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ABSTRACT

The subject of approximation of semi-groups of operators has been studied by many

authors under the assumption that the sequence of semi-groupsi{T,,(t)} is uniformly

bounded for all values of the parameter in the sense that 1IT,(t)IJ -_ M, where M is

independent of n and t. In particular this has restricted the results to semi-groups of class

co. The purpose of the present paper is to investigate this problem for a more general class

of semi-groups, namely the class (],A) and thereby generalize some results of Trotter /9],

Kurtz 4! and Kato 3j.,
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CONVERGENCE THEOREMS FOR SEMI-GROUPS
OF LINEAR OPERATORS OF CLASS (1,A)

Nazar H. Abdelaziz-

1. Introduction.

Approximation of semi-groups of linear operators has for quite somtime been a subject

of interest to several authors (c.f. 13], 141, [91 and [10]), this is due to the importance of

its role both in theory and applications. An instance where this becomes clear occurs e.g.

when one tries to approximate the solution of an initial value problem in partial differential

equations by a sequence of numerical solutions of some related finite difference equations.

This leads in a natural way to the question of approximation of semi-groups of operators

(c.f. [91). However we find that in all the literature dealing with this problem, the following

assumption was made:

If {T.(C), C _> 0} is a sequence of co semi-groups of bounded linear operators on some

Banach space (or more generally a sequence of Banach spaces, c.f. 19,) then there exists

constants M > 0,/3 independent of n, C such that

(1) T() <Me M, _ 0

In many cases the stronger requirement that all semi-groups be contractive was also used

(i.e. 1T,(, )I' < 1,Vn, C 0).

* Mathematics Department,Kuwait University. Kuwait. KUWAIT.

Sponsored by the United States Army under Contract No. DAAG29-80-C-041.
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It is perhaps worthwhile to comment at this point on the relation between (1) and the

method of approximation by numerical solutions. It turns out that (1) is the functional

analytic version of the von Neumann condition of stability for systems of finite difference

equations. A condition which had resulted from the problem of 'error gross' that is as-

sociated with numerical solutions. On the other hand one finds (c.f. '161) that there are

unstable systems for which the numerical solutions do converge to the actual solution of

the PDE.

The preceding paragraph suggests that one might investigate the problem of approx-

imation of semi-groups of operators away from condition (1). Indeed, the purpose of the

present paper is to carry on such an investigation, thus we replace (1) by the less restric-

tive assumption in def 2 below, (namely DIF) and thereby allowing semi-groups of a more

general class to be considered.

Following the Trotter-Kurtz approach (c.f. '9'. 41,concerning a more general notion

of convergence for sequences of vectors and operators, we obtain in propositions 1.2 and 3

necessary and sufficient conditions for the convergence of a sequence of semi-groups of class

(1,A) (c.f. 2' for def.) in terms of the corresponding sequence of infinitesimal generators

and also in terms of the resolvent operators. This extends the corresponding results of 13;.

4and 9.

Some remarks arid examples are also discussed at the end. However we make here

one final observation. While we noted before that according to 6 . there are unstable

systems for which convergence hold, yet it was indicated in 7 (see also 5!) that under

appropriate conditions "stability is necessary and sufficient for convergence of the numerical

2
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approximations. We clarify this from the functional analysis side in Remarks 2, 3 below.

2. Preliminaries.

In what follows (X, 1!" I) is a Banach space, £ (X) the space of bounded linear operators

of X. For an arbitrary linear operator A from X to itself we let D(A), R(A),p(A) and

R(A; A) denote respectively the domain, range, resolvent set and the resolvent operator of

A, where A E p(A). We begin by introducing the notion of limits for sequences of vectors

and operators due to Trotter !91 and Kurtz [41.

A sequence {X., "} of Banach spaces is called an approximating sequence to the

Banach space (X, 11 " 1j) iff there exists a sequence of linear operators {Pn}; P" : X - X"

such that lim,-oo0 iPxljn = 1i, Vx E X. In particular this =: EK > 0, such that

I'nPlin < K, Vn where I PnjIn is the operator norm of Pn. Consider a sequence {x,"} where

x, E Xn,,Vn. we say that {x,} converges to x E X, written

iimnXn = X iff lim 1Xn - PnX!1n = 0.

