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ABSTRACT

The equations governing the motion of viscoelastic materials with fading

memory incorporate a nonlinear elastic-type response with a natural

dissipative mechanism. Our purpose is to discuss the subtle effects of this

mechanism in viscoelastic materials of Boltzmann type. Recent results on the

global existence and decay of classical solutions for smooth and small data

(in one space dimension) are reviewed for smooth and singular memory kernels;

for smooth kernels a number of such results can be generalized to several

space dimensions. A recent result on the development of singularities in

finite time for large data is discussed; several open problems are

formulated. A program for studying weak solutions for such systems, including

the development of numerical algorithms, is outlined.
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NONLINEAR VISCOELASTIC MATERIALS WITH FADING NM4ORY

John A. Nohel

I. Introduction. The equations governing the motion of nonlinear elastic bodies are

quasilinear hyperbolic systems for which smooth solutions generally lose regularity in

finite time due to the formation of shock fronts. Some materials incorporate a nonlinear

elastic-type response with a natural dissipative mechanism, and it is important to

understand the effects of the dissipation on the behaviour of the solutions of the

equations of motion.

The purpose of this lecture is to discuss the effects of the subtle dissipative

mechanism due to memory effects in viscoelastic materials of Doltzmann type. This

dissipation is more delicate than that exhibited by viscoelastic materials of the rate type

for which globally defined smooth solutions exist, even for large smooth data.

The paper is organized as follows. In Section 2 we formulate mathematical models for

the motion of nonlinear viscoelastic materials and we motivate the mathematical theory. In

Section 3 we survey recent results on the global existence of smooth solutions for smooth

and small data. In Section 4 we present a recent result on the breakdown of smooth

solutions for large, smooth data and discuss briefly related open questions including those

regarding weak solutions and numerical methods (Remarks 4.9). We restrict our attention

throughout to one-dimensional problems and provide some references for multidimensional

problems. Moreover, we consider only a purely mechanical theory, i.e. we neglect thermal

effects.

2. Mathematical Models and Dynamic Problems. Consider the longitudinal motion of a

homogeneous one-dimensional body (e.g. a bar of uniform cross-section) occupying an

interval B in a reference configuration, which we assume to be an eqailibrium state, and

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This paper was
begun while the author visited the University of Paris IX and Reriot-Watt University.
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having unit reference density. B may be bounded or unbounded. Let u(x,t) denote the

displacement at time t of a particle with reference position x (i.e. x + u(x,t) in the

position at time t of the particle at x). The strain which measures local stretching is

defined by c = u x(x,t). Let a denote the stress at time t of the particle with

reference position x (a measures the contact force per unit area). The balance of linear

momentum yields the equation of motion

utt = ax + f , x C B, t > 0 (2.1)

where subscripts denote partial derivatives and where f is an external body force. In

order to characterize the material, (2.1) is supplemented by a constitutive assumption

which relates the stress to the motion. In addition, initial data, as well as suitable

boundary data if B is not R, are adjoined to (2.1). We remark that in a physical

problem the cross-section does not generally remain uniform as the bar is stretched. More

realistic problems can be treated by similar techniques.

If the body is homogeneous and purely elastic, the stress depends on the strain

through the constitutive relation o(x,t) - #(C(xt)), where 0 is a given smooth

function satisfying the assumptions Ci) #(O) - 0, (11) 01(0) > 0; (i) reflects the fact

that the reference poeition is taken as an equilibrium state, and (ii) that the stress

increases with the strain, at least near equilibrium. The equation of motion (2.1) becomes

the familiar, one-dimensional, quasilinear wave equation

utt - O(ux) x + f x C 3, t > 0) ( (2.2)

if a is bounded it is assumed that the assigned boundary data and initial data are

compatible. For (2.2) there is no natural dissipative mechanism. Indeed, Lax 133], also

MacCamy and Mizel [37] and Xleinerman and Majda (31] have shown that if # is not linear,

the Cauchy problem for (2.2) (f S 0) does not generally possess globally defined smooth

solutions, no matter how smooth and small one takes the initial data u(x,O) and ut(x,0).

In a material with memory (such as certain polymers, suspensions, or emulsions) the

stress at a material point x and at time t depends on the entire history of the strain

at x. In 1874 Boltzmann IS] gave the following linear constitutive law for small
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deformations in such materials

O(x,t) - Bc(x,t) + Sa .(s)[C(x,t) - (x,t-s)]ds, x c B, - < t < • (2.3)

In (2.3) B ) 0 is a given constant and m : (0,-) + R is a given positive, smooth,

nonincreasing function. We limit our discussion to the situation in which a c L1{0,-),

and we distinguish two cases:

(i) 0 < M(O) < , (ii) M(O +
) = 406 (2.4)

The function m is called a memory function. The fact that m > 0 and non-increasing

on (0,-) means that the stress "relaxes" as t increases and the memory term in (2.3)

fades: deformations which occurred in the distant past have less influence on the present

value of the stress than those which occurred in the recent past. In the applied

literature m is often assumed to be a finite linear combination of decaying exponentials

with positive coefficients (these expressions result from least squares approximations to

experimental data). Such restrictions are neither desirable nor necessary. Moreover,

kinetic theories for chain molecules [15,46,53] and certain experiments [32,28] suggest

that there are materials for which a is singular as in (2.4)(ii), m(t) - t -  as

t + 0 , 0 < a < 1, m is positive, nonincreasing on 0 < t < -, and m decays rapidly at

infinity. Stronger power singularities at zero (a ( 0) are also possible, but the

resulting mathematical theory for nonlinear materials consistent with our objectives is

incomplete at this time.

