
AD-A172 581 LAYERI A SINUILA CONTEXT FOR SIMULATING THE OPERATION OF 141
COMMUNICRTION SYSTENS(U) NAVAL RESEARCH LAB WASHINGTON
PC J P HAUSER ET AL. U5 SEP 66 NRL-999

UNCLASSIFIED F/G 1?/2.1 ML

Esonhhhi

LM

11111 1I.6

1H'.25 111111'.4 1

Naval Research Laboratory
Washington, DC 20375-5000 NRL Report 8089 September 5. 1986

Layeri: A SIMULA Context for Simulating the Operation
of Communication Systems

J. P. HAUSER AND D. J. BAKER

Information Technology Division

* 00
Ln

N DTIC
ELECTEK
OCT 07 M68lf

Approved for public release; distribution unlimited

.

SECURITY CLASSIFICATION OF THIS PAGE ,# A /U J f% /

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION Ib RESTRICTIVE MARKINGS

UNCLASSIFIED _

2& SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution unlimited.

4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

NRL Report 8989

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION
(if applicable)

Naval Research Laboratory Code 7521 ____

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS(City, State, and ZIP Code)

Washington, DC 20375-5000-r

8a. NAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Space and Naval Warfare (If applicable)

Systems Command . %,

Sc. ADDRESS(City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT I TASK WORK UNIT

Washington, DC 20363-5100 ELEMENT NO. NO. NO XF21.242 ACCESSON NO.
62721N XF21.222C (STP 3203) DN080-087

11 TITLE (Include Security Classification)

Layerl: A SIMULA Context for Simulating the Operation of Communication Systems

12. PERSONAL AUTHOR(S)

Hauser, J.P. and Baker, D.J.

13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS PAGE COUNT
Interim FROM Jan. 1985 TO Jan. 1986 1986 September 5 29

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18/ SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Communication systems, Object-oriented. (, .

Simulation, Carrier-sense multiple-access -
SIMULA

19 ABSTRACT (Continue on reverse if necezary and identify by block number) -."

" Layer) is a SIMULA class that provides a set of object templates useful in developing
simulations of communication system operation. Layerl is oriented toward the modeling of
high frequency (HF), frequency-hopped, radio communication systems; but it is sufficiently
versatile to support the simulation of both radio and hardwired communication systems that use
other portions of the frequency spectrum. In this document we describe the layerl methodology
and give an example of its application to simulating an HF radio communication system that
uses a carrier-sense multiple-access (CSMA) protocol. The purpose is to introduce the reader
to the object-oriented approach used to develop the layerl code and to give him or her enough ,
information to construct a simulation in a layerl context.

20 OISTRIBUTION/AVAILABILITY OF ABSTRACT I21 ABSTRACT SECURITY CLASSIFICATION
0 UNCLASSIFIEDIUNLIMITED M SAME AS RPT 0 DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL
James P. Hauser (202) 767-2771 1 Code 7521

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other edition are obsolete

OUL Gew-nt .Eiq O UU-SI?44

4..i

• ° °,* °o O.* =,- .. -. ° -.- . - - • • % . - o. % . .% ° % " °% .J

CONTENTS

INTRODUCTION... I

SUPPORTING CONTEXT ..

LAYER I OBJECTS.. 3

Layerl Node .. 5
Channel ..
Chan-Msg ...
IsoMsg .. 8
Multicoupler ... 8
Receiver.. 8
Transmitter ... 11
Controller... 12
Controller-Subprogram.. 13

LAYERI EVENTS.. 15

AN EXAMPLE ... 18

CONCLUSIONS.. 20

REFERENCES ... 20

APPENDIX... 21

Accesion For

NTIS CRA&l
DTIC TAB3E
Uiiannouoced 0
Justificatioi

...By
Dui"t ibiution;

Availability Codes

iDis

% AA,~ .. .

Layerl: A SIMULA Context for Simulating the Operation
of Communication Systems

INTRODUCTION

Layerl is a SIMULA context in which communication protocols can be specified and simulated.
Its name is derived from the International Standards Organization (ISO) reference model for open sys-
tems interconnection (OS) [1]. Layerl of the ISO/OS architecture specifies the physical means by
which information is transported within a communication system. Layer] code implements the physical
layer of a communication system by providing a set of SIMULA classes (i.e., object templates) that
model communication hardware and its interaction with the communication medium. Thus one may .e
define and experiment with communication protocols by using a model of a communication system
rather than the actual hardware.

Layer) code provides a degree of realism adequate to model frequency-hopped, HF radio com-
munication systems. There are limitations, however. For example, no propagation models are provided
to compute communication ranges, although the user can directly incorporate the procedures that per-
form these computations into the simulation. Also, channels and hop codes can be differentiated, but
hopping patterns cannot be defined explicitly. A receiver can detect primary (same channel, same hop o
code) and secondary (same channel, different hop code) collisions as well as the number of competing
signals involved in a collision. However, it cannot determine the actual number of hits (same time,
same frequency hop) associated with a collision. Here again, the user can supply procedures to specify
hopping patterns and to compute the number of hits if additional detail is required in the model. Thus, %
the aforementioned limitations can be removed by extending the layerl code. The implementation of
extensions such as these is straightforward.

In the next section, we briefly describe the supporting context on which layerl is built. Then, in
the following sections we describe the kinds of objects provided by layer), explain how they work, and
show how to use them to design a simulation. In the conclusions we give an assessment of our
approach to communication protocol simulation, and in the appendix we list the SIMULA code for a
sample problem.

SUPPORTING CONTEXT

SIMULA [21 provides the foundation for the supporting context in which layerl is developed.
SIMULA is an extension of ALGOL (3]. It adds to ALGOL a special SIMULA construct called a class.
SIMULA classes can be used in two distinct ways. One way is to use a class as'a context. A context is
a precompiled block of SIMULA code containing procedures and object templates that serve as a set of
tools and, thus, extend the capability of SIMULA to handle problems in a specific area of interest.
Another way to use a class is as an object template. An object template is used as a pattern to create
one or more objects of the same type. This is accomplished by using the SIMULA new construct, and
an object thus created is called a class instance. Object creation (i.e., class instantiation) is illustrated by ..

the following SIMULA statement:

xmtr:- NEW transmitter;

*Manuscript approved April 8. 1986

,%I

J.P. HAUSER AND D. BAKER

The attribute xmtr is a special type of SIMULA variable called a reference variable. Reference variables
serve as pointers to class instances and must be typed properly somewhere in the SIMULA context. In
this case we need a type designation as follows:

REF (transmitter) xmtr;

which designates xmtr as a pointer to transmitter objects. The symbol ":-" is read as denotes and serves
as a replacement operator for reference variables. NEW causes the instantiation to occur. Each class
instance in a SIMULA system is an object with its own set of attributes and actions. Therefore, to
implement layerl we define a set of SIMULA classes that provide templates for the various communi-
cation hardware components. The SIMULA code that a user of the layer) context writes instantiates
the classes as needed to implement his particular communication system model. This is analogous to
building a communication system by assembling and interfacing hardware components. We clarify this
technique in the sections that follow.

