AD-R172 383 CONVERGENCE THEOREMS FOR SEMI-GROUPS OF LINEAR
OPERATORS OF CLASS (1A)(U) I-HSCONSIN UNTV-MADTSON
MATHEMATICS RESEARCH CENTER N H ABDELAZIZ JUL 86
UNCLASSIFIED MRC-TSR-294@ DARAGZ9-86-C-0041




WSy

.}-' ﬂ*l.
38 CeY

PRI TU IR I
. \"-‘-'.r‘

g

= s 123
=tiu 1z
= fu )y

[y £ e
= =

2 s e

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1964 A

TR TR T O T O Y W TUR TONT W




[ W
)
oy

-
-

!

'\hn:\

{'.:‘1‘ MRC Technical Summary Report #2940
\1

P.t 5

‘ CONVERGENCE THEOREMS FOR SEMI-GROUPS

¢\* ! OF LINEAR OPERATORS OF CLASS (1,A)
N

b2

3:; ¢ Nazar H. Abdelaziz

§

W

e

o‘%‘l_

¢

i

o

:»‘G..

'.f-; viathematics Research Center

by University of Wisconsin—Madison

e 610 Wainut Street

‘ .,: y o

§ ~ Madison, Wisconsin 53705 D | |( :
o,

o5 % ELECTES
- July 1986 0CT 8 1985
. ‘e‘,\

(Received May 22, 1986) g;’ B

7
¢ FILE COPY

m

Approved for public release
Distribution unlimited

‘f.';: Sponsored by

=

- U. S. Army Research Office
* P. O. Box 12211

r.;, Research Triangle Park

i North Carolina 27709

ot | eg 10 7 155
' ‘~ .\"‘.'.;. "":l' " ' -I A7\ ~’- -"'. WA e Ty u' '. * ( o " '&':'?’ K] v
SR % AR »&Jﬁ:t::;:«\ SRR e
ke ‘

XN
ol ' 2 2 7
» A" Y N <. ﬂ .0?‘,.' ' ' . ¥y, !."l N W .“‘ vV .‘.'. i, ', o ', l. .'k .I s , ) ‘ M ‘ .. ‘ " “"l




Wi
2
":;; UNIVERSITY OF WISCONSIN - MADISON
q;{:* MATHEMATICS RESEARCH CENTER
kU
B
VM. CONVERGENCE THEOREMS FOR SEMI-GROUPS
OF LINEAR OPERATORS OF CLASS (1,A)
.:.‘
:Eg.: Nazar H. Abdelaziz*
5 }
tht
;;\;,., Technical Summary Report #2940
July 1986
;"I
Wyt
ey
oS ABSTRACT
s The subject of approximation of semi-groups of operators has been studied by many
AN, (
LR ¥, I
‘0' authors under the assumption that the sequence of semi-groups {T,(t)} is uniformly
s .
E bounded for all values of the parameter in the sense that |[T,(t)|| < M, where M is
o '
R
:it 0 independent of n and t. In particular this has restricted the results to semi-groups of class
Wy »
1:3; co. The purpose of the present paper is to investigate this problem for a more general class
':i.;:; of semi-groups, namely the class (1,A) and thereby generalize some results of Trotter (9],
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i:‘ CONVERGENCE THEOREMS FOR SEMI-GROUPS

:Eo OF LINEAR OPERATORS OF CLASS (1.A)

e

:‘i Nazar H. Abdelaziz*

&

; 1. Introduction.

[ .. Approximation of semi-groups of linear operators has for quite somtime been a subject
)

v}‘; of interest to several authors (c.f. (3], {4], [9] and [10]), this is due to the importance of
K its role both in theory and applications. An instance where this becomes clear occurs e.g.
' when one tries to approximate the solution of an initial value problem in partial differential
jg:: equations by a sequence of numerical solutions of some related finite difference equations.
2 This leads in a natural way to the question of approximation of semi-groups of operators
»: (c.f. [91). However we find that in all the literature dealing with this problem, the following
:'*6 assumption was made:

, _ If {T.(§), € > 0} is a sequence of ¢, semi-groups of bounded linear operators on some
§ Banach space (or more generally a sequence of Banach spaces, c.f. |9} then there exists

constants M > 0, 8 independent of n, £ such that
e (1) (Ta(E)) < MePS,  wn, €20

2 . . .
‘3 In many cases the stronger requirement that all semi-groups be contractive was also used

—_
4 E
} (i.e. 1Ta(§)f <1,Vn,€ 2 0). |
: 0
0
—
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It is perhaps worthwhile to comment at this point on the relation between (1) and the
method of approximation by numerical solutions. It turns out that (1) is the functional
analytic version of the von Neumann condition of stability for systems of finite difference
equations. A condition which had resulted from the problem of 'error gross’ that is as-
sociated with numerical solutions. On the other hand one finds (c.f. [6]) that there are

unstable systems for which the numerical solutions do converge to the actual solution of

the PDE.

