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SUMMARY

This document represents the final report under Contract No. F49620-83-K-
0032-P00001 from the Air Force Office of Scientific Research to Virginia
Polytechnic Institute and State University. To accommodate the fact that the
Principal Investigator (J.L. Junkins) accepted a position at Texas A&M
University, effective September 1, 1985, the effort was performed at Texas A&M
under Sub-Contract No. 4174-352142-1 from Virginia Polytechnic Institute.

Significant progress is reported on methodology to optimize open and
closed loop control laws for flexible vehicles. Also a new method for

simutaneous structure/controller design optimization is reported.

DISCUSSION OF RESULTS
Since the effort in this contract resulted in ten manuscripts which
document the results in detail, we append here to these manuscripts and

provide below a brief statement of the main results contained in these papers.

Nonlinear Feedback Control

In Attachment 1, we present a generalization of classical 1linear-
quadratic regulator theory to accommodate polynominal nonlinearities in
dynamical models of the form

X= 555+ CypX ot by gy (i=1,2,...,n) (1)

a
0
where x; are state variables, u; are control variables, and summation over ... e
e e———
repeated indices is implied. We consider polynomial nonlinear feedback of the  _ _ -
form
. , ~odes
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us= '(dijxj+ eijkxjxk+ fijklxjxkx1+ eel) (i=1,..,m) (2)
For the case of a quadratic performance index, we show in Attachment No. 1
that the gains satisfy a sequence of differential equations. The linear gains
(dij) are determined by solving the usual Riccati equation, whereas the
quadratic gains (eijk)' cubic gains (fijk1) and a1l higher order gains satisfy
linear differential equations. Numerical implementations have been carried
out and the validity of the formulation has been established. Several
applications are described in Attachment 1 which shows that the nonlinear
feedback terms are significant and constructive in designing optimal nonlinear
controls. In all cases studied, except one, convergence has been reliably
achieved. This convergence failure was found to depend upon the weights
selected in the performance index and was easily eliminated. More generally,
conditions which guarantee convergence remain a difficult unresolved issue
which requires further research. The most significant practical difficulty
associated with this approach lies in the system specific algebra required to
derive the differential equations satisfied by the higher order gains. We are
investigating the use of algebraic manipulators (MACSYMA and SMP) to automate
the derivation and coding of these equations.

In Attachment 2, we extend these ideas by using canonical state variables
(the euler parameters and the corresponding conjugate momentum variables).
This formulation is very elegant for spacecraft attitude maneuvers. While we
clearly establish the validity of the formulations (through analytical and
numerical comparisons to the results in Attachment 1), the advantages of this
canonical variable approach have not been established. Also, we consider in
Attachment 2 a Liapunov approach to design of nonlinear feedback control;
these results 1look very promising, especially for systems of moderate

dimensions.
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Nonlinear Open Loop Control

In Attachments 3,4,5, we present a novel method for computing nonlinear
open loop spacecraft maneuvers by a perturbation method. As with the problems
addressed in Attachments 1 and 2, we <consider only polynomial
nonlinearities. We establish a quasi-analytical, non-iterative method (based
upon asymptotic expansions) which we demonstrate to work well on several
problems. The method presented is attractive because it appears suitable for
semi-automation and also because it has worked well on most examples tried to

date.

Structural Identification

In Attachment 6, we present a time-domain method for structural
identification which combines both free and forced response measurements to
determine system mass and stiffness estimates. The method is shown to work
well for "academic" structures of moderate dimensionality. However
difficulties associated with Tlack of uniqueness, rank deficiency and data
requirements are noted which 1imit the practical utility of this approach.
Recent research has established a new frequency domain approach which promises
to circumvent many (if not most) of these difficulties. The method is based
upon parameterization of the freguency response function in terms of physical
system parameters and recovering estimates of these parameters to fit the
frequency response in a least square sense. Rank deficiencies are addressed
using a singular value decomposition algorithm. The details of this method
will be presented in N.G. Creamer's forthcoming dissertation, including

applications to structures with linear viscoelastic models.

"“““‘\1

el e Pu Lt A O (L sl Ll L e s Lo Lo TR A O W G0 T N Wo.b y }
J'g. AN ’ y o ‘p -‘- I» ‘ sﬂ ey ‘.d' JA IO AT Ly - RERGAGLGH .:& ‘|'¢.' '.!KQ}..“.":l‘ ,‘!‘!.o'



Structure/Controller Optimization

In Attachments 7 and 8, we present homotopy methods for simultaneous
optimization of structural design parameters, sensor/actuator locations, and
the feedback gains in an output feedback control law. The algorithm of
Attachment 7 is based upon a "minimum modification" strategy which is shown
convergent with as many as 60 design variables. The algorithm of Attachment 8
is based upon sequential linear programming. This approach is especially
well-suited to high dimensioned problems involving a large number of
inequality constraints. In Attachment 8, we consider a simple example with
eigenvalue placement constraints and two alternative optimization criteria
(minimum mass, minimum closed-loop eigenvalue sensitivity); both structure and
control parameters are simultaneously iterated. Several variations in problem
statement and starting iterative support the validity and usefulness of both
the minimum correction and sequential linear programming homotopy algorithms.

In Attachments 9 and 10, we extend the methodology of Attachments 7 and 8
to consider tuning of optimal quadratic regulators. In Attachment 10, we
establish that the weight matrices selected for the wusual quadratic
performance index have a strong impact upon eigenvalue placement and other
stability/performance robustness measures. We also establish an algorithm
which we have found useful for "optimal tuning" of the weight matrices; we
have successfully iterated as many as 150 weight elements to optimize
eigenvalue placement and robustness indices.

The most significant unifying feature of the methods in attachments 7-10
is the use of homotopy methods. This approach is most important in practical
situations for which the initially stated contraints have no feasible
solution. The homotopy method gradually imposes constraints, and as a

consequence, convergence failures are informative. Conflicting and active
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constraints can be easily identified, leading to "least compromised" revisions
of the problem statement. This feature appears to be a key ingredient in

developing practical optimization strategies for high-dimensioned systems.

Student Support

The four students supported by this contract are nearing completion of
their Ph.D. dissertations. They are as follows:

(1) R.C. Thompson, (2) K.B. Lim, (3) D.W. Rew, and (4) N.G. Creamer.

These four students, the principal investigator, and the two academic
institutions have certainly benefited significantly from this research

project. The fruits of the research are most significant and we trust will be

the basis for many future developments.
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Attachment #1

Optimal Nonlinear Feedack Control
for Spacecraft Attitude Maneuvers

C.K. Carrington® and J.L. Junkinst
Virginia Polytechnic Institute and State University, Blacksburg, Virginia

Polynomial feedback controls for large-angle, noalinesr spacecrafl attitude maneuvers are developed. A (ive-
body configurstion consisting of an asymmetric spacecraft and four reaction wheels Is considered. Attention is
restricted to the momentem Iransfer class of internal control torques; this, in conjunction with the choice of
Euler parameters as sttitude coordinates, permits several important order reduction simplifications. Three
numerical examples are included (0 Mlustrate applications of the concepts presented.

Introduction

RAP!D large-angle attitude maneuvers have become in-
creasingly important to the success of many current and
future spacecraft missions. These mancuvers are characterized
by nonlinear behavior, however, resuiting in a control prob-
lem that is likewise nonlinear. One approach to feedback con-
trol of nonlinear motion is *‘gain scheduling’’ in which the
control history is divided into segments, each determined by
its own set of linear gains. A more attractive approach is con-
trol of the entire nonlinear maneuver by a single set of gains.

For the latter approach, a method is presented whereby the
optimal nonlinear control problem is solved in polynomial
feedback form and a suboptimal control law is determined by
truncation. Currently there are two approaches used to deter-
mine the polynomial coefficients for the control. One is to ex-
pand the coast-to-go functional as a polynomial in the states
and then recursively solve the Hamilton-Jacobi-Bellman equa-
tion, as discussed by Willenstein,' Dabbous and Ahmed,? and
Dwyer and Sena.? In the method used here,* the control itself
is expanded as a polynomial and the coefficients determined
recursively from the costate equations.

General Formulation
Polynomial state equations may be written in indicial nota.
tion as
i’,ﬂdvx,'i-t‘wxlxl-i-... +bd"l (i= I.zuo-'n) (l)
where x; are the states and u, the controls to be determined.
Consider the optimal control problem of finding a feedback
control law that brings the states to zero while minimizing a
quadratic performance index

1

v
Js—z-s'o lqyxix; +r uu1dt Q)

Presented as Paper 83-2230 at the AIAA Guidance and Control
Conference, Gatlinburg, TN, Aug. 15-17, 1983; submitted Sept. 30,
1983; revision submitied June 18, 1983. Copyright © American In.
stitute of Aeronautics and Astronautics, Inc., 198S. All rights
reserved.

*Graduate Research Assistant; presently Assistant Professor of
Mechanical Engineering, University of South Carolina, Cotumbia,
SC. Student Member AIAA.

tProfessor, Engineering Science and Mechanics. Associate Fellow
AlAA,
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The Hamiltonian for this system is

IC = Va{quxx;+ryuu; ) +Nx; 3)
where it is understood that ¥, is symbolic for the right-hand
side of Eq. (1). The necessary conditions for 2 minimum pro-
vide the state equation, Eq. (1),

X;= ax 4
el @)
and the costate equation
. 33
Aj=— o, )
For unbounded control
X
ou; =0 ©
which implies
u,= -’J‘bkl‘x‘ (7)

where r;! represents the elements of the matrix inverse of r,,.
By assuming the costates can be expressed as a polynomial in
the states, as in Ref. 4,

)\,=kux,~+dw,xlx,+... (8)
a nonlinear feedback control law is determined in which k(1)
anc d;, () are the control gains sought. By substituting Eq.
(8) into Eq. (5) and carrying out the ensuing algebra, we are
led to n homogeneous polynomial equations of the form

[alx, + [B)x,x, +...=0 )
where

{a] =function (4,B,Q,R.K.K)

{8} = function (A,B,C.R.K,D,D)
and K and D are arrays whose elements are the gains k, and

dy Since Eq. (9) must hold at every point in the state space, it
is concluded that the functions in brackets must vanish in-
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dependently, so we obtain
(a(A4,B.Q.R.K.K)} =0 (10)
(8(A,B.C,R,K.D,D)] =0 an

Equation (10) is a matrix differential equation determining the
lincar feedback gains; upon carrying through the details, we
find that the scalar equations of Eq. (10) are precisely the
clements of the matrix Riccati equation which generates the
optimal feedback conitrol if all nonlinear terms in the state
equation are absent. The solution for the matrix Riccati equa-
tion can be determined by Potter? or Turner's® method, in
which an associated eigenvalue problem is solved and matrix
exponentials are used.

The quadratic feedback gains are determined by Eq. (11),
which can be rearranged into a set of linear differential equa-
tions of the form

dys = [11dem, + [7) (12)
where

[n] = function (A4,B,C,R,K)
(13)
{v] = function (A4,B,C,R,K)

Upon solving the Riccati eqaution for the linear gains &, (¢),
Eq. (12) provides nonautonomous, nonhomogeneous, but
linear equations that determine the quadratic gains d (f).
For the steady-state case, Eqs. (10) and (11) can be solved
algebraically for the constant feedback gains subject to

k.o,, =dlmk=0 (14)

The k,, are solutions of the algebraic Riccati equation, and
the d,,,, are obtained by setting d;;, =0 in Eq. (12) and invert-
ing the linear algebraic system. In the numerical examples con-
sidered herein, attention is restricted to the constant gain case,

109
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Fig. 1 Scslur example: 1, linear feedback; 2, linear plus quadratic
feedback; 3, linear through cubic feedbuck.
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Since for n states there are n?(n+ 1)/2 cquations in Eq.
(12), we do not include the algebra of the system considered
here. The cmphasis of this discussion is the following
gencralization: After solving the Riccati equation for the
lincar gains, one is led to sets of linear differential equations,
of the functional form shown in Eq. (12), that can be solved
sequentially to obtain the quadratic gains, the cubic gains, and
s0 on, up to any desired order. The differential equations for
the gains of each order depend upon the lower order gains.

Scalar Example

Consider the optimal control problem of minimizing the
following performance index:

by .
J—TL’ [x? +u?)dt (15)

subject ot the state equation

Xe=—x+ext+u (16)
The costate equation is
A= —x+ N~ 2ehx an
and the control is
u=-—X\ (18)

Table 1 Scalar example
performance indices

Performance
index

Feedback
order

43148
3796.4
3725.5
37t7.2
3716.8

(V3 PV S e

Fig. 2 Momentum reference frame.

,
€ o o oo oo afw - - - - e
u

.,
Fig. 3 NASA standard four reaction wheel aititude control system.
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Assuming the costate as a polynomial in state x,
:}- A=k x+ kX 4 kyxt 4 (19

" then the coefficient differential equations corresponding to
. Eqs. (10) and (11) and highcr order terms are

k 2k, +1-ki=0

ky=3(k, + )k, = = 3k,e

Ky =4k, + 1)k = 2k} - dkye
Ko=S(k, + 1)k =Skyky - Skye

ks —6(k, + 1) ks =6kyk, +3k3 — 6k,e

1

RS
T XLy

ko= (n+1) (k) + Dk, = (n+1){k;k,_, +kykp_y+ ...

Ui

4.

+konko, —k,_ e)for neven

0

ko= (n+ 1) (ky+ Dk, = (n+ 1) {hok, | +ksky_g+ ...

+k(n—l)/2k(n+3)/2+l/lk%nollﬂ—kn-lfl for n odd (20)

gt

Making the change of variable from time ¢ to time-to-go
T=1,—t and assuming a solution of the form

ky=kgs+2;!

.o
e

: ky=2z,

Lo

i ky=2z742,

;_ - .

ol ky=z,7t"* g, o2}
n

1et-.

_ Where kg is the steady-state solution for k;, we obtain the

B ‘g following equations:

S ———

L)

RS

B 1+ kg)z, - 1=0

§ . dr

N

€ .

AN ?-30+k|ss)zz=3(k|sszf+zf)€
d:; -2.2

. T"‘(“‘knss)zx'—"zlzz"zzl b4

»
dz, -2
5~ (X +kiss)z, = (n+ D121z, €= 200252,

j +2324-2+ ... +2(nn2.py)) fOr neven

. dz, ,
J 0 ?._ (n+ 1)1 + k'ss)z" = (n+ l)'Z|Z,_|‘ -I” (Zzzn-t
L
+42, 3%t Ta-1y22aenn t I/,zf'” ns2))for nodd
22)
o
:The variable changes of Eqs. (21) are generalizations of and
were motivated by Refs. 6 and 7.
Equations (22) are easily solved, subject to specification of
‘ i the boundary conditions; e.g., ki(y=...=k;(r)=0atr=0.

o Ty » g B
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.- .'l"q‘;.‘l.l a 4%y 2%} P‘O.“b. Ea %, RRY g‘?‘ ..b.\l MM NG

Substitution of the solution for z,(7) into Eqgs. (2)) and then
Eq. (19) yiclds a polynomial feedback control law with time-
dependent coefficients.

A numerical example for the scalar case is included, using
¢=0.01 and t,=5 s. The performance indices are given in
Table 1, and the state variable and control histories are given
in Fig. 1. Curves corresponding to fourth- and fifth-order
feedback are coincident with third order and, hence, are not
plotted. Fifth-order polynomial feedback essentially has con-
verged to the optimal control for this scalar problem.

A system for attitude control of a spacecraft with four reac-
tion wheels is now examined.

Spacecraft Orientation
Euler Parameters

A spacecraft body-fixed reference frame { 5] is related to an
inertial frame (/) by the direction cosine matrix {C(8)].

161 =(C(B)] (4} (23)

where [C(8)] is defined in terms of the four Euler parameters
(Bo.8,.8,.8;).% These attitude variables are related to the
body-frame components of the spacecraft angular velocity w
by the following kinematic differential equations:

Bo= = V2 (Byw; +Baws +Bywy), B, = V2 (Bow, ~Byw; + Byuy)
By = Y2 (Bywy + Bowy = Biwy), By = = V2 (Byw, ~ Bywy — Bow;)

29)
with

d
(')EE()

Momentum Reference Frame

In addition to using an arbitrary, general inertial frame
7], a special inertial angular momentum frame (A} is in-
troduced where A, is aligned with the system angular momen-
tum H, as discussed by Vadali and Junkins® and Kraige and
Junkins.'® The other two unit vectors can be defined by the
directions /4, and 7y assume after A, is rotated to coincide with
H (see Fig. 2). This reference frame can be considered inertial
if the external torques are negligible during the maneuver and
only internal torques are present. As is shown below, in-
troducing this frame allows a use of the angular momentum
integral to reduce the number of state variables.

The orientation of [b] with respect to the momentum
frame (A] is given by the projection

[8) = [C(8)) 1A} (29)
where the 3 x 3 direction cosine matrix {C) is a function of
four variable Euler parameters (8,.6,.5,,6;). The inertial
frame [A] is projected onto {A)] by

(il =[Cla)] th) 26)
where (ag,a,,a;,0;) are constant Euler parameters since both
{A) and [A} are inertial. Using the inertial frame (&) com-
ponents of the system angular momentum

H':Hnl’il +Hn2'i2+Hn)'i) (27)

the constant a, Euler parameters can be defined as

H+Hu! “
Y= {"2H
H—H\ ta
ot
o "L2H(HE + HY)
10
Ol Gt o )

o
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e
a, =0 The reaction wheel equations of motion are
x'a'
) _H-H. " N+ () (Clo= 36
: S [ 2% 141 o=u (36)

e O IH(HE, v HE,) 28)

{ 't- where the four components of the control vector u are the ax-
; \‘ The 6, Euler parameters are then related to the o, parameters ial torques applied to their respective wheels by the motors. To
i ) by the bilinear, orthogonal equation eliminate the wheel angular velocities @ from the spacecraft
) equations of motion, Eq. (36) is multiplied by {€)7 and then

- 8, ay —oy —ay—a;| (B substituted into Eq. (34) to obtain
SN

AN 8 a  a —ay a8 9% a= = (Gl{[a)H+ (&) Tu) 1))
g '-‘.' =

'"r.":- 5 o ay o-a||B where [G) = [1°~CTJC) -Y, a constant matrix. Implicit in
b5 5 a -y o 8 Eq. (37) is the substitution of Egs. (32); thus, @ =/f(w,8,u).

3 LR 3 Notice the pleasing truth that rest-to-rest maneuvers
0 and are related to the body-frame components of w by the dif- (characterized by H =0) remove all of the gyroscopic terms in
T ferential equations Eq. (37). It is evident that, for this class of manecuvers, angular
O velocity control is near trivial and attitude control is nonlinear
b o=~ Y3 (8,w, + 8wy +83w;) only because of kinematic nonlinearities.
B :}.-: The three equations of motion in Eq. (37) and _lhe four at-
ot 8y = Y2 (8w, = Byw; + 6,w;) titude. equations in Eq. (30) will be used to determine the state
equations.

o 8y = Y4 (830 + 8oy ~ 8,w;)
& }_.Q . Optimal Feedback Control Formulation
N *'J. 6] = - '/z(&;wl - 6|0)z - 60‘0,) (30) Sllle Eq'.mm

.‘-._':': It can be shown from Eq. (25) and using the algebraic expres- To obtain state equations of the form

- i
man sions for [c¢(5)] from Ref. 8 or 10 that #=Ax+F(x)+Bu 48

> = Y 2821 82 _ aNE
f" : ha=2(8,8, + 8083)b, + (85 - 8 + 83 - 8)b, in which A is a constant coefficient matrix and F(x) a vector
SESK +2(8,8,~808,)8 Gn function containing the nonlinear terms, let the state variables
e 35 TR0 . be the spacecraft angular velocities w, and Euler parameter
T : " .
o so the body-frame components of the system angular momen- differences ; thus, the seven-clement state vector is
- tum b itten f H=Hh £
L um can now be written from ; as 2= {w, @ w; 5 5 § 5,17 39)
Hl =2(6l62+6063,ﬂ where
e §=8,-5(1) (i=0,1,2,3) (40)
N Hy= (53-8 +8 - 8)H R
A TSN These new state variables introduce linear terms into the
s Hy=2(8,8y- 848, H (32) dynamic and kinematic equations, Eqs. (37) and (30),
n . . . . ) respectively.
N Thus we have an explicit relationship to eliminate A, in terms The elements of the 4 matrix for the linear part of the state
] of §,. equations are found to be
P, =
- Spflcecraft and Re.acuon Wheel pynamlcs a, =g, H - g, H3 a, =g ,HY—g, HS
!-:',-:' An arbitrary asymmetric spacecraft with four reaction
T wheels in NASA standard configuration is considered (see Fig. a3 =g H} - g, H? ay, =g, HY ~ g, H?
-:.-::- 3). The system angular momentum H is the sum of the
oy spacecraft and wheel angular momenta; the body components @y, =g, H} - g1, H} a3 =8y HY — g3 HY
of H and w are related by
] - ay, =gy, H} - 8y, H3 a3 =8y H) - gy HY
‘:_::) H={I'le+ (C]T(/]0 33) 31 21y = 8y 11} — 83 1
G
e ay =gy HY— gy Y a,=-80,/2
Ny Y4 where [/*] is the system inertia matrix with respect 1o the
-..';-.J body frame {b), § a vector of the four-wheel angular ap=-58,(1,)/2 ay=-56,(1,)/2
h ,’3 velocities, and {J] the wheel axial moment of inertia matrix
N defined by (J) =diag (J,}, i=1,2,3,4. [C] is a 4 x 3 matrix as; =8,(4,)/2 as; = ~b,(t,)72
< A whose rows are the three orthogonal body-frame components
.‘_f{- of four unit vectors along the wheel spin axes. ay=8;(1,)/2 8g, =5,(1,)/2
K- Assuming negligible external torques, the time rate of
A change of the angular momentum is zero, and thus the ag=80(1,)/2 agy = —~6,(1,)/2
' e Eulerian equation of motion is obtained
-:'--_‘ ) ay, = —62(’1)/2 072=6|(’/)/2
" H=[I'lo+ [C)T[N)10+ [G1H=0 34
.u 07’360(11)/2
_:.*_:. where
x:._. 0 - W, a,=0(i=1,..,7; j=4,....7) 41
AN
Y (=] wy, 0 -w i
b ~ ! where H° is Eq. (32) evaluated at 5,(1,) and g, are the
&K% -w, w, 0 (RE)) clements of matrix [G] defined after Eq. (37). Notice that a,
o 1
.J: . - - - - - - - - - hd - - . e~ T -
:' :"‘:"\:‘-'"'r:"‘.N%:'v"l":*""'d‘-'}\':.'?":"‘}";“" ";:‘ ORI :-"‘f:—".-"-' e ".’.' s e e e " Lo
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Fig. 4 Case 1: Spacecraft angular velocities.

are explicit functions of the specific terminal state §,(¢,) and
the magnitude of the system angular momentum H. B is a

7 x 4 matrix
-1G11¢)7
Be |-cemmmmee 42)
0
and the vector F(x) contains quadratic and cubic terms in x,.
Performance Index
Two quadratic performance indices are considered
L
J, --l-s d (xTOx +uTRu)dt “3)
2 Jy
and
1 ¢Y -
J,--—E (27Qx + mT Wm ) dt (44)
2 7]
where
m={C)Tu (49)
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Fig. $ Case 1: Wheel angular velocities: 1, linear feedback; 2, linear
plus quadratic feedback.

is a 3% I vector containing the orthogonal components of the
vector sum of the motor torques. J, penalizes the four motor
torques and J, penalizes their projections on the principal
axes.

In the numerical examples, performance index J, is used for
maneuvers involving all four wheels. Performance index J,
may also be used with four wheels, but the wheel torques are
not unique, as shown below. All examples utilizing three
wheels use J;, in which the 4x3 matrix [C) in Eq. (45) is
replaced by its 3x3 nonzero submatrix. Q is a positive
semidefinite weighting matrix, and R and W are identity
matrices for the examples considered.

Feedback Control
For the performance index in Eq. (43), the optimal control
is
um~R-'BT)\ (46)
where B, is the B matrix of Eq. (42). The analogous develop-

ment for the performance index of Eq. (44) uses the state
equations in the form

i=Ax+ F(x)+Bm 47)
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- wc-n Table 2 Moments of inertia,
:!, 3 L 1'g kg-m?
: y 1 86.215
*‘; ; 5 85.070
By = 1y 113.565
‘ : J, 0.05
) 3
K . S
ST
". 2 2 TINE (SEC) Table 3 Inertis and wheel geometry matrices
: ) T w 120 100 2o [ 87212 -0.2237  -0.2237 ]
K (r)=] 02237 86.067  -0.2237
R | -0.2237-0.2237 114562
i:':" [ 0 0 ]
i)
it = )
ey : (6= : °
!::.Q; ; 0 .0 1
| Vin  vIn viry |
AN
Gt
" TINE ($ECH
,‘ '’ -9.2 i R 2 ]
) “{:‘ [ ] [ 1] 120 te8 240
::' ',n. s Table 4 Case 1: Boundary conditions
' Initial states Final states
s a8
s o 0.0001 0.0
AN 2 o . wy 0.0001 0.0
i - @) 0.0001 0.0
o < ® -x/2 x/2
e g e 0 ~-2/3 x/3
I v ~x/4 /4
. 5 -0.54611 ~0.30257
™ 5 0.47921 -0.13976
Pt -t A T SO » 5 0.67687 0.81747
L "o ™) 120 100 240 b, 0.11820 046974
'R Bo -0.33141 0.3314}
Ix Fig. 6 Case 1: Control torques. B 0.46194 0.46194
254 B, -0.19134 0.19134
ok By 0.80010 0.80010
. . Q, 0.0 -t
ree where B, is a 7x 3 matrix n, 0.0 s
; oY n) 0.0 -
2 P (G) (48) . - —
s jecaneaa
P, "d ? 0 2Specific final boundary conditions for Q, (1) need not be
\ fonnlnny enforced; these are dde:rmined implicitly because
’ . : angular momentum is conserved; i.c., for M =const and
K The optimal control m for J; is wtty) specified, (1) is implicitly constrained by Eq. (33).
o' m=—W-'B]\ 49
Ay
3 08 . . .
A0 and the wheel torques & are obtained by inverting Eq. (45). c .
s'n:: This solution for & is not unique unless [ () is a sQuare matrix. Table S }: Perf e lndices
: Linear plus
K Numerical Examples Lincar qQuadratic
_ Several examples are considered for an asymmetric feedback feedback
ot spacecraft with four reaction wheels, as shown in Fig. 3. The Four wheels, J
v moments of inertia of the spacecraft without the wheels and ) * 6.15126 6.13691
v the wheel axial moment of inertia are given in Table 2; the in- Q; $.76886 $.62314
! ."f ertia matrix {/°] and the wheel geometry matrix [C] are
o given in Table 3. All examples were performed using linear Skew wheel off, J, . 641103
':lf.‘ ; and quadratic steady-state gains with free final time 1,. The ex- 8’ S'O“lel 3.71828
amples start with zero initial conditions for wheel and 1 ) :
b spacecraft velocitics and end with large initial conditions. Thgd wheel off, J, s.y10m 56176
i3 ; » .
:'i X Case | Second wheel off, J;
3 é: A four-wheel maneuver using J, and several three-wheel (2 3.92980 3.76077
Y maneuvers using J, are executed, all with zero initial wheel First wheel off, J,
% speeds. Boundary conditions are given in Table 4 using the : $.92962 5.76071
3-1-3 Euler angles. Table $ contains the performance indices,
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Fig. 7 Case 2: Control torques: 1, limear feedback; 2, limear plus
quadratic feedback.

which are evaluated at /, = 120 s for the four-wheel maneuver
and 7, =240 s for the three-wheel maneuvers.

A comparison of performance indices with full and partial
weighting on the Euler parameters is made. Q, indicates full
state penalties in the performance index, and Q, implies that
no penalties are put on 8,. Figures 4 and S show the spacecraft
and wheel angular velocities for the case of three orthogonal
wheels (skew wheel off ) and Q, in performance index J,,
which produced the lowest three-wheel performance index.
The control torques are shown in Fig. 6.