We also consider sequences of operator {An} where for each n, P(An) and (A,) are

subspaces of Xn. An operator A : X -* X is called the limit of {An}, written A = iimnA,

_4 (Trotter 9') iff xE (A) > Pnx E V(A,) for all n and there exists y E X such that

im,A,Px = y in which case Ax = y by definition. A more general limit for sequences

of operators is the following (T. Kurtz '41); An operator A (possibly multivalued) from X

to itself is called the extended limit of {A,}. written A = ex - limA, iff x E D(A)

implies that there exists a sequence {x,},xn E P(An) and y E X such that limx =

x and IimA~xn y, in this case we write y E Ax. It is also noted that (c.f. !4]) A is

closed and D iimA,.

3
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Next, we review few facts from the theory of semi-,roups of linear operators. Let T(t)

(0, cc) -- £(X) be a strongly continuous semi-group of linear operators with infinitesimal

operator A(, where

Aox = s - lim Ahx; Ah = h- (T(h) - I)
h (~ I +

whenever the limit exists. In general A0 is not closed but whenever the closure exists it

will be denoted by A and called the infinitesimal generator (i.g.) of T(t). We also denote

the type of T(t) by w where

l. im inft-1 lnT(t)Ii

t-00o

It is well known that v < oo (see e.g. 121).

Definition 1. (c.f. Phillips [8]) T(t) is said to be of class (1,A) iff the following

conditions hold:

(a) (Integrability condition)

(2) f iT(t)! dt < ac,

this implies that for WeA > w the integral

0C
(3) J(A)x :A -T(t)xdt

exists Vx E X; i.e. J(A) E C(X),

(b) (Abel-Summability)

(4) lim AJ(A)x = x. V X. 
A 0C

In this case (c.f. 2') the infinitesimal generator A exists and R(A; A) J(A); VWeA > w.

4



A semi-group T(t) is said to be of class co if s - limt_. T(t)x = x, Vx E X. Every

co-semi-group is also of class (1,A) but the converse need not be true (c.f. 81).

3. Convergence Theorems.

We begin by stating some conditions under which the results on convergence are

established.

Definition 2. For each n, let T,,(t),t > 0 be a strongly continuous semi-group

of bounded linear operators on Xn, we say that the sequence {Tn(t);t > O} satisfies

the (DIF)- Condition, (DIF for dominance by integrable function) iff there exists a non-

negative measurable function O(t),t > 0 and a positive constant 1y0 such that e-'"tt'k(t) is

integrable over (0, oc) and

(5) ITn(t)I. < 0(t) for almost all t > O, Vn.

To see how this may be compared with (1), we could replace (1) (WLOG) by

IIT.(t)Ii < M, Vn,t > 0.

This is done simply by replacing {T,(t)} with the equivalent sequence {e-9 t Tn(t)} . Thus

we see (with 0 (t) = M) that (DIF) is also satisfied, the converse though need not be true.

Remark 1. It is clear that if {T,(t)} satisfies the (DIF) condition then (2) holds

for each n. in particular the integral in (3) exists and defines a bounded linear operator

Jn(A) on X, for ReA > -y0. If in addition (4) is satisfied then T,(t) is of class (1,A). In this

case we shall say that {Tn(t)} is a proper sequence of class (1,A). It will be useful also to

consider (4) in some uniform sense with respect to n, this is introduced in the following.

Definition 3. For each n assume that T, (t), t > 0 is a strongly continuous semi-group

of linear operators on X,a satisfying (2) of definition 1, and let J,(A) be the corresponding

~ ~ ~, .1 * %



operator defined by (3), where WeA > -in then we say that the sequence {Tn(t); t > O}

satisfies the (UAS) condition (Uniformly Abel Summable) if I a positive constant L, inde-

pendent of n and A such that

If T,(t),t > 0 is of class (1,A) with i.g. A, then as mentioned earlier, A = ex - 1imAn

may not be single valued in general. In lemma I we describe two instances in which it is

single valued.

Lemma 1. Suppose Tn(t), t > 0 is of class (1,A) for all n, then each of the following

=> A is single valued; (a) {Tn(t)} satisfies the (UAS) conditicn and D(A) is dense in X. (b)

A = iimA,, has a closed extension (that is single valued and linear ) such that for some

A(; (Ac - A)-' r £(X) and R(Ao - A) is dense in X.

