AD-A172 581 LAYERL A SIMULA CONTEXT FOR SINUI
COMMUNICATION SYSTENSCU) NRVAL RESEARCH LAB WASHINGTON
DC J P HARUSER ET AL. 05 SEP 86 NRL-8989

UNCLASSIFIED F/G 1272. 1

e

=
—
—_—
——

Il

e
——
——
——
 —

ll

125

l

.............

Naval Research Laboratory

Washington, DC 20375-6000 NRL Report 8989 September 5, 1986

Layerl: A SIMULA Context for Simulating the Operation
of Communication Systems

J. P. HAUSER AND D. J. BAKER

Information Technology Division

_
00
O
N .
~ DTIC
< ELECTE
| 0CT O 7 1986
Q
<C D
: >
=
(b .
w
| 195
e
j =)

Approved for public release; distribution unlimited

..........
..........

.............
................
.........

-

..........
...............................
.....

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

a REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

3 DISTRIBUTION /AVAILABILITY OF REPORT

2b ODECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release; distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
NRL Report 8989

S MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL

(if applicable)

Naval Research Laboratory Code 7521

7a NAME OF MONITORING ORGANIZATION

6¢c. ADDRESS (City, State, and ZIP Code)

Washington, DC 20375-5000

7b. ADDRESS (City, State, and ZIP Code)

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION Space and Naval Warfare
Systems Command

8b. OFFICE SYMBOL
- (If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢. ADDRESS (City, State, and 2IP Code)

Washington, DC 20363-5100

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT
ELEMENT NO. NO.

62721N XF21.222C

TASK WORK UNIT
NO XF21.242 JACCESSION NO.

(STP 3203)] DN080-087

11 TITLE (Include Security Classification)

Layerl: A SIMULA Context for Simulating the Operation of Communication Systems

12. PERSONAL AUTHOR(S)
Hauser, J.P. and Baker, D.J.

13a. TYPE OF REPORT
Interim

13b. TIME COVERED
erOM Jan. 1985 ro Jan. 1986

14. DATE OF REPORT (Year, Month, Day)
1986 September 5

15 PAGE COUNT
29

16. SUPPLEMENTARY NOTATION

COSATI CODES

GROUP SUB-GROUP

Simulatiom

SIMULA

18/ SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
{ Communication systems

Object-oriented. ;, .
Carrier-sense multiple-access , ../ 2

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

< Layerl is a SIMULA class that provides a set of object templates useful in developing
simulations of communication system operation. Layer! is oriented toward the modeling of
high frequency (HF), frequency-hopped, radio communication systems; but it is sufficiently
versatile to support the simulation of both radio and hardwired communication systems that use
other portions of the frequency spectrum. In this document we describe the layer! methodology
and give an example of its application to simulating an HF radio communication system that
uses a carrier-sense multiple-access (CSMA) protocol. The purpose is to introduce the reader
to the object-oriented approach used to develop the layer! code and to give him or her enough
information to construct a simulation in a layer/ context.

p
$o 0

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT
O uncuassiFieoruNuMITED & SAME AS RPT 3 oTic users

21 ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL
James P. Hauser

22b TELEPHONE (include Area Code) | 22¢. OFFICE SYMBOL
(202) 767-2771 Code 7521

DD FORM 1473, 84 mar

83 APR edition may be used until exhausted
All other editions are obsolete

SECURITY CLASSIFICATION OF THIS PAGE

UL Governmant Printing Ofien: 008007 087

ce eieay
,I.."
S

MACH
s

»' ¥ o i R e §2, itk Y » h

t q
Ca

¥, ’

L h.ﬁ

re :.b

¥

I"' =

e, CONTENTS Ay

o b
!

u INTRODUCTION .o eeeeeseeseseeseessesoseee e eseseeseesssesssseesssssssessesssseesssssss e s 1 £

: '

, SUPPORTING CONTEXT ..ottt ieteeeeeesese s ee s teaaseere s st e nne s e m s e st s eeeaenasraraasneaeassanes 1 :"
5 LAYERT OBJECTS ...oocoooiiirreoeeeeoessssssssssssae s sssssesssssssssss s sssssss e ssssesnsen s 3 'f
¥,

§
& Layerl _INOAEooiiiiiimiiiiiiit ettt et e bt et 5 i .

CRENNEL ..ottt eet s et e s et e seesbestessesseebebaeseasae st emseesansesaessesesameaatontensensabansesreseenbeeans 5
‘ CRAN_MSE .ottt st b et et 1 ,
M ISO_MISE oot e s s s sttt b et 8 IN
% IMULLICOUPIETevenireieeeeictieieierecteseeteeesseseasesssse s eteesesaessse e seraaseseesnasessasceseotentaneseensesnstensernnseasen 8 et
N RECEIVET .viviirieeiiiticiariitie e et e tess et esrr e s e s entesresstentasnsseemeeat e b seeaseshesheere e st enaenetenranessnssannanes 8 wd
: TIANSIMILIETecevitireueneuisiere ettt et e coten e en st eeese e eaner s s e s beer s r b eseb et et saem s er s st rarans et eb s erenas 11 o~

, CONITOIET ...oeeiveiiiiiiieerireieiectresetereertreeecasessseresanaressasaaasoneseesneeseansaessnshessennnessnnnnessantesssstaesannen 12

Controller_SUDPTOBIAMcoovieereciireneiciiiiinns eiicires e s e s b s san e e reseans 13 R

) 2
y LAYERT EVENTS ...oooooovuummmmmmsmmsassssssssssssssssssssssssssssssnsssssssssssssssessssssessstsesssssssessssosesessssssssssssesesseseeees 5 b
E") D)

. AN EXAMPLE ...ttt eerreresse s s e s e s e e e e e e e s st s bars e asassoasaaaenaeresssnsnssssnssnoseraaneesnsennnannes 18 q
D 4

CONCLUSIONS ettt ee et rer et et et s aasesessss s s b enesenentaaaaseesssaesesisianansrrsrnantanssnansssies 20 —
ks

: REFERENGESooooooooeoevovoooee oo s eeeeeoee s oo oseseee e ee s se e s s st es s esesesessees e s sesreeeresee 20 4
5] e
1‘ APPENDIX ...oooovooeeeeeeeeeeseeeeoeesseeoseeeeesee e seeoesssesssess s smsssassesssssseesssssesessssessassssssnssessssesssers s 21 '

: %X
& Accesion For a .
r. TIS CRA&I ;

2 DTIC TAB 0 ol

Uiiannouaced 0O -

3 Justificaton 4

................ "

l' b. 3
’ BY . ,
:l Dist ibution/ N N

Availﬁbzlxty Codes —

>) Avail al:d/o} L.

: Dist special ::
D | o
\’ ﬂ' I ':t
. e
/
v >y
o c‘ d

A ¢

(])

i 2
SICALS Qw..-n':-'. N A I I R SR R e !-j

- -
pAY

: . \ . 3 - - ate "l "t b UTINY
Ealy’ 2 Sx% $ >), ; 4 1 PO

o
o
v
* 't
e '
N
F, o
=
. . N L9
Layerl: A SIMULA Context for Simulating the Operation ey
. . 1
of Communication Systems WY
Y
INTRODUCTION 4
\
Layer! is a SIMULA context in which communication protocols can be specified and simulated. E \

Its name is derived from the International Standards Organization (ISO) reference model for open sys- I
tems interconnection (OSI) [1]. Layer! of the 1SO/OSI architecture specifies the physical means by Ao

which information is transported within a communication system. Layerl code implements the physical

layer of a communication system by providing a set of SIMULA classes (i.e., object templates) that ran
model communication hardware and its interaction with the communication medium. Thus one may .f::.r
define and experiment with communication protocols by using a model of a communication system ,°.$
rather than the actual hardware. ‘;:'-r
Layer! code provides a degree of realism adequate to model frequency-hopped, HF radio com- o

munication systems. There are limitations, however. For example, no propagation models are provided .;-.
to compute communication ranges, although the user can directly incorporate the procedures that per- '?"
form these computations into the simulation. Also, channels and hop codes can be differentiated, but .'-.:
hopping patterns cannot be defined explicitly. A receiver can detect primary (same channel, same hop o
code) and secondary (same channel, different hop code) collisions as well as the number of competing M
signals involved in a collision. However, it cannot determine the actual number of hits (same time,

same frequency hop) associated with a collision. Here again, the user can supply procedures to specify L
hopping patterns and to compute the number of hits if additional detail is required in the model. Thus, ’“- ’
the aforementioned limitations can be removed by extending the layerl code. The implementation of 14
extensions such as these is straightforward. t::

