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ABSTRACT

We describe a rfumerical method for solving the steady. three-dimensional. incompress-
ible Navier-Stokes equations in cylindrical geometry. Also. we present results of computa-
tions in which this method is used to determine the flow in fluid-filled cylinders undergoing
-pinning and coning motion. Second-order accurate central finite difference formulas are
used to approximate derivatives in the radial and axial directions and a Fourier method
is used to approximate the angular derivatives. Nonuniform grids are used to improve the
resolution of the velocity and pressure near the cylinder walls. The system of difference
equations are solved using an iterative method based on successive-over-relaxation. The
method has been found to be very efficient in terms of both computer time and storage.
Results of the numerical method applied to the flow in spinning and coning cylinders are
presented for several cases for which experimental data are available. In addition, pertur-
bat ion methods are used to study the data at small coning speeds and small coning angles.
Numerical results of this no-coning limit are compared with both the numerical data and
experimental data at low coning conditions.
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KeyWords: Incompressiole Navier-Stokes. Finite I)ifference Method
Vork Unit Number 3 - Numerical Analysis and Scientific (omputing
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SIGNIFICANCE AND EXPLANATION

Numerical methods for solving for the flow of incompressible fluids. such as water.
oil. arid many other common liquids, are important for the study of many engineering
problems. In this paper we describe a finite difference method for solving the equations
of steady incompressible flow in three dimensions. The basic method can be applied in
any coordinate system, but since the application to be studied is for flow in a cylinder.
we present a modified method which takes advantage of the cylindrical coordinate system.
The numerical method is used to solve for the flow in fluid-filled cylinders undergoing
both a spinning and coning motion. The numerical method is very efficient, running on a
Vax 11 7RO. even though the flow is three-dimensional. The study of fluid-filled cylinders
undergoing both a spinning and coning motion is a significant problem in modern ballistics,
and of interest to U.S. Army researchers at the Ballistic Research Laboratory and Chemical
Research and Development Center. Comparisons of the results of computations with the
new% scheme with experimental data show the scheme to be very accurate.
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A NUMERICAl METHOD FOR THE INCOMPRESSIBLE
NAVIER-STOKEJ EQUATIONS IN THREE-DIMENSIONAL

CYLINDRICAL GEOMETRY

John C. Strikwerda ' and Yvonne M. Nagel
Introduction

We present a numerical method for solving the steady, incompressible Navier-Stokes
equations in three-dimensional cylindrical geometry. The difference scheme is a regularized
central difference scheme in the radial and axial direction as introduced by Strikwerda 17
with a Fourier method in the azimuthal direction. The method is presented as applied to
the computation of the flow in a fluid-filled cylinder undergoing both a spinning and coning
motion. The values of the velocity components and pressure are assigned to a common grid,
i.e. a non-staggered grid is used, and grid stretching is used to improve the resolution near
the cylinder walls. Because of the regularized difference method, the scheme maintains
second-order accuracy even for nonuniform grids. The difference equations are solved by
an iterative method based on successive-over-relaxation as discussed by Strikwerda '18]
and thus requires only one three-dimensional array per dependent variable. This offers a
significant savings in computer storage over time-marching methods. The iterative method
uses line successive-over-relaxation together with an exact inversion of the Fourier operator
for each line. Each line consists of the points at a fixed value of the radial and axial
coordinates.

The study of the flow in fluid-filled spinning cylinders is of importance in several areas,
especially ballistics. Stewartson 1161 studied the inviscid flow in a spinning cylinder and
Wedemeyer 22.23 applied this theory, along with some approximations, to the case of high
Reynolds number flows. The low Reynolds number case is also of interest since projectiles
filled with highly viscous fluids have exhibited rapid despin and growth in coning angle. In
an effort to understand this phenomenon Miller [9,10' and D'Amico and coworkers i2,14]
devised experiments in which fluid-filled cylinders were subjected to simultaneous spinning
and coning motions. Various researchers have made analytical studies of the problem, e.g.
Herbert *7.8 and Murphy 11.12. A numerical study was done using a finite difference,
time-marching scheme by Vaughn. Oberkampf. and Wolfe 21 using a method of Chorin
3 . The present method was applied to this problem because of the need for a more

