eliminates vibrations

present in the large link when motion starts from the "ready"

A position and only the inertial coupling is modeled. However,

complete model tracking accuracy is still inferior to the

diagonal dynamics case.

Ramifications in overall controller efficacy from

ignoring the Coriolis and centrifugal forces in the PUMA

manipulator dynamic models are negligible. Therefore the

computational savings inherent in neglecting Coriolis and

centrifugal calculations are obtainable without appreciable

performance penalty.

4.5.3 Effects Of Actuator Inertias

Variations in algorithm real-time power ranking

produced by modeling actuator inertias are illustrated in

table 4.5. Comparison data is from an identical real-time

evaluation without actuator modeling. The effect of actuator

inertias on link performance is more significant than

predicted by simulation. Degradation of control algorithm

performance due to the modeled large link inertial coupling

has been reduced significantly. The diagonal dynamics

average large link peak errors are reduced by 17-46 percent.

The most dramatic enhancement has been in small

link algorith..s performance. Without actuator modeling all

four algorithms were unable to command the small links to

track the desired trajectories. Small link final position

V1
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TABLE 4.5

ALGORITHM REAL-TIME POWER RANKING
VARIATIONS DUE TO MODELING ACTUATOR INERTIAS

FAST TRAJECTORY

w/o Actuator With Actuators

DYNAMICS Newton Full Block Diagonal Newton Full Block Diagonal
Euler inertial inertial inertial Culer inertial inertial inertial

'Co

JOINT 1 1.19 0.33 0.27 4.70 0.82 0.40 1.45 2.65

JOINT 2 0.06 0.17 0.34 7.98 0.37 1.62 0.42 3.44

JOINT 3 0.30 0.06 1.20 7.38 0.68 0.06 0.83 2.75

JOINT 4 0.00 0.05 0.72 0.98 0.62 1.37 1.01 0.-12

JOINT 5 0.96 0.93 1.51 1.94 0.00 0.43 1.01 1.37

JOINT 6 0.61 0.64 0.04 0.07 0.03 0.62 0.95 0.26

1IC

JOINT 1 0.58 2.05 1.81 0.91 0.00 1.96 1.65 2.69

JOINT 2 1.80 1.71 0.37 5.48 0.94 0.16 0.07 4.15

JOINT 3 2.05 0.13 0.90 6.69 0._1 0.54 0.68 2.67

JOINT 4 0.00 0.04 0.09 0.06 0.41 0.92 0.57 0.57

JOINT 5 1.94 1.99 1.47 1.54 0.30 0.42 1.69 1.88

JOINT 6 0.91 0.95 0.08 0.00 0.02 0.77 0.28 0.11

IC2

JOINT 1 2.02 3.68 1.81 1.36 0.44 1.66 1.77 1.17

4'. JOINT 2 1.09 1.11 0.64 4.07 0.76 0.25 0.31 2.97

JOINT 3 0.36 0.60 1.15 5.49 0.00 1.92 1.93 2.44

JOINT 4 0.75 0.94 0.78 0.94 0.57 0.96 0.20 0.37

JOINT 5 1.08 1.41 0.00 0.12 1.34 1.30 0.56 1.01

JOINT 6 0.16 0.23 0.09 0.07 0.08 0.25 0.44 0.10

Power rankings illustrate relative performance by scaling and

summation of the normalized peak and final position and
velocity errors produced by different algorithms over
identical trajectories. Power rankings range from zero to
ten with the best performing algorithm annotated by the
highest ranking. For additional information refer to table
4.2
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errors were over 1.20 radians. By modeling actuator inertias

link 4, 5, and 6 average final position error are reduced to

0.8, 0.1 and 0.3 radians respectively.

4.6 Discussion

The heuristic global linearization scheme of the

computed-torque technique produces a control law analogous to

the mathematically based exact linearization [951, nonlinear

feedback [201, and optimal control methods [651. Therefore

the results of this research are applicable to a whole class

of dynamically based linearization techniques.

Large link simulation results are analogous to a

similar study performed on a TART manipulator [981. The

simulated performance of the computed-torque technique

degrades as the accuracy of the dynamic model is decreased.

However, as table 4.6 illustrates, simulation results do not

accurately identify the effects of dynamic models on

real-time computed-torque technique performance.

The ability of the computed-torque technique to

asymptotically drive trajectory tracking errors to zero is

based on the assumption that the manipulator dynamics can be

globally linearized. Only in the presence of accurate

modeling is equation 4.4 valid. Modeling inaccuracies are

reflected in the feedforward loop' s inability to completely

cancel the manipulator nonlinear dynamics introducing

perturbations into the feedback loop. If the feedback loop

is not robust enough to reject those disturbances the

. . . .* .Y . . . . .
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TABLE 4.6

ALGORITHM POWER RANKING
SIMULATION AND REAL-TIME COMPARISON

. EAST TRAJECTORY

Simulation Real-Time

DYNAMICS Newton Full Block Diagonal Newton Full Block Diagonal
Euler inertial inertial inertial Euler inertial inertial inertial

rco

JOINT 1 5.96 5.54 5.63 0.00 0.82 0.40 1.45 2.65

JOINT 2 8.69 9.17 9.19 0.00 0.37 1.62 0.42 3.44

JOINT 3 8.05 8.09 8.54 0.00 0.68 0.06 0.83 2.75

JOINT 4 3.36 6.30 1.76 1.30 0.62 1.37 1.01 0.92

JOINT 5 1.51 1.80 2.23 1.00 C30 0.43 1.01 1.37

JOINT 6 0.00 3.34 3.26 3.31 0.03 0.62 0.95 0.26

ICI

JOINT 1 4.80 2.35 2.55 1.51 0.00 1.96 1.65 2.69

JOINT 2 8.79 8.97 8.94 0.00 0.94 0.16 0.07 4.15

JOINT 3 8.49 8.77 8.92 0.00 0.13 0.54 0.68 2.67

JOINT 4 1.70 4.96 2.46 2.62 0.43 0.92 0.57 0.57

JOINT 5 4.40 4.16 0.14 0.28 0.30 3.42 1.69 1.88

JOINT 6 3.00 3.34 3.27 3.34 0.02 D.77 0.28 0.11

IC2

JOINT I 0.03 6.19 3.86 2.87 0.44 1.66 1.77 1.17

JOINT 2 3.87 9.06 9.10 0.00 0.76 0.25 0.31 2.97

JOINT 3 7.95 4.00 4.32 0.01 0.00 1.92 1.93 2.44

JOINT 4 2.47 5.10 1.94 1.67 0.57 0.96 0.20 D.37

JOINT 5 3.53 5.46 1.72 1.59 1.34 1.90 0.36 1.131

JOINT 6 0.00 3.31 3.44 3.76 0.08 0.25 0.44 C3.10

%1

,4-

' '. ' Power rankings illustrate relative performance by scaling and

summation of the normalized peak and final position and
velocity errors produced by different algorithms over
identical trajectories. Power rankings range from zero to
ten with the best performing algorithm annotated by the
highest ranking. For additional information refer to table
4.2

%"%
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tracking error will not be zero. For these evaluations the

feedback loop was a constant and the feedforward loop

dynamics were varied. Therefore the feedforward formulation

that produces the minimum control errors best models the

manipulator.

In the simulation study the best overall trajectory

tracking accuracy was achieved by employing the full inertia

model in the feedforward loop. For real-time applications

the best overall trajectory tracking performance was achieved

by modeling the PUMA as follows:

6 ....
Ti 0 qj + Di;'Z"j i 'ai

Where:

Ti  = Torque acting at joint i

- q. = ith joint position
qi = Acceleration of ith joint

Dii = Effective inertia at joint i

D..- = Coupling inertia between joint i and j

-i when i~j, zero for all i#4

= Gravity loading at joint i

I ai = Actuator inertia

Therefore the actual PUMA arm is not a highly

coupled nonlinear system. Control algorithm comparison

studies employing the complete Lagrange or Newton-Euler

.4 models to simulate the PUMA manipulator produce invalid

conclusions.

V ,
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An evaluation of computed-torque performance on a

direct drive manipulator conducted at CMU [34] reveals that

overmodeling of system dynamics is not a PUMA specific

phenomenon. Even with the lack of gearing and friction,

complete knowledge of manipulator dynamics produced tracking

accuracy inferior to the performance of an identical

algorithm utilizing a reduced form of dynamics in it's

feedforward loop.