In the next section, we briefly describe the supporting context on which layer! is built. Then, in A
the following sections we describe the kinds of objects provided by layerl, explain how they work, and Q

show how to use them to design a simulation. In the conclusions we give an assessment of our A
approach to communication protocol simulation, and in the appendix we list the SIMULA code for a f‘.}::
sample problem. ;*':.;
SUPPORTING CONTEXT !
s':'-]
SIMULA [2] provides the foundation for the supporting context in which layer! is developed. t:-:::
SIMULA is an extension of ALGOL [3]. It adds to ALGOL a special SIMULA construct called a class. h::\‘
SIMULA classes can be used in two distinct ways. One way is to use a class as’a context. A context is t.-;
a precompiled block of SIMULA code containing procedures and object templates that serve as a set of vy,
tools and, thus, extend the capability of SIMULA to handle problems in a specific area of interest.
Another way to use a class is as an object template. An object template is used as a pattern to create ,
one or more objects of the same type. This is accomplished by using the SIMULA new construct, and "."f-.'
an object thus created is called a class instance. Object creation (i.e., class instantiation) is illustrated by ol
the following SIMULA statement: (r,(.
e,
xmtr:- NEW transmitter; .
o~
*Manuscript approved April 8. 1986 :‘.:.l.
f-.‘(
A
1 R2s

\"‘-c'\t:‘- ..f‘.o"\
-

S0

YO e T S S P A e T - SRR SRR
' A Wk N N
a.l.,i‘) o0 3y c'le',l B n'a}

RO

J.P. HAUSER AND D J. BAKER

The attribute xmtr is a special type of SIMULA variable called a reference variable. Reference variables
serve as pointers to class instances and must be typed properly somewhere in the SIMULA context. In
this case we need a type designation as follows:

REF (transmitter) xmtr;

which designates xmir as a pointer to transmitter objects. The symbol *‘:-" is read as denotes and serves
as a replacement operator for reference variables. NEW causes the instantiation to occur. Each class
instance in a SIMULA system is an object with its own set of attributes and actions. Therefore, to
implement layer! we define a set of SIMULA classes that provide templates for the various communi-
cation hardware components. The SIMULA code that a user of the layer! context writes instantiates
the classes as needed to implement his particular communication system model. This is analogous to
building a communication system by assembling and interfacing hardware components. We clarify this
technique in the sections that follow.

Finally, we rely heavily on the single-inheritance capability of SIMULA classes, in building con-
texts and in developing object templates. Class inheritance is effected by prefixing one class with
another. For example, in Fig. 1 we depict the layer! context. The foundation of the context is
SIMULA itself. Two standard SIMULA classes, simset and simulation, are added to SIMULA and
together they provide the context available to every SIMULA user. Next, we provide a user-written
class called node_stats. Class node_stats has the following form:

simulation CLASS node_stats(max_num_of nodes);
INTEGER max_num_of nodes; !Maximum number of nodes;
BEGIN

(code which implements class node_stats) ...
END;

In the first line of node_stats code we see that the class declaration for node_stats is prefixed by simula-
tion. This has the effect of passing on to class node_stats the entire context of class simulation, which in
turn has the entire context of class simset, which in turn has the entire context of SIMULA. By the
time we define msg_queue class layerl, layerl has inherited the entire context that has come before and
in turn may pass it on along with its own classes (i.e., object templates) and procedures to any class that
uses layer! as a prefix.

LAYERI
MSG_QUEUE
CONN_MATRIX
NODE_EVSIM
NODE_STATS
SIMULATION
SIMSET
SIMULA

Fig. 1 — Supporting context
for layerl

Classes that define object templates use inheritai.ce in much the same way as classes that define
contexts. For example, let us assume that we would like to extend our model of a transmitter to incor-
porate features specific to ultrahigh frequency (UHF) transmitters, which are not modeled in the very
generalized class transmitter. We could do this by defining a new class, transmitter class uhf transmitter,
which is then called a subclass of class transmitter. When class uhf transmitter is instantiated, it will be a
concatenated object containing the attributes and actions of both class transmitter and class

L v Sh¥eT

OSSR
3 * .

o i

R

s

e

-

» AP s

¢ NN NS o NN S Y

PRI DN A5 b Wf R -

¢ WA A O

iy Wy

NRL REPORT 8989

uhf _transmitter. Other varieties of transmitter object templates may also be defined using class
transmitter as a prefix. Note: the pointer — REF(transmitter)xmtr — can point to any concatenated
object that uses transmitter to begin its prefix chain. Class inheritance provides a powerful and flexible
capability for designing object templates as well as contexts.

Figure 1 gives a pictorial representation of the Jlaver] supporting context, and a verbal description
follows:

® Simset, a standard SIMULA class (context), implements queues as two-way linked lists by
defining two new classes (templates), link and head. Any object prefixed by link can be
inserted into, shuffled around in or removed from any queue that is an instance of class head.

® Simulation, another standard SIMULA class, supports discrete event simulation. Simulation
defines three new classes—link class event_notice, link class process, and process class
main_program. Also, an instance of class head is created which serves as an event-notice
queue. Simulation provides a set of procedures for scheduling event-notices. When an
event-notice becomes current, the process referenced becomes active. The main program is
also a process with its own event-notice, therefore it becomes another member of the set of
quasi-parallel processes that constitutes a SIMULA system.

® Node_stats is a class that provides abstract data types for statistics collection [4] and introduces
the concept of a node. The introduction of class node at this relatively low level in the con-
text facilitates the inclusion of node reference variables and class prefixing in tailoring the
statistics collection and other higher level contexts to a node oriented model.

® Node_evsim provides an event-process facility [S] that permits a process (i.e., an event-
process) to have multiple event notices pending in the event queue. This is an important
extension to the SIMULA process as defined in class simulation, which permits each process
to have only one event notice in the event queue at any one time. Also, node_evsim provides
event tracing. Event-processes play a significant role in the design of layer! code.

® Conn_matrix supplies a template and procedures for manipulating connectivity matrices. More
about this topic is said later.

® Msg queue extends the basic queue handling facilities of class simset to provide procedures put
and get [6] along with an interface to a message processor.

® [Layerl uses many of the features just described and adds to them its own set of classes and
procedures oriented toward the modeling of communication systems.

The entire context described above with all its features and capabilities is available to the layer] user.

LAYER1 OBJECTS

In layer! we take advantage of the object-oriented approach afforded by the SIMULA class con-
struct. This approach allows us to map directly from real objects, such as transmitters and receivers, to
SIMULA classes that represent these objects. By maintaining a one-to-one mapping of real objects to
SIMULA objects, we obtain a model that is conceptually identical to the real system we are modeling.
Thus, it is easy to understand and use the model. The kinds of object templates (i.e.. SIMULA classes)
provided by layer! are the following:

® layerl_node

A physical platform that can house one or more communication systems.

e tamLean e e,
AL REAT AR

‘.."-“ W N, . AR ‘-" ‘~'_
RN A A SN).~ -

Ll ool
My v e %

A% W
-

sppes

hex o V)

IR

iyt
-
-

=y 0 ew
r"n' LS

»

by Y iy
¢ Us

PR -
PEALS

[
.
0

.

-"r.
N

Yy 2y

s

A

[N

4 vy ':‘ 14.

s .’~I-'\l’ ‘.(v ,‘(‘.

SOLLIAL

J.P. HAUSER AND D.J. BAKER

7r

® channel

A portion of the radio frequency spectrum used to send and receive radio transmissions.
Layer1 channels provide communication paths for chan_msgs to follow.

-

chan_msg

X2

N The layer! transmission unit. R
! [

0 H
‘ ® jso_msg ¢
P Contents of a chan_msg. r’.
&)
- e multicoupler -
e ‘ . ~
b The focal point at a layerl_node which receives all transmissions, i.e., chan_msgs. Ak

receiver

Receives chan_msgs and extracts their information, i.e., iso_msgs.

transmitter

Packs link layer information, iso_msgs, into chan_msgs and sends them via a channel.
e controller

Manages a suite of transmitters and receivers by running controller_subprograms.

) SO,

® controller_subprogram

! Provides an interface to the transmitter and receiver hardware, which becomes a context for
& writing link layer protocols.

. - -

Ly e ad

Figure 2 presents a communication system model constructed with layer! objects. These classes are now
discussed in detail.

r node) B

subprg 1

subprg 2

’.

[e...ga}
(~e—vcon———c3)
A
4

[§ ~®——0-~~300
G

|\ /

Fig. 2 — The layer! model of a communication system

o I O A
‘.'.',\.""."".’ >
ol

3

ARSI

RO S
o, e -..‘- e

NRL REPORT 8989

Layerl_Node

A layerl_node models a platferm that can house one or more communication systems. A
layer]_node object is created in the user’s program by the following statement:

nodes (index):-NEW layer]_node_subclass(id_num,num_xmtrs,num_rcvrs,
num_cntris,layerl_node_subclass parameter list);

In this and the statements that follow we use two conventions. The items in boldfaced should be typed
exactly as shown and the italicized items represent quantities, identifiers or code supplied by the user.
Class node_stats defines REF(node) ARRAY nodes(l:max_num_of_nodes) which is an array of
pointers to node objects and is inherited by layer!. Since layerl node is a subclass of node, nodes
pointers may be used to point to layerl _node objects. The user can create nodes(1), nodes(2), etc., up
to max_num_of nodes. That is, index assumes values 1, 2, etc., not to exceed max_num_of_nodes.
The user specifies max_num_of _nodes when compiling a layerl block and thus places an upper bound
on the number of nodes that can be simulated with a particular load module. Layerl_node_subclass is
the name of a subclass of layer!_node written by the user; it has the following form:

layerl_node CLASS layerl node_subclass (parameter list);
parameter definitions
BEGIN

attributes
actions
END;

The additional parameter list and definitions as well as the inclusion of additional attributes are
optional. We say additional because layerl_node_subclass inherits all the attributes and actions from its
prefix class, which in this example is class layer!_node.