Proof. (a) Let X,, E D(A,,), then 3'y, E X, such that z,, = R(A; An)Y,,. Thus

making use of (6) we see that Ahnl1, < LI!Ax, - Anz~nIK for A > -yo and all n. Now the

proof that A is single valued follows exactly as in lemma 1.1, of j41.

(b) Since .A is an extension of A and A0 E p(A), the inverse (A, - A)-' of (Ao - A)

exists as a bounded operator on its domain (AO - A). Since this is dense by assumption,

(A,, - A) -' is the unique bounded extension of (A( - A) to all X. Now assume z, Y E X

such that (A,,- A)-'x = (Ao - A)-'y = z. and let {x,,},{y, R (Ao - A) be such that

X, - x and y,, -. y, so that v, = (A,- A)-'x, -- z and u.= (A,,- A)-'y, -- z.

Therefore, with , t', - U'. we have w, - 0 and (A,. - A)u,, -. (x - y). Thus x y

since A admits a closed extension, showing that A - A (hence A) is single valued.

The following lemmas will be needed in the sequel.

6%
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Lemma 2. Assume that {Tn(t)} is a proper sequence of class (1,A), then there exists

a constant M > O, independent of n and A such that

R(,A);),.< M, Vn, ReA > "o.

In particular if iimxn = 0 where x, E X,, Vn then iim.R(A; An)x, = 0, uniformly with

respect to A, in the half plane !ReA > -yo.

Proof. By hypothesis, each T,(t),t > 0 is of class (1,A) in particular R(A;An) =

J(A), ReA > -y. therefore in view of (3),

p00!IR(,\; A,,)xj;. < e-'1'jjTn(t)xjin dt

< 1411. f e-ftO(t) dt = M. lzltI., Vx E X.

J" Where -y = ReA > -e. Hence 11R(A; A,,)IIn _! M for all n. The rest follows easily from this.

To further simplify the notations we let L(-yo) := {A/ReA > -yo} and S('yo) := p(A)

L(-10).

Lemma 3. Assume the hypothesis of lemma 2 and that A is single valued. IfA E S ( 0)

then

(7) R(A: A) = ex - timR(A; A),

moreover:

(8) 1!R(A; A) I < M, VA E S("yo).

Proof. Let A E S(-to), x E X, then zy E D(A) such that x Ay - Ay. By definition

n a sequence {Yn), Yn E P(A.) such that iim,,y. = y and IimnAny,, = Ay. Put x, =

A - Any, and note by remark 1 that eeA > - A E p(A,) so that y, = R(A;An)xn.

7
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Thus we find that limxn = Ay - Ay = x and !imnR(A; An)Xn = imnyn = y = R(A; A)x,

this proves (7). Now (8) follows from (7) and lemma 2 in a straight forward manner.

The following lemma presents a slightly stronger version of a result used in the proof

of theorem 2.1 of 14. We present the proof for convenience.

Lemma 4. Assuming the hypotheses of lemma 2 and that A is single valued. If

R(Ao - A) is dense in X for some Ao,ReAo > -10, then L(-yo) C p(A).

Proof. The proof consists of showing that S(jo) is a nonvoid closed subset of L(-yo)

and since it is also open by definition, it must coincide with L('m). To show that S(Yo) $ 0,

it suffices to show that A0 E p(A). As before A( E p(An), thus for every w G Xn 3u E P(An)

such that u = R(A o: A,)w or equivalently Aou - A,,u = w. Making use of lemma 2 we see

that

lulln S MJ Aou - Au11.

Now if x G P(A) and y Ax then by definition 3 a sequence {x,},x, C D(An) such

* that Iimx, = x and IimAnxn = Ax; applying the preceding inequality we have that

(1/M)!x,li, < !HA(,x, - Anxn]!!, and by passing to the limit we obtain (1/M)iHx11 <

lAl(,x - Ax.. This shows that (A0 - A) has a bounded inverse whose domain is dense in X

(therefore equal to X since A is closed). Consequently An E p(A). Next to show that S(I(,)

is -losed in L(-yc), let {An} C S(-yo), An -- A C L(-y(). By Lemma 3. we see that for each

(A - A)R(An; A)x -- = (A - A,)R(A,: A)x -A -A, -. x'

which means that R,(A - A) is dense in X. Hence A E p(A) by the 1st part of the proof.