The assumption m c LI(0,) implies that (2.3) is equivalent to

-(xt) - c
2C(x,t) - f- m(s)C(xt-s)ds, x C B, -- < t < , (2.5)

where c2 : B + f; m(s)ds > 0 is a constant which measures the instantaneous response of

stress to strain, B ) 0 is the equilibrium stress modulus. If 0 > 0 the material acts

like a solid, while if 0 - 0 it acts like a fluid.

h natural generalization of (2.5) to nonlinear materials is the constitutive relation

=(xt) - *(c(x,t)) - f0 m(s)$(C(x,t-s))ds, x C B, - < t <- , (2.6)

in which R, : R ft are assigned, smooth material functions which satisfy

41(0) C0) - 0, #'(0) > 0, *'(0) > 0 (2.7)

-3-
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The memory function ra is positive, nonincreasing and integrable on (0,-) as above. In

the static case E(x,t) E c(x), a(x,t) = a(x), (2.6) reduces to

a(x) - *(cx)) ( m(s)ds)*(F(x)), x c 5

A natural assumption, appropriate for viscoelastic solids and c-ucial in the analysis of

global existence results (section 3), is to require that #, * also satisfy

S1(0) - (f z(s)ds)*1(0) > 0 (2.8)

(2.8) states that the equilibrium stress modulus is positive. The constitutive assumption

(2.6) is a particular case of a "simple material" 181 which retains many important

qualitative properties of more general material models, moreover, the analysis of the

resulting equation of motion is relatively simple and complete.

The balance of linear momentum and (2.6) yield the equation of motion

utt I *(ux)X - ft m(t-T)* (U (X,T)) dT + f, x C B, - < t < , (2.9)
tt x x x

where f is a body force and where the change of variable T := t-s was made in (2.6).

The history of the motion is assumed to be lcnown for t 4 0 (the history may, but need not

satisfy (2.9) for t 4 0). An appropriate dynamic problem is to find a smooth function

u : B x (-+, * R, satisfying (2.9) for t > 0, and such that

u(x,t) = u(xt) , x C B, t 4 0 , (2.101

where the history u : B x (-,0) + R is a given smooth function; (2.9), (2.10) will be

referred to as a history value problem. If 8 is bounded or semibounded compatible

boundary conditions are adjoined to (2.9), (2.10). Compatibility of the boundary

conditions with the smooth data f and u is imposed in order to preclude the propagation

of singularities from the boundary into the interior.

If m 1 0, (2.9) reduces to the quasilinear wave equation (2.2). At the other

3xtreme, if one formally sets m - -6', where 6 is the lirac mass at the origin, then

(2.9) reduces to the parabolic equation

utt - *(ux)xt + (Ux) , + f

the term *(uX)xt represents viscosity of Newtonian type if 4 is smooth and >'( ) > 0.

-4-



This equation possesses globally defined smooth solutions even if the data are large

(1,34].

Our objective is to discuss the strength of the dissipative mechanism inl iced by the

memory in (2.9) under physically reasonable assumptions by studying the existence and the

decay or growth of classical solutions of the history value problem (2.9), (2.10). To

motivate the mathematical results, we follow Coleman and Gurtin [6) in their penetrating

study on the growth and decay of acceleration waves propagating into a one-dimensional

viscoelastic material with memory at rest. An acceleration wave solution u is similar to

a shock wavei the difference is that second rather than first derivatives of u experience

a jump acrosss the wave front. To apply the results of [6) to (2.9), (2.10), we assume

that *, * are smooth, satisfy (2.7), f - 0, 8 = R, and m is a smooth, regular kernel

satisfying (204)(i1). The wave front is a smooth curve t - y(x), Y(0) - 0, and u E 0

for t < y(x). In t6] the problem of existence of acceleration waves is not discussed.

Assuming that they do, an easy but tedious calculation shows that for (2.9) t -Y(x) is a

straight line, of slope (,(0W 11/2, meaning that such waves propagate with constant

speed although (2.9) is nonlinear. Let the amplitude of the wave be qlt) :- [uttl,

where [utt] is the jump in utt across the line t = Y(x). It follows from the

computations in [6] that q evolves in accordance with the Ricatti-Bernoulli equation

d g2_d - 2 - qB , q(0) = qO , (2.11)

d 3 3 2

where dt c 3x' c - #'(0), represents differentiation along the wave front and

where
A0 B - m(0)*'(0)

2[ (0)13/2 01 (0)

Thus if #"(0) < 0 (similar results hold for t"(0) > 0), and q0 
< B/A, then every

solution of (2.11) tends to zero as t + 4-. By contrast, if q0 
> + B/A, then q(t) + 4

I q0
as t + T-, where TO = log - > 0. The corresponding jumps in uxt and Uxx are

0* Aq +B

given by [Uxt] - -[*'(O)]'2q(t) and IUxx] - ['(0)] 1 q t).

'N'
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This resu't suggests the following conjectures regarding smooth solutions of the

history value problem (2.9), (2.10):

() The problem (2.9), (2.10) should 1-ive globally defined classical solutions if the

history v and the forcing term f are sufficiently smooth and small in appropriate

norms. Moreover, such solutions should decay.

(ii) The smooth solutions of (2.9), (2.10) should develop singularities in second

derivatives in finite time if the smooth data are chosen sufficiently large.

As will be summarized in Section 3, conjecture (i) has been established rigorously by

a number of authors in a number of physically important cases of (2.9), (2.10) for regular

kernels (m(0) < -), as well as for singular kernels (m(0+ ) - 4.). Conjecture (ii) has

only been established for regular kernels (see Section 4). Moreover, based on the

discussion in Section 4, Remark 4.6, singular kernels m strengthen the dissipative

mechanism of the memory in (2.9) which suggests the possibility that for appropriate

classes of singular kernels, global smooth solutions will exist even if the data are

arbitrarily larger this interesting question is open.

