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The Renewal Equation for Markov Renewal

Processes with Applications to Storage Models

.',? by

)¢ Eric S. Tollar

Abstract

4., For Markov renewal processes in which the sojourn times are controlled

by an imbedded, denumerable state Markov chain, it is shown that there exists --
a random time at vhich the Markov renewal process regenerates. The basic

,: renewal theorem is then applied to determine the limiting behavior of the

- Markov renewal process. These results are applied to a particular two com-

$$ partment storage model to determine the limiting behavior of the amounts in

et storage.
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The Renewal Equation for Markov Renewal

Processes with Applications to Storage lModels

1. INTRODUCTION

Let J be a denumerable set, and let {Xn,n=0,l,...} be a stationary,
positive recurrent, aperiodic, irreducible Markov chain with state space
J. Let 7 be the stationary measure of {xn}. For an arbitrary space
(S,F), let {Zn,n=0,l,2,...} be a process defined on (S,F) such that
{(Xn,Zn),n=0,l,2,...} is also a stationary Harkov chain with transition

probabilities
PP(i,y:(§,4)) = P(X 23,2 eAlX =1,Z%y), (1.1)

for i,jeJ, yeS, AeF.
Let 0= TO < Tl < T2 <... be a sequence of random variables defined
such that(((Xn,Zn),Tn),n=O,l,. ..} is a Markov renewal process, where

for t20, AcekF,

P(T <t,Z €AlX _,,X )
(1.2)

=P(T_<t|X__ X JP(Z eAlX_ _;,X ).

That is, the sequences {Tn} and {Zn} are conditionally independent
given {Xn}.
The first moment of the sojourn time in state (i,z) is independent of

z, and given by

-y o W AT 4 W Y Vo ey -’,. g -‘_- T T -'_‘-f o« '-'..r .
.: iy 5__»\.;&\,\ e x"\'r\,_.,?,-,:- }s',‘ NPT A y
B A9 LY L AN L '« W s W (L4 s A%

v

»-;"h'

ot

M LA




m, =(f) tjEJdP(Zl=j,Tlst|X0=i).

The average sojourn time we define by
g= ) m.m,. (1.3)
i
Finally, we define

(X(t),z(t)) = (xN(t)’ZN(t))’

where

N(t) = sup{n: Tnst}. (1.4)

There has been a substantial body of work on semi-Markov processes
on arbitrary state spaces, in general directed at the asymptotic behavior
of the process, and this paper is no exception. Typically, the authors
attempt to establish conditions sufficient to guarantee that the basic
renewal theorem can be applied to the process. The approaches have been
varied (see ginlar (1969), Athreya, McDonald and Ney (1978a,b), Athreya
and Ney (1978), Kesten (1974), and Nummelin (1978)), but in general seem
to be directed at the creation of a stopping time, independent of the
future process. Athreya, McDonald and Ney used the properties of so-
called C-sets of ¢-irreducible Markov chains (see Orey (1971)) to propose
a method for the creation of an artifici§1 renewal point of the process.
Unfortunately, the method does not generalize to all Markov reneval pro-

cesses. However, we will establish in section 2 that for a process as

|
: M?Mz&@&zl&&&d



1y > & - -~ Tyl 9 = panko s WELUEUTESFF T TT IV TrEFTTE T T A TR T T ERIT I TETT T FE RN  ETT TS R W T E R E Y e .-

I‘
e
oS . . .
,ﬁ defined above, a renewal point can be created. Therefore a renewal equatiun
ol . .
o is available, and results follow from application of the basic renewal
y theoren.
A\
‘:& In the subsequent section, these results are applied to a storage
L.
B model. In a simpler form, the medel was first proposed as a single
t.4'Y
{%1 compartment model by Senturia and Puri (1973), with subsequent research
Fo
‘fl by Senturia and Puri (1974), Puri and Senturia (1975), Puri (1978),
o ]
nhe Balagopal (1979), Puri and Woolford (1981), and Puri and Tollar (1985).
‘“‘ The model was extended to an arbitrary compartment model defined on a
N
?ﬁ\ Markev chain by Tollar (1985a,b) and was considered with two compartments
»N
98 when defined on a semi-Markov process by Tollar (1986). However, in the
%
}sﬂ last cited paper, the case where both compartments were suberitical was
N
*;h left as an open question. Using the results of section 2, the asymptotic
Kol behavior of the storage model when both compartments are subcritical is
o determined via the basic renewal theorem.
{zi
%
Cht 2, RENEWAL EQUATIONS FOR THE SEMI-MARKOV PROCESS
N
%
‘dg While the structure of {Xn,Zn} is erucial in this paper, for ease
s
'*: of development, let us tempcrarily discuss Markov chains on arbitrary
N
?g) spaces. Let {Yn,n=0,l,...} be a Markov chain which takes values on some
l’ J
jitJ arbitrary state space (S,F), with P(v,*) a regular version of the station-
[ sd
oy ary transition probabilities. Then for ze¢ S, AcF, we define the n-step
= transition probabilities recursively by
‘o
in
'Cil
.u.‘., ) l .
R ] -
" PP(2,4) = [P(z,dy)P" "(y,A). (2.1)
[0 o s ’
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Let ¢ be a non-trivial o-finite measure on (S,F).

Definition 1. {Yn} is ¢-irreducible if, whenever ¢(A) >0 for AceF,

[ -]
then Z 2-nPn(y,A) >0, for all yeS.
n=l

(3

Definition 2. A o-finite, non-trivial measure u on F is called sub-

invariant for {Yn} if u(A) qu(dy )P(y,A) for all AcF, and called in-
s
variant if equality holds.

Definition 3. If there is a finite invariant measure p on F with u(S)=1,

we call {Yn} ergodic, and p the stationary measure of {Yn}.

Let {(Yn’Tn)} be a semi-Markov process defined on the state space
(S,F), where for all yeS, AeF, t20, HYA(t) is a regular version of

the transition function with respect to ¢. That is,
= T - = R
HYA(t) P(Y eA,T -T  <tIY ,=y), (2.2)

(for details, see Cinlar (1969)).