7 8



Our first result is concerned with the equivalence between the convergence of a se-

quence of operators and that of its resolvent operators.

Proposition 1. Assume that f{T,,(t), t > 0} is a proper sequence of class (1,A) with

infinitesimal generators JA,,} respectively, such that ex - iimA, is single valued. Further

let A be a linear operator with domain and range in X, then the following assertions are

equivalent:

i)A = ex- IimA, and R(Ao - A) is dense in X, for some Ao C Lo

(ii) R(A\;A)x = 1m,,R(A\;A,,)x,, whenever imx, = x and A E L(-yo).

Proof. (i) => (ii): This follows directly from lemma 4 and eq. (7).

(ii) => (i): Let A E L(-yo) and x E D (A) then there exists y E X such that Ax - Ax =y.

Put Y,, P~Y and x,, = R(A; A0 )y,,, then by assumption iimx, = R(X; A)y= x, and

since y,, = \X" - A,,x, we see that imA~x, Ax. Thus A C ex - li~mA,, =: A and in

a.particular R (A -A) R (A - A).

Now R(A\ - A) is dense in X since A E p(A) by assumption, thus we find in view of

lemma 4 that A E p(A). Next let X E X and y =R(A; A)x E D(A), and let fY}Y y~ yC

D(A,,) be -. sequence satisfying lim,,y, =Y, limnAnYn = Ay. Put X,, AYn - Anyn

then Yn = R(A\;An)xn since A E L(-yo) Cp(An), so we have that iz'mxn AY - AY

X, 1imnR(A; An)xn y = R(\; A)x. On the other hand we know by assumption that

iim,,R(A; An)xn = R(A; A)x. Thus R(,\; A)x =R(A\; A)x. Vx E X. This => D(A) D(A)

and A = .which completes the proof.

Lemma 5. Suppose that f{T,(t), t > 0) is a proper sequence of class (1,A) such that

A4 ex - IimA,, is single valued, where A, is the i.g. of Tn(f). Further assume that

IX,
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R(Ac, - A) is dense in X, for some A, e L(-yo) then the following assertions hold:

(i) If iimxn = x, x,, e Xn.I E X and A E L(-y0 ) then iimn[R(A;An)]kxn

iR(A; A)Ikx, for all positive integers k.

(ii) ex - limA 2 is an extension of A 2 furthermore: Vz 'E P(A 2 ) there exists a sequence
2)". 2 .42Z

{z,},z. E D(A) such that limnzn = z im Anz= Az and imA~zn =. 2z.

*!: Proof. (i) follows directly using proposition 1 and the induction on k. To verify (ii),

we note as before that R(Ao; A) E £(X) so that D(4 2) = R 2(Ao, A)X. Let z E P(A 2 ) and

let x E X be such that z = R 2 (Ao; A)x. Further put y := R(Ao;A)x, xn := Pnx, yn :=

R(A,,; An)x, and Zn := R(Ao; An)yn. By the first part we see that tirnynn = R(AO; )x = y

and ilmz, = R(Ar; A)y = z. This yields iim,(ACz,, - Anzn) = imn yn = y Aoz - Az

and hence

(9) limnAnzn = AZ.

Moreover lim,(Aoyn - Anyn) i imnxn = x = Acy - Ay which implies that 1imAnyn=

Ay. i.e. iimnA,(A-,zn - AnZn) A(Aoz - Az). This together with (9) =* iim.Azn =.z,

showing that z E 6(ex - 1imA') and so that A2 c ex - limA2. This concludes the proof.

The proposition which we now present establishes the equivalence between the conver-

gence of a sequence of semi-groups and that of the corresponding sequence of infinitesimal

generators. This extends a result of Kurtz 4.

Proposition 2. Assume that {T, (t).t > 0} is a proper sequence of class (1A) with

infinitesimal generators {A., such that ex - limA, is single valued. Further let A be a

linear operator from A' to itself with dense domain, then the following are equivalent:

(i) - ex limA, and R(A,. -4) is dense in X for some A,, re L(-y,).

4. %.
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(ii) There exists a strongly continuous semi-group T(t), t > 0 of bounded linear oper-

ators on X such that:

(a) 1imflTft(t)zR = T(t)x, t > 0 whenever Iim,'X, = , x, E X,~ and x E X,

(b) R(,\; A)x e-0~' tT(t)xdt, Vx E X, A -= L(-yo).

