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ABSTRACT

The derivation of the stress-integral form of the Higashitani-Pritchard-Baird-Lodge
relation cannot be applied to plane Poiseuille flow. It ignores the contribution of the
streamwise pressure gradient, and doing so can lead to contradictions. Furthermore, the
variable change which leads to the stress-integral form of the HPBL relation is not valid in
a second-order fluid approximation for slow flows. Correcting these deficiencies leads to a
modified relation which appears intractable. Nevertheless, the Tanner-Pipkin result that
Pe N1,4 in a second order fluid is valid when properly interpreted. /
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ON HOLE-PRESSURES IN PLANE POISEUILLE FLOW OVER TRANSVERSE SLOTS

D. S. Malkus and Minwu Yao

1. Introduction

The symbols used in this paper are defined in Appendix I at the end of main text.
The problem in question is plane. creeping flow over a transverse slot. which is illustrated

in Figure 1 and described in refs. 1-4. Ref. I describes a proposed relation between

pressure differences, P. and the first normal-stress difference, N1 . It is clear that ref. I
is primarily concerned with Couette flow (plate-driven) and not Poiseuille flow (pressure-

gradient driven). In refs. 2-8 the possibility of applying the relation to Poiseuille flow
has been explored experimentally and numerically. The final relation is attributable to

Higashitani. Pritchard, Baird, and Lodge '2,3i, and has two forms for creeping flow:

Pe - (1a)

din Pe
. = 2 dn, e (lb)

d In a,,.

where at, and Nlu, are wall values of the primary viscometric functions, and Pe is the

pressure difference from top to bottom of the slot. Eq. (1b) is easily derived from eq.

(1a). and the purpose of this paper is to show that the derivation of eq. (la) is, at best,
inapplicable to plane Poiseuille flow. It is with some irony, then. that the authors can

state that numerical results seem to corroborate eqs. (1a) and (1b) to within about 10%,
at worst, for a Maxwell fluid and to validate eq. (1b) to " working rheological accuracy"

for some more realistic fluids. These results will be discussed thoroughly elsewhere i7.8.
It seems to be an unavoidable conclusion, however, that the numerical and experimental
results owe their pleasing concordance to some other cause than the validity of the stress-

integral form of the HPBL relation eq. (la), at least as it is currently understood.
This paper does not directly concern numerical results, but it does often rely on

evidence which can be observed from the relatively simple problem of plane Stokes flow
over a transverse slot. Since the computing technology at the time of this writing allows

many researchers in fluid mechanics to obtain and analyze solutions to Stokes flow problems
with relative ease. rather than tabulating data to support our statements about Stokes flow,

we invite the skeptical reader to verify them directly. We believe that most of our claimsabout Stokes flow are reasonable. if not obvious, and should not provoke controversy. The
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FIGURE 1
Domain and dimensions for plane flow over a transverse slot.
Rheological, Cartesian co-ordinates, xi, have origin at inter-
section of slot (r and centerline of channel or 'die.'

reason that Stokes flow is central to what we present here is that our observations are
based on, but not confined to, the second-order fluid range of non-Newtonian behavior.

2. Preliminaries

It will serve the purposes of completeness and facilitate the comparison of the the-
oretical results obtained here with numerical results discussed elsewhere if we begin by
deriving the equation for plane Poiseuille flow, taking particular care to fix the definition
of the hydrostatic pressure function in the same manner as in the numerical model of 141.
This also fixes the arbitrary constant in p.

2.1 Pressure definition:

In plane flow, the pressure is defined so that

[N1 12 CO 2 01
o 012 -N, 2 0 -p1 (2)

0 0 0
~-2-



where N, = o1 - 022. In a shearing flow. N, is the usual viscometric function. Eq. (2)

implies that
p-- - 022)/2 (3)

In addition. we specify that

pdV = 0 (4)

The equations of motion for undisturbed flow (d = 0),

0"I1,1 -+- 0 1 2 ,2 0 ()
0"21,1 + 022.2 0

imply that for plane Poiseuille flow

k 9
012,2 = P9".- (.NI' 2),i = k (6)

0
CA, - (N1/2), 2 = P,2

or, imposing a boundary condition at the wall and symmetry condition at mid-channel