Case 2

A rest-to-rest maneuver with nonzero initial wheel speeds is
performed with three orthogonal wheels (skew wheel off) and
no penalty on &, in performance index J,. This weighting pro-
duced the lowest performance index in cases | and 2. The
boundary conditions are given in Table 6 and the performance
indices evaluated at 7, = 240 s are given in Table 7. Since the in-
itial and final Euler angles are the same as in case 1, the Euler
parameters 8, are the same, but the system angular momen-
tum is farger and, hence, the Euler parameters §, are different.
Figures 7-9 plot the spacecraft and wheel angular velocities
and control torques. Note that the final wheel speeds are 75,
50, and 100 rad/s for Q,, 0,, and Q,, respectively.

Case 3

A three-dimensional maneuver is demonstrated for the
three-wheel configuration with large initial spacecraft angular
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Fig. 8 Case 2: Spacecraft angular velocities.

velocities and the initial wheel speeds of case 2. The boundary
conditions for this maneuver are given in Table 8. Perfor-
mance index J, was used, once with equal weights on all Euler
parameters &, and once with no weight on 8,. Only linear feed-
back was used for both performance indices to demonstrate
the differencesbetween full and partial weighting, although
quadratic feedback improves contro! performance when stable
linear control is obtained. Figures 10 and 11 give the time
histories of the Euler parameters, spacecraft angular
velocities, and wheel speeds for these two cases.

Discussion

The performance indices in Tables $ and 7 were reduced
when quadratic feedback was added to the linear control. In
both cases quadratic feedback produced Euler parameters that
reached their final states earlier and resulted in a lower perfor-
mance index. This also occurred with the spacecraft angular
velocities in case 2.

A comparison was made between full and partial Euler
parameter weighting in the performance index, since specify-
ing values for three Euler parameters automatically produces a
value for the fourth when the nonlincar state equations are
used. No stability problems were encountered using partial

g TPV ST W W Ty
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Fig. 11 Case 3: Stable control.

weighting as long as spacecraft velocities were small, but in
case 3 partial weighting produced the tumbling behavior in
Fig. 10. This unstable behavior occurs because the linear feed-
back gains are determined by only the linear parts of the state
equations. Although the nonzero cigenvalues of
A—BR-'BTXK have negative real parts, 5o that the linear
closed-loop system is stable, the nonlinear terms in the state
equations are large and produce unstable behavior in the
simulation. Similar behavior is seen in cases 1 and 2, except
that the quadratic terms in the state equations change 8, by a
smaller perturbation that is not destabilizing.

When the departure motion of all four Euler parameters is
penalized in the performance index, linear gains are deter-
mined that will keep 8, close to its desired final state. The
quadratic terms in the state equations then do not produce

b) SEAR s e

» ot AR 'H°| ."1“' NS n‘ ‘:I

destabilizing corrections to the lincar closed-loop equations,
since bounds have been placed on the states through the per-
formance index. As is evident in comparing Figs. 10 and 11,
introducing the penalty on 8, departure motion eliminates the
tumbling motion and yields an attractive optimal mancuver.

Conclusions

Polynomial feedback on angular velocities and Euler
parameters have been used for nonlinear control of a
spacecraft with four reaction wheels. A comparison of linear
and quadratic contro! was made, with a reduction in the per-
formance index for quadratic feedback. When using redun-
dant attitude variables, care must be taken so that the linear
gains (based upon linearized departure motion state equa-
tions) result in modest violations of the implicit constraints.
This may be enforced by penalizing all states in the perfor-
mance index weight matrix.
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SPACECRAFT ATTITUDE CONTROL USING
GENERALIZED ANGULAR MOMENTA

Connie K. Carrington *
John L. Junkins *

Suboptimal nonlinear state feedback control laws are developed for space-
craft attitude control using the Euler parameters and conjugate angular
momenta. Time-dependent gains are determined in closed form for polynomi-
al feedback laws, and stable nonlinear state feedback laws are developed
from Lyapunov functions. The Lyapunov laws are made optimal by adjusting
constants to minimize a quadratic performance index. Numerical simule-
tions for single and three-axis large-angle slew maneuvers are presented.

INTRODUCTION

Many current and future spacecraft missions require rapid large-angle reorientation
maneuvers. Traditional feedback controls may not be adequate for the accuracy and
speed required for on-board, real-time implementation, prompting investigation of
control laws using alternate state variables. Recently, feedback control laws using
the four Euler parameters or quaternions!'? and the spacecraft angular velocities
have been developed for attitude control (see Refs. 3-8).

Morton? has presented a new formulation of rigid body rotational dynamics in terms
of four generalized angular momenta that are conjugate to the Euler parameters.
Rotational motion is determined by eight state equations that are cubic polynomials
in the states. The development includes applied torques, which will be used in this
paper for spacecraft attitude control.

‘Suboptimal polynomial state feedback control laws ®10 that minimize a quadratic

performance index are developed for rapid large-angle spacecraft maneuvers. The
costates are written as polynomials in the states, producing sets of differential equa-

tions for the gains. These equations are solved recursively, since the linear and

zeroth-order gains determine coefficients in the equations for the quadratic gains.

Each set of equations are solved in closed form, producing gains that are polynomi-

als in time. A suboptimal control law is generated by truncation of the polynomial

expansion in the states. A numerical example using this control law is presented

for a single-axis, large-angle, spin-down maneuver.

Nonlinear state feedback control laws utilizing Lyapunov functions!! are also in-

vestigated for single and three-axis maneuvers, as in Refs. 3 and 4. Unlike the
time-dependent polynomial control laws examined earlier, these feedback controls

* Assistant Professor of Mechanical Engineering, College of Engineering,
University of South Carolina, Columbia, South Carolina 29208.

+ Professor of Engineering Science and Mechanics, Virginia Polytechnic
Institute and State University (VPI & SU), Blacksburg, Virginia 24061.
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arc guarantced to produce a closed-loop system that is asymptotically stable in
the large. Constants in the Lyapunov laws may also be adjusted to minimize the
quadratic performance index of an optimal control formulation. The system re-
sponse for the optimal Lyapunov control law demonstrates the moderate rise-time,
short settling time, and low overshoot associated with optimally damped (¢ = 0.707)
second-order systems.

EQUATIONS OF MOTION

The attitude control problem for a rigid spacecraft is governed by a set of kinematic
equations defining orientation of the body with respect to an inertial frame, and
a set of dynamic equations representing rotational motion. The orientation of a
body-fixed reference frame {b} to an inertial frame {fn} is given by the projection

{8} = [C){A) (1)

where [C] is the direction cosine matrix. Instead of three Euler angles. the four

Euler paramecters!? will be used to parameterize the elements of [C]. The Euler
parameters are defined as

Bo = cos(P/2)
B; = l;sin($/2) (2)

where l; are components of a unit vector along the principal axis of rotation when
rotating from {7} to {é}, and @ is the rotation angle for that reorientation. Since
rotational motion has three degrees of freedom, the four Euler parameters are once
redundant and satisfy the constraint

S g =1 )
1=0

The time derivatives of the Euler parameters are functions of the spacecraft angular
velocity components w; and the Euler parameters.

Rotational motion is governed by Euler’s equations, which are generally written in
terms of the angular velocity components w;. Consistant with the development of
Hamilton’s canonical equations!?, Euler’s equations are reformulated in terms of
generalized angular momenta p, that are conjugate to the Euler parameters. They
are defined from the rotational kinetic energy T as follows

aT .
= — {=0,1,2.3 4
p % (4)

The equations governing the time derivatives of the Euler parameters are also re-

formulated in terms of the generalized angular momenta, producing the following
cight equations of motion?

» gy ®
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¥ (B} = = JQUIII *lIQUAIT{A) +21Q(8){u}s o

y (8) = L[ QN {r)

where [Q(A)] and [I' '], are 4x4 matrices defined as follows

§ o =By ~Pr -
By Bo —Bs B

. Q(3)] = ) 6
0 U=y, w s -8 (6)
~ Bs =B, By Bo
! and
[1 "4 = diag {0, 1/1,. 1/, 1/1;} (7)
o .. .
Y 1,, I, and I, arc the spacecraft moments of incrtia in a body-fixed. principal-axis

reference frame. The nonzero elements of {v}4 are the control torques about the
; principal axes
::‘ {'U }4 = { 0 Uy Uy Uy }T (8)
- Eqs. (5) are Hamilton's canonical equations in which {p, 8} are the eight state
. variables. These variables are twice redundant, with the 3, satisfying Eq. (3) and
¥ the p, satisfying the following constraint

) 3
[ }_:p,z = 4H? (9)
1= 0

: where H is the magnitude of the systemn angular momentum vector. These con-
straints arc both integral properties of the systemn equations, however, and hence

. they do not need to be explicitly enforced when defining the optimal control prob-
lemn.

x OPTIMAL CONTROL PROBLEM

n Formulation

“

h The state equations arc cubic polynomials, so that polynomial feedback control

- laws wmay be developed using an optimal control formulation®!°, No linear terms

~ arc present in Eqs. (5), however, and there are fewer control variables than states, so
that the algebraic gain equations arc in many instances degenerate. In these cases no

*‘ solution can be found for constant gains.' Two remedies can be considered for this

situation. The first is to introduee lincar terms into the system equations by using

< the system errors as new state variables. The new state vector is 2(1) = =(t) —r(1y),

a where (1) is the old state vector and r(f) is the desired final state. Linecar terms
with constant cocflicients r(/;) appear in the new state equations. The optimal

i{: control problem is formulated using the error vector 2, and the costates are written

o as polynomials in 2. Scts of equations for the gains are determined by cquating

i 20
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cocfficients of like powers of z in the costate equations. Constant lincar gains can
be determined from the algebraic Riccati equations if at most one zero pole occurs
in the linear part of the state equations, and higher order gains can be calculated re-
cursively from the subsequent linear algebraic equations. Unfortunately, the system
represented by Eqgs. (5) contain two zero poles, corresponding to 8y and p;. The
eigenvectors for these poles cannot be determined accurately enough to produce a
reasonable solution to the Riccati equation using Schur’s method !4, so the constant
gain solution will not be used.

The other solution technique for state equations containing no linear terms is to de-
termine time-dependent gains using the original cubic state equations. The tracking
problem can be formulated using a performance index that minimizes the difference
between the state and the target, and a final state penalty can be posed. The
costates are written as polynomials in the original states z, and the gain equations
are defined as before from the costate equations. The differential equations defining
the gains are simple, so that closed-form solutions may be found by integration.
The terminal boundary conditions for the costates, which are determined by the
performance index, specify constants of integration in the expressions for the gains.

Given the state equations in Egs. (5), the performance index to be minimized is

t
J = %ET(tl)Hé(tf) + %f‘ "{27Qz + Wl Ru,}dt (10)
0
where 2z is the difference between the state z and the target state r
z(t) = z(t) - r(ty) (11)
z(t) = { po p1 P2 P3 Bo By B2 B3 }
The necessary conditions for optimality produce the following costate equations
. oC
Ai = 4 Jk(p ]A Bk — 'le(ﬂ)'ﬁ a2y
1[0C,(8 0 B
C)sA [ Jk )] V)Pk — 2[ QaJ;( )]Al'uk = 2 (12)
]
,7,k=0,...,3
l=1,..,8

where A, and v, are the costates corresponding to p; and 3, respectively; the 4x4
matrix C is

C(p) = QPN L[Q)T (13)
and the terms in brackets are Jacobians. The control is
ue = -2R71Q7(8)A (14)
and the terr...nal boundary conditions on the costates are
= 5
{‘n(tf) 2lty) (1%)

e
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N Assuming the costates are polynomials in the states,
h

. '\:’(t) = 38.(t) + k.. +d.. .
S 1

then the boundary conditions of Eq. (15) produce the following conditions for the
time-dependent coefficients in the polynomial expansion

AN

»

s(ty) = —Hr(ty)

K(t;)=H (17)

~n

with all higher-order coefficients going to zero at t = t;.

et

By substituting Eq. (16) into the costate equations and equating coefficients of like
powers of z, we obtain the following sets of equations

8i = Qi;T;
“ ’
2 Ky =gy + fi(s)) (18)
é dljk = f2(3nku’)
ﬁ where f; and f, are functions of lower order coefficients. Eqs. (18) can be integrated
in closed-form, and the constants of integration determined by Eqgs. (17). The feed-
- back gains produced in this method are polynomials in time, which are substituted

back into Eqs. (16) end (14). A suboptimal control law is determined by taking a
finite number of terms in Eq. (186).

Single Axis Maneuvers

> For single-axis maneuvers about the first principal axis, Eqs. (5) reduce to the
following equations

. 1

- = n(z;zz:q - z323) - 2z,u
. 1

£ = ‘—I(z;zzz;, - ziz,) + 2z3u

;f. 1 2 (19)
i3 = (2124 - 232324)

= R

g T4 = 4—](3233 - 2,7324)

a where 2 = { pp p; Bo 51 }T and u is the control torque to be determined. For the

following performance index

1 1 by
"‘ 7= 3T H2) + 5 [ {27z +uh)ar (20)
22
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where z(t) = z(t) — r(t;) and r(t;) is the desired final state, then the costate

equations are

: 1
’\l = —q;2 H(Al:2z4 + A2(2223 - 2211’4) + /\322 - A42334)

. 1

Ay = —qq525 + ;7(*1 (22223 — 2124) = A2 123 + A3Z324 — A¢z3)

.- 1

A3 = “93121 + U(A;z% - /\2:12:2 + A3Iz$4 + A{(Il:lf‘ - 21223)) - 2A2u
. 1

Ay = —qq52, H(Alzlxg - /\2.1:';' + A3(2z124 — 2223) — Aq2123) + 20 u

and the control is
= 2(14)1 - 23/\2).

(21)

(22)

A and ), are the costates corresponding to the conjugate angular momenta py and

p1, and A3 and A4 correspond to Euler parameters 3y and £;.

For this example, the weighting matrices Q and H are

Q=diag{ 91929394 }
H= dzag{ hl h2 h3 h4 }

The zeroth-order equations are
8; = qiri(tys)
which, with the boundary conditions in Eq. (17), have the solution

5,(t) = —qiri(ty)(ty — t) = hiri(ty)

The linear equations are

kic = —gqi i=1,2
kyy = —q3 + 453

ke = —qq + 487

ki =0 i#J

These equations have the solution

kii(t) = qu(ty — 1) + b, 1=12
k3a(t) = qalty — t) + hy — 4r3(ty){adr + a2ha(ty — t)* + h3(ty — 1)}
kaa(t) = qulty — 1) + hy = ar2(t)){q}r + qrhy(ty = t)2 + hy(ty — 1)}

where
3
r= (15 -0)/3+ 4,0 — 15t
23
- ‘.3,:.;.;,_-;' -.‘1‘:,\' D T R Ly -.')_'.}-.'_-.‘,'.:,-::_-.:,:.}'.:,,'.;-.‘J-.:_-.‘ (N Ry

(23)

(24)

(25)

(26)

(28)
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Fig. 1 Single-Axis Conjugate Angular Momenta
1 s, + k,‘J‘IJ'
2 s+ kiz;+dgTyan

The quadratic equations are

and d,]* = 0 wherc not otherwise

these equations are d,,x(t;) = O,
powers in time. Similar polynomials in time are found for higher order gains.

= 8,/21

= —38,/41

= —8;/4]

= —4k; 187 + 84/41
= 4k, 8, — 83/4]
= —sy/41

= —g, /4]

= 8, /2]

= 4kyp87 — 8,/41]
= —dkyy8; + 83/41

(29)

specified. The terminal boundary conditions for
and the solutions contain linear through cubic
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- 1 s, 4+ k,j::j
2 8+ kizj+dirzzi .
‘ . Numerical Example
-
k. A rapid large-angle, spin-down maneuver was simulated with I = 1.00 kg m? and
t; = 20 sec. The boundary conditions for the maneuver are listed in Table 1, and
3 the performance indices in Table 2. The performance index weights were
: H=Q=diag{0.1 01 0.1 0.1} (30)
The conjugate angular momenta and Euler parameters are plotted in Figs. 1 and
2. Fig. 3 contains the maneuver angle and control torque histories.
Table 1
SINGLE-AXIS BOUNDARY CONDITIONS
' §§§te Im’tigl §§§&§ Ein!l 5&!&;
X @ (rad) -n/3 x/3
- w (rad/sec) 1.000 0.000
. Bo 0.866 0.866
g B, -0.500 0.500
: po (kg m? rad/sec) 1.000 0.000
3 p1 (kg m? rad/sec) 1.732 0.000
- 25
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Fig. 3 Single-Axis Maneuver Angle and Control Torque
1 o, + k,-jz,-
2 s, + k,’j:tj + d;,-kz,-zk

Table 2

SINGLE-AXIS PERFORMANCE INDICES
POLYNOMIAL FEEDBACK CONTROL

A Performance Index
8 + ki;z; 3.13
8 + kijz; + disizizy 0.49

Note that A; = & + %,;z; only controls angular momentum, and the addition of
quadratic terms are required for attitude control. Since the control influence ma-
trix contains the Euler parameters, A; = s; + k;; 2, + di;1 22, results in cubic control
terms in the state equations. This cubic feedback law provides a significant reduc-
tion in the performance index by reducing the Euler parameters errors, even though
larger angular momentum values are incurred.

LYAPUNOYV CONTROL LAWS

Formulation

Stable feedback control laws may be determined for autonomous systems from Lya-
punov’s second method!!. To apply this method, the state equations are trans-

26




formed so that the target state is the origin. This is accomplished by defining new
states z(t) = z(t) — r(t;) as discussed in the previous section. A scalar positive def-
inite function V (z) is defined, and a control law is found that makes the total time
derivative of V (z) negative definite. This control law will then be asymptotically
stable and drive the system to the origin.

Consider the positive definite function

8
V=232 (31)
=1
where
zi(t) = z;(t) — ri(ty)
T (32)
z={pop1p2P3 BB B2 B}
Then o
V=4 a (53)
i=1

where 3; = #,. Egs. (5) are substituted into Eq. (33) to give V the following form

V = fil2)u) + fa(2)uz + f3(2)us + fa(z) + fs(2) + fo(2) (34)

where u;, u, u3 are the control torques to be determined. For asymptotically stable
control, V must be negative definite. A suitable expression for V is

V = —{Cif}(2) + C2f}(2) + Caf2(2)} (35)

where C,, Cy, C; are constants to be defined later. By equating Egs. (34) and (35),
a solution for the control torques is found

m=—£%ﬂ—&h@
uy = - %%;] ~Cafal2) (36)
uz = ~ %%3] - C3f3(2)

The functions f,, f3, f; are quadratic polynomials in z and f, f5, f¢ are cubic
polynomials in z, so that the quotients in Eqs. (36) are well-behaved as z — 0.
The control laws are made optimal by adjusting the constants C,, C, and Cj; to
minimize the quadratic performance index in Eq. (10).

Single Axis Mancuvers

The large-angle, spin-down manecuver that was demonstrated with polynomial feed-
back control is repeated with Lyapunov control. The boundary conditions are those
listed in Table 2. The Lyapunov function is
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Fig. 4 Single-Axis Conjugate Angular Momenta and
Euler Parameters Using Lyapunov Control

and

V = 8{z32; — z421 }u — ry@i(z) — r2(ty)g2(z) — ra(ty)ga(z) — ralts)es(z)  (38)

where
91(z) = (z12224 — 3%-‘”3)/1
92(z) = (212223 — ziz4) /1 (39) -
g3(z) = (-‘-'—'123 — z32324) /1
94(z) = (2223 — z12324) /1
To obtain
V = —C(2323 — 242;)? . (40)
o Te-1ri(ty)eilz) C
u= 8;;322 — 1'421—) - g (7322 = z421) (41)

This control law produced the performance indices in Table 3 for various values
of C. These performance indices were evaluated at {; = 30 sec. The minimum
performance index occurred for C = 2.9, and the corresponding system response is
plotted in Figs. 4 and 5. The conjugate angular momenta and Euler parameters are
shown in Fig. 4. and the maneuver angle @ and control torque v are plotted in Fig.
5. The weighting matrices Q and H in this example are the identity tmatrix.
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B

' Table 3

DY

jix,'ﬁ SINGLE-AXIS PERFORMANCE INDICES
i LYAPUNOV CONTROL

‘d C  Performance Index
,‘;;. ’ 1.0 7.05
K 2.0 3.13
o 2.9 2.61
By 3.5 2.71

LAY, by
,_ $::j To demonstrate the variations in response for changes in C, a 90° maneuver was
Ij:-_i:j executed. Fig. 6 shows this maneuver angle for several values of C. When C is
% smaller than its optimal value, the response is similar to an underdamped second-
W order system, and for large values of C the response is overdamped. For C = 1.5, the
T maneuver angle responds like an optimally damped (¢ = 0.707) second-order system,
o and the quadratic performance index is minimized. Table 4 lists the performance
;-;;i indices corresponding to the curves plotted in Fig. 6.
-..'.""-4
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3 Table 4
- SINGLE-AXIS PERFORMANCE INDICES
& LYAPUNOV CONTROL
- C Performance Index
B 0.5 2.49
1.0 1.59
' 1.5 1.48
. 2.0 1.58
}N 10.0 4.70
N
" Three Axis Maneuvers
5 By substituting Egs. (5) into the Lyapunov function of Eq. (31), V becomes
5 | .
> V =8{(—ze21 + 2523 + T42z3 — T72¢4)u; +
?‘ (—=z72) ~ Zg27 + Z523 + Tg2g)uy +
(—zsz) + Z72; — 2623 + T524)us + (42)

pt)TIRPIIREPNTS -
B(t)TIQA)I ' 1(Q(B)T p)
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Fig. 7 Three-Axis Conjugate Angular Momenta and
Euler Parameters Using Lyapunov Control

A negative definite form for V is
V = ={Ci(—z¢2; + 2527 + Tgz3 ~ 2724)* +

Cy(—z72) — 2829 + 2523 + 1:524)2 + (43)

C3(—zg2; + 727 — Ze23 + 2524)%}

By equating Eqgs. (42) and (43), and assigning all terms containing I, to f(z),
all terms containing I to f5(z), and those containing I3 to f¢(z), then the control
torques are defined by Eqs. (36). The functions f;(z), f2(z), and f3(z) are identified
by comparing Eqs. (35) and (43).

A large-angle three-axis spjn-down maneuver was executed using the boundary con-
ditions listed in Table 5. The 3-1-3 Euler angles ¢, 8, ¢ correspond to the given Euler
parameters. Table 8 contains the mass properties of the spacecraft, and the final
time is t; = 50 sec. As in the single-axis maneuvers, varying the constants C,, C,,
and C; produce responses that exhibit the characteristics of damped second-order
systems. Several values of these constants with their corresponding performance
indices are listed in Table 7. The minimum performance index occurs for

C| = l/]‘
C3 - 1/13

and Figs. 7 and 8 plot the state variables, angular velocities, and control torques

for this case.
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Fig. 8 Three-Axis Angular Velocities and Control
Torques Using Lyapunov Control

Table 5
THREE-AXIS BOUNDARY CONDITIONS
State Initial State Final State
¢ (rad) -n[2 r/2
6 (rad) -r/3 n/3
¥ (rad) -n/4 7 /4
w; (rad/sec) -.5 0.0
wy (rad/sec) 0.3 0.0
w3 (rad/sec) 0.1 0.0
Bo ~0.331 0.331
X 0.462 0.462
B, ~0.191 0.191
Bs 0.800 0.800
pc (kg m? rad/sec) 0410 0.000
p; (kg m? rad/sec) ~-0.102 0.000
p; (kg m? rad/sec) —1.050 0.000
p3 (kg m? rad/sec) -0.022 0.000




XY Table 6

s’,:s"

s SPACECRAFT INTRTIA

¢ \ \

2?‘:3.:( Axis Moment of \ ..ertia (kg m?)

. 1 1.00

o 2 0.83

: 3 3 0.92

B0

bl Table 7

i THREE-AXIS PERFORMANCE INDICES

;::' G C Cs Performance Index

e 100 100 500 4.893

W 1.00 0.83 0.92 4.543

e 1.00  1.00  1.00 4.368

Ao 1.00 1.20 1.09 4.225

el 100 060  0.20 6.710

o

il CONCLUSIONS

. ,‘F State feedback control laws have been formulated for a new set of state equations

3‘:}‘,& representing rigid-body rotational motion. The polynomial state equations allow
‘ development of polynomial feedback controls using optimal control theory. The

_; absence of linear terms in the state equations and the double redundancy of the

;:3 state variables preclude the use of constant gains, but time-dependent gains are

a‘P determined in closed form. A single-axis example demonstrates that quadratic

Aol terms in the costates are required for complete attitude control.

LAY

,;E A second group of control laws is developed using Lyapunov functions. Although .

) ;\;: nonoptimal, these laws produce asymptotically stable closed-loop systems, and con-

o stants may be adjusted to minimize the quadratic performance index of an optimal

control formulation. The system response for both single- and three-axis maneuvers

e exhibit characteristics of a damped second-order system; the combination of con-

wgs stants that minimizes the performance index produces a response associated with
3-_92 an optimally damped (¢ = 0.707) system.

' A comparision of polynomial feedback laws and Lyapunov laws shows that Lya-
_*j punov control is easier to formulate. For systems involving more than a modest

i3 ~ number of states, the algebra required by polynomial control becomes prohibitive

LY, and an algebraic manipulator should be used. There are several advantages in us-

- ing the conjugate angular momenta for state variables instead of the three angular |

N velocitics. Polynomial feedback control using angular velocities was examined in

?:.,.‘; Refs. 8 and 10, and those state equations produced coefficients in the gain equa-

b tions that are dependent on the final states. Although the equations do not need to
s be reformulated each time the target states were changed, a system of simultaneous

S eauations must be resolved to find new gains. In this paver. the time-dependent
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gains using the conjugate angular momenta are found in closed-form and arc quickly
calculated f - changes in the target state. The cubic form of the angular momnenta
equations also produce Lyapunov control laws that are well behaved as the errors
go to zero.
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FOR NONLINEAR OPTIMAL CONTROL PROBLEMS
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ABSTRACT

A quasi-analytical method is presented for solving nonlinear, open-loop,
optimal control probiems. The approach combines a simple analytical,
straightforward expansion from perturbation methods with powerful numerical
algorithms (due to Ward and Van Loan) to solve a series of nonhomogeneous,
linear, optimal control problems. In the past, the only recourse for solving
such nonlinear probliems relied almost exclusively on iterative numerical
methods whereas the asymptotic perturbation approach may produce accurate
solutions to nonlinear problems without iteration. The nonlinear state and
costate equations are derived from the optimal control formulation and
expanded in a power series in terms of a small parameter contained either
explicitly in the equations or implicitly in the boundary conditions. Each
order of the expansion is shown to be governed by a nonhomogeneous, ordinary
differential equation. Representing the generally non-integrable,
nonhomogeneous terms by a finite Fouries series, efficient matrix exponential
algorithms are then used to solve the system at each order, where the order of
the expansion is extended to achieve the appropriate precision. The asymp-
totic perturbation method is broadly applicable to weakly nonlinear optimal

control problems, inciuding higher order systems frequently encountered in

* Professor of Aerospace Engineering, AIAA Fellow.

**Graduate Research Assistant, Engfneering Science and Mechanics, AIAA Member.
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aerospace vehicle dynamics and control. A number of numerical examples

demonstrating the perturbation approach are included.

OPTIMAL CONTROL FORMULATION

Consider a nonlinear system of the form

X+ TX + Ax = Bu + £(x,X,u,0,t) : (1)

where x is an nxl vector of system coordinates, r is a diagonal matrix of
damping factors, a is a diagonal matrix of stiffness factors, B is the control
influence matrix, u is an mxl vector of controls, and f is a vector containing
all nonlinear terms. The form of Eq. (1) is based upon the assumption that
the linear part of the equations of motion have been rendered independent via
a linear transformation to reduce the complexity of the optimal control
formulation. If all of the n system coordinates are to be controlled, this
procedure is entirely arbitrary although it will often prove useful (with
regard to the validity of the methods herein). However, for a control problem
in which a subset of the system linear modal coordinates are to be controlled,
the decoupling procedure is necessary. Furthermore, it is recommended that
the equations be nondimensionalized to reduce the number of parameters
involved and to isolate the dimensionless parameters critical to the behavior
of the system. We shall proceed with the development of the perturbation
approach in configuration coordinates, based upon the assumption that the
linear part of the equations of motion have been decoupled while recognizing
that the use of dimensionless coordinates would merely scale the coefficient
matrices.

