

1.55

KUNDER UNDER DER DER

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

Biological Report 82(11.48) TR EL-82-4 April 1986

Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Northwest)

Presson

COHO SALMON

by

Jeffrey C. Laufle, Gilbert B. Pauley, and Michael F. Shepard Washington Cooperative Fishery Research Unit College of Ocean and Fishery Sciences University of Washington Seattle, WA 98195

> Project Officer John Parsons National Coastal Ecosystems Team U.S. Fish and Wildlife Service 1010 Gause Boulevard Slidell, LA 70458

Performed for Coastal Ecology Group Waterways Experiment Station U.S. Army Corps of Engineers Vicksburg, MS 39180

and

National Coastal Ecosystems Team Division of Biological Services Research and Development Fish and Wildlife Service U.S. Department of the Interior Washington, DC 20240

PREFACE

This species profile is one of a series on coastal aquatic organisms, principally fish, of sport, commercial, or ecological importance. The profiles are designed to provide coastal managers, engineers, and biologists with a brief comprehensive sketch of the biological characteristics and environmental requirements of the species and to describe how populations of the species may be expected to react to environmental changes caused by coastal development. Each profile has sections on taxonomy, life history, ecological role, environmental requirements, and economic importance, if applicable. A three-ring binder is used for this series so that new profiles can be added as they are prepared. This project is jointly planned and financed by the U.S. Army Corps of Engineers and the U.S. Fish and Wildlife Service.

Suggestions or questions regarding this report should be directed to one of the following addresses.

Information Transfer Specialist National Coastal Ecosystems Team U.S. Fish and Wildlife Service NASA-Slidell Computer Complex 1010 Gause Boulevard Slidell, LA 70458

or

U.S. Army Engineer Waterways Experiment Station Attention: WESER-C Post Office Box 631 Vicksburg, MS 39180

Accesio	n For		
NTIS DTIC Unanno Justific	TAB ounced		
By Di. t ib:	:tio: / vailability	Codes	
A			
Dist	Avai! 1 Spec		
A-1			

iii

CONVERSION TABLE

Ś

NAMES OF BELLEVILLE

YXXXXXXXXX

Metric to U.S. Customary

<u>Multiply</u>	<u>By</u>	<u>To Obtain</u>
millimeters (mm)	0.03937	inches
centimeters (cm)	0.3937	inches
meters (m)	3.281	feet
kilometers (km)	0.6214	miles
square meters (m ²)	10.76	square feet
square kilometers (km ⁻)	0.3861	square miles
hectares (ha)	2.471	acres
liters (1)	0.2642	gallons
cubic meters (m ³)	35.31	cubic feet
cubic meters	0.0008110	acre-feet
milligrams (mg)	0.00003527	ounces
grams (g)	0.03527	ounces
kilograms (kg)	2.205	pounds
metric tons (t)	2205.0	pounds
metric tons	1.102	short tons
kilocalories (kcal)	3.968	British thermal units
Celsius degrees	1.8(°C) + 32	Fahrenheit degrees
	U.S. Customary to Metr	<u>1c</u>
inches	25.40	millimeters
inches	2.54	centimeters
feet (ft)	0.3048	meters
fathoms	1.829	meters
miles (mi)	1.609	kilometers
nautical miles (nmi)	1.852	kilometers
square feet (ft ²)	0.0929	square meters
	0.4047	hectares
square miles (mi ²)	2.590	square kilometers
gallons (gal)	3.785	liters
cubic feet (ft^3)	0.02831	cubic meters
acre-feet	1233.0	cubic meters
ounces (oz)	28.35	grams
pounds (1b)	0.4536	kilograms
short tons (ton)	0.9072	metric tons
British thermal units (Btu)		kilocalories
Fahrenheit degrees	0.5556(°F - 32)	Celsius degrees

. 1

CONTENTS

P	age
PREFACE	iii
CONVERSION TABLE	iv
ACKNOWLEDGMENTS	vi
NOMENCLATURE/TAXONOMY/RANGE	1
MORPHOLOGY/IDENTIFICATION AIDS	3
REASON FOR INCLUSION IN SERIES	3
	3
Spawning and Eggs	3
Larvae, Fry, and Smolts	5
Ocean Life	6
Survival	6
GROWTH CHARACTERISTICS	6
THE FISHERY	7
ECOLOGICAL ROLE	ģ
ENVIRONMENTAL REQUIREMENTS	10
Temperature	10
Water Depth	
Water Velocity	
Oxygen	10
Space	
Other Factors	12
LITERATURE CITED	15

۷

• •

ACKNOWLEDGMENTS

We gratefully acknowledge the reviews by Sam Wright, Washington Department of Game, Olympia, and Gary Thomas, School of Fisheries, University of Washington, Seattle.

Figure 1. Coho salmon adults, with spawning phase of male at bottom (from Scott and Crossman 1973).

COHO SALMON

NOMENCLATURE/TAXONOMY/RANGE

- Scientific name . . . <u>Oncorhynchus</u>
 kisutch (Walbaum)
- Preferred common name . . Coho salmon (Figure 1)
- Other common names . . Silver salmon, silver trout (in freshwater), coho, sea trout, blueback, hooknose (Haw and Buckley 1973; Scott and Crossman 1973)

Class Osteichthyes Order Salmoniformes Family Salmonidae

Geographic range: Anadromous in north Pacific Ocean, and coastal area from Monterey, California, north to Point Hope, Alaska, through the Aleutians, and from the Anadyr River, U.S.S.R., south to Korea and Hokkaido, Japan. Most abundant between southern Oregon and southeast Alaska. Coho have been planted successfully in lakes and reservoirs in Alaska, Washington, Oregon, California and in some cases in Montana for many years. The first successful stocking in the Great Lakes was in 1966, with a continued sport fishery since then. Other plantings include Atlantic States from Maine to Maryland (moderate success) plus Argentina and Chile (some success in Chile) and Alberta, Canada (apparently successful: Scott and Crossman 1973). Major spawning rivers and areas of concentration for the Pacific Northwest United States are shown in Figure 2, and

Figure 2. Major Pacific Northwest spawning rivers of coho salmon. Coho are found in all marine waters of the area (Scott and Crossman 1973).

saltwater migration patterns of adult coho salmon as determined from tagged and marked hatchery smolts are shown in Figure 3. Juveniles can migrate to southeast Alaska and farther in the first few months at sea.

MORPHOLOGY/IDENTIFICATION AIDS

Dorsal fin 9-12 rays; adipose present; anal fin 12-17 rays; pectoral fin 13-16 rays; ventral fin 9-11 rays with axillary process; lateral line scales 121-148; pyloric caeca 45-83; vertebrae 61-69; gill rakers 18-26 on first gill arch; branchiostegal rays 11-15. Measurements as percent: body depth 24 (in standard length); head length 22 (in total length); head longer in spawning males (Hart 1973).