The concept of a splitting technique using C-sets to establish
asymptotic convergence of the semi-Markov process has been proposed by
Nummelin (1978), Athreya, McDonald and Ney (1978a,b), and Athreya and

Ney (1378). The pertinent results we summarize below.

HYPOTHESIS. There exists an Ae F, an integer k>0, a probability measure

Y on SnA, a family of probability measures v(x,0) on rY for all xeA,

and a constant A, 0<XA<1, such that for all xeA, EeF and D¢ ]B*,

1
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P(YkeE,TkeD|Y0=x)2)up(E)v(x,D) .

If this hypothesis is valid, then Athreya and Ney (1978) establish the

following result:

LEMMA 2.1. Subject to the hypothesis, there exists a semi-Markov process

“Yﬁ'Tﬁ)’ n=1l,2,...} distributed as {(Yn,Tn), n=0,1,2,...}, and a random

time N such that for all Be F, CeIB+, ze€8S,

P(Y§€B,T§GC,N<®|Y’5=Z)

= W(B)P(T§€C,N<°°|Yg=z).

For any probability measure v(+), any random variable X, and any set

Ae F, we define

E (X) =f P(XIY=2)dv(z), (2.3)
S
and
P, (XeA)=E (I,(X)). (2.4)

From lemma 2.1 it can be easily seen that
PW(Y(t)eB) = PW(Y*(t)eB,T§>t)

t
- R<
+£ PW(Y(t T)eB)de(TN_T), (2.5)
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which implies that renewal theory can be applied. While it is not clear
in general whether or not the hypothesis is valid for all ¢-irreducible
Markov renewal processes, we will establish that it follows for

Z = {(Xn,Yn)} as proposed in section 1. The following lemma is a modi-
fication of the proof of the existence of C-sets for ¢-irreducible Markov

chains (see Orey (1971)).

LEMMA 2.2. Let {Xn,Zn} be a ¢-irreducible Markov chain as defined in

Section 1. Then for any set EcS and any joe J where ¢(jo,}:) >0, there

is a k>0, a p>0, a sequence jl, j2, cees jk_leJ, and a set AcE with

¢(jo,A) >0 such that for all zeA, and all BcS,

P(Xn=jo,xk_l=jk_l, eee ,Xl=jl,zkeB IXO=]0,ZO=z) 2p¢(j0,BnA) .

PROOF. For convenience of notation, let ch.(C) = ¢(j,C) for all CcS.

Further, for any set UcSxS let

1) v x)= {y:(x,y) e U}, -
(2.6)

ii) Uz(y) = {x:((x,y) e U}.

Let il,m stand for a general sequence J’.l, 12, cees im-l (if a particular

sequence is necessary, it will be specified). Let Py (x,y) be the
1l,m
Radon-Nikodym derivative of

P(Zme(- ) Ixo=jo,Zo=x,xl=i

’xm-lzim—l’xmzjo

170" )
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with respect to ¢j . Finally, for our set E, let
¢

Hgn) = {(x,y) e ExE:p, (x,y)21/n}, (2.7)
1

l,m 1,m

and
H= U U U u{n) (2.8)

= = i 31 T.1<5<m- i
m=1 n=1 (ll,m 1je,,1_].m 1} “1,m

Clearly, by the ¢-irreducibility of {(Xn,Zn)}, we have for all xe¢E that

¢J. (Hl(x)) >0, for Hl(x) as in 2.6i. Then, by Fubini's theorem, we have
0

f¢jo(Hl(x))¢jo(dx) = f¢jo(H2(y))¢jo(dy). (2.9)
so ¢j ({y=¢j (H2(y)) >0})>0. This implies that there must be an
0 0
(nl) (n2)
nl, il and an n., i where for F=H, and G=H, ’
,ml 2 _'L,m2 11 i
! 1l,m
1 2
¢jo({y=¢jO(F2(y))>0,¢jo((Gl(Y))>0}) > 0. (2.10)

Consider finite partions {Eén)} of E, becoming finer as n increases.

(n) _.(n) _(n) (n), . . crs 2 _
Let Ea,B =E, XEB . Clearly {Ea,B} is a finite partition of E“zEXE.
Let i(n,x) be the unique index for the element of the partition {Esn)}

(n)

i(n,x)" By a differentiation theorem (see Doob (1953)), we
’

where xe€¢ E

have that for each measurable set BCE2,

2 ,.(n) -1.2 (n) -
[Qjo(}:i(n,x),i(n,y))] ¢’jo(BnEi(n,x),i(n,y)) IB(x,y), (2.11)
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,“. for all x, yeE" - N, where ¢5 (N)=0 and ¢5 =¢. x4, .

n Jo Jo 0 o

' Therefore, for F and G as in (2.10), there is an Xq> Yq and z, with
o' . .

:" Xq € F2(y0) -N2(y0), and zy€ Gl(yo) —Nl(yo), which satisfy (2.11). Let

» . . .

. a= 1(m,xo). B = 1(m,yo) and y= J.(m,zo). Then there is an N where for all
- m> N,

A

= |

o

o 2 (FaE‘™)y = (3/1)0, (r("‘))¢ KC (™),

) ig a, iy B

(XY,

N T - (2.12)
‘s 2 L : .

2 02 (eoe™y 2 (arme, &™ys, M),

' 0 ) Jg 3y

_r: FOI" n>N, let

A= (xe ™0, (E{MnE (0 2 (37400, (“))},
a i

. 0 _ o
-,

“ (2.13)
e

< (n), (n) ( )

- B={zeE" (Eg"'nB,(2)) 2(3/4)¢, (&,

v To

&
R Clearly cbj (A)>0 and ¢j (B) > 0 (otherwise (2.12) would be violated), and
Y 0 0

. for xe A, z ¢ B, we have

3

X
ol ¢ (F ()G, (2)) 26, (£{™)y/2. (2.14)
X\ JO ]0 8

3‘_.'{ Therefore, for ye Fl(x) nG2(z), (x,y) €F and (y,z) € G, The definition of
a
-r.; the Radon-Nikodym derivative yields
2
»
-!'-
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“" Py 3. uzdz[p, Gy, (y,2)¢; (dy)

“. ’ l,ml 1,m2 s l’m

sl 2 f P, (x,y)pi (y,z)¢j (dy) (2.15)

54
|3 ey i
L Fl(x)nGz(z) l,ml 1,m2 0

{n)
‘- 2 ¢(EB )/2nln2.