Even with the best dynamical model, PUMA

computed-torque performance was unacceptable for

implementation as a gross motion controller. Sweet and Good

suggest that drive system interactions dominated the actual

dynamics of a manipulator with harmonic drives [93]. Results

presented here indicate that unmodeled forces such as

* .~friction or drive system interactions may dominate actual arm

dynamics. Their influence on robot control was too

significant to be effectively compensated for by the feedback

loop employed in this study.

Although the performance level was unacceptable

these results do illustrate the robust nature of the

computed-torque technique to parameter uncertainties.

Modeling errors produced by overcompensating for the impact

of inertial coupling produced higher tracking errors, not

instability. Implementation errors resulting in a 180 degree

difference between the modeled and actual locations of joints

1 and 3 were unable to produce unstable behavior [52].

Ilk..
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Therefore the error optimizing technique of Bejczy, Tarn

et.al. ([101,[951) is not required to assure stability of an

exactly linearized system.

The robust nature of the computed-torque response

is partly due to the high degree of mechanical damping

inherent in a PUMA manipulator. The high gear ratios and

actuator inertia dominance enhance the stability of the PUMA

manipulator. Direct drive manipulators do not duplicate

those traits and therefore are more susceptible to parameter

uncertainties.

4.7 Summary

A significant contribution to the manipulator

control database has been accomplished. For the first time

dynamic models for robotic control have been evaluated by

simulated and real-time implementation of four forms of

dynamics in a computed-torque algorithm. The results from

the evaluation of dynamics for robot control are summarized

in table 4.7.

The evaluation of dynamics for robot control by

4% simulation of a dynamics based control law has revealed that:

1. algorithm performance is directly dependent on large link

coupling information,

2. large link performance is independent of small link

inertial coupling information,
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3. actuator inertias are the dominant term in small link

modeling,

4. small link performance is minimally dependent on small

link inertial coupling information, and

5. increased sampling times necessary for Newton-Euler

implementation largely offset advantages of Coriolis and

centrifugal modeling.

The evaluation of dynamics for robot control by

real-time implementation of a dynamics based control law has

revealed that:

1. the effects of Coriolis and centrifugal forces are

negligible,

2. unmodeled forces cancel the benefits of inertial coupling

displayed in the simulation study for all links except

the fourth,

3. inclusion of reflected actuator inertias in the

feedforward loop significantly enhances tracking accuracy

especially for the small links,

4. gravity forces are significant and should be modeled in

the feedforward loop, and

5. diagonal inertial terms are significant and should be

.' modeled in the feedforward loop.

Real-time results contradict simulation

conclusions. The simulation conclusions are valid for a

direct drive version of the PUMA but not for the highly

geared friction dependent device currently available. The

. .. . .. ,.j..... . "., , . .... . , . . . .
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real-time results may be extended to harmonic drives and the

small links of a direct drive manipulator.

TABLE 4.7

ALGORITHM POWER RANKING
SIMULATION AND REAL-TIME OVERALL COMPARISON

S IMULATION REAL-TIME

NEWTON FULL BLOCK DIAGONAL NEWTON FULL BLOCK DIAGONAL

DYNAMICS EULER INERTIAL INERTIAL INERTIAL tEULER INERTIAL INERTIAL INERTIAL

SLOW 4.78 5.72 4.71 1.19 1.61 1.27 1.27 2.65

FAST 4.36 5.55 4.63 1.29 0.40 0.90 0.88 1.73

OVERALL 4.57 5.64 4.67 1.24 0.50 1.08 1.08 2.19

Slow and Fast values represent power ranking data averaged
over all initial conditions and joints. Overall values
average Slow and Fast data.

Even with the best dynamical model, computed-torque

performance was unacceptable for utilization as a real-time

gross motion controller. The importance of unmodeled forces

clearly illustrates the requirement for better feedforward

modeling and/or feedback compensation techniques if dynamics

based control methods are to be successfully employed as

gross motion controllers. The implementation feasibility and

performance improvement potential of unmodeled force

compensation techniques is the subject of the next chapter.



CHAPTER S

COMPENSATION OF UNMODELED MANIPULATOR DYNAMICS

5.1 Introduction

The evaluation of dynamics for robot control in

chapter four illuminated the pivotal role of forces unmodeled

by Lagrange-Euler dynamics in controller accuracy.

Techniques for eradication of the effects of those forces are

necessary if dynamics based control methods are to be

successfully applied to robotic manipulators. Therefore,

knowledge of the implementation feasibility and performance

improvement potential of unmodeled force compensation

techniques would be an invaluable aid in the design of modern

robotic control laws.

The computed-torque technique is the most basic

representation of the dynamically dependent control

philosophy. The heuristic global linearization scheme of the

computed-torque technique produces a control law analogous to

the mathematically based exact linearization [951, nonlinear

feedback [201, and optimal control methods [65]. Knowledge

about the implementation feasibility and performance

potential of unmodeled force compensation techniques can be

obtained from evaluation of the performance ramifications

produced by incorporation of those techniques into the

computed-torque control law.

112
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In this chapter an important contribution to the

manipulator control database is conducted by an evaluation of

feedforward and feedback techniques for compensation of PUMA

manipulator unmodeled forces. The impact of improved

feedforward modeling of the manipulator on computed-torque

accuracy is evaluated along with feedforward friction

compensation. Two new control strategies are applied in the

feedback loop to determine if increased feedback gain can

eliminate the disturbances resulting from the forces

unmodeled by the feedforward loop.

Utilization of more accurate manipulator inertia

parameters did not significantly improve controller

effectiveness. Friction compensation by a nonlinear

switching function produces severe large joint vibration

while increasing small link accuracy. A higher bandwidth

feedback loop improves the accuracy of all joints. The most

significant performance enhancement is a fifty percent

reduction in small link maximum peak and final position

7 errors. A computed-torque/PID control technique confines all

joint's maximum final position errors to under one degree

while producing a maximum peak position error of under five

degrees.

5.2 Method Of Approach

The computed-torque technique ([55],[78],[841)

employs both feedforward and feedback elements to control a

robot arm and is a special case of the optimal control law
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[65]. In chapter four that control technique formed the

basis for the study of the effects of dynamics on real-time

robotic control. In that study even the best dynamical

formulation was unable to reduce the tracking errors

sufficiently for realistic gross motion implementation. That

research will be extended to determine if the computed-torque

V technique can be modified with non-sensor based techniques to

produce tracking accuracy within acceptable limits. The

limits were selected as three degrees maximum peak and one

degree maximum final position error. That degree of error

will allow gross motion control to position the manipulator

end-effector into a sphere around the desired final position

where sensor driven techniques can be applied for fine motion

control. By evaluating PUMA manipulator performance

variations the performance improvement potential of

computed-torque feedforward and feedback loop compensation

techniques on gross motion joint control are exposed.

VTo obtain comprehensive information about the

performance improvement potential of the computed-torque

technique the compensated algorithms have been evaluated over

the six different operational environments employed in

chapter four. The six test configurations can be broken down

into two blocks:

1. slow trajectory unloaded, and

NVN
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2. fast trajectory unloaded.

Each block consists of three separate trajectories with

identical velocity and acceleration profiles but different

initial positions. The three sets of initial conditions

(ICO,IC1,1C2) are displayed in table 5.1 along with a data

key. The fast trajectories shown in figure 4.1 are derived

from a performance characterization study of the PUMA arm

[431. The peak velocity of each joint is achieved while

avoiding real-time acceleration and torque saturation effects

[43]. The slow trajectory has identical final positions but

-~ reduced velocities and accelerations due to a 25 percent

elongation of the trajectory time. Joint 3 trajectories are

reversed so that links 2 and 3 rotate in the same direction.

For initial condition 2 (IC2) the joint trajectories are

-'. I.reversed to evaluate motion against gravity.

