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Abstract

An algorithm is presented that aids in deciding
whether a sample is from a single population or a
mixture of two populations. It is a combination of two
established algorithms, the EM algorithm and the minimi-
zation of AIC. When tested on simulated data the
algorithm performed well.

Description of Problem

Research into the development of improved antifouling shipbottom coatings

makes extensive use of static panel immersion tests to screen developmental

materials. A currently used procedure is to expose twelve to twenty 10" by 12"

test panels coated with the developmental coating at one or more of the Navy's

exposure sites (Miami, FL, Half Moon Bay, CA and Nawiliwili, HI). These panels

are evaluated on a quarterly basis to estimate the amount of fouling as a

measure of the effectiveness of the coating. These life experiments can require

very long periods of time to complete, usually three or more years. The quarterly

evaluations are reported to DTNSRDC, where it is desirable to make judgments

regarding the progress of the experiment. This report suggests a method of

analysis of the interim data, which would aid in judging the progress of the

experiment. It has been observed by Becka [1983] that the fouling times for

some samples of antifouling coatings exhibit a bimodal distribution, i.e. a

distribution with two local maxima. It is believed that this can be explained

by viewing the sample as coming from two different populations, rather than the

usual view that the sample comes from a single population. For example, a

sample of twelve panels may consist of five panels fouling at a different rate

than the other seven panels. Of course, at the beginning of the experiment it

was believed that all panels were identical. Thus they should represent a



single population. It is only after the experiment has progressed for some

time that two clusters of panels may become apparent, one cluster having sub-

stantially more fouling than the other. The problem to be analyzed in this

report is twofold. First, is there sufficient evidence to believe that the

sample has items drawn from two populations or just one? Second, how many and

which panels belong to the two populations?

Bimodal Distributions

It will be assumed that the data consists of a sample of M values of the

variable FL, where FL is the value report from the exposure site. It is

generally a percentage, between 100 and 60, rating the amount that the panel

is not fouled. Generally conclude that if the FL's are a sample from two

populations, then the largest K are from one population and the remaining

(smallest) M-K are from the other population; K is to be determined and may

be zero or M. Especially when K is small, e.g. 10% of M, one should be

careful to not conclude that there are two populations without further

investigation.

Several phenomena complicate the investigation. Among these is the fact

that random samples can exhibit quite large variations. It is possible that

there will be outliers even when there is only one population. An outlier is

an observation at a great distance from the expected fouling level. The

statistical modeling of the fouling process can be very sensitive to extreme

values. If the outlier is truly from the population being studied, then it

is important to include it, since it contains information not included in the

remainder of the sample. Hence, it is important to physically examine outliers
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to determine if they are in fact special or simply a manifestation of the

randomness of the sampling process. On the other hand, models that employ

estimates assuming that the data is a sample from a single population should

be used with care when the sample appears to have come from two populations.

Further complicating the analysis are masking and swapping. These terms

are used to describe the problems arising from the fact that there is a gray

area between two populations.' As an illustration consider the histogram of

fouling levels FL in Figure 1.

100 95 90 85 80 - Fouling Level

Figure I

The data point at 95 is masked by the data points at 100, in that they cause

this point to appear to be part of the leftmost cluster. Of course, it is

masked, perhaps more strongly, by the data points at 90, 85 and 80. It is

also possible that one of the points at 100 belongs to the cluster on the

right rather than on the left. It has been swapped. It is unlikely that any

statistical analysis will completely sort out these kinds of problems. It

can however call them to the investigator's attention.

A common technique for modeling samples from two populations is to use

a mixture of two distributions. Suppose f(x;P) is the probability function

describing one of the two populations, where P is a vector of parameters and x

is the value of the variable, in this setting FL; and g(x;Q) is the probability

function describing the other population. The mixing proportion, MixProp,

* 3



is a number between 0 and 1 and

MixProp.f(x;P) + (1-MixProp).g(x;Q) EQ. 1

is the probability function describing a mixture of the two populations. Each

item in a sample of size M from the mixture can be thought of as coming from

the population f(x;P) with probability MixProp. Said another way, in a sample

of size M one expects, on the average, for K-M.MixProp of the items in the

sample to have come from the population f(x;P). Hence, to decide if there are

two populations represented in a sample, it is sufficient to estimate the

,, parameter MixProp.

