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ABSTRACT

A parallel successive overrelaxation (SOR) method is proposed for the solution of the

fundamental symmetric linear complementarity problem. Convergence is established under

a relaxation factor which approaches the classical value of 2 for a loosely coupled problem.

The parallel SOR approach is then applied to solve the symmetric linear complementarity

problem associated with the least norm solution of a linear program.
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SIGNIFICANCE AND EXPLANATION

A framework for the parallel solution of very large sparse linear programs and symmet-

ric linear complementarity problems is proposed. Linear programs with 80,000 variables

and 20,000 constraints have been solved with the serial version of the proposed methods.

Considerably larger problems will be tackled with the parallel algorithms.

L iceession For

NTIS

D T- I C ,

jl

IA.

The responsibility for the wording and views expressed in this descriptive summary lies
with MRC, and not with the authors of this report.



PARALLEL SUCCESSIVE OVERRELAXATION METHODS FOR SYMMETRIC
LINEAR COMPLEMENTARITY PROBLEMS AND LINEAR PROGRAMS

0. L. Mangasarian I and R. De Leone 2

1. Introduction

The purpose of this work is to propose a parallel successive overrelaxation (SOR)

method for the solution of the fundamental symmetric linear complementarity problem:

Find a z in the n-dimensional real space R" such that

Mz + q > 0, z > O, z(Mz-- q)=0 (1)

where M is an n x n real symmetric matrix and q is a vector in the n-dimensional real

space R'. It is well known that (1) is a necessary optimality condition for the optimization

problem
mi f(x): = minM -,- qz (2)
Z>0 z>O 2

and that (1) is a sufficient optimality condition for (2) if M is positive semidefinite. Part

of the importance of this problem stems from the fact that the solution of very large

sparse linear programs by successive overrelaxation methods (Refs. 1-3) can be reduced to

problem (2) with a positive semidefinite symmetric matrix M. Until recently (Ref. 4) only

serial methods had been proposed for the solution of (1). A primary result of this work

is the convergence of a parallel SOR procedure for the solution of (1) under a relaxation

stepsize .: E (0, 2-) given in (15) below, where a is a positive number depending on the

coupling that exists between the row blocks of the matrix M that are being coprocessed

by the parallel SOR procedure. If the row blocks are loosely coupled. then a is small. In

fact a is zero for uncoupled row blocks which results in w, E (0. 2), the classical interval

for the serial SOR procedure (Ref. 5). We give now a brief summary of the paper.
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We begin in Section 2 with some known preliminary results for the serial SOR algo-

rithm for solving (1). A key role will be played by Algorithm 2.1 below which is a special

case of Algorithm 2.1 of Ref. 1. Although Algorithm 2.1 was originally conceived as a

serial SOR algorithm, it turns out that it is general enough to also encompass a parallel

SOR scheme. The parallel SOR is achieved by taking a decomposition for the matrix M

other than the standard L + D + U decomposition, where L is the strictly lower triangular

part, D is the diagonal part and U is the strictly upper triangular part of M. The rest of

Section 2 of the paper is concerned with a useful modification of Algorithm 2.1 (Algorithm

2.3) and with convergence results for both algorithms. In Section 3, which constitutes the

core of the paper, we construct parallel SOR algorithms for the solution of (i) by appropri-

ately decomposing the matrix M so that it satisfies the assumptions of Algorithm 2.1 and

such that parallel computation of the iterates is possible. In particular we decompose the

matrix M into k blocks of disjoint row matrices and apply one sweep of the serial SOR

Algorithm 2.1 to each block simultaneously. After this sweep the information is shared

among the k blocks and the process is repeated. Under an appropriate stepsize condition

we show in Theorem 3.5 that each accumulation point of such a parallel SOR algorithms

solves (1). Theorem 3.6 establishes convergence of all the iterates of parallel SOR algo-

rithms under the assumption that Mz + 9 > 0 has a solution. In Section 4 we apply the

parallel SOR algorithms of Section 3 to finding the least 2-norm solution of a linear pro-

gram, which turns out to be precisely a problem of the form (2) with a positive semidefinite

matrix. Theorem 4.2 establishes the linear convergence of parallel SOR schemes for the

least 2-norm solution of a linear program. We conclude the paper in Section 5 with some

brief remarks regarding computational implementation of the proposed parallel schemes.

