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i . ABSTRACT
o .
Laser radar analyses up to now generally fall into two categories. Single
P pixel analyses exist which cover receiver design, target statistics,
% atmospheric effects, and the resulting statistical performance
Xt characterizations like probabilities of detection (P,) and false alarm
‘ti (P ). Multipixel analyses exist which use various aR hoc target

recognltlon, identification, and feature extraction schemes based on
intuitive insight or analogles to human perception. The limitation of
these multipixel processors is it is difficult to quantitatively predict
processor performance as a function of various system parameters and the
resolving power in the measurement dimensions like range, Doppler shift,
and angle. The single pixel performance equations can give quantitative
answers to these questions, but only for single pixel measurements. This
thesis bridges these two approaches by proposing physically realistic
target, background, and radar models which allow us to incorporate the
statistics for the single pixel measurements into multipixel probability
density functions and derive quasi-optimal generalized likelihood ratio
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': radar, but duality arguments are presented which demonstrate how to apply
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analyses are presented which show how the radar's resolution in range and
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I. INTRODUCTION

A, Laser Radar Overview

The development of lasers with sufficient stability, spectral purity, and
power has allowed system designers to translate much of microwave radar
design directly to the optical wavelength region [1]. Because their
wavelength is so much shorter, laser radars offer spatial, angular, range,
and Doppler shift resolutions far superior to those available with
microwave systems., Although laser systems can take advantage of their
increased resolution in any or all of these dimensions, the increased
spatial and angular resolutions have particularly affected the way
designers present data to the user. With beam diameters of a few
centimeters at the radar optics exit aperture and beam angles measured in
microradians, it is possible to scan the beam over the target and
construct an image of the target, similar to a television (TV) image, from
the radar returns. The color and intensity of the displayed image can
represent reflected intensity, Doppler shift, range, or some combination

of these signal dimensions [2].

With the shorter wavelength of laser systems, there comes a disadvantage
as well. Because the wavelength is so short, most target surfaces are
rough at dimensions on the order of the radar wavelength. So, they
reflect the incident beam with an essentially random phase shift as a
function of position on the target, producing a phenomenon known as laser
speckle [3]. Laser speckle appears as a graininess in the image of the
target due to self interference among the reflected wave's angular

components. Since it is a self interference, it is independent of signal

» .- R IR SR PN . - .~ v -
./. -_.. .~..-_/ .‘."-__ “ .,. ', & ‘," 4. ._.‘__.'\.‘.\‘.‘( " .‘ I -“-" . ‘.-.-'.-
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strength. It appears even at very high carrier (reflected radar energy)
to noise ratios. Any processing scheme should take into account both

detection noise and speckle noise, both of which degrade image quality.

B. Image and Signal Processing

Laser radars (and some microwave radars as well) have sufficient spatial
resolution that they can build images of targets by making spatially
distributed measurements of the target with a beam of diameter much less
than the target dimensions. Each spatially distinct element of the target
is called a picture element, or pixel. Up to now, analyses for these high
resolution radars have fallen into two general classes: single pixel

statistical signal processing and multipixel image processing.

The single pixel processing work follows the traditional radar and
communication system approaches [4]. This approach models the target and
the radar, derives statistically optimal processors based on the models,
and produces equations for the performance of the processors derived from

the statistics. The advantages of this approach are twofold. First, the

o

> performance equations are in terms of the various laser system design
"

-

parameters. This makes it easy to predict how performance will change as

we vary the system parameters. Second, since the processors are

.
AL
RO

1

statistically optimal, their performance measures must be bounds on the

e

"f,;' v
_A's

»

performance achievable with any other proposed processor. The
disadvantage of this approach is it is a single pixel analysis., The
processors don't use the information available to them from the spatially

distributed measurements of several pixels,
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The image processing approach, on the other hand, often draws on pattern
recognition and image analysis theory from research in areas like remote
sensing, machine vision, and artificial intelligence [5], [6]. This
approach proposes intuitive algorithms based on these research fields,

and the resulting ad hoc processors make little use of the statistics of
the signals generating the images. The advantage of this approach is many
of the processors seem to work quite well. The disadvantage is it is
incapable of producing performance equations which allow system designers

to predict how changes in the radar parameters will affect performance.

This thesis presents for the first time a method to perform statistical
signal processing based on target and laser models like the single pixel
approach just outlined, but which takes advantage of the multipixel nature
of the targets. The result will be equations for the radar's performance
against spatially distributed or multipixel targets in terms of the
radar's design parameters., These equations are important because they
give designers a method to perform trades among system parameters and
predict the effect on system performance., With these equations it is
possible, for instance, to trade intensity resolution with range

resolution or spatial resolution with Doppler resolution and predict the

effects on receiver performance. It is not possible to do this directly

with the ad-hoc models. These equations also act as benchmarks against

IS
\.I.I.l.l

P R S )
% » 8 &4 ¥ & 3

which we can compare the performance of the ad hoc image processing

i

SO

algorithms researchers will undoubtedly continue to pursue.
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C. Problem Statement

- We will study the classical radar detection problem [4]. In our detection
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o problem we will assume we are given a set of directions comprising an

»

k.8 . : .
5 angular uncertainty region, Qu’ and a corresponding swath of ranges
'"': representing a range uncertainty region, Lu’ wherein a target may appear,
Y, : as in Figure 1.1. There may or may not be a target in this uncertainty
[} .‘
1 volume QuLu and, if there is, we don't know where it falls within the
T volume. Our task is to make measurements over the uncertainty volume with

"

C¢

\i\ the laser radar and, based on the measurements, decide between two

W

't

Tt hypotheses: Hl, target present, and HO' target absent. Although we will
ﬁéﬁ try to treat thoroughly general processors, the goal here is to derive
A0

g .
¥5g§ tools to predict the performance of real systems. If necessary, we will
Sy
&HJ make simplifying assumptions to get results which are useful for existing
o

S systems at the expense of complete generality in the analysis.,
N D. Thesis Organization

N Chapter two of this thesis develops background information on laser radar
AR

CoCH s s . s e

o systems and target statistical models. It derives a statistical model for
Bots

\

4 . . . .

! the signal in the intermediate frequency (IF) system of the radar and
‘54 imposes some IF pre-processing used in real laser radar systems. This
b .-J‘

d chapter also takes the crucial step of presenting a model for the major
) characteristics of the target and its environment in a fashion which makes
:*t it possible to incorporate these characteristics into the statistical

£ ignal model
e signal model.
Al
K Chapter three derives a joint probability density function for two of the
o]
oL
:ggq most common radar measurements: range and intensity. Chapter three
Yy
s . .
Wit closes by considering the range-Doppler and range-range and Doppler
ol dualities which make it possible to do the Doppler and range and Doppler
o
bt
14
2234
B
“‘Q‘Q

n.M - . ) . R R - ) . . - ————

. ” 8 (PRI P R U - - - R N P S L) — . w5

AL NGAY, e AT S ) ALY v Al G Rt " ( h "‘k
LAY S Ll O e ORI o ,,-0 LRV IRNE V1 he




l'ta L R TEIR T LNTEPTOw T OFTOE T O T aialttalidiiafaiaiiaidat tat e At ai Sak et ol Aat Aeh Bu |

- 13 =

TARGET PRESENT
TARGET ABSENT

H1:
HO:

Ficure 1.1
THe TARGET DETECTION PROBLEM
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; system analyses by direct analogy with the range system analysis,

Chapter four introduces the binary detection receiver and the generalized

likelihood ratio and derives optimal and near optimal processors for

Y several measurement models, Chapter five takes two of the most important
x . . . .

'y processors from chapter four and derives equations to characterize their
¥

0

K) performance,

Chapter six presents numerical and graphical results for the equations in
chapter five. These results demonstrate how the radar performance, in
terms of probability of detection, PD' and probability of false alarm, PF’
varies as a function of the laser design parameters, the target

g characteristics, and the type of radar used. Specifically, we will assess

B
"

o how performance varies as a function of radar resolution capabilities for
: several types of radars with laser sources of either constant average or
'§ peak power, The ultimate output of this analysis is the ability to

£

¢ predict for the first time what sets of design parameters will allow the
2 radar to meet a given performance level against a multipixel target.

.

K The final chapter summarizes the thesis, draws some conclusions, and

w outlines some areas where further research may be profitable.
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::::: II. LASER RADAR BACKGROUND
D)
k2
??ﬁ A. System Configuration
LA
::' Figure 2.1 is the simplified block diagram of a coherent laser radar.
D
el This thesis considers only monostatic radars -- the transmitter's exit
Q:. optics and the receiver's entrance optics are the same. This could be a
bl
st‘ ranging or Doppler radar (or both). The principal differences between
‘ L]
()
' . . .
o these systems are the transmitted waveforms and the type of intermediate
o frequency (IF) processing. For a ranging system, the waveform is usually
:aﬁ as short as possible to give good range resolution. For a Doppler system,
Lal
b the waveform may be continuous wave (CW) or a long pulse. It is possible
L
e to time-~-share both measurements with an appropriate choice of waveform
B
3 \. :- . N
T [7]. The radar performs a raster scan of the transmitter beam as shown in
T
.
- figure 2.2, The scan rates are such that there is minimal beam overlap
%m between ad jacent pixels., The radar may be on a truck, an aircraft, or
l‘ o
A '*' .
Eg elsewhere. For the air-to-ground imaging situation, the radar is above
g:; and looking down on the target. This imposes a specific laser-target
sgs geometry, which we will introduce and exploit in section E of this
Y
f-‘ chapter.
o
L)
'kf This thesis uses the laser radar systems in existence at MIT Lincoln
Laboratory as examples of real systems when desiring to make theoretical
!
"
\: models simpler or more realistic, or to use specific numerical values for
=0 design parameters. The Lincoln Laboratory systems use CO2 lasers
o operating at a wavelength of 10,6 um. These systems operate at
AN
Y \ '. [} 3 3
e, - relatively short ranges (on the order of a few kilometers) with modest
‘za aperture sizes (on the order of 10 to 20 centimeters) (8], [9]. The
’ oy
A
¢
e
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"

W)

:; aperture size, laser power level (up to a few watts [8], [9]), and
}: detector sensitivity combine to limit the radar's range under any given

i$ ‘ set of atmospheric conditions. The aperture size is not larger because

13 these systems are designed to investigate the design of primarily compact
& systems for air-to-ground applications. These systems also use heterodyne
5' detection rather than direct detection. The advantages of a heterodyne

%f system are that it increases the sensitivity of the detector because of

%ﬂ the well known detection gain of a heterodyne system [10] and, since the
:‘ local oscillator is coherent with the received optical signal, it

‘:‘: preserves the relative phase variations of the received signal so the

;s receiver can measure Doppler shifts in the optical carrier [10]. Since a
;' direct detection receiver is not sensitive to the phase of the optical

IE carrier, it cannot measure Doppler shifts. The disadvantage of a
;ﬁ heterodyne system is the greater prominence of the speckle effect. In a
gg direct detection system, it is possible to reduce the degree of speckle

5§ induced intensity variations by using a larger diameter detector to

)

N average over several speckle lobes. In a heterodyne system, the

'sv diffraction limited field-of-view makes it impossible to reduce speckle so
Eﬁ easily [11]. !
4 ‘
ZH To analyze this configuration, we will first model the target, then use
‘:j ' Fourier optics to propagate the laser pulse to and from the target, and
.%' ) use tools from statistical communication theory to determine the
.; statistics of the signal just before IF processing for a single pixel.

f Then we will discuss the pre-processors often used in laser radar systems
>
Ry and their advantages and, finally, present a model for the entire
§* multipixel target and its surroundings.

2
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B. Target Models

Real targets are themselves very complicated objects., However, this
thesis' purpose is not to investigate the subtle differences between two
trucks from the same assembly line, or two different trucks, or even a
truck and a building. Accurate statistical modeling of real targets is
the subject of other, ongoing research [12]. In this thesis, all targets
will follow the purely diffuse speckle target model [3]. This model is
very accurate for certain prepared test targets [13], [14] and quite
accurate for at least the gross features of real targets. In the most
general form of this model, the target has a complex reflection
coefficient T( 7, z, t ) at every point in space and time ( 5, z, t ),
where 0 is the transverse position vector ( x, y ) and T( * ) is a four
dimensional (space and time) complex Gaussian random process with
independent, identically distributed real and imaginary parts [3]. Since
T( * ) is Gaussian, a second moment description completely characterizes

its statistics. The moments are:

EfT( 9,2, t)]=
E[l T( o, 2, t)TC 7', 2", t")]1=0, ( 2.1)
ELT( 0,2z, )T 7', 2", t') ]=

VT (B t-t') 8(5-3') 8(z-2").
The spatial impulse functions indicate the random structure of the
target's surface decorrelates much faster than a distance of one
wavelength ) at the laser frequency, Vo= ¢ / X . The spatial
dependences in Ts( * ) indicate the target need not be uniform. The time
dependence indicates the target may be moving, but this model assumes the

motion is a stationary random process, hence the dependence on only the
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time difference t - t'. This will be the model (often simplified) for all
targets, background, clutter, or anything entering the radar's field of

view (fov), including the no target case where Ts( p, z, t )=0.

C. IF Signal Derivation

In terms of the complex envelope of the optical signals at the optical
frequency, Vo the IF signal out of the detector is proportional to the
product of the complex field envelope of the reflected pulse and the local
oscillator (LO) integrated over the detector surface. To get the
reflected pulse's complex envelope, one must propagate the transmitted
field to the target, multiply by the target reflection coefficient T( * )
and propagate back to the receiver. In this thesis we will model
atmospheric optical propagation as free-space diffraction modified only by
extinction loss, which is a reasonable approach for compact CO2 laser
radars {24]. We shall assume the LO field pattern is matched to the
transmitted field pattern, as is usually the case in such radars [14]. In
practice, it is easier to use the antenna theorem [15] and back propagate
the LO field to the target and perform the integration over the target
surface rather than the detector surface. Define £( 5, z, t ) as the
normalized transmitted beam pattern at target range z. Here the time
dependence t is due only to the beam scanning motion., We define another
term, s( t ), to contain the time dependence from the transmitter
modulation. Now we can express the transmitted beam and back propagated
LO beam at the target in terms of _E( * ) and s( t ). Further define Ap
and AT as the optics aperture and target surface, respectively, and PT as
the transmitted power. Then the complex envelope of the IF signal at

intermediate frequency WIF (radians/second) is y( t ) [14]:

A ."'..P «'{'I -""r*-‘-:':. W
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o

2o -
"" 3( t)-—-\/PT [ dz s( t - 2z/c ) j do £(p , 2z, t -2z/c)

; 0 AT

.
AR - -
;t:"‘('J . 'I(Q,Z.t—Z/C)_g_(D,Z.t)+£(t), ( 2.2)
R .

. where n( t ), which represents the LO induced shot noise, is a stationary,
A8 zero-mean, circulo-complex Gaussian random process independent of T( * )
e
;f%‘ with covariance function E[ n( t ) n*( t' ) ] = (h v, /n) sCt-¢")
R [10]. Here h v, is the optical photon energy and n is the detector

X4

é{l: quantum efficiency. The first term in equation 2.2 is basically a delay-
P
f i integral/heterodyne-overlap integral specification of the target-return
;‘x component of y( t ). The delay integral over z encompasses targets at all
iE§ ranges while the overlap integral over AT is the heterodyne integral for a
L
,*:j. particular range z. The equation includes all appropriate lag times. For
h",‘f.

‘,‘ W,

the IF target return at time t from range z, the transmitted waveform was
s( t - 2z/c ). The first £( * ) term is the transmitted beam shape that

contributes to the target return at t from range z. The second £ ( * )

term is the LO beam shape relevant to the target-return at t from range z;

;.wﬁ it has no time lag. The target term T( * ) has a lag of only z/c seconds,
;Eﬁé the one-way time of flight from the target to the radar, .
Y
‘123 Now let us make the assumption £( o , z, t-2z/c ) ¥ £ (D, z, t ) for
;:EE all z such that | £( * )| makes an appreciable contribution to the
N

: {? integral. This is the assumption of negligible radar lag angle. It will
}jz; make more physical sense after defining the transmitted field pattern in
:::S terms of a radar scanning motion in the next paragraph. For now, the IF

e

waveform is:

- ————e-
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l(t)=-\/PTf0de§(t—22/c) fATdb' T( 5,2, t-z/c)

. j;?( 5,2, t~2/c) + n(t). ( 2.3)

Although the transmitted beam pattern has been arbitrary so far, it is
usually a collimated Gaussian beam with some pointing angle d( t ) with
respect to a reference direction (see figure 2.4). Thus, let us take

¥( 7, t), defined to be the normalized transmitted beam pattern at the

radar, as follows:

-2
g(a,t>=<id§>1/2exp[-ﬂ:—21-+jk‘5-6(t>1 ( 2.4)
T
where k =27/ X = wavenumber

-2 . . . . ,
and d = e © beam intensity diameter at exit pupil.

"

Generally, ¢( t ) is a linear scanning function, 9( t ) 3( t ) +

b - ( t-t_ ), for t Lttt 4 TA , where t and 5 ( t ) are the starting

time and direction, respectively, for the n-th scan line, ¢ is the scan
rate, and TA is the time required to scan one line., This gives a raster
scan arrangement like that in figure 2.2. (Note that because of flyback
time, t_ ., >t + TA generally prevails).

