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Abstract

A random-choice method (RCM) is developed for obtaining fairly
practical and efficient numerical solutions for two-dimensional planar
and axisymmetric steady supersonic flows, such as those for sharp-
edged planar airfoils, supersonic inlets of aircraft engines, pointed
bodies of revolution, supersonic nozzles, and free jets. This method
is based on the solution of a Riemann problem, which is the elemental

solution of the hyperbolic equations of two-dimensional steady super-
sonic flows. The Riemann problem consists of two waves separated by
a slip stream, and each wave can be either an oblique shock wave or a
Prandtl-Meyer expansion wave. Advanced techniques are given for solv-
ing the Riemann problem iteratively, handling the boundary conditions
along body and free-jet surfaces, and computing only certain parts of
flow fields of interest. Many interesting and practical numerical

solutions are presented for different types of planar and axisymmetric
flows, to demonstrate the applicability, capability, and limitations

of the RCM. Numerical results are shown to be in excellent agreement

with both known analytical solutions and results from the method of
characteristics.
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Notation

Alphanumeric symbols

a gas sound speed

A constant defined by Eq. 46

B constant defined by Eq. 46

C constant defined by Eq. 46

C p pressure coefficient

e total energy per unit volume [e = e + p(u2 + v2 )/2]

f(W) function of W in Eqs. 1 and 2

g(W) function of W in Eqs. 1 and 2

G vector defined by Eq. 45

h(W,r) function of W and radius r in Eqs. 1 and 2
i integer for numbering mesh points in the axial direction

j integer for numbering mesh points in the radial direction

M flow Mach number

p static pressure

P(x,r) sampling point for the Riemann problem

r radial coordinate

rb radius of an axisymmetric body

R gas constant

S a state for the Riemann problem

t thickness of a planar airfoil

T static gas temperature

u axial component of the gas velocity

v radial component of the gas velocity

W solution vector [p, pu, pv, e] from Eqs. I and 2
x axial coordinate along the free-stream flow

Yb locus of the airfoil surface

Greek symbols

a coefficient for planar (a = 0) and axisymmetric (a 1) flows

angle of a characteristic line or a Mach wave (measured
clockwise from the radial axis)

7 specific-heat ratio

6 angle of flow deflection through a shock or rarefaction wave

6b  boundary-surface angle measured from the longitudinal axis
A axial and radial increments (e.g., Ax and Ar)
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Notation (continued)

e internal energy per unit volume

Ipressure ratio P,/Pl and P*/Pr

K(1) function of 71 defined by Eq. 16

0 angle of a radial line from a cone apex

0c  semivertex angle of a wedge or cone

1 Mach angle [p = sin-l(I/M)], also a function of ii and 4a
from Eq. 17

V(0) Prandtl-Meyer function in Eq. 8

flow angle n/2 - tan-l(v/u), measured clockwise from the
radial axis (also, angle of a slip surface or slip stream)

R ratio of circumference and diameter of a circle (3.1415927)

p static density

o s  shock angle measured clockwise from the radial axis

X(11,A'a) function of I and Ma from Eq. 18

10 value of the random variable equidistributed in the
range -1/2 to +1/2

Subscripts

a denotes conditions ahead of an oblique shock or expansion
wave

b denotes conditions behind an oblique shock or expansion wave

h denotes the value at the rarefaction-wave head

j index for numbering the radial position of a grid point

1 denotes the initial state of the gas on the left side of
the discontinuity in the Riemann problem

min minimum value

r denotes the initial state of the gas on the right side of
the discontinuity in the Riemann problem

t denotes the value at the rarefaction-wave tail

* denotes a common value on either side of the slip surface

Superscripts

i index for numbering the axial position of a grid point

overhead bar denotes the sampled solution for the
planar-flow case

overhead tilde denotes the first-order sampled solution
in MacCormack's operator-splitting scheme (Eq. 48)

vii



1.0 INTRODUCTION

1.1 Literature Review

Numerical models and analyses have proven very powerful for the study or
simulation of complex fluid-dynamic flows. If properly validated, these models
can provide an accurate description of the flow field. Additionally, they can
provide a means of validating new physical and mathematical hypotheses, thereby
providing fundamental knowledge about flow problems of interest.

Two-dimensional planar and axisymmetric steady supersonic flows of gases
can be described, with suitable assumptions, by a hyperbolic system of conser-
vation laws. Numerical solutions of the hyperbolic system should satisfy the
following criteria: 1) the computed solution should be sufficiently accurate in
smooth parts of the flow, 2) discontinuities in the flow, such as oblique shocks
and slip streams (or slip surfaces), should not only remain sharp but also be
propagated or transported at the correct speed, and 3) such discontinuities
should be cor.,puted stably without numerical oscillations.

The method of characteristics has been used most widely up to the 1970s
for obtaining numerical solutions of steady supersonic flows over planar and
axisymmetric bodies. Isenberg and Lin1 , Clippinger, Giese and Carter 2 , Ferri 3 ,
Shapiro 4 , and Liepmann and Roshko 5 found many important applications of this
method for supersonic flows around thin sharp-edged airfoils and slender pointed
bodies of revolution with attached shock waves, and also for supersonic flows
in aircraft-engine inlets and in many types of nozzles. In the application of
the method of characteristics, flow properties are constrained by ordinary dif-
ferential equations that apply along characteristic lines in flow regions with-
out discontinuities, so that solutions can be obtained on a characteristic mesh.
Special adaptive procedures are needed to include and track both oblique shocks
and slip streams, and this is the primary difficulty in employing this method.
Each flow problem normally needs a new computer program, because the computer
logic is specific to the problem. As a result, the method of characteristics is
not often used to solve flow problems.

The finite-difference method6- 8 is another numerical means of solving
flow problems which has been widely used. In order to incorporate shocks and
slip streams in the solutions, special schemes like artificial and numerical
viscosity have to be employed. For example, von Neuman and Richtmyer 9 were the
first to introduce an artificial viscosity term into the Lagrangian form of the
gasdynamic equations. This scheme, like those and others that followed, auto-
matically handle shocks and slip streams, but they either introduce undesirable
oscillations in the solution near these discontinuities or smear them out over
several grid points. Automatically handling discontinuities is so advantageous
that the finite-difference method is widely used today for all sorts of flow
problems, despite the fact that the undesirable smearing and also incorrect
placement of discontinuities affects the quality and accuracy of the solution.

Over the past two decades the finite-element method has been developed
for the solution of flow problems10 . To the present time, this method has been
used frequently to solve successfully problems involving incompressible flows
and steady compressible subsonic flows, but it has not been sufficiently well
developed at present to solve hyperbolic equations with similar success.

The particle-in-cell (PIC) and fluid-in-cell (FLIC) methods, have been
applied with success to solve a wide variety of multifluid flow problems that

I



involve large slippages and distortions, 1 1- 1 3 like those that take place when a
projectile penetrates a liquid or metal. The PIC method is a combined Eulerian
and Lagrangian scheme that utilizes Lagrangian fluid particles to transport

mass, momentum, and energy through an Eulerian mesh of cells, 1 1 whereas the FLIC
method uses only an Eulerian scheme to transport fluid. 1 2 - 1 3 Although the use
of such transported particles or fluid facilitates in obtaining the solution of

a problem, these methods are not widely employed because the predictions contain

aphysical fluctuations in fluid quantities and excessive smearing of disconti-

nuities, and they also normally demand a large computer memory and computation

time.

Taylor and Maccoll1 4 and Maccol1 1 5 in their early studies (1933, 1937)

solved the flow around an infinite ight-circular cone moving supersonically
with an attached, conical, bow shock of constant strength. For this special

problem, they were able to obtain a self-similar solution in terms of ordinary

differential equations, and extensive tables of flow properties around cones,
which is based on these early studies, can be found in Ref. 16.

If a body in a supersonic flow is sufficiently slender and smooth, then
flow deflections or perturbations will be small. Shocks will be sufficiently
weak such that the flow for practical purposes can be considered to be homen-

tropic (i.e., uniform entropy) and therefore irrotational. For this case the
most popular theories introduce a velocity potential to obtain an approximate
linear perturbation solution. The perturbation flow solution for disturbance

produced by the body is defined such that it is simply superposed on the uniform
free-stream velocity. Such perturbation solutions can be found in papers by von

Karman and Moore1 7 , Lighthill1 8 -1 9 , Ward 2 0 , Whitham2 1 - 2 2 , and Van Dyke2 3 , and
they have been used recently by Ritzel and Gottlieb 2 4 to obtain the overpressure
signatures from actual projectiles and by Devan2 5 to get surface pressures on

axisymmetric bodies. Although perturbation solutions are easy to use, they are

both approximate and limited to supersonic flows of low free-stream Mach number.

A relatively new method has been developed and used in recent years for
solving hyperbolic equations, provided that the elemental Riemann problem has a
known solution. The random-choice or Glimm's method has the highly desirable
capability of automatically including and correctly placing discontinuities like
shocks and contact surfaces in the numerical solutions, without any artificial
or numerical viscosity, or any other special shock capturing techniques. It was
originally developed for solving one-dimensional unsteady planar flow problems

by Glimm2 6 , based to some extent on earlier work of Godunov 2 7 . Glimm's method
was made more practical for solving planar shock-tube and detonation problems

by Chorin2 8 first and later by Colella 2 9 - 3 0 , and also extended by means of an
operator-splitting technique to solve cylindrical and spherical flow problems

by Sod 31 and quasi-one-dimensional gas flows by Fok3 2 , Greatrix and Gottlieb 3 3 ,
and Glimm, Marshall and Plohr3 4 . Many different one-dimensional unsteady-flow

problems have been solved successfully in recent years at UTIAS.3 5 - 4 8

A well-known mathematical analogy exists between two-dimensional super-

sonic steady flows and one-dimensional unsteady flows. The essence of this
analogy is that both problems are described by hyperbolic systems of conserva-
tion laws in two independent variables, and each has a well-known elemental
Riemann problem and analytical solution. Since the initial success of develop-

ing and employing the random-choice method (RCM) to obtain solutions for one-
dimensional unsteady flow problems, it was recognized that similar success might
also be achievable for solving analogous two-dimensional steady supersonic flow

problems, provided an analogous RCM could be developed.
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Marshall and Plohr4 9 were the first to develop a RCM for solving two-
dimensional steady supersonic flow problems having both planar and axisymmetric
geometries. At the same time, Honma, Wada and Inomata 50 developed independently
a similar method. In both cases, the Riemann problem was posed and its solution
given in a very similar nanner. However, Marshall and Plohr used a rectangular
mesh in their computations, whereas Honma, Wada and Inomata used combined body-
fitted and rectangular meshes. Although this combined mesh system might appear
as beneficial initially, it actually increases computation time, is difficult to
use with a curved body surface, and is also unnecessary.

In the studies by Marshall and Plohr
49 , and Honma, Wada and Inomata 50 ,

most of the effort was expended on developing the RCM, and only a few simple
exemplary problems were solved to illustrate feasibility. In the first study,
numerical solutions were given for the supersonic flow over straight and curved
wedges, and also a cone and cylinder combination. In the other study, solutions
were given for the flow over a double wedge, a cone, and a double cone.

1.2 Scope of the Present Study

The impetus for the present study stems originally from the experimental
and analytical work of Ritzel and Gottlieb 24 ,5 1- 54 . An exact numerical solution
for the flow field around supersonic projectiles was being sought to complement
the existing approximate analytical method, 2 4 to explain and accurately predict
many features of the measured overpressure signatures. 51- 54 It appeared that
the RCM would be an ideal method, if it could be developed for two-dimensional
steady supersonic flows, based on the previous success with the RCM for solving
one-dimensional unsteady flow problems at UTIAS. 33 ,3 5- 4 8 Our development of a
RCM for solving two-dimensional steady supersonic flow problems began just as we

became aware of the developments by Marshall and Plohr49 and also by Honma, Wada
and Inomata 50 , and this former work became very helpful to us.

In this report the RCM is presented and explained in detail for both
reference and completeness, even though the RCM analysis was given briefly but
elegantly in the previous work. A physical description is also presented for
the elemental Riemann problem, which consists of two waves separated by a slip
stream, and each wave can be either an oblique shock wave or a Prandtl-Meyer
expansion wave. This analysis is embodied in a computer program for obtaining
both practical and efficient numerical solutions of two-dimensional planar and
axisymmetric steady supersonic flows, such as those for sharp-edged planar air-
foils, supersonic inlets of aircraft engines, pointed bodies of revolution,
supersonic nozzles, and free jets. Numerical results from this computer program
are shown to be in excellent agreement with both known analytical solutions and
predictions by the method of characteristics. Additionally, many interesting
and practical numerical solutions are presented for different types of planar
and axisymmetric flows, in order to demonstrate the applicability, capability,
and also some severe restrictions of the RCM.

Advanced techniques are presented in this report to make the computer
program both practical and efficient for solving two-dimensional planar and
axisymmetric steady supersonic flow problems. Firstly, an efficient parabolic-
curve iteration method is used in the solution of the Riemann problem, making
the number of iterations normally three or less. Secondly, boundary conditions
are handled naturally and easily without special coordinate transformations. At
a solid body the flow is made tangent to the surface, and at the edge of a free
jet the flow pressure is made equal to the ambient pressure outside of the flow.
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Thirdly, an efficient operator-splitting technique is used. Finally, a scheme
is devised for numerical computations of certain problems, so that only relevant
parts of the flow field are computed, in order to significantly reduce computa-
tional time. For example, the part of the flow field containing only the wave
emanating from a supersonic projectile is computed, and the free-stream flow
before the wave and the slightly varying flow far behind the wave is omitted.

The random-choice method cannot solve all planar and axisymmetric stcady
supersonic flow problems over arbitrary shaped bodies. Limitations of the RCM
are therefore documented and discussed in this report. Previous reports do not
even mention most of these limitations.

2.0 ANALYSIS FOR THE RANDOM-CHOICE METHOD

2.1 General Equations for Planar and Axisvmmetric Flows

The partial differential equations for two-dimensional steady supersonic
inviscid flows of a gas with planar and axisymmetric geometry 5 can be written as

i.x.f(W)] + a Eg(W)] h(W,r), (1)

where

p u pu2  +p

W f(W) ,jv puv

e u(e + p)

(2)v I pv
puv puv

g(W) = h(W,r) a a_

•1 r 2
Pv2  + p P v 2

v~e + p)v(e + p) 

The symbols p and p are the static pressure and density of the gas, u and v are
the axial (x) and radial (r) components of the flow velocity, pu and pv are the
axial and radial components of momentum, and a is 1 for an axisymmetric flow.
In the case of a planar flow, the axial distance x becomes the longitudinal
distance x, the radial distance r becomes the lateral distance y, and u = 0 for
this case. Hence, in the case of planar flows the nonhomogeneous term h(W,r)
does not appear and the equations are homogeneous.

The total energy per unit volume e in Eqs. 1 and 2 is given by

e = C + p(u2 + v2)/2 (3)

and contains the internal energy per unit volume

9 = p/(Y - 1), (4)

4
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where y denotes the specific heat ratio (constant for a perfect gas). Note that
implicit in these equations is the equation of state p = pRT and the sound-speed
relation a 2 = yRT.

The four expressions that are embodied in Eqs. 1 and 2 are the continu-

ity equation, Newton's second law of motion of momentum in the axial and radial
directions for an axisymmetric flow (or longitudinal and lateral directions for
a planar flow), and the conservation of energy. This system of equations, that
is Eqs. 1 to 4, can be solved for a particular problem only if the appropriate
initial and boundary conditions are specified.