Forming the state vector of the system coordinates, controls, and their

first derivatives, the state equation is
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0
1.

e
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;,'5 U=u mx 1
aE
? o=10" £ 0" ") (2n+2m) x 1
"ii
e . .
tﬁ» Including the controls and control rates in the state vector z allows us to
e
, penalize large control accelerations in the optimal control problem. This

-~

will insure that the control trajectories generated will be smooth and

f{; continuous, with prescribed (usually zero) magnitudes at the initiation and
i
jg: completion of the maneuver (Ref. 1,2). We seek the optimal control trajectory
; that minimizes the quadratic performance index
W -
t
o5 J= $2'sz + 11 (e + UTRyyat (3)
Yk t=te t

where R and S are positive definite, diagonal weight matrices, and Q is a
symmetric, positive semi-definite weight matrix, where Q = 0 is not
excluded. It is clear that the matrix Q may be used to weight not only the

position and velocities of the system coordinates, but the controls and
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control rates as well due to the inclusion of these variables in the state

ﬁ

i vector z.

,:3 The Hamiltonian, formed from the system given by Eq. (2) and the
hY

integrand of Eq. (3), is defined to be
' He=g 2oz + U'RY) + 2T(FZ + 0U + o) (4)

where the costates ) are a set of undetermined Lagrange multipliers.
- Pontryagin's necessary conditions for determining the optimal control,

operating on the Hamiltonian, yield the equations

N . _ aH
2 z=fT=Fz++, (5)
7 3p
. = T —|T

h=-g7=-0z-Fa-[5l0 (6)
l'.
[

aH T
N 0=Jg=RU+DL (7
with the boundary condition _&(tf) = S_z_(tf).

l Solving Eq. (7) for U and substituting into Eq. (5) reduces the optimal

control problem to two coupled first-order, nonlinear, ordinary differential

equations. Combining the unknowns, z and 1, into @ single augmented

% state/costate vector X, the optimal control problem may be restated as
o X = AX + e(NLT) (8)
-

i where

': X = [gT LT)T 2(2n+2m) x 1

2(2n+2m) x 2(2n+2m)

b 3
o { F-or™lpT

Q  -F
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{NLT} = a; T 2(2n+2m) x 1

-l3zl A
and where the dimensionless parameter ¢ is a "bookkeeping" term indicating the
numerical order of the nonlinear terms.

Upon solving the Two-Point Boundary-Value Problem given by Eq. (8), the
state trajectory, which includes the optimal controls, may be generated at any
point within the time interval tosts te. However, as a consequence of the
presence of the nonlinear terms, the system governed by Eq. (8) is
analytically intractable. Although there are many iterative methods available
for solving such nonlinear systems, we wish to construct an approach, using |
the most basic of the perturbation methods, that circumvents the iterative
techniques in favor of a quasi-analytical solution to the optimal control

problem.

AN ASYMPTOTIC PERTURBATION METHOD: THE PEDESTRIAN EXPANSION

For any given weakly nonlinear, differential equation, it is often
constructive to employ a straightforward expansion from perturbation methods
to produce an approximate solution to the problem (Ref. 3). We assume the
solution to Eq. (8) may be represented by a power series in terms of a small

dimensionless parameter ¢
X(t) = Xg(t) + eX;(t) + 2Xy(t) + ... (9)

For small nonlinearities (small e¢), the series is expected to produce accurate
results where the accuracy will improve as the nonlinearities, and
consequently the parameter ¢ approach zero. Indeed, in the 1imit, as the
number of terms in the series approaches infinity, the solution given by Eq.

(9) will be exact if the expansion is convergent.
41
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Substituting Eq. (9) into Eq. (8) the optimal control problem may be

. expressed as

& X+ eXy + e2K, + 0(c3) = AX + cAX, + ¢2AX, + c(NLT, (X))

X, + ek + ek i T SR 177 (19
i + 2INLT,(X,X))) + O(c®)

where the nonlinear terms have been expanded in a similar power series and the

dependence of each term upon the expansion variables (51) at each order is

- indicated. Equating terms with equivalent powers of ¢ yields the series of
equations
:1:5 ¢ =
£ = A (11)
-
s Xl = All + {NLTl(xo)} (12)
& R, = AX, + INLT,(X_,X,)) (13)
jb where for illustrative purposes we have included only the equations through
-~

order ez. However, we note that the order may be extended to achieve the

degree of precision required for a specific problem. The boundary conditions

of the expansion variables are

-
" Kolto) = ¢ ) Xo(te) = 2 ) (14a)
i 2o'"o 2o\tf
;}_.
- 0 0

Xi(tp) = %x t) X;(te) = {0} i=1,2,3,... (la)
E: =itvo =
~ where we recall that the final conditions of the states and costates are
- related at each order through the boundary condition xi(tf) = Szj(tf). The
P

straightforward expansion produces a strictly linear problem as the first
-
t :§ approximation (zero order) of the nonlinear problem and then provides a series

| 42 ’
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*:ﬁ of "small corrections" (higher-order terms) to account for the effects of the
L) §
i .,§ nonlinearities. Furthermore, the nonhomogeneous term in the ith equation of
~ ot J

::J higher order (i = 1,2,...) is independent of the expansion variable Xy for
;ﬁf that particular equation. Upon solving Eqs. (11-13) sequentially, the F
».' A‘
‘ significance of this observation becomes clear; the nonhomogeneous terms

LSS
‘:f: constitute known functions of time. By employing the perturbation method, we
o0y
*“ﬁ: have, as usual, replaced an intractable nonlinear problem with a series of

) | nonhomogeneous, linear, first-order, ordinary differential equations.
o

o SOLUTION OF THE NONHOMOGENEOUS EQUATIONS

‘-.:.:
b2 The solution of a system of the form given by Eqs. (11-13) can be shown
a AR
_ to be

At t ~Azr
- X;(t) = e [X,(0) +[ e di(x)d<] , i=0,1,2,... (15)
. 0
N where
dy(x) = 0
. di(x) = (M1} , i =12,

"

e and where t, = 0 has been assumed without loss of generality. Although Eg.

gty (15) provides the solution for each expansion variable, evaluating the

b

ﬁtl integral for an arbitrary function d; presents a formidable task and may

e
B s =
L require numerical integration. On the other hand, if the nonhomogeneous term
’nf; may be represented accurately by a continuous function of time, in exponentia’
r'

P form, the entire solution given by Eq. (15) may be evaluated using a matrix
g

s exponential.
;Q;u; Since we have no closed form expressions for the nonhomogeneous terms, at
AR
cfjg, best we can generate a large set (k) of data points which are the “sampled"

1' .

o s e . .
ala trajectories of the forcing terms. A finite Fourier series of the form

Rt

R r

P R .

f:f f(t) =by + ) a;sin fu t + b,cos fwt (16)

ol i=1
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. may then be used to represent the nonhomogeneous terms as a continuous R
Ii function of time. To calculate the coefficients of the series, we use a least
™ squares fit of the series to the data points describing the nonhomogeneous
AN
- function. It can be shown that the Fourier series of the jth element of the
'l ith forcing term may be put into the form
.
3 | )

~

) where
b 1 0 1 0 1 oo 0 1 '1
}h 1 S(tl) C(rl) S(Zrl) C(ZTI) S(Y‘Tl) C(r'rl)
Y A=|1 s(ry) clr)) s(2ry) c(2ry) -+ s(rey)  c(rsy)
£

1 S(tk) c(rk) S(2tk) C(Z‘l’k) S(Y‘rk) C(Y“rk).—
= . . . . . T

';\;c’
Qo
1]

- gho) dlen det) ... dlwan)

=J
i P !.uOAt . L =1,2,3,...,k

st = te/k wy = 27/tg
c()=cos()  s()=sin()

and the notation gg(kat) indicates the jth element of d;(t) evaluated at t

! = kat. The unknown coefficients may then be found from the least squares
5 approximation
¥ c; = (AT) Ty, (18)
zf Note that with appropriate sample points (symmetric about t = =), ATA s
-: diagonal and the inverse is trivial. Alternatively, we can develop these
2h coefficients from a discrete Fourier transform. Proceeding element by element
" through the ith forcing term, we can then represent 2ach element by a finite

Fourier series. It can also be shown that the forcing term may then be given




by the matrix exponential equation

di(t) = 64e%q (19)
where
G; = [gl 9 43 --- gslT s S = 2(2n+2m)

T
g = [boj w31 4 blj Zwaazj sz e Tugdy brj]

J=1,2,3,...,5

=M1 0101 ... T (2r1) x1

g = Block Diag [0.91,92.....nr] (2r+1) x (2r+l)

Lr? ol
Q = . L =1,2,3,...,r
' -(Emo)z 0

We now have the nonhomogeneous term represented by a continuous function
of time given in exponential form. Consequently, we may use "Van loan's
identity" (Ref. 4) to produce the solution given by Eq. (15) using any
available matrix exponential a]gorithmss. To accomplish this, we define

A Gi
Yi = (20)
0 g

and Van Loan proves that

V.t {ol(t) OZi(t)]

1

E 0 o3(t) (21)
i? where the state transition sub-matrices satisfy the identities '
. ol(t) = eAt (22a)
B At t ~Atn 01
. o, (t) =e " [ e 'G.e dr (22b)
. 24 0 i
p o5(t) = €% (22¢)
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i . Clearly, Eqs. (22a, 22b) may be substituted into Eq. (15) yielding
i X;(t) = ¢ (t)X;(0) + epy(t)g, (23)
where we note that 021(1:) ts numerically different for each expansion variable
.‘_-:
' X4 as indicated by the subscript (1) in £qs. (21-23).
! SOLVING FOR THE INITIAL COSTATES
& Equation (23) is the form of the solution for each unknown variable (X;),
o
however recalling the boundary conditions on the unknowns, £q. (14), we
3 ! realize that the initial costates, 11(0). and hence X;(0) are as yet
. undetermined. The initial costates must be found in order for Eq. (23) to
o
- provide the numerical solution of the optimal control problem. Evaluating Eq.
t - (23) at t = t; and recalling the boundary conditions from Eq. (14), we get
> P\
E - {gi(tf) } z;(0)
-~ Xi(te) = = 0, (t,) +0,.(te) (24)
o e sz,(t,) 5 L0 AN
§ = =i
B It will prove useful to write the state transition matrix °1(tf) in
‘, . partitioned form and to partition the last term in Eq. (24). Therefore, we
i
' define
11 12
: {4’1 (tf) ®1 (tf)
e o, (t,) = (25a)
1V°f 21 22
: o (te) 677 (t))
f f
. 1 1
- b (te)
& 021(tele, = { t )} (25b)
- Y2ilts
: - Substituting Eq. (25) into Eq. (24) yields the two coupled algebraic equations
- 24(te) = otl(t )2, (0) + 612(t ) (0) + uy4(te) (26)
. SV 1 Vfl= 1 Ve =1iVf
SN
, o 21 22
'; S24(te) = o7 (t()2,(0) + o55(t )2 (0) + wyi(ty) (27)
b in which 1,(0) fs tne only unknown.
; . 46 ,
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o

o

: ™ Multiplying Eq. (26) by the positive definite matrix S, combining this
ol with Eq. (27), and collecting terms yields

\':-.‘:

‘. »

M 22 12 _ 11 21
R (o7 (te) - Sop"(te)12(0) = [Sey~(te) - o] (te)1z,(0)
" 3

+ Suyi(te) - wpq(te) (28)

N

:_“'.:- which can easily be solved for the initial costates using any appropriate
ol

B algorithm. Now that all of the initial conditions of X; are known, Eq. (23)
o 2 can be used to produce the optimal control at any time in the interval
x' ‘.’;
botnd O0<t=s te.
e :

."- , RECURSIVE SOLUTION OF THE STATE TRAJECTORIES
LS,
b Once the solution for a given expansion variable is found, we then
:C proceed to the next higher order. However, to produce the Fourier Series
e approximation of the nonhomogeneous term in the next higher order requires
“PH”-
:'. T that we sample the trajectory of the current order at fixed intervals of
IO

::. N time (at) throughout the maneuver. Evaluating the matrix exponential
indicated in Eq. (21) at each time interval would prove computationally costly
.
:'.:’_Q and time consuming. An alternative procedure is to develop a recursive
‘w'\\"‘r,‘
"‘: formula for calculating the state trajectories whereby the matrix exponential
o is evaluated only once at t = At. We make use of the exponential matrix
hCE
\j,n : recursion
.y:., eA(k+l)At - eAAteAkAt (29)
ol to modify Eq. (23). Applying the identity in Eq. (29) to the definitions in
Sonb
' -Pz:;_‘ Eq. (21) produces
R

ol
1 [oll(kd)at] 021.[(k+1)At]] _ [ol(At) °2i(“) ol(kAt) °2i(kAt)]
; 0 o3l(k+1)5tl 0 03(At) 0 ¢3(kAt)
4 0} ‘
;":::'- ! (30)
oL
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Carrying out the partitioned products indicated yields the three recursive

equations for the sub-matrices

01[(k+l)At] = ol(At)ol(kAt) (31a)
oZi[(k+1)Atl = Ol(At)OZi(kAt) + @21(At)03(kAt) (31b)
03[(k+I)Atl = 03(At)03(kAt) (31c)

where 01(0) =1, 021(0) = 0, and 03(0) = I,
Similarly, evaluating Eq. (23) at t = (k+1)at gives

X;[(k+)at] = o [(k+1)at]X,(0) + o, [(k+1)atlg, (32)

We can then simplify Eq. (32) by defining the vectors Yiie J=1,2,3 to be

lli[(k+1)At] °1[(k+1)ﬁt]l1(0)
121[(k+1)At] = °Zi[(k+l)At]90

va;l (keD)at]

03[(k+1)At]g° (33)

Substituting Eq. (31) into Eq. (33) and substituting this result into Eq. (32)

yields the recursive formula

li[(k+1)At] = !11[(k+1)At] + !21[(k+1)At] (34)
and
111[(k+1)ﬂt] = 0,5 (at)yy;(kat), v13(0) = X;(0)
Voil(kel)at] = o) (at)v,, (kat) + o, (at)ys;(kat), v,4(0) = 0
vyl (kel)at] = 0q(at)yy;(kat), v33(0) = g,
48 ,
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‘:ﬁg As a result of Eq. (34), the matrix exponential must be calculated only
AN
_ twice for each X;3 once at t = te for solving the initial costates, and once
j§§§ at t = at for the recursive formula., After completing the solutions of each
e
;uié X4 in the series, the optimal control trajectory is produced by combining the
~.i.
- trajectories from each expansion variable in the series given by Eq. (9). We
h
ﬂggg again stress the fact that the solution to the nonlinear optimal control
‘) 'H‘x
‘2;; problem has been produced by solving a series of strictly linear, constant
coefficient subproblems without the need for iterative techniques. We shall
- ¥
:ﬁ:ﬁ illustrate the effectiveness of the perturbation method with numerical
SReS
;:&Rﬁ examples of low order systems.
kg
. NUMERICAL EXAMPLES
. .‘ -‘
o Case 1:
B = 'u: :
o To demonstrate the perturbation method, the first example of a nonlinear
system is a scalar problem with bath quadratic and cubic nonlinear terms. The
s
:jif system, in configuration space, is given by
.- .\ ’b e
}jzﬁ X + Cx + kx = u + ¢(8uUx - ax3) (35)
w where c = 0.1 g = 1.0 e = 0.1
SN
[ k = 1.0 a = 0.5
o
AR = v = =
.j:}} x(0) = 1.0 x(0) =0 teg =2

The objective is to determine the optimal controls that will drive the

variable (x) to zero (with a final velocity of zero) in a two second time

I Ty T
L2 BN

?

’
oo e e

interval. To verify that the system is weakly nonlinear, the nondimensional

e

L
e b form of Eq. (35) can be shown to be
o, )
N - . ~ -
I n+6n+n=U+GUn-6n3 (36)
Wy 1 2 3
Zot :
S with &, = 0.1 6, = 0.1 8§, = 0.05
'-r._.,'. 1 2 3
i where n is the dimensionless position coordinate and 4 is the dimensionless
LI }
PR
':?fi control force. Clearly, from Eq. (36), the system is 1ightly damped with weak
' J’A‘ “e
S
- ¢
AN, s
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nonlinearities. We shall choose to penalize only the control accelerations

and the final state in the performance measure, £q. (3), and as such we let R
=1,Q=0, and S = 1020(1]. The effect of the large weight matrix (S) 1s to
rigidly enforce the final conditions in the optimal control problem. In the
vernacular of optimal control theory this example is a fixed time, fixed final
state optimal control problem (Ref. 6). Numerically, we shall solve this
problem in configuration space, and as such the matrix, F, is given by

0 1 0 0
F=1 -01 1 0
0 0 0 1
0 0 0 0
Similarly, the vector of nonlinear terms in Eq. (8) can be shown to be

0

BUX-ax3

0
0

{NLT} = (3ax2-eu)x2

0
-8X1,

0
where Ao is the second element of the costate vector A. We evaluate the
effectiveness of the optimal control approximations by integrating Eq. (35),
numerically, using a 4-cycle Runge-Kutta routine and examining the final
boundary condition errors of the numerically integrated solution.

A second order expansion in the power series yields a final condition
x(tg) = -0.000322 from the integrated equation of motion. While not exactly
zero, the error is less than 0.04%. By comparison, the linearized optimal
control, obtained by dropping the nonlinear terms (note that this is also the

zeroth order expansion variable) produces x(tf) = -0.0402 or an error of over

4%. The perturbation approach reduced the error by two orders of magnitude
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N for a second-order exansion, demonstrating the effectiveness of the method.
;. The trajectories of the position and control are shown in Fig. 1, where each
..'-h‘

i:“: profile exhibits the smooth, continuous behavior expected of an optimal
[

%-:;Z solution of this problem.

;*ﬁ ' Case 2:

)

?L; For the second example, the perturbation method is applied to the second-
oo

A0 order system
NG

Ay Xy + CqXy + KoXy = Uy + €ayX X

wis 1 171 171 1 17172

'\,).'5 !

ey . .

\ p b -

;hx 5 Xo + CoX,y + k2x2 = Uy +oeayXsX, (37)
:::-_-'j': Where Cl = 0.1 kl = 1.0 (!1 = 1-0

ﬁ}i . cp, = 0.1 ko = 0.5 a, = 0.5

TR .

_:_':'{.: ‘ x5(0) = 2.0 ).(2(0) =0

;ij ) In nondimensional, matrix format, the equations of motion are

0 . [0l o7 | 1 0 ) (0-1)nyn,

= . n+ n+ h=u*+ (38)
L 0 0.1 0 0.5 (0.05)n1n2
.'.I." .
':ﬁ: - where again we see that Eq. (38) is a lightly damped, weakly nonlinear

-

Y
DAL system. We shall choose to penalize the final states and the second
p zﬁ ! derivatives of the controls in the performance index. Mathematically, we
d }jf state this by setting R =1, Q =0, and S = 1020[I]. Proceeding as with Case
i ‘:,;:
0o 1, the results of a second order expansior are compared to the linearized
,:::; optimal control problem as shown,

'-I':':' :

1 () gl

' s

Ny Linearized optimal control approximation: 0.135 0.0868
'tit:. Second order control approximation: 0.0000166  0.00000945
Lo &
;*;:; The final position errors for the zeroth order control approximation are 13.5%
) .)':,
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and 4.3% respectively for the state variables X1 and x,. The control

<
' determined from the second order perturbation expansion reduces the errors by
approximately four orders of magnitude. Such explosive convergence is not

typical but it does demonstrate how well the perturbation method may solve

[ open loop optimal control problems.
TIRE Case 3:
- As a final example, we wish to test the method with a system containing
!‘_ larger nonlinearities. To accomplish this, we shall use the same system as
' ) used in Case 2 with the following parameter changes:
oy = 2 x;(0) =3 e = 0.4 a, = 3 x,(0) = 2
» In dimensionless form, the system is given by
D
. . 0.1 O . 1 0 (2.4)n1n2
' @ n+ n+ n=0+ (39)
3 0 0.1 0 0.5 (3.6)nqyn
H 172
; ::: We notice immediately that this system is strongly nonlinear, and would not
. expect controls from the zeroth order solution to accurately approximate the
) actual optimal control. However, we shall proceed with the perturbation
Z::l approach while recognizing that this is a significant test of the method. The
final conditions are shown in Table 1 for controls computed from expansions of
; E zero (linearized system) through sixth order.
. TABLE 1 FINAL STATE ERRORS
i 4y
IS Approximation x.(t;) x,(t,)
{ Order 1Mf e f
0 110.00 168.86
i 1 4.164 6.859
E 2 0.3654 0.6124
e 3 -0.01957 -0.03416
g 4 -0.01001 -0.01677
] 5 0.0006371 0.001106
i o 6 0.0002444 0.0003835
N
i
J
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_ significant magnitude. In Ref. 7, we document analogous results for maneuvers
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The controls from the sixth-order expansion produces very accurate
results with errors substantially less than 0.04% for both coordinates. The
position and control profiles are shown in Figs., 2 and 3 respectively; each
trajectory is a smooth and continuous path to the origin. The excellent

convergence is achieved for this problem in which the nonlinear terms are of a

of a flexible spacecraft; we have achieved reliable convergence for a system

having order 42.

CONCLUSIONS

A procedure for solving nonlinear, open loop, optimal control problems
has been presented. In this approach, an asymptotic perturbation method is
applied, thereby obtaining a solution process without the traditional
dependence on iterative numerical methods. The nonlinear system is
"separated" into a set of nonhomogeneous, linear, optimal control problems
that may be solved sequentially. Upon combining the solutions of the
subproblems in a straightforward power series, an optimal control for the
nonlinear system is generated. This novel process for solving nonlinear
optimal control problems is a result of the marriage of a simple analytical
technique (the perturbation method) and a powerful numerical algorithm (the
matrix exponential).

Although the asymptotic perturbation method was conceived as a solution

process for weakly nonlinear problems, the method has demonstrated

extraordinary effectiveness when applied to many strongly nonlinear problems
such as the system presented in Case 3. Certainly, the perturbation method
will not produce accurate results for all nonlinear systems. However, the

family of nonlinear problems to which the method is effective is considerably

larger than we initially expected., We therefore anticipate that this




asymptotic perturbation method will be found to be broadly applicable to a

large family of generally nonlinear problems, including higher dimensioned

systems.
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ii Figure 1 Position and Control Trajectories for Case 1
2 Figure 2 Position Trajectories for Case 3
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Figure 3 Control Trajectories for Case 3
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Eg{ A quasi-analytical method is presented for solving
o nonlinear, open loop, optimal control problems.
Upon applying the most basic of the asymptotic
2 expansions from perturbation methods (the pedestrian
_{ﬁf or power series expansion), the nonlinear control
r':& problem is replaced by a sequence of linear, non-
fﬁi homogeneous problems. In contrast to the usual
;h;ﬂ emphasis (in perturbation methods) upon analytical
. solutions of the sequence of linear systems, we
IR show that this sequence of problems can be solved
‘2&3 sequentially using efficient numerical methods.
ok The nonhomogeneous terms are represented by a finite
x‘l -
W Fourier series, allowing the use of matrix expo-
W9A\Y . .
TR nential algorithms due to Ward and Van Loan to be
used to solve the system at each order. 1In prin-
RS ciple, the order of the expansion may be extended
;$3 indefinitely, however numerical difficulties will
el arise at some point. Historically, solutions to
QEE nonlinear control problems have relied almost
e exclusively on iteration methods (using one of
W several available algorithms); however, the pertur-
e, bation method presented here often produces very
J}q accurate solutions to nonlinear problems without
s iteration. The perturbation method is broadly
#:ﬂ applicable to a variety of optimal control problems
hyﬂ including large degree of freedom systems. Numerical
examples of multi-axis attitude maneuvers of a rigid
;\{; spacecraft are presented.
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OPTIMAL CONTROL FORMULATION

Consider a system governed by a nonlinear, vector
equation with initial and terminal boundary conditions of
the form

é = Fz + DU + €p

(1)
z2(ty) = a z(te) =0

where z is an nxl state vector, U is an mxl vector of
controls, €p is an nxl vector containing all nonlinear
terms and € is a small dimensionless parameter. We note
that many systems require some algebraic manipulations

in order to represent the system in the form of Eq. (1).
For example, the system may require a transformation to
modal coordinates in order to produce an independent set
of equations. Furthermore, the state vector may be aug-
mented to contain "pseudo-state’ variables such as the
control magnitude and control rate in order to determine
more realistic or desirable control profiles and (in the
case of flexible bodies) reduce spillover into the higher
frequency modes. (Ref. 1) If such an approach is taken,
then the vector U may not be the applied control but instead
will contain higher derivatives of the control variables.
Because the perturbation method that we present depends
upcn a power series expansion, it is important to expand
any transcendental functions into a truncated Taylor's
series. Therefore, if a given system contains transcen-
dental functions, we must start with an approximation of
that system as a consequence of this procedure, where of
course the accuracy of the approximation will depend upon
the number of terms included in the formulation.

We seek the control trajectory that minimizes the
functional

t
=1 1
J = 5z Sz tet, + 2.{ (z'Qz + U RU)dt (2)

subject to the condition that Eq. (1) is satisfied; where

R and S are positive definite, diagonal weight matrices,
and Q is a symmetric, positive semi-definite weight matrix.
The Hamiltonian, formed from the integrand of Eq. (2) and
the system equations is given by

(27Qz + UTRU) + 2T(Fz + DU + €p) (3)




where the costates, designated as A, are a set of n
undetermined Lagrange multipliers. Pontryagin's necessary
conditions for determining the optimal control yield the
three equations

9H
z = T):_ = Fz + DU + €p (4)
A o= - aH _ -Qz - FTA - [EQ]TA (5)
9H _ T
0 a—g = RU + D ) (6)

and the boundary condition A(tf) = Si(tf).

Solving Eq. (6) for U and substituting into Eq. (4)
reduces the problem of determ1n1ng the optimal control to »
solving two coupled, nonlinear, first-order ordinary differ-
ential equations. The two equations may then be combined by
defining the augmented state/costate vector, X, such that

X = AX + e{NLT} (7)
where
x =28 A5 2n x 1
F  -pr-IpT
A = 2n X 2n
-Q _f1!
b
{NLT} = 30 2n x 1
—1=1Tx
gz’ -

We have now reduced the optimal control problem to a Two-
Point Boundary Value Problem with split boundary conditions
on z and the condition that 2(t. ) = Sz(t_). As a consequence
of the existence of the vector of nonlinear terms, designated
{NLT}, the problem given bv Eq. (7) is analytically intract-
able, and we would ordinarily rely upon iterative methods to
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complete the solution. Howcever, we wish to construct a
quasi-analvtical approach that eliminates the reliance upon

iteration.

THE PEDESTRIAN EXPANSION

For a weakly nonlinear system, as indicated by the
"bookkeeping" term €, it is constructive to apply a straight-
fo: ard power series expansion to produce an approximate

solution to the problem. (Ref.

Eq. (7) be given by

3) Let the solution to

X(£) = X_(£) + eX,(£) + 2%, (t) + ... (8)

For small nonlinearities, and consequently small e, the
series will produce accurate results and the accuracy will
improve as the nonlinearities approach zero. Substituting

Eq. (8) into Eq. (7) gives

X, + eX, +e’% + 0(e) = AX

2 0

+ eAX

+ 52A§ + el NLT; (X4)}

1 2

(9)

+ eXINLT (X0,X D) + 0(e)

where the nonlinear terms, {NLT.}, have
similar power series and the functional
term on the expansion variables (X.) is
term. Equating like powers of € yields
tions

Xy = A%,
X, = AX, + {NLT (X))}
X, = AX, + {NLT,(X,,X))}

been expanded in a
dependence of each
indicated in each
the series of equa-

(10)

(11)

(12)

For illustrative purposes, we have included only the terms
through second order; however the series could be continued
to higher orders if necessary to achieve the precision appro-

priate for a specific problem. In Ref

[8)], we show several

examples wherein 5th and 6th order expansions were routinelvw

computed; analytical perturbation solut

ions above third order

are very rare. The same procedure, when applied to the
boundary conditions yields
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z(ty) z(t )
Xplty) = Xyt = (13)
Aglty) \lo(tf)
9 9
X,(ty) = X.(t.) = 1=1,2,3,...
=10 ~i*f
A, (eg) Aileg) (14)

and we recall that the final conditions of the states and
costates are related at each order by ) (tf) = Sii(t ).
Note that the nonhomogeneous terms in t%e ith equation of
Eqs. (10-12) are dependent only upon the preceeding i-1
expansion variables. Therefore, the nonhomogeneous term

in each equation constitutes a known function of time and
Eqs. (10-12) can be solved sequentially., The perturbation
method has, as usual, replaced the original nonlinear prob-
lem with a series of linear, nonhomogeneous problems.