Finally, we rely heavily on the single-inheritance capability of SIMULA classes, in building con-
texts and in developing object templates. Class inheritance is effected by prefixing one class with __

another. For example, in Fig. I we depict the layerl context. The foundation of the context is .
SIMULA itself. Two standard SIMULA classes, simset and simulation, are added to SIMULA and
together they provide the context available to every SIMULA user. Next, we provide a user-written
class called node-stats. Class node stats has the following form:

simulation CLASS node stats(maxnum of nodes);
INTEGER maxnumofnodes; !Maximum number of nodes;
BEGIN

(code which implements class nodestats) ...
END;

In the first line of node stats code we see that the class declaration for node stats is prefixed by simula-
tion. This has the effect of passing on to class node stats the entire context of class simulation, which in
turn has the entire context of class simset, which in turn has the entire context of SIMULA. By the
time we define msgqueue class layer), layer) has inherited the entire context that has come before and
in turn may pass it on along with its own classes (i.e., object templates) and procedures to any class that

uses layer] as a prefix.

LAYERI

MSGQUEUE %
CONN MATRIX :

NODE EVSIM
NODESTATS
SIMULATION

SIMSET

SIMULA

Fig. I - Supporting context
for layerI)

Classes that define object templates use inheritaice in much the same way as classes that define
contexts. For example, let us assume that we would like to extend our model of a transmitter to incor-
porate features specific to ultrahigh frequency (UHF) transmitters, which are not modeled in the very
generalized class transmitter. We could do this by defining a new class, transmitter class ulf transmitter,
which is then called a subclass of class transmitter. When class uhf transmitter is instantiated, it will be a
concatenated object containing the attributes and actions of both class transmitter and class

2

IL'

NRL REPORT 8989

uhf transmitter. Other varieties of transmitter object templates may also be defined using class
transmitter as a prefix. Note: the pointer - REF(transmitter)xmtr - can point to any concatenated
object that uses transmitter to begin its prefix chain. Class inheritance provides a powerful and flexible
capability for designing object templates as well as contexts.

Figure 1 gives a pictorial representation of the layerl supporting context, and a verbal description
follows:

" Simset, a standard SIMULA class (context), implements queues as two-way linked lists by
defining two new classes (templates), link and head. Any object prefixed by link can be
inserted into, shuffled around in or removed from any queue that is an instance of class head.

* Simulation, another standard SIMULA class, supports discrete event simulation. Simulation
defines three new classes-link class event notice, link class process, and process class
mainjprogram. Also, an instance of class head is created which serves as an event-notice
queue. Simulation provides a set of procedures for scheduling event-notices. When an
event-notice becomes current, the process referenced becomes active. The main program is
also a process with its own event-notice, therefore it becomes another member of the set of
quasi-parallel processes that constitutes a SIMULA system.

0 Nodestats is a class that provides abstract data types for statistics collection 14] and introduces
the concept of a node. The introduction of class node at this relatively low level in the con-
text facilitates the inclusion of node reference variables and class prefixing in tailoring the
statistics collection and other higher level contexts to a node oriented model.

0 Node evsim provides an event-process facility [5] that permits a process (i.e., an event-
process) to have multiple event notices pending in the event queue. This is an important
extension to the SIMULA process as defined in class simulation, which permits each process
to have only one event notice in the event queue at any one time. Also, nodeevsim provides
event tracing. Event-processes play a significant role in the design of layer] code.

0 Connmatrix supplies a template and procedures for manipulating connectivity matrices. More
about this topic is said later.

0 Msg queue extends the basic queue handling facilities of class simset to provide procedures put
and get [6] along with an interface to a message processor.

* Layerl uses many of the features just described and adds to them its own set of classes and
procedures oriented toward the modeling of communication systems.

The entire context described above with all its features and capabilities is available to the layerl user.

LAYERI OBJECTS *'

In layer] we take advantage of the object-oriented approach afforded by the SIMULA class con-
struct. This approach allows us to map directly from real objects, such as transmitters and receivers, to
SIMULA classes that represent these objects. By maintaining a one-to-one mapping of real objects to IX
SIMULA objects, we obtain a model that is conceptually identical to the real system we are modeling.
Thus, it is easy to understand and use the model. The kinds of object templates (i.e., SIMULA classes)
provided by layerl are the following:

* layerl_node

A physical platform that can house one or more communication systems.

3

J.P. HAUSER AND D.J. BAKER

* channel

A portion of the radio frequency spectrum used to send and receive radio transmissions.
Layerl channels provide communication paths for chan msgs to follow.

* chan msg
The layer 1 transmission unit.

* iso msg

Contents of a chan Msg.

0 multicoupler

The focal point at a layerl_node which receives all transmissions, i.e., chan msgs.

* receiver

Receives chan msgs and extracts their information, i.e., iso-msgs.

* transmitter

Packs link layer information, isomsgs, into chan msgs and sends them via a channel.

0 controller

Manages a suite of transmitters and receivers by running controller subprogrims.

* controllersubprogram

Provides an interface to the transmitter and receiver hardware, which becomes a context for
writing link layer protocols.

Figure 2 presents a communication system model constructed with layerl objects. These classes are now
discussed in detail. ,

.9
node

SI°,

() c

Fig. 2 - The layeri model of a communication system "

Itt

°,-"' .o-4

" 0

rcr

-* * *\% *.~.-*e*p~*j r'I *,U U

NRL REPORT 8989

Layerl Node

A layerl node models a platfr-m that can house one or more communication systems. A
layerl_node object is created in the user's program by the following statement:

nodes (index):-N EW layer) node subclass(id num, num xmtrs, num-rcvrs,
num_cntrls,layerl_node subclass parameter list);

In this and the statements that follow we use two conventions. The items in boldfaced should be typed
exactly as shown and the italicized items represent quantities, identifiers or code supplied by the user.
Class nodestats defines REF(node) ARRAY nodes(l:maxnum of nodes) which is an array of
pointers to node objects and is inherited by layer]. Since layerl_node is a subclass of node, nodes
pointers may be used to point to layerl_node objects. The user can create nodes(l), nodes(2), etc., up
to max num of nodes. That is, index assumes values 1, 2, etc., not to exceed maxnum of nodes.
The user specifies maxnum of nodes when compiling a layer] block and thus places an upper bound
on the number of nodes that can be simulated with a particular load module. Layer_ node-subclass is
the name of a subclass of layerl_node written by the user; it has the following form:

layerl node CLASS layer)_nodesubclass (parameter list); '

parameter definitions ...-

BEGIN """

attributes

actions

END;
The additional parameter list and definitions as well as the inclusion of additional attributes are.

optional. We say additional because layerl_node_subclass inherits all the attributes and actions from its
prefix class, which in this example is class layer)_node.