As already noted the phenomenon under investigation was first observed by

Becka [1983] as a bimodal distribution. She observed that the reported data

"* had a histogram similar to the one in Figure 1. It is, of course, not necessarily

the case that a mixture of two distributions is bimodal. Consider, for example,

a mixture of two binomial distributions

MixProp.bin(x;po,N) + (1-MixProp)'bin(x;pl,N) EQ. 2

where

bin(x;p,N) - (N!/[x!(N-x)!])p(l-p)n- x for x=0,...,N EQ. 3

is the usual binomial density with N trials and probability of success p. It

*can be shown that if po-0.95, Pl-0.8 and N-20, then MixProp must be between 0.296

and 0.347 in order for the mixture in EQ. 2 to be bimodal. See Table I for the

interval of MixProp that will give a bimodal distribution for various values of

-* po and Pl. Even though the mixing of two populations was first observed in the

bimodal case, it is now apparent that a test for mixing rather than for bimodality

is needed.
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Table 1

INTERVAL FOR MIXING PROPORTION
THAT RESULTS IN A BIMODAL DISTRIBUTION

Po

0.95 0.9 0.85
0.65 (.041,.98) (.19,.656) (.402,.434)
0.7 (.1O,.868) (.315,.456) never bimodal

Pl 0.75 (.195,.547) never bimodal never bimodal
0.8 (.296,.347) never bimodal never bimodal

Discussion of General Methodology

The statistical literature is replete with discussions and suggestions

for determining both outliers and mixing proportions; for a survey see

Beckman and Cook [19831. Two methods standout for applications of the type

required in this report. They are the EM algorithm, Dempster, et. al.

[197/], and AIC minimization, Akaike [1977]. A general discussion of these

• i.., methods as they apply to the present context follows. The EM algorithm will

be discussed first, since it is needed to compute AIC.

The maximum likelihood principle is essential to both methods. It is

the naive notion that given a collection choices one should choose the one

that is most likely. In many common situations there is a closed form for

the maximum likelihood estimator of the unknown parameter. There is not a

closed form solution for the unknown parameter, MixProp, in our setting,

however. The EM algorithm provides an iterative, numerical method for

approximating the unknown parameters. For the model which is a mixture of

two binomials, EQ. 2, and a sample xl,....,xm -

PJ i (Exibin(xi;Oldpj,N)/mixbin(xi))/(NM) j=1,2 EQ. 4

MixProp = OldMixProp'(I(bin(xi;p ,N)/mixbin(x )))/M EQ. 5

y." where mixbin(x) is the mixture in EQ. 2 and both sums run from i-1 to M.

5
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This algorithm necessarily converges. However, it may be slow and it may

converge to a local extreme rather than the absolute maximum, if the starting

point is not carefully selected. This later difficulty usually can be avoided

Vby selecting several starting points and selecting the maximum that is the

largest among those generated by the various starting points.

The EM algorithm can be applied in this setting as follows. Apply the

algorithm for MixProp=K/M for K=I,...,M where M is the sample size. For each

of these estimates compute the likelihood. Actually it is easier, and more

common to compute the negative of the natural logarithm of the likelihood:

-Eln(mixbin(xi;po,p l ,MixProp,N) EQ. 6

where the sum runs from i=1 to i=M and mixbin(xi;po,pl,MixProp,N) is the mixture

of two binomials as in EQ. 2. Select the estimate of MixProp that yields the

largest likelihood (smallest negative ln likelihood). When using this procedure

the estimate of MixProp will usually not be of the form K/M. That is MixProp*M,

which should be interpreted as the number of sample units from the population

with parameter po will not necessarily be a whole number. For example,

the statistical analysis may report that 5.7 of the sample units are from one

population and the other 10.3 are from the other population. One is reminded

that masking and swapping are present. When applied to simulated data this

procedure works well, but can be improved by using the AIC minimization principle

described next.

The problem of selecting the "best" model from several competing models is

a common problem. Akaike [19771 suggested employing the principle of minimizing

the negative entropy in the selection process. For a specific model define its

AIC by

6



AIC = -2"1n(maximum likelihood)

+ 2"(number of independently adjusted parameters). EQ. 6

To apply this principle in the present setting, select the model with the

smallest AIC from among the models

MixProp.bin(x;po,N) + (l-MixProp)bin(x;p1 ,N) EQ. 7

where MixProp=K/M indexes the models for K=1,...,M. That is, index the models

under consideration by the number of sample units from the population with

parameter Po. Hence there are M models to select from. For K = 1,..,M-1

there are two independently adjusted parameters, po and Pl. For K=M there is

only one parameter, namely P0 since all sample units are from one population.

This procedure differs from the procedure using the EM algorithm in two

respects. The values of MixProp/M = K are restricted to being whole numbers.