2.2 General Riemann Problem

For the solution of the equations presented in the preceding section by
means of the random-choice method (RCM), a Riemann problem must be established
first and subsequently solved. The general Riemann problem is considered in
this section, and the particular solution for planar and axisymmetric supersonic
flows is given later. The presentation is similar to that of Chorin2 8 .

Consider the flow field shown in Fig. 1, in which the free-stream flow
is aligned approximately along the axial coordinate x and the radial coordinate
r is approximately normal to the stream line. Let the flow field be subdivided
by means of a grid of constant Ax spacing in the x direction and constant Ar in

the radial direction. Also let the indicies i and j be the labels for the grid
corners. Note that each cell of width Ax and height Ar is further subdivided
into quarters by the dashed lines, resulting in alternating grid points at the
cell corners and centers for the computations.

Let the actual flow field, which may be either smoothly varying in terms
of its variables or smoothly varying with discontinuous lines or surfaces, be
discretized such that the values of the variables of importance are either known
initial conditions or computed ones only at the grid corners and grid centers.
In first-order Riemann initial-value problems, the states at two adjacent grid
nodes are not joined by a smoothly varying line or surface, but instead the
'constant' states are always joined or separated by means of a discontinuity.
The exact location of this created discontinuity is unknown, or the location of

an actual one is unknown if it existed - being lost in the discretization
process. However, a discontinuity is inserted when necessary at an appropriate
location by means of an appropriate random-sampling process.

When inserting a discontinuity in the interval Ar, the only information
available is that it occurs somewhere in this interval. Therefore, one can only
assume that it has an equal probability of occurring at each point or in each
fraction of the interval. Hence, a random variable 0 that is equidistributed in
an interval from -1/2 to +1/2 may be chosen to get an appropriate location for
the discontinuity. If 0 = -1/2, for example, the discontinuity can be inserted
at r = jAr, if 0 = 0 it can be inserted at (j+l/2)Ar, and if 0 = 1/2 it can then
be inserted at (j+l)Ar. Note that this random-sampling process for inserting or
locating a discontinuity in the Riemann problem gives the random-choice method

its name.
i

In establishing the general Riemann problem, let W3 denote W[iAx,jAr],

which are the initial values or a past solution at coordinate point [iAxjAr].
i

Also, let Wj+ I denote W[iAx,(j+l)Ar], which are also initial values or a past
solution at the adjacent coordinate point [iAx,(j+1)Ar]. Now, if these two sets

5



of initial conditions or two past solutions are taken as the initial conditions,
i+1/2

then the solution Wj+l/2 farther downstream at the center of the cell or at the

coordinate point [(i+l/2)Ax,(j+l/2)Ar] needs to be determined, to advance the
solution in the axial direction. The initial-value problem which will give this
solution can now be expressed as

W i I  if r > (j + 1/2 + O)Ar,
W[iAx,r] = (5)

Wj if r < (j + 1/2 + )Ar.

i+1/2
An initial-value problem of this type that yields the solution Wj+ 1 /2 is called
a Riemann problem.

The solution to a Riemann problem is normally self-similar and can then
be expressed in terms of r/x. When such a solution is obtained, it will extend
outward from the discontinuity on the initial line x = iAx, in the radial direc-
tion r and downstream in the direction x, eventually overlapping the coordinate
point [(i+1/2)Ax,(j+l/2)Ar]. The set of values from this solution that falls
directly on the point [(i+l/2)Ax,(j+1/2)Ar] can then be assigned as the solution
i+1/2

wj+i/2 to this grid node.

Once the solution of one Riemann problem has been obtained, it is not
very difficult to see how this process can be repeated for all cells having the
common axial distance iAx, in order to get the solutions at all cell centers at
axial distance (i+l/2)Ax. Then, the solution is advanced column by column in
the axial direction, in order to obtain the solution for the entire flow field.
In this process, however, suitable boundary conditions would have to be applied
at the outer edges of the grid.

It is worth mentioning here that the description of the random-sampling
process and assignment of a solution of the Riemann problem to the next grid
node differ from those in Chorin's paper 2 8 . He always puts the discontinuity
right at the center of the cell, random samples the Riemann solution downstream,
and then assigns this set of values to the next grid node. Although the two
methods are mathematically equivalent, the present method and description really
provides more physical insight and understanding.

2.3 Solution of the Riemann Problem for Steady Suipersonic Planar Flows

The solution of the Riemann problem cannot always be obtained in simple
analytical form for complex sets of partial differential equations. This is,
unfortunately, the case for steady supersonic axisymmetric flows, because the
inhomogeneous term h(W,r) unduly complicates the equations. When this term is
absent, as in the specific case of steady supersonic plauar flows, an analytical
solution can then be obtained. These solutions for planar flows are given first
in this section, and the operator-splitting technique which can be applied to
modify the planar solutions to yield those for axisymmetric flows is introduced
later.

The Riemann problem for the hyperbolic system of equations given by Eqs.
1 and 4 is an initial value problem for which the initial data is known at an
axial distance iAx (Fig. 1), as mentioned earlier. The initial data consist of
two states, Sl on the left (at the larger radius), and Sr on the right (at the
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smaller radius). These two states are separated by an initial discontinuity at
some radial distance r (see Eq. 5), and it breaks into left and right running
waves that are swept downstream by the oncoming supersonic flow and separated by
a slip surface or slip stream, as shown in Fig. 2.

In the Riemann problem for steady supersonic flows, the left and right
running waves can be either an elemental oblique shock wave or Prandtl-Meyer
rarefaction wave. 5 These two elemental waves result in four different wave
patterns and solutions (see Fig. 2). The left and right running waves are
separated by a slip stream, across which the pressure and flow angle are con-
tinuous but the density, temperature, flow velocity, and flow Mach number are
normally discontinuous. For the case of steady supersonic planar flows of a
polytropic gas, the partial differential equations for the Riemann problem can
be reduced to analytical equations, and these will soon be presented. For the
case of a polytropic gas, only four variables are needed to fully describe a
particular state, whether this state is ahead of a shock or rarefaction wave
('a' in Fig. 2), behind a shock or rarefaction wave ('b'), or inside a rare-
faction wave. As in past studies 4 9- 5 0 , the four most convenient variables are
the static pressure p, static density p, flow Mach number M = ([u2 + v2 )/a2 )1/2 ,
and flow angle 4 = n/2 - tan-l(v/u).

Consider the case of a rarefaction wave first. In this case the partial

differential equations reduce to ordinary differential equations that then apply
along characteristic lines, which can be further integrated for planar flows to
obtain the Prandtl-Meyer solution.5 The centered fan of characteristic lines
of a rarefaction wave is depicted in Fig. 3, for rarefaction waves on the left
and right sides of the stream line. In this diagram three different angles are
depicted. The Mach angle p or the angle of a characteristic line with respect
to the stream line is given by sin-l(/M). The angle of the flow is measured
from the radial axis to the stream line. Therefore, the angle of a particular
characteristic line, measured from the radial axis, is given by

= sin-(I/M), (6)

where the minus sign is used for the left rarefaction wave and the positive sign
is used for the right rarefaction wave. The state of the gas is constant along
one particular characteristic line having an angle P. The flow angle t and Mach
number M for this characteristic line within the fan of characteristics can be

related to the initial flow properties (with subscript a) by the equation

t = ta + v(M) - V(Ma), (7)

where

V(M) + 1 1/ a-[ ]12[2 - 1]1/ 2] tan-'(M2 - 1]1/2 (8)

is the well-known Prandtl-Meyer function5 . The static pressure and density for
this characteristic line be related to the flow Mach number by means of

P/Pa = [1+ -1 2 + 1 M2)Y/(Y-1) (9)2 a)/(l + 29

and

P = Pa(P/Pa)1 1¥ . (10)
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Equation 9 can also be rewritten in the following form

MY- 1 (1 2 a)l = 1 [ -Pa r- I+ 2 )- 1 ( 11)

which will be important for later work. Because the pressure decreases from one
characteristic line to the next through a rarefaction wave, from its head to its
tail, p j Pa. Also, p j Pa, and M > Ma.

Now consider the opposite case of an oblique shock wave. In this case

the partial differential equations also yield analytical results for the sudden
changes in flow properties across the shock. 5 From the diagrams given in Fig. 4
it should be obvious that

tb +a + [N/2 - as - 6 - [x/2 - as], (12)

where ta and tb are the stream line angles, measured from the radial axis, ahead
of and behind the oblique shock wave, as is the oblique shock angle measured
from the radial axis, and 5 is the flow deflection angle. Also, the positive
and negative signs go with the shock wave on the left and right of the stream
line, respectively. Based on expressions for oblique shock waves, the previous
equation can be expressed in a convenient form as

t +sin-l--1 + 7 + 11 b_ 1]]]
b - a +Mbn 2y

(13)

-sin-l[ 1 Li + + 1pb/' -11 /
-a 2 1I

for later use. Furthermore, the flow Mach number Mb behind the oblique shock
can be related to the flow Mach number Ma in front of the shock by

Mb [ 2 Pb Pa ( 2 - 1 1112, (14)

1 Pa (1 2

where the density Pb behind the shock is given in terms of the pressure ratio

Pb/Pa as

Pb = Pa[ 2y + (y+l)(Pb/Pa - 1)]/[2y + (y-l)(pb/p - 1)], (15)

where this last equation is a more recognizable Rankine-Hugoniot relation. Note
that the pressure increases from the front to the rear of an oblique shock wave
and therefore Pb > Pa. Furthermore, Pb 2 Pa and Mb < Ma.

The equations above for oblique shock waves contain two solutions - a
weak shock and a strong shock solution. Only the weak-shock solution with the
smallest entropy increase should be used, because it is the only one observed
in actual flow fields.

In the case of slip streams or surfaces that separate different shock
and rarefaction waves, as shown in Figs. 2 to 4, the pressure Pb and flow angle
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tb are both continuous across such streams or surfaces. This is indicated in
Fig. 5. However, the density Pb and flow Mach number Mb are both discontinuous.

The two previous analytical solutions for the elemental shock and rare-
faction waves, and the conditions that both the flow angle and pressure must be
continuous across the slip line, can now be combined or patched together to give
four individual solutions for the four different wave patterns shown in Fig. 2.
The type of wave pattern and the strengths of the individual waves depend on the
initial conditions, that is the initial left state S1 (pl, Pl, M1 , and t1

) and
the initial right state Sr (Pr, Pr, Mr, and W . Regardless of the initial con-
ditions, the four solutions can be combined into one algorithm. In order to do
this in an elegant way, the following functions involving the previous expres-
sions are introduced.

4 9

ri1/y i

T11/ if nI < I

K(q) = (16)
[2y + (y+l)(n-l)]/[2y + (y-1)(n-l)] if q > 1

(P-1) 2a y-lq 11 (17)

V[P(ii,Ma)] - V(Ma) if n < 1

X(TI'Ma) sin-l[1 + -1 p-l(TIM a )  (18)

-sin-l[[l + Y1[n - 1]] Ma if i > 1
2ya

In these expressions the symbol n is the pressure ratio across either an oblique
shock or expansion wave (i.e., pb/Pa). These three functions can be applied
across the left and right waves of the Riemann problem (see Fig. 5), regardless
of whether each is a shock or rarefaction wave. If this is done to connect the

flow angles ahead and behind the left and right waves,

t = + X(P/plM1) (19)

and

-r + X(p$/prMr) (20)

are obtained in terms of the common flow angle t. and pressure p. on each side
of the slip stream. These two equations can now be added to eliminate 4* and
thereby obtain the implicit equation

tr - ti = X(p/PlMI) + X(p*/pr,Mr) (21)

for the common pressure p.. This is the oasic equation required to determine

the common pressure for each of the four different wave patterns. Then the flow
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angle t, can be obtained from either Eq. 19 or 20, and the flow Mach numbers M
on either side of the slip stream can then be obtained from of Eq. 17, because
1(q,Ma) is actually the Mach number behind either shock or rarefaction wave.
Finally, the densities p follow directly from Eq. 16, because K(11) is actually
the density ratio for a shock or rarefaction wave. This completes the basic
solution procedure of the Riemann problem.

The iterative procedure of solving Eq. 21 for p. that is used in this
report is the parabolic-curve method 5 5 , which is a common numerical technique in
China. In this method, a function G = tr - tl - X(P*/PI,MI) - X(P,/pr,Mr) is
defined and initially calculated three times for three different initial values
or guesses of p., giving (Gl,pl), (G2 ,P*2 ), and (G3 ,P,3 ). A parabolic curve is
then fitted to these three sets of values of G and p,, and the value of p. when
G equals zero is obtained. Then, this new value P.4 and its associated value G4 ,
and the two previous sets of values of G and p,, that is (G2 ,P,2 ) and (G3,p,3 ),
can be used to produce a new parabolic curve and estimate of p.. This procedure
can then be repeated until the solution of p, is obtained to the desired degree
of accuracy (e.g., error less than 10- 3 percent).

The first guess of p. for the computer code which was used in this study
was given by (Pl + pr)/2. For the parabolic-curve method, which requires three
initial guesses, the second one was frequently 0.98p, and the third was 1.02p,.

In the parabolic-curve method, there are always two roots for p.. By
using the smallest root for p,. the weak shock solution is chosen automatically
over the strong shock solution. This is one notable advantage of this method.
Another advantage is that convergence to the root is accelerated by the use of
a parabola instead of a straight line, and it would be virtually just as fast
as Newton's method. (In Newton's method additional equations would be needed
to find the derivative of G.) Also, the secant method would likely be slightly
slower in convergence than either the parabolic-curve or Newton's method.

2.4 Random-Sampling Procedure

The solution of the initial-value or Riemann problem, given the left and
right states S1 and Sr , has been determined in the previous section. This solu-
tion includes both the type of wave pattern and the strengths of the particular
waves. The task now is to use this solution to obtain the particular solution
at the next grid node, spaced downstream by a distance (1/2)Ax and midway be-
tween the original two grid nodes with states Sl and Sr. This is accomplished
with a random-sampling procedure that will now be described.

In describing the general Riemann problem in section 2.2, it was briefly
mentioned that the initial discontinuity separating constant states Sl and Sr
was specified by means of selecting a random number from a uniform distribution
over -1/2 to +1/2. Hence, the particular wave pattern from the Riemann solution
would have its original discontinuity located at soine r&adomly specified point
between the original nodes (circles in Fig. 5) and then branch outward in the
downstream direction, as shown in Fig. 5. Then, depending on which part of the
flow pattern overlaps the next grid node downstream (the cross in Fig. 5), the
solution at this point in the flow field would be assigned to this grid node.
For example, if this downstream grid node was between the slip stream and the
right wave (see the figure), then the solution of this recently computed state
would be assigned to this node. If this downstream node was to the right or
ahead of the right wave, then state Sr would be assigned to this grid node.
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The procedure outlined above could be programmed easily for a computer.
However, it is easier and customary to program an alternate but fully equivalent
procedure. In this procedure the initial discontinuity of the wave pattern is
always fixed at the midpoint between the initial two grid nodes, which are shown
as circles and having states S1 and Sr in Fig. 6. Then the wave pattern is sai-
pled randomly downstream, along a line at a fixed distance x+(I/2)Ax that passes
through the downstream grid node (the cross). This sampling point is labelled P
in the figure. If the random number Q was equal to -1/2, then point P would be
located at the corner labelled a. If 0) was equal to 0, then the point P would
be coincident with the downstream grid point, and if fi was equal to +1/2, then
point P would be at the top corner labelled b. The solution for point P frow
the Riemann problem, denoted as state S or in terms of variables as M, , H, and
, is then assigned to the downstream grid point.