The solution of Eqs. (10-12) can be shown to be

t
X0 = effrx, (o) + J; eATd (yat)  i=0,1,2,... (15)
where
QO(T) =0
d; () = {NLT .} i=1,2,... (16)

and where we have assumed t,. =0 without loss of generality.
Evaluating the integral in Eq. (15) may be accomplished in
any number of ways. Direct numerical integration could be
used but a more attractive method would be to use a finite
Fourier series approximation of the integrand (or some other
orthogonal series) and then integrate the series term by
term. The latter method will provide us with a model of

the integral as a continuous function of time, an advantage
when calculating the trajectories of the expansion variables.
Another alternative, and perhaps the most elegant, is to use
a matrix exponential to calculate the entire integral shown
in Eq. (15).

The matrix exponential method requires the nonlinear
terms, gi(T), to be represented by a continuous function of
time in exponential forrm. Since we have no closed form
expression for the nonlinear terms, we can at best generate
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[l

a large set (k) of data points which are sampled values of
the nonhomogencous terms. A finite Fourier sceries, which
can always be put in exponential form, is used as the
continuous time representation, and is given by

=

"
la ]

d(t) = bO +151 a, sin iwot + bi cos iwot (16)

To calculate the series coefficients, we use a least squares
fit of the series to the sampled data sets. It can be shown
that the Fourier series of the jth element of the ith non-
linear term may be given by

N

Bc. = 4, 17
<375 (n

where the matrix B contains the trigonometric functions
evaluated at the sample times, c., contains the unknown
series coefficients, and d. contains the sampled data of
the jth element of gi(t), is given by

4y = 1adeo alaey ad a0y oo adkeo)® (18)

where At = t_/k. The unknown coefficients are then deter-
mined from tge least squares approximation.

T -1.T7 .
= d. 19
. ey = (B7B) T8 d, (19)

Note that with appropriate sample points (symmetric about
o wabt = 1) B B is diagonal and the inverse is trivial.

. A?ternatively, we can develop these coefficients from a
discrete Fourier transform. Proceeding element by element
(j=1,2,3,...,2n) through the vector of nonlinear terms,
each element is represented by a finite Fourier series.
The collection of series representations may then be put
into the form

oy |

PR

at
d,(e) = G e gy (20)

ed

where the jth row of G, contains the series coefficients

.- for the jth element of the nonlinear term, and the matrix,
o ft, is defined to be

-

et = 1

- Q Block Diag (O Ql Qz...Qr,
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where

0 1

—(2@0)2 0

be]
n

L = 1,2,3,...r

and g, is a constant vector used to "separate" the trigono-
metric functions calculated in Eq. (20).

At this point, we have a continuous time represen-
tation of the nonlinear term in the form of a matrix
exponential. We now employ Van Loan's identity (Ref. 4)
which will produce the integral in Eq. (15) from a matrix
exponential. We shall define

o
i

(21a)

ol(c) ¢2i(t)

1]
e
]

(21b)
0 ¢3(t)

where we note that ¢ i(t) is different for each Ei' The
definitions of the sgate transition matrices (¢i) are
(from Van Loan)

¢ () = et (22a)
At F -AT. Q
0, (1) = e f e g e Tan (22b)
1 O 1
¢,(1) = it (22¢)

We may then rewrite Eq. (15) using the definitions from
Eq. (22) to get

X;(8) = 8 ()X, (0) + ¢, (g, (23)

In order to use Eq. (23) to produce the trajectory of Ei’
we must first determine the n unknown initial conditions
of ﬁi (i.e. the jnitial costates lj).
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SOLVING THE INITIAL COSTATES

We have noted that the costate boundary condition
resulting from Pontryagin's principle is X (t ) = Sz (tf)
Until now, this boundary condition has not been used
however, it will be instrumental in completing the imme-
diate task of solving for the initial costates. Evaluating
Eq. (23) at t=t_. and substituting the boundary condition
into the result gives

z2(ty) z,(0)
X, (t.) = = &, (t.) + ¢,.(t)g
i*7f sz, (tg) 1'7f li(o) 21" f7R=0 (24)

To simplify the notation, let us partition the components
of Eq. (24) as

¢1(tf) = (25a)

It

¢2i(:f>50 (25b)

Substituting Eq. (25) into Eq. (24) leads to the two coupled

g algebraic equations
(e.) = 410 e0z.00) + 12 9r.(0) + v, . (t.) (26)
. Z0t¢ 1Mt Ey SRS A1 L1ittf

, sz,(te) = 20 (e )z (0 + 922(e )2 (0) + y,

1

(tf) (27)

where }).(0) is the only unknown term. Finally, multiplying
Eq. (2)} by S, substituting into Eq. (27), and collecting
the terms produces

d

LA
-

.

22 12 11 21 !
1 |

[¢77(t

g) = Se (e )IA(0) = [Se, (rp) - ¢ (ty) ]z, (0)

(28)
+ Sy, () = v, ()

wR

68

R R P O 0 SO0 SENEAALY |




o, T e - S aah g & 0 " ), ~ g “fiad ° - ‘-WWW:TIT
\‘::C'
.\:
R
.::_h
Qi By using any appropriate algorithm, we can solve the lincar,
s algebraic syvstem given by Eq. (28). Substituting this solu-
tion into Eq. (23), we now have the solution for ii(t).
ot RECURSIVE SOLUTION OF THE STATE TRAJECTORIES
.-\::,
;ﬁi We have found, in Eq. (23), the solution for a given
el perturbation expansion X.(t). In order to proceed to the
‘ next order (i+l), we need a sampled data set of the trajec-
‘uﬁ tories of X (t). This will permit efficient calculation
&: of the Fourier series representation of the inhomogeneous
Ot terms. To duplicate the procedure outlined above for each
*,n
:¢ value of t would of course be far too costly in terms of
- time and computational efficiency. However, an alternative
] exists as a result of the particular exponential property
AYS
‘ig eA(k+1)At - eAAteAkAt (29)
".":‘:
i} By making extensive use of the property given by Eq. (29),
f we can produce a recursive solution of Eq. (23) in which
;ﬂ» each data point (for a small, fixed time interval At) 1is
.- found by simple matrix multiplication and addition.
= It can be shown that applying the property in Eq. (29)
to the definitions in Eq. (21b) gives
k| .
o
'J'_-
\?: él[(k+1)At] = ¢1(At)¢1(kAt) (30a)
Ve '
) , -
et ®2i[(k+1)ut] ¢1(At)¢zi(kl\t) + ¢21(At)¢3(kAt) (30b)
:ﬂ
- 0 [ (k+1)oe] = ¢3(At)¢3(kAt) (30c¢)
e where ¢ (0)=1, ¢_.(0)=0, and ®3(0),=I. Now let us define
&?- the three vectors'v,., to be
L —ji
Pl
.:1'4
o Xli[(k+1)At] = @l[(k+l)At]§i(O) (31a)
Iy _
:-_:: 121[(k+1)At] = ¢21[(k+l)At]_g_0 (31b)
<
X vy LGk ee] = o [(k+1)at]lg, (31¢)
[l N
}ﬁ
e Evaluating Eq. (23) at t=[(k+1)At], substituting Eq. (31)
. into the result, and by substituting Eq. (31) into Eq. (30)
o we pet
.
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X, [t 8e] = v ((k¥D)8e] + v, [(k+1)at) (32a)

ili[(k+l)At]

¢, (80, . (kat), vy4€0) = X, (0) (32b)

v,y [(k+1)ae]

®, (8E)v, (kat)

(32c¢)

+

¢,,(8t)vq, (kAt) v,4(0) =0

Vq; [(k+1)At] ¢,(8t)yvq, (KAL), vy,(0) =g (324d)

We can see by Eq. (32) that we need only to calculate
the matrix exponential given by Eq. (21) once in order to
implement this recursive solution. Clearly then, the solu-
tion of each order requires the calculation of the matrix
exponential twice; once at t=t,. to solve for the initial
costates and once at t=At to set up the recursive procedure.
When the solution of each order is completed, the variables
are combined according to Eq. (8) to produce the open loop
optimal trajectories. We again stress the fact that the
solution to the nonlinear optimal control problem has been
produced by solving a sequence of strictly linear, constant
coefficient subproblems without resorting to any iterative
techniques. We shall illustrate the effectiveness of the
perturbation method with numerical examples of a multi-
axjal attitude control of a rigid spacecraft.

SPACECRAFT EQUATIONS OF MOTION

The spacecraft configuration for a multi-axial rigid
body is immaterial, but we ghall assume that we have selected
a body fixed set of axes, {E }, located a the mass center
of the body and aligned with the principal axes of the space-
crafrt. Describing the orientation of the body fixed frame
relative to the inertial frame, {N.}, by a set of 1-2-3
Euler angles (¢,6,¢), we can show that the angular velocity
of the spacecraft in body fixed axes is given by

w = mlhl + wz 22 + w323 (33)
where
o dclcy + Bsy c( ) = cos( )
w, = écw - dcBsy s(C ) = sin( )
w3 = ése + é

R T
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el
‘-z.::i
S
;;Q} Inverting these kinematic equations, we obtain the Euler
WY angle rates as
oo
L
;ﬁ 6 = wICW/ce - mzsw/ce (34a)
"
A
b Ly 6 = wlsw + wzcw (34b)
oy
ft@; @ = -wICWSelce + mzswse/ce + wg (34c¢)
L
\"j
i,
¥ As indicated previously, we must expand the trigonometric
. functions in a Taylor's series. 1In doing so, we shall
y‘ neglect all quartic and higher powers of the variables,
$‘, resulting in the approximate nonlinear equations
'f. b
': .
R b= wp w0872 - vP2) -y (35)
8 %
e 6=y +ow v - w2 (36)
> 1
e
[T
W * _ )
B v wqy wle + mzew (37)
-‘l-‘
':?é We can show that these equations are adequate to describe
3 maneuvers of <20° in any/all axes. The spacecraft is to
:{?j be controlled by three external control torques (u,, i=1,2,3)
Lo applied about the respective principal axes. Therefore

- the dynamics of the multi-axial motion is defined by Evler's
) equations as

At .

W = -

j%ﬁ. wyp = u /I + (IymTwyug/T, (38)
AR

':§§ wy = uz/I2 + (13—11)w1w3/12 (39)
e

'!'.-):' : = - \
5:5. wsq u3/I3 + (I1 12)m1u2/13 (40)
{¢3 where I, is the ith principal inertia. The motion of the

spacecréft is governed by Eqs. (35-40) and our task is to
find the control torques required to drive the spacecraft
to a final state of zero attitude and zero angular velocity
from reasonable arbitrary initial conditions (defining the
fixed target orientation to be the inertial frame).
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In the optimal control formulation, we shall include
the control torques and their first derivatives in the
state vector. By doing so, we define our pseudo-control
U = u and as such, we shall be penaliziug, in the perform-
ance functional, the integral norm of the "control accel-
erations”. The resulting control profiles will then have
prescribed (usually zero) magnitude and slope at the
initiation and completion of the maneuver. Therefore, the
augmented state and control vectors are defined to be

(41)

We can then put Eqs. (35-40) into the matrix form indicated
by Eq. (1), and follow the procedure outlined in the develop-
ment of the perturbation method.

NUMERICAL EXAMPLES

We demonstrate how well the perturbation method
performed in the following numerical examples by summarizing
results from integrations of the exact equations of motion
(Eq. (34) and Eqs. (38-40) ), using the optimal controls
generated by the perturbation method, and comparing the
final conditions of the integrated equations with the desired
final conditions. Repeating this procedure for solutions of
different orders in the expansion given by Eq. (8) demon-
strates how the accuracy is improved with each order.

CASE 1

For the first example, a small angle, rest-to-rest
maneuver in 2 seconds is performed with the perturbation

expansion carried to second order. The initial conditions
are

¢ = 0.1 rad w, = 0

8 = 0.05 rad Wy = 0

vy = 0.15 rad wy = 0

We select the weight matrices Q=0, R=1, and S=1.E20 x [1].
The large value of the matrix S serves as a requirement
that the final conditions be rigidly enforced. In this
problem, we are penalizing only the "control accelerictions"
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and the final state errors, Since this is a small angle
maneuver, we would expecct the solution to be accurate, since
the Taylor's series approximation made in deriving Eqs. (35-37)
will be very accurate. The results of the integration of the
equations of motion are shown in Table 1 for each order. We
can see that the zero order solution alone is quite precise,

as we suspected, and that by the second order solution, we

have obtained nearly two orders of magnitude improvement

toward the final conditions, This“level of precision is
probably all one would require for open loop maneuver controls,
since (i) modeling errors and implementation errors are always
present, (i1) 1f high precision is required, we would always
employ a terminal feedback control for precise target acqui-
sition. Clearly, the perturbation method is providing an
acceptable degree of accuracy for this open loop problem.
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TABLE 1 FINAL STATE ERRORS

R Order Approximation

0 1 2

¢ -1.11E-3 -8.97E-5 -3.17E-4

> 7

8 3.53E-3 2.87E-4 -7.11E-6

v 1.54E-3 -5.72E-5 -1.08E-5

pr o 38 5

w1 -4 ,48E-3 7.22E-4 4.30E-5
w2 1.12E-2 5.78E-4 -4 .48E-5

w3 -5.61E-4 7.72E-5 9.77E-6

Sl ot WL

: In this example we shall challenge the perturbation
K. method by increasing the initial attitude to larger angles
N and by letting the spacecraft be tumbling initially. As
in the previous example, we seek the optimal controls that
will drive the system to a zero attitude at rest with a
maneuver time of 2 sec. The initial conditions for this
case are

€

]
o
o~

i $ = 0,25 rad rad/sec

i B = 0.10 rad w

]
o
[}

2 .2 rad/sec

vV = 0,40 rad w, = 1.0 rad/sec

. Ny \",s'l,'-;’s
a W

.....
.r """.r_..




F

. '-."1 o

2

-t
b’

-
-

T s
a_s

”

X |

s

Y

>

o

v
o

Y,

At EEAALY

»

)

The weight matrices are given the same values as in Case 1.
In like manner, the results of the perturbation solution to
order 2 are summarized in Table 2. We note immediately that
the zero order solution is ineffective at performing the
detumbling maneuver and may actually aggravate the motion of
the spacecraft. However, the first and second order approxi-
mations converge quickly to produce acceptable final state
err>rs and demonstrate the effectiveness of the perturbation
method. We would conclude that the control trajectories
produced by the first or second order approximations are
indeed adequate approximations of the open loop optimal
controls which we wished to determine. The trajectories

of the Euler angles, angular velocity, and controls for

the second order solution are shown in Figs. (1-3) respec-
tively.

TABLE 2 FINAL STATE ERRORS

Order Approximation

0 1 2
$ -0.218 -0.430E-1 -0.184E-1
] 0.315 -0.138E-1 -6G.435E-3
v 0.679E-1 -0.123E-2 0.142E-2
w1 ~0.104E-1 0.157E-1 ‘0.740E-2
w2 0.434 0.218E-1 -0.152E-1
w3 0.224E-2 0.147E-2 0.161E-2

CONCLUSIONS

A procedure for solving nonlinear, open loop, optimal
control problems has been presented. In this approach,
an asymptotic perturbation method is applied to the problem
thereby eliminating the traditional dependence on iterative
numerical methods. The nonlinear system is '"separated"
into a set of nonhomogeneous, linear, optimal control prob-
lems that may be solved sequentially as "independent"
systems. Upon combining the solutions of the subproblems
in a straightforward power series, an optimal control for
the nonlinear system is generated. This novel process for
solving nonlinear optimal control problems is a result of
the marriage of a simple analytical technique (the pertur-
bation method) and a™powerful numerical algorithm (the
matrix exponential),




+
ﬂks

-
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We have applied the perturbation method to several
classes of problems (Ref. 7,8) and have found it to be
most effective for a large family of nonlinear problems,
including large degree of freedom systems. The material
presented in this paper is a further evaluation of the
method in its present format regarding nonlinear three
dimension spacecraft control, We are continuing to improve
the method in an effort to achieve greater numerical effi-
clency while simultaneously applying the approach to a
greater number and wider variety of nonlinear problems.
Higher order solutions to common problems can be completed
quickly and with minimal programming effort in a manner
that cannot be matched by purely analytical methods, yet
with an accuracy that is consistent with other numerical
methods. We anticipate that the quasi-analytical pertur-
bation method will prove the most useful approach for
solving many nonlinear problems.
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Identification of Vibrating Flexible Structures

S. Rajaram*® and J.L. Junkinst
Virginia Polytechnic Institute and State University, Blacksburg, Virginia

This paper presents novel identification schemes 10 determine model parameters of vibrating structures. A
time-domain identification method using transient response is discussed firsl. Next, a steady-state response
method using nonresonant harmonic excitations is considered. An especially attractive method for uniguely
identifying the parameters of a structure using both free and forced response is alvo discussed. Numerical results
show that the methods are relatively immune to the presence of damping and many low-frequency modes with

repealed or closely spaced frequencies.

Introduction

CTIVE control of large space structures (LSS)

necessitates a sufficiently accurate estimate of the
parameters so that control laws can be tuned on-orbit to en-
sure stability and permit less control effort to be expended.
Algorithms for design of insensitive or adaptive controls are
not attractive due to the large number of degrees of freedom
to be controlled. In fact, for most LSS application, the only
feasible approach appears to be: 1) identify the structural
parameters then 2) use this information to adjust the gains,
and perhaps 3) use adaptive methods to change a small
number of critical parameters in real time. This paper ad-
dresses issue 1 above.

Transient Response Identification Method

Many structural modal identification methods are available
which extract modal characteristics, i.e., natural frequencies
and mode shapes from a set of resonant steady-state responses
due to a large number of harmonic excitations. These methods
encounter analytical and numerical difficulties when the
system frequencies are closely spaced and the ‘‘single mode
resonant response’’ assumption is used. Also, the time re-
quired to achieve steady state may be prohibitively long for
lightly damped, low-frequency structures. Time-domain
techniques'* for structural identification were first proposed
by Ibrahim. Ibrahim’s time-domain (1TD) method is a modal
identification scheme. The ITD method has been successfully
applied to reduce measurements from several laboratory ex-
periments, however, this method has been found to lack
reliable robustness. In some applications, rank deficient linear
systems are encountered. Recently, Juang and Papa® have
developed a more robust time-domain modal identification
method; this method is based upon judicious use of singular
value decomposition.

Identification in Configuration Space

Consider a vibrating structure governed by the following
linear matrix differential equation:

Mi+Cx+Kx=f nH

where x is the n x | configuration vector of physical displace-
ment, f the n x | force vector, M the n x n symmetric positive

Received June 29, 1984; revision received Oct. 9, 1984, Copynight
«. 1985 by John | . Junkins. Published by the American Institute of
Aeronautics and Astronautics, Inc., with permission.

*(iraduate Rescarch Assistant, Department of Engineering Science
and Mechanics; currently Member Techmical Statt, ITHACO, Tthaca,
N.Y.

tProfessor, Department of Engineering Science and Mechamics.
Associate Fellow AJAA.

definite mass matrix, C the nxn symmetric positive
semidefinite damping matrix, and K the nxn symmetric
positive semidefinite stiffness matrix, Dots denote difterentia-
tion with respect to time.

It is assumed that a LSS can be satisfactorily modeled in the
form given by Eq. (1). Our objective herein is to identity the
poorly known coefficient matrices M, C, and A or some
parameterication therefore, e.g., the system eigenvalues and
eigenvectors. Equation (1) can be rewritten as

M
X'y x"n x'ny ' C | =1 )
¢t N

T denotes the matrix transpose operation.

Now, consider an idealized measurement process wherein
the position, velocity acceleration, and forces are measured at
discrete instants, say f,.0,...../,. Upon writing m mecasure-
ment equations (/= 23n) identical to Eg. (2), one for cach
measurement time, the resulting matrix equations can be writ-
ten as

ZP=U )

where Z is an m x 3n coefficient matrix, whose j row contains
measurements of the system response at time ¢:

sthrow of Z = (&7 (1)x" (4 )x7 (1)) (4)

U'is a m x n matrix containing the following forcing functions:

Jsthrowof U= f(1) (5)

P=[M C A} (6)

P 1s a 3n x n matrix containing the unhnown mass, damping,
and stiffness parameters.

Since the number of elements in each column of Pis In and
m>3n, Eq. (3) overdetermines the columns of P. The least-
squares solution for P is given as

P=LU (7)

where the least-squares operator s formathy
L=(Z2"2) '77 (R)
For large systems, of course, the explicit inversion should be

avoided in favor of the Q-R reduction, Cholesky decompont-
tion, or a singular value decomposition approach for in-
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creased efficiency and robustness.®* The computations subse-
quently summarized in this paper were done using the Q-R
algorithm. The only theoretical requirement is that the least-
squares coefficient matrix Z have full rank (3n). Physically,
this rank condition can be achieved only if all degrees of
freedom participate in the response. Hence, a fundamental re-
quirement for identifying the structure is that the excitation
should have sufficient energy and frequency content to excite
the higher modes of the system. Qualitatively, it is also evident
that the actuator locations and phase distribution of the ac-
tuator input are likely to be important. Thus, the mass, damp-
ing, and stiffness matrices of the structure can be identified, at
least in principle. The method is obviously straightforward.
However, it requires that the number of forces equal the order
of the system. Also, acceleration, velocity, and displacement
are 10 be measured at all of the degrees of freedom. These re-

s s

]

rae

-

»
0

“5 quirements pose obvious practical difficulties. It is shown in
_":g Ref. 7 that, in order to use a smaller number of forces than the
" number of degrees of freedom of the system, a priori

knowledge of the mass matrix is required. It should be noted
' that the method, as presented above, does not require or ex-
K ploit the symimetry of the system matrices and, hence, is ap-
R plicable to a general dynamic system involving gyroscopic and

circulatory forces.” It is also evident that the size of the linear
systems which must be solved is 3n. Therefore, unless the
., matrices do, in fact, possess special properties, it is anticipated
- that practical computational restrictions will require n < 50 for
this approach. Of course, the heavy redundancy implicit in M,
C, and K as descriptions of distributed mass, damping, and
4 stiffness often can be eliminated in terms of fewer physical
* parameters, but the estimation process then must be coupled
2 with the structural modeling (e.g., finite element) process.

b Identification in State Space

i For control applications, the system dynamics is expressed
in state equations. Introducing the ‘27" -dimensional siate
vector

g =[x x"(ny]’ 9

Equation (1) can be written as

g=Ag+ Bf (1M
| where
: 0 ! !
A= . : (1)
" | ~M K -AMC
e

1s the plant dvnamic matrix and

g /I
. B - (12

: D,

is the control distribution matrin. The structure of B s depen-
dent upon type and location ot the force mputs. When all
-~ degrees of freedom are not exaited, the foree vector contains
zero entries and B will be a (2n > 1) rectangular matris,
where n; s the number of excitations. The unkhnown

- .
~, parameters to be identified are the clements of matrices A4 and
~ B.

Consider the lower partition of bqg. (10)

X)) - =M 'Axiny =M 'Cxtty « D fory (1Y

| A

Fquation (13) can be wnitten as

. (- M 'Ry

-.: ‘

* xtan s xta i el (=M OOy (14
D!

The matrices M 'K, M !C, and B, can be determined.
following a procedure analogous to that outlined previously
for configuration space identification. It is evident from Lkq.
(14) that the least-squares coefficient matrix includes the force
vector. Immediately, it can be inferred that the force vecior
should form an independent set for unique identification of
the svstem parameters. This statement holds true for con-
figuration space identification also. It can be observed that x
in the least-squares coefficient matrix, viz., Eq. (3), becomes
independent of other variables only through the forcing
functions.

Identification Using Orthogonal Polynominals

The measurement of acceleration, velocity, and displace-
ment at all degrees of freedom, as required by the methods
presented earlier, poses obvious practical difficulties. To ob-
tain partial relief from this requirement, an orthogonal iden-
tification scheme is proposed. Orthogonal polynomials can be
used to represent completely any function to a required degree
of accuracy.®

Consider the lower portion of the state equations, viz., Eq.
(13). Also, it is assumed that the accelerations and forces are
measured at discrete instants of time. Then they can be ex-
panded using orthogonal polynomials such as Chebyshey,
Legendre, etc.

X=P,T(1) as)
where P, is a rectangular coefficient matrix and
T =[T,(OT, (). To_ (07 (16}
is a column vector consisting of orthogonal polvnomials. The
intergral of T,(¢) can be expressed via a recurrence relation-
ship involving 7, , and 7, _,. Integrating Eq. (15)
x=P.T(1)+¢ =y, +¢’ )}
Integrating further
x=P,T()+c't+c"=y+c't+c” (18)
where P,, P,, and P, are n x N matrices containing the expan-

sion coefficients. By substituting Eqs. (15), (17), and (18) into
Eq. (13), the least-squares problem can be constructed as

|- MK
‘ LIS
¥ (I)\’(l)f’(l)ll]; B! l»_x"(/,) (19)
1 D! |
|
! d! f
d, - -M 'Ae’ (20)
d. -M 'RKe" =M ‘Cc’ en

M A M OCO D, d,, and d. can be estimated trom Fq. (19
¢ and ¢~ can be determined uaing Fgs. (20) and (21, Thu,
the number of measurements are reduced by a tactor of < and
the imtial displacement and velocity vectors, usually the
cquilibrium positions of the structure, are also estimated along
with the parameters, 1t s also possible to use veloany or
displacement measurements  alone.  Although several o
thogonal  polynomials  exints,  the use of  Chebychen
polynomials have found a wide appheation” in solving hincar
and nonlincar differential equations. Since we are concerned

'( X ."- -d'f" e "\._
i.f:-i"n’.x"f .Y Q. 'f $::lf4)fn_‘l L fn_ih.“lhp.f t\m
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]
~ with the inverse probiem (i.e., given the response, the best unnecessary for the success of the identification algorithms.
L estimate of the system’s parameters is 10 be determined), Three excitation types were considered: 1) harmonic, 2) bang-
] ’.: Chebyshev polynomials seem to be the natural choice. bang (rectangular wave), and 3) frequency swept harmonic
.\.‘:; (harmonic excitations with time-varying frequency). Har-
O Numerical Results for Identification monic excitations yield good results for the spring-mass
from Transient Free Response damper and cantilever beam. lj'or the plane truss, bang-bang
\_ Four specific linear systems are considered as representative a:d frecl;uen? Sw?'p; _:;arn??.rflc' excn?u?‘ns z:re useful. (.)r'
- examples; a spring-mass damper system (Fig. 1), a plane truss thogonal polynomial identification of the plane trus with
..-_._. (Fig. 2). a cantilever beam (Fig. 3), and a rectangular mem- bang-bang excitation did not recover the parameters very well.
X brane (Fig. 4) are considered to study the effects of 1) repeated The orthogonal polynomials are unable to represent the ac-
N low frequencies and rigid-body modes. 2) damping. 3) choice celerations satisfactorily. However, with frequency swept har-
- of excitation and number of excitations vs degrees of freedom, monic excitation, the orthogonal identifier recovered all
4) excitation frequency vs system natural frequency, ) parameters accurately. Thus, the orthogonal identification
. measurement errors, measurement duration, and sampling in- thef"e am%z;]n:m!,\' wt;orks ;)est _‘f'"h. smooth and continuous ex-
™. terval, and 6) model truncation errors. Synthetic measured citations. The number of excitations required for the iden-
[ data are generated for each case using known parameter tification of spring-mass damper and cantilever beam can be
._-:\" values. Table 1 gives the undamped eigenvalues of the ex- as few as oned (Fior the planc truss. a minimum of five excita-
AT amples. The proposed identification schemes performed very “085 a:‘e\.nf,e.-; the f ney of excitation over the range of
s, well for all four examples. The results are summarized below. pon varying ihe trequency of excitatic ¢ range ¢
) The ol ; ) 0 an b i Table 1. has the system natural frequencies, no significant degradation in
threetrp anel ‘;us§ e\z:‘mlp‘e, as ;a"h ¢ seen trom _a | ¢ h . as the performance of the algorithm is observed. Measurement
;peale lhefge,"_da;’"; an d( re; zt’gro clgenva ue; cor- errors introduce estimate errors, of course. The effect of
A5 ir;;pi?;ngllfd:d ir:trt:ilfi}s?azdmofs.d r '"ar \Nt?lu:n ﬂrl'f:r_*- discrepancies between commanded and realized excitations is
s I the JITSt and second example probiems. Tt IS also studied by including noise in the excitations.
] found that the identification algorithms recovered the system The cantilever beam and a simply supported membrane are
A matrices without any difficulty. It is clear that restrictive chosen to illustrate the effect of model truncation. These are
AL . . . . L. . R E N AR )
b7 assumptions such as proportional or negligible damping are distributed systems; we are interested in obtaining a discrete
A representation. The response of the cantilever beam is
aF obtained by using the eigenfunctions and assuming that «ix
Fy o Xg modes participate in the response. Hence, a sixth-order model
'\':' e is obtained first. The model identified using either a bang-
K. bang or harmonic excitation is the same. A reduced-order
WA mg model (fourth order) is identified next. Table 2 compares the
AN exact eigenvalues with those obtained from identificd models.
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It is also noted that the harmonic excitation resulted in a
model that fits the measured acceleration fairly well. This is
significant since accelerometers are the most commonly used
sensors for vibration measurement. The bang-bang excitation,
being rich in harmonic conient, is able to excite the higher
modes considerably and thus affects the identification of the
reduced-order model. Table 3 gives the results for the
membrane.