We now define the four parameters specified in the class layerl_node parameter list. If the user '.

specifies a parameter list for layer)_node_.subclass, those parameters would be appended to this list.
Id num is an integer identification number for the layeil _node being created. It may have the same
value as the one used for index, but it is not necessary for it to be the same. Numxmtrs, num rcvrs and
numcntrls are integers that specify the number of transmitters, receivers, and controllers to be created
at this node. In each layeri _node_subclass object, the user must create the transmitter, receiver, and
controller objects residing at that layerl_noue and must tell layer) how to interconnect them. These -"
actions are appended to the actions of class layerl node, which create a multicoupler object. The details
of these actions are explained as we discuss other classes.

We close our discussion of layerl _nodes with one last point; layerl_nodes need not be all alike.
Of course, differing layerl _nodes will require differing layerl node subclasses (e.g.,
layerlnodesubclass_ , layerl nodesubclass_2, etc.). The user creates as many of each kind of
layeri_node objects as required. Creation of different layerl_node objects and assignment of pointers
to array nodes is accomplished in just the same way as shown above.

Channel

Layerlnodes are connected to each other via communication channels. Layerl provides a class
channel. Channel objects can be created with the following procedure call:

createphyschans (num ofchansdynamic);

Num_of chans is an integer that specifies the number of channels to be created. When a channel is
created, a pointer is passed to REF(channel) ARRAY chans(l:maxnum of chans). The upper array

7..-'" " .

JiP. IiAUSER AND D J. BAKER

bound, maxnum of chans, is set by the user when compiling a layer) block and limits the number of
channels that may be created with that particular load module. Dynamic is a Boolean number that
determines whether or not the channels will be dynamic. A dynamic channel may alter its connectivity
matrix at any time during the course of a simulation. Otherwise the channel is static and altering its
connectivity matrix will produce erroneous results. The only advantage of using static channels is to
save computation time. Figure 3 depicts a connectivity matrix.

transmitting
1 2 3 4

1 i0 1 I 1

receiving 2 0 0 1

4 0 1 1 0"

Fig. 3 - Example of a connectivity matrix
for a four node network

The row position tells which node is receiving, and the column position tells which node is transmit-
ting. A "I" indicates connectivity, a "0" indicates lack of connectivity. For example, the 1 at position-i,3.
indicates that node-i can hear node-3. Note that the matrix diagonal contains O's. This means the
nodes for this example are not self jamming. Node pairs that have full two-way connectivity are (1,2), F
(1,3), and (2,4). One-way links exist from 3 to 4 and from 4 to 1. Each channel creates a connectivity
matrix of its own, but it does not initialize it. The user can call an initialization procedure with the
following statement:

chans (index) .conn.filllconnectivity matrix;

Execution of this statement will cause the channel specified by the integer index to be initialized by
prompting for input data via the user's terminal. It is possible to use an alternative technique for
matrix initialization. For example, one might wish to compute the connectivity matrix via a propaga-
tion model rather than enter the contents of the connectivity matrix manually. Since the procedure
fillconnectivitymatrix is a SIMULA virtual procedure, it can be virtually redefined in a subclass of
intmatrix class connectivity to supply the alternate technique. The SIMULA virtual declaration is illus-
trated by the following line of code:

VIRTUAL: PROCEDURE fill connectivity matrix;

This virtual declaration is the first declaration in the body of class connectivity, which is a subclass of

class intmatrix. Connectivity is therefore said to be inner to class intmatrix. Because
fillconnectivitymatrix has been virtually declared in class connectivity, it becomes an attribute of that
class and is accessible via dot notation just as any other attribute of class connectivity would be. How-
ever, because of the virtual declaration, the attributes and actions of procedure fill_connectivity_matrix
need not be specified in class connectivity. Rather, they may be specified in a subclass of connectivity.
SIMULA will use the innermost specification for a virtual procedure. This makes it possible to define a
default specification for fill connectivitymatrix in class connectivity, and then redefine it in a class inner
to connectivity. In fact, a virtually redefined procedure may itself be virtually redefined in a procedure
inner to it since SIMULA uses the innermost specification.

The procedure for computing propagation delays is also a SIMULA virtual procedure. The default
procedure defined as a layerl global procedure yields a value of 0.0 for the propagation delay. The
default definition follows:

6

N. -*V V. , ~ V . V

a z.. *. , b. . ~ .T. 4 ' e .; %-. *, . ,. ,

NRL REPORT 8989

REAL PROCEDURE propdelay (nl,n2); REF(node)nl,n2; propdelay:=O.O;

If one wishes to use nonzero propagation delays, this procedure may be redefined in a subclass of
layerl. The arguments passed to prop delay are pointers to the transmitting node and the receiving
node.

Class channeldeclares two virtual procedures. Their default definitions follow:

PROCEDURE chanstat(t); VALUE t; TEXT t;;

PROCEDURE changraf(t); VALUE t; TEXT t;;

If redefined, these procedures offer a convenient way to collect statistics (chanstat) or implement
graphics (changraf) without making modifications directly to the layerl code. Every time a channel
processes an event, these procedures are called. The code written in these procedures can respond to
every event to which a channel object responds in order to update statistics variables or execute graph-
ics commands. In layer], almost all state changes occur as a result of events being generated and sent
to event-process objects [5]. Reference 5 explains event-processes in detail and lists the event-process .-

code. (Other event-process classes in layerl besides channel are transmitter, receiver, multicoupler, and
controller_subprogram). Thus the code the user writes for these procedures is not handicapped by being
written externally to layer]. Separate procedures for statistics collection and graphics are called not out
of necessity but rather as a means of modularizing the code. Transmitter and receiver objects call
equivalent procedures for the same purpose.

ChanMsg

Class chan msg provides a template for the layer) communication unit. Chan msgs are never
used directly. Instead, layer] transmitter objects create chanmsgs and send them. When a chan_msg is
created, the following chan msg attributes are set:

* channel %

An integer that designates which channel the transmitter sending the chan msg is tuned to.

* fhcode
4

An integer that designates which frequency-hop code the transmitter sending the chan_msg is
set to.

" xmtr

A ref(transmitter) pointer to the transmitter sending the chanmsg.

