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ABSTRACT

In this report we consider the concept of operators "equivalent in norm"

and its use in understanding preconditioning for singularly perturbed elliptic

problems.
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SIGNIFICANCE AND EXPLANATION

The classical iterative methods for the solution of the large systems of

linear equations which arise in the numerical solution of elliptic boundary

value problems become less efficient as the size of the system increases, i.e.

as the numerical approximation gets better. This problem is particularly

acute for singularly perturbed elliptic operators.

If one can find an appropriate "preconditioner" this difficulty can be

either ameliorated or eliminated. Previous research in this direction has

been limited to the special case where the symmetric part of the operator is

positive definite. In this report we comment on current efforts to resolve

the general problem.
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PRECONDITIONING FOR SINGULAR PERTURBATION PROBLEMS

Seymour V. Parter

1. Introduction

The numerical solution of elliptic boundary-value problems leads to the

related problem of actually obtaining the solution of a large, sparse system

of linear equations

Au-f (1.1)n

where An  is an n x n matrix with n = O(h-2 ). There is a large literature

connected with the analysis of iterative methods for the solution of (1.1) -

see (181, [19].

Almost all iterative methods, including the multigrid methods [14] can be

cast in the framework of a preconditioning followed by iterative improvement.

With the practical success of mltigrid methods for uniformly elliptic

problems with positive real part there is especial interest in preconditioned

iterative methods for which the condition of the preconditioned system is

bounded independent of the mesh spacing (i.e. the dimension n of (1.1)) for

sufficiently fine meshes. In that case one can easily develop iterative

methods that yield estimates of the form

where k = c or c1/ 2 (c - condition (B'IAn)) depending on the

implementation. In particular, several authors [1], [3], [6], [8] have
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suggested preconditioned iterative methods where the preconditioner B 1 isn

the inverse of the discretization of a separable, positive definite elliptic

operator. In the special case where the domain is a rectangle the separable

problem can be solved by fast direct solvers [16], [17]. Others, e.g. [131,

have considered using several iterations of a classical positive definite

stationary one-step iterative method which is either consistent with the

problem at hand or another (usually separable) elliptic problem.

In all those cases both operators have positive definite symmetric part

and one can analyze the efficiency of the preconditioned iterative method by

using the concept of "Spectrally Equivalent Operators" introduced by D'Yakanov

[7].

In this report we are concerned with singularly perturbed elliptic

operators of the form

Le2 2 a ()au r2 au
:- e I - Tx + r b (x) + aoCX)U (1.2a)

and

specified boundary conditions , (1.2b)

where 0 < C " 1, x - (x11x2 ) and r = 0 or 1 depending on the

application/problem. We will either assume that

b1 (x) ; b0 > 0 , (1.3a)

or that

bi(x) =-b2(x) 0 .(1.3b)

A case of particular interest is the indefinite Helmholtz equation

Lu := -c2 Au - a0 (x)u, a0 (x) j j > 0 , (1.4)

(one usually writes this equation in terms of k 2 -2). On the other hand.

the usual singular perturbation problems have r 0 and (1.3a) holds. In
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this case it is easy to show that [4] there is an co > 0 and for 0 < E 4 Co

the operator L has a positive definite symmetric part.

With all this in mind, we now outline the discussion in this paper. In

Section 2 we discuss new results of Faber, Manteuffel and Parter [9] on (norm)

Equivalence of Operators. These ideas and classical results of Nitsche and

Nitsche [15) and Drya [5] allow one to discuss preconditioning of discrete

elliptic operators without requiring positivity. One only requires that both

the elliptic operators and their discretizations be invertible. In Section 3

we present some ideas and results of Bayliss, Goldstein and Turkel [2] and

Goldstein [10] on preconditioning of singular perturbation problems by a

"partial" multigrid cycle. Finally, in Section 4 we discuss current work of

Goldstein and Parter [12] on preconditioners Bn so that

c(%lA )  , Al, I A IBn,2(,
cn nJu n nt n nt (1.5

is independent of n and has controlled, or at least known, dependence on e.

2. Equivalence of Operators

Given two linear operators A and B on the Hilbert space H, we say

that A is equivalent in norm to B on the set D C H if there exist

0 < a < 0 < - such that

a4- - B, Vx e D, lAxn, lxi + 0 . (2.1)
l~xi

If A and B are positive, self-adjoint operators on H then, following

D'Yakanov [7], we say that A is equivalent in spectrum to B on D C H if

there exist 0 < a < 8 < - such that

a . <Ax,x> ( B , Vx c D, <Ax,x>, <Bx,x> + 0 • (2.2)
<Bx,x>

While there are many interesting relationships between these concepts there is

one striking fact. In (91 one finds a simple example of an A and a B both
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of which are compact, positive, self-adjoint operators and

(i) A is equivalent in spectrum to B, (ii) A is not equivalent in norm

to B.