Body fusiform, somewhat compressed laterally; fork length usually 46 to 61 cm, maximum 98 cm; and 3.6 to 4.5 kg, with a maximum of 14 kg in marine populations (Scott and Crossman 1973).

Juveniles colored Pigmentation: blue-green dorsally, with silvery sides, and 8 to 12 widely spaced, narrow parr marks; lateral line through center of marks; dark adipose fin; orange caudal fin; and large orange anal fin with three long white anterior rays and black posteriorly. Oceandwelling adults steel-blue to greenish dorsally; silvery sides, and white ventral surface; small black spots on back, upper sides, dorsal fin base, and upper lobe of caudal fin. Before spawning, males acquire darker, dusky blue-green back, with bright red stripe on dull sides, grey to black ventral surface.

Pale gums in marine adult coho distinguish it from chinook salmon (<u>Oncorhynchus</u> <u>tshawytscha</u>), which have black gums. Spotting confined to upper lobe of caudal fin (spotting on both lobes in chinook), and number of pyloric caeca less than 93 in coho and greater than 140 in chinook, according to Dahlberg and Phinney (1967). Juvenile coho have pigmentation over entire adipose fin, while juvenile chinook have an unpigmented adipose (Dahlberg and Phinney 1967).

REASON FOR INCLUSION IN SERIES

Coho salmon constitute a valuable part of the commercial and sport fisheries of the west coast freshwater and marine environments. They are the object of extensive hatchery rearing and release programs. They are tertiary carnivores, and are themselves preyed upon.

LIFE HISTORY

Spawning and Eggs

Coho are anadromous, entering freshwater to spawn (Godfrey 1965). Beginning in July, but later than August in some areas such as Grays Harbor, they return from the open ocean to coastal areas near the outlets of their natal streams. They enter rivers on all but peak floods, moving upstream primarily in daylight. Runs take place from August to February. Eames and Hino (1981) reported a November peak in a Washington stream.

Coho salmon spend 30 to 60 days in freshwater, and in North America, peak spawning occurs from late September to January, and continues as late as March. The fish usually spawn in small streams, but also use large main streams, though seldom more than 240 km above the mouth. They spawn in relatively fast water (0.3 to 0.5 m/sec vs. 0.1 m/sec for sockeve), normally in riffles or where ground seepage occurs. Although numbers of males and females in a spawning run are similar males may predominate early in the run and females later. More males are present overall due to jacks (sexually precocious males that return early). while females predominate

slightly in the older adults. More than one male often competes for a spawning female. Spawning takes place at temperatures of 0.8° to 7.7° C in Kamchatka, U.S.S.R. (Gribanov 1948) and at 4.4° to 9.4° C on the west coast of the United States (Reiser and Bjornn 1979).

Fecundity of coho salmon is variable depending on the size of the female, deographic area, and year. Scott and Crossman (1973) cited a range of about 1,440 to 5,700 edgs for females 44 to 72 cm long in Washington, and an average of 2,100 to 2,789 edgs per female (no lengths given) in British Columbia. Estimates in Kamchatka nut coho salmon second to chinook salmon in fecundity, but no lengths were given. Shapovalov and Taft (1954) developed the following fecundity formula: number of edgs = 0.01153 x fork length^{2,9403}.

The female may deposit eggs in three or four redds (nests), which she digs by lying on her side and beating out the gravel with her A dominant male moves in and tail. spawning the female; the joins act consists of vibration by both fish, with gaping mouths, the release of eggs and milt. and The egos are covered with gravel displaced from the upstream side of the nest. Eggs are demersal, large (about 4.5 to 6.0 mm), and red. The female quards the nest for a short time, but hoth parents die soon after spawning (Scott and Crossman 1973). Incubation time apparently varies inversely with temperature, as shown by the following observations:

> 38 days at 11°C average 48 days at 9°C average 86-101 days at 4.5°C.

Larvae, Fry, and Smolts

Newly hatched larvae possess a large yolk sac, which they absorb while remaining in the gravel for 2 to 3 weeks following hatching. They are at first photonegative, but become photopositive, and face upcurrent as well. Newly emerged fry have been observed from March to July. The fry live in shallow gravel areas, at first schooling; after a short time they disperse up- and downstream. Optimum rearing habitat for coho consists of a mixture of pools and riffles, abundant instream and bank cover, water temperatures that average between 10° and 15° C in the summer, dissolved oxygen near saturation, and low amounts of fine sediments (Reiser and Bjornn 1979).

Small numbers of coho salmon may migrate to sea, but at least a vear's residence in freshwater is normal. However, there is a gradation from 1 year in freshwater in Washington up to 2 years in freshwater in central British Columbia, with more northerly fish usually spending 2 years in freshwater. For example, fish in the Yukon River drainage spend 2 years in freshwater (Scott and Crossman 1973). As they grow, the fry move to deeper water, feeding on progressively larger foods. In winter they feed and grow little. The juveniles usually migrate downstream from April to August of the year following their hatching, with peak migrations in May in nearly all areas. Nighttime migration appears to be the rule (McDonald 1960).

Size and age of the fish, as well as stream conditions, trigger outmigration. The radical physiological and behavioral changes that occur during smoltification make salmon in this stage particularly sensitive to environmental stress factors. For example, elevated water temperatures can accelerate the onset of smoltification and shorten the smolting period, sometimes resulting in seaward migration of smolts at a time when conditions are unfavorable (Wedemeyer et al. 1980). Larger juveniles are believed to be the first to go downstream, but aggression by larger fry may induce early downstream movement by smaller ones soon after

emergence (Chapman 1962; Mason and Chapman 1965).

Ocean Life

Farly studies indicated that coho salmon did not migrate far offshore, but more recent high-seas research has shown differently. They have been captured as far as 1,930 km away from their point of origin on the North American west coast. Movement of these fish is not random, since marked adult fish from the Columbia River are rare in Alaska salmon catches. The North American west coast oceanic migration patterns of adult coho salmon, as determined from tagged and marked hatchery fish, are depicted in Figure Offshore migrations by juveniles 3. commence in July and August, as evidenced by sharp declines in inshore catches of juveniles at that time. There are two migration types of coho salmon in Washington and British Co-"ocean," or high-seas dwelllumbia: ers, migrate great distances, while "inshore" fish such as those living as residents in the Strait of Georgia or Puget Sound migrate very little and stav near their river of origin. Four types of life histories occur in the Pudet Sound-Georgia Strait area: (1) ocean migrants that go to sea in the spring of the second year; (2) resident fish that go to the ocean in the fall of the second year after spending the summer in inside marine waters; (3) resident fish that go to the ocean in the spring of their third year after 1 year in inside marine waters; and (4) true residents that spend their entire lives in the inside marine waters. Each of these groups is progressively smaller in average size, due to less time in the open ocean. High-seas fish of North American origin probably winter south of 45° N. lat., and move north in mid- to late summer, later than do other salmon.