Real-time control algorithm evaluation is

accomplished through utilization of the RAL Real-Time Robotic

Algorithm Exerciser, R3AGE ([401,[481). A l4ms sampling rate

is selected for all algorithms. Error data from five tests

over the same trajectory are averaged for more precise

assessment of each compensation technique's capabilities. To

quantitatively compare the effects of feedforward and

feedback compensation on robot control algorithm performance

the power ranking formula shown in table 4.2 is again

employed.
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TABLE 5.la CHAPTER 5 DATA KEY

TITLE = XCTISMT

X - Test type.

N - Real-time RAL inertial parameters

T - Real-time TARN inertial parameters

CT - Control algorithm identifer.

12 - Diagonal inertia dynamics

50 - Diagonal inertia dynamics with friction

52 - Diagonal inertia dynamics with doubled pole PD

54 - Diagonal inerita dynamics with PID

I - Initial condition specifier

0 - ICO (0,-90,90,0,1,0,)....

1 - ICl (0,-135,135,0,1,0)

2 - IC2 (90,0,0,90,90,90)

, S - Trajectory speed specifier

0 - Slow speed

1 - Fast speed

M - External load specifier

0 - unloaded

1 - fully loaded(2.3kg)

T - Sampling time specifier

1 - 7ms

2 - 14ms

3 - 21ms

V'V

, o -
-p..
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TABLE 5. lb CHAPTER 5 SYMBOL KEY

c N121102

0 T121102

X T501102

0 T521102

T541102

d. V. F*sgn ( )

:h:.

Figure 5.la Diagonal Inertia, Gravity and Friction Feedforward
Dynamics Computed-Torque Block Diagram

4-b
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The essential conclusions about the effects of

feedforward and feedback compensation techniques on robot

control algorithm performance are extracted from analysis of

*. controller effectiveness in tracking the fast trajectory

starting from different initial conditions. By employing the

* various starting points, the masking of important trends by

gravity and other position dependent forces is avoided.

• )5.3 Computed-torque Compensation Techniques

Block diagrams of the compensated computed-torque

techniques evaluated in this study are illustrated in figure

5.1. Table 5.2 displays the continuous transfer function and

pole locations of the feedback loops.

The two forms of feedforward compensation examined

are improved manipulator inertial parameters measurements and
"1

% modeling of static friction. In these examinations the

feedback loop is identical to the one utilized in chapter

four. The velocity and position gain matrices are equal for

each joint and have values of 20 and 100 respectively,

placing the system poles at -10. The more accurate inertial

parameters are from a recent study by Tarn et. al. [94].

Those parameters are incorporated into the general
A:

Lagrange-Euler dynamics algorithm [38]. The effects of the

new parameters on the open-loop torque generation capability

of the complete, full and diagonal inertia matrix with

gravity but without Coriolis and centrifugal terms,

Lagrange-Euler manipulator dynamics are determined. Those

bl..
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TABLE 5.2

COMPUTED-TORQUE FEEDBACK LOOP
TRANSFER FUNCTIONS

H(S) S-PLANE POLES

Original 1-0 I
Eq. 4.1 & 5.1 sZ2 0S10,O0

D-. oubled Pole PD I - -2, -20
-. Eq. 5.2 S z+40S+400

~PID1 Eq. 5.3 S.1+30S z+300S+10000

i
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effects are contrasted with the ramifications from

utilization of the parameters employed in chapter four's

study. All dynamical formulations include actuator inertias.

The constant calculator segment of the efficient dynamics

algorithms 138-9] is modified so that the repercussions of

parameter alterations on the evaluation of dynamics for robot

control can be studied in real-time.

Static friction in the PUMA gear trains produces a

torque deadband for each joint. Limits on that deadband have

been determined in ([13],[43]). Figure 4.3 illustrates high

initial position errors that could be the product of a lack

of accurate static friction compensation. The feasibility of

reducing that high initial position error by an additive

friction function in the feedforward loop is evaluated.

A°.
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Zhang and Paul were the first researchers to

propose static friction compensation by a nonlinear switching

function [1111. Addition of a nonlinear switching function

in the feedforward loop changes the computed-torque control

law to:
0(t : d(q)[qd(t)+KvT(qd(t)-q(t))+KpT(qd t - q ( t ) ) ] ( .]

d: d (t) (5.1

+g(q)+F T  sgn(T(t))

Where:

-v.-. t(t) = Vector of joint torques

q d' qd qd = Vectors of desired position, velocity, and accelera-
tion in generalized joint coordinates

q, q, q = Vectors of measured position, velocity and accelera-

tion in generalized joint coordinates

- Dd(q) = Vector of diagonal and actuator inertias

Kv  = Vector of derivative feedback gains

Kp = Vector of position feedback gains

g(q) = Vector of gravity forces

-J F = Vector of friction compensation torques

* -<A sgn(T(t)) = Vector of torque signs (+1 or -1)

Equation 5.1 is illustrated in block diagram form by figure

5.1a. The switching function limits are from a performance

characterization of the PUMA [431.

A more rigorous analysis of the position errors

produced in chapter four reveals that the error profiles are

indicative of a control system whose frequency response is

inadequate to track the desired input trajectory. Two

methods of improving the frequency response of the
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computed-torque loop are examined. In the first method the

improved inertial model is coupled with a feedback loop where

the original PD poles are shifted to the left. The doubled

pole PD control law is:

r(t)sOd (q)[Cqd(t)+Kv T(4d(t)-4(t))+KT (qd(t)-q(t))]+g(q) (5.2)

Where:

p, (t) = Vector of joint torques

qd, q d q d = Vectors of desired position, velocity, and accelera-
tion in generalized joint coordinates

q, q, q = Vectors of measured position, velocity and accelera-
tion in generalized joint coordinates

D (q) = Vector of diagonal and actuator inertias

K = Vector of derivative feedback gains
V

Kp = Vector of position feedback gains

g(q) = Vector of gravity forces

A block diagram representation of equation 5.2 is

displayed in figure 5.1b. The expression for the doubled

pole PD computed-torque control law is identical to equation

4.1. The control laws of equations 4.1 and 5.2 differ in the

selection of the feedback gains. The velocity and position

gains are still equal for each joint but for the doubled pole

case they have values of 40 and 400 respectively, placing the

system poles at -20. The step response of the doubled pole

and original feedback loops is compared in figure 5.2.
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Luo and Saridis showed that a manipulator could be

controlled by an optimal/PID formulation of the

computed-torque control law (65-61. Furuta et. al. applied

suboptimal computed-torque/PID control to a three degree of

freedom manipulator [21]. The computed-torque/PID control

law for the PUMA is:

T(t) = Od(q)[qd(t)+KvT(dt)- (t))+KpT(qd(t)-q(t))

+ll T (q d(t)'q(t))]+g(q) (5.3)

Where:

T(t) = Vector of joint torques

qdk qd' qd = Vectors of desired position, velocity, and accelera-
tion in generalized joint coordinates

q, q, q = Vectors of measured position, velocity and accelera-
tion in generalized joint coordinates

Dd (q) = Vector of diagonal and actuator inertias

K = Vector of derivative feedback gainsv
K = Vector of position feedback gains

KI  = Vector of integral feedback gains

g(q) = Vector of gravity forces

A block diagram representation of equation 5.3 is displayed

in figure 5.1c. Optimal gain selection is not investigated

during this initial six degree of freedom manipulator

evaluation. The position, derivative and integral gains are

equal for each joint and have values of 300, 30 and 1000

respectively, placing a triple pole at -10. PID step

response is compared to the original and doubled pole

performance in figure 5.2.
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5.4 Improved Inertial Modeling Evaluation

After the completion of the evaluation of dynamics

for robot control presented in chapter four, researchers at

Washington University lead by Tarn completely disassembled

and modeled a PUMA manipulator. The product of that effort

was a more accurate set of inertial parameters ([941,[961).

Knowledge of the repercussions from more accurate

Lagrange-Euler dynamics on robot control would provide a

valuable contribution to the manipulator control database.

Real-time evaluations revealed that more accurate

representation of PUMA inertial parameters does not alter

chapter four's conclusion that uncoupled dynamics produce the

best controller performance. Increased parameter accuracy in

the diagonal dynamics trades off improvement in joint 3

performance for slight degradation in joint 2 accuracy. For

the small links the dominance of the actuator inertias

renders improved modeling of other parameters irrelevant.