Identification Using Nonresonant
Harmonic Excitations

The use of harmonic excitations for the identification of
vibrating structures have received the attention of several
investigators.” ¥ Raney® used such a scheme to successfully
identify the effective masses, stiffnesses, and damping for a
lightly damped structure having widely separated modes; the
structures studied were 1/10- and 1/40-scale models of the
Saturn launch vehicle. Several methods are suggested® ' to ex-
tract the normal modes from measured response. However,
the use of normal modes is questionable when the damping in
the system is not a proportional type. The methods using reso-
nant harmonic excitations, as mentioned earlier, encounter
both experimental and computational problems, when the
svstem frequencies are closely spaced. A novel identification
schemie using nonresonant harmonic excitations is presented in
this section. The proposed scheme differs significantly from
several of the existing methods which generally use resonant
harmonic response to obtain the model parameters. The
method requires that the structure be damped: the damping,
however, can be arbitrary viscous damping.

Configuration Space ldentification
Once again consider Eq. (1). Let the excitation f(1) be given
as
Coapsin(wl+0,)
a,sin{w f+0y)

ftn=- .

»

@, sintw, t+0,,)

Table 2 Comparison of eigensalues for cantilever beam

Figenvatues obtained from

Fourth-order mode!

Sinth-order

Faadt modc! Harmonic Bang-bang
S.6108 S.684% S.62R2 11.2121
81607
(i 18 1664 182092 36.0591
YK 351 9K 4524 98 3330 98 429
192 9246 1929292 1929283 19291713
IR YIRD IIR.R0
476 40%6 478 YK

Table 3 Comparison of eigensalues for rectangular membrane

Frgenvalues obrained trom

Fourth-order model

Sinth-order

Eract mode! Harmonic Bang bang
MELIMN 21 0008 20.4976 21.2283

41 9171 41 92 42 0707 41 9604

211K 21 OX60 21 4246 0774

42 0088 41 9602

24676 21 4408 214286 14 SKRO

421921 42.1139)

Thmagnars part poven by cweenvadue routine s neplected

. .\\.

R R Sy S e S RS RS

100

hal e _ ok o4 T T T T T W T W T YW EwW

J. GUIDANCE

or

Ji () =8, sinw, 1+ C,cosw, ! k=12,...m (22)
§: and C; are the amplitudes of the sine and cosine com-
ponents of the excitation. The steady-state response of the
structure then can be written as

x (1) = Asinw, t + B, cosw, k=12,..m (23)

The structure is subjected to *‘m’* harmonic excitations at fre-
quencies w,,w,,...,w,. The excitation frequencies can be
chosen arbitrarily and need not coincide with the system fre-
quencies. For each excitation frequency “‘w;,”’ the steady-
state amplitudes 4, and B, of the displacement are measured.
UsingA Eqs. (22) and (23) in Eq. (2), we form the matrix
equation

ZP=U (24)
where P is the same as in Eq. (6).

kthrowof Z= [ —wi4] —w,B] 4]} (25)

(k+m)throwof Z= [ —wiB] w,A] B]] (26)
kthrowof U=§] (27)
(k+m)throwof U= (] (28)

For m>3n/2, Eq. (24) represents an overdetermined system
of equations. The least-squares solution for P is given
formally as

P=(2'2) '2'U (29)

Thus, system matrices M, C, and A’ can be identified directly
from steady-state response. The same response data can be
used 1o identify the system in state space. Also, the amplitudes
of displacement must be measured at every degree of freedom.
Alternatively, amplitudes of accelerations can be used. In that
case, Eqgs. (25) and (26) become

kthrowof Z=[A] B]/w, ~A] i) (30)
(k+mythronofl Z= (B} —A]l/¢, —Bl 'wi] Q1)
A4, and B, are the amplitudes of acceleration. 1t is assumed in

the subsequent discussions that displacement amplitudes are
mecasured and, hence, consider Egs. (25) and (26) only.

State-Space Identification
Consider once again Eq. (13), which, using Eqgs. (22) and
(23), becomes

_m_‘,‘-l,’ ! {1 4‘,’ —w{,B,’ 5,’ l (A1 RY! :
A | AL -8l Sl (-M ¢V
. =

_u‘j”/, o R/ u‘/._4,’ (,’ | D!

- u.',.‘, B,I,. : B,’, u‘,,_4 ,’" (“'” | (‘:)

E:quation (32) can be solved via least squares to obtain M /K,
At 'C,and D, It should be noted that the amplitudes of the
crcitations directly enter into the least-squitres coetticient
matriv. Hence, they should form an independent set. Thisis
achicved by varving the phase of the ecitation. v.e.. o,
O v 0, in by, (221 in a nonlinear fashion. Thicis preciseh
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the reason for choosing the excitation of the form given by Eq.
(22). The same requirement holds true for the configuration
space identification, since the amplitudes of 4, and B, can
be linearly independent only via the excitation amplitudes.

Numerical Results for a Steady-State
Response Identification

Two numerical examples, viz., a spring-mass damper (Fig.
1) and a plane truss (Fig. 2), are considered to study the effects
of several implementation issues such as 1) closely spaced/
repeated frequencies and rigid-body modes, 2) number of ex-
citations, and 3) choice of excitation frequency. The results
are summarized under each of the items (1-3).

The plane truss example is used to study the effects of
repeated frequencies and rigid-body modes. Thirty excitation
frequencies were used ranging from 0.6 to 0.89 rad/s in steps
of 0.1 rad/s. All of the parameters are identified exactly in the
absence of measurement noise. Thus, the proposed scheme is
capable of identifying systems with closely spaced frequencies.
For state-space identification, the number of excitations can
be as low as three for the spring-mass damper system.
However, the plane truss requires a minimum of four
excitations.

The excitation frequency was varied within the range of the
system’s undamped natural frequencies. The authors con-
sidered those cases where excitation frequencies were below
the lowest frequency of the structure and above the highest
frequency of the structure. No significant degradation of the
identification scheme was observed, thus validating the fact
that the excitation frequencies can be chosen fairly arbitrarily.

ldentification Using Free- and
Forced-Response Data

Identification of mass and stiffness matrices from model
test results has been reported by several authors. The objective
of these identification schemes is to modify an a priori mass or
stiffness matrix so that measured eigenvalues and eigenvectors
agree with those of the analytical model. Berman,'* ! using a
minimization procedure, developed a noniterative scheme
based on the orthogonality relationships of eigenvectors for
computing a ‘‘nearest neighbor® update of the mass matrix.
Following Berman's approach, Wei'* developed a related
method for correcting the stiffness matrix. Chen and Wada'’
discuss an interactive system parameter refinement procedure,
employing the Jacobian matrix (consisting of the derivatives
of eigenvalues and eigenvectors with respect to system
parameters). Recently, Chen et al.™ applied a first-order
matrix perturbation approach to identify the mass and stiff-
ness matrices. Other related approaches can be found in Refs.
21 and 22.

Free-response data are used herein to estimate the eigen-
values and eigenvectors of the system. Using orthogonahty
conditions, the matrices equal 1o system matrices multiplied
by unknown scale factors are determined initially. These scale
factors are then uniquely estimated by subjecting the system to
known forces and measuring the acceleration, velocity, and
displacement at several locations. The approach presented
herein embodics a fundamental advantage: perfect measure-
ments, lead, to within truncation errors and arithmetic errors,
10 the true system paramelers.

Berman’'s Method: A Summary
In the absence of damping Eq. (1) reduces to

Mx+Ax=0 (%)

The orthgonality conditions of the system described by Eq.
(33) are

E'ME =1 (34a)

E'KE = diag(wiws,... . wl) = (o] (34h)
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where
E: (nxn) modal matrix

I: (nxn) identity matrix

wy,wy,...w, are the natural frequencies. Note that in kg«. (34)
the eigenvectors are normalized with respect to the mass
matrix so that

e/ Me, =1 i=12,....n (35)

e, is the ith eigenvector (ith column of £). It will be assumed
that the measured modal matrix is square.

Berman'® assumes an analvtical mass matrin M. The
measured eigenvectors are normalized with respect 1o M, w0
that

elM.e =1 i=12.....n (36)

Letting AM be the desired correction matrixn, Berman
minimizes the Euclidian norm

e=IN 'AMN '} (37)
subject to the constraint equation

ETME=1-m, M=AM, + AM

where m, = ETM E is a nondiagonal matrix having unity as
diagonal elements. Choosing N =M as the weight matriy,
Berman obtains

AM =M Em;! (I-mym, 'E'M, (38)

It can be seen from Eq. (38) that AM is ssmmetrical and deter-
mined to satisfy the orthogonality relations. However, one can
obtain different **AM"’s depending upon the choice of M.
Also, the decision to minimize ¢, while reasonable, is never-
theless arbitrary.

It is evident that the resulting mass and stiffness matrices
are not unique. Subsequently, this truth will be itlustrated with
a simple numerical example. Hence, it is concluded that in
order to determine the system matrices uniquely, some more
conditions in addition to the (necessary but nor sufficient) or-
thogonality conditions must be satisticd. These additional
conditions can be readily obtained from the cquations ot mo-
tion. The free-response data can be used to determine the
eigenvalues and eigenvectors of the system. The estimated
modal data then can be used in conjunction with the forced-
response data 1o uniquely identify the system matrices.

Identification of Figenvalues and Eigenvectors:
Rajaram and Junkins' Approach
A system described by Eq. (33 will be considered. The
modal coordinate transformation is introduced as

x{(1)=En(n) (RE))

where g(1) is the normal or modal coordinates of the system.
Introducing Fq. (39) into the equations of motion, bq. (33),

MEj(n) « KEg(e) - 0 (K1)

Multiplying Eg. (40) by F7 | we get
E'MER() + F'RER() - 0 [E19]
Due to the orthogonality properties of the eigenvectors, kg

(41 represents a set of **n** uncoupled second-order equa-
tions. It the eigenvectors are normalized with respect to the
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mass matrix as per Egs. (34), Eq. (41) becomes

MO+ [’ 19(1) =0, [«’) =diag(w],....w])  (42)
When the eigenvectors are not normalized, Eq. (41) can be
written as

Mmi(’)'*A’m"(’):o (43)

M,, and K, are diagonal matrices; the generalized *‘modal
mass'’ and generalized **modal stiffness matrix,”’ respectively.
Also, K,, is related to M,, by the following relationship:

M, =[1K,, (44)

The solution of Eq. (42) can be written as

n, (1) = c,cosw,t + 5,sinw, ! i=12,...n (45)
¢, and s, are constants depending upon »(0) and 7,(0).
Substituting Eq. (45) into the transformation Eq. (39), we
obtain

x(1) = E (A, cosw, 1 + Bsine, 1) (46)
!

where it is evident

A,=ce, and B =se,

Identifying either A, or B, is equivalent to identifying a scaled
version of the ith normalized eigenvector. A Gauss-Newton
least-squares differential correction method or a direct
method based on the Fourier transform?** of x(r) can be used
to obtain the modal parameters (w,,A4,,B,.

We now turn attention to estimating the properly scaled
mass and stiffness matrices. Equation (43), in the presence of
forces, becomes

M ity + K, () =ETf(1) 47

where the (nx 1) force vector f(1) may contain zero entries,
i.e., all of the degrees of freedom need not be forced. M, and
K, are easily determined from the scalar components of Eq.
(47), using the fact that M, (i,i) =w’K, (ii}. 1t should be
noted that, henceforth, the notation £ will be used to repre-
sent the measured eigenvectors, normalized with respect to the
a priori mass matrix. Since £ is measured, transformation
equation (39) can be used to transform measurements in
physical space to modal space, i.e..

#(O=E 'x(n (48a)

n)=E 'x(1) (48h)
Introducing Eqs. (48) into Eq. (47), for a known force vector,
it is obviously possible to determine the diagonal elements of
the modal stiffness matrix A, and, using Eq. (44). M, can be
computed. The properly scaled, configuration space-mass
matrix then can be obtained from

M=t "M, E ' (49)
Similarly the stiffness matrix is given as

K=E 'K £ ' (50)

For high-dimensioned systems, of course, the inverses shown
are replaced by appropriate matrix reduction algorithms.
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Thus, the parameter matrices can be estimated uniquely. We
need to estimate only ‘‘n’’ parameters, viz., the diagonal
elements of M,,. The elements of X,, can be derived from
those of M,, through Eq. (44). Also, the amount of forced-
response data required to estimate the modal matrices is not
large. We need only ““2n’" measurements (‘‘n’’ accelerations
and ‘‘n"’ displacements), in addition to the measurement of

forces.

Identification of Damped Systems

We now turn our attention to the necessary modifications of
the preceding approach for including viscous (or equivalent
viscous) damping. The equations of motion for a damped
system are given by Eq. (1).
The eigenvalues and eigenvectors of a damped system are
complex quantities. In order 10 apply classical modal analysis
techniques, it is a usual practice to assume that the damping is
either small or of a proportional type. Since the measured
modes are complex, methods have been proposed to extract
the normal modes from the complex modes. However, it is
possible to rigorously apply a generalized modal analysis
technique by transforming Eq. (1) from configuration to state
space and estimate the system matrices, analogous to the
previous section.

Introducing the state vector

g =[x"(nxn)’

Equation (1) can be written as

Mg(t) + Kog(t) =f* (1) shH
where
-K 0
M*= (52a)
0 M
0 K
K*= (52b)
K C |
(0 )
= (52¢)
Vs )

The eigenvalues and eigenvectors of a system described by Eq.

(51) occur in complex conjugate pairs, i.e., if A, is an eigen-

value, A, is also an eigenvaluc. Similarly e, and e, are the
eigenvectors of the system. The orthogonality relations are

E'TM*E=1 (53a)

E'K*E= —A (53b)

where A is a diagonal matrix of the cigenvalues. Note that the
modatl matrix is of order (2n x 2n). Also, the eigenvectors are
normalized with respect to M* to satisfy

e'Me, =1 i=12...2n (54)

When the eigenvectors are not normalized. of course, Eqs.
{53) become

ETM E = M, (55a)

E'RK*E-K? (55t

where M}, and K}, are diagonal but complex matrices, The

same notations as in the previous section are used. The
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eigenvectors have the form

al
e = (56)
Aa,
The free response of the system can be written as
n
x(n= Y, (a,eM +ae') )
-1
where N\, ( = —a, +ju,) and the ith eigenvalue, and q, is the

damping factor and w, the damped frcjuency of oscillation.
Equation (57) also can be written as

x{1)=2 E e~ (C,cosw,t ~ 8, sinw,t)

-1

(58)

C, and §, are the real and imaginary components of a,, respec-
tively. A Gauss-Newton least-squares differential correction
method® can be used to identify C, §,, «,, and w,
(i=1,2,...,n). Fast Fourier transform of x(1) is quite useful in
this case. The frequencies can be estimated from the power
spectral density (psd) plot and used as a priori values in the
Gauss-Newton algorithm. In this way, the convergence do-
main of the algorithm can be enhanced considerably. Using

the orthogonality relations [Egs. (56)] and the trans-
formation
gl = E len (1) +éq ()] =En(r) (59
-
Eq. (52) reduces to
MO =Ky + Ef () (60)
where
00 = {0, (0,000, (a0 ] (61)

is a complex modal coordinate vector. Equation (60) can be
used to identify the M}, and K matrices from forced
response, analogous to the previous section. After determin-
ing the modal matrices, M* and A can be obtained from Eqs.
(56). The method is similar to the one for the undamped
system, except that the quantities involved are complex.

Numerical Examples Using Free
and Forced Response
Exampte 1

Consider a two mass-spring svstem. The mass and stiffness
are given as

o o I S
M- ! K=
0 200

- 36

- 36 72

Il

Choosing the a priori mass matris A7, and stiffness matriv A,
for Berman's method'* ' as

90 0
MA =
| 0 220

The true system eigensalues and eigenvectors are used as
measurements.  After carrying out algebra of Berman's
method, the estimated mass matriv is found to be

96.67 6.67

f
M- | '
L 6.67 206.67
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Although Berman's corrections to the diagonal elements are in
the right direction, the off-diagonal elements’ corrections are
of comparable size and are no longer zero. A significantly dif-
feren:t final mass matrix estimate would have been obtained.
of course, if M, were chosen differently. The estimated suff-
ness matrix for Berman’s approach is found to be

68.36 -32.52
K=
| —32.52 71.68
It can be noted that the diagonal terms are corrected fairly well
while the corrections to off-diagonal terms are relatively small
in this case.
Using the method developed above (with the eigenvalues
and eigenvectors calculated u«ing a finite Fourier transtorm),

the mass matrix is determined froi: Eq. (49) to be

[ 100.00
M=
|~ 0.84156-04

~0.8415£-04 )
I
2000 |

and the estimated stiffness matrix, from Eq. (51), is calculated
as

71.995 -35.997
K=

-35997  71.999 |

The small residual errors arc the consequence of truncation of
the Fourier transform of x(f) to obtain eigenvalues or
eigenvectors. If the Gauss-Newton iteration is used instead,
the M and A" matrix are recovered exactly (1o eight digits). It is
evident from this simple example that the proposed scheme
correctly identifies the system matrices to within truncation er-
rors in the finite Fourier transform. In essence, the scaling im-
plicit within Berman's correction norm minimization is re-
placed by the requirement that the estimated Af and A be con-
sistent with a measured forced response.

Example 2

A two mass-spring damper system is considered. The
various maitrices are

The eigenvalues are

AR,

i

—0.222593 £ ;2 ST7R2SS

Ao As = = 0.027406  j0. 545796

t

Using the Gauss-Newton method, the eigenvalues and
eigenvectors are estimated from free response. The free-
response data are properly scaled by applying an impukive
force on the second mass. The ssstem matrices are obtained
using the excitation f, = 0.1 sign (sin 0.27). The mase, stiftness,
and damping matrices are identified exactly (eight digite).
Thus the present method generalizes fully to include arbitrary
viscous damping.

Conclusions

Three novel schemes  are proposed to  identify  the
parameters of vibratimg structures. Numerical resulis on a
vaniety of transparent examples support the validitn of all
three methods. The phyvacal properties of mass, stiftness, and
damping matnices are wdentified. All three proposed methods
arc applicable to damped structures. No assumptions regar-
ding the nature of damping are made, other than it is of the
viscous type. Systems with closely spaced {requencies present
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no apparent computational difficulty. in fact, example struc-
tures with repeated frequencies and rigid-body modes are
identified reliably without difficulty. It is also shown that
multiple excitation vectors should be chosen to form an in-
dependent set. The methods have been illustrated, however,
only for low-dimensioned examples; significant future effort
should consider high-degree-of-freedom systems to evaluate
the robustness and relative merits of these approaches. !t is
also important to reduce the dimensionality by coupling the
estimation algorithms 1o the structural modeling process.
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Eigenvalue Optimization Algorithms
for Structure/Controller Design Iterations

D.S. Bodden®
Virginia Polytechnic Institute and State University, Blacksburg, Virginia

J.L. Junkinst
Texas A&M University, College Station, Texas

An eigenspace optimization approach is proposed and demonstrated for the design of feedback controllers for
the maneuvers- vibration arrests of flexible structures. The algorithm developed is shown (o be equally useful in

sequential or simul s design iter

that modify the structural parameters, sensor/actuator locations,

and control feedback gains. The approach is demonstrated using a differential equation model for the
“Draper- RPL configuration.”” This model corresponds fo the hardware used for experimental verification of
large flexible spacecraft maneuver controls. A number of sensor/actuator configurations are studied vis-a-vis
the degree of controllability. Linear output feedback gains are determined using a novel optimization strategy.
The feasibility of the approach is established, but more research and numerical studies are required to extend

these ideas to truly high-dimensioned systems.

Parameterization of the Controlled System’s
Eigenvalues and Eigenvectors
ONSIDER a linear structure (modeled by a finite element
or similar discretization scheme) in which the configura-
tion vector x is governed by the system of differential equations

Mx+ Cx+ Kx=Bu n

where

M = n < n symmetric positive definite mass matrix
C=n » n symmetric positive semidefinite structural damp-
ing matris

K = n » n symmetric positive semidefinite stiffness matrix

B =n x m control influence matrix

x =n x| configuration vecror

u=m x| control vector (-)=d/dt( )
Considering the case of linear output feedback control, let the
loc.l position, velocity, and acceleration measurements be
denoted by

y,=H,x. y-=H,x, y,=H«x (2)

which represent the lincar relationship of the locally measured
position y,, velouty ¥., and acceleration y,, where

¥, - m, < vector H,=m, x n matrix

yo—m. o« Ivector  H,=m,xnmatrix

yo=m. ~ lvector  H,=m; xnmatrix

Received Dec 10, 1954, revision received March 1, 1985 Copynight
7 198¢ by 1. Junhiny Publiched by the American Institute of
Acronautics and Astronautics, Ing , with permission
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For linear output feedback, we seek the constant gain matrices
G;, G;, and G; so that

u=—[Gy,+G,y,+ Gy,

=—-G,H;x-G,H;x—G,;H.x 3)

Substitution of Eq. (3) into Eq. (1) gives the closed-loop
system

Mi+Cx=Kx=0

3]
where the closed-loop system’s matrices are
M=M+BG,H,, C=C+BG,H,, K=K+BG,H, (5
Introduce the notations
M=M(a), C=C(a), K=K(a)
B=B(c). H, =H,(b), G =G, (g 6)

where a is a vector of the structural and geometric model
parameters (defining mass, stiffness, damping, configuration
lengths, cross-sectional areas, etc.), & a vector of the sensor-
type and location parameters, ¢ a vector of the actuator-type
and location parameters, and g a vector of the control gaine.

Defining the N'x 1 global structural and control parameter
vector as

pl = laTbrchTl (7)
it is apparent from Eqgs. (5-7) that
M=M(p), C=C(p). K=K(p) (&)

The details of the parameterizations of Eqs. (8) are dependent
upon the particular modeling approach. Often, these are sim-
ple algebraic expressions (the elements of p appear explicitly in
M, C K).

Condidering the first-order state-space differential equa-
tion, which is the equiralent to the second-order closed-loop
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system of Eq. (4),

where

it is evident that

A=A(p). B=B(p). (i
The right and left eigenvalue problems [associated with the
z=¢e™ solutions of Eq. (9)] are

right: A\, A¢,=Bo, left: \, ATy, =BTy,
i=12,...2n (12)

where the conventional normalizations for the eigenvectors
are adopted as

¥/A0, =46, ¥/Bo, =6\ (13)

Since 4 = A(p) and B=B(p), it seems natural to consider the
eigenvalues {X,,....,\,, ] and eigenvectors {&,,¢,,....0,,.¥,, )
to be functions of the parameter vector p, viz.,

A=N(p), &,=0.(p), ¥,=V.(p) (14)

Except for occasional singular events (e.g., multiple eigen-
values or near-multiple eigenvalues), the nonlinear functional
dependence of Eqs. (14) can be assumed to be continuous.

Qualitative Approach to Eigenspace Optimization

Most structural and control optimality criteria can be stated
explicitly in terms of A, and ¢, or directly as functions of p. It
is obvious that an algorithm that can effectively optimize p
(over some admissible set to minimize some optimality criteria
and satisfy the constraints stated as functions of p and A,) pro-
vides a direct method for controller/structure optimization
problems. Unfortunately, there are several formidable dif-
ficulties, the two most prominent being:

1)The Nx 1 p vector is of high dimension, even for struc-
tural and control system models of moderate complexity. The
dimension N of p can be several hundred.

2) The functional relationship implied by Eq. (14) is the
solution fo the large eigenvalue problem of Eqs. (12) and (13).
It is typically a highly nonlinear function of p and is occa-
sionally characterized by singular local behavior (bifurcation
points at repeated roots, for example).

Practical optimization algorithins that can deal with these
two sources of difficulty in a rigorous and globally convergent
way do not exist. However, we have developed a strategy for
carrying out optimizations and suboptimizations, in spite of
these two sources of difficulty. There are two heuristic ideas
underlying our approach:

1) Regions of extremely high sensitivity (to the p vector) are
generally undesirable. Therefore, if the performance index or
constraints include a measure of eigenvalue solution sensitiv-
ity, successful suboptimizations are obviously less likely to en-
counter the singular events.?

2) Exact eigenvalue placement (or ‘‘pole placement’’), for a
high-order system, is not a reasonable design approach.
Rather than attempting to prescribe an exact point location
for every eigenvalue, it is more reasonable (and leads to better
algorithms) to move all of the eigenvalues into an acceptable
region of the complex planc. From the viewpoint of pole
placement, this allows attention to be locally concentrated
upon just the **problem children'’ eigenvalues that are the far-
thest outside the acceptable region or those that locally

R )
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dominate a measure of optimality or sensitivity. This allows
judicious and lower-dimensional suboptimizations to be made
and is a key to attacking truly high-order systems.

These two qualitative ideas serve as the main motivation of
our approach. Of course, an initial design point (values for the
elements of p) is required. Typically, the initial design point
will be the output of some (arbitrary) structural design process
and, probably, a constant-gain optimal regulator design for
the given structure. Thus, the present family of algorithms are
designed to begin with the typical output of a conventional se-
quential structure—controller design process. However, for
moderate-dimensional applications, we have been able 1o in-
itiate control gain optimizations with a free-vibration (zero
control gains) case and still achieve reliable convergence.

Central to the application of the optimization algorithms
developed below lies the necessity to compute efficiently the
partial derivatives of the generalized eigenvalues and eigenvec-
tors of Eqs. (12-14). Attractive algebraic equations have been
derived that explicitly determine these derivatives as ‘‘side
calculations’’ at much less computational expense than the
solution of the eigenvalue problem itself. The development of
these equations is briefly summarized below for the first and
second partial derivatives o1 the eigenvalues.