Coho salmon apparently concentrate in the Gulf of Alaska in the summer, dispersing coastward from there. Milne (1950) indicated that migrations are mostly direct rather than alongshore. Fish reportedly move slowly, wandering as they migrate, although they have averaged up to 30 mi per day over long distances. The delays are attributed to intensive feeding until late in their journey.

Most coho salmon, including juveniles and adults, are found within 10 m of the sea surface except when covered by a shallow layer of warmer "tuna" water. This zone is where the sport fishery concentrates its efforts (Haw and Buckley 1973).

As a rule, adult coho salmon spend two growing seasons at sea, appearing offshore near the outlets of their rivers of origin in the second summer after they enter saltwater. In southeast Alaska and northern British Columbia, they arrive in large numbers in July, and in southern British Columbia, Washington, and Oregon their arrival is later, with a general timing gradation that is progressively later the more southerly the run. They home almost entirely to the streams of their origins, and the small percentages that do stray migrate primarily to nearby streams.

Survival

Various studies (Salo and Bayliff 1958; Tagart 1976) were used by the Washington Department of Fisheries (in press) to derive a composite life sequence to predict average smolt production per female coho salmon. From this, an average production of 75 smolts/female was estimated. This is applicable only to the 3-year-old fish that spend 2 years at sea in the southern part of their range, south of central British Columbia.

GROWTH CHARACTERISTICS

Most coho salmon reside in the ocean for two growing seasons, return-

California coho salmon averaged 16 cm at outmigration, and grew an average of about 52 cm while at sea (Shapovalov and Taft 1954). Kamchatkan coho salmon were similar, with ocean growth much faster than freshwater growth for both 3_2 and 4_3 fish (Gribanov 1948). The Kamchatkan returnees averaged 60 cm FL (range 40-87 cm), and 3.5 kg (range 1.5 - 6.5kg). Males were larger than females. The California returnees' sex, age, and average fork length were as follows: 2_2 males, 46 cm FL; 3_2 males, 64.7 cm; 3, females, 63.9 cm. Males were typically larger than females.

THE FISHERY

Coho salmon are a highly valued species, the object of large commercial (Table 1) and sport (Table 2) fisheries. Additional data demonstrate the value of coho salmon in U.S. commercial fisheries: in 1980. 39.3 million pounds, worth \$43.1 million, were landed; in 1981, 35.2 million pounds were landed, at \$33.3 million (U.S. Department of Commerce 1982). Most commercial landings are close to shore (29.7 million pounds from 0 to 4.8 km out, versus 5.5 million pounds from 4.8 to 322.0 km out, in 1981). Coho ranked consistently fourth behind sockeye salmon (Oncorhynchus nerka), pink salmon TO. gorbuscha), and chum salmon (O. keta), in the Pacific coast commercial fishery from 1968 to 1978, and made up 8% to 11% of the total catch (International North Pacific Fisheries Commission 1971-81). The Lake Michigan coho salmon sport fishery is outproducing the entire U.S. Pacific Coast coho salmon sport fishery (Tanner 1974).

Coho salmon are fished commercially with gill nets, set nets (treaty Indians only, in Washington), purse seines, and trolling gear (Washington Department of Fisheries et al. 1973). Sport fishing is by hook and line in saltwater and in streams. Saltwater angling is both off-coast and inshore, with Puget Sound, for example, supporting a substantial fishery in late summer for ocean and resident fish. Haw and Buckley (1973) discussed sport fishing techniques in detail. Salo (1974) estimates that anglers spent between \$100 and \$125 in 1966 to catch a coho salmon.

Many coho salmon are reared and released from State, Federal, and other hatcheries; about 40% to 50% of the net-caught salmon in Puget Sound are estimated to be of hatchery origin. Coho salmon and chinook salmon are the most successfully reared salmonid species. Hatcheries have become important because of such developments as pellet-sized food, better disease treatment, and the rearing of fish to the yearling stage (Fulton 1970). Columbia River runs have been enhanced by hatcueries since 1959.

Current management objectives of the Washington Department of Fisheries are toward maximum sustained harvest. with the treaty indian Tribes under the Boldt Deciver Conited States vs. State of washin ton' having a legal Fight to King of the atchable allocation. Prevent our sizes for each individual rocer and estimated and escapement double for each river are predicted (Zilliges 1977, an escapement qoal is the number of spawners necessary to maintain the run of a given size, and a goal may vary from year to year In-season run reassessments are also made (Zillges 1977). From these predictions and projections each year, the catchable

	British	<u>Columbia</u>	A1	aska	Wash	ington	Or	egon
Year	MT	Fish	MT	Fish	MT	Fish	MT	Fish
1968	15,100	5,257	9,530	2,751	3,950	1,275	2,620	929
1969	7,990	2,414	3,660	1,133	3,220	9 20	2,240	802
1970	13,649	3,946	5,407	1,527	7,885	1,870	5,935	1,401
1971	14,089	4,788	5,208	1,447	6,100	2,002	5,341	1,695
1972	10,536	3,359	6,415	1,831	4,471	1,253	2,941	925
1973	11,227	3,531	4,948	1,457	5,854	1,672	3,314	937
1974	10,379	3,724	6,394	1,862	6,923	2,117	4,562	1,328
1975	7,736	2,332	3,233	1,014	6,389	1,837	2,641	772
1976	9,325	3,698	5,063	1,432	5,530	2,162	5,096	1,936
1977	9,856	3,341	6,987	1,815	5,536	1,745	1,493	478
1978	19,152	3,350	9,062	2,821	4,222	1,480	1,870	730

Table 1. Annual commercial landings of coho salmon by State or Province in metric tons (MT) and number of fish (in thousands) for the years 1968-78. Data from International North Pacific Fisheries Commission (1971-81).

Table 2. Estimated numbers of coho salmon caught in the recreational fisheries of four States during 1970-78. Asterisk (*) indicates marine catches only. Data from International North Pacific Fisheries Commission (1971-81).

Year	Alaska	Washington	Oregon	California
1970	32,075	540,231*	279,602	14,615*
1971	50,500	845,735*	335,003	67,421*
1972	37,510	615,895*	135,078	43,770*
1973	42,575	552,255	254,610	31,641*
1974	50,550	788,981	339,126	78,162*
1975	70,300	701,721	273,892	20,860*
1976	59,100	1,195,579	127,490	57,642*
1977	104,090	683,108	212,371	26,788*
1978	131,945	713,219	268,980	44,282*

allocation of coho salmon in each individual river is made with non-Indians receiving 50% and treaty Indians receiving 50%. The non-Indian then divided share is between commercial fishermen sport and anglers.

Management methods for coho and other salmon must include freshwater habitat assessment, stock assessment including run size, habitat protection and improvement, and artificial The Washington Departpropagation. ment of Fisheries has been using Smoker's (1953) preseason method in Puget Sound to predict coho salmon catches from stream discharge data. as well as the previous year's jack run size. Such factors, however, as extremes, environmental saltwater environmental variations, and fishing intensity also play a role (Zillges 1977). Other methods are being developed and used in other areas by cooperative effort between State biologists and tribal biologists.