* numofinfobits

An integer that specifies the length of the chan msg. The length of a chan msg is deter-
mined from the length of the isomsg contained in the chanmsg. This will be explained
shortly.

* data

A ref(iso msg) pointer that points to the iso_msg contained in this chan msg.

7 *

%u

J.P. HAUSER AND D.J. BAKER

* msgid I

Every chanmsg is assigned a unique integer message id to facilitate tracing.

" origtime

Every chanmsg is also marked with the simulation clock time (real) when created.

Iso-Msg

Since chan'_msgs exist only within layer), we need another type of message object to pass infor-
mation throuh the interface to layer). This is the purpose of class isomsg. The only attribute of class
isomsg is an :nteger called mlength; it specifies the length of the isomsg. Isomsg must be used as a
prefix for any class of message objects using the layer) interface. The SIMULA code presented in the
appendix illustrates this technique.

Multicoupler

The multicoupler receives all chan msgs sent to a node and routes them to each receiver that is
tuned to hear them. This is determined by comparing the channel to which each receiver at the

' layerlnode is set with the channel of the incoming chanmsg. The multicoupler also updates variable
arrays used for collision detection. The values in these arrays may be read by using the following pro-
cedures:

0 num-primcollisions (chan,code);

The attribute chan is the index number of the channel, and the code is the index of the
frequency-hopped code. Num_primcollisions returns the number (integer) of competing sig-
nals in the channel and on the same code.

0 numscndcollisions (chan);

The attribute chan is the channel index number. Numscndcollisions returns the number
(integer) of competing signals in the channel including those on different codes.

E- layeri_node creates its own multicoupler without assistance from the user.

Receiver

To create and properly initialize a receiver object requires the following code: 4

_, rcvr (num) :- NEW receiver(receiver object title, THIS layerlnode , num

Num is an integer in the range I < num < numrcvrs where numrcvrs is the number of receivers
specified in the argument list for the layerl node. Receiver objects should be created by the
layerl_node to which they belong. The statement given above should be one of the actions of a sub-
class of layerl_node as explained in section "Layerl _Node". The receiver object title is a string
(SIMULA text object) that will be used for identification if event tracing is requested. We recommend
a title similar to the following: %

merge-text ("receiver num at node" , int_text(idnum))

We use procedure mergetext to concatenate the text items into one object and procedure int_text to
convert from integer to text.

•-.-..

NRL REPORT 8989

Once a receiver is created, another action is also necessary that tells the receiver to which con-
troller it is connected. For that purpose, the receiver has a procedure that must be called as follows:

rcvr (num) .identifycntrl (cntri num) ;

A receiver may be connected to only one controller, although a controller may have more than one
receiver. Cntrlnum is an integer in the range 1 < cntrl_ num < numcntris (section "Layer _Node").

After having created a receiver and having assigned it to a controller, it is still necessary to
activate it. Activation of an event-process, such as a receiver object, performs the object initialization
tasks and prepares it to receive events. Transmitters, controllers, and controllersubprograms also -- ust
be explicitly activated, as it will be discussed later. The following statement will activate a receiver
object:

4"

ACTIVATE rcvr (num) ; . ..

The user interacts with receiver objects via an interface provided by a controller subprogram "
object (section "Controller"). This gives the user access to the following procedures for controlling
receiver objects:

* selectrcvr (id);

The argument id is an integer that specifies the receiver (as given by num above) one wishes
to access by means of the interface. All procedure calls following the call to selectrcvr deal
specifically with the receiver named by id until selectrcvr is called with a new id. If there is
only one receiver, the selectrcvr procedure need not be called.

* readrcvrnum;

This integer procedure returns the index (id) of the receiver that is currently selected (i.e., for
which the interface is currently active).

* setrcvrchannel (c);

The argument c is an integer that selects the new channel to which the receiver is tuned. The
value given to c corresponds to the channel index as described in section "Channel".

* rcvrchannelnum;

This integer procedure reads the channel to which the receiver is presently tuned and returns
the channel index value.

" setrcvrfhcode (0;

The argument f is an integer that selects the receiver's hop code. The value of f is compared
with the hop code value in chan_msg as set by the transmitter sending the chanmsg. If the
values are the same, then the receiver can receive the chanmsg. One does not have to use
hop codes. If this procedure and the corresponding procedure for the transmitter
(setxmtrfhcode) are not called, all hop code values default to 1. Thus, the comparison test
mentioned above will always be true, in effect it eliminates any dependency on hop codes.

9

., :. :..:...:..::...:..... ;::. .::.......::....:.... _...

J.P. HAUSER AND DT BAKER

* rcvrfhcode;

This integer procedure returns the current value of the receiver's hop code.

* rcvr insync;

This Boolean procedure returns a value of true if the receiver is in sync and false if it isn't.

" collisiondetected;

This Boolean procedure returns a value of true if a collision state has occured since the last
time the collision flag was cleared.

* clear collision flag;

A call to this procedure clears the collision flag.

" set_scndcollisionlim (1);

The argument I is an integer that gives the number of secondary collisions (same channel but
different codes) that a receiver can tolerate.

* rcvr collim;

This integer procedure returns the current collision limit setting.

* num_primsignals;

This procedure call returns the number of primary signals currently being received.

0 num scndsignals;

This procedure call returns the number of secondary signals currently being received.

The procedures listed above form a subset of commands that may be used to program a communication
controller. The commands just given control receivers. We introduce the commands for transmitters
in section "Transmitter" and discuss more general concepts and additional commands in section "Con-
troller."

Class receiver provides several virtual procedures that may be redefined. Rcvrstat and rcvrgraf
are the counterparts of chanstat and changraf that were discussed in detail in section "Channel." In
addition, class receiver provides two Boolean virtual procedures that may be redefined. Their default
definitions follow:

BOOLEAN PROCEDURE collision-test;
INSPECT station.mltcplr DO
collision test:-= (IF numprimcollisions(rchannel,rfheode)> 1 THEN TRUE
ELSE numscndcollisions(rchannel)>scndcollisionlim);

BOOLEAN PROCEDURE cannot sync;
cannot-sync:= FALSE;

The default procedure for collision test inspects the station's (i.e., layerl node's) multicoupler in order
to access the counters that contain current state information on the number of primary and the number

10

NRL REPORT 8989

of secondary collisions. If a primary collision state exits (num prim_collisions> 1) or if the number of
secondary collisions exceeds the secondary collision limit, synchronization with any transmitter can nei-
ther be achieved nor maintained. If this does not adequately model the performance of the receiver in
a collision state, procedure collisiontest may be redefined in a subclass of receiver. There may exist
other conditions in a real receiver besides the collision state that could preclude synchronization. For
example, it might be necessary to set the receiver for the proper transmission rate before it can achieve
synchronization. Layerl receiver objects can be tailored to respond to other sets of synchronization con- ,'
ditions by virtually redefining procedure cannotsync. The default procedure shown above always
returns a false value; therefore, it will never interfere with a receiver's ability to synchronize.