M : Since {(Xn’zn)} is ¢-irreducible, there exists an m>0 and a ¢ > 0 where

-

o~ ¢jo(cm,c) >0 for

e Cooe ™ (e BPUX LZ ) € (34,8)1(X,520) = (§,,%)) > cl. (2.16)

If we corsider only those paths il m where
,m

P(X = IX jo) >0, then there must be a particular

m 302 Xpe1 o120 ¥

, 3 %
. Iom with d>j0(C ) > 0, where

C*:{xeB:Pgm) (x,A) > ¢}, (2.17)
i,m

@
y for

) (m) - -3
rﬁ Pi (x,A) = P(ZmEAD(O-jO,u =X, Y

e X =5 ).
LWy l,m m 0

1’

:‘: Therefore, from (2.15) we have for xe C*, y e C* that
i

_,__ P: s : (x,y)2f P(m) (x,d2)p, : (z,y)

' - ll,mll,m:L l,m A 1 n l,m1 l,m2

L) > P§m)

A l,m . 0

(x,d2)4, (E(n)/2nln2..c¢j0(Eén))/2nln2.
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e
\=
:, Thus, for k=m+ml+m2, for Dc S, and for
x' -
" o . . . - '3 . . [

. (]1’32"”’]}(-1) = (ll,m’]o’ll,ml’JD"ll,m2)’ it follows that for all
'* X € C*,
N
N
<
".
P =3 =y =3 ) =1 =9

, (23 eDIX=3 0520725 % =Ty 5o+ Xy = 12X 7Tg)

ol
N

.t e (D)
E™ 2cé. (DnC*)¢, (E; ")/2n.n,. (2.18)
Ko 3 3 B 172
e 0 0

“.

. From (2.18) the lemma follows, where A = C¥%, and
& p=co, (E)P(X =5 ynrsX 53 1X.25 Y200, O

- j B S R RIS TR IR R R
- 0
[ -

. COROLLARY. If {(Xn,Zn')} is a ¢-irreducible “arkov chain as in lemma 2.2,
“ and if {Tn} and {Zn} are conditionally independent given {Xn}’ then for
:"-:: E, {ji}’ k, A, and p as in lemma 2.2, for xe¢ A, Ce ]B+, Decs,
0

P(Xke]o,ZkeB,Tk€C|X0=jO,ZO=x) > p¢(]O,BnA)\)(c),

¥
B
..~.‘
-. where v([0,x]) = P(Tk5xlxo=jo,xl=]l,...,Xk=jo).
L~

“

>

‘.} PROOF. C(ertainly, for 2ll xe¢ S,
oy
_'
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o
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o5, " X ‘o,". 0

P(X, =32 €B, Ty €CIX =3, 2,=%)

2P(X -]1,.. X = jOIXO =j )P(ZkeB T VIX j »Z, x,Xl=jl,...xk=j0)

"

= P(X 3yseen ,xk=30lx0=j0)P(zkeBlx0=30,zo=x,xl=31.. . .xk=30) (2.19)
. P(TkeC|X0=3O,X1=]1,...Xk=jo),

where the equality follows from the conditional independence of Tk and

Zk given {Xi:i.=0, 1, ...k}.

Therefore, for xcA,

his

P(Xk 922,35 Ty eClix -]0,Z0=x)
ZP(Xl=jl,...,Xk=jo|X1=30)P(ZkeBIX0=30,ZO=x,Xl=]l,...,Xk=]0)v(c) (2.20)
va(C)¢(jo,BnA). O

From the application of lemma 2.}, it can be shown that a renewal
equation can be created for the Markov renewal process {X“, Zn}’ as in
expression (2.5). Once the behavior of Ew(Tg) is determined, the basic
renewal theorem can be applied.

Let us temporarily let Yn = {Xn, Zn}. To create the renewal point,
we will make an inconsequential change in the definition of the process

{Y:} as proposed by Athreya, !lcDonald and Ney (1978a,b).

11

Nl -
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A For k as in lemma 2.2, we note that {(Ynk’Tnk)’ n=0, 1, 2, ...}

is also a Markov renewal process. From this process, we define another

) & T%
45 Markov renewal process {(Gnk’Ynk’Tnk)} by
)
X * N -
'. P(6 GYkeBTkak_tIG % £34 ,,ky)
i
[\
1 [ 1(8=0)P(Y_, eB, Y, 7Y) if 0)°
:: =0)P(Y , €B,T  ~T 1 St 3¥) 1f ye (§,48)
PL (2-21)
5 = 3 = -
s 1 Pe(BN(§,,A)Iv(00,]) + I(8=0)(P(Y , €B,T \ ~T , , <tiY . . =y)
k2 ¢
s
30 \ - 2p¢(Bn(jo,A))v([o,tJ)] if ye (34.R)5
o
Q with p, v as in corollary 2.2, and vy and 8 are either 0 or 1. We can
Lo
oy
b2 then define {(Gn,Yg,Tﬁ)} through the process {(§ .Y k,T* )} by
W)
ks k-1
o - % % =
i P2 i385 Yk-345 Taie-3 TRk £ Y o WY 1 T Tak-k )
e =
. k-1 k-1
= = - < = = - =t).
8 (].211(6j o))P(jr_\l(Ynk_jeAj,'rnk_j Tnk-j-l'tj)”nk-k P I S L
Y -

While the process {Gn,Yg,Tﬁ} is not a Markov renewal process, from (2.21)

) d
& and (2.22) it is clear that {(Yg,T:)}= {(Yn,Tn)}. Also, letting
e ,
s
N=inf{n>l:6n=l), (2.23)
B
Y,
4
:5 it follows from (2.21) and (2.22) that for
X
Ei :
b
Q‘;
A 12
R
O

) - "
B 0 Lo L
BACHOBOACHOI M

CAACK: 0 s & w,
[ 3 ’ T o c‘c-‘t'i',- v, l.a,r".n .l,n.'.i'.*

w A, Ay (A ) » ;
e et \*; B o A‘ir ), Q"“ N 0')".‘9?"?!"!.& n"'o‘.”,f'.ﬁ



> ¥(B) = [0(3,,8)19(Bn(3,8)),
R * t
a,;;;; Pw(Y (t)eC) =P¢(j!*(t)ec,'r§>t)+£ P‘p(Y*(t-r)eA)de(T§Sr), (2.21)

ok and the renewal equation is satisfied.