Wright (1981) described the complexities of salmon management, stating that good run forecasts with accurate and timely reassessments are important. Also, runs dependent upon hatcheries could be harvested at a higher rate than wild runs because of high survival of juveniles in hatcher-Where two stocks coexist geoies graphically, maximum sustainable yield should be defined for the weaker stock, with the surplus fish taken where the stronger stock is easier to He argued against depending target. on user groups, i.e., fishermen, for sound management; the vitality of the should be the primary resource criterion used in designing management procedures.

ECOLOGICAL ROLE

Coho salmon fill different niches in freshwater and in saltwater. The alevins living in gravel do not feed, but depend on the yolk sac for nour-

ishment. Even though part of the volk sac may remain after emergence. the fry begin to feed immediately (Godfrey after emergence 1965). Johnson (1970) stated that juvenile salmon in Washington, depending on the season and stream, ate various life stages of aquatic insects (mostly at the surface), such as dipterans, ephemeropterans, plecopterans and other insects, as well as crustaceans and fishes. If their normal food is scarce, juvenile coho will eat insect exuviae, though this provides no nutrition (Mundie 1969). Alaskan coho fingerlings prey on sockeye salmon fry (Oncorhynchus nerka); 30% of coho captured between May and July had sockeye remains in their stomachs (Roos 1960). They ate the sockeye even though sticklebacks were more abundant.

Fresh et al. (1981) categorized the food of coho salmon by zones in Puget Sound and other Washington marine waters. Juvenile fish from sublittoral habitats had stomach contents consisting mainly of decapod crustacean larvae, plus fishes (mostly herring), amphipods, and polychaetes. In the nearshore pelagic zone, some juveniles examined had brachyuran crab larvae as their primary food item. Young coho from the offshore pelagic zone ate euphausids, fishes (mainly herring), gammarids, and decapod lar-Fishes formed the highest biovae. mass, but occurred in only 30% of the coho salmon stomachs. Offshore in the Pacific, near the Columbia River, young adult coho examined were larger than those in Puget Sound and ate mostly fishes, including anchovy, surf smelt, whitebait smelt, herring. chinook, juvenile and juvenile rockfish. They also fed on euphausids and crab larvae off Oregon and Washington (Silliman 1941; Heg and Van Hynning 1951). In the Great Lakes, coho and other salmon have confirmed hopes that they would consume the smelt and alewives present there in abundance (Scott and Crossman 1973).

Coho salmon themselves are the prey of a variety of animals. Coho juveniles are taken by other fishes, including other coho salmon, trout, squawfish, and sculpins (Scott and Crossman 1973). Birds that prey upon coho include mergansers, kingfishers, and loons. Spawning adults are eaten by animals such as bears and eagles. Seals and killer whales prey on oceandwelling salmon, while man and parasitic lampreys prey on coho in marine and freshwater environments.

The predation by adult coho on juvenile sockeye salmon, chinook salmon and coho salmon is indicative of their aggressiveness. Scott and Crossman (1973) stated that coho salmon also eat chum and pink salmon fry. Mason and Chapman (1965) indicated that coho fry are aggressive and territorial soon after emergence, and establish intraspecific dominance hierarchies. Where coho and chinook fry occurred together in streams, the coho were socially dominant, defend-ing territory accessible to incoming food (Stein et al. 1972). Coho were the faster growing of the two, and were heavier than chinook fry of the same length.

Production of juvenile coho salmon in three Oregon streams averaged 9 $q/m^2/yr$ over 4 years (Chapman 1965). Measurements were made over 14 months of stream residence time. Monthly averages were 1.9 to 2.8 g/m² following emergence, dropping to 0.2-0.3 g/m² by winter. Pearson et al. (1970) found that coho production per unit area was higher in pools with large riffles upstream than in pools downstream of small riffles, because of a greater available food supply.

Dill (1969) stated that fry expand their territories at 1.5 to 2 months. The reduction in density may be a result of predation, which God-frey (1965) postulated may be a major factor in an observed decline in numbers following the peak of emergence.

ENVIRONMENTAL REQUIREMENTS

Reiser and Bjornn (1979) reviewed the habitat needs of coho in streams which are summarized in Table 3. McMahon (1983) has constructed a Habitat Suitability Index pertaining to riverine habitat for various life stages of coho salmon.

Temperature

Preferred temperatures for coho salmon in streams range between 11.8° and 14.6°C (Bell 1973), and 25.8°C is the upper lethal limit. As stated earlier, incubation time varies with temperature. The shortest time given by Godfrey (1965) was 38 days at 11°C, and the longest was 86 to 101 days with a temperature of 4.5°C. Godfrey (1965) listed 4.0° to 15.2°C as the oceanic temperature range where coho salmon have been taken. with the best catches occurring between 8° and 12°C. Streamside vegetation plays an important role in regulating the stream temperatures.

Water Depth

Adult coho salmon can spawn in shallow water (0.18 m), but young fish apparently prefer deeper water (0.3-1.2 m), where most of the available riffle area is submerged (Table 3).

Water Velocity

Adults can swim in water velocities as high as 2.44 m/sec, with even faster bursts of speed, while adult spawning and juvenile rearing must take place in water velocity of well under 1 m/sec (Table 3). Water velocities preferred by invertebrate food items are in the range of 0.15 to 1.22 m/sec.

<u>Oxyaen</u>

Coho salmon, especially embryos and juveniles, prefer highly oxygenat-

Table 3. Summary of preferred habitat requirements for coho salmon in streams (from Reiser and Bjornn 1979).

Habit	at requirements	Value
Tempe	rature	
	Adult migration upstream	7.2° - 15.6°C
	Spawning	4.4° - 9.4°C
	Incubation	4.4° - 13.3°C
	Upper lethal	25.8°C
	Preferred range	11.8° - 14.6°C
Water	• depth	
	Adult migration upstream (minimum)	0.18 m
	Spawning (minimum)	0.18 m
	Age 0 fish (preferred)	0.30 - 1.22 m
	(60% of riffle should be submerged)	0.30 - 1.22 m
Water	· velocity	
	Adult migration upstream (maxmium)	2.44 m/sec
	Spawning	0.31 m/sec
	Age 0 fish (preferred)	0.09 -<0.30 m/sec
	Riffle velocity for rearing	0.31 - 0.46 m/sec
	Pool velocity for rearing	0.09 - 0.24 m/sec
	Adult swimming speeds: cruising	0 - 1.04 m/sec
	sustained	1.04 - 3.23 m/sec
	darting Invertebrate food organisms	3.23 - 6.55 m/sec 0.15 - 1.22 m/sec
	Invertebrate rood organisms	0.13 - 1.22 m/sec
02		
	Weight gain in fry stage	4 - 9 mg/l for 70% - 100% gain
		over 19 - 28 days
	Food conversion (9 mg/1 maximum tested)	4 - 9 mg/1
	Juvenile swimming speed (maximum)	100% saturation
	Incubation	Near saturation (>5 mg/1)
Space	e (area)	
	Average size of redd	2.8 m ²
	Recommended area per spawning pair	11.7 m^2
	Year 1+ fish	2.4 - 5.5 m² fish
Subst		
	Spawning	20% fine sediment
		<6.4 mm in riffle substrate
Silt	loads	
		<25 mg/l preferable
Other	• _	
		Good overhead and submerged cov Riffle/pool ratio of 1:1

ed water. Growth and food conversion decline at levels below about 4 mg/l. Swimming ability of juveniles also can drop in unsaturated water. Reduced oxygen levels inhibited growth and lengthened incubation time for coho embryos (Shumway et al. 1964). Low oxygen concentrations reduced survival of coho embryos (Phillips and Campbell 1961).