Partial Derivatives of the Closed-1.oop Eigenvalues
with Respect to Structural Model
and Control System Parameters
Differentiating Egs. (12) with respect to a tvpical element p,

of p, upon premultiplying the resulting two equations by ¢’
and ¢/ and making use of Eqs. (13), gives

aN do aB a4
: AW TAZ Ly [ .Y ] 15
a_p,é" + (NN 7S ¥ . ey ¢, (U5

a ]V aB’ 6(4’]
——8,+ (N, =\))e AT — = '[ “A——|¥, w6
p, ot TS A e G TN JY 19

0,

Equations (15) and (16) hold for i=1,2,....2n; j=1,2,....2n;
and ¢=1,2,...,N. For i=/, both Eqgs. (15) and (16) reduce to
the following well-known result' for the gradients of the 2n
eigenvalues

A
AN, =¢,’[ a8 a 9 ]0, an
ap, ap, ap,

Thus, having solved for eigenvalues and eigenvectors, a
moderate side calculation produces the first-order eigenvalue
sensitivities. Differentiating Eq. (17), with respect to p,.. we
obtain the following equation for the second partial
derivatives:

AN ,[ B N, a4 \ 34 ]o
opap, ' Lapap, dp, op, épap, 1
T B a4 oB a4 ao,
R Al KL
ap, Lap, ap, ap, ap, 1 ap,,

Since Eq. (18) involves de,/dp,, and d¢, /dp,, . we must either
evaluate or eliminate them. We choose the latter method.
Following Plaut,' we project a¢,/dp,, and de,.'dp,, onto the
eigenvectors themselves as
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where a,, and b,, are scalar constants. For i/, substituting
Eqs. (19) into Eqs. (15) and (16) yields

B A4

A=A = ’[———)\—] 20

(A ~=N)a, =y %, rry ° (20)
3BT AT

N -2)b, =0] -\—N, @2n
3 P ap,

For the case of distinct eigenvalues, Eqs. (20) and (21) provide
the a, and b, values, except for g, and b, (which remain
undetermined). The normalization of Eq. (13), upon setting
J=1iand differentiating with respect to p, and substituting Eq.
(19), vields

0A
—y] =9, (22)

a,+ bu -
ap,

Substitution of Eq. (17) into Eq. (18) gives

FN, ,[ B 3°A ]¢
ap,op,, dp.dp, ' pdp, 1"
24 o, 90
-J’ATG:nré V”’——‘o I } G f M : (23)
P, @y op,,

with G, =0dB/dp, —\,(34/3p,). Substitution of Eqs. (19
into Eq. (23) gives

N, —W[ B A ]¢ .GerA
ap.'apm h aplap"l ' apnapm " a

n

+(a,+b,W/G.0.+ ), [b,y4]G,9,

A-Lhka=t

+ ahwerlf¢A ]

24

Finally, eliminating @, + b, using Eq. (22) and @, and b, for
J#{using Egs. (20) and (21) gives the final expressions for the
second partial derivatives,

F _W[ B 34 ]
ap.op, ' Lapap, “apép, 1

; ,34 A
—-¥/G,0¥, —p“O v/ —‘¢W G0

N i; [¢,’G,,,,¢‘¢IG,A¢,+¢Ic,mo,¢,’o,.m

25
TN ] 2

Aokt

which, of course, are singular for repeated eigenvalues.

Closed-Loop Response
The response of the controlled configuation to initial distur-
bances is determined using a modal approach. The modal
coordinates 5 are mapped into the state space by

z=[o]n, I=[oly (26)

where (@] is the right modal matrix. Substituting Eqs. (26)
into Eq. (9), premultiplying by [{¢]7 (the left modal matrix)
and utilizing Eqgs. (13), the equations of motion are uncoupled
and given by

", =\n,, i=12,....,2n 27
The solution to Eq. (27) is

no=eNt oy (1), i=12,.2n (28)

OPTIMIZATION ALGORITHMS FOR STRUCTURE/CONTROLLER DESIGN 699

The initial conditions are mapped into modal space by
premultiplying Eqgs. (26) by [o] ' = [y ]'A4 and utilizing Eq.
(13) to give

o) = (Y17 Az(1p) 29

The system response in normal coordinates is then given by
Eqgs. (28) and (29). However, the eigenvalues and eigenvectors
are in the general complex consisting of n eigenvalues and n
eigenvectors plus their associated n complex conjugates. We
seek a solution that will eliminate the complex conjugates and
thus allow us to truncate the number of modes used in the
solution.

The modal matrices are partitioned as follows:

¥ ¢, @,
(¥l= . lel= N (30)
d‘] ¢2 0.’ ¢2

where ¥,, ¥, ¢,, and ¢, are nx k matrices normalized by
Egs. (13). It follows that ¢,, {,. ¢,, and ¢, are also nxk
matrices and are thus the complex conjugates of ¥, ., ¢.,
respectively. The vector of normal coordinates n can also be

partitioned as
4
n= 3 a3n
§

where {is a k x 1 vector. It can be shown that {is also k x 1
and is the complex conjugate of {. Substituting Egs. (30) and
(31) into Eq. (26), the response in configuration coordinates is

(x) f¢/!’+$lf}

e T Lesva

_Z{IReMIRen —[Ime,] tImg} >

{ (32)
[Reo; ) |Reg) - [Imo,) {Img} |

From Eq. (32), it is evident that the complex conjugates of the
n eigenvalues and eigenvectors are not needed and that the &
modes can be used to determine the response. The measured
beam deflections and deflection rates follow from Eq. (2) and
the controlled response from Eq. (3).

A Model of Draper/RPL Configuration

Referring to Figs. | and 2, we consider the planar rota-
tional/vibrational dynamics of the demonstration experimen-
tal model sponsored by the U.S. Air Force Rocket Propulsion
Laboratory for testing the control laws for maneuvering flexi-
ble spacecraft; this experimental work is presently being con-
ducted at the C.S. Draper Laboratory.” The central hub is
supported by an air bearing table with four appendages can-
tilevered from the hub. Table 1 summarizes the Draper/RPL
configuration parameters. Following Turner and Chun.® we
form a discretized model for the system by assuming that the
elastic deformations of each of the arms (relative to a body-
fixed undeformed state) can be represented as linear combina-
tion of the comparison functions.

kxz 1 kxz\?2
¢ (z)=l—-c05(——) —(- ‘*'(_“) n
& L + > (-1 7 [RR))]

so that the transverse body-fixed deformation of the jth arm is
modeled as

N
2L = Y g, (N8, (2), J=1234, 0<:<l (3
k!
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Radial elongation of the arms is neglected, as are out-of-plane
deformations. For the numerical results presented below, we
took N=10. Using Eq. (34) to evaluate the potential and
kinetic energy” leads to equations of the form of Eq. (1), with
the configuration vector

x=10iq,1q2 " qn; 141292952 Qe 20 Gxa] T

We restrict attention to the class of antisymmetric deforma-
tions whereby y,(f,z)=y,(1,2) and y,(1,2) =y,(1,2); thus,
q.(t1)mq,(1) and q,;(1)=q,(1). For this class of antisym-
metric motions, the configuration vector can be collapsed to

x=10019,/9295119:1392qx;s 17 (35)

For N =10, the order of the system of Eq. (1) is thus 21. The
explicit expressions for the elements of the M and K matrices
are developed in Ref. 3. We take C=uK, where y is a con-
stant. For the numerical examples presented, u=1-E-5; the
controlled response of the first seven modes is insensitive to an
order of magnitude variation of u. In Fig. 3, we show the first
nine normal modes.

The eigenvalues and eigenvectors for the first seven modes
have converged in the numerical sense that increasing N does
not change the first four or five digits, whereas modes eight
and nine have converged to about three digits. (However, the
last ten higher-frequency computed eigenvalues and eigenvec-

v
2

Fig. 2 Anti-symmetric deformation.
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tors, as expected, are not as accurately calculated.) Thus, we
restrict our optimization discussions to the first nine modes.
After the first (rigid-body) mode, the remaining modes occur
in near pairs. The antisymmetic, *‘opposition’’ modes are sim-
ple cantilever beam modes characterized by the adjacent
beams moving in opposition (the constraint torques between
the hub and the beam clamp ca.cel in equal and opposite
pairs, resulting in a zero rotation of the hub). The antisym-
metric ‘‘unison’’ modes are perturbed cantilever modes (with
varied frequencies) characterized by all four beams moving in
unison; the hub has nonzero rotation for these modes. As is
evident, the corresponding pair of unison and opposition fre-
quencies are closely spaced; this spacing decreases with in-
creasing mode number.

Table 1 Draper/RPL configuration parameters

Hub radius 11
Rotary inertia of hub, r 8 slug-ft°
Mass density of beams, p $.22 slug 1t}
Elastic modulus of the arms, £ 1.1 2107 Ibiin.?
Arm thickness, 1, 0.125 in.
Arm height, A, 6in.

Arm length, L 4 fi

Tip mass 0.156941 slug

Rotary inertia of tip masses 0.0018 stug-ft?

v

rigid body .
il

unison modes

o

\
\ i

.70 HZ\ 1.26 HZ

\
8.19 nf\ 8.40 HZ /

29.83 W2 50.03 W2

Fig. 3 First nine normal modes.
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Actuator/Sensor Configuration

We admit torque actuators on the central hub and at some
station T on each appendage. We also admit rotational posi-
tion and velocity sensors on the hub and deflection and deflec-
tion rate sensors at some stations on each appendage. For the
case in which the actuators consist of a torque u, applied to
the hub, a torque u, applied at station 7, on appendages 1 and
2, and a torque u; applied at station 2, on appendages 3 and 4,
the right-hand side of Eq. (1) is

1 2 2 ] T u,
Bu=| 0 20°(z2)) 0 H u, (36)
‘\L 0 0 20°(2) )\ uy

where
, d 7
® (:):F[M:)l' 0(2)=[0,(2)...0,5(2}]

and, if rotational position and velocity sensors are located on
the hub, while colocated deflectional position and velocity
sensors are located at stations x,,....x; on each appendage
then the sensor influence matrices H4,, H, are both the same
9 x 21 matrix,

rvof o7 }
0 o’(x)) 07
H=| oL =12 37
0 o' (x,) 0O
0 07 ol(x:)

0 0 oT(x]
and
r d

¥ =10y, 00x) . p, (Lx Vo (LX) v (Lxg) )y, =E("’)
(38)

and the gains G, and G, are both 3 x9 matrcies. For the

numerical examples below, we initially set z,=2,=L1/2,

x,=xs=L/84, x,=x,=L/2, x;=x,=0.7L, x,=x,=0.9L, and

selectively admit structural parameters, actuator locations,
and sensor locations along with the control gain vector in p.

Minimum Modification Strategy
for Structural/Controller Design Iterations

Consider a constrained optimization problem wherein we
seek the optimal value of the parameter vector p that ex-
tremizes some performance measure

J=JIN (P han (), 0, (). @, (P)op] 39

subject to the satisfaction of the N, equality constraints

o, N (P A0 (D). ©,(P).... 82 (p) Pl =0

j=12....,N, (40)

m

OPTIMIZATION ALGORITHMS FOR STRUCTURE/CONTROLLER DESIGN 701

and N; inequality constraints
B, =B, [N (P)... han(P), 0,(P).... 02 (P)P) <8,

Ji=12....,N, (41

Thus, the performance measure and constraints are defined in
terms of the eigensolution, but we also admit explicit
dependence upon p to include, for example, structure and con-
trol system criteria. Equations (39-41) define a nonlinear pro-
gramming problem for which a number of algorithms have
been developed and applied during the past two decades.**
One iteration stategy confines local attention to only the lo-
cally violated inequality constraints and all of the funcdons of
Egs. (39) and (40). Specifically, one can seek the smallest cor-
rection vector Ap that achieves specified increments of AJ,
Aa,, and AB, for a subset of the functions of Egs. (39-41).
Linearizing these equations about p, results in

a
A1=[ il p]” 42)

ap

where y = [J.a,,ﬁj]’. Since Eqs. (42) constitute, typically, a
small number of equations in a large number of unknowns, we
expect an infinity of exact Ap solutions; some criterion must
be introduced to select a particular solution. Motivated by the
desire to satisfy, as nearly as possible, the implicit local linear-
ity assumption, we seek a ‘‘small Ap’’ solution. Minimizing
the correction norm Ap” WAp (for W a suitable weight matrix)
subject to Eq. (42) gives

dy T
= W"[— ] A (43a)
Ap ap L4
0 0E )
9
8
7
“EEREE——
[
i3C.
H
—_——y
4
: 2
F10. g
f QS
1
-"
Re(Xr) A
-.6 -4 -.2 0

Fig. 4 Eigenvalue placement locus of first nine modes: case 1 (con-
tinustion parameter o varys from zero to one in six increments from
right to left along each eigenvslue trajectory).
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where A is a Lagrange multiplier vector obtained by solving
7
[—3‘7 ] w-! [_01 ] A=Ay (43b)
ap e,

ap |p,

Thus, the size of the linear system we must solve is equal to the
number of functions [from Eqgs. (39-41)] that we seek to
change by the increment vector Ay, regardless of the number
of elements in the Ap vector. The partial derivatives needed in
Eq. (42) can be evaluated by the chain rule partial differentia-
tion of Eqs. (38-40), making use of the eigenvalue gradients of
Eq. (17). Of course, second-order optimization algorithms can
also be used,’® in which case one will need the second partial
derivatives of Egs. (25).

As a nonlinear programming strategy, we first seek a
nearest feasible p, which satisfies all of the constraints [Egs.
(40) and (41)] and then include J increments in Ay to seek a
constrained optimal solution. This strategy can be formal-
ized*; it is fully equivalent to the gradient projection con-
strained optimization algorithms.

For example, we can apply the above developments to place
the Draper/RPL system’'s closed-loop eigenvalues in a desired
region and, subject to this condition, minimize a robustness
measure (e.g., the sensitivity of the eigenvalues with respect to
variation of uncertain system parameters).

Numerical Examples: Eigenvalue Placement
for the Draper/RPL Configuration
Case 1

This first example is a modification of a result presented in
Ref. 2. We consider the problem of finding a minimum norm
gain vector g=p (42 elements of G, and G,) that results in the
eigenvalues of the closed-loop system [Eq. (9)] satisfying the
prescribed constraints of

Yobjectne ~ Y (g)=0 (44)
where, in particular, we consider the constraint vector
(@) =[w, (8) §(8) S (8)-.5u ()] (45)

The damping factors ¢, (g} and damped frequencies w, (g) are
related to the eigenvalues A, (g) as

.= —Re{N\(g)]/1 [ (Re\ (g))? + [Im\ (g)]°}) "
w, =Im[\(g)], i=12,... (46)
The eigenvalues are labeled according to the ordering
Umh, (g)! < Im\,(g)l<...s lIm\ (g)] (47)

The objective values of the damping factors and the first
natural frequency (the elements of ygpee)s fOT the specific

(;eq)
04 AAA/\AAAMAA\/\VA
UNULLARRARS
0 16 3

time (s)
Fig. 5 Closed-loop response of 8(1): case 1.
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numerical example here, are prescribed as

Yobeerne = [3.0 0.03 0.03 0.03 0.01 0.0/ 0.002

0.0020.00150.0015) (48)

In order to enhance the convergence, a continuation pro-
cedure is used: Eq. (44) is replaced by the one-parameter («)
family

a‘Yobjrﬂne_'Y[g(Q)] =0, O<as! (49)

Obviously, a=0 results in the trivial solution g(0)=0 (cor-
responding to free, uncontrolled vibration), whereas g(1) is the
desired solution [since Eq. (49) becomes identical 10 Eq.
(44)]. Sweeping a from 0 to 1 allows us to define ‘‘stepping-
stone’’ problems that are arbitrarily near the converged
neighboring solutions; thus, the generalized Newton
algorithms using Eq. (43), with W =17 and p=g, can be initi-
ated with an arbitrarily close starting estimate and very nearly
guarantee satisfaction of the implicit linearity assumption. For
the particular calculations herein, we found rather large o in-
crements of 1/6 led to reliable convergence. Thus, six in-
termediate o solutions were required to achieve final con-
vergence; for each a value, two or three iterations [Eq. (43)]
were required to find the g(a) satisfying Eq. (49).

As a specific example, we used the initial g vector (displayed
as the elements of G, and G;),

0001 0 000 00O0O0
G, =G,= 0 00000O0COCO
0 00000O0O0O

The (1,1) elements were set slightly nonzero, since exactiy zero
causes the ‘‘rigid-body’’ eigenvalue to be zero with a resulting

'E- 1.2
s !
? 0 %?i““" o
z LAY
5 .
2 Xx/L. 0.50
S Beam 1 ——
2 Beam 3 ---
5 -1.2 4
£ ‘.
4] 16 time (s) 32

Fig. 6 Beam deflection response (midspan stations): case 1.

Tip Deflection (in)
© .
- o,
-

t

l,’ ) x/L. 1.00

i Beam 1 —
-1.2 . Beam 3 «--

I

|
v - 18 time (s)

32

Fig. 7 Beam deflection response (tip stations): case 1.
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Fig. 8 Control torque U,(1): case 1.
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Fig. 9 Control torque U,(¢): case 1.
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[

A A mem

-1

Control Torque UJ
o

——————

0 16

time (s) 2

Fig. 10 Control torque U,(n: case 1.

a
‘(eq)

0 16 32

time (s)
Fig. 11 Closed-loop response of &(1): case 2.

rank-deficient linear system (because the damping ratio sensitivity vanishes if A, —0).
The final converged gain matrices were found to be (only three digits are shown)

[ 153 438 0 21§

.0 438 0.0

G,=| 00 266 7.89 139 225 265 7.89 139 225

4.06 -0.389 0.0 -1.73 0.0

G,=10.0 0.094 -0.036 0.188 -0.100

where the 12 zeros indicate elements of G, and G, not used in
p. The locii of the first nine closed-loop eigenvalues are plot-
ted in Fig. 4 for 0 sa=<1, with a=0 the point nearest the
imaginary axis in all cases. Note that, for eigenvalues 8 and 9,
the structural damping produced damping factors exceeding
the objective damping factors and thus these eigenvalues ex-
perienced little movement. All other higher calculated eigen-
values {Eqs. (10-12)] remained in the left half-plane, although
this does not occur if the structural damping is assumed
negligible.

The closed-loop response for the controlled configuration
was calculated for initial disturbances of 8(1,) =5 deg rigid-
body rotation and g, (t,) =0.02, which corresponds to a tip
deflection of 1.66 in. for arms 1 and 2. The hub angle time
history and beam deflection time histories for z/L = 2 and |
are illustrated in Figs. 5-7, respectively. The torque actuator
responses are shown in Figs. 8-10 for actuators u,, u,, and u;,
respectively. In Fig. 8, it can be seen that there are high-
frequency oscillations superimposed on the first few cycles of
the low-frequency response. This is due to the high-frequency
vibration of modes 8 and 9, but these are quickly damped out
due to the structural and controller damping. Also, note that
u, is doing most of the work compared to «, and u;, a desired

0.0 0.061 0.170 0.135 -0.211

0.0 266 7.89 139 22.5 265 7.89 139 225

21.5 0.0
(50a)
-0.389 00 -1.73 0.0
0.061 -0.170 0.135-0.211
(50b)

0.094 -0.036 0.188 -0.100

result, even though we have not torced this condition by
weighting.

Case 2
This case is the same as case 1 except that we modified the

parameter vector to include the sensor and actuator locations,
in addition to the 42 control gains of case 1, as

p = actuator location vector ¢
= sensor location vector b

= gain vector g (51

Thus, the two appendage actuator stations (z,,z,) plus the
eight actuator sensor (x,,...,x,) stations brings the total
dimension of p to 52. Upon applying the minimum norm cor-
rection of Eq. (43) to satisfy the constraint of Eq. (44), with
W =1, we found the sensor and actuator stations were moving
undesirably large amounts, so we introduced weights of 10? on
the actuator positions and the two inboard sensor stations,
while a weight of 10’ was applied to the two outboard sensors.
With this modest artwork on the weight selection, the
minimum norm algorithm was applied (with six continuation

112
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steps as in case 1) and reliable covergence ensued to place the eigemvalues to satisfy Eqs. (44) and (48).

The resulting converged gain matrices were found to be

92.1 1.71 0.0 105 0.0
G,=| 00 1.55 493 936 15.2
0.0 1.57 4.85 9.15 149

-4.14 -0.165 00 -243 0.0
G;= { 00 -109 207 -280 454 -1.13 143 -276 3.87 '
00 -1.10 1.8 -260 428 -121 1.72 -3.04 446

and the converged (initial values in parenthesis) appendage ac-
tuator stations were

2, =0.1959 L (0.5 L), on appendages 1 and 2
2,=0.1841 L (0.5 L), on appendages 3 and 4 (53)

whereas the converged (initial) sensor stations were, on appen-
dages | and 2,
x;=0.2546 (0.25 L) x;=0.7155 (0.7L)

X,=0.5414 (0.5 L) X,=0.9317(0.9L)  (s4a)

and on appendages 3 and 4,
x;=0.2564 (0.25 L)
X, =0.5443 (0.5 L)
x,=0.7167 (0.7 L)

xy=0.9321 (0.9L) (54b)

s /L. 0.50
Beam 1 —
.2 Beam 3

Mid-Span Deflection {1n)
o

0 16 time (s) %R

Fig. 12 Beam deflection response (midspan stations): case 2.

Yip Deflection {in)

0 1 ime () ¥

Fig. 13 Beam deflection response (tip stations): case 2.

11

»
My

75 0.0 107 0.0
.57 5.06 9.56 155
.59 498 9.3815.2 (52a)

-0.305 00 -2.80 0.0

(52b)

The continuation/root locus of the eigenvalues is essentially
identical to Fig. 4. However, the freedom to move the sensor
and actuator locations has proved constructive; by com-
parison of Eqs. (50) and (52), it is obvious that the gains have
been substantially reduced. Note in Eq. (53) that the appen-
dage torquers hae been moved much closer to the hub,
whereas the sensors have been moded significantly away from
the hub. The net effect is that, even though the closed-loop
eigenvalues have the same position, smaller control torques
are required. This is evident in comparing the controlled
response of case 2 to the same initial conditions as case | (Figs.
11-16), with the corresponding figures of case 1 (Figs. 5-10).
Note that the peak torque is 17 ft-Ib for case 1, whereas it is
only 13 ft-1b for case 2. The controlled response is virtually un-
changed (as might be expected, since the two sets of eigen-
values are the same).

Case 3

This case is the same as case 2 with two new ingredients:
1) two structural parameters the appendage length L and the
tip mass m,,, are varied to provide some structural design con-
trol over the free-vibration frequency spectrum of the struc-
ture; and 2) in comparison to case 2, the case 3 controlled
*rigid-body mode™’ eigenvalue is constrained to be the lower

z
<
<
=
L3
4
2
®
=
€
3
0 16 time (s) 32
Fig. 14 Control torque [ ,(1): case 2.
13
Rl
=1
& ol
AV
3 |V
€
S
-1
0 ¢ 32

time s)

Fig. 15  Control torque U, (1) case 2.
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12 -
;3 = el
-3 $
iS
i 20 -W;WVLVWW E 0
[ 3
s 2 K/L. 0.50
S s Beam 1 —
[ -12 v Beam 3 ---
W 2.
WY T
0 16 X 32 y
time (s) 0 16 time (s) 32
! Fig. 16  Control torque U,(1): case 2. Fig. 18 Beam deflection response (midspnn. stations): case 3.
5.9
= 4! v (geg’ .
5 A :
u ! \_\ <
" ol _ N %
W : & XL 1.00
' o Beam 1 —
! = Beam 3 ---
53 “
" ]
. 16 . 32
0 16 time (s) 32 time (s)
< Fig. 17 Closed-loop response of 8(1): case 3. Fig. 19 Beam deflection response (tip stations): case 3.
\‘.
™~ frequency and is much more heavily damped, to be consistent
with a “‘slewing'’ attitude maneuver/vibration arrest control The converged (initial) appendage actuator positions were
- law.
i Thus, we adopt the following 12 objective constraints for 2,=0.4102 L (0.5 L), on appendages | and 2
the closed-loop eigenvalues (where the nonzero numbers in
parentheses indicate initial natural frequencies of original un- 2,=0.4102 L (0.5 L), on appendages 3 and 4 (57)
. controlled configuration):
— Yobjecne = whereas the converged (initial) appendage sensor positions
"> - . 2,
- (w,=0.3r/s (0) rigid body mode frequency W were, on appendages 1 and

w,=4.5r/s (4.37)first flexural mode frequency
w;=83r/s (7.91)second flexural mode frequency
=07 (0) rigid body mode damping factor
{,=0.03 (0) first flexible mode damping factor
$;=0.03 (0) second flexible mode damping factor L
} =001 (0) third flexible mode damping factor

x;=0.2539L (0.25L)

x,=0.5010L (0.5L)

x;=0.7608 L (0.7L)

Ly

{s=0.01 (0) fourth flexible mode damping factor
$,=0.002 (0} fifth flexible mode damping factor
¢>=0.002 (0) sixth flexible mode damping factor
{3=0.0015 (0) seventh flexible mode damping factor
t,=0.00/5 (0) eighth flexible mode damping factor J

x,=0.9653L (0.9L) (58a)

v

and on appendages 3 and 4,

L x;=0.2539 L(0.25 L)

(5%)

. . . . =0.5010L (0.
These constraints were imposed in two stages. First, the struc- X, =0.5010L (0.5 L)

o, tural parameters (L, M, ) were adjusted to drive w, and w, to _
> their objective values. In the second stage, the 52 control gains x,=0.7608 L (0.7 L)
X and scnsgr/actuator statipns are modified (in 6 co.ntinuation X;=0.9653L (0.91) (58b)
steps as in case 2) to drive y to the above objective values.
Convergence was reliably obtained and the resulting control
% were found to be
L
484 0.148 0.0 1.01 0.0 0.148 0.0 0.101 0.0 | (56a)
. G,=1| 00 0.034 0116 0214 0.315 0.037 0.125 0.231 0.34]
g | 0.0 0.036 0.125 0.231 0.341 0.034 0.116 0.214 0.315
. [ 16.3 -0.026 0.0 -0.148 0.0 -0.026 0.0 -0.148 0.0
)
.i‘ G, = 0.0 0.065 0.011 0.138 -0.25¢ -0.066 -0.068 0.111 -0.068 (56b)

0.0 0.066 -0.448 -—0.111 -0.448 0.065 0.011 0.137 -0.256
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Fig. 20 Control torque U,(1): case 3.
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Fig. 21 Control torque U,(?): case 3.
1.
=f",
.2 0 V‘VAVA'A' Ahuays
?
-t
3
S
-1,
0 16 32

time (s)
Fig. 22 Control torque U;(2): case 3.

The converged (initial) values for L and M,,, were found to be

L=36111 4 f)

M

np

=0.19871 slugs (0.156941 slugs)

The controlled response for case 3 is given in Figs. 17-22 for
comparison with cases 1 and 2. Note the following features: )
the rigid-body maneuver and complete vibration arrest is ac-
complished in approximately 15 s (about half the time re-
quired for cases 1 and 2); 2) the peak control torque is reduced
by about an order of magnitude; and 3) the location of sensors
is not significantly different from case 2, but the actuator posi-

e A alacdebn Ay Saa Al Ao AR, AR ol - ab. 4. oo
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tions are different (closer to midspan). It is also evident that
the present maneuver controls are much more attractive than
cases | and 2. We have done a variety of parameter variations
further establishing that the rigid-body eigenvalue placement
is the most important feature of case 3. For any reasonable
variation of the sensor/actuator stations and/or structural
parameters, we can optimize the control gains to place the
eigenvalues in the same position and achieve analogous
results.

Conclusions

We have developed and demonstated a minimum modifica-
tion stratcgyv for structural and control parameter optimiza-
tion. Numerical experience indicates occasional difficulties
with the uncontrolled modes being destabilized, but since all
of the eigenvalues (up through a conservative number) are
calculated on each iteration, these problems can be cir-
cumvented by introducing appropriate constraints to stabilize
these modes. The method has worked well on the problems
studied to date and appears to be an attractive approach to
follow in the development of an interactive software system
for structure/controller design iterations. Extension of the
ideas of this paper to determine the weight matrices for impos-
ing eigenvalue placement upon optimal quadratic regulators is
presented in Ref. 8. The algorithms presented herein have
been found relatively immune to the high dimensionality and
nonlinearity of the eigenvalue placement problem.
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ABSTRACT

A sequential linear programming approach for
optimal placement/constrained optimization of
eigenvalues and eigenvectors of linear dynamical
systems {s presented. AS an example, the total mass
of a structure {3 minimized while the natural
frequencies for selected modes are gradually driven
to desired values. This highly nonlinear
constrained optimization problem is locally
linearized and 1linear assumptions enforced by
specifying maximum allowable local parameter
changes. However, the above constraints on the
magnitude of local parameter change restricts the
magnitude of changes in the system characteristics,
and i{n particular, eigenvalue constraint objectives
which may differ significantly from nominal starting
values, The above difficulty {s overcome by a well
tested continuation technique which replaces the
original, possibly rigid, constraints by an
adjustable sequence of neighboring constraints. The
above approach appears computationally suitable for
redesign of high-dimensioned, complex dynamical
systems. Numerical examples are {ncluded to
demonstrate the practical merit of this approach.