Most of the results described in Sections 3 and 4 for smooth kernels satisfying (2.4a)

apply to more general one-dimensional viscoelastic models with fading memory, e.g. a model

for a solid, K-BKZ material [29,2]

utt (Ux)x + ft m(t-T)h(u (x,t),u (x,T)) dr + f, (2.12)
Ct x x x

x CB, - <t < -

Here #, m, and f are as in (2.9), while h : R x R + R is a smooth material

function, h(p,p) - 0 and the partial derivatives of h satisfy appropriate sign

conditions, at least at (0,0). If * - 0, (2.12) models a K-SKZ fluid. Under suitable

assumptions, the energy method for proving existence results in Section 3 and the method of

characteristics used to prove blow-up results of Section 4 yield similar results for this

case as well. The energy method can also be applied to prove existence for certain

multidimensional viscoelastic problems with fading memory (e.g. (13, Sec. 4], [30]).

.- ,.'"..

% -6-



However, to our knowledge, the existence results described in Section 3 for singular

kernels satisfying (2.4(u1)) depend crucially on the special form of equation (2.9).

3. Existence of Classical Solutions. For discussion of the mathematical results it

is convenient to renormalize the memory function m. Define the relaxation function a by

a(t) :- fZ m(s)ds, 0 4 t < - ; (3.1)

observe that if m is smooth, positive, decreasing and integrable on [0,-) then

a'(t) - -=(t) and

a is smooth, positive, decreasing and convex on (O,) (3.2)

Analogous to (2.4) we distinguish two classes of kernels a:

Mi 0 < -a'(0 + ) < -  , (ii) -a'(0 ) - 4- (3.3)

Other normalizations of the memory m are possible; for example, the relaxation function

G(t) := *'(0) - a(O)*'(O) + a(t)*'(O) , 0 4 t < - , (3.4)

where *, 4 are the material functions in (2.6), is consistent with the applied

literature. Observe that G(-) - *'(0) - a(0)*'(0) and G(O) - #'(0).

Returning to the history value problem (2.9), (2.10), let the history u be

identically zero for t < 0. One then seeks a solution of the initial value problem4t

utt - *(ux)x + It a'(t-T)* (u (x,T)) dT + f, x c B, t > 0 , (3.5)

U(X,O) - U0 (X), Ut(x,0) - u1 (x), x C , (3.6)

together with suitable and compatible boundary conditions if B is not R. If the history

u is not zero for t < 0, the part of the integral in (2.9) on (-,0) is incorporated

in f.

Global Existence of Classical Solutions. We next discuss global existence and

asymptotic behaviour for the Cauchy problem (3.5), (3.6) with B R, for smooth, small

data, and for regular kernels a satisfying (3.2), (3.))(i). To simplify the exposition,

we make the hypothesis

-7-
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- ----------

a ( 0,3), - ka(k)(t) ) 0 (0 C t < -i k - 0,1,2,3)

_. (3.7)
a' i 0, and fta(t)dt <-

The results hold under assumptions on a considerably weaker than (3.7). The interested

Nreader is referred to [13], [221, [24], and the survey paper (23] for the

generalizations. The essential point is that kernel a satisfies a, a', a" C L 1 (0,-),

the moment condition in (3.7), and is "strongly positive" on [0,-). The result for B

bounded [13] is somewhat simpler than for the Cauchy problem (3.5), (3.6)1 in particular,

the moment condition in (3.7) is only needed for the Cauchy problem (see remarks following

Theorem 3.1 and the outline of its proof).

Concerning *, * assume

0, i C C3 (R), ,(0) - *(0) - O, *'(0) > 0, *'(0) > 0, 4'(0) - a(O)*'(0) > 0 z (3.8)

the latter is the analogue of (2.8) in the present normalization. Assume that

% (i) f, fx, ft C C(O,'.)j L2 (R)) r L([0,-); L 2(R)) and
x t (3.9)

(ii) f c 1 (0,-); L2 (R) fxf ft , fxt c L2 ([0,); L 2C)

and let U0 , U1  satisfy
L (R) u' H2(310

2 an2uc~tu-' u0 c L o(2), and u0 U, C (R) -(3. 10)

V... To measure the size of the data define the quantities

U0 (uo,U1) := fmU 2 + U;2 + U;'2 + U2 + U;2 + u;2}(x)dx, and (3.11)
0 1 1

:'. . ' ,(f) supf:{f2 + 2 +f2)(x,t)dx + (f"of /d
+(f) + f (x,t)dx)f {t )f (3.12)

+2 2 + f2 (xt)dxdt

The following result is a special case of Theorem 1.1 of [24].

Theorem 3.1. Let assumptions (3.7) - (3.10) be satisfies. There exists a constant

W > 0 such tnat for each u0 , u1 , f satisfying

U(Uo,Ul) + F(f) 4 U2  , (3.13)

e-8-
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the Cauchy problem (3.5), (3.6) has a unique solution U C C 2( x [0,.)), and

2 2
U., Ut , a.,* ... Utt t c C([0,w); L (R)) r) L ([0,)l, L ()) (3.14)

Moreover,

U XX , uxt, ...,ruttt c L2([0,-); L2) ,(3.15)

+ 0 in L2(2) as t+0. , (3.16)

,u x u*t  U Uxt, utt + 0 uniformly on R as t+ . (3.17)

A similar result holds for the history value problem (2.9), (2.10) with B = R. The

special case a(t) = ae - At , a > 0, X > 0, studied by Greenberg [18] for B bounded, is

carried out in [23] in the more complicated case when B = R.

Remark 3.2. Theorem 3.1 is a generalization of Theorems 1.1 and 4.1 of [13] establishing

*small-data global existence results for analogous initial boundary value problems

corresponding to motions of bounded wvicoelastic bodies; Neumann, Dirichlet and mixed

boundary conditions are treated. The principal difficulty in proving Theorem 3.1 is that

various Poincar& inequalities, not applicable to (3.5), (3.6) when B = R, are used in

an essential way in (13] to establish an a priori estimate similar to (3.26) from (3.32)

(see outline of proof following Proposition 3.4)1 the estimate (3.26) is essential for

completing the proof. The reader is referred to Rrusa [22] for a discussion of general

history value problems on a bounded interval. Although technically extremely complicated,

the generalization of the results in (22] to the Cauchy problem is relatively straight-

forward.
-0

* Remark 3.3. If (0 * equations of the form (3.5) have been studied by MacCamy [35],

Dafermos and the author [12], and Staffans [49] for bounded and unbounded bodies. If

* * -, (3.5) admits certain estimates which do not carry over to the general case 0 0

0" (see (23])l there does not appear to be any physical motivation for the restriction * -

for solids.

