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CONTROL OF ION-VELOCITY DISTRIBUTIONS
IN LASER-TARGET INTERACTION EXPERIMENTS

The plasma created by a laser beam heating a solid target may be used to

provide the thrust for imploding inertial-confinement-fusion pellets I or for

the acceleration of material for impacti and shock wave studies.2 Laser-

produced plasmas are also well suited for studying the coupling and

instabilities that occur when an ion beam interacts with a stationary

plasma.3 Such ion beam-plasma interactions occur in many diverse situations

such as the aurora, interplanetary shocks, supernova explosions, nuclear

detonations in the atmosphere, theta pinch-like devices, and others.
4 - 6

A typical ion beam-plasma interaction study requires two component plasmas -

a drifting component (the beam) and a stationary component (the background).

One way this can be arranged is to have a laser heat a solid target that is

placed within an ambient atmosphere.7 9  The plasma which is generated from

the solid target serves as the drifting component and the atmosphere, ionized

oy radiation from the laser-solid interaction, serves as the background

component. In such experiments, it is desirable for both the peak ion

velocity and the ion-velocity distribution to be individually controllable and

monoenergetic. The mechanisms that control the peak ion velocity have already

been analyzed theoretically and exporimentally1 1 and are well understood:

the peak ion speed varies as the 0.2 power of irradiance; it is a weak

- . function of the laser-spot size; and the ion distribution is simple and

single-peaked if laser irradiance times the square of the laser wavelength is

less than about 10 watts -p2/cm
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However, there has been no experimental attempt at systematic control of the

ion-velocity distribution. Many theoretical treatments relate the

distribution width to plasma temperature. 13 If temperature is the controlling

parameter, then controlling ion-velocity-distributions independently of the

peak ion velocity would not be possible.

In this paper, we will demonstrate experimentally that the ion-velocity-

distribution width can be controlled and made narrow by varying the laser

spot-size. We will show that the distribution width is not controlled by

plasma temperature: it is determined primarily by whether the ions are mostly

in the rarefraction or the steady-state regime. A simple analytic model

relating laser spot-size to ion-distribution width will be developed, and the

experiment compared to a code calculation. Our observations and modeling are

consistent with the theory of Matzen and Morse who predicted that longer-

duration laser pulses produce narrower ion-velocity distributions which they

identified as a signature of steady-state flow. 1

The experiments were performed using the Pharos II laser

(1.05 4 pm wavelength, 4-ns FWHM duration), focused thru f/6 optics onto the

surface of foil or disk targets. The resulting irradiation was 1012_1013

W/cm 2 which heated the coronal plasma to about 500 eV, causing ions to ablate

away from the target at speeds of a few times 107 cm/s. Time-of-flight

Faraday cups, placed about 27 cm from the targets at 20, 170, 400 , and 620

with respect to the target normal, monitor the ion-current; similarly placed

calorimeters monitor the ion energy distribution. Other diagnostics monitor

laser energy and duration, and the spatial profile of the laser beam on the

target surface. To separate the physics of the initial ion expansion from the

physics of any subsequent beam-plasma interaction, we irradiated these targets

in vacuum (<10 - 5 Torr).
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The widths Au/u of the ion-current distribution (FWHM width/peak speed ofP

the Faraday cup peak) were measured as a function of these parameters:

1) Irradiance, which was varied from 1 x 1012 to 2.3 x 1013 W/cm2 by

changing the laser energy output;

2) Target recoil speed, which was varied from 1/50 to 1/5 of the

ablation-ion speed by changing the target's thickness
1 5

3) Irradiated-spot size, which was changed in three ways:

a) by focusing the laser beam and varying the laser energy to

produce a variable spot at approximately constant irradiance,

b) by passing the laser beam thru different diameter apertures

placed in the near field,

c) by irradiating disk targets of different diameter, and,

4) Target composition.

We found that the distribution widths were not sensitive to either

irradiance or target speed. They were, however, very sensitive to the size of

the irradiated spot, slightly sensitive to target composition for low to

moderate-Z materials, and very erratic for high-Z materials.

Figure 1 shows the variation of current-distribution widths of ions from

plastic (CHn ) targets as a function of angle and irradiated-spot diameter.

It is evident that the width varies as the 0.9 power of the diameter for

angles of 400 or less, i.e., narrow traces are produced by small irradiation

diameters. No variation with angle is seen except at 620 where the widths

are significantly broader, peak velocities significantly smaller (200 vs 500

km/s), and no clear correlation with spot size exists. In all cases,

broadening of the distribution function is due to an increase of slow

3



particles in the tail of the Faraday-cup trace. Sample Faraday cup traces are

also shown in Figure 1.