In particular it follows from (a) that IIT(t)II < 0k(t) for almost all t > 0.

In view of lemmas 4, 3 and the fact that ex - limAft is closed we find that A is a

closed operator whose resolvent R(A; A) exists and is bounded in the half plane L(-YO).

Thus according to a lemma of Hille and Phillips (c.f. [2]) we can choose -1 > -YO such that
1 IOO;. d )

(10) Y(t; z) = z + tAz + ~-f e~R(A; A)A 2 d- VzEA
27,*I-iOO\ A2  ,z~A

defines a strongly continuous function in t for all t > 0 with Y (0; z) = z. Moreover, since

each T,,(t) is of class (1,A), with L( 0y) 9 p(A,,) we have by the same reasoning that

(11) T,,(t)w = w -~ tA,,w +t f e'tR(A; A,)A 2 , Vw E DA
2iri J A2'o

Here -y is chosen to be the same as in (10). Now let z E D (A) then according to assertion

(ii) of lemma 5 there exists a sequence f{Zn}, Zn E D (A 2) such that

Ii 1z =z imnAnZn = Az and Iim,,A 2zn =A2

thus replacing w by Zn in (11) we see that the first and second terms in the right hand

side converge (in the sense of §2 above) to the corresponding terms in (10). As for the

integrals we note upon recalling lemma 5-(i) that

itm,,R(A; An) A~ 2 Z R(A A)A 2 Z.

Ir r



Now the integrand in (11) is dominated in norm by aMe"'/ A 12, where

a max{(IIA 2z,I 2 :1 IK i < N).c + KIIA'ziI}, here N depends on c and K is the bound

on fP,,11, (see §2.) Since this is integrable over the line -y, the integrals in (11) converge to

that in (10). Summing up we find that

(12) iimjT,(t)z,, = '2)z, Vt,0,

moreover it can be verified directly from this, that

(13) 11Y (t; z)l 11 : (t) - jzjj for almost all t > 0, z E D(A 2 )

Since D(A) is dense, D(A ) is also dense and therefore _U(i; z) has a unique bounded

extension to all of X (we denote it again by Y(t;z)) which satisfies (13). To finish the

U' proof of (ii)-(a), we show that for any zo E X

*(14) imT.(W)P. zo = Y (t; ZO).

Let E > 0 be given, then 3z E D(P) such that Ilz0, - 4l < e, further let {z,,z" E D(A,)

be a sequence such that iim,,z, = z and for which (12) is satisfied. Choose N such that

n > N z*1Z - Pz , < c and I I T(t) z, - Pj (t; z):, , < c. We find

ITO)Pn - PnY(t;zo)ji. < j:T.t)Pzz, - Tn(t)z,-Il1-+

; q~T){nz W- Pnj Y (t;~ Z) + 1: P. Y t Z(t jjz -' n cI

12
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and (14) is now established.

Using (5) one can show that (14) indeed holds with P,,z0 replaced by an arbitrary

z,, E X,, for which iimz, = zo. Finally, that y(t; x) has the semi-group property is a direct

consequence of the fact that it is a limit (in the above sense) of a sequence of semi-groups.

We shall write T(t)z for Y (t; x).

To verify (b) we note from above that lIT(t)II :_ 4(t) a.e. and since e-1"¢(t) is

integrable over (0, oo), the integral

J(A\)x :- 1 e-AtT(t)x dt

exists for all x E X, WeA > -0. Now let z E X, x,, E X, be such that imx, = x, then

using (a) we find in view of the dominated convergence that

(15) ir IR(A; An)zn - PnJ(A)zlln
n-oo

?00

_ lim e- lTn(t)Xn - P T(t)xzl ndt = 0,
n co* I

where -1 = eA > -1c. This together with lemma 5-(i) imply that R(A; A) =J(A).

(ii) (i)

We note from (b) and (15) that

UiMnR(A;An)zn = R(A;A)x, whenever imnxn-T,

so that (i) follows by proposition 1.

Between propositions 1 and 2 it is possible now to deduce a generalization of a result

of [31 (c.f. theorem 2.16, chapter IX).