%\0
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Outline of the proof of Theorem 3.1. An essential ingredient of any global result is an

appropriate local existence theorem. For regular kernels a satisfying (3.2),(3.3)(i),

the idea is to iterate the sequence of linear problems which treat the memory as a lower-

order perturbation:

S*'t(w,9u, + a'(t-T)* (W (X,T)) dT + f, x c R, 0 < t C T (3.18)-' ' utt a x'W)xx+f x'
xax

where T > 0, u satisfies the initial conditions (3.6), and where w is an element of a

suitably chosen function space X. By using fairly standard enery estimates deduced from

(3.18), requiring only very simple estimates of the convolution term which do not use any

sign information on the memory, it is shown that the mapping S which carries w into a

solution of (3.18) has a unique fixed point for T > 0 sufficiently small. The proof is

almost identical with that of Theorem 2.1 of [13]. The only significant difference is that

the proof in [13] is for x c [0,1] with Neumann boundary conditions satisfied at x - 0

and x = 1; thus the Poincar6 inequality enables one to deduce estimates for lower order

derivatives of u in L:([0,T); L2(0,1)) from higher order derivative estimates. As far

as local existence is concerned when B = R, this causes no serious difficulties. One

'C simply expresses the lower order derivatives of the solution in terms of initial conditions

and time integrals of the higher order derivatives, yielding time dependent bounds which,

however, cannot be used for obtaining global estimates. The result is:

ropositon 3.4. Let a, a' a"3

., a Loc[0,) and assume that ', L c C (R),

*'(0) > 0, and that there exists a number t such that

,''() ) t for every & c R (3.19)

Concerning the data, let u0 , uI  satisfy (3.10), f satisfy (3.9)(i) and

assume that fxt c L1 ([0,'); L2 ()). Then the Cauchy problem (3.5), (3.6) has a unique

solution u defined on a maximal time interval [0,T0) satisfying

Uu , U u u, u L ,~ C([0,T ) L (U)). (3.20)
x xxxt' xtt' ttt 0

Moreover, if

sup + ut +'+ u xt t 
+ u (x,t)dx <a , (3.21)

t [0,T 0

-10-

,:~~~~~~~~~~~. . . . . . . .. "....-.. ,.. . . , - .. ., ... ,..........
. . . . . . . . . . . . .. ... ... ', .. ,-,,...-.. .. ,-.,.., ,.."

S - "'" "p~'ffi " " "?c'A~~ZA~~f 42* .... .... "'',"" " ",
%0- ," % .%':.



then To = . By Sobolev embedding u C C2 ( x [O,T0 )).

In outline, the proof of the global result then proceeds as follows. Define the

equilibrium strels X by

x(K) 1= f() - a(0)* (E, ) c C (3.22)

observe that X C C3 (R) and that X'(0) > 0 (by 3.8). Choose a sufficiently small

number 8 > 0 and modify f, i, and X outside [-6,81 such that f", *", X" vanish

outside [-23,26], and choose positive constants 0.*, , such that

'( ) ) *_., ''( ) ) ±_., x'(2) M c R (3.23)

It is shown a posteriori that lux(x,t)l 4 6 for all x C R, t > 0. By Proposition 3.4

the Cauchy problem (3.5), (3.6), B = R has a unique solution u on a maximal interval

(0,T0 ). The objective is to show that if (3.13) holds with p > 0 sufficiently small,

then (3.21) is bounded independent of To; a standard continuation procedure implies

To Define

E(t) :- max f: {u 2+ u2 +-..+ u 2 )(x,s)dx
sc"Ot x ttt

. o .(3.24)

+ t s: u 2 + u2 + ' + U (xs)dxds

xx xt ttt

where ... represent the sum of the second and third derivatives not explicitly written

down. It is shown that if (3.13) holds for 1 > 0 sufficiently small, then 9(t) is

bounded. For this purpose define

V(t) : sup {u 2 + u + u }l/2 (x,s), Vt C [0,T 0  (3.25)x R x xx uxt
xc .

sc [0,t]

To prove the result one establishes the following key estimate

s .(t) r(u 0 (u 0 ,u 1) + 7(f)) + r(v(t) + v3 (t))E(t), 0 ( t 4 To  (3.26)

where here and below r is a generic constant, possibly large, independent of u0 , ul,

f, and T0 . We shall comment below only briefly how this is accomplished.

Once (3.26) is established, the conclusions of Theorem 3.1 are obtained as follows.

Choose , > 0 such that

~ 2, )/3/2) 1 U2 1
-6 r(2) % + (2 3 F ( (3.27)

, - 11-
2F 4

44
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Select the data u0 , uI, f such that (3.13) holds for u chosen in accordance with

(3.27). The Sobolev embedding theorem implies that

v(t) 4 (2E(t)) 2 Yt c O,T) (3.28)

Therefore, it follows from (3.26), (3.27), (3.28) that for any t C [0,T 0 ) with
-1- -

E(t) ( E, we actually have E(t) ( - i. By continuity E(t) 4 1 E, Et 0,T0 ),2 -

provided ECO) - the latter is insured by choosing U2 smaller if necessary so that2

(3.13) will imply E(O) 4 2E Then E(t) .1 E, Vt c [0,T 0 ), and (3.24), Proposition

3.1, and a standard continuation method yield To - +-. One also has that (3.14), (3.15)

hold, and conclusions (3.16), (3.17) follow by standard embedding inequalities. Moreover,

(3.25), (3.27), (3.28) yield

I Ux (Xt)I ( v(t) ( (2E(t))'/2 < (j) 6, Vx c R, t C fO,'i)

and the proof is complete.