In the random-sampling procedure there are four basic cases that must be
considered. These cases are summarized below and then dealt with in detail.

1. The sampling point P[x+(1/2)Ax,r+flAr] lies to the left of the
slip stream, which has a slope dr/dx = cot(t,) in the (x,r)-plane,
and the left wave is a shock wave, that is,

QAr > (l/2)(Ax)cot(Q,) and p, > p1.

2. The sampling point P[x+(1/2)Ax,r+QAr] lies to the left of the
slip stream, which has a slope cot(k.) in the (x,r)-plane, and
the left wave is a rarefaction wave, that is,

Ar > (/2)(Ax)cot(t.) and p*. j p1.

3. The sampling point P[x+(1/2)Ax,r+lAr lies to the right of the
slip stream, which has a slope cot(t.) in the (x,r)-plane, and
the right wave is a shock wave, that is,

OAr < (l/2)(Ax)cot(Q.) and p. ) pr'

4. The sampling point P[x+(1/2)Ax,r+g r] lies to the right of the
slip stream, which has a slope cot(t,) in the (x,r)-plane, and
the right wave is a rarefaction wave, that is,

OAr < (1/2)(Ax)cot(t.) and p* < pr"

Case 1: Ar > (1/2)(Ax)cot( ,) and p* > p1

In this case the shock-wave angle as, measured from the radial axis to
the shock wave (see Fig. 4), is given by

= as - sin-l[ 1 [1 + "-'[p1 - 1] 2 (22)

If the sampling point P lies to the left or in front of the shock wave, that is,
if Ar > (1/2)(Ax)cot(as), then the values for thesampling point P are those of
the left state S1, or = Pl, P = Pl, M = Ml, and 4 1.* In this subcase these
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values are then assigned to the downstream grid point (shown as a cross). If

the sampling point P lies to the right of or behind the shock wave, that is,

QAr < (1/2)(Ax)cot(as), then the sampling-point values for point P are f = p*,
T = P K(P./pl), M = pI(p./pl,M1), and t = 4.. In this subcase these values are
then assigned to the downstream grid point.

Case 2: LGAr > (1/2)(Ax)cot(t,) and p. ( p1

The rarefaction wave is bounded on the left by its head and on the right
by its tail, and the equations for these characteristics are given by

= ti - sin-l(/MI ) (23)

pt = , sin-[ 1P-l(p,/plM1)], (24)

where Ph and At are the angles of the head and tail characteristics, measured
from the radial axis (see Fig. 3). If the sampling point P lies to the left of
or in front of the rarefaction-wave head, that is, DAr > (1/2)(Ax)cot(Ah), then
the sampling point values for P are simply those of the left state S1 or F = Pl,

= Pl, M = Ml, and t = tl. If the sampling point lies to right of or behind
the rarefaction-wave tail, that is, GAr < (1/2)(Ax)cot(At), then the values for
sampling point P are - = p.. p = plK(p./pl ) . M = p(p./Pl,Ml), and Z = 4,.

Finally, if the sampling point lies inside the characteristic fan of the
rarefaction wave, then the values for the sampling point are more difficult to
obtain, because the solution is iterative. From the angle of the characteristic
line passing through the sampling point P, the equation

- sin-1 (1/M) = n/2 - tan-1 (2GiAr/Ax) (25)

relates the two unknowns 4 and M. The Prandtl-Meyer equation,

= + v(M) - v(M), (26)

with the same two unknowns can be used to eliminate 4, yielding the implicit
equation in M

V(M) - sin'l (1/M) - 41 + v(M1 ) + /2 - tan-l(211Ar/Ax). (27)

This equation is solved for K by employing the parabolic-curve method that was

described earlier. Newton's method could also be used, and it would probably
give a faster convergence. Finally, 4 is obtained from either of Eqs. 25 or 26,
and the expressions

P 2  + (y- 1)M2 y/(y-1)
p 1 (28)

2 + (Y -)M2

T = P1 K(/pl) (29)

give the final values for § and p.
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Case 3: OAr ( (1/2)(Ax)cot(k,) and p. > p

Case 3 is a mirror image of case 1. The same logic applies but there
are some changes that occur in the equations, and these are mainly subscripts
and mathematical symbols.

In this case the shock-wave angle as , measured from the radial axis to
the shock wave (see Fig. 4), is given by

F = r + sin-'I [1 , +- [1]]12 "  (30)

If the sampling point P lies to the right (in front of the shock wave), that is,
if OAr < (1/2)(Ax)cot(as), then the values for the sampling point P are those of
the right state Sr, or P Pr, P Pr, M = Mr, and = tr- In this subcase these
values are then assigned to the downstream grid point (shown as a cross). If
the sampling point P lies to the left of or behind the shock wave, that is,
OAr > (1/2)(Ax)cot(as), then the sampling-point values for point P are P = p,
P = PrK(P,/Pr), R = I(p,/pr,Mr), and 4 = ,. In this subcase these values are
then assigned to the downstream grid point.

Case 4: fAr ( (l/2)(Ax)cot(Q,) and p, p Pr

Case 4 is a mirror image of case 2. The same logic applies but some
changes occur in the equations, such as subscripts and mathematics symbols.

The rarefaction wave is bounded on the right by its head and on the left
by its tail, and the equations for these characteristics cre given by

Ph = r + sin-'(l/Mr) (31)

and

Ot = 4 + sin-l[P-l(p,/pr,Mr)]r (32)

where Ph and Ot are the angles of the head and tail characteristics, measured
from the radial axis (see Fig. 3). If the sampling point P lies to the right of
or in front of the rarefaction-wave head, that is, Ar < (1/2 )(Ax)cot(ph), then
the sampling point values for P are those of the right state Sr, or p = Pr,
P = Pr- M = Mr, and 4 = 4r. If the sampling point lies to left of or behind
the rarefaction-wave tail, that is, OAr > (1/2)(Ax)cot(pt), then the values for
sampling point P are = P,, P = PrK(P,/Pr), M = P(p,/pr,Mr), and =

Finally, if the sampling point lies inside the characteristic fan of the
rarefaction wave, then the values for the sampling point are more difficult to
obtain, because the solution is iterative. From the angle of the characteristic
line passing through the sampling noint P, the equation

+ sin-(1/M) = n/2 - tan-1 (2Ar/Ax) (33)

relates the two unknowns Z and M. The P'andtl-Meyer equation exressed in the
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following form,

= Vr - V(N) + V(Mr), (34)

with the same two unknowns, can be used to eliminate , yielding the implicit
equation in M,

'AM) - sin-l(1/M) = tr + V(Mr) - v/2 + tan-1(2GAr/Ax). (35)

This equation is solved for Mby employing the parabolic-curve method that was
described earlier. Finally, is obtained from either of Eqs. 33 or 34, and
the expressions

r 2 + (y - 1)M2 1y/(y-1)
r (36)Pr 2 + (y -1)M 2

= Pr K(P/P r)  (37)

give the final values for P and .

In the random-choice method, it is natural to think of using a new value
of the random number 0 for each cell, that is for each combination of i and j.
However, the practical effect of such a choice with finite spacings of Ax and Ar
is disastrous, except for flow-field data that is nearly constant, as originally
pointed out by Chorin. 2 8 If this is in fact done there is a finite probability
that a given state will propagate to both the left and right, thereby creating
a spurious constant state. The numerical results will become less accurate and
more jagged (as if the results contain numerical noise). In the random-choice
method used here, a new random number 0 is chosen only once per new level in
the axial direction, that is once for each new step Ax. This random number is
then used for all cells of this column. This is now a common practice for the
random-choice method.

2.5 Random-Number Algorithm

The type of random-number algorithm plays a significant role in both the
behavior of the solution and the quality of numerical results from the random-
choice method. Better random numbers produce numerical results that are more
accurate (e.g., more accurate placement of the position of shocks in the flow
field), and these results also have less jaggedness or numerical noise.

2 8- 30 ,4 7

It is now known that the best random numbers for the random-choice method are
.aes that are actually nonrandom but equidistributed, or ones that become equi-
distributed relatively quickly or alternatively tend as fast as possible to
approximate equipartition in the range from -1/2 to +1/2.28 In this regard it
appears at the present time that the best random-number algorithm for use with
the random-choice method is that due to Van der Corput.2 9- 0 ,4 7 This random-
number algorithm appears in Van der Corput's original work56, is given in the
book by Hammersley and Handscomb 57 , and is also discussed by Colella 2 9- 3 0 .
This algorithm is also presented here because it is rather short and also for
the sake of completeness.
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For the Van der Corput algorithm, suppose that the natural numbers are
expressed in the scale of notation with a radix equal to 2, so that

m

n = ik 2k. (38)

k =0

This is also the binary expansion of the number sequence n = 1, 2, 3, , etc,
where i is a binary number that equals only 0 and 1. Then, a set of random num-
bers On can be obtained by simply writing the digits of these numbers in their
reverse order, preceded by a decimal point. This gives the following series

m
n k 2- (k+l )  (39)

k = k 2

The method of getting the sequence of random numbers from the above equations
might seem to be a little unclear. In order to clearly illustrate the manner
in which this sequence is constructed, the first few elements of the various
sequences involved are written down for convenience in the table given below.

n (decimal) ik (binary) fin (binary) On (decimal)

1 1 0.1 0.5000

2 10 0.01 0.2500

3 11 0.11 0.7500

4 100 0.001 0.1250

5 101 0.101 0.6250

6 110 0.011 0.3750

7 111 0.111 0.8750

8 1000 0.0001 0.0625

9 1001 0.1001 0.5625

10 1010 0.0101 0.3125

The decimal numbers n are first changed into the binary numbers ik. Then these
binary numbers are reversed and a point or decimal is put in the front to get Un
as binary numbers. Finally, these binary numbers are simply converted back into
decimal numbers, yielding (n in decimal notation, and covering the entire range
from 0 to 1.

It can be noted that On is less than 1/2 if n is even, and Qn is greater
than 1/2 if n is odd, but O.n always covers the range from 0 to 1. Furthermore,
we have (k/4) < f < ((k+11/4) if n = Jk mod (4), with k = 1, 2, and 4, where

Jo = 0, jl = 2, J2 = 1, and J3 = 3. Finally, note that this Van der Corput
random-number algorithm, like all of the others with radix different than 2, is
equidistributed.
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2.6 Accuracy of the Flow-Field Computations

The accuracy of computations of the flow field depends mainly on the

size of the grid. The constant grid spacing Ar in the radial direction is

specified, independent of the problem. This spacing depends on the particular
problem being solved, the quality of numerical results desired, and the time and

cost of the computations. A suitably small grid spacing in the radial direction
will ensure almost any accuracy desired, provided that computer roundoff errors

are not encountered.

The grid spacing Ax in the axial direction should not be specified inde-
pendently or arbitrarily, because this spacing can affect the numerical accuracy
of the results. If Ax is very small, numerical accuracy is maintained but the
number of computations and resulting computational cost are high. Hence, given
the spacing Ar, the other spacing Ax should be made as large as possible, with-

out making the numerical solution unstable or inaccurate. In the random-choice
method, which is an explicit method, there is no essential criterion for numeri-
cal stability. In other words, the solution for any length A. is stable. How-
ever, if Ax is too large the numerical results will be inaccurate, because the

effects of overlapping of adjacent wave patterns is ignored. Experience shows

that numerical accuracy can be maintained in the solution of nonstationary one-

dimensional flows if the time step is limited by or specified according to the

Courant-Friedrichs-Lewy criterion.2 8 ,4 8 This same criterion is used here for

two-dimensional steady supersonic flows.

The Courant-Friedrichs-Lewy criterion is a limitation on the size of Ax.
For this condition to be satisfied, the wave pattern cannot spread out radially

by more than a distance of Ar over the distance Ax. This means that adjacent
wave patterns should not interfere or overlap, otherwise the numerical accuracy

will decrease. This criterion is expressed as

Ax < Ar Itan(Q T )[min, (40)

where is the angle of a stream line measured from the radial axis and p is the
Mach angle measured between the stream line and a Mach wave. The negative sign
is employed for the case of a left Mach wave and the positive sign is used with
a right Mach wave. In the this study, the largest Ax is normally used, that is,

Ax = Ar Itan(t + p)[min" (41)

However, whenever Ax is larger than Ar, which occurs for highly supersonic flows
because the wedge-shaped pattern is not widely spread, Ax is further restricted
by being set equal to Ar. This helps produce more smoothly varying numerical

results or profiles in the axial direction.

2.7 Boundary Conditions

Boundary conditions must normally be specified at the outer extremities
of the flow field. These are normally needed for the outermost grid points in

the radial direction and sometimes near or at the origin. One or both of these
boundaries can be the direct result of a solid body or a rigid surface in the

flow, which are normally approximated as local straight-line segments if the
surface is curved. One of these ouundaries can also be an arbitrary edge of
the flow field, across which waves can move freely without reflection as they
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leave the flow field. Finally, the boundary may also be that of a jet of gas
or free jet passing through another gas that is essentially stationary and has
a basically uniform pressure. All of these boundary conditions are considered
herein.

Firstly, consider the continous boundary condition. In this simple case
the flow field is ended at a radial distance that is specified for convenience.
Any compression, shock, or expansion wave which impinges on this boundary must
be allowed to pass out of the flow field without any significant reflection or
influence on the flow field, just as if the flow field continued indefinitely in
the radial direction. Let the flow field end (at radius r for example), and let
the flow properties be calculated at a grid node at this radial distance r and
axial distance x+(1/2)Ax (e.g., cross in Fig. 6). The previous right state Sr

(Pr, Pr' Mr, W at the coordinate point [x,r-(1/2)Arl is already known. Now,
by creating a pseudo or an artificial left state Sl outside the flow field at
the coordinate point [x,r+(1/2)Ar], which has identical flow conditions as that
of the right state (i.e., P1 = Pr, P1 = Pr, Ml = Mr, and l = r) , the Riemann
problem can then be solved in the usual manner to obtain the required flow con-
ditions downstream at the desired coordinate point [x+(1/2)Ax,r] on the bound-
ary. Finally, note that the previous specification of this boundary condition
is only approximate, and minor wave reflections can sometimes occur, especially
if the gradients of the actual flow properties across the boundary are relative-
ly large.

Now consider the case of a rigid surface that compresses or expands the
flow. For the purpose of illustration, let the flow be above the surface of a
body. In this case the left state S1 (Pl, Pl, Ml, t1) is known at the coordin-
ate point [x,r+(1/2)Arl within the flow (see Fig. 6). and the flow properties
for the downstream state at coordinate point [x+(1/2)Ax,r] need to be computed.
Although this grid node may be located inside or outside of the flow, its state
is still computed for either case, and furthermore employed in the computations
in subsequent steps. In order to obtain the flow properties at this downstream
grid node, an artificial state Sr is first created for the coordinate point
[x,r-(1/2)Ar] that is located inside the body.

The properties Pr, Pr, Mr, and tr of this artificial right state are

obtained by applying a symmetric boundary condition. An artificial flow with a
right wave is created inside the body to simply counteract the flow outside such
that the flow deflection of the resulting slip stream is tangent to the surface

of the body. From the point of view of symmetry, therefore, Pr = Pl, Pr = Pl,
Mr = M11 , and tr = 41 - 26, where 6 is the flow deflection angle. This symmetry
gives left and right waves of the same type and with the same strength, and the
angle & is positive for a left shock wave and negative for a left rarefaction
wave. The deflection angle 6 can be related to the angle of the body surface by
6 ti - n/2 + tan-l(drb/dx) or 6 = -r + n/2 - tan-l(drb/dx), where drb/dx is
the local slope tan(6b) of the surface. Hence, r = - 41 - 2tan-l(drb/dx) is
the final result for the flow properties at the artificial state Sr . Now that
both left and right states are known, the Riemann problem can be solved and
random sampling applied in the usual manner to determine the new flow properties
at the downstream grid node.