More significantly, observe that if it were not for the second term in the

expression for AIC, namely 2" (number of independently adjusted parameters),

then minimizing AIC is equivalent to maximizing the likelihood. This extra

term in AIC results in a preference for selecting the model that says the data

is from a single population. Akaike [19771 claims that in fact AIC corrects

4 for a bias in the maximum likelihood principle that causes a model with fewer

parameters to be rejected too often.

The algorithm based on AIC has been found to be sensitive to the estimate

of the maximum likelihood. In particular, if the maximum likelihood estimates

of the parameters po and Pl not accurately made, then the results of minimizing

AIC can be quite unsatisfactory. The values of AIC differ very little from one

model to the next. There are no tables of the probability distribution of

7
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AIC, hence is it difficult to judge whether small differences are significant

or not. This difficulty is alleviated somewhat by computing good estimatesI of p and pl. The EM algorithm works well when applied to this problem. In

this setting apply it as above, but do not use it to update the estimate of

MixProp, since it is fixed for each model. Compute new estimates of po and

?.- Pl only.

Results of Testing the Algorithm

The algorithm described in the previous section was programed in Turbo

Pascal and applied to four data sets. These data sets were generated so as

to have certain properties: (1) po=0. 95 , pl=0.7 , MixProp=0.35, strikingly

bimodal; (2) po-0 .95, pl-0. 7, MixProp=0.75, less strikingly bimodal; (3)

Po 0. 95, Pl= 0 .8, MixProp-0.29, not bimodal but having a relatively large

variance; and (4) po-0.9, MixProp-1, a single population. Graphs of these

are provided in Appendix B. Listings of the programs, with notes, are provided

" in Appendix A. One hundred sets of data were generated for each of these

four cases. The combined AIC and EM algorithms were used to estimate K=

MixProp'M, the number sample units from the population with parameter po.

The results of this simulation are summarized in Table 2, which contains the

counts of the number of times estK was the estimate of MixProp'M. Throughout

this simulation M=16 and N=20.

Table 2

Frequency Table of Estimated M.MixProp

estK (1) (2) (3) (4)

1 1 0 2 0
2 4 0 6 0
3 6 1 10 0
4 6 0 8 2
5 22 3 *9 0

8



Table 2 Continued

6 *16 1 3 0
, 7 15 0 7 0

8 12 8 7 0
9 12 8 6 1
10 4 10 3 0
11 1 19 1 0
12 0 *13 4 0
13 0 15 0 0
14 0 12 1 0
15 0 4 3 0
16 1 6 29 *97

(1) po=0.95, pl=0. 70, MixProp=0.35

(2) pOT-0.95, pl=0. 70, MixProp=0.75
(3) Po=0 .95 , piO.80, MixProp=0.29
(4) po=0.90, MixProp=1.0
An * marks the value of K=M-MixProp.

If there were no variation in the simulated data sets, and if they came

from the prescribed population with certainty, and if the algorithm worked

perfectly, then the numbers preceded by an * in Table 2 would be 100. The

algorithm works quite well in cases (1) and (2) and amazingly well in case

(4). Case (3) and case (4) show the disposition of AIC to favor the model of

a single population. Case (3) is generated from a mixture that is not bimodal,

but has a large variance.

Consider some illustrations from case (3):

*- * *

17-"- * * * * * *

100 95 90 85 80 75

The parameters that were used to generated this data were po= 0 .95, Pl=0 .8, and

K-4.64. That is one expects the letmost 5 data points to be from one population

and the rightmost 11 to be from another. On the other hand the estimated

9



values are estpo=0.859 and estK-16. That is the sample is from a single

population with parameter 0.859. The problem here is that since these distri-

butions are so close, there is a significant amount of swapping and masking,

resulting in a distribution that appears to be that of a single population

rather than that of a mixture.

Another illustration from this data set follows:

100 95 90 85 80 75 70

The estimated parameters this time are estpo=0.999, estpl-0.793, and estK-1.

That is one of the data points at 100 is from one population and the remaining

fifteen are from another. Of course, there would be no way of knowing which of

the two test panels that are 100% unfoulded belong to the two different popula-

tions. One would either treat them both as coming from a population distinct

from that of the other fourteen, or treat the entire sample of sixteen as

coming from a single population.

Another illustration from this data set follows:

100 95 90 85 80 75 70 65

The estimated parameters are estpo-0.935, estpl-0.792, and estK=10. This data

set was generated with K-5. That is the expected number of data points in

*the leftmost population is five, not the estimated ten. Although ten seems

more reasonable, than five, neither reflect the possibility that the two

points at 85 could belong to the leftmost group.