THEOREM 2.3. If B<w, and {Yn} is_ergodic then for ¢-almost all y and

any set C,

B .A'. ) -'lm
o\ ) lim P_(Y(t)eC) = [E (T®*)1 [ P (Y*(t)eC,TH>t)dt,
"* o Y v N o V¥ bt

210N where E

w(T§)'<°.

PROOF. First we note that since the distribution of {Tn} depends only

: on {Xn}, if T§ is arithmetic, then our Markov renewal process is equiv-

K alent to an appropriate Markov chain. As such we will assume T§ is non-

arithmetic. From (2.22) it is clear that Ew(Tg) can be determined from !

AN * &
£ {6nk’ Ynk’ Tnk

' for Be F by

}.. Let u be the stationary measure of {Yn}. Define yu'

£ u' (1,B) = pu(j,»A)6(Bn(3,4)),

— ut (0,B) = u(B) - pu(j,,A)¢(Bn(j,,4)).

. 13
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Let us show that y'is the stationary measure of {§ , ,¥Y% }., It can

r‘k’
be trivially verified from the fact that for ye (jo,A), BeF
Pk(y,B) 2p¢(Bn(j,,A)) that u' is indeed a measure. Therefore, we need

only check definition 3 for stationarity. For u'(1,B)

Il [ e 1o

f ' (§,dx)P(8, =1,Y%eBI|S _=j,Y%=x)
0S k k 0 0

I[ Z W (§,dx)IP(6, =1, YiteR | Yie=x)
S j=0

=SILI(dX)P(6k=l,x)*<€B IY3=X) < ll(]'o,A)P¢(Bn(jo,A)),

where the last equality follows from (2.21). For u'(0,B)

1
I v (5, dx)P(8, =0,Y%eB|8 =], Y4=x)
j=0 8

= = ] iz
,Sfu(dx)P(Gk 0,YfteB|Y4=x)

=(_j u(dx)[P(Y, eBIY =x) - pd(Bn(§ .81+ [ u(dx)P(¥,eBIY =x)

fu(dx)P(YkeBlYo=x) ~ u(3,»A)Pé (BN (] ,A)) = w' (0,B),
s

where the last equality follows from the stationarity of u for {Yn}.
Since u'is stationary for {Gn,Yg}, it follows from Puri and Tollar (1985)

that

| wQ,ayE (T4) < Z Iu (3,dy)E, . _\(T) (2.25)
(3558) (1,y) j=0 S (3.y)" 'k

14
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Since {Tgk} is independent of 60, we see that

(jof,A)u'(l,dy)E(l’y)(Tﬁ) = 103 3 AIPE, (TF)- (2.26)
Also,
1
1(3 %) = fut 3
jzo [ Gaen)Egy (T sfu (4y)E (TH)

] (2'27)

=Sfu(dy)ny('rk) =KE, (T,).

Since E (T,) = Z n.E.(T.) =8, combining (2.25), (2.26) and (2.27), we
Bl jeJ i i1
see that

E,(TH) <Tpu(d,y.A) 17 ks.

Therefore, from (2.24) and the basic renewal theorem (see Karlin

and Taylor (1975)) we have that

(Y*(t)eC,TE>t)dt.

. _ -15
lim P (Y(t)ec)-[}:w(T{;)J g Pw

toe ¥

The set {y:P(N=°IYg=y)>-0} must have ¢-measure zero, or else

EW(T§)=°° by simple arguments using ¢-irreducibility. Therefore

1im Py(Y(t)eC)= 1lim Pw(Y(t)eC),
400 o0

completing the proof, [

15
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X In the subsequent section, these results will be used to prove that

e a certain storage model converges in distribution asymptotically.
>

o

.. 3.  THE STORAGE MODEL

\'

For all jeJ, let {(Un(i),vn(i),wn(i)), n=1, 2, ...} be an i.i.d.

0 triplet sequence, independent of {(Xn’Tn)} as in section 1, and of all
R
ﬂ {(Un(j),Vn(j),Wn(j)), n=1, 2, ...} for §j=zi. DNefine a two compartment
g,

storage model recursively by
A
i
)
\) = -
:: (Zl,n’ZQ ’n) (maern(Xn) + zl,n-l vn(xn), 0] ’
. (3.1)
l
ft max[mln[Un(Xn)-+Zl,n_l,vn(xn)]'kZ2,n_1-Wn(Xn), 0l),
&

with the amount in storage at time t belng given by

(2, (03,2, (1) 2(Z) yieyo 2o nee))?
“;
'y
i for N(t) as in (1.4).
]
. Note that {Xn, Zl,n’ Z2,n} is a Markov chain on some subset of
(% ]

- J % [0,0) x [0,%).

Equation (3.1) is the two compartment storage model considered by

L™

Tollar (1986), which has been widely analyzed in various forms by Puri,
} Balagopal, Senturia and Woolford, among others.
b Let us define E U by
8

Euz ¥ v EU (1),

3 LTS S
N
r,
\
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with similar definitions for E'V and E“w. Ve will assume EﬂU'<w,

EV <o, EﬂW'<W. Tollar (1986) analyzed the asymptotic behavior of
(Zl(t),ZQ(t)) for the various orderings of EU, E.V and E W. However,
the case where E“U'<E"V and EnU<<E"w was left as an open question.
Using the results of section 2, we will establish the main result of

this section.

THEOREM 3.1. If B<w, EU <E"V and E U<E ¥, then for arbitrary initial

distribution (XO,Z )

1,0°%2,0

lim P(Z.(t) <z, ,Z2.(t) €2.)
o 1 1’72 2

..1‘”
=[E¢(T§)] g Pw(Zi(t)Szl,Zg(t)SZQ,T§>t)dta

for v, Zi(t),zg(t) and Tﬁ as in section 2.