NOMENCLATURE

cost function

deafgn vector

starting design vector

design vector change

constraint vector

constraint objective vector

current constraint objective vector
continuation parameter

maximum allowable local parameter
change vector

transformed design vector change
generalized displacement vector
global mass matrix

global stiffness matrix

mass matrix for j-th element
stiffness matrix for j-th element
beam element length

mass/length distribution

bending stiffness distribution
Young's modulus

mass density

element shape function
nondimensionalized element coordinates
lower bound vector on nodal thickness
upper bound vector on nodal thickness
eigenvalue vector

objective elgenvalue vector

natural frequency

eigenvector

7]

©

n-{"l"\o’\D'U'Uf-.

DT XNERX X<
c o~ e

< £ VOPU'ONGO mo

John L. Junkins
Professor
Department of Aerospace Engineering
Texas LAM University
College Station, Texas 77843

INTRODUCTION

The practical need for optimal redesign of
existing dynamic structures {s clearly evident., A
good example Is aeroelastic tajloring where
stiffness, mass and geometrical characteristics of
an alrcraft structure are optimally distributed
using composite materials, for the improvement of
aeroelastic properties., For dynamic structures in
general, modifications are usually focused on modal
characteristics. However, since modal
characteristics and design vectors are related by
eigenvalue problems, the ~elationship s naturally
complex in addition to being numerically formidable
for high dimensioned systems, The optimization
problem {s further complicated if the designer
wishes to consider a large number of constraints,
mostly inequalities, on the minimum and/or maximum
allowable design vector.

In this paper, the optimal redesign problem is
treated as a general nonlinear programming problem,
The cost function and constraint equations are
linearized about a nominal design to obtain a
sequential set of linear optimization problems. The
above linearization assumes a good fnitial guess of
the design vector. Unfortunately, for problems
which includes eigenvalue constraints and are
structurally complex, good initial guess of the
design vector may be f{mpossible to obtain, or at
best depends heavily on the designer's experience
and the type and amount of redesign desired. The
above need for good initial guess can be overcome;
at least to a very significant degree, by
introducing the continuation wmethod of handling
constrajint equations. This amounts to replacing the
original constraint equations by a sequential
neighboring set of constraint equations. Earlier
applications of continuation techniques are given in
[1,2] where closed-loop eigenvalue constraints are
considered in the context of control system design.
The present work was motivated by the {ntroduction
in [3] of sequential linear programming algorithm to
optimize damper locations for vibration suppression.
In [3,4], the sequential linear programming approach
combined with the continuation method is used for
the design of control systems, The development in
this paper closely parallels the work in [4] and
differs primarily in the optimization/design
objectives, i.e., Structural redesign instead of
controls design.

To demonstrate the proposed approach of optimal
structural redesign, a Finite Element (FE) model of
a cantilever beam is considered. The thickness at
the nodes are chosen as design parameters for a
constant width, rectangular cross section beam. The
cost function to be minimized is chosen as the total
mass of the beam while selected natural frequencies
are gradually driven to desired values subjected to
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goometrical inequality constraints on the maximum
and minimum thickness along the beam.

TRANSFORMATION OF A GENERAL NONLINEAR
PROGRAMMING PROBLEM TO A SEQUENTIAL LIN-
EAR PROGRAM

Let us consider the general nonlinear
programaming problem,

maximize J(p)
p
subject to tip) (<, =, >} £° (1)

where p s the design vector and t° 1s the
constraint objective., By linearizing Eq. (1) about
a nominal design, i.e. at i-th step, we get,

aJ
paximize Ipy_y ) --—lp AP+ .ue
ap 3p "1-1
subject to
af o
f(91_1) * ——Ip a4p * ... {_<_o-0_>_} | 4 (2)
p 7 =t :
where ’

Py = Py * 8P

The formulation in Eq. (2) suffers two major
problems; a feasible solution to the original
problem may not exist, and a sufficliently good
initial guess to validate linear expansion maybe
impossible to obtaln, The continuatfion method
resolves the above problems by (1) seeking at least
a feasible solution to a neighbor of the original
problem If {indeed a feasible solution to the
original prodblem does not exist and, (11)
eliminating the need for a good initial guess by
starting the iteration with a neighboring converged
solution. The continuation method does the above by
replacing the original constraint objectives, f°, by

a sequential neighboring set of constraint
objectives, F(Y), where

s (-]
F(Yx) - (1 7‘) t(p”) + Yy 4 (3)

where ps i{s an arbitrarily chosen starting design
vector (more appropriately, p~ {s assocliated with
the unmodified existing structure) and Y is a
scalar parameter satisfying

0" Yo SV SV vee Sy o

The convex combination of starting constraint and
final constraint shown in Eq. (3) reveals the
following facts:

1

at ¥ = v, = 0, F(O) = r(p*)

aty =y, -1, F(1) = r(p°)
i.e., If convergence {3 achleved at Y = 1, we recover
the original objective constraint condition. It is
also obvious but nevertheless fmportant to note that
1f the problem has a feasible solution at Y =« 1, the
prodvlem will be solved in N steps.

Applying the continuation technique of Eq. (3)
to the right hang side of Eq. (2), we obtain
9y

maximize J(p1_1) « = Ap ¢

e (4)
ap ap P1m

subject to
of -] [¢]
£(py_y ) —Ip 8pee.(&mi2) (YOI )oY £
’ ap "1~ {
where
Py = Pyy * 8P

The optimization problem of Eq. (4) must be
transformed to a non-negative variable so that the
Simplex algorithm [5) may be used directly. In
addition, the output of a Simplex algorithm may
still predict large corrections for some elements of
Ap. For the above reasons, we introduce bounds on
the maximum allowable local parameter change,

;e <aple (5)
which enhances local linearizations, The
transformation to non-negative variables and the
bounding of local change can be easily done by
introducing a linear transformation.

y=424p+e (6)

Using Egq. (5) and (6) in (4), we obtain the standard
linear program at step "i",

9J
maximize ——|p Yt oee N
y ap "i-
subject to
af s 3f
—lp yl&=200-Y )P ).yif°-r(p1_1). —|e
ap 11 p P
i-1
y £ 2¢
y2>0
where
&p =y - ¢

Py = Pyy * 0P

MINIMUM WEIGHT DESIGN OF A BEAM FINITE
ELEMENT MODEL

To demonstrate the approach outlined earlier, we
consider here the problem of minimum weight design
of a cantilever beam structure modeled by finite
elements. A nominal uniform beam {s assumed given
and its corresponding natural frequencies known.
The problem i3 to find the minimum weight
configuration among all those which satisfies
desired natural frequency equality constraints and
thickness inequality constraints. We note here that
the above constraints may arise form physical
factors such as material property limitations,
desired natural frequency locations or astatic

buckling design limitations,
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Consider the linear free vibration equations

Mx(t)»Kx(t)=0 (8)

where
ne ne
MM KK (9a)
31 J 4=l J

represents the global mass and stiffness matrices,
For thin beams {in transverse vibration, the j-th
element mass and stiffness patrices takes the form,

h 1 T
HJ -=J OJ (E)Cwllwl ag (9b)
2 =
8 ol [} T
KJ - 3 1_1 " (g dcz dcz daE (9¢)

where ¢ is the element shape function, 6, and n, are
the mass and astiffness distributlonsJ over JJ -th
element and h represents the element length.

To form the design vector, we let the thickness
values at some judicious choice of FE nodes be the
unknowns and linearly interpolate the nodal values
whenever we need internal values. The design vector
can then be written as

T

PPy cuey Pypd

where P, represents the beam thickness at i-th node
and NP *s the total number of design parameters.

We now formulate the minimum weight eigenvalue
placement problem as,

einioize J(p)
p
where
J{p) = pah{1/2,1,1,...,1,1,1/2]p (10a)
subject to
o
AJ - ) J Jet1,...,M (10b)
plipJSpu 3=, NP (10¢)
] 3
wEere|}° is the objective (desired) eigenvalue and
p . p are the lower and upper bounds on nodal
thicknesses.

Following earlier derivations, the problem posed
in Eq. (10) can be transformed to the form of Eq.
(7) to obtain the linear program at step I,

maximize -thy

Yy

(11a)
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subject to
Ey < g8 * Ee (11b)
y < 2¢ (ne)
3 o 3
|p y = (1=% )A(p Yo, AmA(py ) ¢ —-1p1_1‘ (11d)
ap © i1 1 ap
y>0 (11e)
where
Ap =y “-¢
p‘ - pi' . Ap
and
E=- |_1
=1
e~ | » -p,
Pt Py

The major computational effort required in the
problem as posed in Eq. (i1) involves solving the
generalized symmetric eigenvalue problem

AMy = Kv .

for the selected NM modes and the solution of the
linear program itself using the Simplex Method. The

eigenvalue sensitivities required in Eq. (11d) 1s
derived in [6] and given as,

3A 3K aM

-—1 - VT (— = 2, =) \vx (12)

BPJ- 3PJ 3PJ

The stiffness and mass sensitivity matrices required
above can be computed and assembled in same fashion
as stiffness and mass matrices themselves in Eq.
(9), and is given by,

M M K 9K
#Lor it SR 7
ap r=1 3p p re1 3p
where
M h 1 99
— e - 2 onneTe (13b)
op 2 -1 3p
k K
2 2 T
x & 1o av 4 ¥ (13¢)
— 3 ;W - 3
p h® =1 3p dg dg
k K
A e (\I N :\3\ RIS T S At
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Wr omphasize here that in the above problem, the
contlinuation family of constraint objectives, as
given by Eq. (3), was applied only to the eigenvalue
constraints of Eq. (10b) since it was deemed the
only compromisable and nontrivial constraint.

NUMERICAL EXAMPLE

Table 1 gives the data for the particular
cantilever beam FE model considered. Two cases were
computed to {llustrste the main fsatures of the
design approach, specifically, the effect of
relaxing constraints and the effect of different
starting beam configuration on the final converged
confjigurations.

The effects of relaxing stiffness constraints
are given in Table 2. The starting frequencies and
objective natural frequencies are given in Table 2a.
The total mass design history is given in Table 2b.
It is noted that all three cases reached the final
objectives, in addition, the total mass decreases
as the lower bounds on thickness decreases, thus
verifying the fact that more design flexibility
leads to better performance. Table 2¢ shows the
uniform initial design vector, the imposed lower and
upper bounds and the final design configurations,
which is highly non-uniform. Inci{dentally, several
elements of the design vector have reached thelr
lower and upper limits and clearly this {s useful
information to the designer.

The effects of different starting bean

configurations are give in Table 3. Obviously,
different nominal beams corresponds to different
initial natural frequencles. However, all three

completely different starting beams converged to
essentially the same total weight and similar
configuration beam as seen in Tablea 3% and 3c. The
results above are consistent with a conclusion
reached in [3] that the continuation procedure with
sequential linear optimization more often converges
and yields the same solutions for different {nitial
conditions than does conventional nonlinear
optimization routines.

In the previous examples, the thickness
constraints and the objective frequencies were not
too demanding. The above relaxed circumstance were
the maln reasons for the success of all previous
runs. Additional results, not shown here, indicates
that imposing more restrictive bounds on the
thickness made the realization of frequency
objectives more difficult and {n some cases its
convergence to desired conditions impossible,

CONCLUSIONS

A sequential 1linear programming approach
combined with a continuation method of handling
constraints has been derived for attacking a class
of nonlinear programming problems and in particular,
optimal structural redesign prodblems. The numerical
robustness of the proposed algorithm has been
demonstrated by a minimum welight redesign problem
with elgenvalue constraints consisting of 20 degrees
of freedom and 38 constraints with 11 design
parameter,

A major advantage of the linecur optimfization
approach presented here {s that at each continuaticn
step, an optimal solution, if It exists, can be
found very efficiently using the well founded
Simplex method. The reason {s that only a finite
number of feasible possibilities exists and the he
Simplex algorithm efficiently computes the optimal
solution. A second major advantage (s the
flexibility to handle equality and {nequality
constraints on both the design variables and
functions thereof.

Finally, and perhaps most importantly, failures
to reach the final (v = 1) solution {s usually
softened by convergence to an intermediate (0 < Y <
1) neighbor. The active constraint set and gradient
information of the final convergence provides a
basis for intelligent revisions of the problen
statement.
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Young's Modulus

21.5 x 10% pst

mass density .065 1b/in°
beam width 1 in
beam length 100 in
number of elements (uniform length) 10
number of degrees of freedom 20
dimension of design vector 11
number of equality constraints on frequencies 5
number of lower bound inequality constraints on thickness 11
number of upper bound inequality constraints on thickness 11
number of inequality constraints on maximunm allowable local parameter change 11
Table 1. Data for graphite epoxy cantilever beam finite element model
o® (rad/sec) W° (rad/sec)
1.84 2.82
11.5 10.9
32.3 30.8
63.5 67.0 y pt - pt - .3 pt = .1
105.1 104.8
0 6.5 6.5 6.5
.1 6.1 6.1 6.1
2| s
and objective frequencies. .3 5.7 5.6 5.6
oS = (1,....1)T 4 5.5 5.2 5.1
pu - (2"‘.’2)T .5 5.6 5.1 4.5
.6 5.7 5.1 4.3
.7 5.8 5.2 A
.8 5.9 5.3 4.5
.9 6.0 5.4 4.6
1.0 6.1 5.6 4.7
Table 2b. Effect of relaxing constraints-total

mass histories for different stiffness

constraints
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Node No. Nodal Starting Thicknees pl = .5 pte.3 pl e .1
Coord. (imn.) (in.) Final Thickness Final Thickness Final Thickness
(in.) (in.) (4n.)
1 [ 1.0 1.791 1.753 1.620
2 10 1.0 .531 .300 .100
3 20 1.0 1.811 2.000 1.916
4 30 1.0 1.407 482 -100
5 40 1.0 .668 1.139 1.083
6 50 1.0 1.116 1.252 1.148
7 60 1.0 .589 657 .666
8 70 1.0 .500 .300 .100
9 80 1.0 1.092 1.157 .990
10 90 1.0 .500 434 .31
11 100 1.0 .500 .300 .100
Table 2¢. Effort of relaxing Constraints - converged design vector (y = 1)
P’ = (2he. )T
Mode w® (1) W® () W® (3) W® @) of
1 1.84 1.70 1.75 3.14 3.00
2 11.5 11.4 9.67 10.8 11.5
3 32.4 31.7 23.7 29.3 30.8
4 63.5 61.1 49.7 59.2 67.C
5 105.2 105.7 89.9 91.2 105.2
Table 3a. Effect on different starting beam configurations - starting and
final frequencies for four beams.
pL ® (.5,0..,.5)

Ple(2,...,2)
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: Y Starting Starting Starting
o Starting
' beam (1) beam (2) beam (3) beam (4)
LY
{
R)
Z 6.5 6.4 5.7 6.5
! .1 6.1 6.0 5.7 6.1
! .2 5.9 5.7 5.6 6.1
1 } .3 5.7 5.5 5.4 6.1
1,
4 “ 5.6 5.5 5.3 6.1
- .5 5.7 5.6 5.4 6.0
C; .6 5.8 5.7 5.5 6.0
2 . 5.9 5.9 5.7 6.0
.8 6.0 6.0 5.8 6.1
¥ .9 6.0 6.0 5.9 6.1
34 1.0 6.1 6.1 6.0 6.1
1
i
j Table 3b. Effect of different starting beam configurations-total mass
kS | histories
o)
¥
'Y
3
1
i
af '
' vode No. s Beam (1) £ s Beam (2) £ s Beam (3) £ s Beam (4) £
; P P P P P P P P
i f
i [ 1 1.00 1.91 .95 1.90 .80 2.00 1.50 2.00
i : 2 1.00 .50 .85 .50 .90 .50 1.50 .50
,‘ E 3 1.00 1.77 | 1.00 1.79 | 1.30 1.62 | 1.50 167 |
4 , 4 1.00 1.71 .95 1.69 .70 .50 1.50 1.26
! 5 1.00 .59 1.10 .59 .90 1.71 1.50 1.32
: ‘, 6 } 1.00 1.06 .91 1.04 .90 .50 .60 .50 !
i 7 1.00 ) 1.20 J1 1.00 1.51 .60 1.06 i
' 8 1.00 .50 1.00 .50 1.00 .50 .60 .50
% .
K i 9 1.00 .96 .88 .97 .50 .50 .60 69 |
4 i
ja . 10 1.00 .50 1.00 50 .60 .70 .60 .72 :
SH i 1 1.00 .50 -98 .50 1.40 .52 .60 50
[ i
; Table 3c. Effect of different starting beam configurations - starting and final thickness
‘
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A SIMULTANEOUS STRUCTURE/CONTROLLER
ODESIGN ITERATION METHOD

John L. Junkins and Oong Won Rew
Department of Engineering Science and Mechanics
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

Abstract

Several wmethods are presented for place-
ment/constratned optimization of the closed loop
eigenvalues and eigenvectors of linear dynamical
systems, A onified approach is taken to (4)
fterate the design parameters in the plant being
controlled, (11) .the location of sensor and actua-
tors, (111) the elements of a direct output feed-
back gain matrix, and (1v) the weight matrices in
a time-domain LQG performance {index, or (v) a
ccmbination of the foregoing, to accomplish a con-
strained, simultaneous optimization of the sys-
tem's closed loop efgenvalues, eigenvectors, and
their sensitivities, A low dimensioned discrete
system and an order 42 model of & flexible
structure controlled via direct output feedback
are used to 1llustrate the approach.

1. INTROOUCTION

We show below that several different methods
to design high order linear feedback contro) laws
can be unified in the sense that a single approach
can be taken to "“optimally tune® these methods
vis-a-vis the placement and sensitivity of the
closed-loop eigenvalues and eigenvectors, In
Sections 2 and 3, we formulate a generalfzed
closed loop eigenvalue sensitivity and constrained
optimization approach. In Sections 4, 5, 6, we
show how three different approaches to design of
tinear feedback controllers lead naturally to the
problem formulated 1in Sections 2 and 3. In
Section 7, we summarize numerical solutions of two
eximples, finally {n Section 8, we offer
cocluding remarks.

2. CLOSED LOOP EIGENVALUE PROBLEM

We are concerned with linear dynamical sys-
tems in the generalized state-space form

Ix = Ax + Bu + d ()
+ith linear output

y = Hx (2)
and linear feedback control

u = Gy (3)
Thus the closed loop system is governed by

Ix = Ax + d (9)
where

1, A are n x n real matrices

X {s an n x 1 real state vector

u fs an m x 1 real control vector

d fs an n x )1 real disturbance vector

y fs an r x 1 real measured output vector

8 fs an n x m real matrix

H is an r x n real matrix
G is an m x r real control gain matrix

and the closed loop system matrix {s
K= A+ BGH | ()

In the absence of disturbances (d = 0), the closed
loop performance can be obtained by assum%n% an
exponential solutfon of the form x = aexp(At);

this leads to the generalized eigenvalue problems:

right: aZa; = Aoy left: x12T31 = KTe‘ (6)

where { = '1,2,...,n and a,;, 8, are the right and
left eigenvectors correspondihg to the assumed
distinct etigenvalues (a;, ..., 2.). The eigen-
values and eigenvectors Lre generﬂlly complex. We
adopt the conventional normaltizatfons:

(8)72la] = (1] , [81"Ala] = dtaglr,] (7)

where [a] = [a,...a_] and [8] = (31...sn| are the
right and left *mod31* matrices.

Let us now address the situation in which
all, or at least, some of the matrices A, Z, B,
H, G, and therefore A = A + BGH, are functions of
a8 q x 1 system design vector p. The elements p
of p can be, for example, (i) the control gai%s
(elements of G), (i11) an indirect parameterization
of G (e.g., the weights in an LQG performance mea-
sure), (114) sensor/actuator Tlocatfons (parame-
terization of the elements of B, H), or (iv) plant
model parameters (parameterization of the elements
of A, 2). Since A = A(p) and Z = -2(p), it fs
evident that x, = A, (p) and a; = a.{p); except for
isolated events (e.g. bifurdatiod points, near-
multiple efgenvalues, etc.), we can consider
2;(p) and a.(p) to be continuous and differenti-
aﬂ]e. It "1s therefore reasonable to question
whether or not 1t 1s feasible to "tune" p to solve
a constrained optimization of ‘1(9) and o, (p).

The first and second order sensitivities of
the eigenvalues are derived in references (1] and
{2], these are as follows:

N -
i T,3A al
L I M - O (8)
apl i ap! i ap! i
2
™ o 2R N 221 la
ap'ap. i ap'.ap“| 1 aplapm i

- ol(p, el 2 Tl T,

1m184 Wl“‘s - °1lsp—m a;8;P, lay
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where
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P‘ME-NT.- X‘-aT' (]0)
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& a2 22K N

w, ", b, P,

are determined from direct differentiation of the
parametric system model (which obviously must be a
continuous parameterization). Analogous develop-
ment lead to the sensitivity of the eigenvectors,
and the above simplify considerably for the most
usua) case that 7 = the identity matrix. Clearly
the above formulations suffer singularities near
multiple eigenvalues. It should be noted that
having completed the solution of the eigenvalue
problem, the evaluation of the efgenvalue partial
derivatives represent a rather modest additional
computational expense.

3. EIGENVALUE/EIGENVECTOR PLACEMENT/OPTIMIZATION

One popular course (in attempting to place
cigenvalues for multiple-input, multiple-output
systems, MIMO) is to make use of varifous de-
coupling devices to map the problem into a family
of “pseudo-equivaient” single-input, single-output
systems and thereby render the eigenvalue
placement problem trivial. The problem with this
entire class of approaches lies in the fact that
artificial, physically meaningless constraints are
invariably f{ntroduced which often lead to poor
controller designs as well as numerical
difficulties; see Ref. [3] for a discussion of
these issues and the recent literature. In lleu
of attempting to eliminate the redundancy in an ad
hoc fashion (more parameters to specify than the
typical number of eigenvalue constraints), we
elect to follow the pattern of Refs. 1, 4-7 and
exploit the redundancy to optimize a performance
measure,

Consider the following optimization pro-
nlem: We wish-to minimize a criterion function
S+ function (a1 (P)s.eryhn(P)s a3 (P) e ey (P)iP)

: f(p) (]])
subject to a vector function of m, equality con-
ctraints

9, - 9(p) = 0 (2)
and a vector function of Mie inequality con-
ttraints

h < h(p) < h (13)

where go, h hu are given constant vectors de-

‘0

fining the family of admissible designs.

first, consider only the equality constraints
of Eq. (12). The starting {fterstive p ..., may
result in large violations of Egq. 12 andsﬁs often
too far from a zero of Eq. (12) to permit reliable
convergence using a generalized Newton algor-
ithm. Let us first find a feasible p which satis-
fies Eqs. (12) and then Egs. (13), before we con-
sider the issue of optimization.' In lieu of g,
we introduce the "portable” objective constraint
vector % such that

g = 19y + (1 - IgPyype) (14)

with a homotopy or continuation parameter y
satisfying 0 < v s 1. Replacing g, in Eq. (12) by
g, of Eq. (14), and considering p = p(y), gives &
hGlotopy family of equality constraints

H(P(¥)) = vgy + (1 - ¥)g(Pge,apy) + 9(P(¥)) = O

(18)
Notice the boundary conditions on Eq. (15)

at v = 0: H(p(0)) = 9(Pgyype) - 9(P(0)) = O (16)
at v = 1: H(p(1)) = g, - g(p(1)) =~ 0 (a7

from which we conclude that p(0) = Pgi,png Satis-
fies Eq. (15) for y = 0, and p(1), 1#°4%" can be
determined, is a feasible solution of Eq. (12),
since Eq. (15) =~ Eq. (12) for the special case
y= 1. By sweeping y slowly and f{terating on
p(y) to satisfy Eq. (15), we can always initiate
each iteration with a nearby converged solution
and thereby very nearly guarantee convergence
(fatlure will occur only tn the event of locally
singular events such as bifurcations, turning
points, etc., in which other remedial action, Ref.
8, can be taken).

Preparing to develop an iterative process for

Pév)..we expand Eq. (15) about some estimate for
p

71) : we seek a correction ap such that Eq. (15)
will be satisfied to first order as

M(p(ry) + 8B) = H(B(vy)) + (3 lep =0 (18)
where

HP(v()) = v49, + O-v)9(Pgpare) - 9(P(v)) (19)
[aH/ap| (] = -1ag(p(v{))/2p(v,)] (20)

Since the dimension m_, of H is typically much less
than the dimension é% p, Eqs. (18) are usually
underdetermined. Thus a criterion must be intro-
duced to select a particular solution for ap. We
choose to minimize the correction norm aplap; this
serves to be as consistent as possible with the
small correction assumption fmplicit in retaining
l1inear terms and also is an appropriate design
philosophy (large design changes are qualitatively
less attractive than small ones!). Minimizing

'D(Y,) is estimated from a converged solution for a neighboring D(y1_1).
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spTWep subject to Eq. (18) gives 5. OPTIMAL TUNING OF LQG REGULATOR WFIGHTS
X
‘1~. -1 Consider the minimization of the classic
-1aH; T (3N =134, ,T

- p =W lTp'il lTpl']N la_pli' H(p(v,)) (21) 1inear quadratic Gaussian performance index

5 -

:;-“" where W is & positive definite weight matrix. We J= %f (xTQx + uTRu)dt (23

"R use Eq. (21) to iterate for p(y1) in a Newton-like 0

2; 3 manna2r by recursively computing bisct £

: subject to

Igs e Plv{)pew = Plyglgya * 0P .

s Vnew ord * &Py ieAxe By, (zJ
. unt il convergence 1s achfeved, for each of a The necessary conditions for minimizing Eq. (2
‘l" sequence of y's
) subject to Eq. (24) are, in addition to Eq. (24
N 0= Yo €Y < eee vy " 1} (22) as follows (Ref. 9)

A '

B _,: Since p(v,) 1s initiated from a nearby converged A= -Qx - FAN (2

;.‘ Oy solution, we can insure (by choosing ay suffi- SLT

B ciently small in y, = y + Ay) that the elements U=-RB'a (2

of H(p(v,)) are arbitrabily small; failure of the

I correctidn n Eq. (21) will occur only 1f the where A(t) 1s an n x 1 co-state (Lagrange muit

Sy Jacobian [an/apli] becomes locally rank deficient. plier vector). If we seek a feedback contro

uh 3 then we assume

D00 In Ref, 1, we show how to generalize the A(t) = Kx @

L above continuation method for equality constraints

:' . in a fashfon which locally 1includes the active and Eqs. (24-(26) give the matrix Riccati equati

AN (violated) subset of inequality constraints and a for K(t)

o gradient projection decrement of the performance T LT

:'.f o criterion J of Eq. (11). R+KA+AK-K[BRT'B']K+Q=0 (2
o

ad The resulting algorithm has been used suc- for the infinite upper 1limit of integration
> €qs. (24), K - 0, and Eq. (28) becomes the alg
o cessfully as a nonlinear constrained minimization braic matrix Riccati equation which. if the syst
At a'gorithm and {s superior to conventional con- q ’ 4

strained minimization (nonlinear programming)
algorithms, owing to the use of continuation to
enhance convergence. As 1s shown in Ref. 8, the
domain of reliable convergence 1s vastly larger
than  conventional Newton and quasfi-Newton
atgorithms. Alternatively, we show in Ref. 7 a
method to make the local corrections via a linear
or quadratic programming algorithm imbedded in a
s‘milar homotopy family. In any event, the use of
adaptive continuation and homotopy algorithms to
enhance convergence {s a very important device; it
insures that failure of the optimization algorithm
~{11 not be due to a failed local 1linearity
assumption.

4, DIRECT OUTPUT FEEDBACK CONTROL

An easy to state MIMO control design approach
's t0 seek the m x r elements of the gain matrix G
in the closed loop system matrix of Eq. (5) such
that the eigenvalues and efgenvectors of A= A +
3GH solve a constrained optimization problem of
the form of Egs. (11)-(13). The design vector can
csasily be expanded to admit sensor/actuator loca-
tions and plant mode! parameters. Reference 1
treats this problem in detail and includes numeri-
cal solutions for more than 50 design variables.
‘eferences 4-6 present other, lower dimensioned

(24) 1s controllable, can be solved for the s
metric positive matrix K using Potter's method
Ref. 10. Since K is constant, using (27) in (2
gives a constant gain feedback and results in
closed loop system of the form of Eq. (4) with
I and closed loop system matrix

% aaA-srlslk (2

The dependence of J upon the finftial state x(
can be eliminated by considering x(0) to be un
formly distributed on the unit sphére. Then
eu of minimizing J, we minimize the expectati
e(J): this leads (Ref. 4) to

«(J) = % trace [Ke(x(0)x'(0))] 3

If we assume x(0) to be taken independently and
be scaled appropriately, <(x(0), xT(0)) is

identity matrix, so we can replace the function
minimization of Eq. (23) by the algebraic requir
wment of minimizing the trace of K. Since K

dependent upon the choice of weight matrices Q a
R, through the aigebraic solution of Eq. (28),
see that both the quadratic performance index
Eq. (30)., and any constraints we choose to impo
upon the _closed lqonr eigenvalues and eigenve
tors (of K= A - BR™1B'K) depend mpiicitely up
Q and R. The question of choosing Q and R

>, applications of this generic type, although the schieve eigenvalue and eigenvector optimizati
A numerical methods do not make use of the minimum arises quite naturally, and the problem h
R correction norm and continuation methods of the exactly the form adressed in Section 3.