D. IF Pre-processing

Thus far we have made as few assumptions as possible in order to make the
equation for y( t ) as general as possible. These derivations give the

statistics of the IF waveform directly out of the detector, but real

processing systems (i.e., detection, identification, etc.) generally don't

]
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deal with this IF waveform directly. Instead, some form of pre-processing

s s 0 2 2 X}

usually exists between the IF and the signal processing [12], {13]. One

reason for this intermediate step is the bandwidth disparity between the IF

fon

PR S N M

waveform and the bandwidth of recording and processing electronics.
Typical research systems record the radar return data on tape for

subsequent off line analysis and testing [12], [13]. It is difficult to

‘f record the data coming directly off of the detector because the IF

& frequency is in the tens of MHz and has a bandwidth of several MHz.

K- Reducing this bandwidth is a prime reason why these systems employ pre-
=J processing hardware prior to data recording. Reducing the quantity (and
'5 hence the bandwidth) of the data also makes it easier to process the data
:, in real time, an important consideration for practical systems.,

Scanning systems, such as the one we have specified, usuwally break the
target into pixels and build an image of the target area from the pixels.

The pre-processing electronics act on each individual pixel time element.

LA

For a ranging radar, the usual pre-processor examines the pixel time

: interval and selects the peak of the random waveform and records its

s aam

intensity and time location relative to the start of the interval

St I I ]
s a s

(corresponding to the target's range). For a Doppler radar system, the

©oa

usual pre-processor Fourier transforms the received random waveform and

then selects the peak in the frequency space and records its intensity and

'~.
TR )

i)

. location (target velocity). These peak detection pre-processors reduce the

i

entire random waveform over a time interval to two real random variables.

Figure 2.3 is a schematic diagram of both pre-processors.

-

P Sexaxy

If the pixel dwell times are short compared to the time orders on which the
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target changes, there is little loss in optimality from dividing the
waveform into pixels, but the peak detection may seem a bit ad-hoc.
Actually, there is theoretical support for this type of pre-processing. In
the case of a ranging radar and a non-range spread target observed on a
single pixel, it is easy to show [4] that the maximum likelihood (ML)
estimate of the target range corresponds to the peak of the matched filter
output of the detector. So the pre-processor is essentially the ML range

estimator, but remains fixed for all types of problems.

One could argue the virtues of working out performance measures on truly
optimal receivers, given one goal is to examine the limits on the
performance of laser radars. However, real radars are likely to continue
to use some of the mentioned types of pre-processing for the reasons
mentioned. Taking this pre-processing into account will give performance
measures which are more realistic and closer to those researchers are
likely to achieve. This thesis will use the matched filter, peak detector
pre-processor model throughout. The signal analysis for the pre-processor
will simply pick up where the analysis for y( t ) left off. None of the
previous work goes to waste. Detailed single pixel peak detector analyses
exist [23]. The analyses in this reference include thresholding in the pre-
processor and the effect of the resulting dropouts. (When the intensity
for a particular pixel is below the threshold, no data is recorded for that
pixel and we say a dropout has occurred.) This thesis will not use

thresholding in the pre-processor.

E., Frames and Subframes

The pixel is our basic unit of spatial measurement and we will shortly
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el derive the statistics for measurements taken on a single pixel. However,
ey
v 2
et laser radars have resolutions such that interesting targets often take up
z}: more than a single pixel. We would like our receivers to use this
s}& spatially distributed information in an optimal or nearly optimal fashion
ey
VA% to improve their performance. Since we have arranged our scanning geometry
’}ﬁ (see figure 2.2) so pixels are essentially non-overlapping, the pixel
}q measurements will be independent thanks to the statistics of the target
N
5 reflection coefficient T( * ). Now we need a method to introduce the
;;‘\ spatial relationships between the pixels into the statistical models.
U4
o
".:::
\\:::
>: We will adopt the down-looking geometry of figure 2.4 for our analysis of a
P
AL single target at an unknown range and angular location within the radar's
::ﬁ field of regard (total field of view). For this geometry, the radar always
F:
RSN
B 7,

illuminates something. It may be the desired target (the vertical object
in figure 2.4), or it may be the horizontal background. In either case,

since the radar illuminates something, there is a target, or reflector

" element, return for each pixel. We will sometimes use the term target
ﬁ?; loosely to refe. to either target or background reflector elements. We
5&§ will discuss figure 2.4 in more detail shortly.

N
?Eg We will assume we know the target shape and angular extent so we can tile
‘;Eg' the angular observation plane with M target shapes, each containing N
a:;i ; pixels as in figure 2.5. We will call one observation of the entire

&_; observation plane (MN pixels) a frame and call each target shape a subframe
Efgi (N pixels). The radar may stare in a particular direction long enough to
ey

take more than one frame of data (MN pixels), but we will consider only one

1;4 frame at a time —- we won't try to use information from one frame to the
3 ‘.J‘
“h..l
\ .
1‘ .,
L".
TR TR I S ) - SNt e e e .
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:33 next., We shall assume henceforth the target exactly aligns with one of the
52: subframes. This assumption will allow us to search the frame for the
_i target one subframe at a time with each subframe independent of all
L;E others., Without this assumption, searching the frame for the target would
ﬁ& involve searching approximately MN subframes, each with many pixels in
f: common with several other adjacent subframes. That is, we would be sliding
~i the target shape as a window around the entire frame like the dotted target
i: outline in figure 2.5. Thus, the subframes would not be statistically
hos independent and this would considerably complicate the ultimate task of
‘;3 computing receiver performance. This may seem a rather weak justification,
Lf: but we must consider our stated objective is to find useful performance
:3 measures even at the expense of optimality if necessary. This is our model
Ve
;;j of the target's angular characteristics. Now consider the target's range
. characteristics.
33
Ei We will begin our range model by assuming both the target and the
L:‘ background are range unresolved. A range unresolved object is one where,
’éé‘ for each pixel, the radar beam illuminates only the target or the
?‘E background for each pixel (we ignore effects at the edges of the targets)
?: and the target or background has a sharply defined range relative to the
f& radar's range resolution. The iso-range lines on figure 2.4 are separated
:gj by a distance equal to the radar's range resolution. True to the
i;  assumption, the target's depth is much less than the radar's range
& resolution distance. Under this model, the z-dependence of T( 5, z, t )
;ES is simply a Dirac delta function at the target or background range L:
:j: (5,2, t)=T(%,L, t) 8(z-L)., Of course, this will make the z
;5# integral in equation 2.3 trivial, but we will wait until the next chapter
o
-
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ENT
A
;ﬁg' to actually perform this integration. Another type of interesting target
|a| M
Lt we won't consider in this thesis is the range spread target. Range spread
b ) ]
r:: targets are those whose geometry is such as to generate returns from a
EQE spread of distances in a single pixel. For example, a flat plate viewed at
’ close to grazing incidence would produce a range spread return, as do
&
O aerosols and the edges of hard targets. The range unresolved assumption is
o, &
b reasonable for the 2-D pulsed imager compact 002 systems we are considering
o
o
. in this thesis [8], [9].
O
o,
L))
'bi Exapining figure 2.4 again, notice the down looking geometry will make the
A
.,
#‘ background appear to slope away from the radar at a known angle (the
R
'); radar's pointing angle). If we know the radar's altitude, we can compute
Y
, N the range to the background accurately for a smooth background. So, we
Ay A
*I
W will assume we know the range to the background for each pixel in the
A frame. We will let any target in the frame be at an unknown range, but
W
o,
\ »
xﬁ~ require it to be vertical. Most targets of interest easily meet this
)y
*I
L3
! vequirement. For a reasonably smooth background, each horizontal line of
“sj pixels in a subframe will be at the same range and adjacent lines will be
i
E: at different ranges. The target, however, will have all its pixels in the
%'-I
all subframe at the same range. Notice if the target sits on the ground, as in
‘{ﬁ figure 2.4, its range is the same as the range for the nearest background
AL
-l
;”{D pixel in the subframe. But since we know the range to every background
AR
Y
=0 pixel, we would know the target range, too. However, the target need not
T
?ﬁ} actually sit on the ground; it may be above the ground as well. As a
e
}55 result we must assume we don't know the target range. However, since the
«© target can't be behind the ground, we know the background range is always
: {} more distant than the target.
l“'
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pie
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:: This completes our model of the target's range and angular

ey e
St characteristics. We have introduced a model which is complex enough to be
NS fairly realistic while being simple enough for analysis. We have made the
S8

>
irﬂ model complex by allowing the target's angular position and range be

S

8

o unknown, by forcing the contiguous nature of the target into the subframe
irt’ model, and introducing a background much like the target. Both target and
A
LAY

) background have unknown reflectivities. The model is simple by virtue of

‘

b

&N the relatively small number of free parameters in the model. These

(N
o 3 parameters are the target range and reflectivity, Lt and o L the

»y

)
:‘g background reflectivity, o b? and the single subframe containing the

L A

. target, m . The target size and shape are known and both background and
a
!&5 target have uniform average reflectivity. Finally, all the pixels are
‘l"..

9
%ﬂ* independent as a result of the speckle statistics.

W
5#5
5

'3' In the next chapter we will derive probability density functions for the
L
;:: pre-processor outputs, which are our measurement statistics, starting from
0.7 o : . .

t the y( t ) derivations in this chapter. In chapter four we will
fﬁ‘ incorporate the target frame models above and the chapter three results
3 L%
750] into near optimal receiver processor equations.
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"t\
~%,
¢§2 IIT, RANGE-INTENSITY DENSITY FUNCTION
5;
vb In the previous sections we were able to describe the statistics of the
s
;33 complex envelope of the detector's output exactly. It had a Gaussian
o density function with moments we could compute. This is a complete
ﬂ;! statistical description of the signal. The pre-processor is not linear,
deey
o
E{j however, so its outputs are not Gaussian. Nevertheless, the joint range-
Wy
' .I
B intensity (or Doppler-intensity) probability density function (pdf) of the
;} output random variables is a complete statistical description of those
'
.an random variablse. This chapter derives this joint density. We will
e N
?&ﬁ perform the development in detail for a ranging radar; results for the
15_ Doppler and range-Doppler cases are handled via duality.
-, -
i
=
Ay .
. A, Signal Model
ﬁﬁﬂ Figure 3.1 is a complex envelope model of the ranging radar receiver
'q"
:vb through the pre-processor. The last chapter derived an equation for
R
N y( t ). For a ranging radar, the radar waveform s( t ) will be periodic
oy with period T, the pixel dwell time:
ot
A g
Ve s(t)-z b( t ~ oT ) ( 3.1)
o =4 - 2 '] .
n= -—-<«
:’:*'
;ﬂgi where b( t ) is some elementary waveform, non-zero only in the interval
Vi
#** [ -T/2, +T/2 ]. The filter h( t ) is matched to the transmitter waveform
S b( t ):
X
P .
A h(t)=b(T-1t). ( 3.2)
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a
5
_::: The next block is a square-law envelope detector. In many real systems

Y
o this block would be a linear envelope detector because the linear detector
'1‘:\' has a smaller dynamic range at its output. The squared magnitude of a

‘3’::: complex Gaussian random variable gives exponential statistics, whereas the
i

o linear magnitude gives Rayleigh statistics [16]. The two are related by a
:t simple transformation, but the exponential statistics are easier to work
4. .

2, with., The peak occurs at the same point in either case,

3

&
:3‘ Substituting equation 3.1 for s( t ) into equation 2.3 for y( t ) gives:

\

)

o ® - -

i W€er=Y oy [z [ a5 £X 7,z b=

\Pﬁ 0 AT

> n

:'{{ *T(o,2z,t -2z/c)b(t-nT-2z/c) + n(t) . ( 3.3)
o
:3 The matched filter output is:

¥ a(t)=3(t) *h(t)
C:'é =x(t)*h(t) + n(t)*h(t)

().
A.“ _

* —a(t)+§noise(t), ( 3.4)
o

o where

nt

) o) t - T/2

:‘: a(t)=ZW/P fdz[db_[ drt 52(_0,z,T—z/c)
e "‘ T o A t - 3T/2 =

_ n T

_-" _ %*

. *T( p,2, T -2/c)b( T=nT-22/c)b(T -t+T).( 3.5)
My

gt

‘_,'.:-‘ If the duration of b( t ) is quite short compared to T, T( * ) and 5 ( * )
B

:..: will be approximately constant over the period of time b( t ) is

.
1 significant, even if they are not constant over the entire pixel dwell

>,

- time. This short-duration pulse condition is the usual route to obtaining
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good radar range resolution, although some microwave and optical radars
use long duration high time-bandwidth product waveforms which undergo
compression later in the receiver's IF system. This thesis will use the
short pulse assumption, under which we can take the T( * ) and £ ( * )

terms out of the time integral, so that gx( t ) is approximately:

_a_x(t)=z\/;,r. fomdz fATdB_S_Z(TJ',z, nT + z/c )
n

( 3.6)
t - T/2 *
-l(ﬁ,z,nT+Z/c)[ 31/ dt b(t1 -nT -2z/c )b (1 -t+T).
t -

Meanwhile, the noise component is:

(t)=n(t)*h(t) ( 3.7)

/

a .
-fnoise

t - T/2 *
dt n( T )b (T -t+T) . ( 3.8)

t - 3T/2

Since y( t ) is a zero-mean circulo-complex Gaussian random process and
h( t ) is a linear filter, a( t ) is also a zero-mean circulo-complex
Gaussian random process. Therefore, its magnitude squared process will

have an exponential density function.

We will assume, as we did in proposing the model in the last chapter, that
each pixel contains only one, range-unresolved reflector element (target
or background). Again, for a range unresolved target, T( T ,z, t ) =

(o , L, t) §( z - L ) with the target at range L_ for the n-th

pixel., Now the filtered signal return is:
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¢,I a(t)s= Z\/PT [AT d5__£_2( 5,L,nT+L/c)T(5,L,nT+L/c)
n

-l t - T/2 *
: f dt b(t1 -nT-2L/c)b (1t -t+T)
t - 3T/2 n

= Z N Ryp( £ = (a1 - 2L /c) ( 3.8)
n

Y where u is a zero-mean circulo-complex Gaussian random variable arising
from the p-integral and R b( x ) is the autocorrelation function of

b( t ), arising from the t-integral. Define for future use, T = (n+1)T

- + 2Ln/ c.

‘:' = Finally, we divide a{ t ) by the square root of the n{ t ) white noise

NN spectral density, h Vv o/ n , to get a normalized signal:

a'(t)

]
N
ot
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( 3.9)
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Here v( t ) is the normalized noise process and gﬂ' is the normalized

o

;

l'.l
o
Yot e

target return. It is easy to show these have moments:
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Now all the physics of the transmitter power, LO induced shot noise, the
beam patterns, the target reflectivity, and I/L2 range losses are in the
single, measurable parameter CNR, the carrier-to-noise ratio. Physically,
CNR is the ratio of the average reflector element return power to the
average LO shot noise power in the IF bandwidth. It is a quantity that is
well known in microwave and optical radar theory. For the monostatic
radar, resolved speckle target case of interest, CNR obeys the radar

equation [17]:

A
N n . ) ~2aL
CNR = "I—TZE PT C —'T—Iz e Eopt ’ ( 3.11 )

where B is the bandwidth of the IF filter, < is the atmospheric
extinction coefficient, < opt is the radar optical efficiency, and © is
the target reflectivity. The statement E[ gﬂ'gﬂ.'* 1= 3 nn' also implies
all pixels are independent. This is true because, as stated earlier, the
scanning assures minimal overlap of the beam between two pixels and the
target surface has a very short correlation distance. Also, since the
signal and detector noise are from different physical phenomena, they are
independent: E[ u ' v( t) ] = E[ a,'(t)yv(t)]=0. Because the
pixels are independent, it is possible to examine them individually. From

now on, the discussion will center on the density functions for a single

pixel, so we will arbitrarily chosse the n = -1 pixel and drop the pixel

subscript, n:

a'(t ) =,/CNR u' Rbb( t-T ) + v(t) , ( 3.12)

4
+
(N

T
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This equation also assumes for any specific time t, z:Rbb( t - Tn ) =
n -

Rbb( t - Tn ). This is a consequence of the short duration of the radar

waveform b( t ) compared to the dwell time T and the assumption of a range
unresolved target. Put together, these assumptions assure there is only

one return per dwell time and this return's time duration i3 much less !
than the dwell time. Now take the single pixel return through the

squarer:

w(t:)=lg'(t)|2

= CNR |g'|2 IRy, t = T ) 24 |v( )] 24

2Re(/OR w' R, (t-71 )y (t)] ( 3.13)

The intensity process w( t ) is a non-negative, non-stationary random
process whose probability density function for any single time t is

exponential.