The last virtual procedure contained in class receiver is real procedure timetosync. The default
definition is as follows:

REAL PROCEDURE time tosync; timetosync:=0.O;

The value returned by a call to timetosync is used to schedule an event that synchronizes the
receiver. Section "Layerl Events" explains this more fully. To obtain a nonzero synchronization time,
procedure time to sync must be virtually redefined in a subclass of receiver.

Transmitter

Transmitter objects are created, initialized, and activated in the same fashion as receiver objects
were. The appropriate code is:

xmtr (num) NEW transmitter(transmitter object title, THIS node, num);

xntr (num) .identifycntri (ntrl num)

ACTIVATE xmtr (num);

Just as with receiver objects, the user accesses transmitter objects by means of a
controller_subprogram interface that provides the following procedures:

0 select xmtr (id);

The argument id is an integer that designates which transmitter the interface is currently
active for. If there is only one transmitter, this procedure need not be called.

0 readxmtr num;

This integer procedure returns the current value of id.

0 set xmtr channel (c);

The argument c is an integer that designates the channel being selected. C is used as an index
9 to REF(channel) ARRAY chans(l:max num ofchans) which is an array of pointers to chan-

nel objects.

% -

J.P. HAUSER AND D. BAKER

0 xmtrchannelnum;

This integer procedure returns the index of the channel currently used by the transmitter.

* set xmtr fhcode (W;

The argument f is an integer that designates the frequency hop code being selected.
I.

* xmtrfhcode;

This integer procedure returns the designator of the frequency hop code currently used.

" set_xmtr info rate r);

The argument r is an integer that designates the new transmission rate selected. Information
bits/s would be an appropriate choice of units in many cases; however, another choice of units
would be acceptable. The choice should be compatible with the unit of length chosen for
isomsgs.

* xmtrinfo_rate;

This integer procedure returns the current transmission rate.

" turn onxmtr;

This procedure turns the transmitter on. It does not initiate the transmission of information,
but it does send a carrier that initiates receiver synchronization and can be collision detected
by receivers that have connectivity with the transmitter.

turn off xmtr;

This procedure turns the transmitter off.

0 start (msg);

The argument msg is an isomsg that is packed in a chanmsg and begins transmission at the
moment this procedure is called. The transmitter must be in an idle state (i.e., turned on and
not sending another chan msg) for this procedure call to take effect. If a start is attempted
when the transmitter is not idle, a warning message is printed.

Class transmitter has two additional procedures that may be virtually redefined-xmtr stat and
xmtr graf. These procedures are analogous to chanstat and chan graf previously discussed in the sec-
tion "Channel".

Controller

A controller object manages a set of communication assets; receivers and transmitters, and grants
controller_subprograms access to these assets according to a user specified protocol. Process class con-
troller contains two interfaces. The first is an interface for controller subprograms to use in accessing
transmitter and receiver objects. A controllersubprogram uses this interface to create the interface
presented to the user as discussed in the sections: "Multicoupler," "Receiver," and "Transmitter."
The other interface is designed to be used by an operating system that has the task of scheduling the
controller_subprograms assigned to the controller. The operating system is written as a subclass of con-
troller. The simplest example is that of an operating system which initiates the execution of one subpro-

-' gram and after that does nothing more as shown here:

12 '

, *o .. .*%.o, .Z

NRL REPORT 8989

controller CLASS opsystem;
BEGIN

subprg(I):-NEW subprog(mergetext("subprog for cntrill at node",
int_text (station.idnum)) ,station,"subprog",TH IS controller);

ACTIVATE subprog;
runsp("subprog");

END of opsystem;

The code to create and activate the controller object just discussed is the following:

cntri (num) :- NEW opsystem (THIS node, num);

ACTIVATE cntrl (num);

The new object thus created is a subclass of controller. The actions of controller, which link the con-
troller with its transmitters and receivers and initialize the interface to be active for transmitter 1 and
receiver 1. are executed first, and then they are followed by the actions of opsystem.

In a more complicated example, an operating system program that regularly swaps two .
controller subprograms (say, subprogl and subprog2) with period 2t can be written as follows:

controller CLASS opsystem(t); REAL t; ! t is time to run before swapping;
BEGIN

subprg(l):-NEW subprogln(merge_text("subprogl for entril at node",
int_text (station.id_num)),station,"subprogl",TH IS controller);

subprg(2):-NEW subprog2(mergetext("subprog2 for cntrll at node",
int_text (station.id_num)),station,"subprog2",THIS controller);

ACTIVATE subprog(l); ACTIVATE subprog(2);

loop:
run sp("subprogl");
HOLD(t);
run sp("subprog2");
HOLD(t);
GOTO loop;

END of opsystem;

The first two actions of opsystem are to create subprogl and subprog2 and pass their pointers to
REF(controllersubprogram) ARRAY subprg(l:max num of subprograms). Procedure run sp uses
these pointers to halt the currently running subprogram and start running the subprogram named as
run sp's argument. Hold is a class simulation procedure that schedules opsystem for reactivation at a
simulation time equal to current simulation time plus time t, which is hold's argument. Thus, execu-
tion of loop causes subprogl to be activated and then, after time t, subprogl to be halted and subprog2
to be activated. After another time t the cycle repeats itself ad infinitum until the simulation is ter- 4
minated.

Besides runsp the operating system interface also provides a procedure called halt sp. Run sp A
actually calls haltsp to halt the currently operating subprogram before activating the next one. How-
ever, halt_sp may be called independently, in which case no subprogram will be running in the con-
troller.

Controller Subprogam

Layer] can model the case of several networks sharing the same set of transmitters and receivers.
For example, as in the case of HF Long Haul and HF Intrabattle Group Networks sharing the same HF

13

.. k

J.P. HAUSER AND DJ. BAKER

communications suite, the controller acts as the arbiter that says which network has access to the com-
munication assets at the current time. Each network has a controller subprogram associated with it that
implements the link layer protocol for the corresponding network. Protocols for higher layers may also
be built on top of the link layer protocol if desired.

In sections "Multicoupler" and "Receiver" we have discussed many of the procedures that form
the controller subprogram interface. However, the preceding discussions are not complete without
mentioning three procedures that must be virtually redefined in a subclass of controllersubprogram -

msg_sent, msgret and msgrcvd. These three procedures are called by layerl and their actions are
specified by the user in a subclass of controller-subprogram. A description follows:

" msg_sent(iso_msg,tid);

When a transmitter completes its transmission of an isomsg (as the contents of a chan msg),
the transmitter calls this procedure with a pointer to the isomsg just sent and the
transmitter's integer index as its arguments. This informs the user's protocol (as implemented
in the controller subprogram subclass), that the iso msg it previously started has been sent
and now it is time to initiate another action-perhaps to get another iso msg out of a queue
and start transmitting it or perhaps to turn off the transmitter.