We now define the four parameters specified in the class layer! node parameter list. If the user
specifies a parameter list for layer!_node_subciass, those parameters would be appended to this list.
Id_num is an integer identification number for the layeii_node being created. It may have the same
value as the one used for index, but it is not necessary for it to be the same. Num_xmtrs, num_rcvrs and
num_cnirls are integers that specify the number of transmitters, receivers, and controllers to be created
at this node. In each layerl_node_subclass object, the user must create the transmitter, receiver, and
controller objects residing at that layerl _noae and must tell layer! how to interconnect them. These
actions are appended to the actions of class layer! node, which create a multicoupler object. The details
of these actions are explained as we discuss other classes.

We close our discussion of layer] _nodes with one last point; layerl_nodes need not be all alike.
Of course, differing layerl_nodes will require differing layerl_node subclasses (e.g.,
fayeri_node_subclass_I, layer] node_subclass_2, etc.). The user creates as many of each kind of
layerl_node objects as required. Creation of different layerl_node objects and assignment of pointers
to array nodes is accomplished in just the same way as shown above.

Channel

Layerl_nodes are connected to each other via communication channels. Layerl provides a class
channel. Channel objects can be created with the following procedure call:

create_phys chans (num_of chans.dynamic);

Num_of chans is an integer that specifies the number of channels to be created. When a channel is
created, a pointer is passed to REF(channel) ARRAY chans(l:max_num_of chans). The upper array

5 e

P,

Pl

’]
.

-~ f'
ot

f'.’fl'

SR A
AL A

"‘0 S

2, i
’.,“\

Ly
R

Cpt P

!

.-
e
2

IARASA
l.rl" 'v’. 2 .

kK

L]

'y
”

oy
k 2

'
P

4

. - ol B A i e b A
\ 3 o i AN 3 - A A el AASAALSEAEM AN SERE AR

IR
b
[
'
b
#
L)
[
’
r

JP. HAUSER AND D.J. BAKER

[

& bound, max_num_of_chans, is set by the user when compiling a layer! block and limits the number of

;,-‘ channels that may be created with that particular load module. Dynamic is a Boolean number that

-_;1: determines whether or not the channels will be dynamic. A dynamic channel may alter its connectivity

matrix at any time during the course of a simulation. Otherwise the channel is static and altering its
connectivity matrix will produce erroneous results. The only advantage of using static channels is to

,: save compulation time. Figure 3 depicts a connectivity matrix.

z’ transmitting

N 1 2 3 4

X 1ot 11

e .. 211101011

: receiving s T ToloTo

. 4jo0fl1f1fo

\ Fig. 3 — Example of a connectivity matrix
for a four node network

".-: The row position tells which node is receiving, and the column position tells which node is transmit-
: ting. A "1" indicates connectivity, a "0" indicates lack of connectivity. For example, the 1 at position-1,3
N indicates that node-1 can hear node-3. Note that the matrix diagonal contains 0’s. This means the
f. nodes for this example are not self jamming. Node pairs that have full two-way connectivity are (1,2),
ot (1,3), and (2,4). One-way links exist from 3 to 4 and from 4 to 1. Each channel creates a connectivity
. matrix of its own, but it does not initialize it. The user can call an initialization procedure with the
A following statement:

::

:.' chans (index) .conn.fill_connectivity matrix;

‘ ’, Execution of this statement will cause the channel specified by the integer index to be initialized by

; prompting for input data via the user’s terminal. It is possible to use an alternative technique for

matrix initialization. For example, one might wish to compute the connectivity matrix via a propaga-
j tion model rather than enter the contents of the connectivity matrix manually. Since the procedure
! fill_connectivity_matrix is a SIMULA virtual procedure, it can be virtually redefined in a subclass of
intmatrix class connectivity 1o supply the alternate technique. The SIMULA virtual declaration is illus-
. trated by the following line of code:

"

e VIRTUAL: PROCEDURE fill_connectivity matrix;

"

.-

X This virtual declaration is the first declaration in the body of class connectivity, which is a subclass of

;\: class intmatrix. Connectivity is 1therefore said to be inner to «class intmatrix. Because

» fill_connectivity_matrix has been virtually declared in class connectivity, it becomes an attribute of that

] class and is accessible via dot notation just as any other attribute of class connectivity would be. How-
ever, because of the virtual declaration, the attributes and actions of procedure fill_connectivity_matrix

— need not be specified in class connectivity. Rather, they may be specified in a subclass of connectivity.

P SIMULA will use the innermost specification for a virtual procedure. This makes it possible to define a

s default specification for ﬁll_‘connecuvny_matnx in class conngct:v:t_y‘ anq then redefine it ina class inner

) to connectivity. In fact, a virtually redefined procedure may itself be virtually redefined in a procedure

Y inner to it since SIMULA uses the innermost specification.

. The procedure for computing propagation delays is also a SIMULA virtual procedure. The default
. procedure defined as a layer! global procedure yieids a value of 0.0 for the propagation delay. The
-:‘ default definition follows:

NRL REPORT 8989

e

REAL PROCEDURE prop_delay (n1,n2); REF(node)nl,n2; prop_delay:=0.0;

*

q‘("f‘{

s v e o -

If one wishes to use nonzero propagation delays, this procedure may be redefined in a subclass of
layer!. The arguments passed to prop_delay are pointers to the transmitting node and the receiving
node.

v
P '

L % 2% ¥ad

Class channel declares two virtual procedures. Their default definitions follow:

g
]
RS

PROCEDURE chan_stat(t); VALUE t; TEXT ¢;;

PROCEDURE chan_graf(t); VALUE ¢t; TEXT t;;

If redefined, these procedures offer a convenient way to collect statistics (chan_stat) or implement
graphics (chan_graf) without making modifications directly to the layer! code. Every time a channel
processes an event, these procedures are called. The code written in these procedures can respond to
every event to which a channel object responds in order to update statistics variables or execute graph-
ics commands. In layer!, almost all state changes occur as a result of events being generated and sent
to event-process objects [5]. Reference 5 explains event-processes in detail and lists the event-process
code. (Other event-process classes in layer! besides channel are transmitter, receiver, multicoupler, and
controller_subprogram). Thus the code the user writes for these procedures is not handicapped by being
written externally to layer!. Separate procedures for statistics collection and graphics are called not out
of necessity but rather as a means of modularizing the code. Transmitter and receiver objects call
equivalent procedures for the same purpose.

Chan_Msg
Class chan_msg provides a template for the layer! communication unit. Chan_msgs are never
used directly. Instead, /ayer/ transmitter objects create chan_msgs and send them. When a chan_msg is
created, the following chan_msg attributes are set:
® channel
An integer that designates which channel the transmitter sending the chan_msg is tuned to.

fhcode

An integer that designates which frequency-hop code the transmitter sending the chan_msg is
set to.

xmtr

D

.
Aty

A ref(transmitter) pointer to the transmitter sending the chan_msg.

"7‘.'-'

numofinfobits

-
’

e

1
ey

An integer that specifies the length of the chan_msg. The length of a chan_msg is deter-
mined from the length of the iso_msg contained in the chan_msg. This will be explained
shortly.

L I
| XA
r."'.‘l ’

data

A ref(iso_msg) pointer that points to the iso_msg contained in this chan_msg.

..
. ta e e g,y
% Se v e,

)
[

Al ol

J.P. HAUSER AND D.J. BAKER

® msg id

Every chan_msg is assigned a unique integer message id to facilitate tracing.

® origtime

Every chan_msg is also marked with the simulation clock time (real) when created.

Iso_Msg

Since chan_msgs exist only within layer!, we need another type of message object to pass infor-
mation through the interface to layerl. This is the purpose of class iso_msg. The only attribute of class
iso_msg is an integer called mlength, it specifies the length of the iso_msg. /so_msg must be used as a
prefix for any class of message objects using the layer! interface. The SIMULA code presented in the
appendix illustrates this technique.

Multicoupler

The multicoupler receives all chan_msgs sent to a node and routes them to each receiver that is
tuned to hear them. This is determined by comparing the channel to which each receiver at the
layer]l _node is set with the channel of the incoming chan_msg. The multicoupler also updates variable

*arrays used for collision detection. The values in these arrays may be read by using the following pro-

cedures:
® npum prim_collisions (chan,code);
The attribute chan is the index number of the channel, and the code is the index of the
frequency-hopped code. Num_prim_collisions returns the number (integer) of competing sig-

nals in the channel and on the same code.

num_scnd_collisions (chan);

The attribute chan is the channel index number. Num_scnd_collisions returns the number
(integer) of competing signals in the channel including those on different codes.

E- ° layerl_node creates its own multicoupler without assistance from the user.