Let An and Bn be two sequences of operators defined on D. We say

that (A n } is equivalent in norm to {B n} uniformly on D if there exist

0 < a, 8 < m such that

IA xl
a 4 1B nx 4 $, Vx c D, 1Axnx, IBxnI+ 1 0 (2.3)

n

Or, we could say, let Sn C D C H be a sequence of subspace of D and let

An' B be operators defined on Sn * Then An is uniformly equivalent to

Bn in norm if (2.3) holds for every x e Sn -

Let A, B be two invertible elliptic operators of the same order, say

2m, defined on the same domain Q with homogeneous boundary conditions.

Clearly

A : H2m(n) + L2 (0), B : H2m(0) + L2 (0l) (2.4)

where H2m(S) is the Sobolev space of functions having 2m'th derivatives

in L2 ( ). In many cases one also has

A- 2 : L2(a) + H2m(a) ,  B-1 : L2(() H 2m() . (2.5)

When this happens

AB"  L 2 + L2 , BA71 - L2 + L2  (2.6)

and the operators A and B are equivalent in norm. Suppose {A n), (Bn }

with An, Bn defined on Sn C D C H are discretizations of A and B. One

can ask, is it possible to prove analogs of (2.4), (2.5) and (2.6)? If one

uses a finite element approach with Sn C H2m' then it is easy to show that

these analogs all hold. In the case of finite-difference discretizations the

problem is more subtle. For second order equations and when 0 is a
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rectangle one can extend the results of [151 to obtain an appropriate

definition of H2 (Q;h) and obtain estimates of the following form:

(i) Let

Lu = -{(aux) x + (bux)y + (buy)x + (cuy)y} + Dux + EU y + au . (2.7)

(ii) Let the boundary conditions be of the form

u or -- 0 on a full side. (2.8)
3n

(iii) Let Lhu be a standard finite-difference discretization of (2.7).

Then, if there is a constant k0 = kO(Lh) independent of h, 0 < h < h0  such

that lulL2 4 ki0Mlt 2 then there are constants K , , depending only on

the coefficients of L and k0 such that lLu1IX2 < KIlulH 2(lh)'

lugH2(91h ) 4 K I Ul 2. Thus, if A and B are two such elliptic operators

and {An I and (B n  are their finite-difference discretizations we have

-1
1A B n I KI(An) - K0(Bn) (2.9)

n 2

At the same time, since An, Bn  are finite-difference approximation to A
Qn

and B we obtain

lB_ A I 1A (B) I < K (A) ) B)(B (2. 10)
n n 12 n n 12 1n0n

These results show that, in the rectangle with boundary conditions (2.8)

one may precondition any invertible discrete elliptic operator with any other

such discrete elliptic operator and obtain

c(Bn'An) 4 K (A*)K (A *)Kl(Bn)KO(Bn*) (2.11)

which is independent of n. Therefore, the important, and as yet unresolved,

question is: how to choose "good" preconditioners and how to measure the

"goodness". Some preliminary results and ideas are presented in [9].

Remark 1: If one has only Dirichlet boundary conditions one may make a simple

extension of the results of Drya [4] to obtain similar results when n is a
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convex, polygonal region whose sides have slope 0, - or ±1 and whose

vertices lie on points of a regular mesh h - Ax - Ay.

Remark 2: While we have not shown the details here, an important fact which

emerges from the analysis of [9] is the observation that in these cases the

finite-difference calculus allows one to completely mimic certain techniques

of estimation normally used in the analysis of elliptic differential

operators. Hence, in Section 4 we will obtain all estimates in the

computationally easier case of the continuous elliptic operators.

Remark 3: Obviously, equivalence in norm is transitive. Hence, so is the

concept "the condition number of (BnA) is bounded independent of n.

3. Multigrid as a Preconditioner

In [2] Bayliss, Goldstein and Turkel consider the indefinite Helmholtz

equation Au + k2a0 (x,y)u = 0 with a suitable radiation condition at

infinity. After discretization via a finite-element method (and truncation of

the region) one has a system of the form (1.1) where An is not symmetric

(because of the radiation condition at infinity) and the symmetric part is not

positive definite (because k2 >> 1 and a0 > 0).