Establishing the estimate (3.26) is lengthy, delicate, and relies on the correct sign

of the memory [under assumption (3.7) or certain generalizations]. The energy method,

combined with relevant properties of Volterra operators and their resolvents, is

employed. The estimates of derivatives of u appearing in (3.24) are deduced from energy

identities obtained directly from (3.5), (3.6), and from the equation equivalent to (3.5):

u = X(ux) + ft a(t-T)i(u ) (x,')dTtt x x 0x xt
(3.29)

+ a(t)p(u 0 (x)x + f (x c R, 0 ( t 4 T) ,

where T < Tot (3.29) is obtained from (3.5), (3.6) by an integration by parts and use of

(3.22). Useful identities for derivatives of u can only be obtained by multiplying the

I ~equations by quantities which make it possible to estimate the memory terms. A crucial

role is played by the "quadratic integral form"

Q(wtb) :- ft f: w(x,s) o b(s-T)w(x,T)ddxds, t > 0

defined for b c L 1r(0,-) and for every w C C(O.t]; L 2(R)). In the first energy
Lbc

identity, which is obtained by multiplying (3.29) by 0(ux)xt and integrating the equation

-12-
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over R x (0,T], Q arises with w Ux)xt and b = a. It is an important fact that

kernels a satisfying (3.7) (indeed much weaker assumptions) are positive definite on

[0,-). To obtain the second energy identity, one needs to take the forward time-difference

of (3.29) and integrate the resulting equation over t x [0,T]. To estimate the relevant

Aderivatives of u from a combination of the first two identities one needs the following

technical estimate: It is shown in (241 Lemma 2.51 that if a satisfies (3.7), there

exists a constant c > 0 such that

ft f, w2(xt)dxdt < f" w(x,O)dx + cQ(t ,t,a)

1 (3.30)
+ K lim inf - Q(A hwt,a) , V t c [0,T]

h+0 h

where u C1 ([0,T]i L2 (9)) V T > 0, and where the forward difference operator Ahw is

defined by Ahw(x,t) :- w(x,t+h) - w(xt). In the application of (3.30), w - 0(ux)xt and

the forward difference operator Ah is applied to equations (3.29). The proof of (3.30)

also makes use of a result of Staffans ([49, Lemma 4.2]). Using the two energy

identities, and (3.30), it is relatively straightforward to estimate all of the terms and

arrive at:

{ur 2 + ut2 + u2  + 2 I(x,t)dx + f u (x,s)dxds
xx xt xxt xtt

(3.31)
3c r(u0+r) + rcct)3+v (t)mw) + rc4F + i) /-(t), V t c 10,T?)

Katimates of ff u (x,t)dx, u , d, s fl utt (X,)dxdt, V t [oT] in terms

of the right side of (3.31) are obtained from (3.5). A bound for 0 , utt (xs)dxds

can then be obtained by interpolation. Using the fact that a certain resolvent kernel of

a' in (3.5) is in L1(0,-), Lemma 3.2 of [131 makes it possible to estimate

-, i; u2  (,t)dx and 0 u x (x,)dxds. Combining these with (3.31) yields the

A. estimate

-13-
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f ( u2 u 2 + 2 +u2 +u2 +u2 +u2 )(x,t)dx (3.32)
xx xt tt xxx xxt xtt ttt

+f 2 + ,.,2 u2  + u (x,s)ds0 x xxt xtt uttt}

< r(u0 + F) + r(v(t) + V 3(t))E(t)

+ r(/Uo + F) V(), V t C (0,T]

The estimate (3.32) is implicit in the argument of [13]. It should be observed that

for problems on bounded intervals (Remark 3.2), it is a simple matter to apply

the Poincar& inequality to deduce the remaining estimates of derivatives of u appearing

in (3.24) and arrive at the final estimate (3.26) directly from (3.32). However, to

accomplish this task for (3.5), (3.6) when B - R is quite tricky and involves additional

properties of Volterra operators and certain other of their resolvents. The reader is

I referred to Lemmas 2.3 and 2.4, as well as the argument on pages 405-410 of (24] for

details. This part of the proof makes essential use of the assumption a" C L1 (0,') which

is automatic when a satisfies (3.7), but cannot be satisfied by singular kernels.

For singular kernels satisfying (3.2) and (3.3)(ii), it is simpler to restrict the

analysis to the history value problem, (2.9), (2.10), with a defined by (3.1), in which

that history u satisfies the equation (and the boundary conditions if B is bounded).

This ensures that the compatibility conditions between the history and boundary data, as

well as compatibility conditions between the derivatives of the history and the solution

for t ) 0 are satisfied. If u is a smooth solution of (2.9) and the kernel a is

singular, the integral in (2.9) is also a smooth function, but the integrals fO and

have singularities at t - 0 which cancel. Thus if formulated as an initial value problem

the results would involve a singular forcing term. For reasons explained below, global

existence results for singular kernels only hold for B bounded.

The principal difficulty when dealing with singular kernels is establishing a suitable

local existence result. In Proposition 3.4 for regular kernels no hypothesis is made

concerning the sign of the memory and the size of the data. In the proof the memory is

treated as a perturbation of the elastic term #(u.), in (3.5). However, the proof makes

-14-
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crucial use of the hypothesis a" c L o[O,) which rules out singular kernels a
10C

satisfying (3.2), (3.3)(ii).