B. Range-Intensity Density Function

The final step in our ranging radar pre-processor is to peak detect

w( t ), generating the two random variables E and i, the intensity and
range, the " meaning an estimated or measured quantity. We desire an
expression for gi’i( X, v ), the joint pdf of these random variables. To

derive an expression for this pdf, we will examine w( t ) more carefully

and construct a model for the waveform.
Suppose we wish to locate a target return time within the dwell time of T

seconds. Then we define the range uncertainty interval as Lu = cT/2. 1If

the pixel dwell time T is greater than the time corresponding to the range

LT T T et T, .
AN T T
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uncertainty, 2Lu/c, we will of course attempt to locate the target within
the smaller time interval. At the risk of confusion, we will use the same
notation, Lu and T, in either case. Figure 3.2 pictures the situation for

T the full pixel dwell time for the n = -1 case we introduced in equation

3.12. In the absence of noise, v( t ) = 0, w( t ) has a peak value of CNR -

2 - - 2 . . . .
lgfl at t = T = T, where 7 = 2L/c is the time delay associated with

the range measurement L, as sketched in figure 3.2(a) for an arbitrary

b( t ). If v(t ) # 0 but the CNR is very large, we might expect w( t )

to display only minor corruption from the noise, as in figure 3.2(b), so

that T =t would prevail. However, since u' is a random variable and

v( t ) is a random process, there may be intervals where, even at high

CNRs, the realization of |gf|2 is very small while v( t ) takes on a
larger value somewhere in the interval. In this case, the peak in the
interval occurs at some ; far removed from 1 , the location of the noise
free peak. Figure 3.2(c) depicts this situation. The situation pictured
in 3.2(c¢) is called an anomaly, designated by the event { = 1 }. The
situation in figure 3.2(b) is called no anomaly, designated by the event
{ = 0 }. The statistics of } and i conditioned on x4 and 1, will be

very different. The two e'ents are mutually exclusive and collectively

exhaustive, so Pr( 1 ) + Pr( 1 )y =1,

The existence of anomalies is not unique to this problem; it is a feature
of nonlinear estimation problems in general {4]. Another, related,
feature of nonlinear estimation problems is the existence of a threshold
¢ifect. In classical nonlinear parameter estimation, the estimator's
performance degrades gracefully as the CNR falls until it reaches some

critical point, the threshold. Beyond the threshold, performance degrades
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more quickly as CNR falls [4]. This is a very general result in nonlinear
estimation theory. For single pixel measurements of speckle targets,
however, the threshold is not apparent [23]. For this case, the anomalies
always occur and we are effectively always below threshold. For the case
of multipixel speckle targets, however, there is a threshold effect [23],

so we have taken some time to discuss the phenomenon here.

Both the signal portion of w( t ) and the noise portion, v( t ), have
widths or decorrelation times (see equation (3.7) ) on the order of o
the width of the pulse b( t ). So, w( t ) is approximately constant over
time intervals less than t. and points separated by greater than t, are
approximately statistically independent. Consequently, we will divide the
interval T into an integer number of subintervals, Q, each of length

T/Q = t. and model w( t ) as a sequence of Q independent exponentially
distributed random variables as shown in figure 3.2(d) [12]. The random
variables all have mean 1 when the reflector element is not in the bin and
mean CNR + 1 when the reflector element is in the bin. Let's reiterate
the Q bins need not cover the entire pixel dwell time of T seconds.
Instead, the bins may cover only a subinterval of T in which the user is

interested.

At this point we can overlay the range and subframe models from the last
chapter onto the bin model. From figures 2.4 and 2.5 we can see the
background bins must be the last (farthest range) bins and the target must
fall in one of the remaining (nearest range) bins., We will divide the Q
range bins into QT potential target range bins and QB background range

bins as in figure 3.2(e). For a target, in the absence of noise,

r"l * e -"' .-’\.’v“\_:.ﬁ:&h‘h:\'}h‘:“ - .\. ~ DOER \ LR

N «” -'{“ "N Y f ".‘» RSy '-‘\ ‘s.;-\ \ .':\.‘:\.\- {
LAY IN & mﬂh"" '.11‘? h&‘kﬁi&\q)\ -\\.‘n‘:\{\"( L&) t.'\\Lﬁ AP\
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1<QK QT' For the background, in the absence of noise, Qp+l < Q <qQ,

-,
et el

FTr Uy

and Q = QT + QB'

ﬁi The usual approach would be to estimate the range variable T by first
Wy performing a global maximization by choosing the bin containing the peak
g‘{ and then performing a local maximization within that bin. The maximum
.
! % value would be the intensity estimate for that pixel, 1, and its location
;F{ will be the range estimate for that pixel, ; (or i = c; /2). In general,
33 it is this global/local approach [4] which produces the threshold effect
[ 2
f} mentioned above. As the CNR drops, the global estimator will make errors
;:ﬁ (anomalies) more frequently causing the local estimator's performance to
:3€ degrade drastically. However, we have already noted that for the speckle
;tz: target statistics, the anomalies dominate the error probabilities at all
- CNRs, so we need not worry about the threshold effect on a single pixel.
::! In addition, we are going to concern ourselves only with global or coarse
?ﬁ; range estimates -- estimates of only the bin containing the target with no
:-T local maximization within a bin. It is possible to do the fine range
P ; maximization and derive the densities for the measurements [18], but they
:f; are more difficult to work with. Although the fine range results indicate
o

processor performance more accurately, they provide no additional insight

into the processor. Both processors exhibit the same qualitative

u':jka ‘ 1‘.

<

dependences on the range and angular resolution parameters [18]. From

' ‘
.‘I ‘I “. .I
At e

here on, we will refer to the range measurement random variable by its bin

)

q

number 6 = 2£/ctr.

-

e

%

We will use conditioning to compute the pdf b} Q( X, q )¢
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pa ~( x, q) =
- .
& p_ila'ao(xlq.ao)l’r(0=qlao)Pr(ao)+
Eh. A
' Pr~ (xfq a )Pr(Q=q| @, )PrC ;) . ( 3.14)
I|Q,oz1

The joint density function is also a mixed density function. The random
variable I is continuous, while the random variable Q is discrete.

Consequently, the probability function for Q is a probability mass

function rather than a density function.

The first step in deriving the joint pdf is to compute the probability of
no anomaly, Pr( ag ) =1 - Pr( oy ). Call the Q exponentially
distributed random variables in our model Zq for q = 1 to Q. Assume, with
no loss in generality, the target is in bin number 1. Then event %9
occurs if Zq £ Z1 for all q # 1. Use the bin independence and directly

integrate over the exponential densities of Z1 and Zq to obtain

Pr( ag ) = Pr( 2y L2 1eeer Z ng)

Q

EZ1[ Pr( 2, <2, | 2, &1 ( 3.15)

Ezl[ (1 - exp( -Z1 ) )Q-l ]
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)
:&E where the parameter a is 1 / ( CNR + 1 ). This parameter recurs
Ra frequently in the I densities, so this shorthand is convenient. The
"‘ RN reflector element CNR can be for the target or background. We will
Ry
> designate these CNRs as CNRt and CNRb, respectively, when we wish to make
o
e a distinction and write their corresponding a parameters a, and a. For
3'}« large CNR [4]:
b ,‘-‘)
s
q_} Pr( % ) “1-a(log(Q)-1/2Q+0.577) . (3.16)
o)
AT Y
-
s

Finding the density RAI|6 o (x| q @y ) requires using Bayes law and
™1

conditional random variables. With the bin model we have introduced, the

"AT) A
‘- conditioning on the range measurement Q corresponds to saying the peak
& .“. N
:.-}- intensity occurs in a particular bin, say the q-th bin, Q = q.
": Conditioning on ay further requires Q = q # Qi’ where Qi’ i=1¢t, b, is
‘N the true target or background range bin, respectively. Call the random
\-.,‘q N
2:::; variable for the intensity in each bin, q, Zq’ as before. The desired
“-f:"-
e density is the joint conditional density for all Q intensity values after
2 A
oo integrating out all but the one where Q = q:
4
At (x|q ) fdx fdx [dx fdx
Ll Pa A y O = e - coe
' I]Qa 1 o L7 el el T4y Q
“ (]
'j: P N (xl""’le q, 0‘1) . ( 3.17 )
‘ Zl’oc.,ZQIQ’al
A3
) “-"'g
RE But: ‘
&: . z la ( xls-'-)xQ I q, al ) = ( 3.18 )
. ﬁ" 1,..-' Q » O 1
o", a a
[} n
A ( Pr(a llzl=xl""’zQ=xQ’Q=q) Pr(Q=lel=x1:--~on=xq)

I e e A R R R R
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’ 221....,ZQ("1"""‘Q) )

Pr( Qeq | o, ) Pr( )

The first and second terms in the numerator are both indicator functions:
they are either 1 or O depending on the values of their conditioning
variables. Together they force all Q-1 integrals to have upper limits of

xq. Since all the Z's are independent, the last term in the numerator is:

Q
RZI""’ZQ( STRRREL ) = -P-ZQ ( XQ.) ﬂ ( 3.19 )
i q

RZ( X )
i 1 1 4 !
Qi

CNR + 1 for j = Qi

where Py (x) = :l exp( - :5 Yu( x ), Z.
j Z. Z J 1 for j # Q

The first term in the denominator is just 1 / ( Q - 1 ) since an anomaly
is equally likely in any of the bins Q # Qi' The integration is easy

because of the indicator functions, yielding:

DPa (x| q, @ 1 ) = PrQ -1 (1-e2*)y(1-¢F* )Q-2

IIQth 1

cu(x)(1-386 q ) . ( 3.20)

The calculation for Eila o (x| q, @5) is only slightly different:
?
0

20 (x|aq ag)= (3.21)
QG.O

= dx, ... d d cos d

fo 1 fo ool Jy T /0 @ °q0
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PrCag | @apmxy @i, aCxeeeeig L)
-

Pr( o 0 )

Again, Pr( a 0 I Q=q, Zl=x1,..., ZQ=xQ ) is an indicator function which

forces the upper limits on the integrals to xq. The result is:

1 -ax -x Q-1
Pa a (x)q, a,)= ae (l-e7) u( x ) § .
IIQ.a 0 0 Pr( o 0 ) qu

( 3.22)

Turning to the probability mass functions for the range, under event 2,

any range outside the correct bin is equally likely, so:

Pr(6=q|al)=Q—lT(l_5qQ)’ ( 3.23)

i
where Qi is again the noise free (true) target range bin.

The probability mass function Pr( Q = q | « 0 ) is by far the most

trivial. It is simply an indicator function:
P = = 3.24
r(Q=q]| a,) S qq ( )
Putting all the pieces together, the joint density is:

ps a( x,q) =a e (1-¢* )Q-l u( x ) 8 +
1,Q 19

( 3.25)
) .
qQ;

e X (1-e®y(1-e*)¥2 y(x)(1-3
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The marginal densities are

pi( x)=aeX(1-e*) ¥y +

e X (1-e3)(1-e*)¥2 (x) (¢ 3.26 )
g 1=y (1-e) ua,

PI‘( al )

Pr( Q= q ) = Pr( ag ) Gqu + ——5—:—1—— (1- Squ ) . ( 3.27 )

C. Range-Doppler Duality

The previous derivations centered on intensity and range measurements,
This section will demonstrate a duality between the range and Doppler
shift measurements that will make it unnecessary to always repeat range-

intensity analyses for Doppler-intensity radars.

The previous analysis, up to equation 3.3 for y( t ), does not change. We
will pick up the Doppler analysis from that point, but drop the n
summation index and let n = -1 so as to deal with only one pixel (as we
did in the range analysis). A well known result of Fourier transform
theory tells us that in order to obtain good frequency resolution we
require a long observation time. So, for a Doppler radar the duration of
b( t ) will generally be comparable to the pixel dwell time. Under this

condition, almost any target is range unresolved, so we can let:

I(o,2z, t-2z/c)=T(0,t-z/c) §Cz-(L+ve)) (3.28)

NN ATN
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where v, is the target's longitudinal velocity (only the longitudinal
component contributes a Doppler shift). For simplicity, assume a
transverse velocity of zero. Performing the z integration in the single

pixel reflector element return integral then gives:

L+v t L+v t
1(t>=w/PTfA 45 £ (B, L+ve, t-—2)I(5,t-—=)
P
2( L+v. t )
+b(t - ——>—) + n(t). ( 3.29)

If we perform the integrations to propagate the beam to the target, we

find under the far field approximation:

1

J27o(z)

|5 -2 3(t) |?

. =12
£ (P ,2z,t)=- g o2Jkz eJklo |</z

. exp[ - > 1, ( 3.30)
20 (z)
G(z)=g~au > d .

We will continue to use the assumptions the target changes little over a
pixel dwell time, and that there is negligible radar lag angle. We shall
also assume that the dwell time is short enough that only a relatively

small fractional change occurs in the area the radar illuminates. Under

these conditions we have that

9 _ 2 _ jkvzt
E(o ,z+ vty t '€ (P ,2z,t)e , ( 3.31)

and




L I A R S Wl L R O A AR As alintodia? et gt ans gat 4ot oon 0 ol oL L L

-~ 49 -
2v_ 2L 2jkv t
y(te)=YPubd(t(l~~—)-—)e
T C Cc
f 452X 5.z t-E)TT,e-g) 4 a(t)
Ap
2jkv t
cPrun(e-2Eye T 4 oaCe), ( 3.32)

where we used 2v, << c. Here b( * ) is the delayed pulse, u is the
speckle induced amplitude variations, and the exponential is the Doppler

shift.

Now let us impose a pre-processor as before except instead of matched
filtering y( t ), perform a time-limited (windowed) Fourier transform. So

the output of this transform will be:

al £)

FT hn“o"( t))

£

+’I)

j2kv t -jZ27 ft
W(t)g(t~zgli)e Z e dt

.,.
F )]
()

= OR u jm
% Fv(E) . ( 3.33)

Lo where u' is u scaled to a unit variance and W( t ) is the window function,

Ay Aty

* L V')
PR
’.l’ ‘l

a
.-
F s

~

Wt

) . . . .

gty W( t ) =0 for |t] > T/2. The noise v( £ ) is a unit variance, zero mean,
Erae complex Gaussian random process. Continuing:

:'-’.'\': - ~ - -j27 ( £ - £, )t
B a'(£) =1 ONR u' [WCE-F£,)*b(f-£)]e d

iii ( 3.34)
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Note that if we choose W( t ) so that W( f ) = Qf( -f ), the convolution
becomes Rbb( f - fd ) and we have an exact analogy with the ranging radar
result in equationn 3.18, except for the phase term. However, we can
combine the phase term with u' without changing its statistics. So, we
have demonstrated an exact analogy between the ranging and Doppler radar
signals under the stated conditions. By using appropriate scaling
factors, we can use all the range radar results in Doppler radar

~

analyses. The Doppler Q measurement is Q = F / fr where the random

~

~

variable F is the measured Doppler shift and fr is the frequency

resolution or Doppler bin width in Hz.

Although we have established a duality between the IF pre-processor output
signals in ranging radars and Doppler radar, we must still demonstrate a
duality between the target and background models for the two systems. We
will still assume the down-looking radar geometry of figure 2.3. If the
radar is moving parallel to the ground with velocity v, we can use simple
trigonometry to determine the projection of v onto the line of sight
direction to the ground in terms of the radar's pointing angles, =( t ).
So, we can assume we know the longitudinal velocity of the background
relative to the radar for each pixel. If the radar is stationary, we have
the special case v = 0 and all the background pixel velocities are 0. As
long as the target moves with a constant longitudinal velocity with
respect to the ground, its velocity will fall into a Doppler bin distinct
from the background bins. However, since the target may move toward or
away from the radar, it is not possible to place the QB background Doppler
bins at either end of the Q total bins in general. Typically, one would

arrange the frequency uncertainty interval, Fu' the dual of the range

R A N P s AL
N Y AR LN 1



uncertainty interval Lu, so it is centered around the background Doppler
bins unless we have a priori knowledge of the sign of the target's Doppler

shift.

D. Range-Range and Doppler Dulaity
In the previous section, we developed the duality between range radar and

Doppler radar by putting both post-filtering waveforms into the form:

a'(t)=-/CNR u' R (t-71) + v(t) ( 3.35)

with appropriate joint statistics for u' and v( t ). However, for the
peak detecting pre-processor we will deal with, this is a bit more
stringent than we really require. Although certainly the statistics must
be the same, the function Rbb( t ) need not be an autocorrelation

function.

For a receiver measuring both range and Doppler, the maximum likelihood
processor is the ambiguity processor [19] which first extracts the time-
frequency correlation function

+ -j2-f .t
al( g, f,0= [  dey(t)sCe-tg)e d ( 3.36 )

X
-0

prior to envelope detection and peak detection. If we choose a
transmitter waveform s( t ) such that the ambiguity function

'X ( tyr fd )|2, where

+ @

* -j2n £
X(td,fd)=f dt s(t)s(t-ty)e

dt

( 3.37 )
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is the near ideal thumbtack, as Skolnik [20] calls it, shown in figure !

3.3, then the pre-processor input is:

a'(t, £)

\/CNRIE' x(t, £) + v(t, f£) ( 3.38)

where v( t, f ) is a zero mean, unit variance, complex Gaussian random

process arising from the filtered local oscillator shot noise.

Now we divide the t-f plane into Q range-Doppler bins. The waveform

s( t ) sets the range and Doppler resolutions, through x ( t, £ ), and so
the bin sizes. Simply mapping the 2-D array of Q bins onto the 1-D array
of Q range bins makes the range-Doppler receiver based on equation 3.38
isomorphic to the range radar receiver based on the coarse range version
of equation 3.12, Notice in both this and the range only processor, by
using only coarse range, Doppler, or range and Doppler data, the exact
form of the Rbb( ¥ ) or x ( ¥ ) functions are not very important as long
as the noise free peak is unambiguous. If we had used fine range data as
well, the analogy would need to be more stringent to translate the
results. The exact shape of the correlation functions would need to be

the same.