The preceding paragraph suggests that one might investigate the problem of approx-
imation of semi-groups of operators away from condition (1). Indeed, the purpose of the
present paper is to carry on such an investigation. thus we replace (1) by the less restric-
tive assumption in def 2 below, (namely DIF) and thereby allowing semi-groups of a more

general class to be considered.

Following the Trotter-Kurtz approach (c.f. {9. '4]), concerning a more general notion
of convergence for sequences of vectors and operators, we obtain in propositions 1.2 and 3
necessary and sufficient conditions for the convergence of a sequence of semi-groups of class
(1,A) (c.f. ‘2’ for def.) in terms of the corresponding sequence of infinitesimal generators

and also in terms of the resolvent operators. This extends the corresponding results of (3],

4 and 9.

Some remarks and examples are also discussed at the end. However we make here
one final observation. While we noted before that according to ‘6 . there are unstable

systems for which convergence hold. yet it was indicated in ‘7 (see also 5!) that under

appropriate conditions "stability is necessary and sufticient for convergence of the numerical




i approximations. We clarify this from the functional analysis side in Remarks 2, 3 below.
W 2. Preliminaries.

In what follows (X, |!-|:) is a Banach space, £(X) the space of bounded linear operators

: of X. For an arbitrary linear operator A from X to itself we let D(A), R(A),p(A) and
B\

‘ R(); A) denote respectively the domain, range, resolvent set and the resolvent operator of
-:. A, where X € p(A). We begin by introducing the notion of limits for sequences of vectors
E and operators due to Trotter {9 and Kurtz [4].

:.. A sequence {X,,!i - |in} of Banach spaces is called an approximating sequence to the
‘ Banach space (X, | - ||) iff there exists a sequence of linear operators { P.}; P, : X — X,
K

N such that lim, | Pnzlin = llz|l, Vz € X. In particular this = =K > 0, such that
iPuii, < K,Vn where | P, ||, is the operator norm of P,. Consider a sequence {z,} where
, Z, € X,,Vn, we say that {z,} converges to z € X, written

o

M limpyz, =z if lim lzp — Ppziin = 0.

q n—oo

:§ We also consider sequences of operator {A,} where for each n, D(A,) and R(A,) are
subspaces of X,,. An operator A : X — X is called the limit of {A,}, written A = lim,A,
‘1. (Trotter 9)) iff £ € D(A) = Pnz € D(A,) for all n and there exists y € X such that
‘“ iimnAnan = y in which case Ar = y by definition. A more general limit for sequences
\

" of operators is the following (T. Kurtz ‘4}); An operator A (possibly multivalued) from X
‘: to itself is called the extended limit of {A,}. written A = ex - limA, iff r € D(4)
o \ implies that there exists a sequence {r,},z, € D(A4,) and y € X such that limpz, =
g z and limn,Anz, = y. in this case we write y € Az. It is also noted that (c.f. 14]) A is
,. closed and = l'z'mA,,.
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Next. we review few facts from the theory of semi-groups of linear operators. Let T'(t) :

(0,0c) — L(X) be a strongly continuous semi-group of linear operators with infinitesimal

operator A, where

Aoz = s — lim Apz; A =h Y (T(h) - 1)

h—O+

whenever the limit exists. In general Ao is not closed but whenever the closure exists it

will be denoted by A and called the infinitesimal generator (i.g.) of T(t). We also denote

the type of T(¢) by « where

w = lim inf t = Mn||T ()]

It is well known that w < oo (see e.g. {2]).

Definition 1. (c.f. Phillips [8]) T(t) is said to be of class (1,A) iff the following

conditions hold:

(a) (Integrability condition)
1
(2) / IT(t)] dt < oc,
0
this implies that for ReA > w the integral
(3) J(A)z := / e MT(t)z dt
0

exists Vz € X; i.e. J(A) € L(X),

(b) (Abel-Summability)

(4) lim AJ(M)z=1z. vr<X.

A—oc

In this case {c.f. 2) the infinitesimal generator A4 exists and R(A; 4) = J(A); VRe) > w.
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A semi-group T(t) is said to be of class ¢¢ if s — lim;_o+ T(t)z = z.Vz € X. Every
co-semi-group is also of class (1,A) but the converse need not be true (c.f. 8}).

