




9 g

UNIX Consultant: A Progress Report
Robert Wilensky

Division of Computer Science
Unversity of California, Berkeley

We have been engaged in the construction of a system called UC, for UNIX Con-
avltant. UC is designed to be an automated consultant that converses in natural
language with naive users to help answer their questions about the UNIX operat-
ing system. The intent is to provide a system that allows a naive user to ask
questions about terminology, about command names and formats, for information
concerning plans for doing things in UNIX, and for assistance in debugging prob-
lems with UNIX commands. UC should respond by explaining terminology, pro-
viding command names and describing their format, filling in the details of a user
plan, suggesting plans to achieve goals, or engaging a user in a dialogue by
requesting more information.

To achieve this goal requires research into basic issues in natural language pro-
cessing and common sense reasoning. Our research views the user as a planning
agent who has goals implicity or explicitly expressed by his or her utterance. It
is UC's task to determine the user's goal and to aid the user by providing infor-
mation for the achievement of those goals. <-...

In our previous work, we had implemented a prototype version of this system.
Much of our research work has addressed shortcomings with the technology that
limited the success of our initial efforts.

Probably the most fundamental problem is one of knowledge representation.
Weaknesses in the knowledge representation scheme we were employing, and,
indeed, in knowledge representation schemes in general, prevented our system
from having the flexibility and extensibility we sought. To rectify this problem,
we developed a new knowledge representation scheme called KODIAK. KODIAK
is described in Wilensky 1111. Some important characteristics of KODIAK are: It
clarifies the semantics of slots; it is uniform, and applies to any number of seman-
tic domains; it based on relations, and in particular, has a small set of primitive
epistemological relations and allows for the creation and definition of new rela-
tions, and it has a canonical form.

Perhaps the most interesting aspect of KODIAK is the introduction of "non-truth
conditional" representation entities. We call such entities views. The idea behind
views is that one concept can be thought of in terms of another. This viewing of
another concept creates a new concept. It appears as if the introduction of such
entities solves a number of long standing representational issues.

For example, one problem is that most systems provide one category called Per-
son, and other called Physical-Object, and presume that these are in fact dis-
tinct. This is a problem because in many case, we want people to inherit

I..'



properties of physical objects, even though they are not properly classified as
such. We address this issue in KODIAK by asserting that Person is a kind of
Living-Thlng, but, in addition, we also assert that it is possible to VIEW a
Person as a Physical-Object. Morever, the VIEWof Person as a Physlcal-
Object is itself another concept. Namely, it is the concept Body. Thus we can
allow Person to share some of the properties of Physical-Object without it
properly being represented as one. The importance of views is that the allow the
flexibility of viewing a (possible defined) concept as something other than its
"ordinary" interpretation. We believe that views constitutes a major finding in.
the area of knowledge representation.

Views appear to be particularly important in representing knowledge about
language. Jacobs 171 points out that many otherwise unstatable linguistic regu-
larities can be captured using views. For example, there are many cases like
"John took a punch from Bill", "Bill gave John a punch", and "John gave Mary
a kiss" in which it appears that a person being acted upon can be talked about in
terms of giving and taking. Our solution is to represent a "being acted upon as
transfer" view, for the purposes of linguistic expression. That is, an object being
acted upon can be viewed as transferring the action to that object. Once this
view is represented, knowledge about the linguistic expression of transferring
(e. g., that certain transfers can be expressed using the words "give" and "take")
can be employed to express certain kinds of non-transferring actions that act
upon some object.

We are completing a second version of UC that incorporates some of these
aspects of knowledge representation. KODIAK was used as the representation
language for the construction of UC's knowledge-base. The knowledge-base
included knowledge about linguistic patterns, UNIX concepts and commands,
user and UC goals, and planning. During a course of an interaction with a user,
UC adds new knowledge to the knowledge-base in the form of instantiations of
the general knowledge already contained in its knowledge-base. The addition of
new knowledge serves as the method of communication between the various com-
ponents. Its semantics is defined by its relationship to the rest of the
knowledge-base. Because it creates the form of communication between sub-
processes of UC, the construction of the knowledge-base more clearly focuses the
responsibilities of the various components of UC.

This version of UC can handle over So different question types. Among other
things, it is able to generate examples where appropriate. Here is some sample
actual I/O:

> (UC)
Welcome to UC (Unix Consultant) version 3

Please type in your questions about Unix in English.
If you want information about how to use this program type 'help'.
To leave, just type 'exit'.

mm



-3-

User: Can you tell me how to move a file?
To move a file to another file, use my.
For example, to move the file named paul to the file named peter,
type my paul peter.

User: Do you know how to delete a file named dekai?
To delete the file named dekai, type rm dekai.

User: Do you know how to delete a file?
To delete a file, use rm.
For example, to delete the file named lisa, type rm lisa.

User: How can I delete the file charlie?
To delete the file named charlie, type rm charlie.

User: How can I delete the file named tony?
To delete the file named tony, type rm tony.

User: How can I get rid of the file named boob?
To delete the file named boob, type rm boob.