The erratic data at 620 can be understood by considering the origin of

these ions on the target surface. Previous experiments, 1 6 have shown that the

two-dimensional expansion of plasma from a planar target is similiar to the

flow of a nonviscuous, irrotational, incompressible fluid from a circular

aperture which is described by Laplace's equation. Therefore, except for

(generally small) thermal effects, ions emanating from different points on the

target surface are mapped into different asymptotic spatial locations; i.e.

each Faraday cup measures ions originating from different regions of the

target. Using Laplace's solution, we estimate that the ions at 20, 170, and

400 originated from well within the illuminated spot at respective distances

of about 0.1, 0.3, 0.7 spot radii from the spot center. The ions at 620, on

the other hand, originate from near the edge of the irradiated spot (about 0.9

radii from the center) where the plasma is cooler and affected by the presence

of a target edge. These ions are therefore slower and their velocity spread

is larger. Since most of the plasma mass leaves the target at small angles

(1/2 of the mass ends up within 400 of the target normal), the ions at 620

constitute a minor fraction of the expanding plasma.

Like the experiment, our hydrodynamic code shows that smaller laser spots

produce narrower Faraday cup current traces and ion-velocity distributions.

This code, called MACH 1, is one-dimensional in spherical geometry and uses

adaptive zoning for good resolution near the critical surface.17 Laser light

*absorption is modeled by inverse Bremsstrahlung, which is the dominant

absorption mechanism at our irradiances. Multigroup radiation transport and

the SESAME equatiuns of state18 are invoked by the code as necessary.
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When matching our experimental results to the code's spherical geometry,

we seek to preserve two features: the size of the irradiated spot, and the

asymptotic angle 0 of the blowoff-plasma expansion. The latter, which is

arbitrarily defined as the cone angle that contains half of the total blowoff

mass, is found experimeptally to be 800. We require, therefore, that sectors

of the code's spherical target that subtend a cone angle of 800 have the same

area as that of the illuminated spot. From basic geometry, the appropriate

relation is found to be:

f )2 2(
(1) r = 2nr (1 - cos (8/2))

where r and rs are the illuminated spot and sphere radii respectively.

For a = 800 r. = 1.5 re. The code, using spherical targets of this radius and

of the same thickness and composition as in the experiment, runs for the

entire laser pulse duration, after which time the ion-velocity distribution

does not change significantly. The blowoff plasma is then "collected" to

simulate the action of the Faraday cup.

We produced simulated Faraday cup traces and ion velocity distributions

corresponding to two shots in our experiment - one where a target was

irradiated with a small (200 pm) diameter spot and another with a larger (70 0 P

m) diameter spot. These are shown in Figs. 2a and 2c. Note that the current

traces and velocity distributions for the two cases are very different, even

though the peak velocities and plasma temperatures are similiar. The

I corresponding profiles of ion-velocity versus distance profiles from the

target, at the peak of the laser pulse, are shown in Fig. 2b. The code

predicts that the width of the ion-velocity distributions varies as the 1.15
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power of the focal irradiation diameter (Fig. 3) - very close to the 0.9 power

measured in the experiment. The code also predicts that the ion distribution

width scales linearly with laser wavelength. The laser wavelength, however,

was fixed in our experiment so that this prediction is not yet verified.

We can derive analytically a relationship between laser-spot-size and

ion-velocity profile width. Consider two very simplified analytic

descriptions of the blowoff expansion process; namely the solution which

describes the rarefaction caused by a sudden planar expansion of an isothermal

gas:
1 9

(2a) v=(r-r s)/t + c

-v/c(2b) n=n se -

and the isothermal wind solution that describes the steady-state, spherical

expansion of a gas:
2 0

(3a) 0.5(v/c)2 -ln(v/c) = 21n(r/r s ) + 0.5

(3b) nvr 2 = constant.

Here, v and c are the plasma and sound speeds; and r,r5 stand for distance and

target radius respectively; n is the density and t is time. Looking at Figure

2b again, it is apparent that the steady-state velocity solution (dotted line)

is similiar in shape to the code prediction for a small spot; whereas the

6
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transient-state rarefaction solution (dashed line) is closer to the prediction

for a larger spot. Since the steady-state solution is "flatter" than the

rarefaction solution we intuitively expect that its velocity distribution and

current traces would be more monoenergetic; i.e. narrower. We reason,

therefore, that if during most of the laser pulse the flow is characterized by

the rarefaction solution, the velocity distributions will be broad. If, on

the other hand, the solution crosses over to steady-state early in tne laser

pulse, the velocity distributions will tend to be narrower.

The plasma flow can, in the above simplified view, be described by a

combination of these two ideal solutions - with the outer edge of the flow

(i.e. the ions thpt left the target early) following the rarefaction solution,

and the inner part of the flow (i.e. the ions that left the target later)

following the wind solution. The crossover from the rarefaction to the wind

solutions will occur while the laser pulse is still on if the velocities given

by Eq. 2 and Eq. 3 are equal at some time t T , the laser pulse duration.

Substituting Eq. 2 with t T into Eq. 3 we get the expression for the cross-

over point,

(4) 0.5Q 2 
- ln(Q) - 21n(ri/r s ) - 0.5 = 0

where, Q = (rs/cT)(ri/rs - 1) + 1.