efficient and accurate computer code for studying this fluid dynamics problem.
The paper is organized as follows. Section 1 describes the derivation of the equations

to be solved by the numerical method. Section 2 presents the finite difference equations and
the Fourier method for the incompressible Navier-Stokes equations. The iterative solution
algorithm for the difference equations is discussed in sectio', 3. A perturbation expansion
in terms of two small parameters is discussed in section I and in section 5 computational
results are presented.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
The first author was also supported in part by National Science Foundation Grant MCS-
8306880.
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1. The Equations

Consider a fluid-filled cylinder which is spinning simultaneously about two axes. The
first axis is that of the cylinder and the second axis. the coning axis, is inclined to the
cylinder axis by a fixed angle 0. Let ' be the angular velocity with which the cylinder
rotates about the coning axis and let Q be the angular velocity of rotation about the
cylinder axis. The fluid velocity. i7 and pressure. P. in the cylinder are governed by the
incompressible Navier-Stokes equations given by

Dt:DF-VP--R-V 2 F
Dt (1.1)

Vt -F -0'

in an inertial frame in which the coning axis is fixed. The equations and variables are
non-dimensionalized by using the cylinder radius, a, as the length scale and the product
of the cylinder radius and the spin rate of the cylinder about its axis as the reference
velocity, hence the Reynolds number is fla 2 'v. where v is the kinematic viscosity of the
fluid. By changing to the non-inertial coordinate frame which rotates with angular velocity
,, about the coning axis the fluid motion becomes steady. It is also convenient to compute
the difference between the velocity and the solid body motion of the cylinder rather than
the velocity itself. Similarly, it is convenient to compute with the difference between the
pressure and a given function that is chosen to simplify the forcing terms arising from the
coordinate transformations.

Based on these transformations., and using a cylindrical coordinate system aligned
with the cylinder, the equations describing the flow are

R9 -7(r.0) × i- Vp = 2rsin0 rcos4 k (1.2)

V .- i = 0 (1.3)

where r is the ratio of the angular velocity about the coning axis to that about the cylinder
axis. i.e....i 0), and I is the unit vector in the direction of the z axis, the cylinder axis, and

0(r.0) = 2(-r sin0coso. rsin 0sin&. 1 + -s cos0)'

= 2(1 - 7 cos0)k - 2rsinO (O)

in the cylindrical coordinate system, where i(o) is the unit vector in the x direction. The
X z plane is the plane of the two axes which is also the plane 0 = 0. The velocity i in
equations (1.2) and (1.3) is relative to the solid body rotation of the cylinder and in the
coordinate system rotating with the coning motion, thus the bounlary condition for the
system (1.2. 1.3) is

i 0 (1.4)

on the cylinder boundary. The relations between the actual velocity and pressure (F. P) in
equation (1.1) and the computed velocity and pressure (i.p) in equations (1.2) and (1.3)
are

. k . , , (1.5)



2' 0-- P- 20)2p - P - r' - r2 rcosO - -((r cosocos0 -- zsin )2 + r 2sin2O) (1.6)
2 2

where F is the vector in the direction of the coning axis with magnitude r. The system

(1.2, 1.3) holds for 0 < r < 1 and -b < z "- b where b is the aspect ratio of the cylinder.
defined by the ratio of the length of the cylinder to its diameter.

In addition to the system (1.2. 1.3). it is also of interest to examine the equations
resulting from a linearization about r and 0 equal to zero, as will be discussed in section

5. The resulting system is

ati_RV 7-.----2k¢xJ± p = 2rcose k (1.7)

V. ¢: o. (1.8)

This system will also be used to explain the iterative solution algorithm which uses a

linearization to determine the updates to the solution.

2. The Numerical Method

The numerical method to solve the equations of flow is based on the regularized finite
difference method of Strikwerda j171 together with a Fourier or pseudo-spectral method.