Space

Spatial requirements for spawning and rearing are known (Reiser and Bjornn 1979). Space requirements for juveniles increase as they grow and are probably food related (Chapman 1966), though Chapman (1962) stated that food was not involved in the intraspecific aggressiveness he found in coho fry. Pearson et al. (1970) did find greater production in pools, a situation that would seem to mitigate density-dependent factors involved in aggression.

Other Factors

A substrate (gravel) size range of 1.3 to 10.2 cm necessary for spawning was cited by Reiser and Bjornn (1979). Dill (1969) found that coho salmon survival at emergence was greater in large gravel than in small, but their condition was poorer; he attributed the survival to greater ease of water penetration and the poorer condition to less support for the alevins.

Low siltation is important for survival of eggs and juveniles. Reiser and Bjornn (1979) listed silt loads of less than 25 mg/l as best. High water velocities reduce deposition of fine sediment, which should make up less than 40% of the riffle substrate. Large amounts of deposited silt restrict oxygen flow to eggs and fry, and trap fry attempting to leave the gravel (Lantz 1976). Sigler et al. (1984) reported that chronic turbidity af-

fected the emergence and rearing of young coho salmon; a lower growth rate was observed in fish subjected to continuous clay turbidities compared to fish grown in clear water. Stober et al. (1981) studied the reactions of coho and chinook salmon to Mt. St. Helens, Washington, volcanic ash and mudflow sediment in two rivers. In field livebox experiments they obtained 96-h LC_{50} 's at 1,217 and 509 mg/l of suspended mud and ash for coho presmolts and smolts, respectively. A comparative static bioassay with ash produced 96-h LC₅₀'s at 18,672 and 28,184 mg/l for presmolts and smolts, respectively. A static 96-h bioassay using mudflow sediments produced mortality in smolts at 29,580 mq/1. Complete presmolt mortality occurred in the Cowlitz River in the summer following the 18 May 1980 eruption (Stober et al. 1981). As pointed out by Reiser and Bjornn (1979), high levels of suspended sediments can clog and abrade gills, curtail feeding, and cause avoidance of areas by fish. Sediment also may destroy food supplies (Cordone and Kelley 1961).

Salmon abundance has been linked to available cover in a stream (Reiser and Bjornn 1979). Overhead cover provides shade and protection from terrestrial predators, while submerged cover provides shelter from current and predators.

A list of examples of habitat alterations and how they adversely affect salmonid populations was reported by the Washington Department of Fisheries et al. (1973). Logging, for instance, causes sedimentation, elevated water temperatures from lack of adequate cover, stream damming, decomposition of organics and high biological oxygen demand (BOD), and possible severe erosion and rapid runoff (especially in clearcuts). Hall and Lantz (1969) cited daily stream temperature fluctuations caused by logging operations as serious threats to coho sal-The Washington Department of mon.

Fisheries et al. (1973) additionally listed irrigation (removing water, adding pollutants, entraining juveniles), damming (migration delay or prevention, spawning habitat destruction from reservoir coverage, turbineand spillway-related mortalities, possible increased predation in reservoirs), industrial projects (water consumption, pollution), channelization (pool and riffle elimination, siltation), and residential develop-

ment (flooding and erosion), as detrimental to salmonid habitat. Detailed summaries on several humanmade structures and activities that negatively impact salmonid habitat have been published: paper mills (Schmiege 1980), forest roads (Yee and Roelofs 1980), mining (Martin and Platts 1981), livestock grazing (Platts 1981), logging (Chamberlin 1982), and silviculture (Everest and Harr 1982).

LITERATURE CITED

- Bell, M.C. 1973. Fisheries handbook of engineering requirements and biological criteria. Useful factors in life history of most common species. U.S. Army Corps of Engineers, Fish.-Eng. Res. Program, Portland, Oreg. (unpublished; cited in Reiser and Bjornn 1979).
- Chamberlin, T.W. 1982. Timber harvest. Pages 1-30 in W.R. Meehan, ed. Influence of forest and rangeland management on anadromous fish habitat in western North America. U.S. For. Serv. Gen. Tech. Rep. PNW-136. Pacific Northwest Forest and Range Experiment Station, Portland, Oreg.
- Chapman, D.W. 1962. Aggressive behavior in juvenile coho salmon as a cause of emigration. J. Fish. Res. Board Can. 19(6): 1047-1080.
- Chapman, D.W. 1965. Net production of juvenile coho salmon in three Oregon streams. Trans. Am. Fish. Soc. 94(1): 40-52.
- Chapman, D.W. 1966. Food and space as regulators of salmonid populations in streams. Am. Nat. 100: 345-357.

- Cordone, A.J., and D.W. Kelley. 1961. The influence of inorganic sediment on the aquatic life of streams. Calif. Fish Game 47(2): 189-228.
- Dahlberg, M.L., and D.E. Phinney. 1967. The use of adipose fin pigmentation for distinguishing between juvenile chinook and coho salmon in Alaska. J. Fish. Res. Board Can. 24(1): 209-211.

- Dill, L.M. 1969. The subgravel behavior of Pacific salmon larvae. Pages 88-99 in T.G. Northcote, ed. Symposium on salmon and trout in streams. H.R. MacMillan Lectures in Fisheries. University of British Columbia, Vancouver, Canada.
- Eames, M., and M. Hino. 1981. A mark-recapture study of an enumerated coho spawning escapement. Wash. Dep. Fish. Prog. Rep. 148. 22 pp.
- Everest, F.H., and R.D. Harr. 1982. Silvicultural treatments. Pages 1-19 <u>in</u> W.R. Meehan, ed. Influence of forest and rangeland management on anadromous fish habitat in western North America. U.S. For. Serv. Gen. Tech. Rep. PNW-134. Pacific Northwest Forest and Range Experiment Station, Portland, Oreg.
- Fresh, K.L., R.D. Cardwell, and R.R. Koons. 1981. Food habits of Pacific salmon, baitfish, and their potential competitors and predators in the marine waters of Washington, August 1978 to September 1979. Wash. Dep. Fish. Prog. Rep. 145. 58 pp.
- Fulton, L.A. 1970. Spawning areas and abundance of steelhead trout and coho, sockeye, and chum salmon in the Columbia River basin--past and present. U.S. Natl. Mar. Fish. Serv. Spec. Sci. Rep. Fish. 618. 37 pp.
- Godfrey, H. 1965. Coho salmon. Int. North Pac. Fish. Comm. Bull. 16: 1-39.