* msgret(iso msgtid);

In the event a transmitter is turned off while an isomsg is being transmitted, the transmitter
will call this procedure. Perhaps the user would like to place the aborted isomsg in a
retransmission queue. If so, the msgret procedure can be programmed for that action.
Perhaps the user would like to discard the iso msg without taking any further action. In that
case, msgret may be defined without any actions.

* msg-rcvd(iso_msg,rid);

This procedure is called by a receiver when a chanmsg is received. The iso msg is unpacked
from the chan msg to become the actual parameter for the call to msgrcvd. Chanmsgs are
demarcated by start-of msg and endof msg events. Msgrcvd is not called until the
end of msg event is received. A call to this procedure informs the user's
controllersubprogram subclass that the receiver with index number rid has received an
isomsg.

The three procedures described above complete the set of procedures provided by
controller subprogram as an interface to the layer) transmitter and receiver objects.

Controller subprogram defines another procedure that may be called by the user, but it is not a
part of the interface to transmitter and receiver objects. The procedure is named designate-clock and is .

called as follows:

subprg (num) .designate-clock (process name);

The process object pointed to by process name serves as a clock mechanism. It is not necessary to asso-
ciate a clock with a controller subprogram, but it can be useful. Since it is a process class, the clock
may use procedure hold to schedule synchronous events for its controllersubprogram. Of course,
controller subprogram is also a subclass of process, but, since it is an event-process, a call to hold will
yield unpredictable results 15]. Therefore, to schedule synchronous events for a controllersubprogram,
one should create a separate process object to serve as a clock. However, if the controller is running
more than one controller subprogram, the clock should be running only while its associated
controller_subprogram is executing. Stopping and starting a clock mechanism is handled behind the

14

% % % % %,,

NRL REPORT 8989

scene by procedures in controller subprogram as long as the procedures have access to a pointer that
designates the clock-hence, procedure designate-clock.

This concludes our discussion of layer) objects. In a following section we study an example of a
carrier-sense multiple-access protocol written in the layerl context, which illustrates most of the
material presented in this section. However, before launching into the example, we wish to explain
how layerl uses events to model the transmissions of a communication system. This we endeavor to
do in the next section.

LAYERI EVENTS

Layer) uses events to model the transmission process in a communication system. By under-
standing how the occurrence of one event leads to the occurrence of other events and how it produces
state changes in the communication system model, one is able to see how layer) works. To aid in gain-
ing this understanding, we now introduce the concept of an event graph [7]. We take some liberty with
event graphs as they are formally presented in Ref. 7, and therefore give the following explanation of
the conventions we use in this report.

Figure 4 shows our event graph conventions. Events are depicted as circles connected by directed
edges. Each circle is tagged with the event name and, in some cases, the lower half of the circle is used
to indicate a new system state. All events create new system states; however, we do not always
rigorously spell out these new states in the event diagrams. Where a new state is indicated, it is
entered after the occurrence of the event, not before.

t S.

tdelay .

condition state

event name cnion event name

delay

Fig. 4 - Event graph conventions

&

Directed edges indicate causality between events. Edges may be tagged with conditions and/or ,

delay times. If the edge is tagged with a condition it is marked with a " to indicate its conditional ..
nature. Conditions always represent some combination of state variables (i.e., system state) which -

must be satisfied for an event to occur. Moreover, the condition must be satisfied at the time of
occurrence of the causing event, not after it has occurred. Thus, the new state indicated in the lower
half of the causing event's circle has not yet been entered at the time the condition must be tested. If a
delay time is given, the event thus scheduled will occur at a time equal to the time of occurrence of the %-
causing event plus the delay time.

15

%.%
% * ,U,%,* .. .,...- ., - %

.I.P. HAUSER AND D.J. BAKER

Two more conventions complete our set of event graph tools. If a state or a condition has a line
above it, the opposite is indicated and may be read as "not." Also, a dashed edge indicates the cancel-
ing of an event as opposed to the scheduling of an event.

With these event graph tools we are now ready to diagram the workings of layer) objects, that are
presented in Figs. 5 and 6. The process of transmitting a message is shown in Fig. 5, and the process
of receiving a message is shown in Fig. 6.

1/2 Interface transmitter channel

start Idle edstart-4
(msg) _whgleIdle a

msg seto mgo
txmit nd Kt

ff~ 1669

Idle..

sendig / ~ ofp

sending setnodefdefo

offnewacode
turn-new code

tuig-O S ofvn fgahofly tu r ansm e and channel

Idle xo,

Idle wchann

sendingI. se hne

et-c anne ne cha nelIdlexof

16

-% % %. %,'.. % %

NRL REPORT 8989

multicoupler receiver 1/2 interface

nCsync cllision
conn(r,t) 1 . o cod =ha =rcrcha yn

i c e e t cha rt = rchan t sync,, t,.m dx tr: t

2' xy,, _ -u. sync scc
collsio colso ser~t canel

in syn \in-sync'

conn~~r~t) = 1 chan =rchan rce atofm'

oe t

*Fig. 6 - Event graph or layeri multicoupler and receiver ",,

In Figs. 5 and 6 we use one other convention not directly associated with event graphs, that is the,-
*use of boxes to denote objects. The box at the far left of Fig. 5 represents a controller subprogram"

object. The events or procedure calls* listed there are scheduled by a user defined protocol that must-?
implement some kind of channel access scheme. This box is the interface to layer). We have not".-
shown the interface in its entirety here in order to avoid unnecessary clutter in the event diagram. The

.* parts of the interface essential for understanding layer) message transmission are included, ..