We briefly describe our notation now. For a vector x in the n-dimensional real space

Rn , x_- will denote the vector in R' with components (x ), = max {xi, 0}, i = 1,...,n.

The scalar product of two vectors x and y in R' will be simply denoted by xy. For

1 p< oc.the p-norm (E xdp)" ! ofavector in R' willbe denoted by !,x v. R_ will

denote the nonnegative orthant or the set of points in R' with nonnegative components,

while R X× l will denote the set of all m Y n real matrices. For A e R"'". AT will denote

the transpose, A, will denote the ith row. A,, the element in row i and column j, and

for I m { )...,r}, J ci {1..., n}, A, will denote the submatrix of A with rows A,, i e I,
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while Ajj will denote the submatrix of A with elements A,,. i E 1, j E J. Similarly

for X E R' and I1 C f1I,-, n}, zr,, will denote x,. i c- It. The set f11, 1 2, -- , IK} is

said to be a consecutive partition of {1..n) if it is a partition of f{1,...,n} such that

I < j for 1' -S1j j E Ij-I and i = .... ,k - 1. For a twice differentiable function

0: R' x R'- R, 7 2 0 will denote the (m -- n) 'x (m + n) Hessian matrix, while 170 will

denote the m±+ n gradient vector and V79(O, 0): = 70(u, v);u=O =-O. Here and throughout

the symbols =and =: denote definition of the term on the left and right sides respectively.
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2. Preliminary Background

In this section we give some background results needed to derive our parallel SOR

algorithm for solving the symmetric linear complementarity problem and linear programs.

We begin first with a special case of the serial SOR Algorithm 2.1 of Ref. 1.

Algorithm 2.1 (Serial SOR algorithm for (1)) Let z" > 0. For i = 0,1,2,..., let

z =+ 1 = (z' - wE t (Mz ' + q + K'(zt * - zi))) (3)

where w > 0, and {E'} and {K'} are bounded sequences of matrices in R"n " , with each

E' being a positive diagonal satisfying

E' > a] (4)

for some a > 0 and such that for some -y > 0

+ K' - M/2)y ? lylY112, Vi, VY E Rn (5)

Remark 2.2 If we let

L + D+ U:= M (6)

where L is the strictly lower triangular part of M, D is the diagonal of M and U is

the strictly upper triangular part of M, then the iteration (3) is an explicit one if we set

K' = L, U or 0. More specifically for K' = L or U and E" = D-I (assuming that D is

positive) iteration (3) gives the projected SOR algorithm studied in Ref. I and condition

(5) becomes the familiar SOR relaxation factor condition: 0 < W < 2. When K' = 0 we

have the projected Jacobi method (Ref. 1). However K' may be any matrix as long as

(5) is satisfied, in which case the iteration (3) can be considered as solving a (hopefully

simpler) linear complementarity problem.

An important useful modification of Algorithm 2.1 has been proposed by Subramanian

(Ref. 6) in which instead of taking z' +1 of (3), any other point in the nonnegative orthant

is taken with a value of f not exceeding f(z' ). This leads to the following algorithm.

Algorithm 2.3 (Modified serial SOR algorithm for (1)) Let z' > 0. For i 0, 1,2,...,

let

(z' - E'(Mz' - q - K'(s' -z'))) (7)

-4-
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where w > 0 and the sequences of matrices {E} and {K'} satisfy all the requirements

of Algorithm 2.1. Choose z' +1 > 0 such that f(z') +I f(s).