3. Convergence Theorems.

We begin by stating some corditions under which the results on convergence are
established.

Definition 2. For each n, let T,(t),t > 0 be a strongly continuous semi-group
of bounded linear operators on X,, we say that the sequence {T,(¢);t > O} satisfies

the (DIF)- Condition, (DIF for dominance by integrable function) iff there exists a non-

negative measurable function ¢(t),t > 0 and a positive constant v, such that e~ !¢(t) is

integrable over (0, oc) and
(5) ITn(t)]in < &(t) for almost all ¢t > 0, Vn.
To see how this may be compared with (1), we could replace (1) {WLOG) by

ITa(t)ln < M, V¥n,t>o0.

This is done simply by replacing {T,(t)} with the equivalent sequence {¢~#*T,(t)} . Thus
we see (with ¢(t) = M) that (DIF) is also satisfied, the converse though need not be true.

Remark 1. It is clear that if {T,(t)} satisfies the (DIF) condition then (2) holds
for each n. in particular the integral in (3) exists and defines a bounded linear operator

Ja(A) on X, for Red > ~¢. If in addition (4) is satisfied then T,(t) is of class (1,A). In this

case we shall say that {T,(t)} is a proper sequence of class (1,A). It will be useful also to

.:::..: consider (4) in some uniform sense with respect to n, this is introduced in the following.
4
\D
L}
":' - Definition 3. For each n assume that T,(t),t > 0 is a strongly continuous semi-group
'.,fn‘,
i of linear operators on X, satisfying (2) of definition 1, and let J,()) be the corresponding
)
3
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A
i
!'r.l
- -\."vvv:}\ 0P m--:').r‘,\ ..-(' .\.\.’»_‘. .,,}.}-. STt .,f__\:,‘-. '_} . N OO NN
0y \f.*- \'" : \*’ “ "’ - ""‘ ’-qﬁw(\' 17 " *f '('*E'U < ’ffﬁ.” *“{;“M 3$ '::% e " "'::": ;\:{\.""— J':_ :_ :_:’.".‘:'-\ _":‘ s

5 V’ 3 Y
‘ .n " n,‘.ﬁ, \, Y .’A'. W), ,l .,\‘, tfi.s‘.,o*;,c'.,a‘ ',, e 'l'm‘;‘t 0'.4 ovr: l'n h ,. b ":‘ * )

E e, el adnty



- < P

¥, O N B H

XA P PPN

e

Y s

operator defined by (3), where Rel > 4, then we say that the sequence {Tn(t);t > 0}

satisfies the (UAS) condition (Uniformly Abel Summable) if 5 a positive constant L, inde-

pendent of n and A such that
(6) EAIn(A)]ln < L. Vn,A > 4.

If Tn(t).t > 0 is of class (1,A) with i.g. A, then as mentioned earlier, 4 = ex - limA,
may not be single valued in general. In lemma 1 we describe two instances in which it is
single valued.

Lemma 1. Suppose T,(t),t > 0 is of class (1,A) for all n, then each of the following
= A is single valued; (a) {T,(t)} satisfies the (UAS) conditicn and D(A) is dense in X. (b)
A = limA,, has a closed extension (that is single valued and linear ) such that for some
Ao; (Ao — A)71 € L(X) and R(Ao — A) is dense in X.

Proof. (a) Let z, € D(A,), then 3y, € X, such that z, = R(A; Ap)yn,. Thus
making use of (6) we see that Alizp||n < L{IAz, — AnZpll, for A > 90 and all n. Now the
proof that A is single valued follows exactly as in lemma 1.1, of |4].

(b) Since A is an extension of A and Ao € p(A), the inverse (Aq — A) ™! of (Ao — A)
exists as a bounded operator on its domain R(Ao — A). Since this is dense by assumption,
(A — A)~! is the unique bounded extension of (Ao — A) ! to all X. Now assume z,y € X
such that (A, - A)"'r = (Ao — A) "1y = 2. and let {z,}.{yn} = R(Ao — A) be such that
r, — 7 and y, — y, so that v, = (Ao — A) "'z, — z and u, = (Ao — A) 7y, — 2.
Therefore, with w, = v, - u,. we have w, — 0 and (A, - A)ju, — (r - y). Thusx =y
since A admits a closed extension. showing that A- - A (hence A) is single valued.

The following lemmas will be needed in the sequel.
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% Lemma 2. Assume that {T,(t)} is a proper sequence of class (1,A), then there exists
J

a constant M > 0, independent of n and A such that
e R(A; An)in <M, vn,Rer > 4.