Thus, the normalized radius at crossover, ri/rs, is a function of

rs/cx only. If rs/cT is small, the crossover occurs at large

ri/r s so that most of the ion flow is governed by the steady state wind

solution and we would predict narrow ion-velocity distributions. Otherwise,

7



the cross-over occurs nearer to the target so that most of the flow is not in

steady state and hence we predict broader temporal ion-velocity

distributions. This relationship between rs/cT, the flow solutions, and the

ion-velocity widths is consistent with experimental observations. For

example, the narrowest Faraday cup distribution at 40 degrees or less has a

width (Au/u p) of 0.1 and the broadest 0.6. The corresponding values of

rS/oi are estimated to be 0.1 and 0.5 . Thus, the ion-velocity distribution

shapes depend primarily on the geometry of the experiment. Longer pulses will

provide narrower distributions as predicted by Matzen and Morse.
1 4

In addition to plastic targets, we also irradiated aluminium, nickel,

silver, and gold foils. We observed two types of behavior: For atomic

numbers up through nickel, the Faraday-cup traces exhibited the same single-

A peaked velocity distribution that was seen in plastic targets. The

distribution width, however, did increase slightly with atomic number. For

example, nickel targets irradiated with a 810 pm diameter laser spot had a

distribution width (Au/u p) of 0.75 (+ 0.05) while similarly irradiated plastic

targets had a width of 0.6 (+0.05,-0.1). Aluminium distribution widths fell

in between at 0.65 (+ 0.05). The silver and gold targets behaved quite

differently: The ion distributions were very broad and so multi-peaked that a

unique definition of width was no longer possible.

One may argue that the small. amount of broadening of single peaked

distributions with increasing atomic number occurs because higher atomic

number plasmas take longer to reach steady state. This is because the sound

spe(ed is lowered by radiation cooling and by a decreasing contribution of the

ion-presure term. However, this argument does not consider charge

distributions within the plasma and associated effects such as charge



exhange. It also does not explain the v-ry different behaviour of the silver

and gold foils. Since our diagnostic6 do not distincjish different charge

states, little else can be said on this topic. It is nevertheless encouraging

that the major correlations that we observe can be explained by rather simple

ph. sics.

One subtle point is worth mentioning. Wher, the irradiation diameter is

varied, not o'ily the spot-size but also the spatial profile of the irradiation

changes somewhat. Consequently, there is no entirely precise definition of

"irradiation diameter," especially when comparing different methods of spot

size variation. However, since the biggest variations are in the low

intensity edge of the profile, we can define a practical spot-size by ignoring

the wings of t~ie irradiance distribution. Because of this, the experimental

irradiation diameter is defined as the lesser of the spot diameter that

contains 50% of the energy, or the diameter of the irradiated disk when the

target is not a wide foil. This convention is consistent with the code

model's treatment of the ablation plasma in the forward 800 sector of the

target. If one were to choose a definition of spot size that was more

sensitive to the tail of the irradiation profile (such as the spot that

*contains 90% of the energy), then all the qualitative effects described above

would still hold, but the absolute scaling parameters would depend on the

method used to vary the spot-size.

Another point to keep in mind is that at any point in space and time the

instantaneous velocity spread is negligible in both the steady-state and

rarefaction regimes. Rather, the ion-velocity sweeps through the range

measured by the Faraday-cup current width - the fastest ions first and slower

ions later in time

9
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In conclusion, we have demonstrated that it is possible to systematically

control the width of velocity distributions of ablation plasma from laser-

irradiated targets and to create very narrow distributions. Since the

distribution width is not a sensitive function of irradiance, but the peak

speed is, both these quantities may be controlled individually. This should

make it easier to do cleaner beam-plasma interaction experiments and,

consequently, better comparison to theory. We point out that the widths of

the ion-velocity distributions in laser-target interaction experiments are not

primarily determined by temperature, as is assumed in many analytic

treatments. Rather our results and theoretical modeling suggest that the

width of the distribution is proportional to sound transit time thru the

plasma divided by the laser pulse duration in agreement with the theoretical

work of Matzen and Morse. To obtain the narrowest ion velocity

distributions, one should use small, low Z targets with short wavelength,

longer duration laser pulses.

The authors thank Dr. Charles Manka for many stimulating conversations.

This work was supported by the Defense Nuclear Agency and the Department of

Energy.
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FIGURE 1. Current trace width (Au/u p) versus irradiated spot diameter at 2,

17, 40 and 62 degrees to the target normal. Symbols indicate the

method used to vary spotsize: A, &- aperturing the laser beam; V -

focusing beam on foil target; V focusing beam on disk target; 0, S-

changing size of disk target; x - not part of any of the above

sequences. Squares indicate variation in irradiance (1-6 x 1012).

Insets show typical Faraday-cup traces.
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FIGURE 2. Theoretical results: (a) Computer-generated Faraday cup trace and

ion-velocity distribution for a plastic target irradiated with 3.5 x

1012 W/cm 2 in a 200-pm spot and [(c)] a plastic target irradiated

with 1.4 x 1012 W/cm 2 in a 700-pm spot. (b) Velocity profiles at the

peak of the laser pulse versus radius calculated with the code (solid

line), with the steady-state spherical solution (dotted line), and

the planar rarefaction expansion solution (dashed line). Aproximate

sound speed in the blowoff plasma is indicated by a "C".
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