The comparison of chapter four and improved

*,.parameter diagonal feedforward computed-torque fast

trajectory ICl individual position and velocity errors,

* illustrated in figure 5.3, is included as a worst case

representation of error profiles. Table 5.3 present fast

block power ranking comparison. Additional fast trajectory

ICi data is included in appendix A. More detailed data

representation is contained in [461.
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5.4.1 Simulated Open-loop Torque Evaluation

The task of real-time reevaluation of dynamic

models for robot control is complicated by the model and

parameter specific nature of the current efficient dynamics

algorithms ([38],[44]). To provide an estimate of the

effects of Tarn's model on the conclusions of chapter four

his inertial parameters were coded into the general

Lagrange-Euler algorithm. A series of open-loop torque plots

were generated using the complete, full and diagonal inertia

dynamical representations with gravity but without Coriolis

and centrifugal terms. Identical configurations were

employed in chapter four. Figure A.1 graphically compares

torques generated using Tarn's model to profiles generated by

the original inertial parameters. Analysis of those torques

reveals that the basic relations between the level of
.--

reduction in dynamic completeness and output torque is

analagous for both cases. Therefore, the effect of neglected

feedforward loop dynamics on real-time computed-torque

performance should be similar.

.- 5.4.2 Real-time Torque Comparison

To enable real-time evaluations, the efficient

representations of manipulator dynamics had to be altered to

conform to Tarn's model. That task was accomplished without

symbolically reevaluating the whole formulation for the

Lagrange-Euler dynamics by modifying the constant generator

subroutine [381. Although not an exact representation of the

sbui
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Tarn model, figure A.2 shows that the torque discrepancies

over the test trajectories with this hybrid model are

negligible.

Real-time reevaluation of dynamic models for robot

control is conducted over the identical trajectories employed

in chapter four. The algorithms were evaluated with actuator

* inertia modeling.

Analysis of figures A.3-4 validates the open-loop

torque conclusions about improved modeling' s impact on the

evaluation of dynamics for robot control. Table 5.3 compares

the power rankings for the two sets of inertial parameters.

The reduction in coupled dynamics torque values produced by

Tarn's inertial parameters increases the dominance of the

diagonal dynamics. Erroneous modeling of the inertial

parameters is not responsible for the inability of

Lagrange-Euler manipulator modeling to accurately represent

actual dynamics.

Figure 5.3 compares the diagonal dynamics

performance of the two manipulator models. Due to the

dominance of actuator inertias small link variations are

negligible. Link 2 and 3 basic error profiles are

independent of parameter selection. Utilization of Tarn's

inertial parameters in the manipulator dynamics more

accurately models the inertial and gravitational forces of

5-- the arm. Therefore, the improved parameter model is employed

in all subsequent studies so that the effects of unmodeled

127 -.
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TABLE 5.3

ALGORITHM REAL-TIME POWER RANKING
VARIATIONS DUE TO INERTIAL PARAMETERS

FAST TRAJECTORY

RAL TARN

DYNAMICS FULL BLOCK DIAGONAL FULL BLOCK DIAGONAL

INERTIAL INERTIAL INERTIAL INERTIAL INERTIAL INERTIAL

ICO

JOINT 1 0.01 1.12 2.32 0.04 0.23 5.83

JOINT 2 1.58 0.38 3.42 0.14 0.06 4.28

JOINT 3 0.03 0.80 2.72 0.14 0.15 3.02

JOINT 4 0.71 0.41 0.30 0.38 0.53 0.36

JOINT 5 0.01 0.62 1.01 0.15 0.28 0.65

JOINT 6 0.42 0.77 0.05 0.68 0.10 0.64

Id1

JOINT 1 0.89 0.23 1.99 0.02 0.27 5.37

JOINT 2 0.16 0.07 4.15 -191 1.60 3.14

JOINT 3 0.10 0.28 2.34 ^_5 0.96 2.63

JOINT 4 0.56 0.23 0.23 0.05 0.36 0.33

JOINT 5 0.00 1.37 1.59 0.13 0.51 1.09

JOINT 6 0.69 0.19 0.01 0.57 0.10 0.52

1C 2

JOINT 1 0.87 1.06 0.24 0.82 1.07 0.93

JOINT 2 0.25 0.31 2.97 0.96 1.13 1.94

JOINT 3 1.20 1.21 1.74 0.52 0.50 1.26

*JOINT 4 0.91 0.16 0.03 0.95 0.27 0.54

JOINT 5 1.80 0.46 0.91 0.83 0.50 0.22

JOINT 6 0.23 0.42 0.07 0.05 0.19 0.12

Power rankings illustrate relative performance by scaling andJ..summation of the normalized peak and final position and
velocity errors produced by different algorithms over
identical trajectories. Power rankings range from zero to
ten with the best performing algorithm annotated by the
highest ranking. For additional information refer to table
4.2

. . . .
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forces may be better understood.

5.5 Unmodeled Force Compensation Evaluation

Real-time evaluation of the computed-torque

performance improvement potential of friction compensation

N'-, and feedback techniques is conducted over the identical

trajectories employed in chapter four. To reduce strain on

the manipulator due to vibrations the slow trajectory test is

not averaged. The hybrid efficient diagonal dynamics

4. presented in the last section are utilized. Listings of the

PDP assembly language computed-torque algorithms are

contained in (39].

Incorporation of static friction compensation into

the feedforward loop by utilization of a nonlinear switching

function reduces initial trajectory tracking errors but

creates severe vibration after the midpoint. Feedback

compensation techniques produce the advantages of friction

compensation without the drawbacks. A computed-torque

control law with a PID feedback loop produces trajectory

tracking accuracy sufficient for control of high speed

manipulator gross motion.

The comparison of fast trajectory ICi individual

joint position and velocity error for the uncompensated and

compensated cases is illustrated in figure 5.4. Table 5.4

present power ranking comparisons. Detailed representation

of additional data used in this analysis is contained in

(461.
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5.5.1 Static Friction Compensation

Without the friction compensation incorporated into

equation 5.1 the nominal computed-torque position error

profiles always showed each joint lagging the desired

trajectory. With feedforward friction compensation large

link error profiles display both lead and lag errors.

Consequently, position error curves are a closer

approximation of the diagonal dynamics simulation error

curves. The general trend of th, - velocity error profiles is

unaltered by modeling the friction. The shape of the error

profiles is still initial position dependent. Friction

compensation large link accuracy improvements are

concentrated in the first half of the trajectory. Tracking

improvements peak in joint 6 and are minimum for joint 2.

Improvements in small link accuracy are independent

of initial position due to inertia actuator dominance.

Unlike the large link case, friction compensation doesn't

produce overshoot in small link error profiles. The

-: improvement in joint 6 peak and final position errors are the

most dramatic. Joint 6 maximum error is reduced by 0.09 and

0.04 radians respectively. The tradeoff for this improvement

is increased vibration after the trajectory midpoint.

The joint stiction and l4ms sampling period combine

with low nominal torque values to cause the nonlinear

-A friction compensator to produce a series of bipolar torque

steps. When applied to the manipulator that oscillatory
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input produces link vibration. The effect of those

vibrations is greatest in the last link but best visualized

in link 3. In general, for large links the increased

velocity error offsets the improvements in position accuracy

producing a lower power ranking than the original controller.

Small link position improvements are so significant that

their power rank enhancement can not be offset by the

increased velocity errors.

5.5.2 Doubled Pole PD Feedback Loop

Figure 5.2 illuminated the tracking accuracy

improvement potential of the doubled pole computed-torque

technique represented by equation 5.2. Table 5.4 shows

that performance improvements from increasing the frequency

response of the computed-torque PD feedback loop are superior

to the original loop with friction compensation (equation

5.1). The penalty of increased vibration is no longer

incurred. All position errors lag. For large links the

increased feedback gains deliver superior performance over

'" the whole trajectory. The level of small link accuracy

produced by the friction compensated algorithm is superior to

that of the doubled pole PD loop for the first half second.

, That advantage rapidly disappears. Large link maximum final

*position error is within the target range of one degree.

However, only joint 1 maximum peak position error is under

three degrees. Small link maximum final position error is

twenty-five percent of that produced by the uncompensated

J.
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computed-torque control law. Unfortunately, small link

position errors are still outside the target range.