In particular if limz, = 0 where z, € X,,Vn then iim,,R(A; A.)z, = 0, uniformly with
¢ respect to A, in the half plane Rel > ~¢.
o Proof. By hypothesis, each T,(t),t > 0 is of class (1,A) in particular R(); A,) =

Jn(A),ReX > . therefore in view of (3),

'
|} , ‘ * ,
@ IR Azl < [ ™ Tat)an
: 0
ot . *
<zl [ g0 dt = M fzlla, VE€ X
0

j Where v = Re) > ~¢. Hence [[R(A; Ay)|ln < M for all n. The rest follows easily from this.
".' o To further simplify the notations we let L(vo) := {A/ReX > 40} and S(70) := p(4) ©
an L{o).
¥
Q‘ N
S": Lemma 3. Assume the hypothesis of lemma 2 and that £ is single valued. If A € S(v0)
o

then
0N
0
b (7) R(A: A) = ex — limR(); A,),
&
. moreover:
ol
i' ;
.‘ »
f o .
:::. (8) LR(A A) < M. YA e S(ra).
n..'
‘ .5_-' Proof. Let A € S(70),z € X, then Sy € D(A) such that r = Ay — Ay. By definition
Le. . R
; 3 a sequence {y,}, y, € D(A,) such that lim,y, = y and [im,A,y, = Ay. Put z, =
W
[ L
- AYn — Anyn and note by remark 1 that Red > 4, = A < p(A4,) so that y, = R(A; Ap)z,.
g -
"
e
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T
f.._.fx
Thus we find that iz'm,,:::n =Ay—- Ay =1z and iim,,R()«; Apn)zp = l.im,,y,l =y = R(X; A)z,
3%
Q
zﬂ this proves (7). Now (8) follows from (7) and lemma 2 in a straight forward manner.
N The following lemma presents a slightly stronger version of a result used in the proof
.
) of theorem 2.1 of 14 . We present the proof for convenience.
o
Y
gﬁc;: ) Lemma 4. Assuming the hypotheses of lemma 2 and that A is single valued. If
_: R(Ao — A) is dense in X for some Ao, Redo > 7o, then L(vo) C p(A).
i._-?
.-'_:% Proof. The proof consists of showing that S(7o) is a nonvoid closed subset of L(~o)
AN
and since it is also open by definition, it must coincide with L(ya). To show that S(vo) # 0,
X {; it suffices to show that Ao € p(A). As before Aq € p(A,), thus for every w € X, Ju € D(An)
k) 1
% “
g!“" such that u = R(Ao: Ap)w or equivalently Aou — Apu = w. Making use of lemma 2 we see
T
t‘_’. tha.t,
n:..‘\\‘
\:_*.': ‘
S lulln < MiiAou — Anulin.
W
:-.::_ Now if £ € D(A) and y = Az then by definition 3 a sequence {z,},r, € D(A,) such
B
B that limnz, = z and lim, Anz, = Az applying the preceding inequality we have that
<3
; (1/M)lizp!in < 1AoZn — ApZynlln, and by passing to the limit we obtain (1/M)|jzl| <
N
ety
lﬁ} IAox — Az .. This shows that (Ao — A) has a bounded inverse whose domain is dense in X
1Y
AN
f:_. 'a (therefore equal to X since A is closed). Consequently Aq € p(4A). Next to show that S(~¢)
3% is ~losed in L(~0), let {An} € S(70), An = A € L(70). By Lemma 3. we see that for each
i_}'.:
n,:fc ze X
:,(‘
e (A= ARG A)z — 20 = (A = Ag)RAn: A)T <A - Ag M-z,
s
5
ey
4

which means that R(A - A) is dense in X. Hence A € p(A) by the 1st part of the proof.
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By Our first result is concerned with the equivalence between the convergence of a se-
o3

'<'~ quence of operators and that of its resolvent operators.

At Proposition 1. Assume that {T,(t),t > 0} is a proper sequence of class (1,A) with
Y

{j:. infinitesimal generators { A, } respectively, such that ex — lim A, is single valued. Further

let A be a linear operator with domain and range in X, then the following assertions are