Finally, consider the case of a free-jet boundary. For illustration
purposes again, let the free-jet flow be above or to the left of the boundary.
As in the previous case, the left state S1 (Pl, Pl, M1 , 1) is known, the flow
properties at the downstream grid point need to be computed, and an artificial
right state Sr needs to be established. A symmetric boundary condition is again
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applied, with a slight difference in the last step. Firstly, Pr = Pl, Pr = Pl,

Mr = Ml, and tr = tl - 26, where 6 is the again flow deflection angle. This

symmetry also gives left and right waves of the same type and with the same

strength, and the angle 6 is positive for a left shock wave and negative for a

left rarefaction wave. The flow deflection angle can again be expressed in the

form 6 = 41 - n/2 + 6 b or 6 = -tr + n/2 - 6 b, where 6 b is the angle of the free-

jet surface. However, the free-jet-surface angle 6b is unknown and the flow

deflection angle 6 cannot be calculated from 
6 b. This angle has to be obtained

from known boundary information.

The information required is that the pressure at the free-jet surface

is equal to the pressure of the fluid or gas surrounding the free jet. Hence,

the strengths P./Pl and P./Pr of the left and right waves are known, and the

type of waves are also known. Based on the known strength of the left running

wave the flow deflection angle can readily be calculated for a left shock wave

(P,/Pl > 1) or a left rarefaction wave (P./Pl ( 1), by using the appropriate
equations for oblique shock or rarefaction waves. In the present case this is

particularly simple, by making use ofpreviously introduced equations. The flow

deflection angle 6 is the negative of the previously defined function X(,M),

that is, 6 = - X(p*/pl,M1 ) in our case. This then gives the flow angle at the

right state as r = t1 + 2X(p,,/p,M 1 ). This completes the specification of the

right artificial state, so that the normal Riemann problem can be solved and

random sampling applied to get all the flow properties at the downstream state.

2.8 Operator-Splitting Technique to Obtain Axisymmetric-Flow Solutions

The previous analysis is complete for the random-choice method to solve

two-dimensional, planar, steady, supersonic flow problems, that is problems for

which the inhomogeneous term h(W,r) in Eqs. 1 and 2 is nonexistent or just zero

(because a = 0). For axisymmetric flows, however, this is not true because the
inhomogeneous term is nonzero (a = 1). Some additional analysis is required to

correct the planar-flow solution, which is determined first for the case of axi-

symmetric-flow problems, such that the axisymmetric-flow solution of interest is

then obtained. The operator-splitting technique, originally introduced to the

random-choice method by Sod 3 1 to include the inhomogeneous term as a correction

to solve one-dimensional unsteady flow problems with an area change, is also

used in this study.

In the case of the operator-splitting technique, the first step is to

solve the homogeneous set of equations in conservation form,

x[f(W)] + a-[g(f)] = 0, (42)

for W = f, pi, pv, i] by means of the past analysis for the Riemann problem.

Once this Riemann solution i for a planar flow is known, the second step is to
use the set of equations given by

8MCI = h(W,r) (43)

to correct this planar solution 1 to obtain the axisymmetric-flow solution W.

Because the right hand side of this equation is known, it becomes an ordinary
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differential equation, and the correction at the node on the ith column and jth

row is obtained by means of a Cauchy-Euler finite-difference scheme in the form

f(W) = f(W') + h( ,rj) Ax, (44)

where Ax is the incremental distance from the previous left and right states

to this downstream grid node. The solution W ian then be written in the form

P u I P u P v G

p u 2 + p ii2 + _ AM , (45)

I puv a / ;/ r 0 ;2 3
u(e + p). U( + V( + G4

or much more simply as pu = X = G1 , p+pu
2 = p+k5i2 = G2, puv = XP = G3 , and

u(e+p) = Xii(i+=) G4 , where X I - (Ax/r)/ii is a correction factor. If k is
equal to unity there is no correction required, and as k deviates from unity the
correction becomes less accurate. From the first and third of the last four of
these equations it can be clearly seen that the radial velocity v will always
be invariant during the correction procedure.

The values of G1 , G2, G3, and G4 and can be manipulated to yield values
of p, p, u, v, e, M, and t. The quadratic equation

A p2  - 2Bp - C 0, (46)

with

2- -
A = [G 3 /G1 - 2G4 ]/G1  = V2 - 2(i + P)/P,

B = - [/- [/y-1)]( 2 + ),
and

C = [(y+I)/(--)]G 2  
= [(,+1)/(,-1)](X.i) 2 ,

is first established in terms of the density p, and then the solution for the

density is given by

p = (B + (B2 + AC)1/2 ]/A. (47)

The other primitive variables then follow from u = G1/p = X U/p, v = G3 /G1 = V,
p = G2 - G1/ =p + %'i2 (1-'/p), and e = pG4/G1 - p= ( + f) /p - p. Finally,

M = (u2 + v2)/(yp/p)] 1/2 and t = n/2 - tanI(vu), completing the corrected

axisymmetric-flow solution for this grid node (i,j).

The procedure of correcting the initial planar-flow solution to obtain
the axisymmetric-flow solution by means of the operator-splitting technique is
explicit, and this keeps the entire random-choice method explicit. Note also

that the boundary conditions are not used in the operator-splitting technique,
because they enter only during the procedure of obtaining the initial Riemann

solution for the planar flow. The correction scheme by means of the operator-

splitting technique is applied in the random-choice method at each grid point
within the flow field, except for nodes on the origin (r = 0). At the origin
no correction is needed, because the correction factor X = 1 - (Ax/r)V/ii equals

unity by virtue of the fact that V/r equals zero at the origin. A correction

is normally done just after the initial Riemann problem for the planar flow is
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computed, or just after an entire column is computed. Therefore, each initial
Riemann solution for the planar flow is obtained from both the left and right
states that have been previously corrected to give the axisymmetric-flow
solution. Making the correction at every half-step is important for improving
the resolution and accuracy of the numerical results, without much additional
effort. This type of correction scheme is first order and can be called an
'asymmetric' operating-splitting technique2 9 ,5 8 , and it is used most often in

the computations in this report.

There is also another first-order equivalent correction scheme called a
'symmetric' operator-splitting technique2 9 , 8 . For this scheme the equations

are the same as those already given in this section. However, in this scheme
the correction is applied twice in succession for each grid point in each alter-
nate column (in the radial direction) and not at those columns in between. This
scheme is seldom used in the present study, although it gives equivalent
results with the same computational effort.

There is also a second-order correction technique due to MacCormack 8'5 8 .

The two equations for this predictor-corrector technique are

f(WJ) = f(Wl) + h(W4,r j ) Ax,
(48)

where W is the first-order intermediate result of the first step by forward
differencing and W is the final second-order solution from the second step by
backward differencing. This scheme is infrequently used in this study, because
it require. more computations per step without increasing the accuracy.

A second-order correction scheme would not normally be used with a

first-order random-choice method, because there is no increase in accuracy to
be expected. However, in some cases numerical noise can be reduced, and this
can be advantageous and justify its use. This is not the case in the present
investigation.

It is worthwhile mentioning here that the introduction of an operator-
splitting technique in the solution of axisymmetric-flow problems contributes
numerical error. The technique gives accurate results only when the correction
for the inhomogeneous term is relatively small. In axisymmetric flows for which
the radius r includes zero, the correction, because of the 1/r factor in h(W,r),
becomes unduly large and is therefore inaccurate. Hence, numerical results for
some parts of axisymmetric flow fields which include small values of radial dis-
tance should not be expected to be computed accurately. Furthermore, and very
importantly, parts of axisymmetric flow fields away from the center of symmetry

but which originate or depend on parts of the flow field'that include the center
of symmetry may not be as accurate as expected.

Sod 59 has suggested recently that more accurate numerical results can be

obtained with the operator-splitting technique if the value of the radius r in

the inhomogeneous term h(W,r) is computed at the sampling point, rather than at
the location of the downstream grid node. Although the computational effort of
adding this improvement is virtually negligible, most RCM codes do not include
this improvement. At large radii or numerous grid points from the origin the
improvement is, of course, inconsequential. For small radii or less than a few
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grid nodes from the origin the operator-splitting correction can then change.
However, these changes were discovered to be insignificant in the solution as a
whole, and have not been included in most of the numerical results to be given
in later chapters.

3.0 PRACTICAL METHOD OF REDUCING RANDOM-CHOICE-METHOD COMPUTATIONS

In numerical computations of planar and axisymmetric steady supersonic
flows, large portions of the flow field can be entirely free of wave motion or
have insignificant wave motion. These portions of the flow field need not be
computed in most cases, which can result in a marked reduction in computational
time with a significant saving in computational cost.

Consider the free-stream flow ahead of a planar or axisymmetric body, as
shown in Fig. 7. Because the wave emanating from the body is swept downstream
as it moves outward in the supersonic flow, free-stream conditions ahead of the
wave exist over a large portion of the flow field (labelled A in the figure).
This is particularly true when the free-stream Mach number is large. In any
case, it is rather easy and often highly beneficial in reducing computational
costs to write the computer program in such a way that computer computations
are skipped at all of these grid points for which the flow properties are simply
constant.

Now consider the flow in region C of Fig. 7, downstream of the main wave
of interest in region B. The variation in the flow properties throughout region
C is small and of little interest. If an appropriate boundary condition is used
along the dashed line shown, the flow properties in region C can be eliminated.
This termination line must be sufficiently far behind the body such that all the

important or interesting parts of the flow field are included in the numerical
computations. For planar and axisymmetric bodies one can start this line at a

radial distance equal to zero and an axial distance of approximately one-half to
one body length behind the end of the body, depending on the flow field. Then,
across this boundary during the computations the flow angle can be taken to have
a linear variation (constant gradient). Hence, the flow angle at the artificial
state to the right of this boundary 4r is given by

4j-1 = 24j - 4j+l or 4r = 24 - j+l, (49)

if the flow is above the boundary and the flow angle 4j+l is for the second grid
point inside the terminal line. This specification of 4j-l or 4r for the right
artificial state is actually equivalent to the specification of a solid boundary
with a surface slope n/2 - 24j + 4j+l or n/2 - 4j-1 somewhere between the left
and right states that straddle this terminal line. Therefore, the handling of
flow computations at this terminal line reduces to the simple case of applying
the previous solid-body or rigid-wall boundary condition with a body slope given
by n/2 - 24j + 4j+l"

As the flow field is being computed from the terminal boundary line to

the leading shock wave, this terminal line can inserted in the computations by
making it run approximately paralled to the leading shock wave. This is easily
accomplished by selecting a convenient number of grid nodes between the leading
shock wave and the terminal line. Therefore, the numerical computations for the
main outward moving wave are done in the form of a band with a constant width,
which is labelled B in Fig. 7.
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4.0 LIMITATIONS OF THE RANDOM-CHOICE METHOD

4.1 Steady Supersonic Planar Flows

The random-choice method can be applied to obtain solutions to numerous

different types of planar-flow problems (see the numerical solutions presented
in chapter 5). The only limitation is that the steady flow has to be supersonic
everywhere in the computed flow field. Hence, for flows over bodies, oblique
shock waves must normally be attached either to the leading edge of the body or
one of its protuberances. Supersonic flows around bodies with a blunt leading
edge or supersonic flows that contain 'pockets' of subsonic flow cannot, there-
fore, be computed.

It is worthwhile to note that the random-choice method cannot calculate
all supersonic flows over wedges for which the oblique shock is attached to the
leading edge, because an attached shock can still have a subsonic flow behind it
if the wedge angle is sufficiently large 60- 6 1 . Consequently, the limitation in
the application of the random-choice method for solving steady planar flows is
most properly that the flow must always be supersonic and not the criterion of

shock attachment or detachment.

4.2 Steady Supersonic Axisymmetric Flows

The random-choice method can also be used to solve many different types
of axisymmetric-flow problems. However, its application is more limited in the
case of axisymmetric flows than planar flows. Besides the obvious limitation
that the steady flow has to be supersonic everywhere within the computed flow
field, there is one additional limitation that restricts the application of the
random-choice method, and also one additional difficulty that can make the grid
spacing undesirably small.

The one additional limitation stems directly from using a first-order
random-choice method for which the planar solution is computed first and then
corrected by means of the operator-splitting technique to obtain the desired
axisymmetric-flow solution. For certain axisymmetric flow conditions which
involve relatively large flow-deflection or turning angles through shock waves,
the corresponding planar solution does not always exist. Hence, there is no
planar solution in such cases to correct to obtain the desired axisymmetric-flow
solution. As a result of this unfortunate limitation, axisymmetric flows with
such large flow deflections cannot be computed, or flow fields cannot be fully
computed.

This limitation is well illustrated by a plot of the maximum possible
deflection angle through an oblique shock that produces a sonic flow behind it
and is attached to a wedge and a cone. Such a plot as shown in Fig. 8 can be
generated from the tables and charts in the NASA Ames hanlbook61 . The maximum
deflection angle for the case of the cone is substantially larger than that for
the wedge. Consequently, the random-choice method cannot solve a planar Riemann
problem for which the maximum deflection angle lies between the results for the
cone and wedge, because the oblique shock wave for the case of the wedge would
produce a subsonic flow downstream of the shock. For these conditions the shock
would normally be detached from the wedge, but it could be also attached with a
subsonic flow, as mentioned previously.

The previously documented limitation can be rather restrictive for the
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computations of certain types of axisymmetric-flow problems. For example, most

military projectiles that are designed for flight Mach numbers between 1 and 3

have noses with semivertex angles 0 which are between the maximum deflection

angles of the cone and wedge. Furthermore, they generally have small but abrupt
protuberances in their body shape which produce large flow deflections. Hence,

the flow fields around such bodies cannot be computed practically by the present
first-order random-choice method. This is rather unfortunate because a lot good

experimental data exists for military projectiles2 4 ,5 1- 5 4 , which would have been

extremely useful in verifying the capability of the present random-choice method

for computing axisymmetric-flow fields.

The additional difficulty with sometimes having to use an undesirably

fine grid mesh when computing axisymmetric-fl.)w fields (as compared to planar

ones) is now described. This difficultly arises only when the flow field is

computed at the origin (i.e., r = 0 or r 7 0), and is connected directly with

the use of a first-order random-choice method for which the planar solution is

computed first and then corrected by means of the operator-splitting technique

to obtain the axisymmetric-flow solution. In this case the correction by the

operator-splitting technique for a small radius is large and inaccurate, as

mentioned at the end of the previous section.

In order to limit this type of inaccuracy to a smaller portion of the

flow field near the origin, a finer mesh is required, because this type of

error typically diminishes from cell to cell farther from the origin (and not

just on increasing the radial distance). The inaccuracy will generally become
negligible after a certain number of cells away from the origin (e.g., twenty).
This is the main reason why a finer mesh will help limit the spatial extent of

the error. However, a finer mesh results in an increase in computational time

and cost.