The majority of the proof is devoted to the non-trivial task of

illustrating there is a measure ¢ for which {Xn,Z sZ. _} is ¢-irreducible,

l,n" 2,n

and then establishing ergodicity. After this is completed, theorem 2.3

can be used to establish the result.

Observe from Tollar (1986) that for initial values (Zl 0,22 0),
] k]
(Zl,n’z2,n) can be written in closed form as
Zl’n(Zl’o)=max(Zl’0+Sn, max (S_-S.)), (3.2)

1<j<n

17




Z2’n(Zl,o,Z2,o)=max[Zl’o+Zz’0+Rn, Zl,o+ max (S +R Rk),
12k<n
(3.3)
max (S, -S, +R -R )] - Z s
1<j<ks<n k3 " on

n n
where S = ] (U (X)-V,(X,)), end R_= ] (U, (X)-W,(X,)). Typically,

i=1 i=1
Ly
Z) n (z 1,0 o) and Z, (Zl’0 2, o) Will be written simply as 2y 0 Z2,n
with the Zl,O and 22’0 being understood.

Using (3.2) and (3.3), the first step of the construction of the

measure ¢ is the following lemma.

LEMMA 3.2. lf_EnU‘<E"V and EWU~<E"H, then there. exists a z and a jo

such that for every (xo,yo). there is an n, with the property that

-

)> 0.

=0,2 = =
: 1,0 %0°%2,070’

P(xn =30,Zl n

2z{X =j_ ,2
9 -0
0 >0

2.n0
PROOF. By a straightforward alteration of lemma 3.1 of Puri and Tollar
(1985), since E“U‘<E“V, EﬂU'<E“w, it follows that there exists an € >0, an n,
and a sequence jo, jl’ ceey jn such that

-1

P(S<eR<e,max(S-SJ)0x 31,.., IX—J)>0

=j 2+ X
0<j<n n-1l “n-1

Let M be an integer where que—l(xo+y0+e), and let

nj

= . - - - . - "l =O
Aj {w.Snj Snj-n< e,an th—n< €, max (s Sk) .

nj-n<k<nj

Xoy=dghe

xnj-n+l=]1"
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' M M

! Then P( n A, 1X =j )>0. Note for weA= n A.,, that for n.=nM
b, - 3 0°0 e r 3 0

A i=1 j=1

4

- :"_,
o

e
Py

) ii) max (S_-S.)= max ( max (S KSsIt(s -S ,))=0.

o 1€j5n, e 3 1exeM nx-n<jenk BF 3 0

: Thus, for all we A,

b

i yA (w) =max[ max (S_ -S.), x.+S J=0. (3.4)
¥ 1,n n, l<]<n0 n, 3 0 n,

i‘

o

i Define 1'1j by

L

4

R

5 nj={i:m‘.sj<n(i+1)}.

.

B Then, since max (S -5.)=0 for all k, all y€ A, we have

o 0<3< J

R, "x

N

o (3.5)
o max (S, -S.)=max[ max (S_ -S.)+S -S max (S,-S.))= max (S, -S,).
. X k . n k “n.’ . k

t 0<j<k J OSJSnk K J i nijSk L nkgjgk ]
o

L)

s’ !

;' If we in addition observe for we A that Rn < -Xy=Yy - €, Ve have

K 0

K7 from (3.3) and (3.4) that

x R

) yA (w)=max[ max (S S R- ), X+ max (S R - )1, (3.6)
o 251, 1€j<ksn, K Rk 1sk<n Rk

s

“

[}

K

"

K 19
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0
b
' Clearly, from (3.5)
K
Y max (S, -S, +R -R, ) € max (R -R + max (S, -S.))
! 1jsksn, k R“ 0<kcsn, Rk osjek K 3
=  max (R ~R, + max (s S ))
< k
. 0x< k<no o nk<]<k
N, (3.7)
i
H = max [  max (R'1 -R + max (Sk-S.))]
- 1<8<M nl-n<k<nf 0 nf-n<j<k L
%
i < max [ max e R tS S )],
s 1<f<M nZ-nSjSkSnt
¥
b, where the last inequality follows from R. -R , < ~ (M-£)e.
,t- n, nk
‘?'a
Also, we have that for we A,
k max (S+R R )= max [S +(S,-S )+ (R -R, Y+ (R -R )].
1<ksn Rk l1sksn, "k ko 0 Rk Ny Mtn
' 1l 1
N Since S < -enn °, and R -R < -e(n.~-n, -n)n_
) 14 ]
::' n 1’\k n, nk+n Onk
b
max (S +R -R. )< max (S -S +R -R ) - e(M-1).
e, 1sks<ng R" 1<ksn,, k . ntn R
!:'
'
L. Since e(M-1) > X,y We see that
W
L
; X, + max (S+R-)<max (S-S +R -R,)
e  1sksn, ¥ R 1sken, © "k By K
9,: ) (3.8)
P < max [ max (S -S +R_,-R.)].
1<<M nf-n<kspe X 0Enonb Tk
N

A 20
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ey
3

Ot .
i
,s N Combining (3.7) and (3.8), from (3.6) we see that for weA,
R
b Z (w) € max ( max (S, -S.+R_,-R )). (3.9)
2,m, 1<P<M nl-n<jsksne K 3 € 2
b
s Therefore, if z is such that

w
| Y
R
.}a P(S _<-¢,R <~¢ max (S -S.)=0, max (R -R +S,-S5.)<z,

’ n " o<jen B3 0<j<kén © R
i
Uy
' =4 =3 =4 )=
i X,53) seeeaX ZiglX=ig) =8> 0,
RO
4: it follows from (3.4) and (3.9) that

¢
o

f M

g =5 = < = = = .