This establishes the duality in the IF signals, but we need to establish
the duality between the range-Doppler model and the range model as well.
This is very easy now that we have established the duality in the Doppler
radar case. Taking a composite of the range and Doppler radar models we
have already developed, we can segment the range-Doppler bins into a set

of QB large range, low Doppler shift bins where the background returns

must fall and the remaining QT bins where a target could occur, as shown
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A in figure 3.4.
With the joint and marginal densities in hand, we can proceed with

G . processor design in the next chapter. Using the dualities we just

- derived, we only need do this design once for the range receivers.
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IV. BINARY DETECTION RECEIVERS

A. The Neyman-Pearson Criterion

This thesis focuses on binary detection receivers which use the Neyman-
Pearson criterion for detection (4], The Neyman-Pearson approach is
useful for deciding between two events whose a-priori probabilities are
either unknown or, as in this case, not meaningful because they are not
random phenomena. The problem here is to choose between two possible
decisions: target present (Hl) and target absent (HO) based on an

observed data vector R, Here ﬁ'may be any subset of the measured
quantities { Imn’ an: 1{m<{M, 1< n<N ) where the index m represents
the subframe number and the index n represents the pixel number within a
subframe. The Neyman-Pearson criterion constrains the probability of
false alarm, PF = Pr{ declare Hl | HO }, to be less than or equal to some
specified value PF' and then minimizes the probability of miss, PM =
Pr{ declare HO | Hl ), subject to the constraint. Performing this
constrained minimization results in a likelihood ratio test:
= H
g (T 1 H )1
A(F) &8 —— >, ( 4.1)
2R|H0(rlH0)

'

with A chosen so PF = PF .

If A(r ) is not a continuous random variable, PF will not be a
continuous function of X . In this case, if the desired value of PF is

not one of the discrete values, we must randomize the decision rule to

obtain the desired performance [4]. The reference describes the procedure
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for a simple example. We will need to use this procedure in chapter 6 to
analyze the performance of the range processor because the discrete range

measurements, | an }, give rise to a discrete likelihood ratio and PF

function,

B. Unknown Parameters

Equation 4.1 is not completely general, since the densities often depend
not only on the data R, but also on some other unknown, non-random
parameters. If it is impossible to express the likelihood ratio A( r )
independent of these parameters, we must first determine the maximum
likelihood estimates of the parameters under HO and H1 and then use these
estimated values in the densities as if they are the true values. This

procedure generates the generalized likelihood ratio test [4]:

) m;x{ BRIHI’K( r | H,, A)) Sl
An(r ) = Ay ( 4.2)
8 max( pgry 3(T | By B) ) ¢
A 0’ HO

where A is the unknown parameter vector.

In this chapter we will specifically treat intensity and ranging radars
and later treat Doppler radars by duality arguments. For the intensity
and range radars we are analyzing, the unknown parameters are @, the

actual subframe which contains the target, Q , the actual target bin

tmn
number for the n-th pixel in the m-th subframe, CNRt and CNRb, the target
and background carrier-to-noise ratios, respectively, and sometimes

functions of these parameters (i.e., Pr( aot), the probability of no

target anomaly, a function of CNRt).
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Introducing the generalized likelihood ratio is a crucial step in this

development. The unknown parameters involve the multipixel nature of the
target. Introducing the generalized likelihood ratio in combination with
the models of chapter 2 is the procedure which makes it possible to derive
optimal or quasi-optimal processors for multipixel targets, Although the
generalized likelihood ratio concept is not new [4], applying the concept
to this problem is new and this is what allows us to derive these results

for multipixel processors.

C. Subframe and Frame Statistics

This section presents the general method we will use to derive the frame
statistics from the subframe statistics and treat the target true subframe
location, m,, as an unknown parameter.

i(f)

, which is a

% (8)
m

composite vector of M subframe measurement vectors, R

We will have some frame level measurement vector,
, where the
superscripts (f) and (s) indicate frame and subframe level measurements,
respectively. The generalized likelihood ratio test with unknown

parameters m and A (for any remaining unknown parameters) is:

_(f) —
max ( 2§(f)|H T l Hy, &, m )} 1
A(? >0, a3)
=(f)
( H., A,
Ama: 2‘(f)|H i ¢ = 0 %o ) ) Hy
o 0 o

Since the subframes do not overlap, the subframe measurements are

statistically independent and those subframes not containing the target

have the same statistics as if there is no target in the frame:
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—(s) -
( » A)
Al:la; «%gs) IHl ’K rmo I 1
M
=(s)
)-8 (> | Hy, &)
mUl R;S)Iﬂo'x . °
m#mn
P ° N GAA
g M ]
(s)
K I1 By 1 | o & )f
m=1 m 0

Since the denominator in equation 4.4 is independent of m,, we can drop
the m, maximization in the denominator and take the denominator inside the
@ maximization in the numerator (being careful to keep the A

maximizations separate):

-(s) -
X ( ’ A )
m% Bﬁés)' 1,K rmo | 1
/ M
=(s) \
. ( H,, A)
U o)y 4T o
m=1 m 0
m#m
A(Z) = max1< » 2 >.( 4.5 )
m
o
-(s) -
\ m=1 m o’ Y,

Often the unknown parameter vector, A, contains elements which affect the
densities under Hl or HO’ but not both. Examples are CNRt which affects
the density under Hl but not HO' and CNRb which affects the density under
Hy but not H, . Let's call such parameters "hypothesis separable"

parameters. Then the vector A becomes ( Kb, Xl ) where the subscripts

T N Sy N N S P I [ S VUL VERPS. * o\ S S g
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indicate which hypothesis the parameters affect. If the parameters are
hypothesis separable, we can rewrite the part of equation 4.5 inside the

L maximization as:

2 . ( 4.6)

=(s)
( r | HO’ KO )

The difference between the Kb maximizations in the numerator and
denominator is one subframe term, If M is fairly large, both numerator
and denominator will give nearly the same estimates for the parameter
vector Xb. If we make the estimate in the denominator and use the
resulting vector'Kb in the numerator, we will introduce only a small
error, but all M - 1 terms where m # m, will cancel in the numerator and

denominator leaving for equation 4.6:

=(s)
AR OIS | B, B
1 m, 1771 (s) , =(8) (s)
x = A (rm )EA m)(4-7)
s - m !
Rmo IHO,AO o

where Kb is the estimate of vector KO derived from measuremnets over the

entire frame. Notice we have introduced a shorthand notation for the

(s)

subframe generalized likelihood ratio, ‘\gm . Now we may write:
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A(;) =max { A(3) . ( 4.8)

Now it is clear the generalized likelihood ratio for the frame is simply
the maximum of the generalized likelihood ratios for the M subframes.
This fact makes it quite easy to find the frame level probabilities of
false alarm and miss, PF(f) and PM(f), from the subframe level

(s) and P (s).

probabilities of false alarm and miss, PF M The procedure is

as follows:

SR D PR

1 - Pr{ Aéf)<>\|H0} ( 4.9)

1 - Pr{ max{ A(s) } < 2 | H
o

We will treat all M of the Agm(S) as approximately independent and, under

HO' identically distributed. They are not exactly inndependent because,

although the measurements ﬁh(s) are independent, the KO value used in the
denominator is derived from a maximization over measurements for the
entire frame. If the maximum is less than some specific value, all M must

be less than that value, so:

ng) =1 - Pr( Aéz) <A | H b

=1-[1-prl 2P > [y 1M (4.10)

=1-[1- Pés) L

Here PF(S) has an intuitively meaningful definition. It is the
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probability of false alarm if we consider just a single subframe. A
(s)

nearly identical analysis for PM(f), again assuming independent Agm

gives:

(£) (s) (s) M-1
Py = = PMS [1- PFS ]

5
- p(s) (£)
=P [1-P ] , ( 4.11)
where
Pés) = Pr{ A(Z; <A lE ).

The physical interpretation of these equations is as follows. A miss

occurs if none of the subframe statistics, Agm(s) clears the threshold

(s)

A . A detection occurs if at least one of the Agm statistics clears

the threshold, even if the subframe whose statistic clears the threshold
does not actually contain the target. But the probability of a detection

on the wrong subframe turns out to be quite small; this event is

(s)

essentially a false alarm and its probability is bounded by PF . Notice

(s)

this argument depends only on Pp being relatively small. It does not

depend on the CNRs or any other parameters. Further, from equation 4.10,

PF(S) PF(f) is not.

if M is large, may be small even if

Notice since adequate performance generally requires PF(S) to be fairly

small, we can usually make the approximations:

(£) (s)
Pp /=M PFS
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LN
b and ( 4.12)
L4

% (f) . p(s)

. Py "= Py -

[\ .""
¥ \: f)

A :- . In words, equation 4.12 says for a fixed target size, N, PF( rises

2
K linearly with an increase in the angular search area and PM(f) is

;?;: approximately independent of the angular search area,
262

R, D. Multiple Targets
L7 Suppose we wish to consider the possibility of multiple targets in the

0 frame. We will continue to assume targets align with subframe

e

. \. ‘x
L boundaries. We will also assume the number of subframes containing

£

2 targets, M', is a small fraction of M. There are several possible ways to
0T . .

s analyze this problem and define the corresponding false alarm and

‘f\‘.\v‘
- detection (or miss) events, each of which may make sense for a particular
el problem. We will form the generalized likelihood ratio for each subframe,
()~ 4

-_‘.d'
:\;ﬁ perform a threshold test on each subframe, and declare target present or
[} "-*"
A

s target absent for each subframe independent of all other subframes. That
4

el is, perform no maximization over the subframe generalized likelihood

i,

) »
JE;B ratios before the threshold test. A false alarm occurs any time we
1
Lo . : .
1IN declare a target in an empty subframe, even if there is a target elsewhere
J;fx in the frame. A miss occurs anytime we declare target absent in a
S .:,:.r,
r}:: subframe containing a target even if we have correctly detected targets in
'r\.f,

CCa
D other subframes,
s

e

‘-:‘-

NN With this processor, the probability of miss for any target is just the
i,

e

~

value PM(S) already computed. Similarly, if we compute a frame level

s probability of false alarm PF(f)' it is

AR, NN N TR N RN |
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! AR R . A(Zi 20 | Hy) e ( 4.13)

(£)
~ PF

> AP
|

since M', the number of subframes containing targets, << M by assumption.

The point of all this discussion is whatever results we derive for the

single target in a frame are also useful for discussing performance with

N multiple targets in the frame. We need make only minor corrections to the
o

o single target performance numbers to make quantitative statements about
s
Ol . .
A multiple targets in a frame.

19

.
o

:;j E. Measurement and Target Models
4 ']
B~
. We will retain the pre-processor irtroduced in chapter 2 and continue
r\f working with only coarse range or Doppler data as in chapter 3. In this
o5

A5 . .
‘:; case, we already have the density functions we need from chapter 3., Now
S
>

AL we will use these density functions in the generalized likelihood ratio
i

=’§u tests from above to derive the processors for receivers measuring range,
:{: Doppler, intensity, or some combination of these signal dimensions. Since
A

W we have already established a range-Doppler duality and a range and
e Doppler analogy with range only measurements, the joint range-intensity
;:f . measurement receiver is our most general case. We will do this case and
A5

A3

Lol . then the range only and intensity only cases.
By
e

Y

o All these derivations use the target model introduced in chapter 2. In
.._:.

-

that model the target is range unresolved at an unknown range. It is

vertical against a background sloping away at a known range. Neither

target nor background CNRs are known. Targets align with subframe

5 y "_-\,.;J"-(‘.

N P AT R YT A TR T Rt ety
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boundaries and we wish to determine whether or not a target exists in a

frame.

We will label each pixel with a subscript for subframe index, m,

1 {m<M, and a pixel index, n, 1 < n { N, as we did at the start of this
chapter. For each pixel in a subframe, we measure the intensity, ibmn’

at the known background range, Qbmn’ This gives rise to an exponential
density function for ibmn' For each pixel we also measure the intensity
in all non-background range bins and choose the maximum of those
intensities, Call this maximum itmn and call the bin it occurs in &tmn’
the presumed target range. This gives rise to the statistics we derived
in the last chapter for itmn and 6tmn' Of course, ibmn is independent of

both Itmn and thn’ though Itmn and thn are dependent random variables in

general., This is the most general form of the model.

F. Joint Range-Intensity Processor

If there is no target present for a particular pixel, the system CNR will
be CNRb and the effective CNRt is zero. There are Q range bins and, using
the notation introduced in chapter 3, one of QB of them is the background
range bin, so we do the maximization over only QT =Q - QB bins to find

N

Itmn and thn for each pixel. We measure Ibmn at the known background

range bin. The densities for the resulting measurements are:

“25%ban
5 |H (Xypn | Hy ) =3 e u( Xppy ) s
bmn' 0
( 4.14)
B o g et o)
tmn’ “tmn'0




N R T T R T W R A Y N W W R e W N N A o R W Y Uy =y =y =y ~ v~y

e e 2 &

- 66 -

A a o .

X QT--1 “Xemn

(1-e tmn ) e u( x

. tmn ) 1< 9mn S-QT

The background and target random variables are conditionally independent,

. - so we simply multiply the two densities to find the joint density for the

measurement vector ( I ) on each pixel under hypothesis HO.

bmn’ Itmn ! thn

3

. If there is a target for a particular pixel, the system CNR is CNRt and

, the effective CNRb is zero. The resulting densities are:

: “Xbmun

: 2‘ (xbmanl)=e u(xbmn) ’

' Ibmn,Hl

Pa - Cxepne Qon | 4, ) = ( 4.15)
tmn’thn,Hl
' -a_x -X Q-1
a t tmn (1- tmn ) T u( Xemn ) 8 0 +

» Uone
(- ~-a _x -X Q-2 -x
'; (1 - t"tmn Y(1-e tmn ) T o tmn u( X Y(1- 3 )y
. q..Q

P mn-t

& 1< Qn < QT
[\

;: The background and target random variables are still conditionally

‘

| independent under hypothesis Hl'
? Since all pixels are independent, the frame density is just the product of
‘A

iy the M subframe densities and each subframe density is the product of N
‘if pixel densities from equation 4.14 and 4.15. Applying the general results
I"
- of part C above, the frame generalized likelihood ratio is
; () (s)
¥ A g - max{ A gm } o,
o]

y
i.!
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where
N
(s) _
\gm amax{ 2& A ( Xeon® on | Hy, 3, Q)

e o tmn’thnIHl’at’Qt

bmn'1
" .
H BPa (‘3 IH ( xtmn’ qmn I HO )
n=1 tmn’ *tmn' 0
TR i ,a Cxppn | g2y )
bmn' 0’'"b

The estimate ay is from the maximization over an entire frame, i.e,,

M N

max( IfI I_I. 2- ( xbmn l HO’ ab ) )
8 w=1 n=1 lbmnlt03

~

occurs at a, = a,. This gives

M N
A 1 A -l
a = | % }: z: I, . (417 )
m=1 n=1

The true value of the parameter ay is the true mean of the sampled random
variable, Ibmn' The estimate of the parameter ay is exactly what we would
expect from intuitive notions and the law of large numbers: it is the

~

sample mean for measurements of Ibmn over the entire frame.

Now we substitute the densities in equations 4.14 and 4.15 into equation
4,16, cancel terms in common in the numerator and denominator, take the

logarithm of Agm(S) to change the products to summations and use the

monotonicity of the logarithm to justify bringing the logarithms inside
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the maximizations. The result is:
N
(s) Z (p)
A -
log 1 qm —amag{ log A ( Xemn® Son’ *bmn )}, ( 4.18 )
! n=1
where
(p) - (P _
log A"7( x Q0 Xpon Y= A o=
Iy ( Xtmn’ 920’ *bmn ‘ 1' 3 Q )
’thn bmnIHl’a ’Qt
log * =
2’ Q IH.,a -~ (x Xtmn’ %mn’ *bmn | HO’ ay, )
mn’® *tmn’ bmn 0'"®
[ log( a, Y+ (1 - a, ) X mn ] Sq Q + ( 4.19 )
mn "t
-a_ _x -x
[log( l-e ") _log(l-e ™) ](1- 3 o ) -
Qone

[ log(a )+ (1-a )x,_ 1 .

The (p) superscript indicates a pixel level likelihood ratio.

Consider a very large CNRt (say, >60 dB ) and itmn - CNRt, which then
occurs with high probability. The logarithm of ‘{mn(p) is then

approximately:

A(gg * - [ log( ;b Y+ (1= ;b ) x ] +

bmn
( 4,20 )
[[log(a, )+ (1-a )x 135, o -

Since we are interested in receivers we can analyze rather than strictly

optimal receivers, we will use this approximation for all CNRts. even

small ones (CNRt >10 dB) where the large CNRt and }tmn assumptions are not
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valid.

Now we perform the maximizations over Qt and a, in equation 4.19 so the

t

subframe log likelihood ratio is:

N
]_og A(s) = max{ Z log A([Ix)lr)l}
8,9 T
NI (te(a ya 1) - ( 4.21 )
N 8L 2¢p :—- .
tm

log( ;b )+ (1 -a) Ibm 1.

where
N N

] = Z 8 a T = l Z b'e
m - Q ' bm = N bmn °’

n=1 9pntm n=1

p— i —1 —1

p 4 ) A
tmn
A ns= 1 qantm " 1 (M-ﬁ N -1
%m = N » 3 = TN Zd E: Xbmn|
Z (S m= 1 n= 1
L n=1 qantm B

~

Physically, jm is the number of times the peak detector selected bin th
as the maximum bin in sub{rame m. We will coin the term "hits": ip is
the number of hits in bin 6tm' Clearly, jm is an integer in the interval
[ 1, N ] with larger values more probable for high CNRt values.