4%
‘ ’:{: equivalent:
LS
o' v v
b (i) A = ez — limA,, and R(Ao — A) is dense in X, for some Xy € L(va)
Pt (it) R(A; A)z = lim, R(A; Ap)Zn, whenever limz, = z and A € L(7o).
-..:..{
3
] Proof. (i) = (ii): This follows directly from lemma 4 and eq. (7).
+ N 3
i‘.: (ii) = (i): Let A € L(~o0) and z € D(A) then there exists y € X such that Az~ Az = y.
"
s . .
;, E\E Put y, = P,y and z,, = R(); Ap)yn, then by assumption ltmpz, = R(A;A)y = z, and
Pt . y N
since y, = Az, — Apz, we see that lim,A,z, = Az. Thus A Cex — limA, =: A and in
s
o particular R(A — 4) C R(A — A).
\-i\
p-o) y .
s, O Now R(A — A) is dense in X since A € p(A) by assumption, thus we find in view of
.,:: lemma 4 that A € p(A). Next let z € X and y = R(X; A)z € D(A), and let {y,}.yn €
" R .
Z-,';-: D(A,) be - sequence satisfying lim,y, = y, lim, Ay, = Ay. Put 7, = Ay, — Anyn
L%
. then y, = R(A;A,)z, since A € L(vo) C p(Ar), so we have that iimzn = Ay - Ay =
o
P -
; % z, lim,R(A; A,)z, = y = R(A;A)z. On the other hand we know by assumption that |
‘}._ ) y '
" limoR(X; Ap)zn = R(); A)z. Thus R(A; A)r = R(X; A)z, Vz € X. This = D(A) = D(A)
} E and A = 4, which completes the proof. i
N :
LS, |
4 y:: Lemma 5. Suppose that {T,(t),t > 0} is a proper sequence of class (1,A) such that i
.il ..
A = er — limA, is single valued. where A, is the i.g. of T,(t). Further assume that
.
>
. 9
P ,
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R(Ao — A) is dense in X, for some A, € L(7o) then the following assertions hold:

Ll YA

'

(i) ¥ limpz, = 2.2, € Xpn.z € X and A € L(vo) then lim,|R(); An)¥z, =
iR(X; A)*z, for all positive integers k.

a2 (ii) ez —lim A% is an extension of A2 furthermore; ¥z € D(4?) there exists a sequence

{20}, 20 € D(A2) such that lim,z, = z, lim,A,z, = Az and lim,A2z, = A%z
Proof. (i) follows directly using proposition 1 and the induction on k. To verify (ii),
N we note as before that R(Ay; A) € L£(X) so that D(A?) = R?(Ao, A)X. Let z € D(A?) and
' let r € X be such that z = R%(Xg; A)z. Further put y := R(Ao; A)z, z, := Paz, ynp :=
R(Aw; Ap)z, and 2z, := R(Ag; Ap)yn. By the first part we see that iimnyn = R(Ag;A)z =y
and limpz, = R(Ao; A)y = 2. This yields {imn(Aozn - Apz,) = limuyn, = y = Aoz — Az

N and hence

N (9) fimpApzn = Az.
a ) . )
;’.‘::: Moreover limy(Aoyn - Anyn) = limuz, = 2 = Aoy — Ay which implies that limA,y, =

Ay.ie. limpAn(Aozn - Anzn) = A(Xoz — Az). This together with (9) = iim, A2z, = 42z,
showing that z € D(ex - limA2) and so that A? C ex ~ lim A2. This concludes the proof.
N The proposition which we now present establishes the equivalence between the conver-
gence of a sequence of semi-groups and that of the corresponding sequence of infinitesimal
[~ generators. This extends a result of Kurtz '4..

Proposition 2. Assume that {T,(t).t > 0} is a proper sequence of class (1.A) with
infinitesimal generators {A,}. such that ex — limA, is single valued. Further let A be a
linear operator from X to itself with dense domain. then the following are equivalent:

() A - er - imA, and R(A. ~ A) is dense in X for some Ay € L(5¢).

e 10

L

A" N
-F.'

AN ) LY NN N S e SR S T T T T T
SR T Y
- - - e U] S " o
PR e R 'y LSS AN A
SR ) {) \ L HLHEN
Y O000LY) AR o .



(ii) There exists a strongly continuous semi-group T'(t),t > O of bounded linear oper-
ators on X such that:

(a) limpTo(t)zn = T(t)z, t >0 whenever lim,z, =z, Tp € X, and z € X,

(b) R(x; A)z = [Fe T (t)zdt, vz X,A< L(vo).

In particular it follows from (a) that ||T(t)|| < ¢(t) for almost all ¢ > 0.