{ "12 = kX2

uI(.,h/2) =0

Ul,2(.,O) = 0

where 012 = t5i and -(O) = 0. Integrating eqs. (6) implies

p = kxl + f(t2)

p = -N i2 - g(xl)

thus

kxi _r N1 (X2 ) '2 -f(X 2 ) - (X,) 0

V. and
d = kxl - N 1/2 + C (7)

From eq. (4)

C - N(x 2)dx 2= 2h J-hi/2

and for a Maxwell fluid, an Oldroyd B fluid. any fluid for which N1  vj- 2 . VL,= constant.
and q = constant,

C : ,6 (8)

-3-



Eq. (8) holds approximately for any fluid which has a second-order fluid range, when the
flow is sufficiently slow. For such fluids andior flows and the above, we may deduce the
form of the stress tensor in undisturbed plane Poiseuille flow:

0 0 -kxl + Nl/2- NlW/6

It should be kept in mind that Nl, is a constant. Observe that 012 = ow at the top
wall, as illustrated in Figure 2. For the pictured flow direction o < 0. A more crucial
observation is that 022 is a a linear function of x, alone and has slope -k; this will soon
become important to our arguments. aI varies across channel as a function of N1 .

-kzj + 5N,./6 aw0

o 0 N, -kxl - NI,16 0

0 0 -kzl + N 1 /3

X2

W.X1
UI(Z 2 ) 4U.X2/h" (I - X21h)

FIGURE 2
Undisturbed plane Poiseuille flow, showing stress tensor at the
wall where 012 = +c.. (a negative value for the pictured flow).
012 = -ou, at the opposite wall, and the stress tensor is oth-
erwise the same. Can be thought of as slot-flow with a d 0
slot.

-4-
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3. Tanner-Pipkin Results
We shall primarily be concerned with slow flows, in which for many constitutive

equations, the second-order expansion is valid 9.10. In such cases we presume that by
solving the steady plane flow problem described here with the truncated "second-order
fluid" constitutive equation :9.10 we produce a solution very close to that obtained when
the full constitutive equation is used (when the flow is sufficiently slow). By the Tanner-

Giesekus theorem, the Stokes solution for the velocities, u, with a modified pressure, p,
satisfies the second-order fluid equations 19,101. The resulting stress field is

a= - 1P - T(ujP, + u2p,2 ) I -- r7A

- riT(B - A2  1_.2 J) -t ?T(A 2 _ 2 I) (10)

where A and B are the first two Rivlin-Ericksen tensors; 17, T and T- are the constants of
the second-order fluid expansion, p is the Stokes-flow pressure field, and . 2 = trA2 /2.

A' 2u, 1  U 1 ,2 + U 2, 1A = Ul,2 - U/2,1 -2U11, I

(.:-. -The symmetries of the Stokes solution imply that u I is even and u2 is odd about (L as

functions of xj. Thus u 1,1 = u 2,2 = 0 on (t (xI = 0) and

i= (X2) 0

Therefore
A 2  521

and the T'-term in eq. (10) vanishes on the slot centerline for a second-order fluid. The

-.T-term is

-iT(B - 321)
2and

aB= 
DA- - A7u(7u) A
Dt

NOW
:.'.D. - u jA ,.j - u2A ,.2 .Dt

. ... U -- 1 [ 2 u ,2 ,1 1  (U 1.2 - U 2.1),,1
(U1  ,2 - - 2u,.,I

We observe first that ul,21  U. 1 2 = 0, and since U2 is an odd function about C, U2.11 0,

and
D A _ [2u ,,,, 01 1 112

( Dt- 0 -2u 1 .i(

-5-
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We do not believe that it can be argued that u 1,11 is zero on (L. It may be that uijj is
"small" (numerical evidence suggests this), but we do not believe it can be entirely ignored;
we know that u 1,1 = u 1 ,111 = 0, and thus

-- 24 I.,, .:X) - I(b ,2 ,
U1(hX 1 ,X 2 J- 1) 12- 2 24 (

Were u1 ,1 zero or negligibly small, this would imply a flatness to the streamlines near
which does not seem to correspond to experiment or computation.