The important point to note about Algorithm 2.3 is that is allows a whole class of

algorithms to be based on Algorithm 2.1. Typically, z? l of Algorithm 2.3 is obtained

from s' by some sort of line search.
The convergence of Algorithm 2.1 was establsihed in Theorem 2.1 of Ref. 1, and

the convergence of Algorithm 2.3 in Theorem 4.2 of Chapter 3 of Ref. 6. We combine

these results into the following fundamental convergence result under no assumption on

the matrix M other than symmetry.

Theorem 2.4 (Convergence of serial SOR algorithms for (1)) Let M be symmetric.

Each accumulation point of the sequence {z'} of Algorithm 2.1 or 2.3 solves the linear

complementarity problem (1).

Note that Theorem 2.4 does not guarantee the existence of an accumulation point for

the sequence {z'}. To do that we need additional assumptions (Ref. 1, Theorem 2.2) such

as the following.

Theorem 2.5 (Strong convergence of serial SOR algorithms for (1)) Let M be symmetric

and positive semidefinite, and let

Mz-i-q>O forsome zER '  (8)

Then, the sequences {z'} of Algorithms 2.1 and 2.3 are bounded and have accumulation

points. Each accumulation point of {z'} solves (1).

With this background material we are prepared to introduce our parallel SOR algo-

rithm for solving the symmetric linear complementarity problem (1).

-5-



3. Parallel SOR for the Symmetric Linear Complementarity Problem

The key idea of our approach here is to consider K' of Algorithm (2.1) as a sub-

stitution operator which replaces the old data z' by the new data z' +1 . If for example

K': = L, where L is the strictly lower triangular part of the whole matrix M, then z' +1

replaces z' during the computation of zt ' for all i > Now, consider instead the

following procedure. Break M into k blocks of rows as follows:

[MI,

M M12 (9)

where the blocks MI. correspond to the variables zj, and { 1, 12, 1k} is a consecutive

partition of {1,2,...,n}. Now partition M, as follows

Mi =: [M, Mi (10)

where Ij is the complement of Ij in {1,2,...,n}. Thus Mi. I. is a principal square sub-

matrix of M with elements Mr., r E I, and s E 13. We further partition M,,, as

follows
M13 1 =: L 1. JJ + Db I.+j Uji (11

where L,., is the strictlly lower triangular part of Ml,,,,, D,,1 its diagonal part and

U, ,2 its strictly upper triangular part. Thus for example if k = 3 we would have the

following decomposition of M

, Mi, [Mi, Mit'1_ MiI:,Mi J = M M,2 , M,21 . (12)
L C LMih, M, 1 1 M':.:,

Now let K' of Algorithm 2.1 be defined by a block diagonal matrix as follows

K = K:= " - .J(13)

where each L., t, is a strictly lower triangular matarix defined in (11).

-6-



Algorithm 2.1 can now be performed for each row block 1, j = 1, .... k, simultane-

ously, that is in parallel. Note that this is not a block Jacobi iteration. More specifically

we have the following algorithm.

Algorithm 3.1 (Parallel SOR for (1)) Let {1.12,...,1k} be a consecutive partition

of {1,2,...n}, let the diagonal D of M have positive elements and let z" > 0. For

t i = 0, 1, 2,..., let

S -wD~lj.(M 3 z1±q, +Lij(zt' - zf+)) (14)

j =1,...,k

where

0< w< min min- (15)
I<j<k I II

Remark 3.2 Iteration (14) can be performed in parallel on k processors. The new value

z i + 1 must then be shared between the k processors.

Remark 3.3 If all M,, are zero then 0 < w < 2 for all J, which is the standard

SOR relaxation factor range. This corresponds to k uncoupled linear complementarity

problems. If all M, lj are small relative to Dis, which corresponds to a loosely coupled

linear complementarity problem, the upper bound on w given by (15) is close to 2.