Proof. (i) = (ii):

In view of lemmas 4, 3 and the fact that ez — limA,, is closed we find that A is a
closed operator whose resolvent R(A;/i) exists and is bounded in the half plane L(vo).
Thus according to a lemma of Hille and Phillips (c.f. [2]) we can choose v > 7o such that

. Y+too o . A
(10) Y(t;2) =z+tAz + 2-;—; e*R(\; A)Azzd

X2
. A—z ,VZ € D(A ),
~y—1o0
defines a strongly continuous function in t for all ¢ > 0 with ¥(0;z) = z. Moreover, since

each T,(t) is of class (1,A), with L(4g) C p(An) we have by the same reasoning that

~+100

1 d\
(11) Ta(t)w = w+tA,w + Py e R(X; Ap)Alw

Y—100

Here 7 is chosen to be the same as in (10). Now let z € D(A?2) then according to assertion

(ii) of lemma 5 there exists a sequence {z,},2, € D(A2) such that
iim,,z,. = z, lAim,,A,,z,l = Az and iimnAflzn = A?;

thus replacing w by 2, in (11) we see that the first and second terms in the right hand
side converge (in the sense of §2 above) to the corresponding terms in (10). As for the

integrals we note upon recalling lemma 5-(i) that

lim, R(); Ap)Aiz, = R(); A)A%:.
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e Now the integrand in (11) is dominated in norm by aMe™/ | A |2, where

i

ey a = maz{(|A?z);: 1 <1 < N),e + K||A%2|]}, here N depends on ¢ and K is the bound
on || P,l, (see §2.) Since this is integrable over the line <. the integrals in (11) converge to

! that in (10). Summing up we find that

(12) iim,,T,,(t)z,, = Y(t; 2), Vt >0,z ¢ D(fiz),
moreover it can be verified directly from this, that

oy (13) 1Y(t;2)|| < (t) - izl for almost all ¢ >0,z € D(A?)

s Since D(A) is dense, D(A?) is also dense and therefore Y(t; 2) has a unique bounded

A extension to all of X (we denote it again by Y(t;z)) which satisfies (13). To finish the

i proof of (ii)-(a), we show that for any z, € X
\
;;'g' (14) iim,,T,,(t)P,,z(, = Y(t: 20).

e Let £ > 0 be given, then 3z € D(A?) such that ||z, — z|i < e, further let {z,},2, € D(A,)
N be a sequence such that lim,z2, = z and for which (12) is satisfied. Choose N such that
b

ol
.*,3 n >N = izy — Pnziin < ¢ and | Ty(t)zn — PaY(t;2)in < €. We find

MTn(t)PnZO - Pny(t;zo)“n < ;iTn(t)PnZO - Tn(t)zn”n+

& o e

N ”Tn(t)zn - Pny(t;z)“n + ’any(tQZ) - Pny(tQZO)“n

:s: \ < ¢(t){”PnZO - PnZ”n + [[Ppz - Zn”n} ~ €~ [|[Pnlln '¢(t)“3 - "-0”

<e{o(t)2K +1/ +1
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and (14) is now established.

VT T Y T v

Using (5) one can show that (14) indeed holds with P,z, replaced by an arbitrary

2n € X, for which iimz,. = 2¢. Finally, that Y(t; z) has the semi-group property is a direct

consequence of the fact that it is a limit (in the above sense) of a sequence of semi-groups.

We shall write T'(t)z for Y(t; z).

To verify (b) we note from above that ||T'(t)|| < ¢(t) a.e. and since e~ ¢(t) is

integrable over (0, 00}, the integral

J(A)z := /Oooc‘“T(t)z dt

exists for all z € X,ReX > 5. Now let z € X, z, € X, be such that iim,,zn = z, then

using (a) we find in view of the dominated convergence that

(15) lim_ | R(; An)zn — Pud (N)z]la
(s <]
< lim eV Tp(t)zn — PaT(t)z|ndt =0
n— o

where 4 = Re) > . This together with lemma 5-(i) imply that R(); A) =
(ii) = (i)

We note from (b) and (15) that

iim,,R(A;A,.)zn = R(A;A)z, whenever lim,z, = z,

so that (i) follows by proposition 1.

J(A).

Between propositions 1 and 2 it is possible now to deduce a generalization of a result

of (3] (c.f. theorem 2.16, chapter I1X).

13

£INN ?é‘%,

S0V "A.."l r,-u A A0A $'l‘*‘ . ‘“I“AQ "a\"\‘

X x*, g 3
vA ‘\ I‘ ‘I“ )“ _‘g t‘- t.e. KX

'f- h‘.‘l n
v b A‘q i'r.ihl’» l.g‘t‘ .l q

.;;, PR AN

iy
t

43

- v
iy % -_;ﬁ :"I‘:

“.‘ "'6 3. 7“ &




o Corollary. Let {T,(t),t > 0} be a proper sequence of class (1,A) with respective

;:Q generators {A,}, futher let T(t) be a semi-group of class (1,A) with i.g. 4. If ez —limA,
|, is single valued, then for every sequence {z,} and z € X for which limpz, =z

i

E;{' lim,R(\; A,)z, = R(N; A)z for some A € L(~v0)

Syt

o] if and only if

)

R .