P(Xno JO'Zl,n 0,Z2,n leO jO’Zl,O xO’Z2,0 y0)> 5 >0. 0O

.‘I 0 0
B

>
(.*
* THEOREM 3.3. If FE U<E V and E U<E W, then there exists a z and a J,.,

—_— = T =7 m 0
I..‘
.ﬁ‘:.; such that for every (i,zl,z2) there is an n, with the property that
K
R *.'
l'c -t - e - -
P(Xn -]O’Zl,n -O’ZQ,n £z|XO-1,Zl’o—zl,Z2,0—z2)>0.
iy 1 1 1
B ?"’
e
lee
S
o PROOF. From (3.1) it is clear that for all n, x, and j, whenever
e
. L]
<

: "' xlSyl and Xy $Yps then
N
o
o
R
e
l..':
e 21

e o e (T T «
- o .).‘-._‘:*" "p R R W
A oy,

P
e

1 v Wl O W W W T Ca Co P V0 ="
) -.)n._, ‘J'-r"'"‘f'.r'

K 1'., q'!l,l'. N tl‘ -
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_0 Z <x1)( - Z = Z -
l,n *72,n 0 3 1,0 "1°72,0 ”2)

2P(X = 0,2 Sx|X0=j,Z Z ).

n-30°21,n"%%2,n 1,0 Y1°%2,0772

Since for any i, 21’22’ there must be an m, Bl and B2 where

P(X ]o,Z ..B H( 2)>0»

<B
1’2, l 0" l 2 0"

then it follows from the Markov nature of (X Zl ) and from (3.9)
’ ’

that lemma 3.2 implies for n, = n,+m,

P(an=j0,zl'nl=0,22,nl£zIX0=1,Zl,0=zl,Z2’O=z2)

: = X =9 = 7 =
2P(X =30,2) | =0,Z, o <21X=3,,2) =B),7, o=B,)

R 1,n, 0

'P(Xm=Jo,Z <B.,Z mSB2|X0=1,Z ),

1,m 1%, 1,0°%1°%9 0722

which completes the proof. [

To accomplish the next step in showing that (X Zl n Z2 n) is
?

¢-irreducible, we need the following lemma about cyclic permutations.

Let Xl,...Xn be a sequence of values. We define the cyclic permu-

tation of X ceey Xn about k, by

l,

Xkoh’. 1<i<n-k,
x(ko)___

i xi-n+ko n-ko <ji<n.

22
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N
N
’v +
~
':_: LEMMA 3.4, Let {(Xi,Yi), i=1,2,..., n} be a sequence of numbers satifyinc
.-l
n n n

- EXiSO, ZYiSO, max ( ) X.)=0. Then there exists a k, vhere
> 1 1 0sj<n’j41 *
4
b k n n
in max ( } X§k°)+ ) YSKO))- max ( ) X§k°))=0
% 0<jsksn j+1 k+l 0<jsn j+1
4
" holds.
¥
& The proof of the above is omitted. It is easily verified that for
2..
W n ko k n
o ko equal to the integer where ) Y, + max ( Y X,)= max () X, + } Y
g kotl 0<jsk, J+1 0<j<ksn j+1 k+l
33
o that the lemma is true. Using this lemma, we establish the next step in
;: ¢~irreducibility.
a THEOREM 3.5. If E U<EV and E U<E W, then for z and j, as_in theorem 3.3,
: there exists an n;s jl and a measure uz where uz(to,w)) > 0 such that for
L)
h
' all AeIB+, and 0sx <z,
.‘
X
:: P(an=]l,Zl,nleA,22,nl=0lX0=30,Zl’o=0,22,0=x) 2 uz(A).
”!e
j PROOF. From lemma 3.2 it is clear there must be a y where for
’
2’

A(i) = {w:S  ~-S <-¢g, R,-R, <-¢, max (S_,-S,)=0,
Y ni “ni-n ni " ni-n ni-n<k<ni ™ k
i (3.11)
-
. max (Rp-R, #S. =S, ) <y, X . .=, «.0y X =301,

ni-nsjsksleni 27 RSy j ni-n+l ‘1 ni 70
‘-F
W P(A(i)lxni_n=jo) > 0.
8

23
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. (k) (k)

Let us define jo |

and define

B(i,k)={w:S ,~S < -g, B .-R < -¢g, max (R -R, +S -S.) <2y,
nti n ntl n jcj<k<Pen+i k 'k 3
(3.12)
(k) (k)
X1+l-]l s eves Xn+2_30 }.

Then from (3.11) it follows that for all i, k,

P(B(i,k) !X, ~3ék))> Q.
M
Clearly, for A= n A(i), where H>¢ ’(z+3y)+1 we have P(AIX C >0,
i=l
and for all weh, S, < -Mg, R, < -Me, max (S, -S.)=0. Thus, from
Mn Mn

0<3is<Mn

lermma 3.4 we have there is a ko where

P(A,R, + max (S, -S.)= max (R, -R WSy =S X =5.)>0. (3.13)
fn Rko o<k, ko 37 osjekam M0 17070

Let m=ko -n+*max{i:ni Sko} and nl=Mn+m. It is clear from (3.12) and

(3.13) that for

M-1
B={ n R(ni+m,m)} n{w: max (R -Rk-t-S —S )- max (Sn ‘S.j) =0},
i=0 m<j<ksn m<j<n 1
1 1
= (301“)
P(BIX 3,) > 0-

24
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)

)

'.
: Also, for
3

»
o c={w: max (R ~R +S -S,)<y, X =3_},
! 0sisksm ™ s mom

)
4 H

K P(CnB|X,=3,) > 0.
: Let us show for Z1,0=0’ Z2’°=z for all we C n B, Z2 ’nl=0. It

o follows from (3.3) that

X

K

. Z =max( max (R -R 4S5, -S,), z+R_ ) - max (S_ -S,).
2,my 0sSksny n ok LR "L osjsn; my 3
i

: From the definition of B and C, we see

‘ z+Rn =Z+Rm+Rn :RmsZ*ry-Me<0,

y 1 1
.
N and therefore
v:?

4 Z zmax[ max (R -R +8, -S,), max (R_ =R +S ~S,)]- max (S_ -S.).
v ?

. 2,0 msjsksn, "1 kK k 7] 0sisksn; ™ s 0sjsn, "
&
$ j<m

: From (3.14), we have that

‘i
'».: max (R -Rk+Sk-S.) - max (S_-S.)so0,

, n . n
% rsi<ksn, U1 3 0sjsn, 1 J
V':

::‘ and therefore to show Z2 n =0 for weBnC, it is sufficient that for
o 1 )

¥ .