Finite differences are used to approximate derivatives in the axial and radial direction and

the Fourier method is used to approximate derivatives in the azimuthal direction. The
Fourier method is much more accurate than the finite difference method for periodic in-

dependent variables such as 6, (Gottlieb and Orszag !5!), and this allows for a substantial
savings in computer storage and thus also in computer run time. The regularized differ-
ences make it possible to compute both the velocity and pressure on the same grid, as

opposed to staggered grid methods. Also, grid stretching is used to place more points
in the regions near the container walls to better resolve the flow field. The regularized
differences allow this to be done simply without loss of accuracy. The nonuniform grid is

defined with the use of mappings

r op -( - O)p 3  (2.1)

z = b(3" (1 - 3)(15 "3 
- 8's)/7), (2.2)

which map the region 0 < p < I and -1 <_ < _ I onto the cylinder. Because the resolution

at the end walls was critical to the accuracy of the solution the stretching (2.2) was chosen

to have the property that d2lz/ld 2 vanishes at c equal to r1I so as to obtain a more uniform

stretching there. The values of a and 3 are chosen to make ar/dp and dz/d less than 1
and b. respectively, at p and equal to 1. The variables p, q. and the angular variable, o

are discretized using uniform grid spacing. i.e.

AP= 1/(I P, i)AP,
A¢ 2!/(K" I. -k (k -I) %-
A¢ o 2 rid, 01 U ( - l)ANo.
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The differential equations were written in terms of the new independent variables p and q
and then differenced using central difference formulas. As an example,

I a au a r au1 0(rO) 1 0__( r )(.3

r ar r rr'(p) ap r'(p) ap

I r,_1~ '2 r,_. 12 . I
( , (U, 1,.k -r-,,,k2 - -"2(U,,. k - U, 1.j.k)) 2

rir: r' r At' 1/2 r ~1-1)2 , 2

wher- r, = r(p,). r' = r'(p,), etc. The gradient terms and the divergence terms were
differenced using regularized differences as introduced by Strikwerda '17. For example,
dp'dz in (1.2) and au/ar in (1.3) were approximated by

ap1 ( z, k- I - Pi.j.k-I Ptj.k+ 2 - 3pi,j,k+ I- 3p,,,k- Pi,j,k-I

r 1 r I - r 1 t 1,,k U-l,j,k - 3ut,k - 3ui-,k - U-2,,k-- r_ l__l__ - r_____ _ t_ l,3,k__ U.. ~jk 3
U,, U . ,

rar ,,. rr'(p,) 2Ap 6r'(p,)Ap

As discussed in Strikwerda '17, these regularized differences were used only on the terms
api'ar and apioz in the pressure gradient and on the terms aru,'rar and aw/az in the
divergence equation. The approximations to Op/aO and avio will be discussed later.

In the Fourier method approximations to derivatives with respect to the angular vari-
able. o. are obtained as follows, using the pressure as an example. For each choice of the
radial and axial grid indices. i and k. the discrete function P,,.k is represented using the
discrete Fourier transform as

J'2

' _ a, sin np, -b4 cos np. (2.4)

whr (4) (4

where 4t1,k and a J/2k are 0. and the prime on the summation indicates that the first

and last terms are weighted with a 1. Similar expressions with coefficients a(,nk, 1^k,

hold for the velocity components u.tv. and w. for I = 1.2,3. respectively. Considering the
right-hand side of (2.4) as a continuous function of t. and then differentiating this function
with respect to o we obtain

J/2
dp ~ 4) co' b 4~
do 

0 ,na kcn - .nbl4.k sin no,. (2.5)

The coefficients a( and 4.) are easily obtained by the use of formulas

J- I
(4) 2

a,,. 2- P,,2 .k sin no,

4
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and
(J4) 2 I

bt,n ,k = Pjk Cos n O.
J =(

To maintain the regularity of the difference method. (see Bube and Strikwerda 11)
the approximations to ap d in the pressure gradient in (1.2) and cv ,/96 in the divergence
equation (1.3) were approximated as in (2.5) with the addition of the term

b b(4) - ) (2.6)8 i,J/2, k(

to (2.5) and the subtraction of a similar term to compute av/ao. The use of the factor
was somewhat arbitrary. however the omission of this term (2.6) led to nonconvergence

of the solution in almost all cases. The importance of such a term can be seen in that
without the term (2.6) the Fourier mode b,,J/2 k cosCQ, which is

b,,J,/2,k (- W)

will not contribute to the derivative (2.5). Thus the scheme would allow grid scale oscilla-
tions in the 0 direction. The use of this extra term in occurences of first derivatives of the
velocity components with respect to 0 in (1.2) or (1.7) resulted in poorer performance of
the iterative solution algorithm and so was not used. The effect of the regularizing terms
has only to do with removing high frequency oscillations and does not affect the formal
accuracy of the method.