13



Corollary. Let {T,,(t),t > 0) be a proper sequence of class (1,A) with respective

generators {A,}, futher let T(t) be a semi-group of class (1,A) with i.g. A. If ex - liMA,

is single valued, then for every sequence {x,} and x E X for which iimx' = x

iimR(\; A,)x, = R(A; A)x for some A E L(yo)

if and only if

iim'T,(t)x,, = T(t)x, Vt > 0.

It is worthwhile to note from proposition 2 above that although each semi-group T,(t)

is of class (1,A) the limit T(t) need not be Abel summable. We also find (see examples in

§20.3, i2) that this situation persists even when members of the approximating sequence

belong to class co. On the other hand we know (c.f. ,41, 191) that if a sequence of semi-groups

of linear contractions converge then the limit is again a semi-group of linear contractions.

The question therefore arises as whether one could say more about the limit semi-group,

perhaps by imposing some extra conditions on the approximating sequence. An instance

of this is shown in the following proposition.

Proposition 3. Assume that {T,(t),t > 0} is a proper sequence of class (1,A)

satisfying the (UAS) condition and with respective generators {A,}. Then the following

assertions are equivalent:

(i)' D(A) and ,(A - A) are both dense in X for some A E L(-0),

(ii)' P(A) is dense and R(A; A)= ex - limR(,; A,).,,\ E L(y1o)

(iii)' There exists a semi-group T(t), t > 0 of class (1,A), defined on X, such that

irmT,,(t)x, T(t)x, whenever irM, x, X , t > 0.

14
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Furthermore, if (iii)' holds then A is the i.g. of T(t).

Proof. Lemma 1-(a) shows that A is single valued, thus the equivalence of ()' and

(ii)' follow by proposition 1. Also in (iii)', if we take A to be the infinitesimal generator

of T(t) then the preceding corollary shows that (iii)' := (ii)'. The implication (i)' = (iii)'

follows from proposition 2 with the only exception of showing that T(t) is Abel summable.

For this, let C denote the continuity set of T(t). i.e. the set of all x E X for which

T(r)x - x as Y7 -- OV. and note that limx.o AJ(A)x = x, Vx E C where J(A) is defined

as in (3). To conclude that this limit holds for all x E X, we need to show that C is dense

and that IJAJ(A)Ii is bounded for all real A > -yo, for in this case the conclusion follows by

the Banach-Steinhauss theorem. Now as in proposition 2, (i)' => J(A) = R(A; A). Thus if

D(A),3y E X such that x = fo e_-tT(t)ydt, A > -yo. Consequently T(i?)x -- x as

q -- O showing that D(A) C C, hence C is dense. The boundedness of IIAJ(A)Ij follows

directly from (6) and (7).

As a consequence of Proposition 2 we also obtain the following generalization of a

result of Trotter (c.f. !91).

Proposition 4. Let {Tn(t)} be a proper sequence of class (1,A). Let A, be the i.g.

of T, (t) and A = Iitm A,. Further, suppose that D(A) and R (A - A), (A > -yo) are dense

subspaces of X. If A (the closure of A) exists, then there exists a strongly continuous

semi-group T(t) of linear operators of X such that

:im, T.(1) = T(t)

and

R(A; A)x = e-tT(t)x dt, WeA > "Yo, x E X.

. .



Moreover, if T(t) is Abel surnmable then A is the i.g. of T(t).

Proof. By lemma 2 above and lemma 2.4 of (!9)) we see that

Iim,,R(A;A,,) =J(A\) E C(X), A > .

We show that J(.\) is an inverse of A-A.

Let x E X, y = J(A\)z then Iim,,ljR(A\;An)P,,x - =,yl, 0, also let y/I,

R(A; A,,)P,,x C-D(,) so that \y.~ - A,,y, = P,,x therefore

11A~y. - P.(Ay - xj.= \11y.~ - Pyyjj, - 0.

This means that iim,,A,,y, = \y - x and since iimy,, y, we see that Ay := Ay - x,

which shows that (A-A)J(A)x = (A - A)y = x, Vx E X. Thus J(A\) is a right inverse. To

see that it is also a left inverse, let y E D(A) and put x = \y - Ay, z = J(A\)x, then with

y,, as before 11, - P,,zljj -* 0. Also, by definition 3u,, E D(A,,) such that iim,,ts, = y

and IirmnAnun Ay, Put Vn = Aun - Anun then iimnv,, = Ay - Ay= x. Therefore

iiPnz - Pnj.< IIPnz - R(,\; An)PnxIIn + J R(A\; An)PnX - R(A\; An)vnIIn

+ 1Iun -P.n - 0 asn f- oO.