Receiver

To create and properly initialize a receiver object requires the following code:

revr (num) :- NEW receiver(receiver object title , THIS layer1_node , num);

Num is an integer in the range | < num < num_rcvrs where num_rcvrs is the number of receivers
specified in the argument list for the layerl node. Receiver objects should be created by the
layerl _node to which they belong. The statement given above should be one of the actions of a sub-
class of layerl_node as explained in section ‘‘Layer]l_Node''. The receiver object title is a siring
(SIMULA text object) that will be used for identification if event tracing is requested. We recommend
a title similar to the following:

merge_text (‘‘receiver num at node " , int_text(id_num))

We use procedure merge_text to concatenate the text items into one object and procedure int_text to
convert from integer to text.

e

SR

O
) .';'ll‘

;o
e o

. .
cf:’v‘]

-
13

',. (ARLAN]

v v, e, -
.
‘5% % s

r
LJ

-

)

NRL REPORT 8989

Once a receiver is created, another action is also necessary that tells the receiver to which con-
troller it is connected. For that purpose, the receiver has a procedure that must be called as follows:

reve (num) .identify catrl (cntrl_num) ;

A receiver may be connected to only one controller, although a controller may have more than one
receiver. Cntrl_num is an integer in the range 1 < catrl_num < num_cntris (section ‘*Layer]l_Node’’).

After having created a receiver and having assigned it to a controller, it is still necessary to
activate it. Activation of an event-process, such as a receiver object, performs the object initialization
tasks and prepares it to receive events. Transmitters, controllers, and controller_subprograms also must
be explicitly activated, as it will be discussed later. The following statement will activate a receiver
object:

ACTIVATE revr (num) ;

The user interacts with receiver objects via an interface provided by a controiler_subprogram
object (section ‘‘Controller’’). This gives the user access to the following procedures for controlling
receiver objects:

® select_rcvr (id);

The argument id is an integer that specifies the receiver (as given by num above) one wishes
to access by means of the interface. All procedure calls following the call to select_rcvr deal
specifically with the receiver named by id until select_rcvr is called with a new id. If there is
only one receiver, the select_rcvr procedure need not be called.

® read rcvr_num;

This integer procedure returns the index (id) of the receiver that is currently selected (i.e., for
which the interface is currently active).

® set_rcvr_channel (¢);

The argument c is an integer that selects the new channel to which the receiver is tuned. The
value given to ¢ corresponds to the channel index as described in section ‘‘Channel’’.

¢ rcvr_channel_num;

This integer procedure reads the channel to which the receiver is presently tuned and returns
the channel index value.

® set_rcvr_fheode (f);

The argument fis an integer that selects the receiver’s hop code. The value of fis compared
with the hop code value in chan_msg as set by the transmitter sending the chan_msg. 1f the
values are the same, then the receiver can receive the chan_msg. One does not have to use
hop codes. If this procedure and the corresponding procedure for the transmitter
(set_xmtr_fhcode) are not called, all hop code values default to 1. Thus, the comparison test
mentioned above will always be true, in effect it eliminates any dependency on hop codes.

T T
2
AL

YA S
F RS [

’

r T
.

',,', L, [
¥ LI "
S N

‘l

Al
PN
N

o Y RS
. ‘\. \‘. v/‘ . v"

..4‘:5-..'..‘::;:. :
N A o

|

.
F-
r

J.P. HAUSER AND D.J. BAKER

{ e revr_fheode; s
3 - .\‘\
¢ -
* This integer procedure returns the current value of the receiver's hop code. t:-*'
")
® rcvr_in_sync;
1 (%
. %
' This Boolean procedure returns a value of true if the receiver is in sync and false if it isn't. L::\
4 VA
2
] b
¢ collision_detected; _
N This Boolean procedure returns a value of true if a collision state has occured since the last %
‘ time the collision flag was cleared. PN
o
. ® clear_collision_flag; ¢
A call to this procedure clears the collision flag. ™.
® set_scnd_collision_lim (1); E?
f‘h-
The argument / is an integer that gives the number of secondary collisions (same channel but “:—:
different codes) that a receiver can tolerate. \.‘;' v
l“,l
® rcvr_collim; .
‘..'ﬁ
This integer procedure returns the current collision limit setting. ;.
3 ® num_prim_signals; o
This procedure call returns the number of primary signals currently being received. .
o
o4
¢ num_scnd_signals; Y ,:
) This procedure call teturns the number of secondary signals currently being received. Yo
, *
‘ A
The procedures listed above form a subset of commands that may be used to program a communication y
: controller. The commands just given control receivers. We introduce the commands for transmitters o
N in section ‘‘Transmitter’” and discuss more general concepts and additional commands in section *‘Con- :i
- " . }
X troller. S
3 Class receiver provides several virtual procedures that may be redefined. Rcvr_stat and rcvr_graf g
are the counterparts of chan_stat and chan_graf that were discussed in detail in section ‘“‘Channel.’”” In \
addition, class receiver provides two Boolean virtual procedures that may be redefined. Their default ;.‘,
definitions follow: :.‘*
: v -:
£ 1
BOOLEAN PROCEDURE collision_test; X,
INSPECT station.miltcplr DO
collision_test: = (IF num_prim_collisions (rchannel,rfhcode) >1 THEN TRUE <
ELSE num_scnd_collisions (rchannel) > scnd_collision_lim); .-:‘_)
} At
' BOOLEAN PROCEDURE cannot_sync; ..'-’\'
' cannot_sync:=FALSE;
' The default procedure for collision test inspects the station’s (i.e., layerl_node’s) multicoupler in order A
to access the counters that contain current state information on the number of primary and the number ::x
v Y
\ﬁ\
A
! 10)

a '.‘Jf

RPN N

At oY

: :Ll.

1AM

(AP RE AL S

PPl EY

D N

R R R

lnf N LN

x

NRL REPORT 8989

of secondary collisions. If a primary collision state exits {(num_prim_collisions> 1) or if the number of
secondary collisions exceeds the secondary collision limit, synchronization with any transmitter can nei-
ther be achieved nor maintained. If this does not adequately model the performance of the receiver in
a collision state, procedure collision_test may be redefined in a subclass of receiver. There may exist
other conditions in a real receiver besides the collision state that could preclude synchronization. For
example, it might be necessary to set the receiver for the proper transmission rate before it can achieve
synchronization. Layer! receiver objects can be tailored to respond to other sets of synchronization con-
ditions by virtually redefining procedure cannot_sync. The default procedure shown above always
returns a false value; therefore, it will never interfere with a receiver's ability to synchronize.

The last virtual procedure contained in class receiver is real procedure time_to_sync. The default
definition is as follows:

REAL PROCEDURE time_to_sync; time_to_sync:=0.0;

The value returned by a call to time_to_sync is used to schedule an event that synchronizes the
receiver. Section *‘Layerl Events’ explains this more fully. To obtain a nonzero synchronization time,
procedure time_to_sync must be virtually redefined in a subclass of receiver.

Transmitter

Transmitter objects are created, initialized, and activated in the same fashion as receiver objects
were. The appropriate code is:

xmtr (num) :- NEW transmitter(transmitter object title , THIS node , num);
xmtr (num) .identify_cntrl (cntrl_num) ;
ACTIVATE xmtr (num) ;
Just as with receiver objects, the user accesses transmitter objects by means of a
controller_subprogram interface that provides the following procedures:

® select_xmtr (id);

The argument id is an integer that designates which transmitter the interface is currently
active for. If there is only one transmitter, this procedure need not be called.

¢ read_xmtr_num;
This integer procedure returns the current value of id.
® set_xmtr_channel (c);

The argument c is an integer that designates the channel being selected. C is used as an index
to REF(channel) ARRAY chans(l:max_num_of_chans) which is an array of pointers to chan-
nel objects.

11

YOIV

.
-

v oo o o
MO
Y RN

o o
«’a

.
Lot

...l,
P

o .

4
[N AN
L] [) .

. o -
LT N
» !

72

UL

P]
Pl

o et

-,.,..
Py
.

s o

‘\.n'

w4

O O N A

S i R

Y,

lCNCNE N I A

J.P. HAUSER AND D.J. BAKER

® xmtr_channel num;

This integer procedure returns the index of the channel currently used by the transmitter.
e set_xmtr_fhcode (f);

The argument f'is an integer that designates the frequency hop code being selected.
¢ xmtr_fhcode;

This integer procedure returns the designator of the frequency hop code currently used.
® set_xmtr_info_rate (7);

The argument r is an integer that designates the new transmission rate selected. Information
bits/s would be an appropriate choice of units in many cases; however, another choice of units
would be acceptable. The choice should be compatible with the unit of length chosen for
iso_msgs.

o xmtr_info_rate;
This integer procedure returns the current transmission rate.
® turn_on_xmir;

This procedure turns the transmitter on. It does not initiate the transmission of information,
but it does send a carrier that initiates receiver synchronization and can be collision detected
by receivers that have connectivity with the transmitter.

Y turn_off_xmtr;
This procedure turns the transmitter off.
® start (msg);

The argument msg is an iso_msg that is packed in a chan_msg and begins transmission at the
moment this procedure is called. The transmitter must be in an idle state (i.e., turned on and
not sending another chan_msg) for this procedure call to take effect. If a start is attempted
when the transmitter is not idle, a warning message is printed.