Along the z axis of the cylindrical coordinate system the values of the velocity and
pressure were determined by interpolation from the neighboring grid points. In particular,

t'l, 3 ,k = (4t'2,k - WT3,k) /3

and

PI,).k =-- (4p2,k -- 3,k)/3

where

li't, k = W,,j,k

and similarly for P,.k. Note that Wi,,.k and PIj,k are independent of j. Because of the
multiple-valued representation of the velocity along the axis of the cylindrical coordinate
system we have

U 1,1,k = U1.k cos Oj V1.k sin o)
V1,j.k = - [".k sin o, V1.k COS 0)

where U k and V'I,k are the velocity components on the axis in the cartesian coordinate

system. The values of UI.k and VI.k are given by

U1,k = (4U2.k - t('.3k) 3

.k = (4f-:2,k - V3.k) 3

5



with

U,.k = U,,:.k COS ¢P - vt,,,k sin 

and
I J |

-,.k= Z u,j,k sin v,,j.k COS 6."

=7=1

As shown in Strikwerda and Nagel 20 this treatment at the origin preserves the second-
order accuracy of the method.

The values of the pressure on the cylinder walls were determined by extrapolation
from the interior by the formulas

Pl,j,k = 
3 PJ-1,.k - 3pl-2,3,k P-3o,k

and

P,j,K = 3 p,,K - I - 3 pt,.K- 2 - K -3

and similarly for pi,),.

3. The Iterative Solution Algorithm

The system of nonlinear difference equations is solved using a modified line successive-
over-relaxation method (LSOR). The basic method is described in Strikwerda '18 for the
case with linear finite difference equations. Because the Fourier method is used in the
azimuthal direction it is most convenient to use line SOR with each line being the grid
points in the azimuthal direction for each given value of the radial and axial coordinates.
The coupling between the three velocity components and the natural periodicity of the
azimuthal coordinate leads to a periodic system of equations.

To describe the solution algorithm it is best to regard the discrete solution

(tt,k, Zz,..k, w,l,k. P,.j.k)

as continuous functions of o with a finite Fourier expansion, that is. as

The finite difference and Fourier scheme for the linearized problem (1.7) can be written as

A:,.k - A ,.k - A,," - A',.k' - A',kj
1.0k -IL.k A, " i.k'l _L.k Tik. k - I.k4 1'/zk-

l  likUt.k

.kk~ lk -tir~+ P ,k

Gi~ ~ k k -;

,k k i- k k k =  2rcoso,k

6



whreeah f k adGkwher eah o Al,,k nd :'kare matrices of differential operators in 0. In particular. the

i k

operator .4,* is

01

r rT

0 0k R Lkk

where Lk is the operator

)~~~ ~ a2R 20"

+ Oq-R t. , '  2 p -R -ZL,' Z ) -2 a,0 2

1 r,2 l 2 r1 -l' 2  1 1 1 1 1 1 02

1 r 2 -1/ 2 kk 1k / ,2 dk-_1 42

The iterative method is then written as
k - -

t' - U,k) = W resk (3.2)

where r-es,,k is the difference of the right-hand and the left-hand sides of equation (3.1)
evaluated using the most current values of il, and . is the SOR iteration parameter. The
equation (3.2) was solved by computing the Fourier coefficients of the components of the
velocity residual vector F,,k for the current value of (i.k) and solving for the Fourier
coefficients of the velocity update 11';1 - ,k This leads to a set of linear equations for
the Fourier coefficients of the velocity update which are solved by Gaussian elimination.
Each linear system is of size at most six by six for the sine and cusine terms for each value
of n as in (2.4) for the three components of the velocity update.