We state now a parallel SOR version of Algorithm 2.3.

Algorithm 3.4 (Modified parallel SOR for (1)) Let the assumptions of Algorithm 3.1

*hold. For i = O, 1,2,..., let

S% = (z -wD7-t (MIz' + q+L,+ ,(s'., - z',))
.77 " " )+ (16)

j = l.,k

where w satisfies (15). Chose z" I > 0 such that f(z 1 ) < f(s').

We can establish the convergence of Algorithms 3.1 and 3.4 by appealing to Theorem

2.4. We have then the following convergence result.

Theorem 3.5 (Convergence of parallel SOR algorithms for (1)) Let Al be symmetric.

Each accumulation point of the sequence {z'} of Algorithms 3.1 and 3.4 solves the linear

complementarity problem (1).

-7-
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Proof By Theorem 2.4 we only need to establish that condition (5) is satisfied by the

choice (13) for Kt, E: = D-I and w satisfying assumption (15). We have

y+ K' - M/2)y
1 _ID

-y(2u D+ 2K - M)y
2

k

,(2,,-',,. + 2K, - M j,)y

r=l 6

1-(2u; i, D . , + 2K L , LI - I , I ,)Y 1, + U 1J y iMi.. l
2 1t

= y' y,(2w-' -D,1, 2, -L.+D,+U,)y.-y My.

1 -- Y, D,, MI, I, yl

2 r=i L I
r=1 .90r

(Because L = UT)

=I-. _ ,_ [(2W- 1 - 1)D,, - Aili.][i
I k. MI -I,

r= J.yj (2w - 1 - l)D,I Y!,

(2- 1) D1 . (2- 1D

2 []]!2
-Mlk lk ~ (2u,- - 1) D, 1,

where last inequalilty holds for some y > 0 because of the positive definiteness of the

symmetric n x n matrix (preceding the inequality) which is induced by its row diagonal

dominance (Ref. 5). The row diagonal dominance is precisely a consequence of assumption
.:p. (15). n

-. Having establilshed that the parallel SOR Algorithms 3.1 and 3.4 can be considered as

special cases of the general serial Algorithms 2.1 and 2.3 respectively, the following strong

convergence result is a direct consequence of Theorem 2.5.

Theorem 3.6 (Strong convergence of parallel SOR algorithms for (1)) Let M be sym-

metric and positive semidefinite and let assumption (8) hold. Then the sequences {z t } of

= -8-



Algorithms 3.1 and 3.4 are bounded and have accumulation points. Each accumulation

point of {zt} solves (1).

Remark 3.7 Minor changes in the proof of Theorem 3.5 allows us to have a different

.,c, for each j -,...,k in (14). In particular all we need is that for j 1,..., k, W, must

satisfy

0 < w3 < min 2 (17)
EI , 1 + F- IMts/Dje

This results in larger stepsizes for Algorithms 3.1 and 3.4.

We now turn our attention to the parallel solution of linear programs.

9
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4. Parallel Solution of Linear Programs

The key idea here is to find the least 2-norm solution of a linear program by converting

the problem to a positive semidefinite linear complementarity problem (Refs. 2-3) and to

use the parallel SOR procedures proposed in the previous section. We will present a

parallel implementation here of the linearlly convergent iterative scheme proposed in Ref.

7.