Class transmitter has two additional procedures that may be virtually redefined—xmtr_stat and
xmtr_graf. These procedures are analogous to chan_stat and chan_graf previously discussed in the sec-
tion “‘Channel’’.

Controller

A controller object manages a set of communication assets; receivers and transmitters, and grants
controller_subprograms access to these assets according to a user specified protocol. Process class con-
troller contains two interfaces. The first is an interface for controller_subprograms to use in accessing
transmitter and receiver objects. A controlier_subprogram uses this interface to create the interface
presented to the user as discussed in the sections: ‘‘Multicoupler,” **Receiver,’” and *‘Transmitter."
The other interface is designed to be used by an operating system that has the task of scheduling the
controller_subprograms assigned to the controller. The operating system is written as a subclass of con-
troller. The simplest example is that of an operating system which initiates the execution of one subpro-
gram and after that does nothing more as shown here:

12

P
.

.l.
.

»oe e, v - -
"”f:’/"g “n':i'_l'.‘.‘;.l

K .-' .
’_ 0

-
.
L]

- .
-~ '.“i!

s ¥ v
-

;

[’

KNS

- 50

N1
e

PR

CE e e v g

O e A \1 WLt .- NN ".;';_"-"-':-‘;'. .j.‘ ~-.."‘\'-4'. CORARGARI LIRS R S R A
.

NRL REPORT 8989

controller CLASS opsystem;
BEGIN
subprg(1):-NEW subprog(merge_text(‘‘subprog for cntril1] at node ",
int_text(station.id_num)),station,* subprog”,THIS controller);
ACTIVATE subprog;
run_sp(“‘subprog");
END of opsystem;

The code to create and activate the controller object just discussed is the following:

entrl (num) :- NEW opsystem (THIS node , num);
ACTIVATE cntrl (num);

The new object thus created is a subclass of controller. The actions of controller, which link the con-
troller with its transmitters and receivers and initialize the interface to be active for transmitter / and
receiver I, are executed first, and then they are followed by the actions of opsystem.

In a more complicated example, an operating system program that regularly swaps two
controller_subprograms (say, subprogl and subprog2) with period 2¢ can be written as follows:

controller CLASS opsystem(t); REAL t; !t is time to run before swapping;
BEGIN
subprg(1) :-NEW subprogl (merge_text{(‘‘subprogl for cntril at node",
int_text(station.id_num)),station,‘ subprogl”,THIS controller);
subprg(2):-NEW subprog2 (merge_text(‘‘subprog2 for cntril at node”,
int_text(station.id_num)),station,‘‘subprog2", THIS controller);
ACTIVATE subprog(1); ACTIVATE subprog(2);

loop:
run_sp(‘‘subprogl”);
HOLD(t);
run_sp{(*“‘subprog2”);
HOLD(t);
GOTO loop;

END of opsystem;

The first two actions of opsystem are to create subprogl and subprog2 and pass their pointers to
REF(controller_subprogram) ARRAY subprg(l:max_num_of_subprograms). Procedure run_sp uses
these pointers to halt the currently running subprogram and start running the subprogram named as
run_sp's argument. Hold is a class simulation procedure that schedules opsystem for reactivation at a
simulation time equal to current simulation time plus time ¢, which is hold’s argument. Thus, execu-
tion of loop causes subprogl to be activated and then, after time ¢, subprogl to be halted and subprog2
to be activated. After another time ¢ the cycle repeats jtself ad infinitum until the simulation is ter-
minated.

Besides run_sp the operating system interface also provides a procedure called halt_sp. Run_sp
actually calls halt_sp to hait the currently operating subprogram before activating the next one. How-
ever, halt_sp may be called independently, in which case no subprogram will be running in the con-
troller.

Controller Subprogam

Layer! can model the case of several networks sharing the same set of transmitters and receivers.
For example, as in the case of HF Long Haul and HF Intrabattle Group Networks sharing the same HF

13

. v » N
\" X A s, o) i ’I“t’ ‘ivia n.

5‘ §I$

* <,

Y N
j"“v' rols / g

i

&
*
-

[',.n,
. oS

- -
4, ': ?\.' A

G
Ay by

V'.:.:;

¢ &
A

o
g

2%,
'“15'

) ‘i’ g “E?’:.
1.P. HAUSER AND DJ. BAKER

o

communications suite, the controller acts as the arbiter that says which network has access to the com- t;\
munication assets at the current time. Each network has a controller_subprogram associated with it that e
implements the link layer protocol for the corresponding network. Protocols for higher layers may also :\
be built on top of the link layer protocol if desired. ALY,

. A
In sections ‘‘Multicoupler’ and ‘‘Receiver’” we have discussed many of the procedures that form o4 '.'
! the controller_subprogram interface. However, the preceding discussions are not complete without : :
) mentioning three procedures that must be virtually redefined in a subclass of controller_subprogram — .
{ msg_sent, msg_ret and msg_rcvd. These three procedures are called by layer/ and their actions are ,.cf
specified by the user in a subclass of controller_subprogram. A description follows: N
. ol
® msg_sent(iso_msg,tid); &~ \

f When a transmitter completes its transmission of an iso_msg (as the contents of a chan_msg), :*:_
the transmitter calls this procedure with a pointer to the iso_msg just sent and the Q{"

. N »

transmitter’s integer index as its arguments. This informs the user’s protocol (as implemented &
in the controller_subprogram subclass), that the iso_msg it previously started has been sent —

and now it is time to initiate another action—perhaps to get another iso_msg out of a queue A
and start transmitting it or perhaps to turn off the transmitter. R

® msg_ret(iso_msg,tid); ::3':'

Y
h&

»

In the event a transmitter is turned off while an iso_msg is being transmitted, the transmitter
will call this procedure. Perhaps the user would like to place the aborted iso_msg in a v
retransmission queue. If so, the msg_ret procedure can be programmed for that action. X
Perhaps the user would like to discard the iso_msg without taking any further action. In that \;’
case, msg_ret may be defined without any actions.

]
® msg_rcvd(iso_msg,rid);
L
This procedure is called by a receiver when a chan_msg is received. The iso_msg is unpacked q:-ﬂ
from the chan_msg to become the actual parameter for the call to msg_rcvd. Chan_msgs are g
, demarcated by start_of_msg and end_of msg events. Msg_rcvd is not called until the -

' end_of_ msg event is received. A call to this procedure informs the user’s
controller_subprogram subclass that the receiver with index number rid has received an

1SO_msg. :...
- ¥
. . o~y
) The three procedures described above complete the set of procedures provided by "
g controller_subprogram as an interface to the layer! transmitter and receiver objects. %%
Controller_subprogram defines another procedure that may be called by the user, but it is not a
part of the interface to transmitter and receiver objects. The procedure is named designate_clock and is -
called as follows: IO
\.
h‘..
Y
NG
subprg (num) .designate_clock (process name) ; B
The process object pointed to by process name serves as a clock mechanism. It is not necessary to asso- ay
I ciate a clock with a controller_subprogram, but it can be useful. Since it is a process class, the clock ’s >
may use procedure hold to schedule synchronous events for its controller_subprogram. Of course, :':w‘
controller_subprogram is also a subclass of process, but, since it is an event-process, a call to hold will ﬁ'{
yield unpredictable results [S). Therefore, to schedule synchronous events for a controller_subprogram, "
one should create a separate process object to serve as a clock. However, if the controller is running -
more than one controller_subprogram, the clock should be running only while its associated -,
controller_subprogram is executing. Stopping and starting a clock mechanism is handled behind the ,\:'
<3
\, B
D) N ’
14 Yy
A
n:\
A P R ATt T R T N AT At E T T T T L W LT N v W LN TR e e L T Te e L Te T N e Ty NGO e T e e L T e e T e e e e e e
ﬁf._l._d"...'_‘-'..;.\:. J'» .',_;,;.‘(... NOOR OO LA .:\J' A z - SPRPCROACA SORY '.-_.)-‘.. T FAK R } AN .:
050 TN (At Sl e L, “y v XN

- il e et

-

Rl <

o?a’a

NRL REPORT 8989

scene by procedures in controller_subprogram as long as the procedures have access to a pointer that
designates the clock —hence, procedure designate_clock.

This concludes our discussion of layer] objects. In a following section we study an example of a
carrier-sense multiple-access protocol written in the layer! context, which illustrates most of the
material presented in this section. However, before launching into the example, we wish 1o explain
how layer] uses events to model the transmissions of a communication system. This we endeavor to
do in the next section.

LAYERI1 EVENTS

Layerl uses events to model the transmission process in a communication system. By under-
standing how the occurrence of one event leads to the occurrence of other events and how it produces
state changes in the communication system model, one is able to see how layer! works. To aid in gain-
ing this understanding, we now introduce the concept of an event graph [7]. We take some liberty with
event graphs as they are formaliy presented in Ref. 7, and therefore give the following explanation of
the conventions we use in this report.