- Gribanov, V.I. 1948. Coho (Oncorhynchus kisutch Walb.) (General Bioloqy) Tzvestiia TINRO, Vol. 28. (Transl. from Russian by W.E. Ricker) Fish. Res. Board Can. Transl. Ser. No. 370.
- Hall, J.D., and R.L. Lantz. 1969.
 Effects of logging on the habitat of coho salmon and cutthroat trout in coastal streams. Pages 355-375 in T.G. Northcote, ed. Symposium on salmon and trout in streams. H.R. MacMillan Lectures in Fisheries. University of British Columbia, Vancouver, Canada.
- Hart, J.L. 1973. Pacific fishes of Canada. Fish. Res. Board Can. Bull. 180. 740 pp.
- Haw, F., and R.M. Buckley. 1973. Saltwater fishing in Washington. Stan Jones Publishing, Inc., Seattle, Wash. 198 pp.
- Heg, R., and J. Van Hynning. 1951. Silver salmon taken off the Oregon Coast. Oreg. Fish. Comm. Res. Briefs 3(2):32-40.
- International North Pacific Fisheries Commission. 1971-81. Statistical yearbooks 1968-79. Vancouver, Canada.
- Johnson, J.M. 1970. Food and feeding habits of juvenile coho salmon and steelhead trout in Worthy Creek, Washington. M.S. Thesis. University of Washington, Seattle. 77 pp.
- Lantz, R.L. 1976. Protection of salmon and trout streams in logging operations. Pages 14-20 in A.R. Grove, ed. Stream management of salmonids. Trout 17(1): winter supplement.
- Martin, S.R., and W.S. Platts. 1981.
 Effects of mining. Pages 1-15 in
 W.R. Meehan, ed. Influence of forest and rangeland management on anadromous fish habitat in western

North America. U.S. For. Serv. Gen. Tech. Rep. PNW-119. Pacific Northwest Forest and Range Experiment Station, Portland, Oreg.

- Mason, J.C., and D.W. Chapman. 1965. Significance of early emergence, environmental rearing capacity, and behavioral ecology of juvenile coho salmon in stream channels. J. Fish. Res. Board Can. 22(1): 172-190.
- McDonald, J. 1960. The behavior of Pacific salmon fry during their downstream migration to freshwater and saltwater nursery areas. J. Fish. Res. Board Can. 17(5): 655-676.
- McMahon, T.E. 1983. Habitat suitability index models: Coho salmon. U.S. Fish Wildl. Serv. FWS/OBS-82/ 10.49. 29 pp.
- Milne, D. 1950. The difference in the growth of coho salmon on the east and west coasts of Vancouver Island in 1950. Fish. Res. Board Can. Pac. Prog. Rep. 85:80-92.
- Mundie, J.H. 1969. Ecological implications of the diet of juvenile coho in streams. Pages 135-162 in T.G. Northcote, ed. Symposium on salmon and trout in streams. H.R. MacMillan Lectures in Fisheries. University of British Columbia, Vancouver, Canada.
- Pearson, L.S., K.R. Conover, and R.E. Sams. 1970. Factors affecting the natural rearing of coho salmon during the summer low flow season. Fish. Comm. Oreg., Portland (unpublished; cited in Reiser and Bjornn 1979).
- Phillips, R.W., and H.J. Campbell. 1951. The embryonic survival of coho salmon and steelhead trout as influenced by some environmental conditions in gravel beds. Pac. Mar. Fish. Comm. Annu. Rep. 14:60-73.

- Platts, W.S. 1981. Effects of live stock grazing. Pages 1-25 in W.R. Meehan, ed. Influence of forest and rangeland management on anadromous fish habitat in western North America. U.S. For. Serv. Gen. Tech. Rep. PNW-124. Pacific Northwest Forest and Range Experiment Portland, Oreq.
 - Reiser, D.W., and T.C. Bjornn. 1979. Habitat requirements of anadromous salmonids. Pages 1-54 in W.R. Influence of forest Meehan, ed. and rangeland management on anadromous fish habitat in western North America. U.S. For. Serv. Gen. Tech. Rep. PNW-96. Pacific Northwest Forest and Range Experiment Station, Portland, Oreg.

Station.

- Roos, J.F. 1960. Predation of young coho salmon on sockeye salmon fry at Chignik, Alaska. Trans. Am. Fish. Soc. 89(4): 377-379.
- Salo, E.O. 1974. Anadromous fishes. Pages 12-21 in A.R. Grove, ed. Salmonid management. Trout 15(1): winter supplement.
- Salo, E.O., and W.H. Bayliff. 1958. Artificial and natural reproduction of silver salmon, Oncorhynchus kisutch, at Minter Creek, Washington. Wash. Dep. Fish. Res. Bull. 4. 75 pp.
- 1980. Schmiege, D.C. Processing mills and camps. Pages 1-17 in W.R. Influence of forest Meehan, ed. and rangeland management on anadromous fish habitat in western North U.S. For. Serv. Gen. America. Tech. Rep. PNW-113. Pacific Northwest Forest and Range Experiment Station, Portland, Oreg.
- Scott, W.B., and E.J. Crossman. 1973. Freshwater fishes of Canada. Fish. Res. Board Can. Bull. 184. 966 pp.
- Shapovalov, L., and A.C. Taft. 1954. The life histories of the steelhead rainbow trout (Salmo gairdnerí

and silver salmon (Oncorhynchus kisutch) with special reference to Waddell Creek, California, and recommendation regarding their management. Calif. Dep. Fish. Game Fish. Bull. 98. 375 pp.

- Shumway, D.L., C.E. Warren, and P. Duodoroff. 1964. Influence of oxygen concentration and water movement on the growth of steelhead trout and coho salmon embryos. Trans. Am. Fish. Soc. 93(4): 342-356.
- Sigler, J.W., T.C. Bjornn, and F.H. Everest. 1984. Effects of chronic turbidity on density and growth of steelheads and coho salmon. Trans. Am. Fish. Soc. 113(2): 142-150.
- Silliman, R.P. 1941. Fluctuations in diet of the chinook and silver salmons (Oncorhynchus tshawytscha and 0. kisutch) off Washington, as related to the troll catch of salmon. Copeia 1941(1): 80-87.
- Smoker, W.A. 1953. Stream flow and silver salmon production in western Washington. Wash. Dep. Fish. Res. Pap. 1(1): 5-12.
- Stein, R.A., P.E. Reimers, and J.D. Hall. 1972. Social interactions between juvenile coho (Oncorhynchus kisutch) and fall chinook salmon (O. tshawytscha) in Sixes River, Oregon. J. Fish. Res. Board Can. 29(12): 1737-1748.
- Stober, Q.J., B.D. Ross, C.L. Melby, P.A. Dinnel, T.H. Jagielo, and E.O. Salo. 1981. Effects of suspended volcanic sediment on coho and chinook salmon in the Toutle and Univ. Wash. Fish. Cowlitz Rivers. Res. Inst., Seattle. Tech. Compl. Rep. FRI-UW 8124. 161 pp.
- Tagart, J.V. 1976. The survival from egg deposition to emergence of coho salmon in the Clearwater River, Jefferson County, Washington. M.S. University of Washington, Thesis. Seattle. 101 pp.