We consider the linear program

min cx subject to Ax > b, x> 0 (18)
z

where c E Rh, b E R m and A E Rmxh, and its dual

max bu subject to ATu < c, U >_ 0 (19)

It is known (Refs. 2-3) that ± is the unique least 2-norm solution to (18) if and only if 2

is the unique solution to the quadratic program

6

min cx+ -xx subject to Ax >b, x>0 (20)
X 2

for all E E (0, E] for some E > 0. The dual to the quadratic program (20) is

max - + bu subject to v = cx - A Tu + c, (u, v) > 0 (21)
X,u,v 2

To solve (20) for a fixed positive e we shall use the parallel SOR procedures of Section 3

applied to its dual (21) with the variable x eliminated through the dual constraint

x = (ATU + v - c)/e (22)

and thus obtaining the dual problem

T C12min 6(u,v):= min I1A u+v-c - _bu (23)
(U,v)>_o (u,v)o 2' 2 

which is precisely of the form (2) with a positive semidefinite matrix and hence is equivalent

to the symmetric linear complementarity problem (1) on R'', h with M:= 2#(u, v)

and q: 70(0,0). We shall now describe a linearly convergent sequential parallel SOR

-10-
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procedure for solving (23) based on Ref. 7 and the results of Section 3. We first need a

definition.

Definition 4.1 (Approximate solutions to (23) and (20)) For a fixed positive E jU point

in R' ' h is an approximate solution to the dual quadratic program (23) and is designated

by (u(E), v(e)). The corresponding x(e) in Rh defined by (22) with (u,v) = (u(c), v(i))

is an approximate solution to the quadratic program (20). The residual r(e) associated

with (u(E), v(e), x(e)) is defined by

r( ): = [x( )v(E) + u( )(Ax(e) - b)' + l(b- Ax(E))+I(2

+ 1(E-'())+flJ"2  (24)

Note that for an e > 0 and an approximate solution (u(c), v(c)) to (23) and a

corresponding approximate solution x(E) to (20), r(E) = 0 if and only if (u(e), v(E)) is

an exact solution of (23) and z(e) is the unique exact solution of (20).

We are prepared now to state and prove a linearly convergent parallel SOR procedure

for computing the least 2-norm solution of the linear program (18).

Theorem 4.2 (Linearly convergent parallel SOR for linear programs) Assume that the

linear program (18) is solvable and that b 0. Let {0, el ...} be a decreasing sequence
of positive numbers such that

e,+ = sEj for some p E (0, 1) (25)

and let {u(c 1 ), v(e,), x(e,)} be a corresponding sequence of approximate solutions to (23)

and (20) satisfying Defifnition 4.1 and obtained by either of the parallel SOR Algorithms

3.1 or 3.4 applied to (23) and such that their residuals as defined by (24) satisfy

r(e,v) < rr(E,) (26)

for some v > 0 such that

VV < p1/2 (27)

Then the sequence {x(c,)} converges to t, the least 2-norm solution of the linear program

(18) at the linear root rate

-11~-



IX(C) - <' for I > 1' (28)

for some constant 6 and some integer :.

Proof See Theorem 3.7 of Ref. 7. I

5. Conclusion

We have presented a framework for the parallel solution of symmetric linear comple-

mentarity problems and linear programs. The proposed SOR algorithm is best suited for a

tightly-coupled shared-memory multiprocessor such as the one to be acquired by the Com-

puter Sciences Department at Madison. However we plan to test the proposed algorithm

on the existing loosely-coupled 20-processor token-ring-connected Crystal machine (Ref.

8) of the Computer Sciences Department in order to develop efficient computational im-

plementations of our algorithm. Because we have been able to solve sparse linear programs

of size 20,000 variables and 5,000 constraints by the serial version of our SOR procedure

in 78 minutes on a VAX 11/780 (Ref. 2), we are hopeful of solving substantially larger

problems by our parallel approach.

-12-



References

1. MANGASARIAN, 0. L., Solution of Symmetric Linear Complementarity Problems
by Iterative Methods, Journal of Optimization Theory and Applications, Vol. 22, pp.
465-485, 1977.

2. MANGASARIAN, 0. L., Normal Solutions of Linear Programs, Mathematical Pro-
gramming Study, Vol. 22, pp. 206-216, 1984.

3. MANGASARIAN, 0. L., Sparsity-Preserving SOR Algorithms for Separable Quadratic
and Linear Programming, Computers and Operations Research, Vol. 11, pp. 105-112,
1984.