Figure 4 shows our event graph conventions. Events are depicted as circles connected by directed
edges. Each circle is tagged with the event name and, in some cases, the lower haif of the circle is used
to indicate a new system state. All events create new system states, however, we do not always
rigorously spell out these new states in the event diagrams. Where a new state is indicated, it is
entered after the occurrence of the event, not before.

condition

event name event name

new state
condition state
condition
event name 1 event name

Fig. 4 — Event graph conventions

Directed edges indicate causality between events. Edges may be tagged with conditions and/or
delay times. If the edge is tagged with a condition it is marked with a **™" to indicate its conditional
nature. Conditions always represent some combination of state variables (i.e., system state) which
must be satisfied for an event to occur. Moreover, the condition must be satisfied at the time of
occurrence of the causing event, not after it has occurred. Thus, the new state indicated in the lower
half of the causing event’s circle has not yet been entered at the time the condition must be tested. If a
delay time is given, the event thus scheduled will occur at a time equal to the time of occurrence of the
causing event plus the delay time.

p"\l'.‘\

R AR L L VI T VI Y L T TRY WU N WO R T T PUIY o, o 43, 3,58 0 wywy WAY Y Uy ‘$
..
P

:5"“?
J.P. HAUSER AND D.J. BAKER
%8
Two more conventions complete our set of event graph tools. If a state or a condition has a line Q‘f‘,l‘
above it, the opposite is indicated and may be read as ‘‘not.”’ Also, a dashed edge indicates the cancel- :1-.': Y
ing of an event as opposed to the scheduling of an event. ::-;

With these event graph tools we are now ready to diagram the workings of layer! objects, that are
presented in Figs. 5 and 6. The process of transmitting a message is shown in Fig. 5, and the process
of receiving a message is shown in Fig. 6.

"2 M

1/2 interface transmitter channel
4 \ {
start msg_arrived
(msg) = _while_idle
end_
msg_sent of_
X - msg
sending / xoft
msg_ret Gt » channel f";,
- sending code hSe
B
) :-
off m 25
e
N ot i
i /
(o %
L~ o
e,
m .:".
off e
turn_on 2 old channel T N
L/
_e / 2%
“s L%
/ ! \}b
sending [get_channel k‘ A
et_channel idle e
- new channel [xoft g
old code
PASA
...‘..
set_code xon :::,
> Ko ¢
set_code newcode 1T e
new code wea
¥
q AN AN J
Fig. 5 — Event graph of /ayer! transmitter and channel :‘:'J'
- ‘-.
w3
.l ‘\
BESL
Ow
NG
’,
s
e
.y-: \
r A
16 20 A
3
“» s e v PSS A TR NG NI TIRINS Tl I BTN Joll o TS A IR et ! N e A A O A o
B Ty T e L e S Tl e i o
'7 X, X “9 > \ -' f. ‘ § - i (") - . -* "

[N ¥ (Y n D ERAY 3 =v.v.- \\ i

S +) 4

T s e

)

- A

NRL REPORT 8989

multicoupler receiver 1/2 intertace
(in_sync collision w (W
code = rcode
conn(r,t) = 1 xon chan = rchan
increment 2 sync_source
collision = xmtr :
ounter "
in_sync
conn(r,1) = 1 chan = rchan
—————P{ decrement [—2—]
coilision set code
counter / _
conn(r,t) = 1 chan = rchan
> S
< T
evmsg==
current_msg
conn(r,t) = 1 chan = rchan current_msg
> ~ = none
< [« <
___ \. W,

Fig. 6 — Event graph of layer/ multicoupler and receiver

In Figs. 5 and 6 we use one other convention not directly associated with event graphs, that is the
use of boxes to denote objects. The box at the far left of Fig. 5 represents a controller_subprogram
object. The events or procedure calls* listed there are scheduled by a user defined protocol that must
implement some kind of channel access scheme. This box is the interface to layerl. We have not
shown the interface in its entirety here in order to avoid unnecessary clutter in the event diagram. The
parts of the interface essential for understanding layer! message transmission are included.

The real work of transmitting an iso_msg is done by the box in the middle, the transmitter object.
If we ignore channels and codes for a moment, we see that a transmitter object has three fundemental
states — sending, idle, or off. All edge conditions are related to one of these states. For example, to
start a message the transmitter must be in the idle state. The idle state means that the transmitter has
been turned on but is not sending any information. One could view it as a transmitter sending an
unmodulated carrier. If the transmitter has not been turned on or if it is in the process of sending a
message, then calling start with a new iso_msg to send will have no effect, except that layer! will return
a warning message to the user appraising him of the situation. But, if the transmitter is idle, starting a
message immediately queues a msg_arrived_while_idle event which, in turn, schedules unconditionally
a start_of_msg event in the channel and an end_of_msg event delayed by the message transmission
time in the transmitter. The transmitter state is then set to sending. Upon completion of the transmis-
sion the transmitter end_of_msg event occurs and in turn schedules an end_of _msg event for the chan-
nel and calls the virtual msg_sent procedure back in the controller_subprogram interface where the
user’'s protocol must decide what to do when a message has been sent. The actions to be taken upon
completion of a message transmission become the actions programmed in the virtual definition of the
msg_sent procedure.

* The uniqueness of an event is that it may be scheduled for activation in a time-ordered event-queue. When an event gets to
the top of the event-queue, and thus becomes current, the actions it causes become the active part of the simulation. This s
precisely what happens when a procedure call is made — ic., the actions of the procedure become the active part of the
simulation. Therefore, in a special case when an event is scheduled for immediate activation, it behaves not differently than a
procedure call. In fact, a procedure call can accomplish the same result as scheduling an event for immediate activation in the
event-queue. The controller_subprogram interface happens to be implemented with procedure calls, but it is not improper 1o
graph these procedure calls as events for the reason just given.

17

‘s I4
4

- v v .
Walals
e

h'. ‘—lr
[

s I
et T,

DGO

. ¢ 4

i]
»

LN

A

- -
»

EDOAR00

o /‘—i‘ -a'

Nt
& 0.

ALY A

“S N

i
e

»

e .;’ o

P 2

g

PR A A

B

J.P. HAUSER AND D.J BAKER

Calls to turn_off and turn_on in the controller_subprogram interface conditionally schedule events
by the same name in the transmitter. The rationale for imposing these conditions should be fairly obvi-
ous. If the transmitter is already off, a call to turn_off should have no effect. Thus, the transmitter
has to be in a “‘not" off state (i.e., either idle or sending) to schedule a turn_off event. Conversely, the
transmitter must be off for a turn_on event to be scheduled. Both turn_off and turn_on events uncon-
ditionally schedule corresponding events in the channel. However, if a transmitter is turned off while it
is sending a message, a little extra work must be done to tidy things up. The end_of msg event which
had been scheduled for the end of the transmission must be canceled and a virtual procedure msg_ret is
called to force the user’s protocol to do something about the aborted transmission. Of course, if the
user merely wants to allow the aborted message to fall on the floor, his virtual redefinition of msg _ret
need take no action.

The set_channel and set_code events may only be scheduled if the transmitter is not sending, i.e.,
is off or idle. When code or channel changes are made while the transmitter is in an idle state, addi-
tional xoff and xon events must be scheduled in the channel so that receiving nodes can sort out what
is going on. Xon and xoff events are always tagged with the channel and code of the transmitter
scheduling them.

The channel object has the task of forwarding all start_of_msg, end_of_msg, xon, and xoff events
to the multicouplers at those nodes with which the transmitter using the channel has connectivity. If
the channel happens to be designated as dynamic the task is slightly more complicated because the
channel must generate some xon’s and xoff’s of its own to model the effects of changing connectivities.
However, this is done behind the scene so that the user need not be concerned with it. The user needs
only be concerned with keeping the connectivity matrix up to date.

In Fig. 6 we diagram the effects of the start_of_msg, end_of_msg, xon, and xoff events as they
are received. Reception is contingent upon having connectivity with the sending transmitter by means
of a channel, as the conditions used to tag the far left edges in Fig. 6 indicate. The multicoupler inter-
cepts xon and xoff events to increment and decrement collision counters within the multicoupler.
Events are then forwarded to any receiver at the node tuned to the channel that is sending the events.
If the receiver is not already in sync and is not in a collision state, the xon event will schedule a
sync_detected event delayed by the time required to obtain synchronization. The length of time
required is computed by a call to the procedure time_to_sync, which may be virtually redefined in a
subclass of receiver (section, “‘Receiver’”). Xon and xoff events can conditionally cancel the
sync_detected event at a receiver. If the xon event causes a collision state to occur at the receiver, then
the receiver is not able to attain synchronization. Thus the sync_detected event is canceled. Also, if
the transmitter that caused the sync_detected event to be scheduled sends an xoff, the sync detected
event must be canceled. Changing the channel and code settings of a receiver also cancels a
sync_detected event that has been scheduled. Start_of_msg and end_of_msg events can be scheduled at
the receiver only if the receiver is set to the proper code as well as the proper channel and is in sync, as
is indicated by the edge conditions. The start_of_msg event sets a reference variable called current_msg
to point to the incoming chan_msg. The end_of_msg event calls a virtual procedure msg_rcvd in the
controller_subprogram interface as long as the chan_msg causing the end_of_msg event is the same one
that caused the start_of_msg event. The user’s protocol then must decide what to do with a message
that has been received by redefining the virtual procedure.