The discussion of a particular example can helpful. Consider the steady

supersonic flow over the axisymmetric body shown in Fig. 7. The correction by

the operator-splitting technique will give inaccurate flow properties over the

entire body and also away from it if too few cells are used (e.g., 10 cells per

body radius). If more cells are used the flow properties will be inaccurate in

only the vicinity of the nose and tail of the body. Because of the inaccurately

computed flow field in these two regions, the formation of both the front and
rear shocks and their subsequent placement in the flow field will be affected.

If this type of error extends outward for about 20 cells, then 100 cells per

body radius, say, would be needed to try limit this inaccurate region to only a

small part of the flow field. The use of 100 cells per body radius is generally
undesirably large for solving such problems, as compared to as few as 20 cells

per body radius for a wedge flow for example. This example helps highlight the

unfortunate problem of being forced to resort to an undesirably fine mesh to

retain computational accuracy when employing the present random-choice method

for solving certain axisymmetric-flow problems that include the origin in the

flow-field solution.

5.0 NUMERICAL RESULTS AND DISCUSSION

Numerical results from the random-choice method (RCM) are presented and

discussed for many different planar and axisymmetric flow problems, in order to
illustrate the capability and flexibility of the RCM. Results are given first

for planar flows and then for axisymmetric flows. In each case the solution to

the simplest problem is presented first, followed by problems with increasing
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complexity. In some cases theoretical results are also presented to verify the
numerical or RCM results. Furthermore, for each problem the flow is taken to

be that a perfect diatomic gas or perfect air having a specific-heat ratio of

7/5 or 1.40.

5.1 Steady Supersonic Planar Flows

5.1.1 Flow over a compressive corner

The first problem involves a uniform flow at a flow Mach number M1 equal

to 3 that encounters a compressive wedge of 30 degrees. This wedg, deflects the
flow by means of a single oblique shock wave attached to its leading edge. The
numerical results for this relatively simple problem are shown in Fig. 9, where

the theoretical oblique-shock-wave location is also depicted. The RCM and exact
solutions for the shock-wave location are in excellent agreement, although the

RCM predicts a slightly different shock angle. On the average the random posi-

tion of the shock location from the RCH is correct, within numerical error. The
RCM and exact solutions for the uniform flow properties behind or downstream of

the oblique shock are in perfect agreement, as should be expected of the RCM

for this simple problem. The location of the wedge surface in the RCM computa-

tions is also shown (for interest). Note that the RCM results were calculated
with a grid of 100 nodes in the lateral (y) direction and 100 in the longitudi-

nal (x) direction. However, only every eighth grid node in the longitudinal

direction is shown, and this number is indicated in the inset as RCM (8).

5.1.2 Flow over an expansive corner

The second problem also involves an initially uniform flow, but at a

flow Mach number M1 equal to 2 over an expansive corner with an angle of 30.53

degrees. The flow is turned by a centered or Prandtl-Meyer rarefaction wave

that emanates from the sharp corner, as depicted in Fig. 10a. The numerical
(RCM) and exact results for the locations of the head and tail of the expansion

fan are shown in the figure to be in excellent agreement. Again, the RCM and
exact results for the flow behind the rarefaction wave are in perfect agree-
ment, as should be expected for this simple problem. Note that the numerical

results have been computed with a grid with 100 nodes in the y direction and

100 nodes in the x direction, but results are given for only every eighth node

in the figure.

RCM and exact results for spatial distributions of the flow properties

through the rarefaction-wave fan are shown in Figs. 10b and 10c. Profiles in
the longitudinal direction x (along the dashed horizontal line in Fig. 10a) are

given first in Fig. 10b and profiles in the lateral direction y (dashed vertical

line in Fig. 10a) appear last. In each case the agreement between the RCM and

exact results is excellent, mainly because a sufficient nmber of nodes was used

to guarantee good agreement.

5.1.3 Gradual compressive corner that aives a focussed compression wave

The problem in this case is the turning of an initially uniform steady

supersonic flow by a contoured compressive corner that produces a focussed
compression wave which results in an oblique shock wavc (see Figs. lla to 11d).

This type of problem has recently been studied with an approximate analysis by
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Emanuel 62 -63 . The focal point of the compression wave is the origin of the
primary oblique shock wave, a slip stream (dashed line) that separates the flow
through the shock wave from the isentropic flow through the oblique compression
wave, and a weak secondary disturbance that can be either an oblique shock or a
Prandtl-Meyer rarefaction wave, depending on the initial flow conditions and
final wall angle. The secondary wave moves outward from the focal point and
subsequently reflects first from the wedge surface, then interacts with the slip
stream and eventually overtakes the primary shock wave. The free-stream flow
Mach numbers M1 for the four sets of numerical results presented in Figs. 11a
to ld are 1.3, 1.64, 2.0, to 4.0, respectively, as indicated in the figures.
These initial conditions correspond exactly to some of those used in Emanuel's
investigations. Note that the flow Mach number M and pressure ratio P = p/p1
are indicated for various flow regions in the four figures. M1 and pl are the
initial or free-stream conditions.

The contoured boundary surface to produce the focussed compression wave
is not a known function, but has to be determined for the computations6 2 . In
the present study it was generated numerically with the RCM. The flow is first
reversed so that it goes through a centered Prandtl-Meyer expansion wave (e.g.,
from M = 1.178 to M1 = 1.64 in Fig. 11b). This expansion flow is computed and
these computations include tracing a stream line at some reasonable distance
away from the corner. This line then becomes the contoured boundary surface
for the computations of the reverse flow through the focussed compression wave.

The graphical results shown in Figs. 11a to 11d were constructed from
the numerical or RCM results, which used a rather fine grid of 200 nodes in the
y direction. The number of nodes in the x direction varied, being 574, 539, 496
and 260 for Figs. Ila to 11d, respectively. None of the results in the figures
are theoretical, although exact results could have been obtained by employing
the method of characteristics and RankIne-Hugoniot equations, and approximate
predictions are available also from the work of Emanuel 6 2 - 6 3 . Note that the
fan of characteristics for the focussed compression wave has been constructed
as straight lines, as would occur for the theoretical solution of a focussed
compression wave. The flow properties inside the fan (such as the pressure,
density, flow Mach number, and flow angle) were then checked to see if they
were constant along these straight lines. They were indeed very close to being
constant along these lines, showing that the lines are indeed characteristic
lines. It was also found that the focal point was well defined in a very small
region of space (shown as a solid dot), corresponding to an area about the size
of 4AxAy. The numerical error in the constancy of flow properties along the
characteristic lines and in defining the focal point is small because of the
fine grid used in the computations.

Some of the numerical results, such as the oblique shock angle, were
compared to those from the analyses of Emanue1 62- 63 , and the agreement was very
good, provided that his weak shock solutions wc,re used. Such comparisons are
not presented here, mainly because his analysis is not exact and any small
differences in the comparisons are therefore not known to result from the RCM
or his approximate solution.

5.1.4 Flow over a symmetric double-wedne

Numerical computations of a supersonic flow (M1 = 2) over a double wedge
are presented in Fig. 12a and 12b. This symmetric double wedge is 1 unit long,
has a thickness of 0.0525 units, and its semivertex angle is 6 degrees. The
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number of grid points was 100 in the y direction and 220 in the x direction.

The wave diagram appears first in Fig. 12a. It shows the trajectories
of both the front and rear shocks from the leading and trailing edges of double
wedge, as well as showing clearly the spreading of the expansion fan emanating
from the double-wedge corner formed by the junction of the bases of the wedges.
This fan eventually expands such that its head overtakes the front shock and the
tail falls into the rear shock, after which the interaction of the shocks and
expansion wave continually causes the strengths of both shocks and the expansion
wave to diminish. The flow Mach number M and pressure ratio P (p/pl) in regions
having a constant states are also indicated.

The exact solution for the trajectories of the front and rear shocks and
the head and tail of the expansion wave, prior to their interaction, are shown
for comparison. The agreement in general is very good, although the front shock
trajectory from the RCM lies slightly out front of that from the exact solution.
The agreement can be improved, of course, by using more grid points.

Pressure distributions through the entire wave produced by the double
wedge are shown in Fig. 12b at different lateral distances away from the double
wedge. These profiles show clearly how the wave from the double wedge evolves
into a decaying N-shaped wave at larger lateral distances.

5.1.5 Flows in duct inlets

Supersonic flows into ducts of changing cross-section always involve
oblique shock and rarefaction waves. Numerical solutions for seven duct inlet
problems are now given and discussed (see Figs. 13 to 19). For these solutions
the number of grid points in the y direction was 100 for the first three cases
and 150 for the remainder, whereas the number of grid nodes in the x direction
was 350, 300, 500, 360, 290, 350, and 350 for the seven cases. In all cases
the wave diagrams are presented, along with numerical results for the flow Mach
number and pressure in regions of constant state. Further, exact solutions are
given for the trajectories of oblique shock waves, rarefaction-wave heads and
tails, and slip streams. In the seven cases the RCM and exact solutions are in
good agreement, and this agreement can be improved by using more grid nodes.

The first case is for a uniform free-stream flow (M1 = 2.0) entering a
duct inlet for which the bottom duct surface is a compressive wedge of 6 degrees
and the upper duct surface is a flat plate parallel to the free-stream flow (see
Fig. 13). The oblique shock wave emanating from the lower wedge crisscrosses
the duct four times as it reflects alternately from the upper and lower duct
walls. Its last reflection from the bottom surface is a Mach wave, because at
this last reflection point the wedge surface is simply terminated by a corner
to make the duct area constant thereafter.

The second case is similar to the first one but has two distinct dif-
ferences in the inlet-duct geometry. The bottom wedge surface with an angle of
6 degrees is no longer terminated by a corner, and the upper surface no longer
is a flat plate but instead is a compressive wedge of 2 degrees (see Fig. 14).
Computations of this flow field has been terminated just ahead of the second
oblique shock-wave reflection at the upper surface, because the next reflected
shock has subsonic flow behind it. Hence, any additional flow field cannot be
solved by means of the random-choice method, illustrating one of its primary
limitations that was mentioned previously.
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For the third case of an inlet-duct flow the upper duct surface is a
flat plate aligned with the free-stream flow (M1 = 2.0) and the lower duct sur-
face is also a flat plate but with an expansive corner at the leading edge (see
Fig. 15). In this case a Prandtl-Meyer expansion wave emanates from this sharp
corner and continues to spread as it crisscrosses the duct through reflections
from the upper and lower surfaces. Note that in this case the flow is expanded
to a lower pressure and higher Mach number by the crisscrossing rarefaction wave
such that it adjusts to the larger flow area in the duct. In the first two
cases the flow was compressed to a higher pressure and lower Mach number by the
crisscrossing shock wave in the process of adjusting the flow to the smaller
duct area.

In the fourth case the upper and lower surfaces of the inlet duct are
both compressive wedges (Fig. 16). The upper wedge has an angle of 6 degrees
and the lower one has an angle of only 3 degrees. In this case oblique shock
waves originate from the leading edges of the wedges and crisscross the duct.
Their interactions produce slip streams, and the subsequent interaction of the
oblique shock waves and slip streams produce additional weak reflected waves.
In all cases the flow properties in various regions of constant states can be
determined accurately to machine precision, although the boundaries of these
regions are less accurate, within numerical error.

The fifth case is similar to the last one with two compressive wedges.

In this case, however, the compressive wedges are both 6 degrees and the two
oblique shock waves that originate at their leading edges therefore have the
same strength (Fig. 17). Consequently, their subsequent interactions before
and after reflecting at the side walls produce slip streams with identical flow
properties on each side. Hence, slip streams do not appear in the figure.

In 'the sixth case the upper surface of the inlet duct is an expansive
wedge of 2 degrees and the lower surface is a compressive wedge of 6 degrees
(see Fig. 18). The main features of this flow are the interaction of the two
oblique shock and rarefaction waves which produce a slip stream of finite width,
that is a slip region. Such regions are routinely handled by the RCM.

The seventh and final case is for the supersonic flow in a duct inlet
consisting of two expansive wedges, one of 1 degree for the upper surface and
the other of 2 degrees for the lower surface (Fig. 19). In this case the main
features are two Prandtl-Meyer expansion waves that emanate from the two sharp
expansive corners and crisscross the duct. A slip stream or region from the
interaction of the two rarefaction waves does not appear because it does not
exist for such an isentropic flow.

5.1.6 Flow over a parabolic shaped airfoil

Numerical computations were done for a supersonic flow (M1 = 2.0) over

a parabolic shaped airfoil with an arbitrary length L and maximum thickness to
length ratio t/L of 0.10. The symmetric airfoil shape is given by the equation

yb/L = 2(t/L)[x/L - (x/L)2 ]. For this particular case the trajectories of the
front and rear shock waves look like those sLetched in Fig. 7, and overpressure

signatures as a function of longitudinal distance (x) are presented in Fig. 20.
The first signature is for the overpressure (p-pl)/pl along the airfoil surface,
and the second, third, and fourth overpressure signatures are at lateral distan-
ces (y) from the airfoil of one, ten, and one hundred body thicknesses. (These
distances are indicated in the figure by y = It, lOt, and 100t.)
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The evolution of the wave with lateral distance into an N shape is
readily apparent. One can also observe that the wave is decreasing nonlinearly

in amplitude and simultaneously stretching. The peak overpressure decays almost
as y-3/ 2 at larger lateral distances, in direct areement with nonlinear acoustic
or aerodynamic theory for weak but finite-amplitude waves (with nonlinear wave
steepening effects).64 Note that linear aerodynamic theory would predict that
the wave amplitude and length would simply be constant with increasing lateral
distance.

The computations for the parabolic shaped airfoil were done initially
for the flow around the airfoil (0 < y ( 1.9) with 190 grid nodes. Then the
computations were continued with a coarser mesh containing only every second
point, leaving only about one hundred grid nodes in the vertical direction
through the outward moving wave, as described in chapter 3. The first three
overpressure signatures were computed in this manner, and the number of nodes
was sufficient to ensure that these signatures are of high quality. For the
fourth one, the computations were redone with a much coarser mesh, that is, 175
grid nodes in the range 0 < y < 3.5. Then the computations were continued with
an even coarser mesh containing only every fifth point, thereby leaving only
about forty grid nodes in the vertical direction. This is why the quality of
the last signature is not quite as good as the previous three.

5.1.7 Free-iet flows from a slot

Two sets of RCM computations have been completed for supersonic streams
that issue from a slot into a surrounding quiescent fluid of constant pressure
(see Figs. 21 and 22). In both cases the flow prior to emerging from the slot
with parallel walls was uniform. The resulting free-jet flows differ markedly
in structure mainly because the first free jet (Fig. 21) has an initially higher
pressure than that of the surrounding fluid and the other free jet (Fig. 22) has
a lower pressure. In both cases only the lower half of the free jet has been
computed by the RCM; the upper symmetric half has been added as dashed lines for
completeness. The flow Mach number M and pressure ratio P (p/pl) are also shown
for various regions of constant state.

In the first case of a free-jet flow from the slot the initial Mach num-
ber M1 is 1.40 and the ratio of the quiescent fluid pressure to that initially
in the flow in the slot is 0.749 (Fig. 21). In these numerical results it can
be readily seen that symmetric rarefaction waves emanate from the slot corners
and expand the flow before they eventually reflect at the jet boundaries and
form compression waves. These compression waves then compress the free jet as
they come to a focus, eventually back to the original flow conditions and cross-
sectional area at the slot (within numerical error). In the case of perfectly
accurate numerical computations (no numerical error), this process would be
repeated indefinitely for subsequent free-jet lobes.