User: I want to delete a file named peter.
To delete the file named peter, type rm peter.

User: I want to delete a file.
To delete a file, use rm.
For example, to delete the file named jim, type rm jim.

User: I want to delete the file dave.
To delete the file named dave, type rm dave.

User: How can I add read permission to a file?
To add read permission to a file, use chmod.
For example, to add individual read permission to the file named
charlie, type chmod u+ r charlie.

User: How can I add the owner execute permission to a file?
To add individual execute permission to a file, use chmod.
For example, to add individual execute permission to the file
named marc, type chmod u+ x marc.

User: How can I change the group execute permission of a file?
To change the group execute permission of a file, use chmod.
For example, to remove group execute permission from the file
named jim, type chmod g-x jim.

User: How can I change the group read permission of a file?



4

To change the group read permission of a file, use chmod.
For example, to remove group read permission from the file named
george, type chmod g-r george.

User: How can I remove the group write permission from the file named bimW?
To remove group write permission from the file named bimbo, type
chmod g-w bimbo.

User: How do I change the protection of a file?
To change the permission of a file, use chmod.
For example, to remove individual read permission from the file
named paul, type chmod u-r paul.

User: How can I compact a file?
To compact a file, use compact.
For example, to compact the file named peter, type compact peter.

User: How can I create a directory?
To create a directory, use mkdir.
For example, to create the directory named paul, type mkdir paul.

User: How can I find a file?
To find a file, use whereis.
For example, to find the file named charlie, type whereis charlie.

User: How can I find out how much disk space I am using?
To find out how much disk space you are using, type du.

User: How can I find out who is using the system?
To find out all the users on the system, type finger.

User: How can I find out wilensky's phone number?
To find out Wilensky's phone number, type finger wilensky.

We have also been developing additional kinds of planning mechanisms to sup-
port the reasoning component of our system. In particular, Richard Alterman
[1-4] has been developing a technique called adaptive planning.. The aim of adap-
tive planning is to borrow plans from related tasks and refit them to meet the
demands of the current planning situation. For example, suppose UC has a plan
for printing a file on the imagen using the UNIX 'lpr' command, by appending
the argument '-Pip". An adaptive planner can re-use this plan in order to con-
struct a plan for deleting a file from the imagen queue using the 'lprm' command
by appending the argument '-Pip".

Alterman suggests several distinguishing features of adaptive planning. The first
of these is that adaptive planning makes the background knowledge associated
with an old plan explicit. By making the content and organization of the



background knowledge explicit, it becomes possible to re-interprete the plan for a
wider variety of situations. A second important feature of adaptive planning is
that it plans by situation matching. Rather than treating the old plan as a par-
tial solution which is modified using weak (problem solving) methods, the old
plan is used as a starting point from which the old and new situatioaare
matched. In the course of the matching a new plan is produced. A third imror-
tant feature of adaptive planning is that it can re-use old plans in circumstances
where the planner does not have access to a general plan. As shown in the exam-
ple above, adaptive planning is capable of taking a specific plan for accomplishing
a specific set of goals, and refitting it to meet the demands of some new situation.

A prototype model of an adaptive planner is now under construction.

References:

111 Alterman, Richard. Plexus: Networks for Adaptive Planning. In Proceed-
Ings of the Second Workshop on Theoretical Issues in Conceptual
Information Processing. New Haven, CT. May, 1I085.

12] Alterman, Richard. Event Concept Coherence. To appear in Advances in
Natural Language Processing. David Waltz (ed.). Lawrence Erlbaum
Associates.

[3) Alterman, Richard. Towards a Theory of Adaptive Planning. To be appear
in Advances in Cognitive Science 1, Noel Sharkey (ed.). Ellis Horowitz
Associates.

141 Alterman, Richard. Adaptive Planning: Refitting Old Planning Experiences
to New Situations. Submitted to the Seventh Annual Conference of the
Cognitive Science Society.

15] Alterman, Richard. Summarization in the Small. To be submitted to Cog-
* nitive Science.

161 Jacobs, Paul. Efficiency and Flexibility in a Language Generator. To
appear in Computational Linguistics.

(7] Jacobs, Paul. PHRED: A Generator for Natural Language Interfaces.
Berkeley Computer Science Division Report No. UCB/CSD85/198. January
1985.

(8] Jacobs, Paul. A Knowledge-Based Approach to Language Production.
Berkeley Computer Science Division Report No. UCB/CSD86/254. August



191 Jacobs, Paul and Rau, Lisa. Ace: Associating Language with Meaning., In
ECAJ-84: Advances In Artificial Inteigence. T. O'Shea (ed.). Elsevier
Science Publishers B. V. (North Holland) ECCAI, 1984.

1101 Rau, Lisa. The Understanding and Generation of Ellipses in a Natural
Language System. Berkeley Electronic Research Laboratory Memorandum,
Fall 1984.

1111 Wilensky, Robert. KODIAK: A Knowledge Representation Language.
Proceedings of the 6th National Conference of the Cognitive Sci-
ence Society. April 1984.

AW