Hence,y =z and J(A)(A\ - A)y = J(A\)x = z =y

Now, since A is single valued (lemma 1-(b)), we see from the above argument and

lemma 2.4 of 19 that A = A. The conclusion of the theorem now follows from proposition

2, with A replaced by A. The last part follows from a result of Phillips (c.f. '81).

As noted in the introduction it was shown in W5, that under appropriate conditions

stability is equivalent to the convergence of the solutions " where everything was considered

in the same space, i.e. Xn = X, P1 I for all na. W~e explain t 1iis in a functional analytic

setting in the following remarks:

16



Remark 2. Assuming X, = X, P, = I, Vn, we note that if a sequence {Tn(t)}

of co semi-groups converges to a cc, semi-group T(t), then JjTn(t)l < M, Vn, and t E

!0, oc) iff the convergence is uniform on 0, 11, (hence on any compact t interval of [0, o0)).

That the above condition * uniform convergence, was shown in the theorems of Trotter

19] and Kurtz 14]. For the converse, assume not, then 3z E X and subsequences {nj)

and (ti), tj E i0,11 such that Tnj(t)xj -- oo as j -- oo (this is due to the uniform

boundedness theorem). Let t E 10, 1] be such that lim-.o t, = t (using a subsequence),

then we have

JjT, (tj)zl !5 jjTn, .(ti)x - T(tj)zl + IT(ti)x - T(t)xl + j T(t)xjI

where the first and second terms on the right side tend to 0 as j - oo, while the third is

a finite constant, which is a contradiction.

Remark 3. In contrast with remark 2, we have the following situation (c.f. [21); if

T(t),t > 0 is of class (1,A) and of negative type, with i.g. A, and if Bn = n 2R(n; A) -

nI, n = 1,2 .... Then

li.exp(tB,)z = r(t)z, Vx E X, t > 0.

Since Bn is a bounded operator the semi-group T,,(t) = exp(IB,,) is of class cC4. Thus a

sequence of co semi-groups may converge to a semi-group that need not be of class co (see

example below); in particular (1) or equivalently !;T,,(t)ji < M, Vn.t > 0 cannot hold in

such a case, according to ([4] or [91).

Example. We close our discussion by considering the example of Phillips, '81. Let X

be the space consisting of all sequence pairs ((X,, 7n) : n -,2,...) such that limno, =

17



0 and n ='n, ]I, < ac. The norm is defined as follows: forzE X, I SIzI :=S up.1 IX+

00n=1 n12Ijrin. The semi-group is defined by T(t)z = = ) where

In = exp-(n2 + in2)tjXn cos(n~t) - sin(n"1t)),

I= ezpi- (n 4 n2 +M)tj{xn sin(nt)± +INcosI t)).

It is shown in [8] that T(t) is of class (1,A) but not a co semi group. Now if we

let Xn be the space of all sequence pairs {(Xk,, 'lk) : Xk = rtk = 0, Vk > n}, with norm

!iXnll = supl<k< n 'Xkl + E=1 ki t7kj, X. E Xn, then it is easy to see that {Xn, I -1} is

an approximating sequence of Banach spaces to the space (X, 11 H1). For the corresponding

sequence of semi groups we put Tn(t)xn = I{(&kk)n}, where X. E Xn and k

are given as above, i.e. Tn(t) = T(t) Ix,,

One can verify directly that Tn(t) is of class co Vn and that the sequence satisfies the

DIF condition moreover; if limxn = X, X. G Xn, x G X then limn Tn(t)xn = T(t)x. A

routine calculation also shows that the i.g. An of Tn(t) is given by

(il 0 0
0 H 2 2 ... 0

0 0 0 Hnn

where

Hkk = (k' + ik2 ) -

We conclude in view of the above results that A = ex - limAn is the i.g. of T(t). Likewise,

it is easy to check that R(A, An) is the restriction to X, of the Laplace transform of T(t)

as computed in 8], so that limn R(A; An) = R(A; A).

18
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