AN EXAMPLE

To illustrate the use of the layer! context we show how to code a simple carrier-sense multiple-
access (CSMA) protocol. An event diagram of the protocol is shown in Fig. 7. To develop a layer2
protocol we do not need to know anything about layer! other than how to use its interface. In the adja-
cent box we show the orocedures we shall use from the interface to implement the protocol. Over on
the right-hand side of the diagram we have another interface~the 2-3 interface. The 2-3 interface con-
tains the procedures we want our network layer to use. We model the network layer and above very

18

LAl A A At Andl Sl SialiC il 4

3

| P, B

% e v e

[N o

v

'V

r _".iv.'v"l) ‘

e e e -
1] 1
. s 48 1y *,

L?-'c'-'v' -t ."

vy
MY

»

e e e v w2 e

-~

-
.

"

L I L

-

ey

ala e s

v e

LI PP v
TN AN A NN

‘e X !

NRL REPORT 8989

(LAYER 2 w (LAYER 3-7
(_ 172 \ (7 layer 2 protocol 2/3) layer 3-7
intertace interface protocols
bus accessing
start ’y access
(msg) T channel send generate
% meg
‘ ,/E"
erminate
msg_ret access
“ ”
et ms
9from® |e get
RQ
put msg \ handle
msg_rcvd i%o receive msg
NS . —————J g EJ > J

Fig. 7 — Event graph of a CSMA protocol

simply by creating a traffic generator to generate the message traffic at each node and by creating a
message handler that merely gets incoming messages and prints them. To design the protocol, there-
fore one should simply fill in the box between the two interfaces with a meaningful event diagram, as
we have done.

Now we are ready to examine the CSMA protocoi. If we wish to send a message via the 2-3
interface, we call the 2-3 interface send procedure. A call to this procedure puts the message in a
queue — xq — and schedules an access_channel event if the protocol is not already in an accessing
state. When an access_channel event occurs, the protocol checks to see if the channel is idle (not
busy). If it is, the protocol turns on the transmitter and starts a message — the first message in xq.
which is an FIFO queue. If, however, the channel is busy, the access_channel event reschedules itself
to occur at some random delay time later. In either case, the protocol enters an accessing state, which
means that it is attempting — either successfully or unsuccessfully — to access the channel.

The rest of our CSMA protocol is implemented by redefining the virtual procedures msg_sent,
msg_ret, and msg_rcvd. When the transmission of a message is completed, we must decide what to do
next by appropriately redefining the msg_sent procedure. At this point we turn off the transmitter and,
if xq has more messages, we schedule an access_channel event. If xq is now empty however, we
schedule a terminate_access event which changes the protocol’s state to not accessing. In other words,
once the protocol gains access to the channel, it keeps on sending messages until xq is empty. This
protocol will tend to maintain a high throughput with some sacrifice of message delay time. The proto-
col could likely be enhanced, but we only intend for it to illustrate simulation design techniques not
optimum protocol design.

19

v Tl.' "‘."'YI

l.,' l.l

.
% *r ‘0 '
N

LAy
",

-~

SRy

00 I

s,
R

»
S

« T,

L-A-’--.n:- st 4

w5

LY

g

PRLLL

SO0 A Ay LB A A St Ay - Bat By Pl i M O & PR L N « P

J.P. HAUSER AND D.J. BAKER

The definitions of the remaining virtual procedures in the 1-2 interface are quite simple. Msg ret
merely prints out an error message. If our code properly implements the event diagram we should
never see this message. If we do see it, it will aid in debugging the code. Msg_rcvd puts the incoming
message into an FIFO queue — rq — and queues an event for the next higher protocol that causes it to
respond to the incoming message. The code that implements this event diagram is presented in the
appendix.

CONCLUSIONS

The work presented in this report has several significant aspects. The first is the development of
the layer! code and the context that supports it. Layerl has the capability of modeling the physical
layers of many different types of communication systems. Moreover, this capability is accessible
through an easy to use interface. Secondly, and perhaps of greater significance, is that the techniques
used to construct the layer! code can be readily extended to simulate the protocols of each of the
higher layers of the ISO/OSI reference model. Each new class thus written can become the supporting
context for the next higher ISO layer protocol. This creates an exact parallel between the code that
implements the simulation and the system being modeled. Finally, by using event graphs we have

introduced a very useful technique for describing the simulation model apart from writing the code. A ',-i-_-‘
careful inspection of the code presented in the appendix shows that the event graph of our CSMA pro- ':'::?.
tocol maps rather directly into SIMULA code. We believe the methodology presented in this report to .::-.:
be both unique and powerful. T
Ty
REFERENCES -
2
1. ‘‘Reference Model for Onen Systems Interconnection,’ ISO/TC97/SC16 :.::
(Doc. N227), June 1979. i
2. G.M. Britwistle, 0.J. Dahl, B. Myhrhaug, and K. Nygaard, SIMULA Begin, Studentlitteratur, &
(Lund, 1977).
3. B. Randell and L.J. Russell, ALGOL 60 Implementation (Academic Press, 1964). :-.:f:'
4. C.E. Landwehr, ‘“‘An Abstract Type for Statistics Collection in SIMULA,” ACM Trans. Program- :\;:
ming Languages and Systems 2, 544-563 (1980). ad
s 5. D.J. Baker and J.P. Hauser, ‘*An Event-Process Facility Built on SIMULA: A Tool for Simplify- ::‘t
ing the Simulation of Distributed Control Systems,”” SCSC’ 85, Chicago, July 22-24, 1985. Paper :
presented at conference and published in the proceedings. :-‘_‘,
(RS
WY
6. K. Babcicky, Activate SIMULA, NCC Publication S.88 (1977). =
RS
7. L. Schruben, *‘Simulation Modeling with Event Graphs,”” Commun. ACM 26, 957-963 (1983). ~'_::-:
P,
X
N
B
o‘.
-."-
:‘:%
\-...‘
NN
AN
20 "

q’ffd’.‘-.(f e e e I T AL . R R

APPENDIX

The code for our example is written as two separate blocks. The first is layerl class layer2. Thus,
layer? is developed in a layerl context. Most of the code defines new subclasses of layer! object tem-
plates. Also, we redefine virtual procedure prop_delay.

real procedure prop_delay

To model the effects of propagation delay we must redefine this procedure. The code used in
our example reads in a single propagation delay value to be used for all node pairs.

iso_msg class csma_msg

Here we define a subclass of iso_msg. We merely wish to add a few attributes to iso_msg —
contents, ser_no and origtime. The contents of a csma_msg is a net_msg. Net_msgs originate
in the layer above layer2 and become the contents of layer2 messages, i.e., csma_msgs. In the
same way csma_msgs become the contents of chan_msgs, which are the messages of layerl.
Csma_msgs also have their own serial numbers and origination times.

event_msg class net_msg

Net_msg must be defined in flayer2 so that contents, which is a formal parameter of class
csma_msg, may be properly typed as a net_msg reference variable. Net_msg is prefixed with
event_msg enabling us to use net_msgs as arguments for events. We have not used that capa-
bility in this example. However, prefixing message classes with event_msg can make the code
easier to extend.

layerl_node class link_node

Link_node has the task of creating the objects that will serve as a layerl _node’s communica-
tion facilities. Here we create a transmitter and a receiver. We delay the creation of the con-
troller and controller_subprogram until the highest level protocol has been defined.

controller_subprogram class csma_prog

This subclass provides the essence of our CSMA protocol. Most of the event graph shown in
Fig. 7 is implemented here. The protocol is written in the context of the lower level interface
which services it — in this case, controller_subprogram that is the interface to layerl.

csma_prog class link_net_interface
This subclass provides the 2-3 interface shown in Fig. 7. The interface itself is written in the

context of the lower layer protocol for which it serves as an interface. Thus, it is prefixed
with csma_prog.

Layer2 becomes the new context for the higher 1SO layers of our example. The code for layer2 follows:

EXTERNAL CLASS laye.1;
Inyerl CLASS layer:
BEGIN
INTEGER ser _so _cewnter;
REAL p _delay;

.
I 0.