So we retain u1 j, and observe that

and thus on CL

a =-(1 - TulP,jI I -- tj 0

- 77 (u1 [2u1 ,1 1  I] 3 [- 2 0 2 (13)-ti ul 0 -2ull' 0 1i

From eq. (13), we may draw several important conclusions:

1. on a
{2 (14)

01I 1 022 2?7T('j 2 - 2ujuj,11)

PI =I -- ) l T ,7 " P = N /" (15)

where estimate II applies when d is such that u =0 or U ,I = 0 (u 1 0 at the top of the
die always). This will be the case for d = o and approximately so for d > b. Numerical
results suggest that d/b > 1 is enough to make P, N(' a good approximation. and
this in turn is close to N 1 ,4 of undisturbed flow if h/b > 2 '4,11.

4. Consequences of Tanner-Pipkin Results
First we observe that some of the previous developments seem to correspond very

closely to computed results in slow flows over transverse slots. P, is substantial and
positive, in spite of the disturbance induced by the slot. if h,.:b : 2 and d'b = 4. In Table 1,
computations with a Maxwell fluid at De = 0.25 are tabulated. We find that P "- N',/6
(see Figure 3). This is slightly lower than Nlw '6. but still significant. Evidently the
addition of the slot cannot have contributed much to .f2 pdl'. since we have nearly the
same thrust, P -022, at the top of the die as we would have without the slot. The only

--6-



(o No O O,w 1W-) b/2

fl

wq

o'w N,1w 1w

P2

FIGURE 3
Location of undisturbed and disturbed values (indicated by
superscript zero) of quantities important to the present work.

D -orw -Or I Ni , /6 I N o / 6

S!0.25 106210081 88.331 80.00!81.121

TABLE I
Disturbed and undisturbed values of quantities in Figure 3 for
a Maxwell fluid at a low De (probably in the second-order fluid
range 7').

effect the small disturbance at the opposite wall seems to have is to lower the shear-rate,
* and thus N 1. at the opposite wall. The only effect this has on P there is to lower it to

one sixth of N .. as it would be in undisturbed Poiseuille flow with the slightly lower
shear-rate.

Table 2 shows the same calculations with a modified Johnson-Segalman fluid 112] at
De = 0.24. N1 u, and a,,. differ so significantly from the Maxwell case, because a large
retardation time, A, necessitates a higher shear rate to achieve a similar D, = (T - A)j.

-7-
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De -CU. -0'.. 1U,/6 , ,,,.,6 P,
0.24 1530 1459 122.4 111.4 i111.2

TABLE 2
Disturbed and undisturbed values of quantities in Figure 3 for
a modified Johnson-Segalman :12i fluid at a low De.

Here, too, we find that P N" ,6
For h lb > 2, the disturbance due to the slot has the effect of deforming the streamlines

in Stokes flow downward towards the slot mouth slightly (see Figure 4 of ref. 12, for
example). An effect of this is that, while C12(0,0) = 0 in undisturbed flow, 012(0,X2) = 0
in disturbed flow. for X' < 0 which has small magnitude with respect to h. Next we
observe that if h /'b is sufficiently large, the disturbance to channel flow induced by the slot
will not be of sufficient intensity to disturb 022(0, x') significantly from the value

0 22(0,h/2) = -P 1 = -N"./6

We note that in undisturbed plane Poiseuille flow, 022(X!,X2) is constant in X2. On the
other hand, by Tanner and Pipkin's results P - P2 = No /4, and thus -P 2 = 0 22 (0, -d-
h/2) = N"',/12. A value near this is confirmed numerically for 0 < De < 0.3. Putting
this all together, we see that 022(0, X2) changes sign from negative to positive as we move
from the wall opposing the slot towards the bottom of the slot, and it changes sign on the
slot side of the channel centerline, at a point significantly closer to the slot than (0, x'). In
sum, observation of Stokes flow solutions, the implications of these observations in eq. (13).
and the Tanner-Pipkin hole-pressure result lead us to deduce three important qualitative
features of the second-order fluid flow (at least for suiiciently large h/b), illustrated in
Figure 4:

(1) The existence of x' < 0 with small magnitude with respect to h.
(2) C22(0.x2) is significantly negative.

(3) 022(0. -d - h/2) is significantly positive.