- Tanner, H. 1974. Salmonids in lakes. Pages 22-31 in A.R. Grove, ed. Salmonid Management. Trout 15(1): Winter Supplement.
- U.S. Department of Commerce, National Marine Fisheries Service. 1982. Fisheries of the United States, 1981. U.S. Natl. Mar. Fish. Serv. Curr. Fish. Stat. No. 8200. 131 pp.
- Washington Department of Fisheries. In press. Coho Salmon Workshop, Reston, Washington, October 13-14, 1983. Proceedings.
- Washington Department of Fisheries, IJ.S. Fish and Wildlife Service, and Washington Department of Game. 1973. Joint statement regarding the biology, status, management, and harvest of the salmon and steelhead resources of the Puget Sound and Olympic Peninsula drainage in western Washington. 140 pp.
- Wedemeyer, G.A., R.L. Saunders, and W.C. Clarke. 1980. Environmental factors affecting smoltification and early marine survival of anadromous salmonids. Mar. Fish. Rev. 42(1): 1-14.

- Wright, S.G. 1968. Origin and migration of Washington's chinook and coho salmon. Wash. Dep. Fish. Inf. Booklet 1. 25 pp.
- Wright, S.G. 1981. Contemporary Pacific salmon fisheries management. N. Am. J. Fish. Manage. 1(1):29-40.
- Yee, C.S., and T.D. Roelofs. 1980. Planning forest roads to protect salmonid habitat. Pages 1-26 in W.R. Meehan, ed. Influence of forest and rangeland management on anadromous fish habitat in western North America. U.S. For. Serv. Gen. Tech. Rep. PNW-109. Pacific Northwest Forest and Range Experiment Station, Portland, Oreg.
- Zillges, G. 1977. Methodology for determining Puget Sound coho escapement goals, escapement estimates, 1977 pre-season run size prediction and in-season run assessment. Wash. Dep. Fish. Tech. Rep. No. 28. 65 pp.