5.5.3 PID Feedback Loop

By employing the computed-torque/PID control law of

' ;equation 5.3 maximum final position error for all links is

held within the one degree target range. Average final

position errors are half the maximum. Average peak position

errors are under three degrees for the first five joints.

However, only for links 1, 4 and 5 is maximum peak position

error within the target range. Motion against gravity along

the fast trajectory still produces unacceptably large link 2

and 3 peak errors. The penalties for this performance

-*.. enhancement are trajectory overshoot and higher velocity

error after the midpoint. In all cases that resulted in the

final position overshooting the desired endpoint. The shape

of the error profiles is identical for all the small joints.

Once again the largest errors and the greatest improvement

are in the last link.

The input torques were always below the limits of

actuator saturation, eliminating the integrator windup

compensation necessary in [211. The non-optimal nature of

the PID gains causes velocity error increases that allow the

doubled pole PD loop to have a higher power ranking over the

fast trajectories. Over the slow trajectory that discrepancy

is less noticeable. By adjusting the gains for trajectory

shape and speed those problems should be avoided.

• . . . . . . . . . . . . . . . .. . . . . . . .
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*" TABLE 5.4

ALGORITHM REAL-TIME POWER RANKING
VARIATIONS DUE TO COMPENSATION TECHNIQUES

FAST TRAJECTORY

COMPENSATION NONE FRICTION DOUBLED PID
POLE PD

~IC0

_ JOINT 1 2.96 2.18 7.44 8.29

JOINT 2 1.48 0.08 5.30 5.88

JOINT 3 1.93 0.46 5.27 4.75

JOINT 4 0.72 2.37 6.87 6.49

JOINT 5 1.60 2.33 7.31 7.68

JOINT 6 1.61 4.06 7.06 7.08

IC].

JOINT 1 3.01 2.02 7.40 8.82

JOINT 2 1.63 3.32 4,93 3.08

JOINT 3 0.77 1.59 3.45 4.10

JOINT 4 1.00 2.48 7.16 6.80

7 OINT 5 1.78 2.39 7.43 7.37

JOINT 6 0.71. 5.73 7.22 5.73

IC2

JOINT 1 1.02 1.75 3.40 5.85

JOINT 2 0.12 3.94 5.12 2.56

JOINT 3 1.47 1.47 5.98 5.95

JOINT 4 0.65 2.94 7.05 6.87

JOINT 5 0.54 4.09 6.84 6.84

JOINT 6 0.28 4.90 7.35 5.56

Power rankings illustrate relative performance by scaling and
summation of the normalized peak and final position and
velocity errors produced by different algorithms over
identical trajectories. Power rankings range from zero to
ten with the best performing algorithm annotated by the
highest ranking. For additional information refer to table
4.2
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5.6 Discussion

Robotic gross motion control research can be

categorized into three main areas [841:

1. joint motion control,

2. resolved motion control, and

3. adaptive control.

The additions to the real-time robotic control performance

baseline produced by this chapter are applicable to all three

categories. Information about feedforward dynamics can be

applied to all joint and resolved motion dynamics based

controllers. All groups employ some form of feedback control

scheme whose real-time application will benefit directly from

the lessons learned here.

The utilization of more accurate manipulator

inertial parameters does not alter the conclusions of the

previous chapter. Uncoupled feedforward dynamics still

produce the best overall performance. More accurate

knowledge of inertial parameters does improve algorithm

performance, but rnot dramatically. Those results can be

largely attributed to the dominance of the actuator inertias

which were identical for both sets of inertial parameters.

Accurate information about actuator inertias is the most

important component in accurate modeling of highly geared

manipulators.

N5
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The improvement in tracking accuracy from

utilization of a nonlinear friction function in the

feedforward loop is not worth the cost in increased

vibration. Forces unmodeled by feedforward diagonal dynamics

can be treated as a disturbance to the feedback loop. A more

robust feedback loop produces the advantages of friction

compensation without the cost of severe vibration. A PD loop

reduces tracking errors without overshoot. By adding an

integrator to the feedback loop the final errors can be

reduced to within the feasibility sphere of one degree.

A real-time evaluation of computed-torque technique

effectiveness in controlling the large links of the CMU

direct-drive arm has recently been conducted [34]. The PD

poles for that study are critically damped with Kp =

sqrt(Kv). Sampling time was two milliseconds. Velocity gain

was experimentally determined as eighty percent of the value

that caused each individual joint to vibrate. The dynamics

are accurately known and the role of unmodeled dynamic forces

should be minimum. For the first 1.5 seconds the reference

trajectories are very similar to those shown in figure 4.1

permitting valid comparison of computed-torque performance on

direct drive and highly geared manipulators.

The maximum position errors produced on joints 1

and 2 of the low friction direct drive arm with optimized

gains [341 are greater than those produced by by application

of the uncompensated computed-torque control law (equation

.1.
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4.1) to the PUMA. Utilization of the feedback compensated

control laws of equations 5.2 and 5.3 magnifies that

advantage. Only for joint 3, where the lack of gravitational

forces allow more accurate control, was direct drive arm

performance superior. The assumption that usage of direct

drive arms would permit improved performance is clearly

false.

Information from a study of feedforward controllers

conducted at MIT [3] suggests that the effect of unmodeled

,~y. forces become dominant as link inertia decreases, even for

direct drive arms. Therefore, PUMA small link results are

applicable to direct drive arms.

PD and PID feedback loops are utilized to control

most industrial manipulators [611 so their ability to reject

the disturbances of unxnodeled dynamics is not suprising. In

industrial applications that rejection ability is limited to

slow motions were ignorance of dynamic forces is rendered

harmless by their low values. The knowledge of dynamic

forces provided by the computed-torque technique reduces

nonlinear effects and adapts the feedback gains to

manipulator configuration and task. The result is a more

efficient and complaint controller which is not restricted to

slow motions.

Further experimental data will allow educated

selection of the cost criterion matrices so that optimal

control techniques could be applied to calculate the PID
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gains (651. Improvements in control computer architecture

will produce greater performance via increased sampling

"C-"rates. Torque sensors can be mounted in the joints and the

information utilized to eliminate the effects of friction

[801. Guidelines for design of manipulators with decoupled

and configuration independent inertia matrices have been

developed [110]. The fusion of these electrical and

mechanical developments will allow production of robotic arms

with the desirable characteristics of direct drive arms

~~*4 without the requirement of extensive dynamics computation and

restricted applications due to limited range of motion and

payload.

5.7 Summary

Another major contribution to the real-time robotic

control data base has been completed. The results from

evaluation of unmodeled dynamics compensation techniques are

summarized in table 5.5.

The implementation feasibility and performance

improvement potential of feedforward and feedback

-compensation of dynamically based manipulator control

techniques have been clearly illustrated. The feedback

control information added to the control database is

applicable to all proposed feedback control schemes 1561.

'44, Implementation of computed-torque control with suboptimal

C-" gains on a highly geared manipulator produces trajectory

tracking performance superior to optimum gain application on
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a direct drive arm [341.

The evaluation of techniques for compensation of

unmodeled manipulator dynamics has revealed that:

1. utilization of more accurate inertial parameters does not

alter the conclusions of chapter four,

2. utilization of more accurate inertial parameters does not

significantly improve computed-torque trajectory tracking

ability,

3. friction c¢mpensation by a nonlinear switching function

in the feedforward loop produces unacceptable

performance,

4. forces unmodeled by feedforward diagonal dynamics can be

treated as disturbances to the feedback loop, and

5. tracking accuracy sufficient for gross motion control of

a highly geared manipulator operating at the edge of its

performance envelope iE achievable without additional

instrumentation.

The accuracy of the manipulator controller has been

improved to the point that errors in calibration now become

significant. Improvements in calibration accuracy and/or

knowledge of the calibration uncertainty is necessary for

improved performance and successful integration with the

additional components that constitute a hierarchically

controlled intelligent machine. A theoretical investigation

of calibration uncertainty is the subject of the next

chapter.

.. ... . . . . . .
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TABLE 5.5

ALGORITHM REAL-TIME POWER RANKING
OVERALL COMPARISON

-DOUBLED

COMPENSATION NONE FRICTION POLE PD PID

SLOW 2.44 2.65 6.22 7.34

FAST 1.29 2.67 6.48 6.09

OVERALL 1.86 2.66 6.35 6.72

Slow and Fast values represent power ranking data averaged
over all initial conditions and joints. Overall values
average Slow and Fast data.