One measure of the accuracy of the RCM for this first free-jet computa-
tion is the degree of focussing of the compression waves at the end of the first
lobe. Although the RCM does not produce a perfect focal point, the focus was
found to be within an area equal to 4AxAy, which is highly commendable of the
RCM method. Another measure of the accuracy is the straightness of the head and
tails of the computed rarefaction and compression waves. These are indeed quite
straight because sufficient grid points were used in the computations to ensure
this. For example, the number of grid points was 70 for half of the free jet
in the y direction and 350 in the x direction.

2S



For the second case of a free-jet flow the initial Mach number M1 is
1.60 and the ratio of the quiescent fluid pressure to that initially in the
flow in the slot is 1.344 (Fig. 22). In these numerical results it can be seen
readily that symmetric oblique shock waves emanate from the slot corners and
compress the jet flow before they eventually reflect at the jet boundaries as
Prandtl-Meyer expansion fans. From this reflection point onward, the free jet
is of the same structure as for the previous case. Successive lobes containing
alternate expansion and compression waves are simply repeated, as if a slot was
located at the end of the shock-wave portion with this contracted jet area and
initial jet flow properties of M = 1.166 and P = 1.822. As for the last case,
the RCM is very successful in obtaining these numerical results. Note that the
number of grid points in the y direction is 50 for the one-half of the free jet
and 425 in the x direction.

5.2 Steady Supersonic Axisymmetric Flows

5.2.1 Flow over a cone

The first problem involves a uniform flow at a flow Mach number M1 equal
to 2.5787 that encounters an infinitely long cone with a semivertex angle 9 c of
15 degrees. The cone axis and flow are aligned (Fig. 23). The flow is partly
turned suddenly through an oblique shock and then turned gradually thereafter,
such that the flow eventually becomes tangent to the cone surface. Furthermore,
from theoretical considerations it is well known that the shock angle a. is con-
stant and the flow properties along radial lines with angle 0 between the shock
and cone surface are also constant.

5 ,14- 1 6 ,60- 6 1

The flow field was computed with a square mesh (Ar = Ax) and 200 grid
nodes in the radial (r) direction. RCM computed flow properties for the density
ratio P/P1, pressure ratio P/Pl, flow Mach number M, and flow angle are shown
in Figs. 24a, 24b, and 24c, where they are compared to exact tabular solutions 16

(actually very accurate numerical solutions of ordinary differential equations).
These results are plotted as a function of the angle 0 from the axis of the cone
to a radial line in the flow field, at three different distances of 80, 160, and
320 grid nodes from the cone apex. Note that the cone surface lies at an angle
of 15 degrees and the exact shock location is 27.85 degrees.

The agreement between the RCM and exact results is very good in general.
The agreement becomes better for results farther downstream, that is after more
grid nodes in the axial direction. One reason for this is that the number of
nodes in the radial direction through the RCM computed flow field increases with
distance from the cone apex. The data in Fig. 24b has twice as many grid nodes
as those given in Fig. 24a, and the data in Fig. 24c has twice as many as those
in given Fig. 24b. A second reason is that the flow-field data computed farther
away from the cone axis is more accurate by the RCM, because the correction of
the planar-flow solution to obtain the axi-ymmetric-flow solution becomes smal-
ler and therefore more accurate.

The axisymmetric--flow solution in the vicinity of the cone apex can be
highly inaccurate, because the operator-splitting correction near the cone axis
is large and incorrect. The pressure ratio across the shock can be in error by
as much as 70%. However, such perturbations were found to decay with radial
distance to almost negligible size by about 25 grid zones away from the axis of
the cone. This gives a good indication of the size of the flow field affected,
and also how many grid points are required in this and other axisymmetric-flow
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problems involving cone-tipped and pointed bodies, to make sure that this inac-

curate region is of negligible size compared to the entire flow field.

A close inspection of the RCM and exact results in Figs. 24a to 24c will

show that the oblique shock location from the RCM is out front (larger 0) of the
exact location. The difference is largest for the data given in Fig. 24a, or

nearer the cone apex, and becomes smaller for data given in Figs. 24b and 2 4c,

or as the distance or number of grid nodes from the cone axis increases. The

reasons for this difference in shock location are two-fold. Firstly, because

the operator-splitting correction can result in flow-field pressures and oblique

shock-wave strengths that are too high in the vicinity of the cone apex, the RCM
predicted propagation velocity of the oblique shock wave is too high near the

cone axis. Secondly, the propagation of the shock depends to a large extent on

the random-sampling procedure. This procedure, which assigns some state to the

next grid point downstream, is always completed on the intermediate planar solu-

tion, and then this downstream state is corrected to give the final solution for

axisymmetric flow. Because the oblique shock is always stronger for a planar

flow than an axisymmetric one, the sampling procedure on the intermediate planar

flow solution therefore propagates the oblique shock wave outwards too quickly,

especially in the vicinity of the cone apex. This effect decays with increasing

radial distance, but, unfortunately, it usually takes 40 to 50 grid nodes in the

radial direction before this effect disappears.

The computation of an oblique shock flow fields over a cone is an excel-

lent test of the capability of the RCM for predicting axisymmetic-flow fields,

and also for testing out an initial computer program.

5.2.2 Flow over a cone-cylinder

Numerical computations were done for the classical case of the flow over

an axisymmetric body with a conical nose on an infinite-length cylinder. The

semivertex angle of the conical nose was 11.5 degrees. From these computations

the pressure coefficient C = 2(p - pl)/PlU2 on the surface of the body was

obtained, where p is the static pressure on the body surface. These RCM results

are compared to an exact calculation 6 5 (method of characteristics) in Fig. 25.

The RCM and exact results are in good agreement, with some scatter in

the RCM results near the cone apex. This scatter or inaccuracy is due mainly

to the inaccuracy of the operator-splitting correction near the cone axis, both

of which were just discussed for the previous example. Note that if fewer grid

points than 1100 in the x direction were utilized in the RCM solution, the RCM

results would then become worse near the cone apex.

5.2.3 Flow over a parabolic-nosed cylinder

Numerical results were obtained for the flow over a cylindrical body

with a parabolic nose, for three different free-stream Mach numbers of 2.0, 3.0,

and 3.92. The radius R of the infinite length cylinder is 0.5 arbitrary units,

and the equation for its parabolic nose having a length L of 3.8 units is given
by rb/L = 2(R/L)[(x/L) - (x/L)2 ]. Once again, the pressure coefficient from the

RCM data is compared to the exact results (see Figs. 26a, 26b, and 26c), and the

exact results are from the method of characteristics6 5 . For the three different

free-stream Mach numbers the agreement between the RCM and exact results is, in

general, good, just as in the previous example. As in the previous case, the
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RCM results are less accurate nearer to the apex of the parabolic nose, for the
same reasons given previously. In each case the number of grid nodes in the x
direction was 840, and the mesh used was square (i.e., Ax = Ar).

5.2.4 Flow over a symmetric double-cone

The RCM was used to compute the flow field for the supersonic flow over
a symmetric double-cone. The cones which were joined at their common bases had
a semivertex angle of 10 degrees, and the free-stream Mach number M1 was 2.075.
For the computations a square mesh was employed, having 100 grid nodes per unit
length of the double-cone.

The RCM solution in terms of axial distributions of pressure (P = p/p1 )

at different radial distances from the body are shown in Fig. 27. These results
show clearly how the double-cone produces an outwards moving wave that changes
in shape and eventually evolves into an N-shaped wave. Furthermore, the numeri-
cal results also illustrate the capability of the RCM for obtaining solutions to
such problems.

A few comments are worth making regarding the numerical solution. In
the first few pressure distributions near the double-cone one can see clearly
the initial pressure ramp just behind the front shock (which originates from
the conical solution). It is continually being eroded by the rarefaction wave
that emanates from expansive corner, as it overtakes the front shock, afterwhich
the rarefaction wave interacts with the front shock wave and continually reduces
its strength with increasing radial distance.

The flow right next to the surface of the double-cone must follow the

surface. When this flow turns suddenly at the nose and tail of the body the
front and rear shocks are formed. A little farther away from the body and just
after the front shock, the flow on turning suddenly through the front shock

still needs to be turned gradually but further to align itself with the body
surface. This is the reason for the pressure ramp following the front shock.
The rarefaction wave signals the presence of the corner and turns the flow in an
attempt to realign it with the surface of the second cone. In the process it
overturns the flow toward the surface, and the flow then has to gradually turn
away from the surface. This produces the compression wave that is clearly seen
in the first pressure profile just ahead of the rear shock. With increasing
radial distance from the body, this compression wave steepens and is overtaken
by the rear shock. This combining of the two waves is the reason why the rear
shock wave is temporarily stronger than the front shock. Farther away from the
body the two shock waves become equal in strength and the change in pressure
between them becomes linear.

In the computations for the results given in Fig. 27, the free-stream

flow field ahead of the front shock was not computed (see chapter 3). This
reduces the computational time and cost by about 10%. However, the entire flow
field behind the rear shock was computed, in spite of the fact that it is of

little interest. Most of it does not need to be computed and can be eliminated
as described in chapter 3 to reduce computational time and cost. The results of
additional computations for which this lower right part of the flow field was
not included are presented in Fig. 28. The computed results are, of course, in
perfect agreement with those in Fig. 27, and the extra saving in computational

time and cost is about 60%. This illustrates clearly the benefit to be gained
by eliminating unnecessary computations of certain parts of the flow field.
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The first pressure profile nearest the double-cone in Figs. 27 and 28
contain some jaggedness. This is due to inaccuracies in the operator-splitting
correction near the double-cone axis for axisymmetric-flow computations. These
errors can be reduced, of course, by increasing the number of grid nodes in the
RCM computations, especially for the initial flow field near the double-cone.
To illustrate this improvement, the initial flow field in the region contained
by the lines r = 1.3 and x = 2.0 was computed first with twice as many grid
nodes (200 nodes per unit body length). Then the flow field containing just the
outward moving wave was continued outward with only half this number (100 nodes
per unit body length), because more grid nodes are not needed farther away from
the body. The new results are shown in Fig. 29. The improvement in these RCM
results over the previous ones in Fig. 28 is quite obvious, but the extra compu-
tational time and cost were 40%.

5.2.5 Flow over a parablolic-spindle shaped body

Numerical computations were done for a supersonic flow (M1 = 2.0) over
a parabolic-spindle shaped body with an arbitrary length L and maximum diameter
to length ratio D/L of 0.10. The shape of the axisymmetric body is given by the
equation rb/L = 2(D/L)[x/L - (x/L)2]. For this example the trajectories of the
front and rear shock waves look like those sketched in Fig. 7, and overpressure
signatures as a function of axial distance (x) are presented in Fig. 30. The
three signatures are for the overpressure (p-pl)/Pl at radial distances (r) from
the body of one, ten, and one hundred body diameters.

These numerical results show how the wave evolves with radial distance
and decays into an N shape. The first two signatures are in good agreement with
the prediction of approximate but accurate theory by Lighthill and Whitham (see
Ref. 24). The amplitude of the third signature is too high by a factor of about
two and the negative overpressure phase is too large. These are simply due to
round-off errors from multiple single-precision computations. For example, the
radial flow velocity v at large radii is very small such that the flow angle
measured from the radial axis loses significant digits and becomes virtually
n/2. This particular problem could be removed easily by simply redefining the
flow angle to be measured more physically from the axial direction. However,
this problem does illustrate the important point that numerical results can
become saturated with roundoff errors in the case of weak waves.

Note that the computations for the parabolic-spindle body were done
initially for the flow around the body (0 < r < 0.92 and 0 < x < 1.5) with 920
grid nodes in the radial direction and 1500 in the axial direction. Then the
computations were continued with a coarser mesh containing only every fifth
point, leaving only 185 grid nodes in the radial direction through the outward
moving wave, as described in chapter 3.

5.2.6 Free-jet flows from a circular orifice

The first numerical computations of an axisymmetric free-jet flow are
for the case of an exit flow Mach number M1 of 1.2 and a pressure ratio P (p/pl)
of unity. Because the pressure of the fluid outside the free jet is only one
tenth of that in the jet at the exit, the free jet expands on emerging from the
orifice. Numerical results showing this expansion by tracing the jet boundary
are presented in Fig. 31. Also shown is the trajectory if the oblique shock
wave, commonly called the barrel shock, which starts as a coalescence of Mach
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wave just downstream of the orifice and grows in strength up to the Mach disc.
The Mach disc, and the Mach reflection near the periphery of the Mach disc, are
sketched in the diagram, because they cannot be computed by the RCM because the
flows behind them are subsonic.

The properties of the flow inside the free jet can be studied easily
with the RCM. In order to illustrate some of the features, pressure and Mach
number distributions with radial distance are included as insets, one in the top
diagram and the other in the bottom one. The changes in pressure and flow Mach
number from inside the barrel shock to outside the free-jet boundary are, for
example, rather pronounced.

The second numerical computations of an axisymmetric free-jet flow are
for the case of an exit flow Mach number M1 of 3.0 and a pressure ratio P (P/Pl)
of unity. Because the pressure of the fluid outside the free jet is now twice
as high as that in the jet at the exit, the free jet contracts on emerging from

the orifice, as shown in Fig. 32. Besides the contracting free-jet boundary the
trajectory of the inward moving oblique shock wave is presented. Inside this
oblique shock the flow properties are simply the exit conditions. Across this
shock the flow properties change drastically, as shown by the insets of pressure
and flow Mach number, and then more slowly to the jet boundary.

The inward moving oblique shock eventually nears the axis of symmetry,

where it is reflected. Depending on the flow conditions the reflection can be
either a regular or Mach reflection. In the present case it appears to be a
regular reflection, although the Mach stem could exist and be rather small. The
reflected wave is simply sketched in the diagram, because the flow becomes sub-
sonic and the computations could not be continued.

Note that in solving the two free-jet flows, only 51 grid points were

used in the radial direction to cover the radius of the orifice in the first
problem and 101 were used for the second example.

6.0 CONCLUDING REMARKS

A random-choice method has been presented in detail for obtaining fairly
practical and efficient numerical solutions for both two-dimensional planar and
axisymmetric steady supersonic flows. Innovative techniques were introduced for

solving the Riemann problem iteratively, naturally handling boundary conditions
at body and free-jet surfaces, and computing only certain parts of flow fields
of interest. Many interesting and practical numerical solutions were also given
for a variety of different planar- and axisymmetric-flow problems, and compared,
in most cases, with known analytical and numerical solutions, in order to demon-

strate the applicability, capability, and limitations of this new random-choice

method.

For solving planar-flow problems the random-choice method is limited
only in that the flow must be everywhere supersonic (see section 4.1). Outside
of this single but restrictive limitation the method is highly successful in
predicting planar supersonic flow fields both efficiently and accurately. For

the solution of axisymmetric-flow problems the random-choice method is further
limited in that the flow must be supersonic when solving the intermediate planar
Riemann problem (section 4.2), before the operator-splitting correction gives

the final axisymmetric results. This can be a severe limitation in that flows
over most military projectiles cannot be solved by the present random-choice
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method. It is precisely these limitations that make the random-choice method
for solving two-dimensional steady planar and axisymmetric supersonic flows
less extensive and therefore less useful in applications than its sequel for
solving one-dimensional nonstationary flows (for which the latter has no such
similar limitations).

The problem of having to resort to an undesirably fine grid mesh in
order to maintain numerical accuracy when solving axisymmetric-flow problems
that include the axis of symmetry is the direct result of inaccuracies stemming
from the application of the operator-splitting technique, as mentioned earlier
in section 4.2, and which also became obvious from numerical results presented
in section 5.2.