0 0y - - I3

!:: tsj<m, OSJSRSnl, Rnl Rk +Sk sjso. If k <m, from the definition
T of Band C,

N

ol

N

""

a

: 25
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i‘
l‘
“‘ - 4 - -
:; Rk+s Sj (RlR)+(R Rk+s )< Ne'i-y<0.
!?'
N If k2m, letting i =max {i:ni+m<k},
)
s
B
i 3
« - + - - - - - - -S.
Rnl R +8, sj (Rnl Rni+n+m) + (Rni+n+m Ry Sy sni+m)+(sn‘,u\m sm)+ (sm s])
§ <-e[M-(i+l)]+2y-ei+y<O.
&
)
X Since 2 =0 for we BnC, it follows that
0 2,n
Y 1
3
o
,‘ P(xnl-jm,z,z’ 'OIX ]ogul 0= Z2,O=Z)>0'
l
¥4
3
e
s For Ae B+, let
» u (M) =P(X_ =3 _,Z. _ eA,Z, _ =0IX =i ,2. 20,2 .=z).
o z lj’l,l’2,nl|0j0’1,0’2,0)
o
2
[\
at Then to complete the theorem, we need only note that for x <z,
|
B
‘o P{X_ =3_,2 A2,  =0IX =j.,2, 50,2, .=
: { ny I 1,nl€ *“2,n, 1%=3422) 07022, o7%)
o =P(X_ =j , max (S_ -S.)eA
- ?
. B M™ocjen, ™ 3
N 1l
oY
‘.'
L
a max{[ max (R -R, +S S)x+R J- max (S_ -S,)=0IX =§.}2u_(A),
- 0<i<k<n Rk k3 1 0<i<n nl 3 0 -0 2
‘:. 1l l

A A

since max[ max (R -Rk+Sk—S.), x+R ] is monotone in x. 0
0sjsksn, 3 1

Y

" 26

O ) Oy OO
2 DUV S E RO ’um‘n Qe B0 'nu. "s"»' ,‘..‘ AL



- v - b & Al L - -

-~
- -
-

C.
A |
a from the previous theorems, we can now establish that {X , 2 s 2 :
1" n l,n 2’n
'4 is ¢-irreducible.
&
l"
\
) |
! -
::: THEOREM 3.6. If EﬂU<E"V and E“U<EﬂW, then {Xn, Zl,n’ 2,n } is ¢-irreduc-.
‘ ible with respect to the measure ¢ defined by
3
'
X hnd
N - -n -3
% ¢(B) fnzlz PL(X 22y ;9% o) €BIXG=] 02, o=x,2, (=0)u (dx),
s
f' for jl and u, as in theorem 3.5.
b
KN
) PROOF. From definition 1 of ¢-irreducibility (see section 2), we see we
¥
:: need for all B where ¢(B) >0, that for all i, Z15 Zys
e
W
.‘ Z 27 PP((x 2%y, no%2,0) € BIX=L, 2y 67219%, 0 =z,) > 0.
'y n=1
4
\
M)
:: If ¢(B) >0, there is an n, where
¢!
.
B IP((X“l’Zl’“l’z?’“l) € BIX)=3)52) o7%,Z, (=0 (dx)> 0.
o
e
From theorem 3.5 there is an n, where for x<z,

"
"
19 _
;; P(an-Jl,Zl’ngeA,Z2’n2-0IXO—jO,Zl,o-O,Z2’o-x) 2n_(A).
5
W) From theorem 3.3 there is an n, where

= = <

P(X, i0’21, 20,2, 0. 521X5702) 472102, §72,) =8> 0.

- 3 3 3
N

Zi 27
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Therefore, for n=n, +n, +n, we find from theorem 3.3 and 3.5 that

1 2 3
p((xn,zl’n 2,n )eBlXo=1,Zl’0=zl 2,07%2 )
ZP((Xn1+n2’zl,nl+n2’z2,nl )eBIX io 1,00 Z2,OSz)B
2 [PO(X_ 0y 2y 1 n, 2’nl)eB|X0=jl,zl’0=x,Z2’o=0)uz(dx)8>0. 0

Now that ¢-irreducibility has been established, the ergodicity of

{Xn, Z } can be established by appealing to the large body of

l,n’ 2:

literature on ¢-irreducible Markov chains.

THEOREM 3.7, If E U<E V and E U<E W, then {(xn,zl’n,zz’n)} is ergodic.

PROOF. Since {Xn, A } is ¢-irreducible, from Jain and Jamison

1,n’ z2,n
(1967) it follows that there exists a subinvariant measure u where
u>¢. (see definition 2 in section 2). From Tweedie (1975), it follows

that if

=]

s -1
im n

P((X
1

=0))>0 (3.15)

" e~1

; 1221105, 1 )AIXyT3002) (70:2,

for some A where 0 <u(A) <=, then {Xn, 2 } is ergodic.

1,n’ Z2,n

It was established in Puri and Tollar (1985) that there is a jo,‘No, M

and 6 >0 such that for all n> NO’

. 28
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4
o
Tt

_w

~‘:

v "’ = = = =

.‘:; P(xn‘B’zl,n 0|xo 50’21,0 °'Z2,o 0)>38,
q where B=(jo} v{1l, 2, ... M}. Also, from Tollar (1985a), we have that
g |
, 4 Zz’n—-» Zz. As such, there is a w where for all n> No, ‘
O™

Wy

o - -

by P(Z, n>¥W1Xo™3 502y =052, (=0) < 6/2.