".o"
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CHAPTER 6

CALIBRATION UNCERTAINTY

6.1 Introduction

The control technique evaluations of the previous

two chapters were dependent on the repeatability of the

manipulator control electronics, not the ability to perform

extremely accurate calibrations. By subjecting all

algorithms to identical test configurations without

recalibrating the manipulator the small errors between

modeled and actual joint position were rendered irrelevant.

However, application of those techniques to a manipulator in

an integrated work cell environment does require extremely

accurate knowledge of the cartesian position. The level of

accuracy depends on the calibration procedure which aligns

the manipulator with the external environment. The precision

of the calibration procedure is dependent on a set of

idealized assumptions and parameters. Variations in those

parameters produced by manufacturers' tolerances combine with

positioning system imprecision to create a level of

uncertainty in the calibrated position of the manipulator.

A fundamental assumption of the Computed-torque,

feedforward ([3],[351), and nonlinear feedback techniques

([101,[201,[951) is that the dynamical parameters are well

known. Chapter four demonstrated that those techniques are

stable in the presence of parameter uncertainties, but

efficacy decreases. Evaluation of end-effector tracking

152
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accuracy degradation due to uncertainty in inertial and load

parameters is the next step in dynamical control law

research. A prerequisite for those evaluations is the

ability to separate the calibration and dynamically based

uncertainties.

An intelligent machine will have the ability to

select the appropriate control algorithm for a certain task.

Intelligent control algorithm decision making requires

-" knowledge of the operational environment. A necessary

component in that knowledge base is a measure of the

uncertainty in the calibrated position of the manipulator.

In this chapter a significant contribution to the

field of hierarchical intelligent control research is

achieved by development of the theoretical basis for

employment of the Entropy function as a measure of the

calibration uncertainties. The theory is developed for the

general case and then applied to a PUMA manipulator. The

Entropy function provides an uncertainty measure consistent

with the hierarchical control architecture proposed by

Valavanis and Saridis ([85-61,[1051) while providing the

prerequisite information needed for continued dynamical based

* control research.

6.2 Problem Statement

In an autonomous intelligent work cell the standard

industrial practice of teaching trajectory position to the

manipulator after calibration is abandoned. Knowledge of
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joint or end-effector position relative to an external

reference, not an internal one, is now necessary. The

ability to calibrate the manipulator relative to an external

frame is clouded by uncertainties.

The primary sources of calibration imprecision are

uncertain knowledge of [1081:

4 1. joint encoder offsets,

2. relative orientation of consecutive axes, and

3. kinematic parameters

Those uncertainties combine with the unmodeled real world

effects of joint compliance, backlash, gear transmission

error, and control system position imprecision to produce

calibration uncertainties.

Current calibration research is centered around

elimination of these uncertainties by utilization of external

instrumentation ([191, [60], [92], [1081). Better knowledge of

those parameters reduces, but does not eliminate calibration

uncertainties. This research is not concerned with the

explicit reduction of individual parameter uncertainty but

rather with a calculation of overall calibration uncertainty.

Knowledge of calibration uncertainty would allow for its

S. compensation.

In chapter two the two major techniques for

calculation of uncertainty were reviewed. Only the

probabilistic approach fulfills our requirement to provide an

uncertainty measure consistent with the other information

4P43
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sources presented to the hierarchy proposed by Valavanis and

Saridis ([85-61,[105]) while providing the cabability to

learn, and therefore compensate for the uncertain nature of

the real world [831.

6.3 Method Of Approach

The theoretical basis for utilization of the

entropy function as a measure of calibration uncertainty is

developed in stages. The general theory for joint space

uncertainty calculation is developed first. Since

uncertainties in the forward kinematics combine with the

joint space uncertainties to produce uncertainty in

calibrated end-effector position the theoretical development

is expanded to allow calculation of cartesian space

calibration uncertainty. As a practical demonstration the

generalized theories will be applied to calculation of the

uncertainty produced in PUMA manipulator calibration. A

numerical example is presented. The study concludes with

discussions of applications areas.

6.4 General Theoretical Development

Modern industrial manipulators are controlled at

- the joint level. Before the manipulator can be utilized each

of those joints must be calibrated. The uncertainty produced

by that calibration process can be subdivided into joint and

• .cartesian space sources.
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6.4.1 Joint Space Uncertainty

Consider a joint whose calibration error is

constrained into an interval, D, of the joint angular space

with a measurement accuracy of A . Then the error in

calibrated position of each joint can be represented by a

discrete probability distribution. Discrete probability

distributions are employed due to the finite resolution of

the joint position measurement devices. The discrete joint

calibration error probability distribution is:

P(Q=qi) = P(qi )  > 0 (i (6.1)

,--" n

. P(qi) = 1 (6.2)' -"i =1

Where:

Q = The random variable of joint error

qi = The discrete values of Q

n = the number of discrete values of qi

P(Q=qi) = Probability that Q equals q1

The level of uncertainty in the calibration of that joint can

then be expressed by the following Entropy function:

n
H(Q) - P (q i)  2 P(qi) (6.3)

Arbitrary positioning of the end-effector in three

dimensional space requires at least six degrees of freedom.

Therefore the manipulators of interest must have N joints

V '
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where N > 6. For an N joint manipulator the overall

calibration error could be dependent on the uncertainty of

each joint. In that case the overall manipulator calibration

error may be expressed in the N joint space as:

P(CQ) = P(Ql = qli' Q2  = q= q Nk)

= P(ql q 2 ""'qN k) > 0 (6.4)

n m P
.• .• P(q1, q2j" "' ... ) = 1 (6.5)

i=l j=l k=l i k

Where:

Qa = Random variable for each joint (al,...N)

q a i= Discrete values of Qa

i,j...k = Number of discrete values of Ql, Q2"".QN

P(ql i ' q2j'"" . k ) = Probability Ql=qlis Q2=q2j "" QN=qN kI

The total joint space calibration uncertainty can then be

expressed as:
H(QI9 Q2"'" QN)

n m P
".. I P(ql ' q2 ,j " " ... ) lqN2 P(ql I q 2j q k) (6.6)

i=1 j=l k=l i k

6.4.2 Cartesian Space Uncertainty

Although the manipulator is controlled at the joint

level the position of the manipulator end-effector, not that

of the individual joints is generally the point of interest.

The cartesian position of the end-effector
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-. can be represented by a vector defined as:

X C [ x , x2 ,..., x6]T (6.7)

Where:

X = (6xl) Vector of end-effector position in cartesian space.

• ,P = (3xl) sub-vector containing X, Y, Z position information.

a = (3xl) sub-vector containing Euler angles.

The cartesian and joint positions can be related by

a series of homogeneous coordinate transformations which

utilize the kinematic parameters of the links to relate the

joint angles to cartesian position [841. Therefore -artesian

space calibration error is a function of joint space

calibration errors and variations in kinematic parameters.

If there are L kinematic parameters then the cartesian

calibration error can be represented by:

E = [e1, e2...e6]
T  (6.8)

Where:

E : (6xl) vector of end-effector cartesian calibration error.

"'* ei = fi(ql'q 2 " ". qN' kl k2"'" (6.9)

Where:

k. : Kinematic parameter errors (i=1,.., L)
"%1
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If the cartesian calibration error probability is expressed

as:

P(E) = P(Ele 1 , E2=e2 ,..., = e6 ) (6.10)

= P(el i  2j e
1 e ,..., e6k

n.m

I P(e , e2  , ) = 1 (6.11)
1-1 ji k=1 2J 6 k

Where:

Ea = random cartesian calibration error variables
(a=l,..,6)

-e aj, . = discrete value of E a

i,j,..,k = number of discrete values of E

P(e , e2 ,..., e6 ) = Probability{E =e E =ek... E6=e
eli 26 k 1  E2 2 2 . 6 e6 k

The corresponding uncertainty measure is:

=(C H(Elp E2  E6 )

,n m ) ~ ~j '~
n=. jm P(eli. e2 j " ' ' '  ) log2 P(el i, e ) (6.12)

i l j lk=l k 1 jk

To provide a better insight into the general theory

the equations for calculation of calibration uncertainty are

applied to a PUMA manipulator.