;,The real work of transmitting an iso_msg is done by the box in the middle, the transmitter object. .'-

if we ignore channels and codes for a moment, we see that a transmitter object has three fundemental

states - sending, idle, or off. All edge conditions are related to one of these states. For example, to -,

start a message the transmitter must be in the idle state. The idle state means that the transmitter has
been turned on but is not sending any information. One could view it as a transmitter sending an -

unmodulated carrier. If the transmitter has not been turned on or if it is in the process of sending a j.
*message, then calling start with a new iso msg to send will have no effect, except that layer) will return "'

a warning message to the user appraising him of the situation. But, if the transmitter is idle, starting a .
*message immediately queues a msg arrived while idle event which, in turn, schedules unconditionally -

a start of msg event in the channel and an end of msg event delayed by the message transmission

time in the transmitter. The transmitter state is then set to sending. Upon completion of the transmis- -
sion the transmitter endof msg event occurs and in turn schedules an endof msg event for the chan-

Fnel and calls the virtual msg sent procedure back in the controllersubprogram interface where the
user's protocol must decide what to do when a message has been sent. The actions to be taken upon ,,

completion of a message transmission become the actions programmed in the virtual definition of the

msg sent procedure.

s The uiqueness of an event is that it may be scheduled for activation in a time-ordered event-queue. When an event gets to
the top of the event-queue, and thus becomes current, the actions it causes become the active part or the simulation. This is

precisely what happens when a procedure call is made - i.e.. the actions of the procedure become the active part of the
simulation. Therefore, n a special case when an event is scheduled for immediate activation, it behaves not differently than a

procedure call. In fact, a procedure call can accomplish the same result as scheduling an event for immediate activation in the
event-queue. The controller subprogram interface happens to be implemented with procedure calls, but it is not improper to
graph these procedure calls as events for the reason just given.

-S ," " *'""-.-..* .. '.*%.*."...*..-'- ''.. '."-, *.-..... ;'",.".i . .. •.,' ..'

user' prtoo mutdcd htt'owe amsaehsbe et heatost etknuo

J.P. HAUSER AND DJ BAKER

Calls to turnoff and turnon in the controllersubprogram interface conditionally schedule events
by the same name in the transmitter. The rationale for imposing these conditions should be fairly obvi-
ous. If the transmitter is already off, a call to turn off should have no effect. Thus, the transmitter
has to be in a "not" off state (i.e., either idle or sending) to schedule a turnoff event. Conversely, the
transmitter must be off for a turnon event to be scheduled. Both turnoff and turnon events uncon-
ditionally schedule corresponding events in the channel. However, if a transmitter is turned off while it
is sending a message, a little extra work must be done to tidy things up. The endof msg event which
had been scheduled for the end of the transmission must be canceled and a virtual procedure msgret is
called to force the user's protocol to do something about the aborted transmission. Of course, if the
user merely wants to allow the aborted message to fall on the floor, his virtual redefinition of msgret
need take no action.

The set channel and set-code events may only be scheduled if the transmitter is not sending, i.e.,
is off or idle. When code or channel changes are made while the transmitter is in an idle state, addi-
tional xoff and xon events must be scheduled in the channel so that receiving nodes can sort out what
is going on. Xon and xoff events are always tagged with the channel and code of the transmitter
scheduling them.

The channel object has the task of forwarding all start_of _msg, endof msg, xon, and xoff events
to the multicouplers at those nodes with which the transmitter using the channel has connectivity. If
the channel happens to be designated as dynamic the task is slightly more complicated because the
channel must generate some x.nn's and xofrs of its own to model the effects of changing connectivities.
However, this is done behind the scene so that the user need not be concerned with it. The user needs

* only be concerned with keeping the connectivity matrix up to date.

In Fig. 6 we diagram the effects of the start ofmsg, endof msg, xon, and xoff events as they
are received. Reception is contingent upon having connectivity with the sending transmitter by means
of a channel, as the conditions used to tag the far left edges in Fig. 6 indicate. The multicoupler inter-
cepts xon and xoff events to increment and decrement collision counters within the multicoupler.
Events are then forwarded to any receiver at the node tuned to the channel that is sending the events.
If the receiver is not already in sync and is not in a collision state, the xon event will schedule a
sync_detected event delayed by the time required to obtain synchronization. The length of time %
required is computed by a call to the procedure timeto_sync, which may be virtually redefined in a
subclass of receiver (section, "Receiver"). Xon and xoff events can conditionally cancel the
syncdetected event at a receiver, If the xon event causes a collision state to occur at the receiver, then
the receiver is not able to attain synchronization. Thus the sync_detected event is canceled. Also, if
the transmitter that caused the syncdetected event to be scheduled sends an xoff, the sync detected
event must be canceled. Changing the channel and code settings of a receiver also cancels a
syncdetected event that has been scheduled. Start of _msg and endof msg events can be scheduled at
the receiver only if the receiver is set to the proper code as well as the proper channel and is in sync, as
is indicated by the edge conditions. The start of msg event sets a reference variable called currentmsg
to point to the incoming chanmsg. The endof msg event calls a virtual procedure msgrcvd in the
controller subprogram interface as long as the chan_msg causing the endof msg event is the same one
that caused the start of msg event. The user's protocol then must decide what to do with a message
that has been received by redefining the virtual procedure.

I

AN EXAMPLE

To illustrate the use of the layerl context we show how to code a simple carrier-sense multiple-
access (CSMA) protocol. An event diagram of the protocol is shown in Fig. 7. To develop a laver2
protocol we do not need to know anything about layerl other than how to use its interface. In the adja-
cent box we show the procedures we shall use from the interface to implement the protocol. Over on
the right-hand side of the diagram we have another interface-the 2-3 interface. The 2-3 interface con-
tains the procedures we want our network layer to use. We model the network layer and above very

,.

18

S .0 -b N.

%.

NRL REPORT 8989

LAYER 2 LAYER 3-7

1/2 lae 2 prtoo IN 213
in te rface la e r t c l2 3laye r 3-7

interface protocols-

channel generate..7...

~~access Z

msg ret error

busy '

Fig. 7 - Event graph or a CSMA protocol

simply by creating a traffic generator to generate the message traffic at each node and by creating a
message handler that merely gets incoming messages and prints them. To design the protocol, there-
fore one should simply fill in the box between the two interfaces with a meaningful event diagram, as
we have done.

Now we are ready to examine the CSMA protocol. If we wish to send a message via the 2-3
interface, we call the 2-3 interface send procedure. A call to this procedure puts the message in a
queue - xq - and schedules an access -channel event if the protocol is not already in an accessingA
state. When an access -channel event occurs, the protocol checks to see if the channel is idle (not
busy). If it is, the protocol turns on the transmitter and starts a message - the first message in xq,
which is an FIFO queue. If, however, the channel is busy, the access-channel event reschedules itself

o.

to occur at some random delay time later. In either case, the protocol enters an accessing state, which
means that it is attempting - either successfully or unsuccessfully - to access the channel.

The rest of our CSMA protocol is implemented by redefining the virtual procedures msg sent,
msg_ret, and msgrcvd. When the transmission of a message is completed, we must decide what to do
next by appropriately redefining the msgisent procedure. At this point we turn off the transmitter and,if xq has more messages, we schedule an access-channel event. If xq is now empty however, we

schedule a terminate access event which changes the protocol's state to not accessing. In other words,
once the protocol gains access to the channel, it keeps on sending messages until xq is empty. This
protocol will tend to maintain a high throughput with some sacrifice of message delay time. The proto-
col could likely be enhanced, but we only intend for it to illustrate simulation design techniques not
optimum protocol design.