.j foregoing section., Mowever, the minimization, in

N “efs. 5 and 6 of efgenvalue placement sensitivity, Two issues require special attention, first

represent  significant applications of this note that the sensitivities of K follow from diff

o aporoach to design of robust control laws. ferentiation of Eq. (28), for R = 0, as the fol
Py
e
v:: :"’
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lowing Liapunov equation €q. (41) obviously affects the eigen-solution; in
. K T K 1.7 Ref. 11, we establish conclusively that including
ELSNY QU (i L SRR | I [BR™'B']K N allows constructive optimization of the system
», P, P, "’1 efgenvalues and eigenvectors.
T
- K % - :: K (31) 6. THE GENERALIZED PROBLEM OF MOERDER AND CALISE
S ] L
:-:- For the special case that the p are a parame- Reference 4 considers the problem of mini-
< terization of Q and R, the above shpnms to mizing ¢(J), where
K op kT L3 el B g lgT (32) -
n, », Py ®, J= % [ (x'ox + uRuldt + £(G) (82)
Secondly, we consider the fact that 1f we {terate 0 )
arpitrarily upon the elements of Q and R, they may subject to
become indefinite or negative; this can be avoided . I
@ by using Cholesky decompositions X = Ax + Bu (43)
Q= IQI/ZHQUZIT , Ra= [RVZHRVZ]T (33) y = Hx ‘ (44)
u =Gy (45)
H with ~ 2 0 0 Analogous to the preceeding section, ¢(J) can be
e m et written algebraically as
] z M . T
, Q2. 92 9 (] (34) ¢(J) = trace (K] + f(G) , :{x(O)x‘(O)} =1, (46)
A::; : RN where K satisfies the Riccati-1ike equation
. L] .2
_ %% %2n°* Ynn . S(QuR.A,B,6,K) = ATK + KA + HTG TRGHQ =0 (47)
. _ where A is given by Eq. (5). Reference 4 gives an
- 2 0 0 attractive algorithm for iterating for K, G, given
o - 11 et Q, R, A, B, H. Obviously, the design vector for
’ 2 . this approach can also admit parameterizations of
172 .| *12 2 0 (35) Q, R, A, B, H, and algorithms can be developed
I . o e nna’logous to Sections 2-5 above using continuation
" . : ‘. 2 methods, as necessary, to enhance convergence.
[ "m Tom *** Tem
7. NUMERICAL EXAMPLES
o Thus p = {q eee Ann ves T . and using
n, 1 As a simple, low-dimensioned example, con-
= ::g ;e;‘_gm::‘:‘ eg:;tife: sqenéi .::f:n w"“l guarantee Q sider tuning the weights for an LQG controller of
- 4 the type in Section 5, with
, We can easily augment p by sensor/actuator
Tocations, etc., to consider more general eigen- 0 0 0100 0 o
value/eigenvector optimization problems. 0 0 00 10 0-0
al0 0 000 Y[ o 10 0 a8
In Ref. 11, we consider the more general <2 1 0000} 1 0 (48)
ch cuadratic index 1 -3 2000 0 0
) T 0 1Y -1000 0 1/2
i 1. b Q N X
’ =5I0: % [NT R]{ }dt (36) Q N T
[ ] v v [ T = LL (49)
0 In which case the optimal control is given by NOR
2
u= R 1@+ NT)x (37) 52 0 -2
_t: and K satisfies the modified Riccati equation 1 2 1 2
"t T AT Py P a5, (starting
Q+xA+AK-K[BRTB|K=0 (38) L=]. . a B 2 stimate) (50)
: *. A
=2 0= q-w (39) P3o++-P36 P L
A-A- en" T (40) "
. e adopted the following performance measure
) ne closed loop system matrix becomes (eigenvalue placement penaity)
g A= erlTk - groINT (a1) 3
The presence of the cross-coupling weight N « Q in J(p) = % kxl of h(ey) (51)
P =
)
-1

L
—
N
co
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where
4 = 01(9) =1- ‘1(’) v 1=1,2,3 (52)
h(-) is the heavyside unit step function

-Re(x1)
ty = damping factor = mm = gy(p)  (53)

wy = Im(a,) = w,(p)

(note, the eigenvalues occur in three complex
conjugate  pafrs a -Re(x1)zj Il(x‘). i =1,2,3).
We also adopted the'khree equality constraints

9y = wyy - wy(P) = 0, 191,23 (54)

and of course, we require for stability that ¢, >
0. The objective values of wy.e Were simply taken
as the corresponding zero gafth values. Observe
that the performance measure of Eq. (51) simply
seeks to "herd" the eigenvalues to the left,
subsect to Eq. (54), which attempts to maintain
the imaginary components constant (this 1s simply
an illustration), In Table 1, the progress of a
continuation process fs summarized. The homotopy
wads designed such that y = 1 corresponds to
J(p(1)) = 0; we did not expect to be able to
achieve ¢, = 1, (i.e., drive J to 2zero) while
holding tﬁe wy constant!

Observe in Table 1 and Figure 1 (the corres-
ponding locus of the eigenvalues during the
continuation iterations) that as y was swept from
zero to .90, in variable steps, the eigenvalues
marched steadily to the left until {t was
impossible to maintain the imaginary parts
constant, Notice the dramatic increase achieved
in damping; not all weight matrices are created
equal! The initial diagonal guess (Eq. (50)) on
the weight matrix square root converged to

™ cq2
.592

-.058 1.292 ]
.067 -.039 1.472
0 o 0 1.082

t={ 0 o0 0  -0.001 .1012

0 0 0 0 -.000 .1012
.043 -.202 -0.041 0 0 0 .1742

=177 198 -0.026 0 0 0 -.013 .3402

(55) ~
where zero's megn the converged entries were
smaller than 1077, Notice that the lower left
corner is non-zero, thus N » 0 to achieve the
solution of Table 1 and Fig. 1. Notice in Table 2
ind Fig. 2 that constraining N = 0 for this case
results in a much less attractive efgenvalue
placement; especially for the third made. Thus
the cross coupling terms are significant.

As a second example, we refer tc Ref. 1
wherein a spatially discretized scheme leads to
the 1inear second order system

Mz + C2 + Kz = Du (s6)

to model a flexible structure with a central rigid
hub and four cantelivered flexible beams, The
dimensions of M, C, K were 21 x 21; the first 10
modes were considered accurately modeled. A
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torque actuator acts on the central hub and two
pairs of appendage torquers (nominally acting at
the mid span of opposing beams); the two torquer
pairs are constrained to impart identical torques
to the structure, so effectively u is a 3 x 1}
vector and x of fq. (1) 4s a 42 x 1 vector.
Twenty sensors (ten pairs of position and velocity,
sensors) are located at varfous points on the
structure. The above can be cast in the from of
the problem discussed in Section 2, and th
algorithms of Section 3 {immediately apply. I
Ref. 1, we solve several eigenvalue optimizatio
problems using this structure. In one, w
simultaneously optimize 42 control gains, 8 sensor
locations, and 2 plant design parameters to impos
12 efigenvalue costraints and, subject to thes
constraints, wminimize the sum square of th
control gains, The contfnuatfon process of
Section 3 converged reliably, even starting wit
zero feedback gains., The eigenvalue trajectories
during the continuation {terations are shown i
Fig. 3.

8. OISCUSSION

The present paper establishes important con
nections between various approaches for designin
constant gain 1linear feedback controllers, an
presents a unified numerical optimization strateg
for simultaneous or sequential tuning of control
gains, sensor/actuator locatfons, plant desig
parameters, and various weight matrices, vis-a-vi
constraints and optimality criteria specified i
terms of the closed 1loop eigenvalues an
eigenvectors. The methods presented have bee
found rather robust with respect to computational
problems one usually expects for high dimensioned
nonlinear optimization applications.
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TABLE 1 Eigenvalues for LQG Weight Matrix

Iterations with N = O

“1 31 w2 2 “3 %3
.38 .4 1.37 .24 2.03 .06
.38 .34 .37 .33 2.02 .07

.37 .92 1.40 .64 2.00 .72
no convergence for y > .9...

TABLE 2 Eigenvalues for LQG Weight Matrix

Iterations with N = 0

“1 ¢ w2 2 w3 ¢3
.38 .14 .37 .24 2.03 .06
.28 .52 .37 .1 2.02 .14

.37 .78 1.38 .85 2.00 .06
...no convergence for y > ,57,..

(N
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Figure 1 Example 1 N+ O

—
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A1l eigenvalues move right '
to left as y moves from & N
zero to one during the '
continuation design 12
iteratians ™\
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ABSTRACT

A mathematical formulation and associated algorithm is presented

)

which can be used to tune the weight matrices in an optimal quadratic

regulator to impose constraints and efgenspace optimality criteria

Y

jupon closed loop systems eigenvalues. The algorithm is found to be

e |

‘efficient’ly applicable to moderately high dimensioned problems;

reliable convergence has been routinely demonstrated with over one

)
; C-. hundred and fifty weight matrix elements being optimized to place
N eigenvalues in a dynamical system of order fourteen. These results
: - provide a basis for optimism that the approach is applicable to a
“ significant family of problems.
x: I. Introduction
N The design of practical structural control systems requires
] reliable methods to determine the feedback gain matrix. With some
e approaches, the gain matrix is directly iterated to satisfy design
- constraints, whila with some others, it is selected by solving the
: ‘ Linear Quadratic Gaussian (LQG) regulator problem.
The former type may require a large number of design constraints,
' :? since an arbitrary direct feedback gain matrix does not guarantee the
| ] stability of closed loop system. However, the latter (LQG) type of
design may encounter other difficulties, as examples, the resulting
closed loop system may become physically meaningless due to arbitrary
o weights in the criterion, or numerical difficulties may be encountered
t": in solving the Riccati equation.
, § In recent papers by Junkins, et al., [1,2], structure and control
: design techniques to satisfy eigenvalue constraints have been
R
N
e 132
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introduced. We have shown that the direct feedback gain parameters
along with plant parameters can be iterated via a nonlinear
programming method based upon using continuous minimum norm correction
strategy and hnmotopy methods to enhance consequence. We also
Antroduced a scheme for tuning the weight matrices in a LQG
performance criterion to achieve eigenvalue placement constraints.
This paper aims at developing an algorithm for optimally adjusting LQG
weight matrices and assessing its effectiveness.

In Sections 2 and 3, we formulate an eigenvalue sensitivity and

parameterization scheme considering the LQG weight matrices as design

o 3 2
=
fx'.! ot X .

P S

variables. In Section 4, we show how LQG eigenvalue placement
optimization can be formulated as a nonlinear programming process. In
Section 5 and 6, we discuss numerical results and offer concluding

remarks.

II. Closed-Loop Eigenvalue Problem

Consider the linear dynamical system in the state-space form:
X = Ax + Bu (1)
with linear feedback control

u = -Kx (2)

where x is nxl state vector
u is mxl control vector
and A, B and K are plant, controller influence, and control gain

matrices with proper dimensions. We assume, for initial simplicity,

g

N that the full state is measurable.

~ .,:-

e Substituting the control law of Eq. (2) in Eq. (1), we obtain the
g

closed-loop system




rl.'lI'!-!!-U!l!-NF-'UlW"N"'NFF"U!'U‘”5""“"""'""“""""""“"'““'""“"""""'""“"”?

o S e
;«i X = Ax (3)
where A = A - BK
i Assuming exponential solutions of the form x = afxp(it), we are led to
-~ the eigenvalue problems:
N
' A;a, = Kc.
! R R O SO (4)
' 118y = A8y
o
4 where a; and 8, are the right and left eigenvectors corresponding to
" the efgenvalue A, with the usual normalizations:
o T . T5. -
°i°j = 61.]' . BiAoj = "1513‘ (5)
;:3 Suppose that the gain matrix K in Eq. (2) is parameterized by the
o
vector p. In addition, we consider x(p) and a(p) to be continuous and
: differentiable with respect to p. The continuous and differentiable
assumptions are usually satisfied except at isolated bifurcation
L
- points. The first and second partial derivatives of eigenvalues with
le: respect to the nth and mth elements of p are given by
I, =
i T 2A
) — = B. - a. (6)
l p,  1ap, M
2
7 3y - BT aZK .
" 3p, 3Py 19p, Py
5 A (8P a, 8P a. + 8P a.8P a )/(A; - 1)  (7)
B BT T BB My T X
k=1,k=1
P
- where
= A
"b Pm = a—
o Pm
f::' The detail derivations of Eqs. (6) and (7) can be found in [1,4].
'Y
3
A
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1Y
- From Eq. (3), we have for the present case
A
1‘-‘{ -
ks 3A 3K
: TR (8)
- ap, P,
fji The evaluation of Eq. (8) depends on the parameterization scheme
3 ‘chosen for the K matrix, which will be discussed in the following
3 section.
d“l
u“‘
y.'
T ITI. Regulator Control Problem
s
N In this section, we derive optimality conditions for three
e controllers: direct feedback, LQG, and modified LQG types. The
j;j closed-loop stability of these controllers and their respective
_..-J' N
':'; parameterization schemes are discussed.
a
,ﬁfﬁ The derivatives of the closed-loop system materix (A) required
for eigenvalue sensitivity calculation are derived. Consider the
classical LQG problem:
o e T T
PO minimize J = [ (x'Qx + u Ru)dt (9)
'_.- 0
R subject to £q. (1) where the weight matrices Q and R are assumed to be
i&: positive definite.
\2: By introducing a symmetric positive definite matrix Pss' the
N
i optimal solution can be derived. First, we rewrite Eq. (9) as
T gl T T d . T T T
T J = fo [x'Qx + u'Ru + 5 (x P x)]dt x P X, *+ X P x (10)
Qf where X, and x_ are the state values evaluated at t = 0 and t = =,
QN
3*Q respectively. Assuming that our closed-loop system is asymptotically
‘ j stable, we can let x vanish.
ol ®
¥
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Substituting Eq. (1) into Eq. (10), we then obtain

_ T T T T
J = IO [x'(Q + PA+ A Pss)x + u Ru + 2x

T

PSSBu]dt + xoPssx°

(11)

In this equation, we substitute the direct feedback control law of Eq.

(2) to get

T

=T T+ % T
JBIOXIQ'C'PSSA"'A

T
P+ K RK]xdt + XPssXo (12)

where A is the stability matrix in Eq. (3). Given Q, R and K
matrices, the stability of the system (3) is guaranteed when there

exists soltuion Pgs to the Liapunov equation (71

T . &l Tov _ h
Q+ PssA +A PSS + KRK =0 (13)
With this, we can formulate a parameter optimization problem in the
form:
minimize J = xTP X (14)

K 0SSO

Subject to Eq. (13). If we consider X, to be uniformly distributed
over the unit sphere, then minimizing the expected value of Eq. (14)
is equivalent to minimizing the trace of Pes

It should be noted that stable feedback controls requires that
all the eigenvalues of A be in the left half plane of the
eigenspace. Therefore, if we attempt to impose additional constraints
that all the closed-loop eigenvalues have negative real parts, fq.
(13) embodies redundant constraints.

In References [1) and [2], we developed an algorithm which simply
modifies K elements without the constraints (13) to enforce all

eigenvalues being in the left half plane. Also, we can consider
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generalized performance index of Eq. (14) with an extra penalty
function of the gains. An attractive algorithm of iterating PSS and K
to minimize such a generalized criterion can be found in Ref. [5].
Next, minimizing the integrand of Eq. (11) witﬁ respect to K and
hssuming that the minimum value is zero, we obtain the classical LQG

optimal control law

. -1.7
us=-RB Pssx (15)
where P, is the solution of the algebraic Riccati equation
T -1,7 _
Q + PSSA + A PSs - PSSBR B PSS =0 (16)
Thus, the minimum performance index becomes N
T _
* =
J xoPssx° (17)

Note that if the open loop system is either completely controllable or
exponentially stable, then the solution to Eq. (16) exists {7]. This
condition is somewhat less restrictive compared to the case of direct
feedback. However, we have to solve matrix quadratic equation (16)
instead of linear equation (13) for P... Then, as long as either the
controllability or exponential stability of open loop system is
maintained, then the solution can be found by using Shur method [6].
Since the equation (17) is a Liapunov stability function, the
resulting closed loop system is always asymptotically stable [7].

Now we consider more general quadratic index
T

REENERE

For this performance index, the modified optimal control law and

N

(-4
r

=
0

X X

Q
N

J 18
T (18)

u u

algebraic Riccati equation are given by
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u= RN+ 8TP )x (19)

- =0T T,

Q+ P A+AP - P BRIBTP =0 (20)
where

A=A-BRIN (21)

Q=0- NI (22)
Then, the corresponding closed loop stability matrix becomes

R=a-er v+ 8T ) (23)

It should be noted that cases in which 6 is not positive definite or
the pair (;,B) is not controllable, there may be no solution to Eq.
(20)." But if a positive definite solution of the gorresponding
algebraic Riccati equation can be found, this solution can be usefuli
in the design of particular control system. Allowing the "cross
coupling weight matrix" N to be chosen non-zero is shown below to
permit constructive optimization of the closed loop eigenvalues.
Let's assume that there exists a positive definite solution PSS
although the theoretical conditions for the existence of P, (under
these generalized circumstances) have not been clearly defined. Then,
the minimum of the performance index can be found and becomes Eq.
(17). Here we elect to parametrize the weight matrix in Eq. (18),
which must be symmetric positive definite. Introducing weight matrix
parameter vectors q, r and n, and using Cholesky decomposition, we

rewrite the weight matrix in the form.

Q N T
[ . ] = LL (24)
N R

with
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e : 1 M2 "tn 11
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W
\.h“ .00 LI 2

2oy anl "m2 Mon "m1 "mom

A
5;%‘ Therefore, the global weight parameter vector p becomes

! T P RRL ML YL PR WA (26)

¥ *;
E f? For the calculation of closed loop eigenvalue sensitivity in the

!
Eﬂﬁ; previous section, we need to differentiate Q, R and N matrices with

L

{

@; ; respect to the elements of p.
P
; ! The partial derivatives of Eq. (24) with respect to
Ny
n " i the zth element of the parameter vector p leads to

s .
i\; ¥, .
W _a_ e 3L T, LEL_T (27)
) ap T Y ap
%h : L LN R L L

where the partial derivative of L can be obtained by direct

Aiﬁ differentiation (as simple arrays of al) zeroes except a unit value in
%;fz the element corresponding to P,)-

”'_} Using Eq. (27), we write the partial derivative of the closed
U loop stability matrix
ke

(ki T -1 ) T 2P

! -‘a’g—l = - B gsT (N + 8Tp ) - BR™E (%l + 8! a—pié (28)
: *g It can be shown that the partial derivatives of Psg are obtained by
:&?k solving the algebraic Liapunov equation
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SS 7T . &V _SS . _2Q _ A A -1.7

, A+ A 3, ap, Pss , - P, PSS + PSSBR B Pss (29)
where A, Q and A are given in Eqs. (21), (22) and (23),

respectively. The solution of Eq. (29) are derived in Ref. [1] and is

given below.

aP
SS _ T
wo [e]'[T,11e] (30)
where
[T,1,, = —1— [[a]T[RHS, ][a]] (31)
L71) x1+xJ AR AR

{a], [8] are n x n modal matrices whose columns are ais By
respectively and [RHSEI is the right-hand side of Eq. (29).
Therefore, using Eq. (28), the first and second derivatives of
eigenvalues in Eq. (6) and (7) can be efficiently calculated.

For the classical LQG case of N = 0, the Q and R matrices may be
parameterized separately by using the same scheme presented here with

q and r vectors.

IV. Optimization Approach for Eigenvalue Placement

The problem of eigenvalue placement can be formulated by an
optimization approach in which we seek to impose specified eigenspace
constraints and minimize an eigenvalue placement, sensitivity or other
closed loop eigenvalue/eigenvector performance criterion.

Utilizing the parameterization scheme described in the previous
section, we consider the following sets of equality and inequality

constraints:

9pi - 93(P) = 0 1 =1,2,...m (32)
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;3 fo3 = f3(P) >0 J=1,2,...my, (33)
0
ﬁﬁ where g,; and f ; are objective constraint function values or

? constraint boundaries corresponding to the ith c10sed loop eigenvalue,

'

‘* and g;(p) and f(p) are current values of these constraint

. functions. The feasible solution to Eqs. (32), (33) can be obtained
- by either considering the locally active inequality constraints as
:i equality type, or by minimizing a bounded quadratic penalty function
R subject to the equality constraints. We choose the latter approach,
e which leads to an optimization (nonlinear programming) problem of the
»)

») form:

v

'DJ ~ .

. minimize 1 LK ¢2h(-¢ ) (34)

o 2§ i i
E: subject to Eq. (32) where

\‘ = -

o1 = for - Fy(p)

t? Ky > 0 is a weighting factor and h(-) is the heaviside unit step

% function. This nonlinear programming problem can be solved by using
A continuous minimum norm correction algorithm of Ref. [3]. The
L essential feature of this algorithm is to solve a set of nonlinear
»’ equations for variable continuation steps. Its first step is to

g generate a homotopy family of problems by introducing "portable"

jg objective function values defined by the linear map

3

% 9p(v) = vg, + (1 - v)9(Pgy ) (35)
g . with a homotopy or continuation parameter y satisfying 0 < y < 1. If
gi we replace the original objective g, in Eq. (32) by the portable

¢
Qt' objective gp(y). we obtain a homotopy family of constraint functions:
K
- H(P(¥)) = vg, + (1 - v)9(Pgppre) - 9(P(Y)) = O (36)
W
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Thus, at vy = 0, the above has the solution pgy..¢s and at y = 1, it
becomes the original equations, so p(1) 1s the desired solution.
Since Eq. (36) is usually underdetermined, a unique correction

vector Ap can be obtained by a minimum norm so]utioh of the truncated

‘Taylor series expansion of Eq. (36): that is, we minimize ApTAp

subject to the equality constraint

H(p(r) + 2p) = H(p(x)) + [2F)ep = © (37)

Then, the minimum norm correction vector, ap takes the standard form

ap = 1-‘;1%1‘“%21 [%%IT]'IAH (38)
where

8H = -H(p(y))
and

aH, _ 3
12 - - 24,

Using Eq. (38) and starting with a neighboring solution at step y =
Yi_1» we refine p(yi) recursively by computing

p(v;)

i'new = p(Yi)old +op (39)

until local convergence for each Yi final convergence is achieved by
increment ing Y; after each local convergence until y approaches 1 (or,
if y = 1 cannot be achieved, continue the process until y is as large
as possible, i.e., we accept the final local convergence). Along with
the iterations to satisfy the equality constraints, the performance
index can be reduced by introducing the performance index as an extra
equality constraint with zero objective value. Incidentally, this

procedure has been shown theoretically equivalent to the gradient
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*&S projection algorithm for constrained optimization problems [9], if an
:gs equivalent homotopy imbedding is introduced to control step size in
i;“ the classical gradient projection method.

*E V. ¢

o v omputational Study

gbb ' f As a test example to demonstrate optimal tuning of the weights
Eg? for an LQG controller, we selected the DRAPER/RPL model [1]. It

Eg; consists of a central rigid hub and four arms (identical cantilever
R beams) with tip masses; in addition, it is assumed that torque

ébé actuators are located at the center of the hub and at the middle span
Eﬁﬁ' of each appendage. The model is described by Eg. (1) in which the
gif order of the system is n = 14 and and the number o} actuators is m =
$'£ 3. The number of controller inputs is three (instead of five) since
3$i the actuators or opposing appendages are constrained to apply

Lo identical control torques. The detailed configuration and the nominal
5:& structural parameter values may be found in [1].

;fgg For this example, we adopted three equality and five inequality
&;‘ constraints on the dominant closed loop eigenvalues, i.e.

:'é wg; - ws(p) = O i=1,2,3 (40)
o0 1 -2z,(p) >0 j=12,...,5 (41)
WY where ws and gy are undamped frequency and damping factor

1;% corresponding to the ith eigenvalue, respectively. We implicitly

%gg require that all remaining eigenvalues remain in the stable left-half
jff plane. The objective frequency values were taken as

J wor = 53 4w, = 4.38 , w g =7.91.

f? The equality constraints of Eq. (40) were employed, for simplicity and
;.: to avoid possible bifurcations leading to unnecessary numerical

b

5

W 143




:’i\ complications, so that the desired efgenvalue locus will remain

horizontal. The objective damping factors were taken as the critical

damping condition (co1 = 1); these were chosen to move the eigenvalues

! as far as possible to the left-hand side (these crftical damping
factors obviously cannot be achieved while holding the frequencies

!! constant!). However, progress toward this objective will tend to

increase the damping factors as much as possible and will be

1 constructive vis-a-vis eigenvalue placement; we implicitly expect

9 final local convergence for some y < 1. The quadratic penalty terms

for each mode in Eq. (34) were equally weighted, i.e., K: =1, i =

i
1,2,...,5. The total set of 8 constraints of Eqs..(40) and (41) were
imposed, by iterating 153 parameters representing Q, R and N matrices
with the starting diagonal matrix

L = diag {1%,12,12,12,12,12,12,.32,.32,.32, .32, .32, .32, 32,12 12 1?)

‘
.
.

At each continuation step starting with Yo © 0, Y| = .l and ay = .1,
E: the convergence to the intermediate solutions was reliable for small

values of y, but it became necessary to make ay adaptive for

larger y values. If the local iterations at Yisl did not converge,

-
2Tt

then the step size Ay was reduced by half until it became less than

.005 without achieving local convergence.

!! In Tables 1 and 2, the results of two cases 1) with N = 0 and 2)
. with N = 0 are reported for variable continuation steps. For both

. cases, the damping factors for all modes inciuding the unconstrained
(o ]

modes increased dramatically and similar eigenvalue locus were

w5,

obtained as can be seen in Fig. 1.

AN

At each iteration, the norm of both control gain vector (K

matrix) and eigenvalue sensitivities with respect to gain elements

&
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were calculated. Figure 2 and Fig. 3 show that the gain and
sensitivity norms for both cases increased exponentially. However,
the gain norm for Case 1 was much less than that for Case 2, and
similar result for eigenvalue sensitivity norm was-obtained. The
number of gradient calculations for the optimization were counted 133
and 99 for Cases 1 and 2, respectively. Most of computation time was
spent in solving the algebraic Riccati equation by Shur method.

Instead of Shur method, a Newton type of algorithm [8] can be
used to solve the Riccati equation and to (possibly) save computation
time (after the first nonzero y continuation step is made by the Shur
method). The convergence of a Newton algorithm will likely be
quadratic since the iteration can be initiated with "arbitrarily
close" estimates of the solution vector at each continuation step.
However, the modest increase in storage requirments should be
considered.

For both cases, the starting diagonal matrices resulted in
convergence to fully populated weight matrices at the end of the
continuation iterations. Obviously the eigensolution and gain matrix
are constructively affected by properly chosen off-diagonal elements

(N) of the weight matrix.

VI. Conclusions

This study presents numerical results obtained by an algorithm
for sequential tuning of LQG weight matrices. It is obvious that
physical performance measures usually does not dictate unique choices
for the LQG weight matrices. We have shown that the fully populated

weight matrices, especially including the cross-coupling terms in LQG
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performance criterion, affect both the control gain and closed loop

eigensolution. Since these matrices are often selected as simple

diagonal or block diagcnal matrices, the desirability of systematic

methods to optimize these weights is evident. The results of the

present study are a basis for optimism that for systematic eigenvalue

placement can be achieved; the present method has been found reliable

and numerically stable for the test examples considered in this study.
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