10



This algorithm works best when the two populations are widely separated

or when there is only one population. This is not surprising since swapping

and masking are less important when the populations are not close. When

the populations are distinctly separated, then the mixture distributions tend

to be bimodal. Hence, one observes that the algorithm works best separating

.1 the populations when the mixture is bimodal. The algorithms excellent per-

formance in recognizing a single population can be attributed to the fact

that AIC is adjusted in favor of selecting simpler models.

CONCLUS IONS

The proposed algorithm works well, but does not make the decision for

the experimenter. This algorithm should be used as a decision aid and not as

a decision rule. One should keep in mind the problems of swapping and masking

and remember that the purpose of the analysis is to decide which panels might

require further investigation or monitoring.

The algorithm described in this report has been tested only on simulated

data. It should be tested on actual data that is well understood. That is,

it should be tested on actual field data that apparently comes from a single

population and on data that seems to come from two populations. Finally, it

should be used as an aid in making interim judgments to determine if it is

useful for that task.
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APPENDIX A

PROGRAM LISTINGS

This appendix contains listings of the following program and

S procedures:

AICMIXBI.PAS - the main program;
BINTABLE.PAS - a procedure for computing binomial probabilities;
MIXTABLE.PAS - a procedure for computing probability mixtures;
NEGLLIKE.PAS - a procedure for computing negative log likelihoods

NEWP.PAS - a procedure for computing new values of po and pl.

program AICMIXBIN;
JApproximates the parameters of a mixture of two binomials via the AIC and EM
algorithms. 1

Label
DataError;

Const
N = 20;
ssize = 16;
er = 0.0005;

Type
Sample - array[1..ssize] of integer;
ProbTable - array(O..N& of real;
Out - record

probO: real;
probl: real;

nmixprob: real;
DataNum: integer;
end;

Var
p0 , pl, mixprop, oldpO, oldpl, newll, aic, minaic : real;
indx, jndx, start, finis: integer;
cf0, fO, cfl, fl, cm, m: ProbTable;
data: Sample;
DataFile: file of sample;

OutFile: file of Out;
OutData: Out;

JSI B:BINTABLE.PASI IListings of these I
S$I B:MIXTABLE.PASI linclude files followl

$I b:negLLike.pasl Ithe listing of the I
I1I b:newp.pas I Imain program I

BEGIN
assign(DataFile,'B:95707516.DAT'); reset(DataFile);
assign(OutFile,'B:95707516.aic'); rewrite (OutFile);
writeln('start,end');

13



readln( start ,finis);
writeln(' ');
seek(datafile,start);

) repeat
read( DataFile ,Data);
for indx:-I to ssize do
begin
if CData~indx]<O) or (Datafindxl>N) then
begin
writeln( 'Error in the range for the data in record',
FilePos(Datafile)-1);

goto DataError;
end;

end;

for indx:- 1 to ssize do
begin
I~nitial estimatesl

mixprop:-indx/ssize;
pO:-Q.O;
for jndx:=1 to indx do pQ:=pO+Data[jndx];
pO: -pO/N/indx;

for jndx:-indx+l to esize do pl:-pl+Data[jndx];
if ssize-indx then

pl:-O. 5
else
p1: -pl/N/( ssize-indx);

repeat
oldpO:=pO; oldpl:-pl;
BinTable(pO,N,cf 0,f 0);
BinTable(pI,N,cfI,f 1);
MixTable(rnixprop,0,N,cfO,fO,cfl,fl,cm,m);
Newp( fO,f 1,m,Data,ssize,N,pO,pl);

until (abs~pO-oldpO)<er) and (abs(pl-oldpl)<er);

negllike(m,nita,ssize,newll);
aic :-2nwLL
if indx-ssize then aic:-aic-2;
if indx=1 then minaic:-aic;
if aic <- minaic then

begin
minaic :-aic;
with OutData do

beg in
probO:-pO;
probl:-pl;
mnixprob:-mixprop;
DataNum :-FilePos(DataFile)-1;

14
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-- - -- -- -- --

end;
end;

end;
1write(0utFile,OutData);j

writeln(Ist,OutData.prob0:7:3,OutData.probl:7:3,OutData.mixprob:7
:3,16*Outdata..mixprob:5:1,OutData.DataNum:6);

writeln(lst,' ');(form feed)
writeln(OutData.prob0:7:3,OutData.probl:7:3,OutData.mixprob:7:3,