4. MANGASARIAN, 0. L. and DE LEONE, R., A Parallel Successive Overrelaxation
(SOR) Algorithm for Linear Programming, 12th International Symposium on Math-
ematical Programming, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts, August 5-9, 1985.

5. ORTEGA, J. W., Numerical Analysis A Second Course, Academic Press, New York,
New York, 1972.

6. SUBRAMANIAN, P. K., Iterative Methods of Solution for Complementarity Problems,
University of Wisconsin-Madison, Ph.D. Thesis, 1985.

7. MANGASARIAN, 0. L. and DE LEONE, R., Error Bounds for Strongly Convex
Programs and (Super)Linearly Convergent Iterative Schemes for the Least 2-Norm
Solution of Linear Programs, University of Wisconsin-Madison, Computer Sciences
Department Report No. 631, 1986.

8. DEWITT, D., FINKEL, R. and SOLOMON, M., The CRYSTAL Multicomputer:
Design and Implementing Experience. University of Wisconsin-Madison, Computer
Sciences Department Report No. 553, 1984. (To appear in IEEE Transactions on
Software Engineering.)

-13-

1 1PS. Q ,1 ,



SECURITY CLASSIFICATION OF THIS PAGE (Wh.en Does E1nteored

REPORT DOCUMAENTATION PAGE 890KCMLTN O
1. REPORT NUM89R 2i. GOVT ACCESSION NO. I. RRCIPI N? S CATALOG NUMBER

2947 D-A1 d
4. TITLE (nd Subtlie)11TYEORERT&PIDCVRD

PARALLEL SUCCESSIVE OVERRELAXATION METHODS FOR Sumomary R pri oseii
SYMMETRIC LINEAR COMPLEMENTARITY PRO)BLEMS AND rprigpro
LINEAR PROGRAMS

7. AUTHOR(&) .CNRC FGATN691()

0. L. Mangasarian and R. De Leone DAAG29-8-C-0041

9. PERFORMING ORGANIZATION NAME AND ADDRESS IS PROGRAM ELEMENT PROJECT. TASK

Mathematics Research Center, University of for Unt Wme 5 -
610 Walnut Street Wisconsin )ptimization and Large Scale

Madison, Wisconsin 53705 Systs
11. CONTROLLING OFF ICE NAME AND ADDRESS 1 EOTDT

August 1986
See Item 18 below. IS. NUMBER OF PAGES

13
14. MONITORING AGENCY NAME & AOORESS(i dfterent from Controllin4 Office) IS. SECURITY CL ASS. (of thie jepert)

UNCLASSIFIED
[ISa DC ASSI PIC ATION!ONGRAOINtG

SC EOU LE

1S. DISTRIBUTION STATEMENT (of Ohio Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abotuect enterd in Block ",.it different fro. Report)

IS. SUPPLEMENTARY NOTES

U. S. Army Research Office National Science Foundation Air Force office of
P. 0. Box 12211 Washington, DC 20550 Scientific Research
Research Triangle Park Boiling AFB

*North Carolina 27709 Washington, DC 20332

19. KEY WORDS (Continue on reverse side If nececamy and Identtfy by block nuimbor)

parallel algorithms
linear programming
complementarity problem
successive overrelaxation

20. ABSTRACT (Continue an revere. oide it necessary and Identify by block number)

A parallel successive overrelaxation (SOR) method is Proposed for the
solution of the fundamental symmetric linear complementarity problem.
Convergence is established under a relaxation factor which approaches the
classical value of 2 for a loosely coupled problem. The parallel SOR approach
is then applied to solve the symmetric linear complementarity problem
associated with the least norm solution of a linear program.

DD I FJAR7 1473 EDITION Of I NOV 65 IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION Of THIS PAGE (ften Date Entered)

-----------------------------------------------------

Lz~. - '



Kmmm~~