W : lim,T,(t)z, = T(t)z, vt > 0.

it It is worthwhile to note from proposition 2 above that although each semi-group T,(t)
X ]

it is of class (1,A) the limit T'(t) need not be Abel summable. We also find (see examples in
¥ )

§20.3, 12}) that this situation persists even when members of the approximating sequence
i belong to class co. On the other hand we know (c.f. 4], [9]) that if a sequence of semi-groups
I of linear contractions converge then the limit is again a semi-group of linear contractions. :
The question therefore arises as whether one could say more about the limit semi-group,

perhaps by imposing some extra conditions on the approximating sequence. An instance

of this is shown in the following proposition.

Aty
g
o Proposition 3. Assume that {T,(t),t > 0} is a proper sequence of class (1,A)
!_.,.
‘::‘ satisfying the (UAS) condition and with respective generators {A,}. Then the following
#Z.}: assertions are equivalent:
.
'i':'
:’.:: (2)! D(A) and R(X — A) are both dense in X for some A € L(~o),
:fof
. (12)" D(A) is dense and R(A; A) = ex — limR(\; A,), A € L{~0)
("n
A
:‘3: (177)" There exists a semi-group T(t),t > 0 of class (1,A), defined on X, such that
)
o
‘;' limaTa(t)zn = T(t)z, whenever {tm,z, =z. t>0.
o ?
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:’ Furthermore, if (111)’ holds then A is the i.g. of T(t).

vl

: Proof. Lemma 1-(a) shows that 4 is single valued, thus the equivalence of (i) and
.‘ (1)’ follow by proposition 1. Also in (11t)’, if we take A to be the infinitesimal generator
)_:E of T(t) then the preceding corollary shows that (iii)’ = (i1)’. The implication (:) = (i11)’
, follows from proposition 2 with the only exception of showing that T'(t) is Abel summable.
g’ For this, let C denote the continuity set of T(t). i.e. the set of all z € X for which
:E;' T(n)z — z as n — 0™, and note that lim)__ AJ(A)z = z, Vz € C where J(A) is defined
A

‘&_ as in (3). To conclude that this limit holds for all £ € X, we need to show that C is dense
“J and that ||AJ())! is bounded for all real A > v, for in this case the conclusion follows by
,, the Banach-Steinhauss theorem. Now as in proposition 2, (i)’ = J()A) = R(X; 4). Thus if
"’ z € D(A),3y € X such that z = foxc“*‘T(t)y dt, X > vo. Consequently T'(n)z — z as
f- n — 0" showing that D(A) C C, hence C is dense. The boundedness of |[AJ(})[| follows
:v . directly from (6) and (7).

Ml

3 As a consequence of Proposition 2 we also obtain the following generalization of a
result of Trotter (c.f. !9).

‘ Proposition 4. Let {T,(t)} be a proper sequence of class (1,A). Let A, be the i.g.
'S of Tp(t) and A = lim, A,. Further, suppose that D(A) and R(A — A), (A > 7o) are dense
, subspaces of X. If A (the closure of A) exists, then there exists a strongly continuous
z: semi-group T(t) of linear operators of X such that

limaT,(t) = T(t)

)
' and

™ . o

N R(A; A)z = / e MT(t)zdt, Rel >o.z€ X.
3 |
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Moreover, if T(t) is Abel summable then A is the i.g. of T(t).

Proof. By lemma 2 above and lemma 2.4 of ([9]) we see that
limaR(X; Ap) = J(A) € L(X), A >0

We show that J(A) is an inverse of A — 4.

Let z € X, y = J(A)z then [lim,||R()A;A,)Ppz — Prylln = 0, alsolet y, =

R()A; Ap)Ppz € D(A,), so that Ay, — Apy, = Ppz therefore
”Anyn - Pn(/\y - I)Hn = ’\“yn - Pny“n - 0.

This means that iim,,A,,y,. = Ay —z and since iimy,, =y, weseethat Ay = Ay— =z,
which shows that (A — A)J(A)z = (A — A)y = z, Vz € X. Thus J(A) is a right inverse. To
see that it is also a left inverse, let y € D(A) and put z = Ay — Ay, z = J(A)z, then with
Yn as before ||y, — Pnpz|l, — 0. Also, by definition 3u, € D(A,) such that limau, = y
and iim,,A,,u,, = Ay, put v, = Au, — Apu, then iim,.v,, = Ay — Ay = z. Therefore

[[Pnz = Paylin < 1Pnz — R(X; Ap) Pazlin + [[R(A; An) Paz — R(X; An)vnlin

+llun = Ppyliln =0 as n — oco.