,‘_tﬁf:i
b

e Thus, for all n>Noy,

oy
¢ ) = = =

. P(X €B,Z) =0,Z, <wlX(=j,Z) =0,2, ,=0)>6/2,

l.}edr ‘
f:, As such, from (3.15) we need only establish that 0 <u(B,0,[0,w]) <w to
Mo

::5'. prove ergodicity. From theorem 3.3, it is clear for some w that

S

o ¢{B,0,{0,w]) > 0, which implies u(B,0,[0,w]) >0, since u>>¢.
E O
'$ To show that u(B,0,[0,w]) <=, it is sufficient that u(i,0,[0,w]) <=
b ','
:%:., for all ieB. Since u is o-finite, there are sets where u(sn) <o, and
108

b I S =Jx[0,») x [0,%). In the construction of these sets in the proofs
RN n= l
‘l..
: N that u is o-finite (see Jain and Jamison (1967), and Orey (1971)), we
o
A : see that the sets are of the form
AN %

ey

e Sp = {(3,x5%,): {P((x.,z ,1329,106A1X073:2) =) .2, o7x)) 2 L (3.18)
0

<

WO

P for A a specified set where 4(A) > 0.
‘t?'
b
,)":!
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'
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L
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ek Since ¢(A) > 0, there is an n, where

o=0)uz(dx)=u>0- (3.17)

i fP((x1n 2y l)eAlX =3)12) oT%Zy

) s 1 2’

. +
From theorem 3.5, there is an n2 where for x<z, all De B ,

i::"’ P( x -j l 1 ,n

eD,Z le =3 ,Z
0
L 2

2 o x)zu (D). (3.18)
o1 2

2

o Also, from theorem 3.3 and (3.1), it is apparent that there is an n 3 where
\

) for all u =w,

= = =4 = =

254 (3.19)

2P(xn.=j0’zl,n.=0’z2,n.52|x0=j’z Z2,0=w)=6
" p) ] ]

> 0.

1,070 j

+n2, it is clear

;}s:: Therefore from (3.17), (3.18) and (3.19) for n=n, +n
o

that for all usw

ol PO(X,,2Z JeAlX=3,2) 4%0,2, o=u)2ad;>0.

1.n’ 2,n 1,0 7*72,0

""'“"f It is therefore clear from (3.16) that (j,o,to,w])c Sn* where ng, (an)‘l.

’\ As such u(B,0,{0,w]) < 2 u(s *) <=, which completes the proof. 0
K. L) jeB ]

s 2. } is

e Once the ¢-irreducitility and ergodicity of {X , 2
n 1l,n° 2,n

5:\. established, the proof of theorem 3.1 follows quickly.
by
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PROOF OF THEOREM 8.1. The majority of the proof is accomplished by simply

noting that {Xn, Zl n’ yA s Tn} has the desired form of section 2. As
?

2,n

such, theorem 2.3 can be applied to yield for ¢-almost all (io,xo,YO).

lim P(i

. o,xo,yo}((Zl(t)521,§2(t)szz)

- n:w(rgn'lg P, (Z8(t)sz) 25 (t)sz, T t)dt. (3.20)

To complete the theorem, it is sufficient to show that for all (io,xo,yo),

(3.20) holds.

Since (3.20) holds for ¢-almost all initial values, for any ioe.J,
there is an (xl,yl) where for initial value (io.xl,yl), (3.20) holds.

As such, to complete the proof it is sufficient to show that

)) i.o.lxo= io]= 0,

P[(Zl,n(xo)’zz,n(xo’yo))"(Zl,n(“l)’zz,n(xl’yl

for 2. (x), Z

1.n (x,y) as in (3.2) and (3.3).

2,n

From (3.2) and (3.3) we can see that

P[(Zl’n(xo),z2’n(x )= (Zl,n(xl)’z2,n(xl’yl)) i.o.|X0==i ]

0*Yo 0

<P([s >m1n( “Xgs "%y YJu[ max (S, +R —R )>-min(- “Xgo=Xg )] (3.21)
1<j<n

U[Rn>m1n(—x0—yo.—xl—y1] x.o.|X0=1 ).

0
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bl
b
N From Chung (1967),
b
" n"ls +EU-EV as., n 'R +EU-EW
o n L4 T ey n “_ T deSey
"
-1 -.-1 -1
- and n ~ max (S _R —Rj)-n R_+n ~ max (S.-R,)
N 1<js<n 1<jsn
o
bs -*E"U-E"W-Pmax(O,E“W—E"V), a.s..
o
' . Since E 29 <E“V and E“U <E"W, we see that
)
v
:" Sn+—w, R +-», max (S,+R -R.)+>-=», a.s.,
':r. n 1<j<n J
’|
K: and therefore from (3.21) we have that
W
\
7
'.. P[(Zl,n(xo),zmn(xo,yo)) z (Zl’n(xl),22’n(xl.yl))i.o. IXO=10) =0,
A‘Q
‘,. which completes the theorem. [
I
o
':. As is usually the case, the construction of the measure ¢ was the
¥
" major difficulty in dealing with the storage model as a Markov chain.
"
b The technical details unfortunately obscure the simplicity of the con-
v,
, cept. When there is a renewal point, the measure ¢ is readily constructed
for general Markov chains. While there is no renewal point in the pre-
n
N sent model we make the process act like one exists by first visiting
)
0’€ (10,0,-) and then visiting (il,',o). In this manner it "forgets'" the
E initial values Zl,o’zz,o'
:
&
L}
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L, CONCLUSION

While the results in section 2 are useful for the typical storage
models defined on denumerable state Markov renewal processes, they are

not particularly satisfying for the more general Markov renewal process

Y 5V x Ca e K4

P

on an arbitrary state space. Perhaps more structure on {Tn} (for example,
absolute continuity on all sojourn times with respect to a single measure)

would allow a suitable modification of the C-set proof to establish that

,‘.'-k

ergodicity and an appropriate finite sojourn moment are sufficient to

satisfy the hypothesis of section 2. If this were the case, the proof

-

that the arbitrary semi-Markov process converges would be complete.

This area remains an open question.

-

The multitude of steps in section 3 point out a recurring problem

-
(L5 % i

in Markov chains, the construction of ¢. The techniques of section 3
shed little light on how to construct such measures. As of ncw, the

technique is very model specific. For applications, it would be very
useful to have conditions which guarantee ¢-irreducibility for Markov

chains.

) As far as the actual model under consideration in section 3, there

K are a variety of areas for further research. The most obvious is ta\
take the arbitrary compartment model in Tollar (1985a,b), and extend the

D continuous time results as in the present paper and Tollar (1986).

4 Perhaps of more interest would be to alter the model to more realistically
accomodate two-way flow between compartments. Finally, it would be nice
to have a more useful characterization of the limiting distribution of

! (Zl(t),Zz(t)) than the renewal equation results found in section 3.

Unfortunately, the present techniques seem to be of little help in these

s directions.
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