Hrusa and Penardy [25, Theorem 4.1] recently obtained an elegant extension of

Proposition 3.4 for such singular kernels. They consider the history value problem with

the history satisfying the equation and the boundary conditions for t C 0. The singular

kernel a satisfies the assumptions

a, a' C LI(O,)li a(t) ) 0, a'(t) 4 0, a"(t) ) 0, 0 < t < (3.33)

in the sense of measures, and a" is not a purely singular measurel a certain assumption

on the Laplace transform of a is imposed in order to guarantee that the third derivatives

of u are continuous with values in L2 (0,1). The material function * is also required

to satisfy *'(0) > 0, and the technical assumptions regarding the forcing function f

are strengthened. The sign of the memory now plays a crucial role in the local analysis in

which one iterates a sequence of linear integrodifferential equations (compare with (3.18))

tt - *'(Wx)U.X + ft a'(t-T)'(W )U (X,T)dr + f (3.34)

where u(x,t) = u(x,t) for t 4 0, and where w is an element of an apropriately chosen

function space. The singular kernel a satisfying (3.33) is replaced in (3.34) by regular

kernels as defined by

a W : pa([)a(t+6+), 0 < t <-, 5 0

where p6 is a standard mollifier supported in [-6/2,6/21. The analysis

with singular kernels is far more complicated because a" ( L1oc [0,-), and aI does

not necessarily remain bounded as 6 + 0. The energy estimates are also considerably more

delicate and to obtain them certain technical lemmas concerning Volterra operators with

kernels a satisfying (3.33) are required (such kernels are known to be strongly positive

definite [43]). It is first shown that each linear problem (3.34) has a unique solution

having the required regularity by justifying passage to the limit as 6 + 0. Then a

contraction mapping argument for (3.34) is used in [25] to obtain the analogue of

Proposition 3.4 for w belonging to an appropriate function space. The proof in [25] is

carried out for B - [0,11 with Dirichlet boundary conditions satisfied at x - 0 and

• -15-
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x - 1; it is straightforward to obtain a similar local result for B - R, because the

local existence proof in [25] avoids the use of Poincard inequalities.

Using their local result, lirusa and Renardy then obtain an analogue of Theorem 3.1 for

the history value problem (2.9), (2.10) and the (singular) kernel a, defined by (3.1),

satisfying (3.33) on bounded intervals. They impose the requirement that the history and

the solution satisfy Dirichlet boundary conditions at x - 0 and x - 1 and that the

history and forcing term be suitably small. Their result ([25, Theorem 5.1]) is then a

simple extension of the proof of (13, Theorem 1.1] involving the modification of only one

estimate in [1311 the modification uses a refinement of Lemma 4.2 in [49], because

a" f L1 
[0,-) whenever a is singular. The fact that a" e L' 10,-) makes it difficult to

prove Theorem 3.1 for singular kernels using the analysis in [25]. It is a challenging

open problem to prove such a result for singular kernels on all of space.

4. Development of Singularities and Related Problems. In this section we consider

the Cauchy problem (3.5), (3.6) for regular kernels a, and we discuss the development of

singularities in smooth solutions in finite time for smooth but large data by using the

method of characteristics. To avoid technical complications we assume that the forcing

term f S 0 in (3.5), and we study

utt *(ux) x + al**(ux)x, x c R, t > 0 , (4.1)

u(x,0) - u0 (x), ut(x,O) - ul(x), x E Rt , (4.2)

where * denotes the time convolution on [0,t]. The following result was recently

established by M. Renardy and the author [42], and independently by Dafermos [10] for

general memory functionals using a somewhat different proof. The result can also be

established by extending techniques of F. John [27] to quasilinear, first-order hyperbolic

systems with lower order source terms; however, the approach outlined below is more direct.

-16-
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Theorem 4.1. Let , C C3 C3() let t satisfy (3.19) and let a be

smooth with a, a', a" c L [0,). In addition, let #"(0) 9 0. Then for

every T, > 0, there exists initial data u , u C C 2() _L_(_) such that -he maximal

interval of existence of the smooth solution u of the Cauchy problems (4.1), (4.2) cannot

exceed T1 . More precisely, if v lu6(x)l and sup lul(x)l are sufficiently small,
xen xr

while ua(x) and ul(x) are sufficiently large (with appropriate signs), then there

N exists a number t 4 T, such that

sup. (luxx(Xt)l + IUxt(X,t)l) (4.3)
W[Ot

while

sup flu x(Xt)l + lu t(x,t)l} < (4.4)
13[Ot )

For the special case * B t, Hattori (211 has shown that if " 0 and if the body

B is bounded, then there exist data u0, u I such that the initial-boundary value problem

(consisting of (4.1), (4.2) and compatible Dirichlet boundary conditions) does not have a

S. globally defined smooth solution. However, his method does not enable him to characterize

the data. Ramaha [45) has recently obtained a blow-up result when * 4'.

For first-order model problems with fading memory, blow-up results similar to Theorem

4.1 have been obtained by a number of authors ([38], [36], (91) by the method of

characteristics. Existence of classical solutions for small data for such models is

discussed in [41]. The elegant method of Dafermos (9] avoids use of characteristics;

instead a maximum principle is obtained and used.

Remark 4.2. The reader should observe that in Theorem 4.1 only the additional hypothesis

*"(0) # 0 is added to the assumptions guaranteeing the existence of a local smooth

solution of (4.1), (4.2) (Proposition 3.4). No sign information on the kernel a is

required. Assumption (3.19) is not restrictive because it is shown that the supremum in

(4.4) is in fact small.

The proof of Theorem 4. 1 generalizes the approach of Lax (331 using the method of

characteristics and generalized Riemann invariants. We transform (4.1), (4.2) to an

-17-
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equivalent first-order system as follows. Let vw uxf v -= define

a :- (w) - z . z -al**(w) , (4.5)

and observe that a is the stress-strain functionals (2.6). Since >~* 0, equation

(4.5) can be solved for w, w - #* (a+z) :- q(a,z), and g is a smooth function on

RX x t. As long as the solution u of (4.1), (4.2) remains smooth* (4.1), (4.2) is

equivalent to the system

vt - a

at - C 2 (,z)v x+ a'(0)9(g(a,z)) + a0"(g(a,z)) ,(4.6)

zt- -a'(0)*(g(a,z)) - a"**(g(GY,z)) ,

v(x,O) u I Wx, a(x,0) - #(UO,(x)), z(x,O) a0 , (4.7)

where the wave speed C(a,z) := E*(g(a,z))J'2 is a smooth function. The system (4.6) is

hyperbolic with eigenvalues C, -C, 0. We define generalized Riemann, invariant. r, s by

r - r(v,a,z) s- v + f(a,z)l s - s(v,a,z) :- v - 00G,01 *(a,z) d C

Thus v =-, 9~ r= the correspondence is smoothly invertible because 4a - > 0.