6.5 PUMA Case Study

The PUMA robot arm is a six degree of freedom

revolute manipulator. PUMA joint space calibration error

probability can be expressed as:

* P(CQ) = P(q1 , q2 ,..., q6k) = P(QI' Q2 '....Q6 ) (6.13)

iti
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Bayes theorem [23] allows equation 6.13 to be rewritten as:

P(CQ) = P(Ql)P(Q2 1QI)P(Q 31Q2Ql)...P(Q6 Q5...Q1 ) (6.14)

The PUMA has the following characteristics that allow

equation 6.14 to be simplified:

1. the calibration procedure is independent for the first

.four joints,

2. joint five calibration error is dependent on joint four

error, and

3. joint 6 calibration error is dependent on the error of

both joint 4 and 5.

Those characteristics allow equation 6.14 to be reduced to:

P(CQ) = P(QI)P(Q 2 )P(Q3 )P(Q4 )P(Q5 lQ4 )P(Q6IQ5O4 ) (6.15)

The corresponding calibration uncertainty measure has become:

IH(CQ) H(QI)+H(Q 2 )+H(Q 3 )+H(Q4 )+H(Q5 1Q4 )+H(Q 6  Q5 Q4 ) (6.16)

The sources of uncertainty in calibrated joint

angular position are:

1. joint encoder offset, (J),

2. imprecision of positioning control system, (P), and

3. idealized assumptions about the effects of backlash and

gear transmission error, (B).

Therefore the joint calibration errors may be written as:

qi f(Ji, Pi, Bi) (6.17)

with the corresponding changes in uncertainty representation.
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For the kinematic model of the PUMA employed in the

RAL the homogeneous transformation matrices are illustrated

in ([45],[84]). Those transformations can be concatenated to

produce the end-effector matrix. The end-effector matrix

contains all the information necessary to determine the

- position and orientation of the end-effector. Joint and

cartesian space calibration uncertainty are related by the

end-effector matrix.

There are five kinematic parameters associated with

the end-effector matrix of the PUMA (a2,d2,a3,d4,d6) [84] so

that:

[ki, k2 ,..., k5 ] = error in a2, d2 , a3 , d4 , d6 respectively

By analyzing the explicit symbolic equations of the

end-effector matrix [84] the functional dependence of the

cartesian calibration errors can be reduced to:

S1 = f(ql...q 5, kl...k 5) (6.18)

e f(q ...q5 ' k,...k5 ) (6.19)

S3 = f(q2 ...qs, kl, k3 ...k5 ) (6.20)

e4 "" e6  f(q ...q6) (6.21)

Unfortunately the six cartesian calibration errors are all

dependent so that equation 6.10 cannot be simplified in a

manner similar to equation 6.15.

.2
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6.6 Numerical Example

As a check of the uncertainty calculation, assume

that the calibration of each joint is exact. The individual

joint space calibration error probability function is shown

in figure 6.1. The resultant calibration entropy is:

n
H(Q) = p(qi )  (6.22)

1 Qi P 1 0 lo 2 Pq

6 6
H(CQ) = -.Z H(QI) = 0 = 0 (6.23)

Q =1 i=I

Equation 6.23 verifies the ability of the Entropy function to

correctly represent the lack of calibration induced position

uncertainty.

In the absence of other information the error in

joint calibration could be represented by a uniform

distribution bounded by experimentally determined limits as

shown in figure 6.2. For a uniform distribution the

probability is 1/n. Therefore the level of uncertainty is:
n.

H(Q) 1092 1 fl i lg 2  1. (6.24)

: log2 ni bits

6
H(CQ) = lo2  n (6.25)

'li#.

5- Experience with the PUMA shows that maximum joint calibration

error is less than two degrees. Table 6.1 lists the

experimentally determined error limits for joints 1-6. The

number of discrete values for each joint error is determined

by assuming a measurement resolution of 0.005 degrees. If

Sd.

S..
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.%

4..0 Z

Figure 6.1 Calibration Error Probability Distribution
With No Uncertainty

S1

-z o z

Figure 6.2 Calibration Error Probability Distribution
With Maximum Uncertainty

"-I

TABLE 6.1

Experimental Calibration Error Data
1

Joint jZj Degrees ni

1 1.5 300

2 1.5 300

3 3.0 600

4 1.0 200

5 0.5 10

6 1.5 300

'.>
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the joint calibration error probabilities are assumed to be

uniform then the calibration uncertainty can be calculated

from equation 6.25 and the resultant value is 13.48 bits.

These examples highlight the ability of the Entropy

function to convey calibration uncertainty information to the

upper levels of an hierarchically intelligent machine. An

overview of techniques for reduction of calibration

uncertainty is presented next. Further analysis of methods

for reducing the uncertainty levels is beyond the scope of

this research.

6.7 Uncertainty Reduction

An overview of the reduction methods applicable to

calibration uncertainties can be subdivided into off and

on-line categories. Calibration uncertainty can be reduced

off-line by utilization of sophisticated measurement devices

[108] to obtain better knowledge of the kinematic and joint

offset parameter error probability distributions. Tighter

probability distributions reduce the Entropy of equation

6.12. The calibration uncertainty kinematic parameter

functional dependence (equations 6.18-21) should be analyzed.

Symbolic methods similar to those employed by Brooks [111 can

be employed to accomplish that task. Knowledge of those

relationships permits determination of the dominant players

in calibration uncertainty and focuses reduction efforts on

their uncertainty.
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The effects of backlash, compliance and gear

transmission error must be reduced on-line. An experimental

setup similar to the one proposed by Foulloy and Kelley [191

"- permits information about the uncertainties produced by those

phenomenon to be collected. Accelerometer data required to

implement the feedback linearization scheme of Luo and

Saridis [65] also provides uncertainty information in the

form of errors between the calibrated and actual gravity

normal position. Uncertainty information can be input to a

stochastic learning algorithm that updates the calibration

error probabilities and thus reduces the Entropy function

associated with calibration uncertainties. Saridis and

K -" Blumberg have proposed such techniques for minimization of

the Entropy associated with linguistic decision schema in a

hierarchical intelligent machine [871.

6.8 Discussion

Knowledge of calibration uncertainty is a powerful

tool for enabling intelligent selection of manipulator

control algorithms. In an intelligent work cell environment

the movement of the manipulator will be controlled by

different control laws depending on task and environment.

The difference may be as small as a change of gains in the

controller or as radical as a switch to a completely new

control law. The research of chapter's 4 and 5 - monstrated

the feasibility of manipulator control by feedback

linearization and application of linear control laws. By

v .7
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utilizing an optimal control law to control the linear system

the cost of control associated with the penalty matrices can

be treated as an Entropy.

All the information associated with selection of a

particular control techniquae will be summed into one Entropy

value. One of those cost will be the penalty for lack of

precision produced by uncompensated uncertainties. When the

Entropy from utilization of that control law exceeds the

performance criterion determined by the upper levels of the

hierarchy the control formulation will be altered.

In a robotic system with multiple forms of position

sensing the hierarchy will strive to employ the most

efficient instrumentation for the given task. Knowledge of

the uncertainty in calibrated position is a vital input to

that decision making process. In minimal uncertainty

environments external sensor information may be unnecessary.

In the presence of low uncertainty low cost range sensors,

infra-red, may be sufficient to ascertain actual end-effector

position. Maximum uncertainty would require utilization of

the more costly full vision system to obtain the same

information.

6.9 Summary

The Entropy function provides a measure of

calibration uncertainty compatible with the other operational

environment and algorithms performance criterion information

sources provided to the upper levels of a hierarchically
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intelligent machine. Sources of joint and cartesian space

calibration uncertainty were identified. The theoretical

basis for calculation of calibration uncertainty by

utilization of an Entropy function was developed. Techniques

for Entropy minimization can be employed to reduce

calibration uncertainties and consequently improve the

performance of the manipulator control techniques previously

evaluated. Application of calibration uncertainty

calculation theory to a PUMA manipulator illustrated the

advantages inherent in the employment of Entropy as a measure

of calibration uncertainty in a hierarchical intelligent

environment.

* !..~~* ~ . . * * *

*q.



CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

- 7.1 Summary Of Results

A dynamically based robotic manipulator controller

performance baseline has been established by the creation and

utilization of a hierarchical robotic evaluation environment.

Analysis of baseline information has significantly reduced

the search for a gross motion control scheme applicable to

intelligent machines.

Creation of a hierarchical robotic evaluation

environment provided an original solution to the problems

that previously constrained real-time evaluation of modern

manipulator control techniques. That solution was developed

by integration of three major integrated components: a

hierarchical manipulator control system, customized efficient

algorithms for computation of manipulator dynamics, and

software libraries that support simulation and real-time

modern control algorithm performance evaluation.

The Hierarchical Robotic Evaluation Environment

propels the PAL to the forefront of robotic manipulator

modern control technique application research. The PAL

Hierarchical Control System (RHCS) provides the framework for

- the investigation of numerous areas of robotic contr~ol

research. The PAL Real-Time Robotics Algorithm Exerciser

(R3AGE) permits evaluation of all proposed joint, resolved

168
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motion and adaptive control algorithms. Simplicity, power,

and expandability make implementation of this environment an

optimal solution for any institute in search of a real-time

testing platform.

A major deficiency in robot control research has

been insufficient experimental evaluation of proposed

techniques. Utilization of the Hierarchical Robotic

Evaluation Environment for real-time evaluation of

dynamically based manipulator control has significantly

reduced that deficiency by establishing a control performance

baseline.

The Hierarchical Robotic Evaluation Environment was

utilized to evaluate Lagrangian dynamics for robot control

and investigate the performance improvement potential of

techniques for compensation of unxnodeled forces. The case

studies were performed on a PUMA-600J manipulator controlled

by various forms of the computed-torque technique. The

generic nature of the computed-torque technique allows

knowledge acquired from performance evaluations to be

extended to all PUMA-600 manipulator control algorithms that

employ dynamics based linearization and/or classical or state

space designed feedback loops.

Although the validity of these results has only

been proven for a PUMA-600 manipulator, they provide valuable

insight into modern robotic control theory applications. The

mechanical equivalence between the PUMhA 560 and 600 should
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allow these results to be directly extended to PUMA 500

series manipulators.

The two pioneering case studies combined to

establish the dynamically based PUMA controller real-time

performance baseline. The major conclusions from those

studies are:

1. control algorithm comparison studies employing the

complete Lagrange or Newton-Euler models to simulate the

PUMA manipulator produce invalid results,

2. the effects of Coriolis and centrifugal forces are

negligible,

3. unmodeled forces cancel the benefits of inertial coupling

displayed in the simulation study for all links except

the fourth,

4. inclusion of reflected actuator inertias in the

feedforward loop significantly enhances tracking accuracy

especially for the small links,

5. gravity forces are significant and should be modeled in

the feedforward loop,

6. diagonal inertial terms are significant and should be

modeled in the feedforward loop,

7. utilization of more accurate inertial parameters does not

significantly impact controller effectiveness,

8. friction compensation by a nonlinear switching function

in the feedforward loop produces unacceptable

performance,

3.e
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9. forces unmodeled by feedforward diagonal dynamics and

gravity can be treated as disturbances to the feedback

loop, and

10. dynamically based control techniques have the potential

to control high speed gross manipulator motion without

additional sensor devices.

The tracking accuracy of the computed-torque/PID

controller with suboptimal gains confirms the suitability of

the LQ design approach of Luo and Saridis (65]. The ability

to represent the optimal control penalty matrices as Entropy

functions makes this control technique particularly

attractive in a hierarchical intelligent control system.

A nonheuristic original solution to the problem of

calculation of calibration uncertainty was developed. The

theoretical basis for representation of joint and cartesian

space calibration uncertainty by an Entropy function was

established. That research provides the foundation for

continued development of an intelligent hierarchically based

controller. Armed with knowledge of calibration uncertainty

the intelligent machine can select controllers appropriate

for the level of position uncertainty.

7.2 Recommendations For Future Research

This research provides the foundation for continued,.

research into development of control methods applicable for

an intelligent machine. That foundation should be employed

to expand the manipulator control database. The following

',
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studies are suggested:

1. Paul proposed that dynamics do not have to be updated at

the same rate as the control law [32]. if that proposal

is valid the performance enhancements produced by faster

sampling times could be achieved without additional

computational power. The validity of that proposal must

be investigated. A relationship between PUMA dynamics

update rate and controller effectiveness should be

conducted.

2. The evaluation of computed-torque/PID control should be

expanded to study the effect of the LQ design techniques

proposed by Luo and Saridis [65]. Emphasis should be

placed on determining the relationships between weighting

matrices and manipulator performance.

3. More accurate representations of motor dynamics and

gear-train friction should be developed and the impact of

their feedforward modeling evaluated.

4. The knowledge gained from joint motion evaluations should

- be applied to resolved motion acceleration control so

that a resolved motion performance baseline can be

established. Efficient Jacobian inversion software
.'

([45],[741) permits real-time resolved motion testing

under R3AGE.

.. 5. Adaptive control techniques should be evaluated to

determine if their performance is superior to dynamics

based techniques. Evaluation of Dubowsky's Model

9.

. . . . .. . . . . . . . . . . . . . . . . . . . .
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Reference Adaptive Control technique [16-17] is in

progress.

6. The performance potential and implementation feasibility

of the sensor based feedback linearization technique of

Luo and Saridis [65] should be investigated.

7. The effects of end-effector load variations on algorithm

performance should be examined to determine if loading

alters previous conclusions about controller efficacy.

8. Real-time evaluations should be performed on other

manipulators to experimentally determine if PUMA specific

results can be readily extended.

9. Modifications to the hardware level commands permit

multiple non-identical manipulators to be networked by a

series of RHCS links. The MIT manipulator in the RAL has

been connected by a RHCS link to the hierarchy 171].

Theories for coordinated motion of two manipulators

should now be evaluated and a multi-manipulator

controller performance baseline established.

While those areas are being investigated research

should commence on the task of integrating the hierarchical

robotic evaluation environment with the vision and gripping

systems to develop a platform for the evaluation of theories

for hierarchically based intelligent machines.



APPENDIX A: Additional Fast ICI Figures

TABLE A.la APPENDIX A DATA KEY

TITLE = XCTISMT

X - Test type.

R - RAL inertial parameters

T - TARN inertial parameters

CT - Dynamic model identifer

NI - Newton-Euler with actuator inertias

FI - Full inertia with actuator inertias

DI - Diagonal inertia with actuator inertias

4F - Hybrid full inerita with actuator inertias

4D - Hybrid diagonal inerita with actuator inertias

CT - Computed-torque algorithm identifier

12 - Diagonal inertia dynamics

13 - Full inertia dynamics

14 - Block inertia dynamics

I - Initial condition specifier

0 - ICO (0,-90,90,0,1,0,)

1 - ICI (0,-135,135,0,1,0)

2 - IC2 (90,0,0,90,90,90)

S - Trajectory speed specifier

0 - Slow speed

1 - Fast speed

M - External load specifier

0 - unloaded

1 - fully loaded(2.3kg)

174
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T - Sampling time specifier

2 - 14ms

3 - 21ms

., TABLE A.lb APPENDIX A SYMBOL KEY

Figure A.1 Symbol Key

V
3 XNI1102

P XF111O2

G XDI1102

Figure A.2 Symbol Key

o, TFI1102

) TDI1102

* T4F1102

, T4D1102

Figure A.3 and A.4 Symbol Key
p.,

o X121102

• X131102

* X141102

V.

- 'm
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OPEN-LOOP TORQUE COMPARISON
INERTIAL PARAMETER EVALUATION
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~Figure A.Ib Joint 2 Fast ICI Open-loop Torques
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OPEN-LOOP TORQUE COMPARISON
INERTIAL PARAMETER EVALUATION

RAL PARAMETERS
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OPEN-LOOP TORQUE COMPARISON
INERTIAL PARAMETER EVALUATION

RAL PARAMETERS
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OPEN-LOOP TORQUE COMPARISON
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PERFORMANCE COMPARI SON
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PERFORMANCE COMPARI SON
INERTIAL PARAMETER EVALUATION
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PERFORMANCE COMPARI SON
INERTIAL PARAMETER EVALUATION
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