'R

14

rrr.vov
o 08

P
)

LN LA

)

Y
YA

v

J.P. HAUSER AND D.}. BAKER

REAL PROCEDURE prop delay(nl,n2); REF(layerl _nodelal,nl
prop delay:=p delay:

PROCEDURE read delsy;

BEGIN
proempt ("Give o value for propagation delay : "),
p delay:=laresl;

END:

event msg CLASS met msg(lien); INTEGER ien;;

ise msg CLASS csmn msg(contents); REF(aet msglcontents:
BEGIN

INTEGER ser oo

tesl erigtime;

ser me:=gel ser oo;

erigtime :=time;
END of dasta msg;

INTEGER PROCEDURE get _ser no;
get ser De:= ser mo counter:= ser no_counter+l;

layerl mode CLASS link _node;
VIRTLAL: PROCEDURE cresate objects at _node;
BEGIN

PROCEDURE crente _objects at node:
BEGIN
tmtr(1):.- NEW traosmitter
(merge text("xmtr 1 at node " .iot text(id num)),

THIS link _node,1); smte(l} . ideatify cotrel (1) ACTIVATE xmtril);

reve(l):- NEW receiver(merge text{("rcvr | at node
THIS liok _node.1.0); rcvr{l).identify cotrl (1)
END of create ebjects st node:

create objects at oode;
END of link mede;

comtreller subprogram CLASS csma prog:
BEGIN
BOOLEAN accessing:
INTEGER rx seed
REF(msg _q)xq.1q:

PROCEDURE prelogue:

ACTIVATE

“,int _text{id _aum)),

reve(l);

BEGIN
pristi{merge text(" laput date for nede " iot _text(station.id num)));
prompt (“bit rate (bps) : "), set xmtr _inferate(luresl);
prompt{(“retramsmission seed: °); rs seed:=Ipiat;
xq:- NEW msg q(statlion, 1ransmit q° .NONE):
rq:- NEW msg qi(station, ~receive q° .NONE);
END ;

PROCEDURE hassdle 1q;
fF NOT accessing THEN access chanmel

PROCEDLRE send;
BEGIN
REF(csms msgimsg:
IF sq.get(msg.trwe) THEN
BEGIN
turs os wmtr;
stary(meg);
END
ELSE print("ERROR - no msg in xq°);
END of semd;

PROCEDURE access chennel;
BEGIN
REF(myg q) g
REF(cems msg) meg.
sccessing . =TRUE ;
IF sum prim signala=0 THEN send
ELSE ACTIVATE NEW event (THIS csme prog.
“cema preg.sccess channel” NONE) delay
sniferm(® . 0,1.0 rx seed) .
END of access chomnel;

PROCEDULRE terminste nccess. sccessing =FALSEH.

22

*

el
IODEE:
€

h
L

W

-

4 &
red

A
’

S A AAAL
R ’;-%

NRL REPORT 8989

PROCEDURE msg _se¢at (msg . xmtr _id); REF(csma msgimsg: INTEGER xamtr _Id;
BEGIN

tura offl xmtr;

INSPECT station QUA 1ink _node DO

IF xq.first==NONE THEN termiaoate access

ELSE access chanoel ;
END of msg _sent :

PROCEDURE msg ret(msg,xmtr _id): REF(csma msgimsg; INTEGER xmtr _id;
BEGIN

Outtext(“csms msg ") Outint{(msg.ser no.4);

Outtext{" aborted in csma prog: “):

Outtext(title); Outimage:
END:

PROCEDURE msg rcvd(msg,rid); REF(csma msgimsg; INTEGER rid;
BEGIN

rq.put{msgl:

ACTIVATE NEW eveat ({THIS c¢sma _prog, net _prog.handle_rq° ,NONE);
END:

wE
1 57 i

P
Rt

IF evtype=-prologue” THEN prologue
ELSE IF evdestination="csma _prog" THEN
BEGIN task:
{F evtype=-sccess chsanel" THEN access _chaonel
ELSE IF evtype="handle xq- THEN handie_xgq
ELSE print("Unrecognized evemt received by csma prog’);
END;
END of c¢sms prog;

3
)

..... ,
R
PRCAT A R A
et .

csma _prog CLASS link _net _interface;
BEGIN

PROCEDURE send msgimsg); REF(net msg) msg;
BEGIN

xq.put (NEW csma msg{(msg.len,msg));

ACTIVATE NEW event (THIS link _net _interface, csma _prog.bandle_xq°,NONE);
END:

REF(net _msg) PROCEDURE get msg(q): REF(msg _qlgq:
BEGIN

REF{(csmas msglmsg;

1F q.get(msg , TRUE) THEN get msg:-msg.contents

ELSE print(merge _text ("ERROR - msg NOT aveilable in " ,q-title)d;
END of get msg;

END of link _net _interface:

read delay:
END of layer2;

The second block is not a context. Rather, it is our main block that defines our higher layer
objects (that could not be defined in the physical or link layers) and provides the actions to execute the
simulation.

® net_msg class data_msg

‘v
:
M 4
.

"'f
»

We extend the definition of net_msg by defining a subclass that adds the attributes ser_no and
origtime. This gives our network layer message the same attributes useful for tracing and
statistics collection included in the messages of lower layers.

Ol

v

controller class cl_opsys

This subclass of controller creates the controller_subprogram with all its subclasses, net_prog
being the innermost subclass to be defined. The concatenated object, beginning with
controller_subprogram and ending with net_prog, contains all the protocols and interfaces that
we have defined. The subclass of controller — cl_opsys — acts as an operating system by
scheduling the controller_subprogram for execution. Scheduling in this example is trivial
since all that is required is a call 1o run_sp to get things started.

s 23]

s

s

'y W3y

ot

s als TN

"l'

Dl

v,

[2 v et R S

J.P. HAUSER AND D.J. BAKER

link_node class net_node

Here we give a node a few more objects that could not be defined in the lower layers — a

controller (c1_opsys) and a traffic generator.

link_net_interface class net_prog

We use this subclass of link_net_interface to build our layer 3-7 receiving protocol, which

merely prints out incoming messages.

process class traffic_generator

The traffic_generator models the sending portion of the layer 3-7 protocol. It also uses the

2-3 interface, in this case to send messages.

BEGIN
EXTERNAL CLASS layer2;
iayer2(10.1,1,1)
BEGIN
REAL simperlod;
INTEGER counter;

net msg CLASS dats msg:
BEGIN

RKREAL origtime;

INTEGER ser _ao;

origtime :=Time:

ser _Bo:=cownter:=counter+l:
END;

controller CLASS ¢l _opsys:

BEGIN
subprg(1):-NEW net _preg
(merge _text{("met prog FOR cotrl 1 st nede
station, " wet prog” ., THIS contreoller);
ACTIVATE subprg(il):
run_spl{"net _prog”);

END of ¢l _epsys:

Jink pnede CLASS aet _nede;
BEGIN
REF(traflic _gemerntor)igen;

catrl(1):- NEW ¢} epsys(THIS liok mede.1);

ACTIVATE gees;
END of net npede;

link _net _linterface CLASS net preg:
BEGIN

PROCEDURE prolsgue;;

PROCEDURE handle rqg:
BEGIN
REF(data msgimsg;:
msg:-get maglrq}l;

Outtext("Precess msg : “); Outint(msg.ser
Outtexst(” at *); Outtext(titie); Ouwtimasge;

END;

IF evtitype="prologue THEN proloegue
ELSE IF evédestimation="net _prog” THEN
BEGIN

task;

IF evtype="bamdle rq- THEN bhaadle 14

ELSE priot(merge text("Usrecogniced event

END:
END;

The main block ends with several actions that prompt for event tracing, create the node objects, start
the simulation, prompt for the simulation period, and reschedule the main block at the end of the
simualtion period. The code follows:

.imat _text(station.id _num)),

ACTIVATE coivl (3);
gen: - NEW traffic gemerator(cmtel (1) .subprgi(l));

ne 4);

im met preg:

C.evtype))

NRL REPORT 8989

Proecess CLASS trafflc _generstor(imterface);
REF(link _met _{imterfacelinterface:
BEGIN
REF(datea _wmsg) msg;
INTEGER tg_seced;
REAL message _rate;
REAL message _length;
prempt(“message gemerster seed .
prompt(“message _rate (#/min.) : *);
prompt (“message _lemgth (bits) *)
PASSIVATE;
WHILE TRUE DO
BEGIN
HOLD (Negexp(message _rate, tg_seed));
meg:- NEW datas msg(message_leagth);
interface.send _meg(msg);
END;
END of traffic_gemerater;

): tg_seed:=Iniat;
; message rate:= lareal/60.0;
; message _length:=Inreal;

PROCEDURE start _simulation; !User shoald cal) this st apprepriate time;
BEGIN

INTEGER 1i;

FOR {:=1 step 1 UNTIL numofmedes DO ACTIVATE nedes (i) QUA met _uode.gesn;
END of start_simuiation;

PROCEDURE create _objects;
BEGIN INTEGER |

creste_phys_chass (1,FALSE);

chams(l).comn.fill _commectivity matrisx;

FOR |:=1 step | UNTIL sumefasdes DO modes(l):- NEW met _mede(i,.l1,1,1);
END of create_objects;

proempt ("Number of noedes : °); sumoefnedes:=inlnt;
mpt ("“Event tracing? (y/m): ")

IF get_lime="y* THEN

BEGIN
event _trace:=TRUE;
prompt ("Enter 8 trace spec: ")
trace_spec:-get_line;

END;

cereate_sdjects;

start_simulstion;

prompt ("Enter the simulastion period (seec): "); simperiod:=lareal;

HOLD(s imperiod);

END:
END;

Sl l
(RS |
VRN

g

e
p

g.'rj "

iy

T T R . L L L T R TR T TUE S I
c’ I’-"'-‘.'tz‘i:‘:‘ \"\ ’L-' '.’\"‘-"\ 2 -(‘-'.\' e f.' ~
L L by A f S VWU AR, X YA A

:."a:)
X/
y