~

Physically, a__ is the inverse of the average intensity for the hits in

tm
the presumed target bin th. It is the same form as the estimate ay (for
a single subframe) except the uncertainty in target location has reduced

the number of intensities to average over from N to jm. The quantity Tbm
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SN . . .
i$:$ is just the average background intensity for subframe m.
- ¥ L) W
;izi ' The only thing left undefined here is the procedure to determine atm'
jEEE Mathematically, the procedure comes from the a, and Qt maximization terms
o in equation 4.21. Physically, the mathematics tells us bin 6tm is the bin
i;\; which has the largest average intensity for measurements over the entire
l?:; frame, Figure 4.1 demonstrates the procedure for QT =6 and N =5, For
R each pixel we record 6tmn and itmn' For each bin we sum the intensities
’gii of all the hits in that bin number over the entire subframe and divide by
'2% the number of hits in that bin number to find the average intensity for
25;\ that bin. We compute this average for all QT potential target range bins
::i and select the maximum. The bin where this maximum occurs is atm' the
2:% number of hits in that bin is jm' and the inverse of the average for that
", bin is gtm' If there is a target in the subframe and CNRt is significant
;;ﬁ (> 10 dB), there is a high probability atm will be the bin with the most
§'£§ number of hits, too. If CNRt is very small or there is no target in the
‘IN' subframe, there may be, for instance, one bin with two hits and a smaller
:;ﬁ average intensity than some other bin with only one hit,
3
ANT# Equation 4.21 has a physically intuitive form. It is essentially the

;éi difference between the average intensity at the presumed target range and
::E; the average intensity at the known background range. Under Hl, jm
Pae
gat: should be reasonably large ( >N/2 ) and the ;t dependent terms are
'ﬁiﬁ approximately CNRt - log( CNRt ) which is > 1 with high probability.
f:; Meanwhile, the background terms will be close to zero with high

>
?fﬁ probability. This gives a large log likelihood ratio. For hypothesis HO
;jz: the target terms will be small and the background terms large, so the log
3
Sy
e
{5*’f}2§ﬁbxvyéﬂfwrﬁjﬁlF“:f“Vﬁ;ﬁﬁgu“f"—j1f;kf' kﬁim?;f;y*ggpkfcyﬁfh“ﬁx)'}{‘
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~

likelihood ratio will be small. If MN is large, we can treat a, as an

b
essentially exact estimate and thus make Tbm the only background dependent
term. This simplifies the expression some since we can add, subtract, and
multiply positive constants to a Neyman-Pearson test ratio without

changing the performance (the as yet undetermined threshold shifts,

however). An equivalent processor is:

(s) Jm ° 1
log A = —————— (log(a,_ ) +x»—-1) - I . ( 4,22 )
gm NC 1 - a, ) tm acm bm

Here ibm is a chi-squared random variable with 2N degrees of freedom since

it is the sum of N exponential random variables [16]. However, a, is a
very complicated random variable and enters the expression in a very non-
linear fashion. Random variable jm is only slightly less difficult to
generate a probability mass function for. This makes it very difficult to
handle the performance even in approximate form., We could always
calculate the processors performance by simulation methods, but we won't
take this approach either. Instead, we will examine two simpler
processors which measure range or intensity only. We will find their
performances are easier to handle analytically or in approximate form. We
should keep in mind, however, this joint range and intensity processor

will out-perform the intensity only and the range only processors or any

ad hoc combination of the two processors.

G. Intensity Only Processor
In this section we will investigate a receiver which measures only the
intensity of the pre-processor output, Imn' We peak detect over all Q

bins, but throw away an and we don't use the information about the range

.~c$- " AR - A ..4.-..‘-._'_._ -'..- . *-‘ _’_~ -4‘_" g. Ly .'.-..' R R T TR RS .‘-,w}._ “u e Cptan - ’@‘ 'f"'." -
» FAUI IR T RENE RIS Y Bt SR RS S A S e e Lo B PR AN S e X K /
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to background. We use only the measured peak intensity Imn. We will
begin the intensity only processor analysis by examining the processor for

a single pixel measurement:

maX{ RA ( X I H y @ ) }
a, I|H,a 1" e
() " ’
A g (x)=
max{ pa ( x| Hys ap ) )
a, I|Hy,a
Pa (x| Hiy &, )
I|H,a,
= max | . ( 4.23)
a,,8, | Pa (x| Hy, a, )
t’"b 0" b
I|Hya,

If we make the large imn’ large CNRt and CNRb assumptions, as we did for
the joint processor earlier, the conditional density for either hypothesis

reduces to:

-x -a_x
Pa (x| H,a,)= (l-e ) e 3 u(x) ( 4.24)
I[Hi,aj o

for i =0, 1, and j=b for i =0, and j =1t for i = 1. Then the log

likelihood ratio is:

log A(Z)( x )= max { ( ay - a, )y x ) . ( 4.25)
3p13y

Since the ay and a,_ values form a single multiplicative constant, they are

t

irrelevant to a Neyman-Pearson processor if we know the sign of ay - a..

Then the generalized likelihood ratio is also a uniformly most powerful

(UMP) processor [4] and is simply:

AR AR

WIS A -‘h\l\\‘. LY ‘-}\‘.\.Q
QLR 2L AL RN R PG v U



log A(g)( X)=2Xx . ( 4,26 )

Using the general results from earlier we now find the frame level

\
ﬁ" processor for N pixel subframes is simply:
-s.-f
&7 N
ol (p) Z (p)
SN lo = max log A
f*& 8 A 8 m { 8" gmn )
P n= 1
i;t‘ ) N
¥ “\.
2%& = m:x[ E: X0 ) ( 4.27 )
:l; n= 1
'4-!
;:E = max{ log A(:; ),
\t‘-\‘ b
\'_j‘
S
f;f where it is still critical that we know the sign of I In general,
,;5: however, we don't know the sign of ay - a.. Indeed, we may have either
o
Q:Q CNRb > CNRt (called negative contrast), or CNRt > CNRb (called positive
;ﬁJ contrast), or CNRb = CNRt (no contrast or zero contrast). Nevertheless,
i,{. in keeping with the idea of working with processors we can analyze, we
%\g will continue to use log A gm(S) = Rm(s)== Z;Imn as our subframe

statistic, and derive a way to handle the unknown contrast ratio.

AN, Since we will generally be concerned with N ~ 10 or more pixels per
¢ subframe, we have a sum of a "large" number of independent random

variables. This gives us a conditional Gaussian density for Rm(s), via

oY the Central Limit Theorem. The conditional moments for Rm(s) are:

el RS | Hgs) =Nug, varl RS | Hg.s) ] =N o§ ( 4.28 )
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ro"
-;E: for j = t, b, where uj and sz are the conditional pixel mean and
W
h x variance, respectively, and Ht(s) denotes the target subframe, and Hb(s)
\ - ) denotes a background subframe. After some straightforward but tedious
‘!-f
\ :& . calculations we get the conditional moment values:
r |
Pr( o(.o) 1
Yo W=——— + [ u(CR=0)-71,
X a
o WCCONR=0)= p(Q+1)~- (1),
2 Pr("ap )
- ¢ =2 ————[ ¥v(Q+a)- V(a)-n1] + ( 4.29)
2t s
o 2
ny Pr( ao) 2 1
:.‘-J —_— + o(CNR=0)-—2,
i % a
[ Y
:b . 2
o c(CNR=0)=~[ p'"(Q+1)-y'(1l)] ,
\‘iﬂ.‘
b %
%
R where ( x ) and y'( x ) are the first and second logarithmic
":'::: derivatives of the gamma function, r( x ). The equations are valid for
::::: target and background with appropriate subscripts on the variables u, o,
a, CNR, and age
).
3 "‘
o
;'.';.': Since the subframes are independent, the frame processor falls into the
\ -
&, <,
v same general form we derived in parts B and C above:
nl~
Nt max( p (r(s)IH, v, )}
[ % U R(S)IH U m 1 t
! e t m 1"t
L A = max . ( 4.30)
[} LY B g a
e . m - ( r(s) | Hyy w o)
s "‘. 2R(S)IH u m 0, b
e o 0 b
..",}-.
e
SEEH
;-,'; We will do the maximization in the numerator by differentiating the
\.'-__. density with respect to My directly and setting the derivative to zero:
[
S
-{.-‘
-

el
v s 0

""b

A ]

- »
o

"’l
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. (s) 2 . s . .
The density for Rm = é; Imn is conditionally Gaussian with mean N U
. 2 . . .
and variance N gtz. However, otz is a function of e Via the equations

in 4.,29. This dependence between My and Oy complicates the formula for

Hem * With this functional dependence, the estimate is given implicitly

by the equation:

A

- 1 1
b, = H,. - @ [— — + x ( 4.32)
tm tm tm ' W) ]
2 Ovm 1+ 4 tm

where the value of Oem is the value of the equation for Ty evaluated at

= A' . .
He Hem and o tm is the derivative of o

~

A~

t with respect to M

evaluated at Hem® If g, was not a function of My (or CNRt), the

variance dependent terms in equation 4.32 would not be present and the

~

estimate would be Hem = HYeg = E:Imn' the sample mean. At very high
n

CNRt values, ¢ = Uys SO the estimate reduces to:

t

~ 2

Ut il

m 1 +\/§' Jtm
?

For small CNRt values, Ty and Ty approach constant values and u

0.618 I, . ( 4.33)

~ ~

to
approaches the sample mean minus a constant bias. In keeping with our aim

to use simple quasi-optimal processors, we will use the approximation

Hem
of being independent of CNRt.

ﬁtm since it is a reasonable approximation and has the advantage

To obtain Hye We perform a similar differentiation except we use the

) ‘
£/
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statistics for the entire frame: R(f) ( Rl(s),...,RM(s) ), where the

g (8)
m

random variables are conditionally independent jointly Gaussian

random variables with identical means, N “b’ and variances, N2 Obz.
Setting the derivative with respect to Uy of
(£) , e . . .
r H H to zero and simplifying leaves the implicit
Rﬁ(f)lﬂo’ub ( R I 0’ b ) P ying p

equation for Myt

M
Y e o MOy < Cay))
=1

[1- : i(r(s)-nﬁ 321 = 0 ( 4.34 )
——: z b =0, -
o
b m=1
where Kl( ; )= ¥v(Q+ ; ) - ¥( ; ) which is an increasingly weak

function of ; as CNR increases. Again, if ob2 was not a function of My
through CNRb, the last term would not appear and the equation would reduce
to Hy = the frame sample mean, as our intuition would lead us to guess.
Even with the Hp~ Tp relationship, the last term is small for large M.
So, we can take My = ﬁb as an even better approximation for the
background than for a target subframe.

With ;b and ;t set to their sample means for a frame and subframe,
respectively, we can complete deriving the processor. The conditional

densities are Gaussian under HO and Hl' so the log likelihood ratio is:

* 2 (s) 2
o (r - M, )
9 tm 9 p

We will drop the term involving the logarithm of the ratio of the

NN
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<.
o variances since this term is proportional to the logarithm of the contrast
¥ .
- ratio and the other term is proportional to the contrast ratio directly.
S .
! Then an equivalent processor for a Neyman-Pearson test is:
‘ * 1 (S) (S) - . b
- og A on | . Nuy | ( 4.36 )
5
2 This processor is very intuitively appealing. We choose as the target
¥
ks subframe that subframe which exhibits the largest contrast (positive or
negative) relative to the computed background mean. The test is simply to
:3 compare this contrast to a threshold.
i Notice that this processor is not quite in the form
Sl
es log A(f) = max{ log A(S) } ( 4.37 )
b g gm
& m
M
. as we would like since the quantity in the braces contains My which is a
’iz function of Rm(s) for all m. However, since MN is generally large, we
N know the variance of]Jb must be fairly small since Hy is approximately the
2 sample mean and the variance of the sample mean falls as 1 / MN. Because
~ ~ :
- of this, we will take My as exactly Upo that is, treat CNRb as a known
Y
- quantity. Then the log likelihood ratio is in the desired form. Numerical
& calculations With\Jb =up + 3ob give indistinguishable results with MN =
- 128 x 128 pixels.
o
-
-
]
o Although we have justified assuming conditional Gaussian statistics for
i :-.
o Rm(s) via a Central Limit Theorem argument, we know for CNR = «» the
1, 'l'
v random variable Rm(s) / N My has conditional chi-squared statistics under
2
\.I
¥
s
A
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3 |
Ei Hi(s)with mean 1 and 2N degrees of freedom. Let's compare this chi- |
= squared density to a Gaussian density with mean 1 and variance s 2N 2,
f}: We will do this comparison by calculating Py versus X' for both models
Ez . with A '=x / NIJb for PF down to about 10_5. This test allows us to
5¢3 compare the tails of the densities, which are of most interest to us,
W; where the Central Limit Theorem arguments don't yield very accurate
by
;tﬁ results. Figure 4.2 shows this comparison for M = 1000. Although the two
1% models converge more as N gets larger, even at N = 100, the two are still
ﬂij very far apart for even fairly high false alarm rates like 10_4. of
!EE course, the problem is worse at more reasonable PF values like 10_6 which
%Ej are farther into the tails of the density.
.
o
ﬁ: Although we obviously cannot use the Gaussian statistics to analyze the
;ﬁ processor's performance, we will continue to use the processor derived
ﬁ;: from the Gaussian statistics assumption because it is so intuitively
?Zé appealing. For analysis purposes, we will use an approximation derived
.#' from the Chernoff bounds [4]. For CNR — = , numerical calculations show
A
’:j this approximation differs from the exact results (the chi-squared
Z; statistics) by only a percent or two [18].
?
;ﬁ; H. Range Only Processor
;Ei In this section we will examine a processor which uses all the range
e
D information available and discards all the intensity information. For
i;: each pixel we measure the peak over all Q bins and record the bin number
z;f where the peak occurred, an. We ignore the intensity of this peak,
h We derive the range only processor using the same techniques we derived in
o
Z v.
ks
N
R L L T M L S L e
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section C above using the marginal coarse range probability mass functicns
we derived in the previous chapter. As usual, we take each pixel and
subframe to be independent of the others. The resulting generalized

likelihood ratio test is:

A(f) = max ( 4.38)
8 m
N
max IﬁI Pr( an =9 | Hl’ Pr( ‘o )y Qt )
Pri )y 57201
Qt
N ~
[T PrC Q= agy | Hpe PrC 30, 0D
n=1

where the denominator is evaluated with Pr( “0p ) which we in turn

derived from:

M N
max | I—I I—I- Pr( Qi = 9o | Hg» Pr( g, y) ).
Pr( C"Ob) m=1n=1

{( 4.39)

Taking the logarithm, substituting the probabilty mass function in,
differentiating with respect to Pr( 10 ), and setting the derivative to

zero, we solve for:

. ( 4.40)

M N
° _ 1 Z
Pr *ob ) = ¥y Sqanbmn
m=1n=1

The estimate of Pr( %ob ) is just the relative frequency of occurence of

anomaly events for the entire frame. If there is no target in the frame,

the estimate corresponds exactly to the intuitive notion of the
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probability of no anomaly and the Law of Large Numbers [16]. If there is
a target in the frame, the assumption we made of M >> 1 makes the target
contributions to the estimate of the background anomaly probability
dilute, and hence we may use the same intuitive interpretation of the
equation. Since MN is the number of pixels in a frame, it is usually
quite large, so the estimate can be very accurate, particularly at small
background CNRs. At higher CNRs, the estimate will be less accurate
(because the summation will be smaller so statistical variations introduce
larger relative errors). In the ensuing discussion, we will take the
estimate to be exact and so treat the background CNR as known, as we did

in the intensity only receiver.

Performing an identical maximization in the numerator gives the estimate

. N
a J
Pr( ay, ) = y° o vhere j_ = max Z 5o g )+ (41)

~

Again, Pr( 2o¢ )} corresponds to our intuitive notion of the probability
of no anomaly. Here jm is the number of hits in the range bin, from among
the QT potential target range bins, with the most hits for the m-th
subframe., However, since N is generally not very large ( <100 ), the
estimate may not be very accurate, Hence, we cannot take this estimate to
be exact. Physically, jm is the same as it was for the joint range and
intensity processor we already examined and pictured in figure 4.1.
Without the intensity information however, we choose Qt in a different
manner in equation 4.41. Now we simply choose as Qt the bin with the most
hits from among the QT potential target range bins in the subframe picture

(the last line) in figure 4.1. We can see intuitively now why the range
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only processor must under-perform the joint range and intensity

processor. The joint processor takes into account not only the number of
hits per bin, but also the average intensity for those hits, Since
anomalies occur in noise bins, they have intensities with mean 1, which is
always less than the target bin with mean CNRt + 1. Thus, the joint
processor can weight the range bin measurements to make implicit guesses
at whether or not some hits correspond to anomalies. Without the
intensity information to help weight the decisions, the range only
processor will make poorer decisions, particularly at low CNRs where

anomalies occur more frequently.