However, the time to solve planar and axisymmetric flow problems with
the random-choice method is not unreasonable. Typical times to solve a single
Riemann problem are 13 ms for the planar case and 15 ms for the axisymmetric
case. The additional 15% is due to additional calculations to include the
operator-splitting correction. These times are calculated by taking the total
time to execute a job divided by the total number of Riemann problems. Further,
these times are given for the UTIAS computer, which is Perkin-Elmer 32-bit mini-
computer with a 3250 central processor. Such computation times would be lower
by a factor of about four or five for a I1M-3033 or CDC-6600 machine.

Future work might involve the development of a second-order random-
choice method for solving axisymmetric-flow problems, one that does not require
the operator-splitting technique. In other words, the Riemann problem for an
axisymmetric flow would be solved directly, instead of the present first-order
indirect method of first solving the planar Riemann problem and then utilizing
the operator-splitting technique to correct this intermediate result to get the
axisymmetric-flow solution. The advantages of this second-order method would be
two-fold. Firstly, the operator-splitting technique would be eliminated along
with its inaccurate correction if the radius is small or near zero. This means
that a coarser mesh could be used in the computations, although each cell would
require more computation time. Secondly, and more importantly, axisymmetric-
flow problems that are unsolvable by the present first-order method, because a
solution to the planar Riemann problem did not exist, will be able to be solved.
The only limitation would be that the flow must be everywhere supersonic. Then
the second-order method would be able to provide axisymmetric supersonic flow
solutions for most military projectiles, for example, but still not over blunt
bodies.

7.0 REFERENCES

1. J. S. Isenberg and C. C. Lin, 'The Method of Characteristics in Compressible
Flow, part I (Steady Supersonic Flow)', USAF AMC Technical Report No. F-TR-
1137A-ND, 1947.

2. R. F. Clippinger, J. H. Giese, and W. C. Carter, 'Tables of Supersonic Flows
About Cone Cylinders, part I: Surface Data', BRL Report No. 729, United
States Army Ballistic Research Laboratories, Aberdeen Proving Ground, Mary-
land, 1950.

3. A. Ferri, 'General Theory of High-Speed Aerodynamics', W. R. Sears (Ed.),
'Section G: The Method of Characteristics', Princeton University Press,

Princeton, New Jersey, 1954.

34



4. A. H. Shapiro, 'The Dynamics and Thermodynamics of Compressible Fluid Flow',
Vol. II, pp. 676-696, The Ronald Press Company, New York, 1954.

5. H. W. Liepmann and A. Roshko, 'Elements of Gasdynamics', Galcit Aeronautical
Series, John Wiley and Sons, New York, 1957.

6. P. Kutler and H. Lomax, 'A Systematic Development of the Supersonic Flow
Fields Over and Behind Wings and Wing-Body Configurations Using a Shock-
Capturing Finite-Difference Approach', AIAA Paper No. 71-99, 1971.

7. G. A. Sod, 'A Survey of Several Finite Difference Methods for Systems of
Nonlinear Hyperbolic Conservation Laws', J. Comp. Phys., Vol. 27, p. 1, 1978.

8. D. A. Anderson, J. C. Tannehill, and R. H. Pletcher, 'Computational Fluid
Mechanics and Heat Transfer', McGraw-Hill Book Company, New York, 1984.

9. J. von Neumann and R. D. Richtmyer, 'A Method for the Numerical Calculation
of Hydrodynamic Shocks', J. Appl. Phys. Vol. 21, p. 232, 1950.

10. A. J. Baker, 'Finite Element Computational Fluid Mechanics', Hemisphere
Publishing Corporation, Washington, D. C., 1983.

11. F. H. Harlow, 'The Particle-in-Cell Computing Method for Fluid Dynamics',
Methods in Computational Physics, B. Alder, S. Fernbach, and M. Rotenberg
(Eds.), Vol. 3, pp. 319-343, Academic Press, New York, 1964.

12. M. Rich, 'A Method for Eulerian Fluid Dynamics', Report No. LAMS-2826, Los
Alamos Scientific Laboratory, Los Alamos, New Mexico. 1963.

13. R. A. Gentry, R. E. Martin, and B. J. Daly, 'An Eulerian Differencing Method
for Unsteady Compressible Flow Problems', Journal of Computational Physics,
Vol. 1, pp. 87-118, 1966.

14. G. I. Taylor and J. W. Maccoll, 'The Air Pressure on a cone Moving at High
Speed - I', Proceedings of the Royal Society of London, series A, Vol. 139,
pp. 278-311, 1933.

15. J. W. Maccoll, 'The Conical Shock Wave Formed by a Cone Moving at High
Speed', Proceedings of the Royal Society of London, series A, Vol. 159, pp.
459-472, 1937.

16. Z. Kopal (Ed.), 'Tables of Supersonic Flow Around Cones', Massachusetts
Institute of Technology, MIT Technical Report No. 1, Murray Printing
Company, Cambridge, Massachusetts, 1947.

17. Th. von Karman and N. B. Moore, 'The Resistance of Slender Bodies Moving
with Supersonic Velocities with Special Reference to Projectiles', Transac-
tions of the American Society of Mechanical Engineers, Vol. 54, pp. 303-
310, 1932.

18. M. J. Lighthill, 'Supersonic Flow Past Lodies of Revolution', Research and
Memorandum No. 2003, Aeronautical Research Council, United Kingdom, 1945.

19. M. 3. Lighthill, 'Supersonic Flow Past Slender Bodies of Revolution the

Slope of Whose Meridian Section is Discontinuous', Quarterly Journal of
Mechanics and Applied Mathematics, Vol. 1, part 1, pp. 90-102, 1948.

35



20. G. N. Ward, 'Supersonic Flow Past Slender Points Bodies', Quarterly Journal
of Mechanics and Applied Mathematics, Vol. 2, PP. 75-97, 1949.

21. G. B. Whitham, 'The Behaviour of Supersonic Flow Past a Body of Revolution,
Far From the Axis', Proceedings of the Royal Society of London, series A,
Vol. 201, No. 1064, pp. 89-109, 1950.

22. G. B. Whitham, 'The Flow Pattern of a Supersonic Projectile', Communications
on Pure and Applied Mathematics, Vol. 5, pp. 301-348, 1952.

23. M. D. Van Dyke, 'First and Second-Order Theory of Supersonic Flow Past Bod-
ies of Revolution', Journal of Aeronautical Sciences Vol. 18, pp. 161-178,
March 1951.

24. D. V. Ritzel and J. J. Gottlieb, 'The Overpressure Signature from a Super-
sonic Projectile', UTIAS Report No. 298, to be printed.

25. L. Devan, 'An Improved Second-Order Theory of Inviscid Supersonic Flow Past
Bodies of Revolution', AIAA Paper No. 80-0030, AIAA 18th Aerospace Sciences
Meeting, 14-16 January 1980, Pasadena, California.

26. J. Glimm, 'Solution in the Large for Nonlinear Hyperbolic Systems of Equa-
tions', Communications in Pure and Applied Mathematics, Vol. 18, pp. 697-
715, 1965.

27. S. K. Godunov, 'A Difference Method for Numerical Calculation Discontinuous
Solutions of Equations of Fluid Dynamics' (in Russian), Mat. Sb. 47, pp.
271-306, Moscow, 1959.

28. A. J. Chorin, 'Random Choice Solution of Hyperbolic System', Journal of
Computational Physics, Vol. 22, pp. 517-533, 1976.

29. P. Colella, 'Glimm's Method for Gas Dynamics,' Society for Industrial and
Applied Mathematics, Journal of Scientific and Statistical Computing, Vol.
3, No. 1, March 1982.

30. P. Colella, 'An Analysis of the Effect of Operator Splitting and the Samp-
ling Procedure on the Accuracy of Glimm's Method,' Report No. LBL-8874,
Lawrence Berkeley Laboratory, Physics, Computer Science and Mathematics
Division, University of California, Berkeley, California, December 1978.

31. G. A. Sod, 'A Numerical Study of a Converging Cylindrical Shock', Journal
of Fluid Mechanics, Vol. 83, pp. 785-794, 1977.

32. S. K. Fok, 'Extension of Glimm's Method to the Problem of Gas Flow in a
Duct of variable Cross-Section', Report No. LBL-12322, Lawrence Berkeley
Laboratory, Physics, Computer Science and Mathematics Division, University
of California, Berkeley, California, December 1980.

33.---.-------------- -------------------- A::. A--- -----------

Shock Wave Interaction with an Area Change,' Univeriity of Toronto Institute
for Aerospace Studies, UTIAS Report No. 268, November 1982.

34. J. Glimm, G. Marshall, and B. Plohr, 'A Generalized Riemann Problem for
Quasi-One-Dimensional Gas Flows', Advances in Applied Mathematics, Vol. 5,
No. 1, pp. 1-30, 1984.

36

i -- sm :MA



35. T. Saito and I. I. Glass, 'Application of Random Choice Method to Problems
in Gasdynamics', Progress in Aerospace Science, Vol. 21, pp. 201-247, 1984.
Also, 'Application of Random Choice Method to Problems in Shock and Detona-
tion Dynamics', UTIAS Report No. 240, University of Toronto Institute for
Aerospace Studies, Downsview, Ontario, October 1979.

36. H. Miura and I. I. Glass, 'On a Dusty Gas Shock Tube', Proceedings of the
Royal Society of London, Series A, Vol. 382, pp. 373-388, 1982. Also,
UTIAS Report No. 250, University of Toronto Institute for Aerospace
Studies, Downsview, Ontario, May 1981. Furthermore, presented at the New
York Academy of Sciences Conference on Physio-Chemical Hydrodynamics, 13-17

June 1982, New York, U.S.A.

37. H. Miura and I. I. Glass, 'On the Passage of a Shock Wave Through a Dusty-
Gas Layer', Proceedings of the Royal Society of London, Series A, Vol. 385,

pp. 85-105, 1983. Also, UTIAS Report No. 252, University of Toronto Insti-
tute for Aerospace Studies, Downsview, Ontario, January 1982.

38. T. Saito and I. I. Glass, 'Temperature Measurenents at an Implosion Focus',
Proceedings of the Royal Society of London, Vol. 384(A), pp. 217-231, 1982.
(Also UTIAS Report No. 260, December 1982.)

39. J. J. Gottlieb, 0. Igra, and T. Saito, 'Simulation of a Blast Wave With a
Constant-Area Shock Tube Containing Perforated Plates in the Driver', Pro-
ceedings of the Eighth International Symposium on Military Applications of
Blast Simulation, Vol. 2, pp. 7-1 to 7-21, sponsored by the Gruppe for Rus-
tangsdienste, AC-Laboratorium Spiez, Spiez, Switzerland, symposium held on
the 20-24 June 1983 in Spiez, Switzerland.

40. J. J. Gottlieb and T. Saito, 'An Analytical and Numerical Study of the In-
teraction of Rarefaction Waves with Area Changes in Ducts - Part 1: Area
Reductions', UTIAS Report No. 272, University of Toronto Institute for
Aerospace Studies, Downsview, Ontario, November 1983.

41. J. J. Gottlieb and 0. Igra, 'Interaction of Rarefaction Waves with Area Re-

ductions in Ducts', Journal of Fluid Mechanics, Vol. 137, pp. 287-307, De-
cember 1983.

42. H. Honma and I.I. Glass, 'Weak Spherical Shock-Wave Transitions of N-Waves
in Air with Vibrational Excitation', Proceedings of the Royal Society of
London, Series A, Vol. 391, pp. 55-83, 1984. Also, UTIAS Report No. 253,
University of Toronto Institute for Aerospace Studies, Downsview, Ontario,
1983.

43. H. Miura and I. I. Glass, 'Formation of a Shock Wave in a Dusty Gas by a
Moving Piston', UTIAS Report No. 275, University of Toronto Institute for
Aerospace Studies, Downsview, Ontario, March 1984.

AA. Miiira. T Raitn anti T_ T Cq$, 'Normal Reflection of a Shock Wave at a

Rigid Wall in a Dusty Gas', UTIAS Report No. 274, University of Toronto
Institute for Aerospace Studies, Downsview, Ontario, March 1984.

45. H. S. Murty and J. J. Gottlieb, 'Analytical and Numerical Study of the Flow
in a Shock Tube with an Area Change at the Diaphragm Section', UTIAS Tech-
nical Note No. 255, University of Toronto Institute for Aerospace Studies,
Downsview, Ontario, May 1984.

37



46. S. C. M. Lau and J. J. Gottlieb, 'Numerical Reconstruction of Part of an
Actual Blast-Wave Flow Field to Agree with Available Experimental Data',
UTIAS Technical Report No. 251, August 1984.

47. 0. Igra, J, J. Gottlieb, and T. Saito, 'An Analytical and Numerical Study
of the Interaction of Rarefaction Waves with Area Changes in Ducts - Part 2:
Area Enlargements', UTIAS Report No. 273, December 1984.

48. J. J. Gottlieb, T. Saito, and K. Y. Zhang, 'Numerical Prediction of Blast-
Wave Flows Inside and Outside the Darlington Generating Station Power House
in the Event of an Explosion at the Nearby Railroad Tracks', UTIAS Techni-
cal Note 239, University of Toronto Institute for Aerospace Studies, Downs-
view, Ontario, to be printed.

49. G. Marshall and B. Plohr, 'A Random Choice Method for Two-Dimensional Steady
Supersonic Shock Wave Diffraction Problems', Journal of Computational
Physics, Vol. 56, part 3, pp. 410-427, December 1984.

50. H. Honma, M. Wada, and K. Inomata, 'Random-Choice Solutions for Two-Dimen-
sional and Axisymmetric Supersonic Flow', ISAS Report S. P. No. 2, Institute
of Space and Astronautical Science, Proceedings of the Symposium on Mechan-
ics for Space Flight, Tokyo, Japan, March 1984.

51. D. V. Ritzel and J. J. Gottlieb, 'Measurements of Overpressure Signatures
from Supersonic Projectiles - Part I: The 106-rm HEAT Round (U)', DRES
Suffield Memorandum No. 1034, Defence Research Establishment Suffield,
Ralston, Alberta, July 1982.

52. D. V. Ritzel and J. J. Gottlieb, 'Measurements of Overpressure Signatures
from Supersonic Projectiles - Part II: The 3-inch/70 MK34 Projectile (U)',
DRES Suffield Memorandum No. 1041, Defence Research Establishment Suffield,
Ralston, Alberta, June 1982.

53. D. V. Ritzel and J. J. Gottlieb, 'Measurements of Overpressure Signatures
from Supersonic Projectiles - Part III: The 5-inch/54 MK41 Projectile (U)',
DRES Suffield Memorandum No. 1042, Defence Research Establishment Suffield,
Ralston, Alberta, June 1982.

54. D. V. Ritzel and J. J. Gottlieb, 'Measurements of Overpressure Signatures
from Supersonic Projectiles - Part IV: The 3-inch/50 MK33 Projectile (U)',
DRES Suffield Memorandum No. 1043, Defence Research Establishment Suffield,
Ralston, Alberta, June 1982.

55. De-gui Liu, Jing-gao Fei, Yong-jiang Yu, and Guang-yaung Li, 'A Compendium
of FORTRAN Algorithms', The Publishing House of the National Defence
Industry, Beijing, China, Vol. 1, pp. 354-358, 198C,.

56. Van der Corput, 'Verteilungsfunktionen', Proc. Kon. Adad. Wet., Vol. 38,
vp. 813-821 and vv. 1058-1066. Amsterdam, 1935.