For the nonlinear system of equations the same algorithm was used with re-,,k being
computed with the addition of the nonlinear convection terms.

After the velocity was updated at all the grid points by one pass of the LSOR operator.
the pressure was updated by setting

V - " - (3.3)

where ") is an iteration parameter as described in Strikwerda 18' and Vh" is the discrete
divergence operator. As in Strikwerda 17,18. we did not attempt to satisfy the equation

•h ,,k - 0. (3.4)

but rather
Vh ,,I,J,k 6 h (3.5)

where 6 h is the average value of the discrete velocity divergence. In all the cases presented
here the value of 6

h wLs on the order of the truncation error. As discussed in Strikwerda
17 , the difference equation (3.4) with the boundary conditions (1.4) will in general he

an over-specified system and need not have a solution. By allowing the divergence of the
velocity field to be a constant. but nonzero value, the system has a unique solution).



This method has the advantage that only one three-dimensional array is needed for
each of the velocity and pressure variables as opposed to time-marching methods which
require two such arrays. The LSOR iteration has a good rate of convergence, allowing for
the solutions to be computed on a VAX 11 '780 computer in at most several hours of cpu
time.

4. Perturbation Expansions in the Coning Speed and Angle.

Many of the experimental results are for small values of the parameters r and e,
therefore it is useful to make a perturbation expansion of the solution of the system (1.2)
and (1.3) in terms of these parameters. Since the forcing term is proportional to r sin 0 the
velocity and pressure are also proportional to this quantity. Consider then the expansion
in the form

(11, p) =rsin0 (0m'npm'n),rnsirnO. (4.1)

For each term of the expansion we have

V • i". = 0,

and ach t7' ' vanishes on the boundary. The equation for (uOU),p" ' ) = (fro p') is the
same as (1.7)

-R- -2k , - Vp= 2rcoso k. (4.2)

This equation has been analyzed by Gerber et al. 4: for the case of high Reynolds number
using separation of variables and numerical methods. If we let the operator on left side of
equation (4.2) be denoted by L and set Wm ' = (ff m

fl,p
m ,,), we obtain

LW' = -2k ¢ ' (4.3)

and

LW"" ' = 0

hence W " -'' - 0.
Since the operator L is linear and the forcing term in (4.2) involves only the k 1

Fourier mode we see that I4' and W' contain only the k 1 Fourier mode. Similarly
for W" and 11, 2 ' which satisfy

LW 1,2 2k /: t., LW. -2k

The equation for 11'"' has a right-hand-side involving a quadratic in u-o and the vector
i(o) times u' . and thus W"' contains only the Fourier modes for k = 0 and 2. Similarly,
I 2.1 also has only these modes.

Nusca et al. r141 defined the coefficient of pressure. CV. as

max p,(r.z)0

8



for values of (r. z) on the end wall of spinning and coning cylinders. where p,(r. z) is the
amplitude of the Fourier mode for k = 1. That is, p,(r. z) is determined by

p(r,o z) pk(rz)sin(ko- k)

k=0

l-rom the perturbation expansion in r and sin 0. and considering also the solid body con-
tribution to the true pressure. e.g. (1.6), we obtain

C,,(r.(r, z) -r p,,j(r, z) -- rz) 1

- O(r 2 sin 2 6, r 3 ). (4.4)

Note that the terms for 7 2 s:n 0 arising from W 1 1 do not affect CP since W'' 1 involves only
the Fourier modes for k =- 0 and 2. Also we set C r to have the same sign as r.

The coefficients in (4.4) are easily computable. The coefficients p, 8 and are
1 (10

computed by solving the equations (4.2). The coefficients p 1 , and pi can be obtained
either by solving the system (4.3) or. as was done here. by solving the system

2(1 - r) -v p" = 2r cosO i. (4.5)

This system is obtained by performing an expansion of the solution in terms of sin 0 only,
similar to the way (4.2) was obtained. The system (4.5) was solved for 0 equal to 0.0
and for 7 equal to both a small positive and a small negative value. Accurate estimates1 .() 1 0,-.
of P I,, and P1,' can then be obtained by computing the divided difference of the Fourier
coefficients of the pressure on the endwall using both values of r.