If we substitute these quantities into equation 4.38, take the logarithm,

and define the number of hits at the known background ranges as:

N
k = 2: S ’ ( 4.42)
m qanbmn
n=1

then the generalized log likelihood ratio processor is

() () () o .
log A g = m;x[ log A gm } log A am = PlJm - km + P2 ,
( Q- 1 ) Pr( Aot )
log *
1 -Pr( g )
P, = Oc , and ( 4.43)
(Q=1)Pr( g, )
log
1= Pr( gy )




rrTTTTTrYoTrew o e aoh gL o aoa sl aih as oahaa a2 ua . |

(Q=1)(1=Pr( ag ))

log 3 < —
( Q1 1 - Pr( ) )
PzaN' T i 20b .
(Q-1)Pr( 1g )
log

Notice that P1 and P2 are functions of Pr( ;Ot ) and so are functions of
jm. Because of this, we can plot P1 and P2 as functions of ip for various
values of CNRb and get a feeling for how sensitive the processor is to the
values of P1 and PZ' Figures 4.3 and 4.4 show such plots for Q = 100 and
QB <K Q= QT’ a realistic condition for either a large range uncertainty,
Lu, or a radar with good range resolution. Although both parameters can
vary over a wide range, the probable values for jm for reasonable target
CNR values (> 10 dB) will place the parameters in a relatively narrow

range. This being the case, an approximately equivalent processor for a

Neyman-Pearson test is the much simpler formula:

log A(Z; c3y -k ( 4.44 ) |

In fact, this processor is exactly optimal for known target CNR and zero
contrast, We will use this processor for all CNRs since it is a fair
approximation to the optimal processor and it is possible to analyze its

performance without too much difficulty.

Physically, this processor determines whether the presumed target range

bin or the background range bins had more hits and how many more. As CNRt

(s)

increases in the subframe containing the target, log Agm grows more

positive. As CNRb increases in a background subframe, the statistic grows

more negative. The processor looks for range measurements to clump or
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aggregate at the background ranges (the ko term) and somewhere in the Qr
potential target range bins (the jm term). It then makes a decision based
on which clump is bigger and by how much. Colloquially, we can say that
whereas the intensity only processor looks for the maximum intensity

contrast, the range only processor looks for the maximum range contrast.

I. Other Processors

We have derived processors for intensity, range, and joint intensity and
range measurements. We could also imagine incorporating Doppler
measurements into these processors. However, our analysis in chapter 3
indicates we need do no further work on the processors because of the
range-Doppler duality we encountered. Anywhere we treated range
measurements, we could substitute Doppler measurements, or include joint
range and Doppler measurements. The processors don't change form,
although some parameters may change values. Because of this duality, we
won't treat Doppler processors explicitly until chapter 6 where we will
consider how the performance scales with changes in the system parameters

that differ between range and Doppler radars.

Now that we have derived the processors we will use, we will derive

performance measures for them in the next chapter.

--7--
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V. Receiver Performance Derivations

4

Recall that we wish to find PF and PM for intensity only and range only

§ . receivers when they evaluate an entire frame of data. However, we already
’ know we can easily get the frame level performance directly from the
\. subframe level performance. Consequently, this chapter derives equations

for PF(S) and PM(S) for a receiver measuring data only over a single
subframe. The translation to frame level performance is direct. (For

notational simplicity we don't use the (s) superscripts in this chapter

\
3 nor the then superfluous m subscript. If there is cause for confusion, we
L]
3 will reintroduce the subscripts and superscripts.)
‘f
: A. Intensity Only
2 Recall from the last chapter the quasi-optimal intensity only processor
. tests for subframe contrast:
5 N i
A- a > - '
’ | I Nub|<x_Nubx . ( 5.1)
] n=1
. H
3 0
Ca
b
-: If N = 1, we can analyze the processor exactly. The analysis is fairly
1 simple and, using the exact statistics derived in chapter 3, the PF and
f
) Py, in terms of the threshold, are:
K
-(1l4+ 2" )y -a,( 1+ 2" )y
L)
4 Pp=l-(l-e byl ) P by 4
é.
" (1-2'")u -a,(1- A'")u
: (1-e Py (1-e? Pru1- )
<
b

e e s b
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o Lo
s (1=-1") (1-1")
o IR o SN e T O
.~ PM=(1-e b)Ql(l—et b)—
LR Y
A8 (1 - 2")yu _ -a,(1-2a")u
N (1-e byl ) _ ot Pyuw(1- 12"y,
‘-::'\
el A'>0. ( 5.2)
LS i
t{c Reasonable PF performance ( <10~2 ) requires ' > 1 and so
\.‘:’4.
.“:‘:
s PF = exp[ - ay My (1+ X'") ], which gives
W'
‘ AY =2~ (1 + log( Pg )/ ( ap uy ) ), and ( 5.3)
F*",
DY o
-..'-"i?: P 1 at at/ab
1.$$ W > - exp| 5; log( PF Y]l = 1 -¢( PF ) .
,‘;_
Tx
ﬁ;:
?i; These equations are very similar to the equivalent equations for a
oo
’ processor which measures intensity at the known target range. The
2;%: equation for the threshold, X', in terms of Pp in 5.3 is identical to
o
) that for the known range processor with clutter [14]. The equation for P
Lo M
) in terms of PF in 5.3 is nearly the same as its (clutter free) analog for
‘3$; the known range processor. The only difference is the exponent to PF
_{ﬁf which, for the known range processor, always exhibits an effective CNRb =
Aht] 0.
.
et
}*j : Notice that with zero contrast, the performance reverts to the guessing
P
e curve (PD = PF), as we would expect for a processor which searches for
.
:E;g contrast. Similarly, there is an obvious asymmetry between performance
.
"*; for positive and negative contrasts of the same magnitude. This occurs
g
W
s because the density function is so asymmetric with a mode close to the
IACA
ipﬁ: origin and long tails out to positive infinity. Finally, notice that the
YRS
o
o
-
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o
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oY

o

}:ﬂ processor performance is independent of Q. This occurs because X' is
A -

W large enough to make the Q-dependent terms 1.

;- g

AN

o~

::{: Although the single pixel processor is not of much practical importance,
-

IS the ability to make an exact analysis gives us information which may carry
Ny over to multipixel processors as well, We should not be surprised if
AN

b . .

b multipixel processors don't perform well at negative contrasts and the
Y ‘
A

b performance is relatively insensitive to the value of Q.

-

oy

f.-.‘

,f{i When there are multiple pixels in a subframe, we have already noted the

W .

9% statistics are too complicated to analyze exactly and neither the Gaussian

a2

Rt nor the chi-squared limits are accurate enough for general N and CNR

N

j}i values. Instead we use an approximate performance measure derived from

g.‘_:\.'

the Chernoff bound [4]:
)"'

b LR
AT - :

=N Pri ) T2 | H ) = exl - N(s¥(s) - v(s)]

-l'l-'

3 _‘J n = 1

o ( 5.4)

cloaorlyg? v VINeiis)

NN 3 exp| 5 N's Yi( s ) ] erfc( 5 N's (i( s ) ),
AR

s R

".L} sI

,:f' yi( s ) = log( E[ e | Hi 1), i=1torhb, s>0.

The parameter s is free, but the optimal choice is when Qi( S ) =X\ .
The first exponential is just the Chernoff bound and the other two terms

‘ are the correction term. For st Y( s ) >9, we can combine terms and

approximate the correction term by:

% exp[ % N 82 ?i( s ) ] erfe( N/% N s? Vi( s) ) =

ey

;\:,

?
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A
) 1
u':'I 2 e
) ~\/ 2T N s Yi( s )

LN . If the test in equation 5.4 is ZIn < A, the only change is in the sign
n

( 5.5)

of s in the equations, so s < O,
oo For the multipixel intensity only processor we find that:

P Nowp | > 2 | Hy)

-
Pt
ey
]
v
L |
n[\/]z
- >
=}
|

4L
.-'. »

L= . p Rl
[}

l’."“‘"‘“‘ <+ -v‘
+

N
Pr Z I >N up (1+ 2") | Hy) +

v
e

A

Slr*r"-‘,
K WL LA

N
Pr( Z I <N u, (1=-2a") [Hy)

s
=2

\]

L 4

0 4
AN NS LNE
la”)
|

»

ras

N
M—Pr{IZIn—Nub| | H ) ( 5.6)

0%
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.l
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oy
e
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a

N
Pr{ Z I >N uy (1= ") [H )} +

'\'. DY

“»
» .{'

Pr{ ub(l K')IHI}

M) =
>
=]

N\
=
+

. ’ ¥ ‘;'
n.':«'{-.' At

,l

j‘.{: The conditional semi-invariant moment generating function, Yi( s ), is:

.j Yi(3)=108(5[B(Q,ai-s)"B(Q,-S)]), ( 5.7)

i=bort,
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where B( * ) is the beta function:
r(x) r(y)
B( x, y)= . ( 5.8)
T(x+y)

The s parameters in terms of the thresholds are:
vi(s) = uCl+ A"), ( 5.9)

0<s« a; for the > » tests, s < 0 for the < X tests.

Going from this point to explicit numerical results requires much calculus
and algebra, but there are no new theoretical developments, so we will
skip these steps. In the next chapter we will present and discuss results

of actual computations.

B. Range Only

We will handle the range only processor in a completely different fashion
from the intensity only processor. From the last chapter, the processor
is, again for a single subframe, one which searches for clumping of the

range data in the background and target bins:

X ( 5.10)

The PF and PM values are:

Pp=Pr{ j-k2x |Hy)
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R R Lo AT R L A DO L I L o £

KaltaX) 0l A8

AHTACS IR
1 - '.f'.l#"‘

¢

b '-*\




- 93 -

N kmax

Y Pr(J=j3 K=k |H),

™

min
jmin =max{ O, » } , kmax = max{ O, min{ N - j, * -3} 1} ;
Py = Pr{ j - k< ,XIHI} ( 5.11)
N jmax
= Z ZPr(J=j,K=k|H1),
k = kmin j=0
Koin = max{ O, - )x 1}, Jpax = max{ O, min{ N -k, k +x 1} }

Under both hypotheses we assume in case of a tie, j - k = A , we choose
hypothesis Hl' These are simple sums, but, of course, we need to find the

joint probability mass functions first.

To find the joint probability mass function, start with a different mass
function we can find relatively easily. We will divide the Q range bins
into QT potential target bins and QB potential background bins as before.
From the geometry discussed in chapter 3, we know these latter QB bins are
always the most distant range bins for a particular subframe and, for a
particular pixel, one of them is the known background range bin. Call Ji’
1 <iX QT the number of hits in the i-th potential target bin, K the
nunber of hits in the correct background range bins (precisely which bin
is "correct" depends on the pixel number within the frame), and L the
number of hits in the QB - 1 background bins not at the correct background
range. Under hypothesis HO we can write the joint mass function

Pr( J1=j1,...,JQT=jQT.K=k,L=l|HO ) fairly easily. It is simply a

multinomial:




Pr( Jy = 3y +eo, JQ = jQT, K=k, L=1] Hy ) =
N1 IR
it jQT! k! 11 Q-1 |
N -k
1 -Pr( an )
N k /N -k 1 0b
= (1) PrC agy) ("1 ) (Qg-1) .
(N-k-1)! (52 )
J- ! LK N j ! ’ ‘
1 Qp

for { jl’ cens jQr , k, 1 } non~negative integers obeying
Jp bt jQT =N -k - 1. Now define J = max{ J, | i=1, ..., Qr }. To
convert the mass function for the Ji's to a mass function for J we must

sum over all combinations of the Ji's subject to the stated constraints

and the additional constraint all ji.g j:

Pr(J=3, K=k, L=1]Hy)= ( 5.13)
j ]
:i: Pr( Jy = Jpu «ees Jg = Jor K=kl =1 | Hy )
5,50 - om0
N-k
1 - Pr( « ) (Qq)
N k /N -k 1 0b T
= (k) Pr( agy ) 1 ) (Qg-1) 3,N-k-1

Q-1

In words, CEQ )

g—k-l is the number of ways to order the elements of all the
’




sets { Ji l i=1,..., QT } such that we meet the constraints stated

above. Now sum over 1 to get the mass function we want:

N P Pr( b ) N -k
Pr(J:j’K=le0)=<i(_) pr(.iOb). - 1
N-j-k
- (Qp)
E: ("1%) (-1t 5 Nkl ( 5.14)
1=20
Q)

Evaluating Cj,N—k—l is computationally cumbersome, but once we have the C-
values the remainder of the calculation is straightforward. Under
hypothesis Hl the procedure is similar though not the exact dual. To
start, we assume the maximum, .T, occurs in the correct (true target) range
bin., This assumption simplifies the derivation and we will shortly see
the error it introduces, for N and CNRt values of interest, is very

small, Call the event in which the maximum Ji occurs in the correct bin
30 and the event in which the maximum Ji occurs in the wrong bin 3 1

Then the mass function we start from is:

N-j-k
PI‘(J=j’K=k, 80IH1)=Z Pl’(J=j,K=k,L=l, SOIHI)
1=20
N_'
N N - j 1 - Pr( 1op ) J
- (3 (Y5 mCage
J k Ot Q-1
N-j-k
; (Qp-1)
N-j-k 1 ., °T
) E: () -1 Cl Nmjoke1 ( 5.15)
1=0

The difference between C' and C is, since we have 80, there is one less
sum in the sequence of summations and there are only QT - 1 bins to

congsider. For N = 10 and CNRt = 10 .25, both fairly small values,
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Pr( BO | H1 ) = 0.99966. So, BO is essentially always true for cases

of interest to us.

With these probability mass functions we can compute PF and PM directly
using the equations in 5.11. However, PF is not a continuous function of

(s)

the threshold A since the test statistic log Agm is discrete. We
touched on this problem at the beginning of chapter 4 and noted we could
make PF a continuous function of A by randomizing the decision rule with
a well known procedure, We will use this practice when computing PF and
PM for the results in the next chapter so we can use PF and PM values in
the range processor identical to those we used in the intensity
processor. This will make it much easier to do comparisons between the

two processors without introducing corrections to make the comparisons

seem fair.

Now we have processors for range only and intensity only receivers and we
have methods to compute their performance statistics. Actually performing
the computations can be a complicated numerical procedure, but detailing
the procedure would not contribute to the main point of this thesis and

there are no novel numerical techniques necessary. Consequently, we will

turn now to simply examining the results of these computations,
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VI. RECEIVER PERFORMANCE RESULTS

We have taken our theoretical development from the single pixel speckle
target IF waveform through a multipixel, multidimensional probability
density function and derived quasi-optimal processors for two important
receivers, the range only and intensity only measurement receivers, We
have shown how to compute the PD—PF performance curves for these receivers
in the last chapter. These theoretical developments are all we need to
meet the original objectives of this thesis. Now we will present some
actual numbers to demonstrate the relationships embodied in the processor
and performance equations we derived in the last two chapters. In this
chapter we will first derive relationships for how the CNR (target or
background) scales with changes in various system parameters and then
actually compute the performance curves for some cases of these processors
and compare the range and intensity only receivers. As in previous
chapters, we will perform our calculations only for a ranging radar and
comment afterwards on how to carry the results over to Doppler and range-

Doppler receivers.

A, System Parameter Interdependence

Our equations for system performance involve many parameters: M, the
number of target sized subframes in one frame or field of regard; N, the
number of pixels per subframe or on target; Q, the number of range bins
per pixel; CNRt, the target CNR; CNRb, the background CNR; and CCNR’
which we will define as the contrast ratio, CNRt/CNRb. These parameters
are not all independent and some depend on other system parameters which

do not appear explicitly in the performance equations. However, the radar

A N A L G N
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equation, 3.17, determines how these parameters interact to affect

performance:
n PT AP -2a L
CNRi == — p, —3 e Eopt , ( 6.1)
hv, B m L}
o i
For simplicity of presentation, we will use @ =0 and € = 1 and keep

opt
fixed n/h Vo and target and background reflectivity Py so that:

n Pr A
T °P
CNR, = ( o.) — = . ( 6.2)
1 1 B Li

mhv
o

Now consider how the choice of the parameters listed in the first sentence
above affect the CNR through the radar equation, 6.2, and vice-versa., To

do this, we will first review the models for the target and its
environment and decide which elements of these models we will have

reasonable control over and which we won't.

We will assume a fixed search volume and target size. The fixed search
volume corresponds to a fixed angular uncertainty, Qu steradians, and
fixed range uncertainty, Lu meters, These assumptions simply say the

radar designer has no control over the size of the target or where it

resides in space. For any given problem, however, the radar designer
knows the fixed values of Qu’ Lu’ and the target size, Qt steradians. !
Notice we jumped from knowing the target size to knowing the target

angular extent Qp» Formally, this requires knowing the target range, L,

which we don't know., However, if we know there is only a small relative

difference between the minimum and maximum L values, Q¢ will be

- ST\ ._.N’ . i
' ‘M”.’a’lnan..a.s. ":M’. CROLCHALC
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approximately constant for any L in the range of permitted values. We
have assumed a known Q, all along by assuming a known N. A system where

Q, is not known would require treating N as an unknown parameter in the

t
fashion of chapter 3.