16*Outdata.mixprob: 5:1, Out Data. DataNum:6);
DataError:;

until FilePos(Datafile)=finis;

flush(OutFile);
closeC OurFile);
close(DataFile);

END.

procedure BinTable(p: Real; N: integer;
var CumProbFunc, ProbFunc: ProbTable);

jProcedure to compute the cumulative probability function and the
probability function of a Binomial distribution.1

Var
indx: integer;
lnprob: array(O..20J of real;
prob, q: real;

begin
q:=1-p;
prob: -I;

if p>-1.0 then
begin
for indx:- 0 to n-I do

e~ begin
CumProbFunc( mdxl: -0.0;
ProbFunclNJ :=l.0;
end;

if p<-O.0 then
begin
for mndx:- 1 to no do

* begin
CumProbFunctindxl :-l.0;
ProbFunc(indx]:-O.0;

* end;
CumProbFunc[0]:'.;/0;
ProbFunc[0] :-l.0;
end;

15



if (p(O.O)and(p<l.O) then
begin
lnprob[O] :=N*ln(q);
for indx:=l to N do

begin
lnprob[indxl :-lnprob[ indx-l]+n(p)-ln(q)+ln(N-indx+1)-

inC ndx);
end;

for indx:-O to N do Probfunc~indx]:=exp(lnprob[indx]);

for indx:=O to No do CumProbFuncflindxl:mO.Q;
CuciProbFunc[OI :=ProbFunc[OJ:
for indx:=l to No do CumProbFunc[indx] :-CumProbFunc[ indx-l]+ProbFunc[ indx[;

CumProbFunc[N] :-l.O;
end;

end:

procedure MixTable (mixprop:real; LowRange, UpRange:integer;
CumProbfuncO, ProbFuncO, CuinProbFuncl, ProbFunci:
ProbTable; var MixCumProbFunc, MixProbFunc: Prob:Table);

IComputes the cumulative probability function and the probability function
of a mixture.1

Var

indx: integer;

begin

for indix:-LowRange to UpRange do
* begin

MixProbFunc [indx] -mixprob*PropFuncO [imdx] + C l-mixprop)*ProbFuncl [ mdx];
M4ixCumProbFunc( mdx] :mixprop*CumProbFuncO( mdx] + Cl-mixprop)*CunProb

Funcl[indx];
end;

end;

procedure negllike(density:ProbTable;data:Sample;SSize:integer;var NegLnLike:
real);

IComputes the negative of the log likelihood for the density function.1

Var
mndx: integer;

begin
NegLnLike :-O.Q;
for mndx:- 1 to SSize do NegLnLike:-Neg~nLike -ln(density~data[indx]J;

end;
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procedure Newp(DensityO, Densityl, MixDensity:ProbTable;
Data: Sample;
ssize. M: integer;
var p0 , pl: real);

jUses formula from EM algorithm to compute new values of pO and pl.1

var
MO, MI: real;
indx: integer;

S,begin
pO:=O; Pl:-0;
MO:=O; Ml:-0:
for indx:-l to ssize do

begin
MO:=MO+DensityO[Data[indxl ]/MixDensity(Data[indx] ];
Ml:-Ml+Densityl[Data[indxj ]/MixDensity[Data[indxl I;

*end;
for indx:-l to ssize do
begin

pO:pO+Data(indx]*DesnityO[Data[indx] ]/MixDensity[Data[ indx]];

pl:pl+Data[indx]*Desnityl[Data[indx]]/MixDensity[Data[indx]];
end;

pO:+pO/N/MO;
pl:+pl/N/Ml;
end;

Note 1: Variables of type ProbTable that begin with the letter "c" are
cumulative probability functions and are not needed for the present
analysis.

Note 2: In procedure BINTABLE.PAS, the binomial probabilities are computed
using logarithms, because computing them in the usual way causes an

overflow error due to the fact that p0 or p1 could be very close to
one or zero.
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APPENDIX B

GRAPHS OF MIXTURES OF BINOMIALS

This appendix contains graphs of the probability functions.

MixPropbin(x;p N) + (1-MixProb)*bin(x;p1 ,N)

for the following four cases:

,. (1) po- 0 .95, PI-0.70, MixProp-O.35

(2) po-0 .95, PI-0.70, MixProp-O.75
(3) Po-0.95, PI-0.80, MixProp-O.29
(4) po-0. 90, MixProp-l.0

and where

bin(x;p,N) - (N!/[x!(N-x)!])pX(l-p)n-x for x-0 .... ,N

is the binomial probability function.

.51
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