Hence,y = z and J(A\)(A — A)y=J(A)z =2z =y.

Now, since A is single valued (lemma 1-(b)), we see from the above argument and }
lemma 2.4 of {9] that A = A. The conclusion of the theorem now follows from proposition
2, with A replaced by A. The last part follows from a result of Phillips (c.f. 8]).

As noted in the introduction it was shown in [5] that under appropriate conditions ”
stability is equivalent to the convergence of the solutions ™ where everything was considered
in the same space, i.e. X, = X, P, = I for all n. We explain this in a functional analytic

setting in the following remarks:
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of ¢o semi-groups converges to a ¢ semi-group T'(t), then ||T,(t)ll < M, Vn, andt €

10, 00) iff the convergence is uniform on (0.1!, (hence on any compact t interval of [0, o0)).

E Remark 2. Assuming X, = X,P, = I, Vn, we note that if a sequence {T,(t)}
"

That the above condition = uniform convergence, was shown in the theorems of Trotter

" [9) and Kurtz [4]. For the converse, assume not, then 3z € X and subsequences {n;}
ke and {t;}, t; € [0,1] such that ||T,,(¢t;)zli — oo as j — oo (this is due to the uniform
: boundedness theorem). Let t € [0,1] be such that lim,;_,.t; = t (using a subsequence),

then we have

o
v
;: W Ta, (8)2ll < 1T, (t5)x — T(t5)z)| + iIT(t;)z — T(t)z)j + [T (t)z]]
3 where the first and second terms on the right side tend to 0 as j — oo, while the third is
%
» a finite constant, which is a contradiction.
" Remark 3. In contrast with remark 2, we have the following situation (c.f. [2]}; if
A
T(t),t > 0 is of class (1,A) and of negative type, with i.g. A, and if B, = n?R(n; A) —
S
‘ nl, n=1,2,.... Then
o

limpezp(tB,)z = T(t)z, Vze X,t>0.

- Since B, is a bounded operator the semi-group T,(t) = ezp(tB,) is of class co. Thus a
K

sequence of ¢, semi-groups may converge to a semi-group that need not be of class cq (see
example below); in particular (1) or equivalently |iT,(t)|i < M, VYn.t > 0 cannot hold in

such a case, according to (j4] or [9]).

i Example. We close our discussion by considering the example of Phillips. {8]. Let X

1)

;l

. be the space consisting of all sequence pairs {(xn,nn) : n = 1,2,...} such that lim, .o xn =

b‘

§,
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0 and Y o0, ngln,.l < 00. The norm is defined as follows: for z € X, |z|| = sup, |xn|+

j oo, n3 I7n]. The semi-group is defined by T'(t)z = £ = (Xn,7in) Where

Xn = c:tp{—(ng + inz)t]{)(,l cos(nét) - Nn sin(nét)},

fin = exp|—(n? + in2)t}{x,,sin(n%t) + nacos(nit)}.

: It is shown in [8] that T'(t) is of class (1,A) but not a co semi group. Now if we
l‘ﬁ let X, be the space of all sequence pairs {(xx,7x) : Xk = nx = 0, Yk > n}, with norm
. [ Zall = SUP chcn Xkl + They k¥nk!, z. € X, then it is easy to see that {X,,| ||} is
! an approximating sequence of Banach spaces to the space (X, || ||). For the corresponding
sequence of semi groups we put T,(t)z, = £n = {(Xk:%k)n}, where z, € X, and xi,%x
are given as above, i.e. T,(t) = T(t) |x, -

One can verify directly that T,(t) is of class ¢; Vn and that the sequence satisfies the
: DIF condition moreover ; if limz, = z, £, € Xp, € X then lim, T,(t)z, = T(t)z. A

routine calculation also shows that the i.g. A, of T,(t) is given by

. H, 0 ... 0

! 0 Hyy ... 0

: An = . . . . 3

‘ .

. 0 0 0 Hp,
where

Hkkz(k%ﬂk?)(\'/ll; ‘f’f)

. We conclude in view of the above results that £ = ex —limA,, is the i.g. of T(t). Likewise,
E it is easy to check that R(A: A,) is the restriction to X, of the Laplace transform of T'(t)
]

as computed in (8], so that lim, R(A; A,) = R(A: 4).
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