2773 (c)		
PAGE Biol. Rep. 82(11.48)*	2.	3. Recipient's Accession No
Tale and Sublitle Species profiles: life histories and environments		April 1986
requirements of coastal fishes and invertebrates	(n tet. –	L
Northwest)Coho Salmon	<u> </u>	Performing Organization Rept. 1
Jeffrey C. Laufle, Gilbert B. Pauley, and Michael	F. Shepard	
Washington Cooperative Fishery Research Unit		10. Project/Tesk/Werk Unit Ne.
College of Ocean and Fishery Sciences University of Washington	i	11. Contract(C) or Grant(G) No.
Seattle, WA 98195		0
2. Spensering Organization Name and Address	ļ.	6)
National Coastal Ecosystems Team U.S. Army Corp Fish and Wildlife Service Waterways Expe	s of Engineers	13. Type of Report & Penad Cover
U.S. Department of the Interior P.O. Box 631 Washington, DC 20240 Vicksburg, MS	39180	4.
S. Supplementary Notes		
*U.S. Army Corps of Engineers Report No. TR EL-82 & Abstract (Umit: 200 words)	-4	
This Species Profile of the coho silmon (<u>Oncorhyn</u> background material on virtually all aspects of t anadromous, swimming upstream from the ocean in f	all to spawn. The fr	y hatch in the
background material on virtually all aspects of t anadromous, swimming upstream from the ocean in f spring and outmigrate 1 to 2 years later. They u sea. They require clear, cold, well-oxygenated (spawning and rearing, with a gravel substrate, ad insects, crustaceans, and fishes for the young. limited by the amount of suitable rearing area av sport and commercial fisheries, and are very sens in streams, to such human-made impacts as siltati barriers to migration. Current management objectives of the State of Was	all to spawn. The fr sually spend two grow <4 mg/l) stream water equate cover, and a f All populations of co ailable. They are so itive, especially the on, pollution, remova hington are toward MS	y hatch in the ing seasons at (1 m/sec) for ood supply of ho salmon are ught after in both early life stages l of cover, and H (maximum
background material on virtually all aspects of t anadromous, swimming upstream from the ocean in f spring and outmigrate 1 to 2 years later. They u sea. They require clear, cold, well-oxygenated (spawning and rearing, with a gravel substrate, ad insects, crustaceans, and fishes for the young. limited by the amount of suitable rearing area av sport and commercial fisheries, and are very sens in streams, to such human-made impacts as siltati barriers to migration.	all to spawn. The fr sually spend two grow <4 mg/l) stream water equate cover, and a f All populations of co ailable. They are so itive, especially the on, pollution, remova hington are toward MS under the Boldt Deci	y hatch in the ing seasons at (1 m/sec) for ood supply of ho salmon are ught after in both early life stages of cover, and H (maximum sion (United States
background material on virtually all aspects of t anadromous, swimming upstream from the ocean in f spring and outmigrate 1 to 2 years later. They u sea. They require clear, cold, well-oxygenated (spawning and rearing, with a gravel substrate, ad insects, crustaceans, and fishes for the young. limited by the amount of suitable rearing area av sport and commercial fisheries, and are very sens in streams, to such human-made impacts as siltati barriers to migration. Current management objectives of the State of Was sustained harvest), with the treaty Indian tribes	all to spawn. The fr sually spend two grow <4 mg/l) stream water equate cover, and a f All populations of co ailable. They are so itive, especially the on, pollution, remova hington are toward MS under the Boldt Deci	y hatch in the ing seasons at (1 m/sec) for ood supply of ho salmon are ught after in both early life stages of cover, and H (maximum sion (United States
background material on virtually all aspects of t anadromous, swimming upstream from the ocean in f spring and outmigrate 1 to 2 years later. They u sea. They require clear, cold, well-oxygenated (spawning and rearing, with a gravel substrate, ad insects, crustaceans, and fishes for the young. limited by the amount of suitable rearing area av sport and commercial fisheries, and are very sens in streams, to such human-made impacts as siltati barriers to migration. Current management objectives of the State of Was sustained harvest), with the treaty Indian tribes vs. <u>State of Washington</u>) having a legal right to 7. Decomment Analysis a. Descriptors Salmon Life cycles, Fisheries Growth, Feeding habits	all to spawn. The fr sually spend two grow <4 mg/l) stream water equate cover, and a f All populations of co ailable. They are so itive, especially the on, pollution, remova hington are toward MS under the Boldt Deci	y hatch in the ing seasons at (1 m/sec) for ood supply of ho salmon are ught after in both early life stages of cover, and H (maximum sion (United States
background material on virtually all aspects of t anadromous, swimming upstream from the ocean in f spring and outmigrate 1 to 2 years later. They u sea. They require clear, cold, well-oxygenated (spawning and rearing, with a gravel substrate, ad insects, crustaceans, and fishes for the young. limited by the amount of suitable rearing area av sport and commercial fisheries, and are very sens in streams, to such human-made impacts as siltati barriers to migration. Current management objectives of the State of Was sustained harvest), with the treaty Indian tribes vs. <u>State of Washington</u>) having a legal right to <u>7. Decument Analyse a. Decempters</u> Salmon Life cycles, Fisheries Growth, Feeding habits Animal migrations	all to spawn. The fr sually spend two grow <4 mg/l) stream water equate cover, and a f All populations of co ailable. They are so itive, especially the on, pollution, remova hington are toward MS under the Boldt Deci	y hatch in the ing seasons at (1 m/sec) for ood supply of ho salmon are ught after in both early life stages of cover, and H (maximum sion (United States
background material on virtually all aspects of t anadromous, swimming upstream from the ocean in f spring and outmigrate 1 to 2 years later. They u sea. They require clear, cold, well-oxygenated (spawning and rearing, with a gravel substrate, ad insects, crustaceans, and fishes for the young. limited by the amount of suitable rearing area av sport and commercial fisheries, and are very sens in streams, to such human-made impacts as siltati barriers to migration. Current management objectives of the State of Was sustained harvest), with the treaty Indian tribes vs. <u>State of Washington</u>) having a legal right to P. Decument Analysis a. Description Salmon Life cycles, Fisheries Growth, Feeding habits Animal migrations b. Menuffers/Open Ended Terms Coho salmon Oncorhynchus kisutch	all to spawn. The fr sually spend two grow <4 mg/l) stream water equate cover, and a f All populations of co ailable. They are so itive, especially the on, pollution, remova hington are toward MS under the Boldt Deci 50% of the catchable	y hatch in the ing seasons at (1 m/sec) for ood supply of ho salmon are ught after in both early life stages 1 of cover, and H (maximum sion (<u>United States</u> allocation.
background material on virtually all aspects of t anadromous, swimming upstream from the ocean in f spring and outmigrate 1 to 2 years later. They u sea. They require clear, cold, well-oxygenated (spawning and rearing, with a gravel substrate, ad insects, crustaceans, and fishes for the young. limited by the amount of suitable rearing area av sport and commercial fisheries, and are very sens in streams, to such human-made impacts as siltati barriers to migration. Current management objectives of the State of Was sustained harvest), with the treaty Indian tribes vs. <u>State of Washington</u>) having a legal right to 7. Occurrent Analysis a. Descriptors Salmon Life cycles, Fisheries Growth, Feeding habits Animal migrations b. Identifier/Open Enges Terms Coho salmon <u>Oncorhynchus kisutch</u> Environmental requirements	all to spawn. The fr sually spend two grow <4 mg/l) stream water equate cover, and a f All populations of co ailable. They are so itive, especially the on, pollution, remova hington are toward MS under the Boldt Deci	y hatch in the ing seasons at (1 m/sec) for ood supply of ho salmon are ught after in both early life stages of cover, and H (maximum sion (United States
background material on virtually all aspects of t anadromous, swimming upstream from the ocean in f spring and outmigrate 1 to 2 years later. They u sea. They require clear, cold, well-oxygenated (spawning and rearing, with a gravel substrate, ad insects, crustaceans, and fishes for the young. limited by the amount of suitable rearing area av sport and commercial fisheries, and are very sens in streams, to such human-made impacts as siltati barriers to migration. Current management objectives of the State of Was sustained harvest), with the treaty Indian tribes vs. <u>State of Washington</u>) having a legal right to P. Occurrent Aneiges a. Occupiers Salmon Life cycles, Fisheries Growth, Feeding habits Animal migrations b. Identifier/Open Ended Terms Coho salmon <u>Oncorhynchus kisutch</u> Environmental requirements c COSATI Field/Group	all to spawn. The fr sually spend two grow <4 mg/l) stream water equate cover, and a f All populations of co ailable. They are so itive, especially the on, pollution, remova hington are toward MS under the Boldt Deci 50% of the catchable	y hatch in the ing seasons at (1 m/sec) for ood supply of ho salmon are ught after in both early life stages 1 of cover, and H (maximum sion (<u>United States</u> allocation.
background material on virtually all aspects of t anadromous, swimming upstream from the ocean in f spring and outmigrate 1 to 2 years later. They u sea. They require clear, cold, well-oxygenated (spawning and rearing, with a gravel substrate, ad insects, crustaceans, and fishes for the young. limited by the amount of suitable rearing area av sport and commercial fisheries, and are very sens in streams, to such human-made impacts as siltati barriers to migration. Current management objectives of the State of Was sustained harvest), with the treaty Indian tribes vs. <u>State of Washington</u>) having a legal right to <u>P. Occurrent Analysis a. Descriptors</u> Salmon Life cycles, Fisheries Growth, Feeding habits Animal migrations <u>b. Identifiers/Open Ended Terms</u> Coho salmon <u>Oncorhynchus kisutch</u> Environmental requirements < <u>cosATI Field/Grave</u>	all to spawn. The fr sually spend two grow <4 mg/l) stream water equate cover, and a f All populations of co ailable. They are so itive, especially the on, pollution, remova hington are toward MS under the Boldt Deci 50% of the catchable	y hatch in the ing seasons at (1 m/sec) for ood supply of ho salmon are ught after in both early life stages 1 of cover, and H (maximum sion (<u>United States</u> allocation.

4400-

. - .

CALL IN

REGION 1

Regional Director U.S. Fish and Wildlife Service Lloyd Five Hundred Building, Suite 1692 500 N.E. Multhomah Street Portland, Oregon 97232

REGION 4

Regional Director U.S. Fish and Wildlife Service Richard B. Russell Building 75 Spring Street, S.W. Atlanta, Georgia 30303

State of the state of the second

REGION 2 Regional Director U.S. Fish and Wildlife Service P.O. Box 1306 Albuquergue, New Mexico 87103

REGION 5

Regional Director U.S. Fish and Wildlife Service One Gateway Center Newton Corner, Massachusetts 02158

REGION 7 Regional Director U.S. Fish and Wildlife Service 1011 E. Tudor Road Anchorage, Alaska 99503 **REGION 3** Regional Director U.S. Fish and Wildlife Service Federal Building, Fort Snelling Twin Cities, Minnesota 55111

REGION 6

Regional Director U.S. Fish and Wildlife Service P.O. Box 25486 Denver Federal Center Denver, Colorado 80225