Observe that if a' E0 in (4.1), z 2 0 and g, C are independent of z. In this

situation r and s reduce to the Riemann invariants for the system

vt - ax t- #,(#- (o))v,

which can be transformed to the quasilinear wave equation. In the proof r, s, z are

introduced as dependent variables and (4.6) is replaced by an equivalent system obtained by

differentiating r, a, z along the characteristics C, -C, 0 respectively. One then

4 differentiates the quantities
a a

P 2-v~ + x T 2. V~ - Cxz and z
x C(cY,z) x K~z

along the C, -C, 0 characteristics respectively (observe that if a* 0, p - #

T - x.A). It is shown (see (421 for details) that to leading order the characteristic

derivatives of V'E P, IcF T satisfy a coupled system of Ricatti equations in p and T

with coefficients which are smooth functions of r, s, z. The differential equation for

-19-
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zx  is linear in p, T, zx, and it is shown that zx grows at most logarithmically.

Blow-up in finite time is established by showing that r, s, z remain in a neighborhood

U of zero up to the blow-up time, if they are small initially (i.e. if

sup{Iv(x,0)l + (x,0}l} is small), while vl(x,0) and o'(x,0) are sufficiently large
U

(with appropriate signs). Moreover, the hypothesis *"(0) 91 0 provides upper and lower

nonzero bounds for the coefficients P2 and T2 in the Ricatti equations when r, s, z

are in U.

Remark 4.3. A physical interpretation of conclusions (4.3), (4.4), coupled with examples

of Coleman, Gurtin, and Herrera [7], is that the strain remains bounded but its first

derivatives become infinite as t + t-. Thus Theorem 4.1 suggests, but does not prove,

the development of a shock front in finite time.

Remark 4.4. Certain models for shearing flows of viscoelastic fluids can be analyzed by

the technique of Theorem 4.1. With v(x,t) denoting the velocity of the fluid in simple

shear, Slemrod (48] studies the problem

A vt - a*#(vx)x , x c R, t > 0

(4.8)
v(x,O) = vo(x) , x C R

in the special case a(t) = e- t . Differentiation of the equation leads to a Cauchy problem

of the form (4.1), (4.2). Global existence for smooth, small data follows from [12,

Theorem 4.1]1 see also Remark 3.3. Development of singularities for ldarge data is an easy

application of Theorem 4.1 above. Other popular models for viscoelastic fluids can be

discussed by a similar analysis. Slemrod [471 and Gripenberg [20] establised similar

results for a different model of shearing flows for a viscoelastic fluid. If a- e-t

(4.8) as well as the problem studied in (47], can be transformed to the quasilinear wave

equation with linear frictional damping for which finite time blow-up for large data can be

established by the method of Lax (33].

We close this section by discussing a number of open problems.

-19-
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Remark 4.5. The techniques of proof of Theorem 4.1 and that of (10] depend crucially on

the hypothesis 4"(0) # 0. The physically important situation #"(0) - 0, permitted in

the finite time blow-up result for the quasilinear wave equation (2.2) (with f 2 0) in

[37], constitutes an interesting open problem for (4.1), (4.2).

Remark 4.6. Singular kernels a satisfying (3.2) and (3.3)(ii) -a'(0 +) 4- violate the

hypothesis a" C L 1o[0,-) which is crucial to the technique of proof of Theorem 4.1 and
loc

that of the similar result in [10]. Indeed, there is strong evidence based on the

following arguments, that there may exist singular kernels a such that (4.1) would have

globally defined smooth solutions, even if the data are arbitrarily large. These arguments

suggest that singular kernels strengthen the dissipation induced by the memory. Thus far

it has not been possible to resolve this important open problem.

First, for smooth kernels with -al(O + ) finite, it follows from (2.11) and the

definition of the constant B that the diameter of the set of points q0 > B/A for

which q(t) + +- in finite time shrinks as m(O) - -a'(O+) > 0 is increased. However,

the derivation of (2.11) rests on the assumption that m(0) - -a'(0 + ) remains finite.

Second, there are interesting results of Hrusa and Renardy [26] in their analysis of wave

propagation in linear visco-elasticity. They study the linear history value problem (2.9),

(2.10) with f'(-) M c2 . 0 + f; m(T)dT and *'(*) 3 1, -u(x,t) 0, t < 0, B - R, and

they adjoin step jump initial data u(x,0), ut(x,0), x c R. They prove that if the

memory m is smooth on [0,'), the solution has discontinuities propagating along

characteristics of the linear wave equation ut c2uxx and a stationary discontinuity of

higher order at the initial step-jumps. For singular memory kernels the propagating waves

are smoothed out. The degree of smoothing increases as the kernel becomes more singularl

the stationary discontinuities remain.

Remark 4.7. There is numerical evidence concerning the development of singularities in

finite time for regular kernels a and large smooth data. Markowich and Renardy [39] used

the Lax-Wendroff method to discretize the hyperbolic part in (4.1) and the trapezoidal rule
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to discretize the integral. They show that the method is second-order convergent and

stable on any finite time interval on which smooth solutions exist. For spatially periodic

and small Cauchy data, and for kernels a which are finite sums of decaying exponentials,

they prove second order convergence on [0,-). They also carry out numerical experiments

in the special case 0 * which exhibit the formation of a singularity in finite time for

particularly chosen *, a, and suitably large uo and ul. Their numerical solution

exhibits but does not prove the formation of shock fronts in ux  and ut at the critical

time. Other numerical schemes merit investigation.