5. HPBL in Stress Integral Form
We refer to eq. (Ia) as the stress integral form of the HPBL relation (creeping flow

case). From the discussion above and the derivation of ref. 1, it is clear that a more precise
form of the relation should take the disturbance at the wall opposing the slot into account.
This results in

f NT N1]Vdr (16)

i -8-
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a22 "-No/6

/

(o, 2) (, X) < o

A-2 +No /12

FIGURE 4

Qualitative picture of flow over a transverse slot in second-
order fluid range. Important features are (a) that a 22 is sig-
nificantly negative at mid-channel and in the upper half of the
channel, but (b) a 2 2 does change sign somewhere below mid-
channel and above the bottom of the slot.

We should emphasize that our experience, guided by experimental and numerical evidence

2.3,6-8i, is that eq. (16) is a remarkably accurate prediction of Pe, even in a range of
flow-rates far beyond the slow flows considered here. We contend. however, that there are

several puzzling flaws in the derivation of eq. (16). at least when applied to Poiseuille flow.

5.1 Observation on HPBL derivation:

The basic form derived by Higashitani and Pritchard is

-e -- d201

1 y2 (-d-h/2) 27cy2 (17)

where "Y2" is a streamline coordinate (taken as a function of the Cartesian coordinates

. in the integration limits). The assumptions under which the derivation is carried out (see

'-9
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Appendix I1) imply the limits may be any stream function values on ( and

022(0, X12) - 022(0, 2) - (8 dy2
(18)

2

where x' = x 2(y') and x4 2(y 2 ).

5.2 Three Flaws in HPBL

Flaw A: Piecewise application is contradictory. Eq. (18) is inconsistent with the

qualitative picture of the observed features, (1)-(3), illustrated in Figure 4, which may be

further abstracted from any specific numerical results, as follows

Assume:
(i) The existence of x', where 0 12(0, x') = 0.

(ii) 022(0, h/2) has some fixed value and 022(0, h,/2) 022(0, x') > 0.

(iii) 0 22 (0,h/2) '022(0, -d - h/2) < 0.
Then rechanging the variable in eq. (16)

= N I dr [y2(h/'2) N l  dr
= 2r ) , a(-d-hl2) 2r aY2 (19

a-y(h,_) 2 y2 = C22(0, X2) o 2 2 (0, h/2)

JY::(7W 2r aY2

The crucial step follows from the fact that the variable change can make no distinction

between y2 (-d - h/12) and y2(X'), since at both locations 012 0. But the qualitative
picture abstracted in (i)-(iii) yields

Pe = a 22 (0.h,2) - C 22(0,-d - h/2) > i0 22 (0.h,/2) -o 22(0,4x)I.

The contradiction lies in the fact that the inequality is strict by (i)--(ii), yet eq. (19)

argues both sides should be equal. In fact, on the basis of (1)-(3). one might expect that
the inequality should be satisfied by a wide margin, since on the left, the stresses add, but

on the right, two nearly equal stresses are subtracted. Numerical evidence shows that the

two sides of the above inequality are not close.

Flaw B: a,1I - 0"22 is not viscometric on (. This seems to invalidate the change of
variable required to derive eq. (16) from eq. (17) and perhaps more disturbing, implies that
the integral in eq. (17) may not even exist. The change of variable requires that N1 can

be written as a unique function of r = 012(X2). This is not possible in general as eq. (14)

-10-
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shows that a I - 022 is multiple-valued as a function of 012 on 4:. The multiple-valuedness

can be seen as follows:

Observation: Consider that point x,' E ( h '2. h,2) where o 2 = 0. There uI(x') ; 0, and
) 0, and thus at x,

0; iT -0 2u:u 11  0

2rjT

On the other hand, for a deep enough hole. a I - 022 0 with o12 - 0. We thus have

{ -4YTu 1u 1 11 t0, at012--O; (20)

O1- 022- 0, also at 012 = 0(

Numerical results strongly support these conclusions. In fact, at (0,x ) where 12 = 0,

and ol - 022 - 0, there is a pole in (011 - o 22)/r. These poles have been observed

experimentally by D. G. Baird 3 . Note that we have refrained from referring to oI- 022

as "N1." reserving that notation for the viscometric function. What we are saying here is

that, on C, the stress-difference is not the viscometric function it is presumed to be by the

IIPBL derivation, because the flow is evidently not one of constant curvilinear shearing

history. Thus aj -- 022 does not take on the values it would have in a viscometric flow
with the same A which occurs at any given point on the t. Another way of saying this

is that in the L flow A is of viscometric form, but P-A is not zero, as it would be in a

viscometric flow. Evidence suggests that ulul,11 is quite small in most flows where the
assumptions about A on the 4 are approximately valid. The troublesome problem is that,

even if ulul,11 is very small, whenever it is not identically zero, but - 0, the centerline

integral of HPBL does not seem to exist.