Let N be the symmetric positive definite operator obtained by setting

k = 0. Let Mr' denote the application of a symmetric "partial" multigrid

0operator for the solution of Abx = b based on r grids. We say a partial

multigrid operator because we do not "solve" on the coarsest grid. Rather, we

only "smooth" on the coarsest grid. Consider the preconditioned normal

equation

(M;lAn)*(M; lAnu - (M;lAn)*Mrlf .(3.1)

These equations are now solved by the conjugate gradient method. While the

authors of [2] give no rigorous treatment of the effectiveness of their
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method, their experimental results and heuristic arguments are extremely

interesting.

In (101 Go]dstein makes a complete analysis of a simpler problem.

Consider the operator Le given by (1.2a) with r 1 1 and boundary

conditions ul a = 0, where l is the unit square. The coefficients are

real and smooth and a.(x) > cO > 0, for i = 0,1,2. Let LC be a standard

finite-difference discretization of L where e - ho with 0 < a < I. Let

M-1 denote the application of a partial symmetric multigrid for the Laplacea

operator Mu : -Au. In this notation the subscript a reminds us that

Goldstein chooses the coarsest grid so that hcoarsest - e - h O . He now

solves this problem by applying conjugate gradient to the normal equations

** 1le(NL) (M L1n) u - (M;lLe)*Mlf. In [11] he applies this method to some

interesting applied singular perturbation problems. In this definite case he

shows that c(MI P cI where cI is independent of h and el

4. General Estimates

Let f be a smooth domain. Let JUlr be the seminorm

ul2 = ff IbDqu 2dx • (4.1)

Let L be a second order elliptic operator of the form given by (1.2a). We

assume that the boundary conditions are homogeneous and yield no boundary

terms. That is

ff u[Luldxdy -e 2 ff [. 2u au axa. . = f aij ax i ax j

+ CrE ff bi lu u dxdy + ff a0 u
2dx . (4.2)

- i

Further, we assume the basic estimate of [15] holds. That is, let
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i 2 u

Au - aj j (4.3)
.a%

with the same boundary conditions as hold for L. Then there is a constant

K 0 = K0 (A) such that I u2 4 K0ILuI 2
2L2

We remind the reader that the estimates in this section are for these

elliptic operators. However, in the case of rectangles or certain convex

polygonal domains (with zero Dirichlet boundary conditions) these estimates go

over for finite-difference operators. Moreover, because of the transitivity of

certain concepts, (e.g. "uniformly bounded condition number") these results

also apply to the partial multigrid operators discussed in Section 3.

*" , Case 1: a0(x) > c o > 0 r = 1 (in (1.2a))

In this case we easily find that there are constants c0,c1,c2  so that

-ul L2 c0 ILUIL (4.3a)

' 

I"

lul -- (4.3b)

2 L
I -"LC2

1u12 4 - ILul 2 • (4.3c)
2 2 2

These estimates lead immediately to the result

Theorem 1: Let L, L be two elliptic operators which satisfy the hypothesis

of Case 1. Then there are constants depending only on the coefficients

K,,K2 , but not on £ > 0 such that

ILL L K1  (4.4a)

ILL IIL 4 K2  (4.4b)
L 
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Case 2: r = 0 and b1(x) ) b 0 > 0.

Once E 4 coo we may assume that the symmetric part of L is positive

definite. This is done by setting u = e Xv, a - 0(l). Hence we obtain

(4.3a), (4.3b) and lu1 2 ' (c2/c
3 )ILUIL2.

Theorem 2: Let L, L be two operators which satisfy the hypotheses of Case 1

or Case 2. There are constants K1 , K2 such that
- |L- I 

L

ILE-1IL 4 kl/c, ILL k2/ (4.5)

Case 3: a0 (x) 4 -C 0 < 0 and r = 1. We assume that for this value of

c, L-1  exists. That is, there are constants c6,ci,c2  depending on £ but,

essentially of order I and

co
ju -k u ull 4 - ILUM , u1 2  L46

L 2 LUL LIU24- Lu'L
-L 2  £ 2 L 2

Theorem 3: Let L be an operator of Case 3. These are constants KK 2

such that

(i) if is of Case 3 we have IH L-1WL2 4 KI/c2.

(ii) ifL is of Case I we have
(i fILL 1 L '~K 1 /C 4.

(iii) if L is of Case 2 we have 0iL-IIL < KI/ 3 IL-I| < K2/1.

a-9
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