The coefficients of liquid roll moment, Ci,,,. and the coefficient of liquid side moment,
see Murphy 11.12, can also be developed as expansions in r and sing using the

expansion (4.1). The expansions for Ctm and C1,, are

, Cirm rT"(R,b),'27rb + 0(r 2 )

andl

Com To'°(Rb)/27rb - O(r),

where TP' and Ti"' are terms in the expansions of the moments of force resulting from
('1.1). The yaw moment T' "(R.b), and thus C",. is easily obtained by solving the system
(4.2). The despin moment T., 1 is more difficult to obtain and no attempt was made to
compute it.

5. Computational Results

The numerical method described above has been used to compute the flow in a spin-
ning and coning cylinder for a large number of cases. Here we present the results of a

9



few representative runs. A discussion of other cases and their engineering significance will
appear elsewhere.

Figure 1 displays the data for CP measured on the endwall of the cylinder for the case
R 3.l.b = 3.148 and 0 = 20. Figure la shows Cp(r,b) at the radial location r = 0.667
and Figure lb shows the same quantity at r = 0.434. The results of the computations are
marked with a x and the gyroscope data of Hepner 161 are marked with a o. In addition
to the data points, the curve based on the expansion (4.4) for Cp is also displayed. For
positive values of r there is excellent agreement between all three sets of points, however,
for negative values of 7 the experimental data differs from the computed data and the
asymptotic formula. Note that the computed solution and the curve based on (4.4) are
not completely independent since the numerical method to compute the coefficients in
(4.4) is essentially the same as the basic numerical method. The significant qualitative
difference between the experimental data and the other data for negative values of 'r may
indicate a systematic error : perimental data. Analytical results of Sedney [15]
agree qualitatively with .,r ,omputational results.

Figure 2 displays the coefficient of pressure C. on the endwall as a function of radius
for 0 equal to 2 degrees and two different values of 7. Figure 2a shows results for r = 0.350
and Figure 2b displays results for r = 0.100, the experimental data and numerical results
are marked as in Figure 1. In both figures the excellent agreement between the basic
numerical results and the perturbation results verify the essential linearity of the problem
for small values of r and 0.

These calculations were made with I = 11,J = 6, K = 33, with grid stretching
parameters a and 3 chosen so that the dr/dp was 0.8 at r = 1.0 and dz/d was 0.8b at
z = b. The run with r = 0.350 took 82 iterations until the 2 norm of the changes in each
variable was less than 10'. This took approximately 550 seconds of cpu time on the Vax
11/780 at the Mathematics Research Center.

Figure 3 displays C", as a function of the Reynolds number, R. for the case b = 2.20
for R between 0 and 350. Since C1,m is related to the yaw moment, a negative value of
this quantity indicates a tendency to decrease the angular velocity about the coning axis
and a positve value indicates a tendency to increase this angular velocity. The variation
in the sign of Cl,, with increasing R is due to the reduction of the viscous effects on
the moment as R is increased. Indeed, the contribution to C.,o of the pressure on the
side wall is of positive sign, the other contributions, i.e. pressure on the end wall and the
viscous contribution, are all negative for this value of the aspect ratio. As the Reynolds
number increases the viscous side wall contribution decreases in magnitude changing the
sign of Co,,,. A significant factor in the flight instability of liquid filled projectiles is an
increase in the coning angular velocity and is most likely related to the positive values of
C, shown in Figure 3.

6. Conclusions

The numerical method presented in this paper has been shown to be an efficient
and accurate method for computing solutions to the steady incompressible Navier-Stokes
equations in three dimensions. The method has been applied to the computation of flows in
cylinders undergoing spinning and coning motion and results agree well with experimental

10
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Cp vs. T at radius =0.667
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Cp vs. T at radius =0.434
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Cp vs. Radius at T = 0.350
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Cp vs. Radius at T = 0.100
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data. The use of the perturbation analysis corroborates the accuracy of the calculations.
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