But in Poiseuille flow there appears to he an even more serious flaw. Discussion of

Flaw C is prefaced by the observation that the assumptions of HPBL should apply to

undisturbed Poiseuille flow (d = 0). In this case, ultul. 1 -i 0 is not a problem. and NJ

and all have viscometric values, but HPBL is contradictory: by eq.(16)
022(0-h/2) -- 022(o,o) V, d, -- 'Y (21)

but this thrust. difference should clearly be zero. Technically. Higashitani and Pritchard's

derivation reduces to "0 = 0" for undisturbed flow and needs a more complicated argument

to cover the case in which the streamlines are not curved. However, we believe that this
problem is only technical, and the real problem is that lPBI, assumes away the streamwise

gradient, k.

Flaw C: The derivation ignores the driving gradient. The equation in streamline

co-ordinates which is integrated from point T' to ,r. to give the thrust difference is not

dS1 2  2S12  dS 2 2.. . .. . .. .. 0 (22)
ay2  S, - S22 dy2

-11-



but
I 4S11  I OS1 2  2 S 12  4S22- -i -=0 (23)

h i Oyi h 0Y2 h2 S 1 I - S22 4Y2

where S, are physical components of stress in streamline coordinates. This follows from the

geometric assumptions of Higashitani and Pritchard, which imply h, and h2 = unknown,

h3= l and oh, =0 unless i = 1 andj =2; anday,

{11 22 } {21 } {12 } 22}
and

2 h Oy 2 '

21 12 1 8h1

The critical equation of motion is then the first, which has the added term as' -" that

Higashitani and Pritchard assume to be zero. In undisturbed flow this term is Ol 1.1, but eq.

(9) shows all,, = -k in undisturbed plane Poiseuille flow. According to eq. (16) and our

observation about eq. (19), were the HPBL derivation correct, a substantial contribution

to the integral must come from the upper half of the channel, where the flow is nearly

undisturbed, and the pressure gradient is nearly its undisturbed value. It therefore seems
can be ignored. Leaving this term in and continuing as Higashitani

unlikely that a t,
and Pritchard do implies the result of Flaw C.

The derivation of Appendix II would need some extra arguing to apply directly to

the case of undisturbed flow but appears to be valid in that case nevertheless, since the

inclusion of the missing term resolves the anomoly:

022(h1/2) - 022(0) 1 ( ) j -(-I-r _ k)h 2 dy2 (24)
"2 Y2 ) 7" h2 y2

And in this flow 1Or1-r - k = U12,2 - k = 0
h2 ay2

From which the desired result follows. Note that the key to the validity of the result is

including the term omitted in the derivation of ref. 1.

Except in the undisturbed plane Poiseuille case, the new integral does not seem

amenable to a change of variable to shear stress. Furthermore. the presence of the mate-

rial derivative terms, the poles, multiple-valued nature of the integrand seem to render it

intractable, or even nonexistent. The best that can be said is that for a second order fluid,

the relation reduces to -N,/4.

-12-
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6. Conclusions
The HPBL relation does not seem to be applicable to plane Poiseuille flow. Its predic-

tion seems correct in a second order fluid, but even there its derivation is suspect. However,
a subsequent report [7] will demonstrate that numerical results uphold the relation

N, dP (25)

2a d

as a reasonably accurate measurement relation. This is the relation with practical mea-
surement value, and though it can be formally derived via HPBL, the authors believe an
independent verification (possibly numerical) or analytic derivation would provide a more

convincing testimony to its worth than the current derivation.