Remark 4.8. Weak Solutions. Remarks 4.3 and 4.7 motivate the study of weak solutions for

equations such as (4.1), (4.2) governing the motion of materials with memory. Except for

certain special situations valid for steady viscoelastic fluid flows (Pipkin [44] and

Greenberg [17]), there is no rigorous theory for the existence of shock waves and

acceleration waves. MacCamy [36], Greenberg and Rsiao 19] have studied several aspects

of weak solutions but only for a single first-order conservation law with memory in one

space dimension. Dafermos and Hsiao E11] proved the existence of weak solution of one-

dimensional first-order quasilinear hyperbolic systems with memory using Glimm's modified

random choice method [16] with fractional steps. However, their method requires

assumptions of "diagonal dominance" which are not satisfied in the case of the Cauchy

,* problem (4.1), (4.2) modelling a viscoelastic solid. They are satisfied for certain models

of heat flow (see (121) and the specific model (4.8) for viscoelastic fluid flow).

In order to address the problem of weak solutions which would include one-dimensional

problems for viscoelastic solids of the form (4.1), (4.2), a program has been initiated

involving analytical techniques, the design of numerical algorithms and numerical

, experiments. We consider the Cauchy problem (4.1), (4.2) in the form of a first-order

equivalent system. Let w Ux, v - ut . For classical solutions, (4.1), (4.2) is

equivalent to the system

w Wt  V Vx
(4.9)

vt  *(w)x + a' (w) x

-21-
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satisfying the initial conditions

w(x,0) - WO(X), v(x,0) - VO(X) (4.10)

It is easy to show that a weak solution (in the sense of distributions) of (4.1),

(4.2) is a weak solution of (4.9), (4.10). It is straightforward that the Rankine-Hugoniot

jump conditions for elastic shocks (aS0 in (4.1)) are also necessary for viscoelastic

shocks.

The Riemann problem is only partially understood for scalar first-order conservation

laws with memory [36], but not at all for the viscoelastic problem (4.9), (4.10).

Therefore it is difficult to use the random choice method [16]. If *i ##, define z -

a'i*(w). Then (4.9) transforms to the hyperbolic system with lower order source terms:

wt - v

Vt = *(w) x + x (4.11)

zt - a'(O)*(w) + a"'*(w)

with w(x,O), v(x,0) satisfying (4.10) and z(x,0) E 0. If *(- ) 0 (4.11) has the

eigenvalues ± (*'(.))/2 and 0. If *'(-) - a(0)*'(-) > 0, (4.11) has a uniquely

determined steady state solution. Observe that initially zx E 01 one can solve the first

two equations in (4.11) by various techniques for conservation laws on the first time step,

update z using the last equation and proceed forward in time. Jointly with B. Plohr we

have initiated a study of various numerical algorithms for (4.11) in the special case
n

a(t) - 1 a exp(-Akt), ak > 0, Xk > O, including the Glimm scheme with fractional-i-

steps. One objective is to establish existence of weak solutions for mall BV data.

Another is to obtain implementable numerical algorithms which can be tested on concrete

problems.

Boldrini [3, 41 used techniques of compensated compactness to study elastic and

viscoelastic problems including the system (4.9), (4.10). These techniques were developed

by Tartar (50,51,52], Murat [40] and DiPerns [14]; in (141 DiPerna succeeded to extend

these techniques and apply them to establish the existence of weak solutions of the purely

elastic one-dimensional problem (i.e. (4.9), (4.10) with a E 0) on R x [0,T] for any

T > 0, without restricting the size of the data. Boldrini [4] assumes that the memory in

(4.9) is small in the sense that

a :- a(6,t), 4(.) : *(.) + g(.) , (4.12)

where 6 > 0, u > 0 are small parameters, g is a smooth function satisfying the growth

condition Ig(w)l - KIwI, K ) 0, and a'(6,t) = 0(), a"(6,t) - 0(6) uniformly in t.

In place of (4.9) he considers the regularized system
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wt vx

(4.13)
vt *(w)x + a'(6,*) * ((w) + ug(w))x + cvxx,

with initial data (4.10) (the Newtonian viscosity can be more general than cvxx), where

> 0 is a small parameter. Let w,6 , v,, -  be a solution of (4.9), (4.10) on

R x [0,T] for any T > 0. Boldrini gives sufficient conditions which insure that there is

a subsequence such that w ,6 W, v +v on Rx [0,T] as e,6,u+ 0+, where

W = 0(c/26-). Moreover, w, v is a weak solution of the purely elastic problem on

R x (0,T]. The most serious of his assumptions is the crucial hypothesis requiring the

solutions wc,6,u , vc,, of (4.13) to lie in L uniformly in the parameter c, 6, w.

Since the memory is a nonlocal operator, this assumption is difficult to verify.

Jointly with W. Rogers and T. Tzavaras, we are using compensated compactness

techniques to establish the existence of weak solutions of (4.9), (4.10). The special

case 0 E *, but with the memory not small (i.e. a independent of 6) is tractable by

these methods and the case * # appears doable. However, obtaining an invariant region

in order to show that solutions of the relevant regularized system lie in L' is extremely

difficult. It is of interest to note that the existence of weak solutions of the Cauchy

problem for the model first-order scalar equation with memory

U t + $(U)x + a'**(u)x - 0, x c R, t > 0
(4.14)

u(x,O) - u0 (x) , x c R

where a, *, * have the same meaning as in (4.9), can be solved completely by using the

method of compensated compactness. The maximum principle proved by Dafermos in [9] for

classical solution of (4.14) makes it possible to prove the needed If estimates for

solutions of the regularized problem (i.e. (4.14) with Cuxx on the right side in place of

zero). This problem was recently solved by Dafermos (oral communication). Unfortunately,

it does not appear that this approach can be extended to coupled two by two systems with

memory.
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