57. J. M. Hammersley and D. C. Handscomb, 'Monte Carlo Methods', Methuen and
Company Limited, London, 1975.

58. R. W. MacCormack and A. J. Paullay, 'Computational Efficiency Achieved by
Time Splitting of Finite Difference Operators', AIAA Paper No. 72-154, AIAA
Tenth Aerospace Sciences Meeting, San Diego, California, 17-19 January 1972.

38

. . . . . ... .. .... .. ... . .. . . .,d L _ _ ,.._ S A



59. G. A. Sod, 'Lecture Notes in Physics', Vol. 90, pp. 492-514, Springer-
Verlag, Berlin, 1979.

60. M. J. Zucrow and J. D. Hoffman, 'Gas Dynamics', Vol. 1, John Wiley and Sons,
1976.

61. NASA Ames Research Staff, 'Equations, Tables, and Charts for Compressible
Flow', Report No. 1135 (Supercedes NACA TN 1428), NASA Ames Research Center,
Moffett Field, California.

62. G. Emanuel, 'Near-Field Analysis of Compressive Supersonic Ramp', Physics
of Fluids, Vol. 25, No. 4, pp. 1127, 1982.

63. G. Emanuel, 'Numerical Method and Results for Invisicid Supersonic Flow over
a Compressive Ramp', Computers and Fluids, Vol. 11, No. 4, pp. 367-377,
1983.

64. K. 0. Friedrichs, 'Formation and Decay of Shock Waves', Communications on
Applied Mathematics, Vol. 1, pp. 211-245, 1948.

65. N. F. Krasnov, 'Aerodynamics of Bodies of Revolution', Edited and annotated
by D. N. Morris, American Elsevier Publishing Company, New York, 1970.

39



Qj +1)Ar

1ij

j Art

-Ar

Qj - b)Ar

U -1)AX a (- .1)Ax LAx Ci +-)Ax (i + )AX

Fig. 1. Grid f or the random-choice method.



a) b)

r r

Ia 
4

Slip stream R

b

a
S

c) d)

Flow direction

r ------ -r

S

bb

Fig. 2. Four different wave patters for the Riemann problem,
composed of elemental oblique shock waves () and

Prandtl-Meyer rarefaction waves (t), and separated by

a slip stream.



a) ~ ~

Stream line

- x

Slpstream

b)

r h Slip stream

t- -

LStream line

Fig. 3. Diagram of leftward (a) and rightward (b) rarefaction
waves and the definition of various flow and wave angles.



a)

a
r

T-Stream 

line

-- - Slip stream

b)

r

s t Slip stream

S Stream line

Fig. 4. Diagram of leftward (a) and rightward (b) shock
waves and the definition of various flow angles.



r
Si

Pit P,11Mt I etwv

* ~* Slip stream

Sr Right wave

p, , M,
r9 r r?

x

Fig. 5. Riernann problem showing the left state Si
right state Sr, and the continuity of pres-
sure p * and flow angle across the slip
stream.



r + Y-,r

Left shock wave

Slip stream
r

Right rarefaction wave

r - -Ar
2a

r + Ar b

IP / Left rarefaction wave

r

listr 
eam

Right shock wave

Sr

11r( a A

x x +1 t -a

Fig. 6. Diagram showing the random sampling point P.



r

!A

SLeading B

shock wave

& Terminal line

/x

Fig. 7. Illustration of the planar or axisymmetric flow field
from a body in a supersonic flow, showing regions of
free-stream conditions (A), computed flow conditions
(B), and uncomputed flow conditions (C).

&



60

| Cone

50

Maximum
deflection ge

angle 40
40No solutions

(degrees) 3 osbe

flow solutions possible

20

10

0

1 2 3 4 5 6

Flow Mach number (ahead of the shock)

Fig. 8. Maximum deflection angle of the flow through an
oblique shock wave that produces a sonic flow
behind it (y = 7/5).



5

@ • RCM (8)

4 - Exact

/,= 6.36

2 /
"M2 =1.41

S2 M 1 = 3

1

0
01 2 3 4 5

Distance x/L (L is arbitrary)

Fig. 9. Planar flow over a compressive corner.

m MA



5

0 RCM (8)I

Exact

4I

c~ 3

2

0
0 12 3 45

Distance x/L (L is arbitrary)

Fig. 10a. Flow over an expansive corner.



RCM

-- Exact

01

0

p

3

M

2

(radians)

0 2 3 4 5

Distance x/L (L is arbitrary)

Fig. lOb. Comparison of RCM and exact solutions for the
flow over an expansive corner (y = 2.75 units).



RCM

p1

o PII

b0

3

0

2

(radians)

0

0 12 3 4 5

Distance y/L (L is arbiirary)

Fig. 10c. Comparison of RCM and exact solutions for the
flow over an expansive corner (x = 4.0 units).



5

4

S 3

Ml = .30 -1.090
=~~~ 1.0=1.311

P1 = 1.00

N -1.0915

1 M -1.092
P-1.311

N =1.091

, / /50

0 1 2 3 4 5

Distance x/L (L is arbitrary)

Fig. lla. Flow over a contoured compressive
corner (Ml = 1.30).



5-

p 4

CU) 3

Cl)
-4M= 1.64 M11' -1.150

1 1.5 P -1.926
P1 = 1.00 P - 1. 920

2 1.7

03

0 1 2 3 4 5

Distance x/L (L is arbitrary)

Fig. lib. Flow over a contoured compressive
corner (M1 = 1.64).



5

4

3

M =2. 00 M -1.211
1 P -2.841

P1 = 1.00 N=.1

P -2.817 -

2

20

0 12 3 4 5

Distance x/L (L is arbitrary)

Fig. 11c. Flow over a contoured compressive
corner (Mi = 2.00).



5

4

S 3

2

M = 2.91
__ ___P P= 3. 75

M, = 4.o 00
P 1= 1.00 M = 3. 06

_ M =-3 .02 150

0
0 1 2 3 4 5

Distance x/L (L is arbitrary)

Fig. lid. Flow over a contoured compressive
corner (M1 = 4.00).



'-4

'-4

U "-4

0o 0 34 =

a'a 4- 0

~0

0

-44

x 0
-- 44

444 0

*0~

.,q

m- 44 C),,

II0*

ca,

C'40

MAC



CO

4.-I

1-4

U) 0

'4

w
(3)

0

U)0

-,4
r-

'-4

U4
0

0
-,4

-4

0

a)
'-4

U)

-4
4-4

C0

V) C)Ln 0LnUC

C4 141 0

MA-



> --
4

1-4 1"

$4) U)

C~4J

C) L4..~4..4.U

c~co

u -4 (

r- )

4.J

C)) C -

DC)

- esi -

II C)

o0

0U -

-'D D Z)
C C)

cN C..

-~~~ ------- -



Cl)

CL
E
0

co CA

0~ 00

00"
-4

N CD

C) C



Ln~- _ _ _ _ _

C, CoSr
C*1
C-4ul

* del-

a

r.. c"I CD C

w.-4

0-j

C,4 0

0i u

Cd -4

C,4C:,

C 0,,

".4 c

CD

-4

04 w

0 CD

04 -

MA_ __



w .0

C4.'

-4- -4

f 00

CC..

C). C

on -4o' P4m

-4 0

0 P, 0

ID 00

00**

r.. t-

I ~~ ~ ~ ~ ~ ~ c r= ______________

r-/ szu4s4a



CY) LIri

-4 -Qt

- 0

C'LLI 4.. C

co

Cf.)
L(1 Ai

41

-4U

to 4I1 110 "
'CC- PLO.-

4.J0

-- 4

C) CO

0 0

('4 4 04



U1 >
09 CC

o N

,4 -

,o E

-- an

cnc'
I-,-

4 -N

00 0
C) 0

04 4.

-4

C14 0

~0 r- L0



*l U

-44-4
x 0~

E Q)

)

rr3

0
N N

0 "

cW

C) 0

C144

IIA aD VI II



0.81

p 
On 

ph1
oy ufc

Pi 
0

Distance x/L

-0.81

P-Plo1 x o x |Y = I
0.74

-0.74

0.44 y=it

P - P1Pi

0 0 2

-0.44

P-Pl pl 0 ; 

.
Ot

0.13

p - p1iy 10

0 16 20

-0.13

Fig. 20. Overpressure signatures on the surface of, and at 1,
10 and 100 body thicknesses from, a parabolic shaped
airfoil (t/L = 0.10) in a supersonic flow (M1 = 2.0).



0 C]

S 0 0 ,, 3
000 o

0 0
00011
0 C3~

z/ o oso
Pd 0

0I 
6II 0

0 I 0 0 0
0 0 0oo ...

0 'T00" a
0 C

0 0 0/ 0go °  0 •o

0 C3
/ 0

/ 0
O0 0

0 0

o C30/
0
0 C0

0 0
0 Z 0: 0 J

0 0

I\ \ ..oo.C 0 0 0100 0 0
0 0 ,-

0 o. 13 U
S00 0

0 O0

0 0

/ 0 D 1
o 0

jx~ 1 /3O

0 13

/0 Q0 0
00 0

000

xx O 0- _
0\O

\C



0

A' 0 0 00

~-~ 0

0 0
,-. 0 0t I0

x40 0 -

~0 0 :j0

Z04 0
/0 0 06

00

0 0

0 0
/00 CM0

'.0 00 0~
0 [1'

I 00 0 co

fN 00 i

0.C 00

0 0 0

/0 03

1/ 0
000
'00



Oblique shock

r

Radial line
from apex
of cone

M rsStreamln

x

Fig. 23. Illustration of supersonic flow over
a cone (aligned with the flow).



RCM

-Exact
16

2

P

1

2

p

2

M

Cone surface Shock

0

100

(degrees)

0 I I
10 15 20 25 30 35

Angle 8 (degrees)

Fig. 24a. Comparison of RCM and exact results for a supersonic
flow over a 15-degree cone (M1 = 2.5787, 80 grid
nodes downstream of the cone apex).



RCM

Exact
16

2

2

p1

Pl

Mf

2

100

(degrees)

0

10 15 20 25 30 35

Angle 6 (degrees)

Fig. 24b. Comparison of RCM and exact results for a supersonic
flow over a 15-degree cone (M1 

= 2.5787, 160 grid
nodes downstream of the cone apex).



RCM

- -Exact
16

2

P
P1

11

2

p

100

(degrees)

0 +

10 15 20 25 30 35

Angle e (degrees)

Fig. 24c. Comparison of RCM and exact results for a supersonic
flow over a 15-degree cone (M1 = 2.5787, 320 grid
nodes downstream of the cone apex).



0.2 S 0 RCM (20)

- Exact
6 5

S

0.1

Cp

0

-0.1

-0.2

0 1 2 3 4 5

Distance x/L (L is arbitrary)

Fig. 25. Comparison of RCM and exact results for the

pressure coefficient for the supersonic flow
(Mi = 2.0) over a cone-cylinder.



0.20

0.16 0 RCM (20)

- Exact 6 5

0.12

Cp

0.08

0.04

0

-0.04

0 2 3 4

Diatallue x/L (L is arbitrary)

Fig. 26a. Comparison of RCM and exact solutions for the

pressure coefficient for the supersonic flow

(Mi = 2.0) over a cylindrical body with a

parabolic nose.



0.20

0.16 0 0 RCM (20)

- Exact65
0.1

Sm

0.12

Cp

0.08

0.04

0

-0.04

I

01 2 3 4

Distance x/L (L is arbitrary)

Fig. 26b. Comparison of RCM and exact solutions for the

pressure coefficient for the supersonic flow
(Mi = 3.0) over a cylindrical body with a
parabolic nose.

!M



0.20

0.16 0 0 RCM (20)

- Exact
6 5

0.12

CP

0.08

0.04

0

-0.04

0 1 2 3 4

Distance x/L (L is arbitrary)

Fig. 26c. Comparison of RCM and exact solutions for the
pressure coefficient for the supersonic flow
(M1 = 3.92) over a cylindrical body with a
parabolic nose.



00

111

w -4

o

-4 z -
4- o oz.

0)
U

t-j (U

EO

'. (2) Ai

-44z

0 ~0
LI -- 4

w) 4--4

rn CO4

4-4 4-

010
w Q) 0

0

w 0 r1
144

04 0U

Cl)

az)UL,:I42 -L~ -4



MA4

-4-

-44

co, Lr 0

r-4 C4 0

Cd w

.- 4 Q) s 4

4-4 0

0C

0-4

0 -4

0f ,.4 0

p..4-4

ri/I 1US 0



w Q
>

0~ 0

r4
-4 C4 40

".4 -4
ci

-4 41

o-1w

-4

00E

0~ a)
wA W.

"-4

-4

c-I -'0

'I/i~~L 0~el-ptle



0.145- r = I D

p -p1

p1
0

0 23

-0.1451Distance 
x/L

r 10D
0. 0544

Pi 0

-0.044 -Distance 
x/L

0.020. r 10 lOD

P - P~

17 18 19

Distance x/L

-0.020

Fig. 30. Overpressure Signatures at radii of 1, 10, and
100 diameters from a parabolic-spindle shaped
body (D/L =0.10) in a supersouiC flow (M1 =2).



PIP1
0 0.1 Jet boundary

Oblique shock

- ~Mach disc ..

MI - 1.2 Headfoftthe

P1 - 1.0 #r re acion wave

0 1 23

x/D

M
05

1 1 1.0

0 12 3

xID

Fig. 31. Numerical results for an axisymmetric supersonic free jet
with a backpressure one--tenth that of the exit pressure.



r

P/pl

Jet 
2

,. .n5 --.. boundary

~Oblique

M =3.0
P1.
1 =1•0

/
0 II

0 0.5 1.0

x/D

r

M

2 3
/////0. 5 4

M 3.0

P 1

0 0.5 1.0

x/D

Fig. 32. Numerical results for an axisymmetric supersonic free jet
with a backpressure twice that of the initial exit pressure.

.. .. a I ------- . .J" a



APPENDIX A

COMPUTER-PROGRAM LISTING

FOR SOLVING TWO-DIMENSIONAL STEADY SUPERSONIC FLOW PROBLEMS

In the present numerical investigation, many slightly different computer
programs were used to obtain numerical solutions for two-dimensional planar and

axisymmetric flow fields of an inviscid, compressible and polytropic gas over
and around different shaped bodies, inside duct inlets, and in free jets from
slots and orifices. Only one typical version of these computer programs, which

is based on the random-choice method is listed here, that which was used for
computations of the flow over an axisymmetric body.

The algorithm for the random-choice method solves a basic Riemann prob-

lem for two-dimensional steady supersonic flow between adjacent grid points in
the radial direction at increments of axial distance that are sufficiently small
to satisfy the well-known Courant-Friedrichs-Lewy stability condition. It also
includes an operator-splitting technique whi-h can modify the initial Riemann
solution for two-dimensional planar flows so that the desired solution for two-
dimensional axisymmetric flows can be obtained.

In the computer program, all dependent thermodynamic and dynamic values

are nondimensional. They are designated here by using an overhead bar and given
as follows:

p = P/p0 , P P =, u = u/(po/Po)l/2 "  = v/(Po/Po)1/2,

where the dependent variables p, p, u, and v denote the static pressure and

density and the radial and axial components of gas velocity, respectively. The
variables with th subscript o are free-stream or reference flow conditions.
The independent distance variables of x and r are also given in nondimensional
form as follows:

x = x/L, r = r/L,

where L is a certain characteristic reference length, which can be a body length

or diameter.

The computer code consists of one main program followed by five subrou-

tines and seven functions. The main purposes of the subroutines and functions
are not described here because they are alread outlined as commentary at the
beginning of each listing.
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