Aknowledgement: The authors gratefully acknowledge the interest and suggestions of
M. W. Johnson, A. S. Lodge, and W. G. Pritchard, which led to the ideas presented here.
In fact, the whole notion that the derivation of HPBL may be flawed when applied to

Poiseuille flow was suggested to the first author by A. S. Lodge and W. G. Pritchard
in a meeting at which K. Higashitani was also present. The present work represents a
matching of the authors' observations of numerical simulations with Pritchard and Lodge's

suggestions.
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APPENDIX I: NOTATION
A - First Rivlin-Ericksen tensor, matrix notation.
B - Second Rivlin-Ericksen tensor, matrix notation.

b - Slot width.

C - Constant of integration.

- Centerline of slot.

d - Slot depth.

D, - Deborah number - (T - A)i/w.
D Material derivative.
Dt

f - Arbitrary scalar function.
g - Arbitrary scalar function.
h - Die height.

hi - Scale factors for streamline co-ordinates.
I - Identity tensor, matrix notation.

k - Streamwise pressure gradient.
L - Length of f) in x, -direction.
A - Retardation time.

N, - 01 - 022 = Si1 - S22.

-14-



Nl, - N1 at wall in undisturbed flow.

NO - N, at wall opposing slot.

N 2 - a22 - 033 = S 2 2 - S33

p - Hydrostatic pressure function.

p - p in Strikes-flow.

P - Thrust, -Cr22.

P - P at wall opposing slot.

P 2 - P at slot bottom.

Pe - P 1 -P2 .
q -L/2-b/2.

S i - Stress tensor in streamline system (physical components).

T - Typical relaxation time.

T* - Second-order fluid parameter determining N2 /NI.
u, iu - Velocity vector, rheological co-ordinates.

u,,,.. - ul at channel center in undisturbed flow.

xi - Rheological co-ordinates.

x2, z 2 - Points on (E.
yj - Streamline co-ordinates.

a, b - Streamline co-ordinates of x1 and xb
12, Y2 2~ an 2 .

0 Partial differentiation with respect to streamline co-ordinates.

-- ±(trA 2/2) 1.

*- - j at wall in undisturbed flow.

.0 -- j at wall opposing slot.

77 - Viscosity.

v, - First normal-stress coefficient.

f - Problem domain, truncated channel of length L, with or without a slot.
o, oi - Stress tensor, rheological co-ordinates,

r - C12 = S 1 2 on (E.

O. - a12 at wall in undisturbed flow.

0 w - r at wall opposing slot.

{k - Christoffel symbols for streamline co-ordinates.

0) - Partial differentiation with respect to rheological co-ordinates.

APPENDIX II: MODIFIED HPBL DERIVATION
Equations of motion in streamline coordinates

Fhw a _ _ a* h1 2 h K 5  + 1,2-hlh2h3 ayj huhi Uk -il 0s = =,

N 1 0. AV
.~ .i, ! * -**y**,.,



H-P assumption: -ah = 0 except when i = 1,j = 2. By definition

[h? 0 01
[g]= 0 h2 0

so {~~ [1}={2 = { }2 0

1 J~f 1 1 8k1
121 t12J hi 8Y2

For a =1:

h1 ~~ S2~2  i 1  + 1 2
h11&2 alyj(hhil + I 1 h2h1 5 1 1 2 h1h2

51

I a8h 2  18a h2 S2 2S2
T2 51y (Th S' ) +h2 az2 hK-2) hjh2

_1 a9s 11  1 a9S 2 1  2 ah1
T 1 8Y1 h2 812 hTh2 81

For a = 2:
h2  49 h1h2 S2+ 2 L 1

T,-h 7yjh~hi11 1 is1

1 a 1 8ah 
1  1+ -~( l-22) -

1 8k1  1 8522 1 8k1--h2 S 2 2 + T -- 51
h Y2 12 h2 812 1h2 89Y-2

or
as21

h, 89y2 (S1 - S22)

and finally
8522 _S 1 1 -s 2 2 (Las" 1  162 h2
8112 2S 12  (h, ay, h2 8112/

Integrating along T,

P.=1Vb 18~ a 1 8521 )N 1  2 y
1 6 Ti ki 2 8112 )2S12

Note that in undisturbed flow on -L-a '6U. is the Cartesian covariant derivative so that

K1 ay,

-16-
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