For a given Lu’ we have

Lu 2Lu
Q = — = — , ( 6.3)
1r ctr

where 1r is the bin size or range resolution in meters and £, is the bin
size or radar pulse width in seconds. Since all the performance equations
depend only on Q, Lu does not enter the equations explicitly. For a given

Qps the value of N depends on the angular resolution, An steradians:
Q¢
N = 55— . ( 6.4)

however, M remains constant at

Q
M = = - ( §.5 )

=

o

Changing the radar parameters has no effect on M. Because this is true,
and because performance depends on M in such a predictable fashion, we
will not concern ourselves too‘much with M. We will fix M = 1000, as we
did in chapter 5 for a single pixel, for the remainder of our work. This

corresponds to a frame of about 30 by 30 subframes.,

We should mention there is one complication with this assumption. Some of

ey et et e
R T e e e e e e e e e e e e j
VAT NI O AR LORN £
A < 3 LY O PR s WA A
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'~i
[ our derivations assumed a large M value. Although we didn't define what
l“ -
° we meant by large, cases of M 10 are probably too small to allow the
]:ﬁ approximations to remain valid. We won't deal with this problem, but we
e
N should at least recognize it exists. Notice that N depends on AR which
' in turn depends on the receiver aperture AP’ whereas Q depends on t. which
-‘-N
‘ﬁ} in turn sets the matched filter bandwidth B.
S
>
Now let's examine the B or Q dependence more carefully. We will iet B =
b
! l/tr since we used a matched IF filter. PT is the transmitter peak power
.#; and it is related to the transmitter average power, PA’ by
A4
o T Pr
j}: PT=PA: _ B—=PTtr=PAT, ( 6.6)
o r
'r‘\
S
H
where T is the pixel dwell time or inter-pulse time, and 1/T is the pulse
% repetition frequency (prf). There is a maximum pulse repetition frequency
o
2? in a ranging radar that is set by the desire for unambiguous range
e
LJ information [1], [7]. If we want unambiguous range detection out to range
X ? L, we must have T > 2L/¢; for L = 3 km this translates to T > 20 yusec.
rf

e We will assume T takes con its minimum value, since larger values lead to

longer frame imaging times, MNT.

k -
Wy
g If we assume our laser is average power limited, PA is constant. Since T
3.
] is also constant, PT / B is a constant by equation 6.6. Hence, changing Q
g
.
'j\ does not affect the system CNR.
K
* ’-
l‘.J
'a f‘
- If we assume our laser is peak power limited, PT is constant and
: y
o

."-‘ -. "o ':“"uf 'b-'fx
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)
L
B .‘ 1 c Q
?#5; B = — = ’ ( 6.7)
t. 2 Lu
‘- L)
,é.;::
;%uﬁ ) so the system CNR is proportional to 1/Q. 1In this case it is useful to
Gl define a quantity Q(max) as the largest number of range bins,
(T
;{ corresponding to maximum bandwidth, B(max)’ operation of the radar, In
t
;; terms of these maximum parameters we have:
12
5.6
c Q Q
S— max) . max
f‘ﬂ B = — Q( ‘ max) B( ) max) ° ( 6.8)
N 2L, Q Q
4 ”d
-
'Qij The value Q(max) exists because we have assumed all targets and background
,
:iﬂ: are not range resolved within a pixel. If we make tr too small (Q(max)
",
& too large), we will start to resolve the fine range structure of the
gifﬁ target. There is also an indirect N dependence in Q(max). For a given
.
lﬁié target, if N is small, each pixel will cover a larger area of the target
B which leaves more opportunities for the target to be range resolved. For
:
5&: large N, we have a larger Q(max). We won't deal with this weak N
Y
?_fh dependence in this thesis.
;: T“:
1A'
f:j: Turning to the N parameter, we use Fourier diffraction theory [21] and
Ao
-:tﬁ: . equation 6.4 to obtain
b
o I 1.2 a2 1.2 22
e AP = —_— N , ( 6.9)
o, AR Q,
'\.-_' -
e
L where the factor 1.2 arises from the Airy disk radius, © , factors of 2, |
YO |
:12$ etc, If we define a maximum aperture AP(max) and a corresponding maximum
2
o
. |
-
*"f'
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<
\

;: N, N(ma ) we get:

‘

i 1.2 32 y(max)  y(max) oaxy N

. A. = = ALmax . ( 6.10 )
;: P Qt N(max) P VZmaxs

e

N

)

.Y

f; Finally, in terms of the CNR at maximum aperture and maximum bandwidth,
"

:: A(max) P

“ hv, = 7Ly BT

X

% we have the scaling laws

4

o CNR: P limited

e i Q N(maij T

CNR, = : ( 6.12)
(oS 1

" (@ _ . P, limited

W i E(;;;y : 4 limite

:\

A \

£l

}\

These relationships are important for making reasonable comparisons
between two processors with different resolution parameters imaging the
.k same target and environment. We will return to these equations when we
- compare processors with different resolutions and in the last section of
this chapter. For individual processors with fixed N and Q values,

b |
:4 however, there is no need to bother with the scaling factors.

In all the following calculations, we will use N(max) = 40 pixels and

Q(max) = 10000 bins.

“mﬁ
' u.é;\ N
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A B. Intensity Processor
e
ﬁ"’ Recall the quasi-optimal intensity only processor searches the frame for
s the subframe which exhibits the most contrast relative to the computed
; :j ) background intensity. If that contrast exceeds a threshold, the processor
s
tly declares a target present in the subframe with the maximum contrast:
h nq 1
J N
:?f‘. (] I -Nu |) 2 6.13
Ay nax Z m - " Yb <A ( 6.13)
' n=1 HO
'-‘.,J
A
g
»Fv
N
e
xjﬁ- Using the equations we derived in chapter 5, we can plot PM versus CNRt
e
;'u; for this processor at given PF, N, M, Q, and % CNR values, Figure 6.1
rece
ﬁ{j shows the frame level performance results for N = 10 and 20 pixels, M =
Ry
b{- 1000, and Q = 10. For each plot there are two sets of two curves each.
i%:f The top set is for CONR = +5 dB and the bottom set is for ZONR = +10
'y -
%«3 dB. For each set, the top curve (dotted line) is for PF = 10 6 and the
,',:l
h .3 bottom curve is for PF = 10-3. For Z CNR < 0 dB, all the curves are
.
o indistinguishable from PM = 1.0, The value of Q = 10 is fairly arbitrary
e
4‘ -
:{} because, as we shall see shortly, Q is not very important to the
\'.-.:
R performance of an intensity only processor. We expected this Q-
o insensitivity from our single pixel work in chapter 4.
o
S
2
?‘f? The method used to generate the numbers in these curves has introduced two
:2: quirks in these plots which the reader will easily notice. In the N = 10
i:ﬁ plot, figure 6.1 (a), the lines for Py = 107 don't extend to CNR, = 30
E A
J’"
o dB. This is not a major problem since the curve has approximately reached
'E{f its asymptotic value by the time the data stops anyway. In figure 6.1 (b)
o
.'.t', D
A
oy
rren
gL
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3
N -3
’ = z = j i
_ :: for PF 10 7 and % CNR 5 dB, there is a bump in the curve at very low
' : CNRt values. This arises because the Chernoff bounds don't work well at
Yy . estimating large probabilities., This is not a real problem since this
M
g’
j'.:i region corresponds to very poor performance anyway.
.h "> .
bt
i The first thing to notice on these plots is the asymptotic behavior for
-
’-:. large CNRt. As CNRt — ® , the PM does not go to zero. If we use the
o
unit mean chi-squared random variable with 2N degrees of freedom to model
e Rm(s)/E[Rm(s)lHi] for very large CNRi values, i = t, b, we can more
::E:: easily understand this behavior. Let's define a random variable Imn(o):
.‘il (0) Imn
Imn = x . ( 6.14 )
-2 E[ I |Hy]
-
ay
0% (0)
Ll where Imn is a conditionally chi-squared random variable with 2 degrees
:—‘: of freedom and mean 1 under HO’ mean Zeyp under Hl' The sum of N
"~3:\_' !
20 conditionally chi-squared random variables with 2 degrees of freedom is
'.-..
"y
g another conditional chi-squared random variable with 2N degrees of freedom
} .
:'_: [16]. Now let us compute the relative distance between the two
K
o conditional means:
- (0) (0)
B | BC ) 1) |- E 1O |y
:{:'r: . n=1 n=1
Y d = - ( 6.15)
e,
o . Val"[ Z I(O) l H ]
D) mn 0
-l‘:-:. n=1
LS
e
o = 1= o |
A >CNR
I
.'_':‘_'4 Notice for a fixed contrast ratio, the distance is fixed. As we increase
23
-:_‘-:
s
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CNRt with constant ZCNR? the densities converge to these chi-squared
densities and the distance between the densities for the intensity
processor's decision statistic under Hy and H, don't spread farther
apart. Consequently, the two hypotheses don't get any easier to
distinguish as CNRt increases at constant contrast, so, PM approaches a

nonzero asymptotic value.

Physically, we are at speckle limited performance. The CNRs are so large
there is virtually no LO shot noise to contend with and the speckle
induced intensity fluctuations alone make the target and background

difficult to distinguish.

Equation 6.15 also helps explain what happens to performance as a function

of For CCNR = 1, no contrast, the distance is zero. Since,

5 CNR*
intuitively, our processor searches for contrast, it is logical it would
fail completely when there is no contrast. However, equation 6.15 also
helps explain the asymmetry between performance for positive and negative

contrasts of the same magnitude. For > 1, d grows linearly with

r
CNR
:CNR' However, for CCNR <1, d > 1 as contrast increases in

magnitude. This limiting value, a result of the asymmetry in the

densities around their means, limits the performance for even very large

negative contrasts.

Physically, for negative contrasts the mean target intensity is lower than
the mean background intensity. However, the speckle induced intensity

fluctuations in the background measurements often give intensities less

than the mean and close to the target intensities. This makes the two
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‘rj;«;

virtually impossible to distinguish.

P
2 i‘ ." §

Now let us examine the effect of Q and N, i.e., range and spatial

resolution, on the performance. We will plot PM versus Q or N for fixed

ol
QQI' PF’ M, and % CNR for both laser power models. Figure 6.2 plots PM versus
fb# Q for N =10 and N = 20 at a CNRt(O) of 16 and 20 dB. Figure 6.2(a) is
,.§§ for the constant average laser power model and figure 6.2(b) is for the
;ii constant peak laser power model. Figure 6.3 plots PM versus N for Q = 10
t;«} and 1000 at CNRt(O) of 16 and 20 dB. Figure 6.3(a) is for the constant
gﬁ? average laser power model and figure 6.3(b) is for the constant peak laser
gii‘ power model. All plots hold constant M = 1000, PF = 10—6. and ZoNR = +10
sz. dB. These figures incorporate the performance corrections for different N
;fgf and Q values we derived in section A of this chapter.

25

LA

“3¢ For the constant average laser power model, the performance is almost

3:§§ completely independent of Q as we expected from the single pixel

:r equations. To the extent there is some dependence, the performance gets
, poorer as Q increases because of the increased probability of anomaly.

; ;s For the constant peak laser power model, there is a Q dependence, but it
:ﬁfz is due to the CNR dependence on Q. As we decrease Q from the full

- bandwidth value Q(max)’ the CNR rises and performance improves until it

saturates at the speckle limited values. The slight drop in performance
at very low Q values for N = 10 is not real. It is a result of the lack
of data at high CNR values mentioned in describing figure 6.1(a). (When I
ran out of data for higher CNRt values, I assumed the final data point had
reached its asymptote. This assumption is not quite valid, as is obvious

from figure 6.1(a).)
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Figure 6.3
Frame Level Intensity Only Processor Performance:
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=
3?2; From the form of the Chernoff bound, we expect the performance to get
3:* exponentially better with increasing N and figure 6.3 bears this out for
fgké ' both models. Notice in the constant average laser power model the 4 dB
5%5; ) change in CNRt(O) makes a bigger performance difference than the 2 order
A of magnitude change in Q. For the constant peak laser power model, the Q
ji = 10 curves coincide for both CNRt(O) values because there is a 30 dB
125: increase in CNR from Q(max) = 10000 to Q = 10, so the processors are in
their speckle limited regimes regardless of the 4 dB difference in the
'\ CNRt(O) values. For the Q = 1000 case, there is only a 10 dB increase in
?;a CNRt over the full bandwidth CNR, so the 4 dB change in CNR makes a small
:ﬂ difference., These curves are still very close to each other and the
:;:: speckle limited performance regime,
o

C. Range Processor

Recall the quasi-optimal range only processor determines the difference

'."'-5.'
}iﬁ between the number of hits in the presumed target range bin and the number
¥ '~$'
DAY of hits in the known background range bins for each subframe. If the
i
k 5 maximum of these differences exceeds a threshold, the processor declares a
-
:iﬁ target present in the subframe where the maximum occurred:
o
LY
ot
oo max( j -k ), A . ( 6.16 )
e m H

b3
’,4, -‘..{
o

fe

]

"
BRI

o

Using the equations we derived in chapter 53, we can plot PM versus CNRt,

—
AR
P rE

Q, and N for the range only processor just as we did above for the

5

o
¥ 25,

intensity only processor. (Since Q, enters the probability mass functions
P B

)
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0N

E: for j and k, we would expect that performance is also a function of QB.
=N
o In all ensuing examples we assume a square target with each horizontal
N line of pixels on the target at a different, adjacent range bin number

E: from the adjoining line of pixels, Under this condition, N uniquely

S determines QB: QB = rVG;].) Figure 6.4 shows frame level PM versus CNRt
;iq performance for N = 10 and 20 pixels, M = 1000, and Q = 10. Each plot is
B, - -

W for PF values of 10 3 and 10 6 (dotted lines). For each PF value there
A
1% are curves for CCNR = +10, 0, and -10 dB.
0N
1\“& For this processor, PM - 0 as CNRt —> >~ for a fixed CCNR' As both CNRt
?;Q and CNRb —> ® , the probabilities of anomaly, the probability of choosing
F

{{f the wrong range bin, for target and background —> 0, so E[ j - k | HO ] >
LGN
‘::f -N and E[ j - k | Hy ] > +N. But var[ j -k | H; ] > 0 for i =0, 1,
o

g so, if we define a d parameter as in equation (6.14), we find d - =~ .

:{: The two hypothéses are easy to distinguish and the performance improves
‘:%- with increasing CNRt at constant contrast. Physically, since the

» probability of anomaly goes to zero, the range estimates are always

)
A perfect and so there is infinite range contrast.

5
'v@

"
528
B We can also explain the behavior as a function of CCNR by examining the
:?: processor., The processor looks for range measurements from individual
R3S

}:} pixels to concentrate or clump together in one of two range bins, namely
T

7

the target or the background bins., As CNRi increases, the probability of
anomaly, Pr( a 1i ), drops so the clumping is more pronounced in bin Qt
for the target or bin Qb for the background. If we fix CNRt and vary
TeNR® Ve will change CNRb. As ZCNR increases for a fixed CNRt, CNRb

drops and Pr( o ) increases, so performance grows poorer, This is
1b g
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precisely what figure 6.4 shows: performance for a fixed CNRt varies

inversely with CCNR‘

Now let us examine the range only processcr's performance as a function of

Q and N. We will plot Py versus Q and N for P = 107°

, M = 1000, and
ZeNR = +10 dB for both laser power models. Figure 6.5 plots PM versus Q
for N = 10 and 20 pixels at CNRt(O) = 16 dB and 20 dB (dotted curves).
Figure 6.5(a) is for the constant average laser power model and figure
6.5(b) is for the constant peak laser power model. Figure 6.6 plots PM

versus N for Q = 10 and 1000 at CNRt(O) = 16 dB and 20 dB (dotted curves)

under the constant average laser power model.

Figure 6.5(a) shows performance for the constant average laser power model
at first increases as Q increases and then falls slightly. There are two
effects to consider to explain this behavior. As Q increases, so does

QT‘ Since anomalies occur in random bin numbers, the larger is QT’ the
less likely it is that a random clumping of anomalies will be large enough
to mistake for a target. This causes performance to improve. On the
other hand, as QT increases, Pr( a1 ) increases approximately

logarithmically [4]:

)=at(1og(Q)——1-+O.577) ) ( 6,17 )

Pr( o 79

1t

which in turn reduces the processor's performance. These two effects
combine to produce the behavior in figure 6.5(a). Under the constant peak

laser power model, the increase in CNRt as Q falls overwhelms the weaker Q

dependence from the statistics. So, performance gets better very quickly

for decreasing Q.
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Figure 6.6 shows that the range only processor's performance, under the
constant average laser power model, as a function of N improves
approximately exponentially in N. Since we are dealing with sums of
random variables (we sum the number of hits in each bin over the
subframe), the Chernoff bound applies to the tails of the range densities
(although it would be difficult to generate one explicitly for this
density), The Chernoff bound exhibits this exponential dependence on N
for any density. Like the intensity only processor, we see the effect of
the change in Q of two orders of magnitude is less important than a change
of 4 dB in CNRt(O). There is no curve for the constant peak laser power
model because, for these parameter values, the 10 dB increase in CNRt due
to reducing Q from 10000 to 1000 is enough to drive all the PM curves down

below 10-6.

D. Performance Comparisons

Now we want to compare detection performance of the range only and
intensity only processors, There are many ways to perform these
comparisons, some probably more suitable than others for any given
problem. I have selected two methods of presentation., Both methods keep
in mind our goal of expressing system performance in terms of system

parameters and resolving power in the different measurement dimensions.

The first method is closely related to the way we presented results for
the processors individually in sections B and C above. We will plot the
quantity 1og10( PM(Intensity) / PM(Range) ) as a function of Q and N,
where the superscripts indicate the processor from which we derived the P

M

value. Figure 6.7 shows such a plot for the constant average laser power
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-6
F=10 % T

dB. A positive value indicates the range processor outperforms the

model with M = 1000, P = +10 dB, and ONR_‘*) = 164B and 18
intensity processor. It may be difficult to see on these plots, but the
intensity processor does slightly out-perform the range processor for low
N and Q values. We saw both processors improve exponentially with
increasing N, but these plots indicate the range only processor improves
faster than the intensity only processor, hence the surface always slopes
up for increasing N. Physically, this corresponds to performance
increasing more quickly as a result of range clumping in the range only
processor than as a result of averaging out the speckle intensity
variations in the intensity only processor. The concavity of a plot for a
cut along a constant N value reflects the behavior in figures 6.5(a) and
6.2(a). Since the intensity only processor is only very weakly dependent
on Q, the result is mostly due to the change in performance for the range
only processor as a function of Q. We have already discussed this

behavior in section C,

This method shows quite graphically how the two processors perform
relative to each other, however, we need a different plot for each CNRt(O)
and we get no indication of the absolute PM for any point. Also, the

strong dependence of PM on Q under the constant peak laser power model

makes it difficult to construct similar plots for that model.

Consider the other display method. Suppose we set certain performance
requirements: require meeting a PF and PM criteria at a given CNRt and
S CNR® Then we can simply check whether or not a processor meets these

requirements as a function of Q and N. Figures 6.8 and 6.9 show several
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Figure 6.8

Range Only-Intensity Only Processor Performance Trades:
Constant PT Model

(a) High Performance, High Contrast

(b) Low Performance, Low Contrast
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Figure 6.9

Range Only-Intensity Only Processor Performance Trades:
Constant P, Model

(a) High Performance, High Contrast

(b) Low Performance, Low Contrast
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displays for M = 1000 and various performance requirements under the
constant average and peak laser power model, respectively. It is quite
easy to generate such displays for a given set of performance
requirements. An "X" indicates the range processor meets the performance
criteria for that Q and N while an "0" indicates the intensity processor
meets the criteria. From the display a system engineer can, for instance,
determine what combinations of N and Q will give a range or intensity

processor which meets the necessary performance requirements.

Figure 6.8, for the constant average laser power model, shows the more
significant impact of laser aperture size, Ap, (reflected in the N value)
on performance relative to the resolution parameter Q. Generally the
processor either meets requirements for a given N or not, regardless of
Q. Figure 6.8(a) is for relatively high performance requirements: PD =

F

point N = 20 pixels, Q = 10 bins where the intensity only processor out-

99.9% at P, = 10-6 and fairly low CNRt(O) values, At 16dB, we find the

performs the range only processor., At higher Q values, > 300, the
intensity only processor fails, but the range only processor satisfies
the requirements for Q > 30, If we increase the CNRt(O) by only 4 dB, we

can meet requirements with either processor as long as N > 20.

In figure 6.8(b) we relax the performance requirements somewhat to PD =
95% at PF = 10-3, but we reduce the contrast to only 5 dB. Here the

intensity only processors need at least N = 30 pixels to meet the relaxed

3 requirements because they perform so poorly at low contrasts. The range
‘I
only processors perform well enough, however, that for a 4 dB increase in
2 CNRt(O), we can cut angular resolution in half, from N = 20 pixels to N =
%
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10 pixels and still meet requirements.

In figure 6.9(b), for the constant peak laser power model, the increase in
CNR for reduced Q allows the processors to meet performance at lower N

values. This effect is strong enough to change the Q dependence for the
range only processor and make it perform better for small Q values. We

saw this phenomenon in figure 6.5(b) as well,

E. Other Processors

Now it is worthwhile to say a few words about other types of processors
and how to apply these results to them. We derived dualities for Doppler
and range-Doppler processors in the last two sections of chapter 3. We
can apply the results from this chapter to Doppler receivers as a result
of those dualities, but we must take care in how we do the comparisons
because of the system parameter interdependencies we worked with at the
beginning of this chapter. In general, we have to consider each
transmitter waveform separately and determine the effect on scaling
parameters, particularly for range-Doppler systems where complex waveforms

are often the norm.

For a Doppler only processor, we will use the long Gaussian pulse waveform

we used in deriving the duality of chapter 3. We must determine how CNR
scales with changing fr' frequency resolution, and hence Q, for this
waveform. We still have a pulsed Gaussian transmitter waveform, so the
equations in 6.6 above still hold. Now, however, the frequency resolution
is approximately fr = l/tr and the bandwidth is approximately B = l/tr =

fr’ 1f Fu is the frequency uncertainty interval width, Q = Fu/fr = Fu/B.
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ii
Wy In an exact analogy with the ranging radar, we will assume the problem
‘.i
X \J
Rals statement fixes Fu' In the ranging radar, we could make t. arbitrarily
‘k: small without worrying about Lu. In the Doppler radar, we must be a
e
% little concerned about making fr too small. Although the design of
’*'
Iy }\
Eal Fourier transform devices like surface acoustic wave devices (SAWs) is
';: somewhat afield of this thesis topic [22], there is a time-bandwidth (TW)
v
“§§ product constraint on Futr. However, high time-bandwidth product devices
" are available [22] so we will assume Fu is small enough that we can
o increase the frequency resolution without affecting Fu. Under this
\i condition,
:.'
3‘. PT PT Q
A — = P T = . ( 6.18 )
& B F
\1' u
LY
R
Ko )
» Now we can write how CNR depends on Q (the N dependence has not changed
N from the range radar analysis):
:‘ N Q
P (0) .
1}f CNRi ﬁ(hax) Q(max5 PT limited
y CNR = ’ ( 6'19 )
i
- o N
Ta CNR P, limited
.ﬁq i y(max A
WK
-
'—'o'
) where i = t or b,
J-_.
J'_:.
4"_..
&5 (0) (max) (max)
N Here CNRi still corresponds to CNRi at N =N and Q = Q . Now,
I
: . however, by equation 6.18, Q(max) corresponds to minimum IF bandwidth
oo .
Wy instead of maximum IF bandwidth, If we defined a minimum Q value, Q(mln),
:: and defined CNRi(O) at N = N(max) and Q = Q(min)' then the scaling law for
3

Q(max)

CNRi would be the same as equation 6.12 for the ranging radar with

Q(min). Then the plots of figure 6.9 would still apply to the

replaced by

-----
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2

S&S Doppler only, constant PT model analysis except the Q labels would

}:{1 reverse, running left to right from Q = 10000 to Q = 10 (i.e., take a

e mirror image of each plot through an axis at 1°g10(Q) = 2.5). However,

,:»‘ Q(max) still corresponds to maximum Doppler resolution which is a more

‘dﬁ: physically meaningful quantity than Q(min). Analogous to the range radar

;53; case, there is a limit to how fine we can make the Doppler resolution. If

';?f we make the resolution too fine, we will start to resolve the fine Doppler

L‘ - structures of the target like vibrations and rotations of various parts of

*53 the target within a pixel. This violates the unresolved Doppler i
§§E§ assumption we used in the derivations. Consequently, we will use the

¢?:$ definition of CNRi(O) in terms of full aperture and minimum bandwidth.

4

{é?? Obviously, we can apply the constant PA model results for a ranging radar

A directly to the case of a Doppler radar. The ranging radar constant PT

E:ﬁ: results don't translate to Doppler results so easily because the two

ﬁgi; radars have opposite CNR dependencies on Q. However, we can make plots

‘iﬁﬂ like those in figures 6.8 and 6.9 for this new CNR dependence on Q.

;}?j Figures 6.10 (a) and (b) plot the same performance and contrast cases as

?§§ in figures 6.8 and 6.9 but for this new Q dependence. Now as we decrease

gif the Doppler velocity resolution, the transmitted pulse must grow narrower
3\5: and so the IF bandwidth must grow larger. This causes the CNR to drop.
EE§3 ) The data base used for all the plots in this chapter only goes down to !
::J; CNRt = 10 dB, so when Q falls low enough that CNRt falls to below 10 dB,

‘i:; we assume the processor cannot meet the performance requirements. |
éfé; (Realistically, we don't expect much out of any processor at such low CNR
b levels.) Because the CNRt values fall so quickly, figure 6.10 (c) plots i
-S;? the same performance and contrast cases as in figures 6.10 (a) and (b)

;
e ‘
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PF =» 10°-6, PM = 0.0010 PF = 10°-6, PM « 0.00.0
Target CNR = 20 dB, Contrast = 10 dB Target CNR = 16 dB, Contrast = (0 dB
log (Q) log (Q)

10 10
1.0 1.5 2.0 2.5 3.0 3.5 4.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0

10 10
20 x 2 20
N X
30 T 2 3o X 8
10 8 1 2 40 PO |
X = Doppler Only meets requirements X = Doppler Only meets requirements
0 = Intensity Only meets requirements 0 = Intensity Only meets requirements
(a)

PF = 10°-3, PM = 0.0500 PF = 10°-3, PM e« 0.0500
Target CNR = 20 dB, Contrast = 5 dB Target CNR = 16 dB, Contrast = 5 dB
log (Q) log (Q)

10 10
1.0 1.5 2.0 2.5 3.0 3.5 4.0 1.0 1.5 2,0 2.5 3.0 3.5 4.0
10 X 10
20 X X 20 X
N

30 x 1 30 X &

40 X 1 32 40 a
X = Doppler Only meets requirements X = Doppler Only meets requirements
0 = Intensity Only meets requirements 0 = Intensity Only meets requirements

(b)

Figure 6.10
Doppler Only-Intensity Only Processor Performance Trades:
Constant PT Model
(a) High Performance, High Contrast
(b) Low Performance, Low Contrast

(c) High CNREO) Cases
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X PF = 10°-3, PM = 0.0500 PF = 10°-6, PM = 0.0010
Target CNR = 30 dB, Contrast = 5 dB Target CNR = 30 dB, Contrast = 10 dB
.
) log (Q) log (Q)

‘ ) 10 10

)
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N 0 = Intensity Only meets requirements 0 = Intensity Only meets requirements
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except for CNRt = 30 dB so we can get more points on the plot before

CNRt falls below 10 dB.

A drop in Q from 10000 to 1000 reduces the system CNR by 10 dB. This
effect dominates the performance plots in figure 6.10. This effect is
strong enough to overwhelm the much weaker underlying Q dependences in the
processors which we plotted in figures 6.2 (a) and 6.5 (a). Both
processors exhibit degraded performance for decreased Q. For any fixed N
value, however, the Doppler only processor always performs at least as

well as the intensity only processor in these cas-~s.

The poorer performance of the intensity only processor at low contrasts is
still readily apparent in these plots. If we have only 5 dB of contrast,

(0)

even at CNRt = 30 dB we need at least N = 30 to achieve the performance
standards with the intensity only processor, At the same CNRt(O) value,
the Doppler only processor meets performance requirements at N = 10 for

both performance and contrast cases.

The plots in figure 6.10 give us additional insight into the effect of
changing bandwidth over that gained from the plots in figure 6.9. 1In
figure 6.9, the change in bandwidth only improved an already reasonable
CNR. Here, the change (increase) in bandwidth reduces the CNR and we can

see quite dramatically the effect the falling CNR has on performance.

We will conclude this section and the chapter by doing a brief analysis of
the range and Doppler case using the thumbtack ambiguity function of

figure 3.3, where T is the duration of the waveform and B is its
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bandwidth. With this case we have a bit more difficulty being specific
about the relationships between CNR and T and B because we have not
specified the waveform explicitly and we cannot specify the duty cycle,
tr/T in our notation, based solely on the ambiguity function. (Actually,
the ambiguity function uniquely determines the waveform, but there is no
general procedure for inverting an ambiguity function to find the
corresponding transmitted waveform.) Microwave radars often use coded
pulses, up-chirps, down-chirps, and combinations of these waveforms [20].
We will assume a duty cycle of 1 (or at least a duty cycle independent of
T and B) so the PA-limited and PT—limited cases are identical. This is a
good assumption at least for the CW chirped waveforms. Now we will define
two Q related values: QF = FuT’ the number of Doppler bins, and QL = LuB,
the number of range bins, with Q = QFQL (see figure 3.4). For a unity

duty cycle,

EI _ Eﬁ ) PT 2 Lu
B B QL c
(max)
N QL

’ ( 6.19)

CNR, = CNR§°) =
N Q.

exactly as for the ranging radar with constant PT' There is another
consideration, however, which won't permit us to use the ranging radar
analyses directly when changing the value of Q or QL‘ When computing
performance numbers, we must use the value Q = QFQL since it is this total
Q which influences the peak detector and Pr( @y, ). However, when we

change Q and examine the effect on the performance through the scaled CNR,

we must scale only on changes in QL with no scaling for changes in QF'
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;:b This brief analysis is meant only to show how the scaling laws can be used
i ‘.':
- in a range and Doppler analysis. For specific waveforms, more precise
~ analyses are possible. However, we should still expect to see different
s
fﬁ: dependences on QL and QF in the scaling laws while the performance
.
1Y
D

- equations remain a function only of Q.
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VII. SUMMARY AND CONCLUSIONS

In this thesis we have attacked the problem of obtaining analytical
expressions for the performance of laser radars as a function of several
signal dimensions for multipixel targets. To derive such expressions, we
proposed a reasonable model for real targete and their environments in the
form of a vertical target against a sloping background at unknown range
and location. We derived an expression for the IF signal in the radar for
a single pixel based on the diffuse speckle target model and used the
components of our target and environment model to incorporate the range
and spatial information. We derived near optimal intensity, range, and
joint range and intensity measurement processors sacrificing optimality
for simplicity where necessary without over-simplifying the model. We
were able to derive performance measures for two of the processors and
compute the performance as a function of the radar parameters and
resolutions. Finally, we examined some specific cases of the results and
explained physically what phenomena were at work to give the observed

results.

What we found qualitatively was that the range only processor generally
outperforms the intensity only processor. This comes as no surprise to
researchers in this field. However, we were also able to make
quantitative statements, and this is something new to this area of
research., For a given set of parameters, we can say which processor will
perform better and by how much. We can deduce the regions where an

intensity only processor outperforms a range processor and by how much,

We made quantitative statements about how sensitive performance is to any
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of the system parameters we investigated (N, Q, CNRt, and CCNR)’

Although we achieved our stated goal for the thesis, there are several
areas where future work could extend the results. The most important of
these areas involve relaxing assumptions and making the models even more

realistic.

The first assumption which we might relax is the assumption the target
aligns exactly with a subframe. Although this assumption is probably the
most physically unappealing of all, it may be the least important. We saw
(equation 4.7) the system performance depends on the performance for a
single subframe of data. Once we have the performance or statistics for a
single subframe, the overall system performance comes directly from
maximizing over the subframes. If we take a window the size and shape of
the target and slide it around the frame (like the dotted target outline
in figure 2.5) collecting a subframe statistic for each possible window
location, we would collect about MN subframes statistics, each
statistically correlated with N other subframe statistics. Consequently,
the difference between this model and the target aligned with the subframe
model is simply maximizing over MN dependent random variables or over M
independent random variables. Whether we maximize over independent
subframes or statistically dependent subframes tells us nothing new about
laser radars per se. Furthermore, the number of subframes is independent
of any of the radar parameters (chapter 6, section A). The one factor
which does change is the statistics of the subframes if the target is not
aligned exactly with the subframes. However, in the absence of noise, the

maximum contrast in either intensity or range space must occur when the
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g
\3: window aligns with the true target location. All these factors
>
?\: considered, it may be more productive to concentrate on better
;‘:f characterizations of the subframe statistics rather than better models for
YN
“}:{ the subframe maximization procedure.
b1
K\
ES For the subframe model we used, the most important extension of the work
o
,‘3 is probably an analysis of the joint in.cnsity and range processor in
St
A chapter 4, section F. This will probably involve simulation, but there
é' may yet be further analytical steps an investigator could take.
B
N
N4
h ‘ The final general area for future work on the models is in the model for
Yy
={-{ the target and its environment. Here there are several ways the models
%
(ju could improve.
ok
oy _r,".
.38
P First, there are still parameters which we should have treated as unknown
L) ‘..
K- in a completely general model. Two of these are the target size and the
Chitl
I
W% target shape. Treating target size as an unknown parameter will involve
W adding N to the set of unknown parameter in vector A in chapter 4.
3 Assuming an unknown target shape will be a bit more difficult to
"' »
¢
Ng» incorporate into the generalized likelihood ratio models. One potential
AT method is to define a standard set of shapes and maximize over the
'..':-\.‘
»:*: discrete members of that set.
el |
‘:yj - Second, if the background is not smooth, our assumption of known range to ‘
3 |
> background is no longer valid. Then a ranging radar with very good range
Lo
\ L4
o,
U resolution, lr’ might make many more errors because it used the wrong bins
T for counting the background hits, K. One solution to this problem could
M
o
[
L)
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be to assume the background is only reasonably smooth and expand the size
of the set of background range bins. That is, increase QB for the same Q,
then perform a maximization over the QB bins similar to the target
maximization to get a value for k. However, since the correct bin number
changes from one scan line to the next and may now also change within a
scan line since the background is not smooth, this maximization will be

much more difficult to define and perform.

Third, both target and background could have non-uniform reflectivity, so
CNRt and CNRb would be functions of angular location (vary by pixel). We
have assumed throughout the thesis the CNRs are independent of position:
the target and background have uniform reflectivity., Particularly for the
background, which is much larger than the small targets we used in this
thesis, this assumption is probably not valid in any real problem of

interest,
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then selected him for attendance at a civilian institution of his choice
to pursue a PhD in electrical engineering and he gained admission to MIT.
After receiving his PhD, Capt Mark reported to the USAF Academy in
Colorado Springs, CO, for duty as an Assistant Professor of Electrical
Engineering. Capt Mark is married to the former Miss Lynn Sharet.
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