19

msg.................. .. od

nextby pprpritel reefiingthe sg~entproedue. t tis ointwe urnoffthetrasmiterand

- . - - - -

J.P HAUSER AND DJ BAKER

The definitions of the remaining virtual procedures in the 1-2 interface are quite simple. Msgret
merely prints out an error message. If our code properly implements the event diagram we should
never see this message. If we do see it, it will aid in debugging the code. Msg rcvd puts the incoming
message into an FIFO queue - rq - and queues an event for the next higher protocol that causes it to
respond to the incoming message. The code that implements this event diagram is presented in the
appendix.

CONCLUSIONS

The work presented in this report has several significant aspects. The first is the development of
the layerl code and the context that supports it. Layerl has the capability of modeling the physical
layers of many different types of communication systems. Moreover, this capability is accessible
through an easy to use interface. Secondly, and perhaps of greater significance, is that the techniques
used to construct the layer] code can be readily extended to simulate the protocols of each of the
higher layers of the ISO/OS! reference model. Each new class thus written can become the supporting
context for the next higher ISO layer protocol. This creates an exact parallel between the code that
implements the simulation and the system being modeled. Finally, by using event graphs we have
introduced a very useful technique for describing the simulation model apart from writing the code. A .,*'

careful inspection of the code presented in the appendix shows that the event graph of our CSMA pro-
tocol maps rather directly into SIMULA code. We believe the methodology presented in this report to .-
be both unique and powerful.

REFERENCES

1. "Reference Model for Open Systems Interconnection," ISO/TC97/SC16 .
(Doc. N227), June 1979. .

2. G.M. Britwistle, 0.1. Dahl, B. Myhrhaug, and K. Nygaard, SIMULA Begin, Studentlitteratur,
(Lund, 1977).

3. B. Randell and L.J. Russell, ALGOL 60 Implementation (Academic Press, 1964).

4. C.E. Landwehr, "An Abstract Type for Statistics Collection in SIMULA," ACM Trans. Program-
ming Languages and Systems 2, 544-563 (1980).

5. D.J. Baker and J.P. Hauser, "An Event-Process Facility Built on SIMULA: A Tool for Simplify- ""

ing the Simulation of Distributed Control Systems," SCSC' 85, Chicago, July 22-24, 1985. Paper -,._

presented at conference and published in the proceedings.

6. K. Babcicky, Activate SIMULA, NCC Publication S.88 (1977).

7. L. Schruben, "Simulation Modeling with Event Graphs," Commun. ACM 26, 957-963 (1983).

'

%.%

.%.

20

,.-,,+ ,..-+ + .-. ---. ..

.

P.

e2

APPENDIX
:J,2

The code for our example is written as two separate blocks. The first is layer) class layer2. Thus, p
layer2 is developed in a layerl context. Most of the code defines new subclasses of layer] object tern-
plates. Also, we redefine virtual procedure prop delay.

" real procedure propdelay

To model the effects of propagation delay we must redefine this procedure. The code used in
our example reads in a single propagation delay value to be used for all node pairs.

* iso_msg class csma_msg

Here we define a subclass of iso msg. We merely wish to add a few attributes to isomsg -
contents, serno and origtime. The contents of a csmamsg is a net msg. Netmsgs originate
in the layer above layer2 and become the contents of layer2 messages, i.e., csma_msgs. In the
same way csma msgs become the contents of chan msgs, which are the messages of layerl.
Csmamsgs also have their own serial numbers and origination times.

" eventmsg class net_msg

Net msg must be defined in layer2 so that contents, which is a formal parameter of class
csma-msg, may be properly typed as a netmsg reference variable. Net msg is prefixed with
eventmsg enabling us to use netmsgs as arguments for events. We have not used that capa-
bility in this example. However, prefixing message classes with event msg can make the code
easier to extend.

* layerl node class link node

Linknode has the task of creating the objects that will serve as a layerl_node's communica-
tion facilities. Here we create a transmitter and a receiver. We delay the creation of the con-
troller and controller subprogram until the highest level protocol has been defined.

* controllersubprogram class csma_prog

This subclass provides the essence of our CSMA protocol. Most of the event graph shown in
Fig. 7 is implemented here. The protocol is written in the context of the lower level interface
which services it - in this case, controllersubprogram that is the interface to layer).

* csma-prog class linknetinterface

This subclass provides the 2-3 interface shown in Fig. 7. The interface itself is written in the
context of the lower layer protocol for which it serves as an interface. Thus, it is prefixed
with csmaprog. ,

Layer2 becomes the new context for the higher ISO layers of our example. The code for layer2 follows:

EXTERNAL CLASS laye.I;
Isyerl CLASS layerZ;

BEGIN
INTEGER ser -s ceeuntr;
REAL p delay;

21
%V.

I.P. HIAUSER AND D.J. BAKER

REAL PROCEDURE prop delayfol .2); REP) layeri notienl .82

PROCEDURE rted idelay;
BEG IN

prompl UGivt a value for propagat ion delay
p delay :lureal;

END;

tetuimag CLASS met msg)Ien); INTEGER lea;;

Ise ma CLASS cs.. msg(contenls) : REF~net msg)contenis;
BEG IN

INTEGER see so;

o r I a1I1 me I-lote

END of dais insg;

INTEGER PROCEDURE ge ser no:
ge cIst ma: Itt 00coonler:- st no coonltr+l;

loyerl mode CLASS link oodt:
VIRIAL: PROCEDURE creale objects at node:
BEG IN

PROCEDURE creole objecls-aI node:
BEGI N

%atrY(I II NE% transmlier
(mera at alrIS node ".iI lextl~id mum)).

THIS link nde.l); lXol(II.Idtnlly-curl(I); ACTIVATE xmir(I);
rcs (II: - NEWr receister(merge tel ('rcwr I at node ,inI _ elt (ii oem)),
THIS l ink node .1.0); rcvr() . ideal IfyCu, r (11: ACTIVATE rc,r (I I

END of creale objecls ml nodt:

creale objects ml mode:
END of liuk-made;

caul raller subprogram CLASS clean pros:
BEG IN
BOOLEAN access lmg:
INTEGER rx seed;
REP insg£-iq)zq.rq;

PROCEDURE prologue:;*

BEG IN
primi (rgef lell V Inpal dole lot node . ImI tell (stalIoo. Id nsm)));:
P r amIsnII -bIlI rol Ie I(bps i I); set scatrlmforaleilareal):
proail refrmsill It'sed: 'I; rxzseed:Imlal1 :0

xq:- NEW nots 4 a I I a . 'rasml q".NONE);

*q: NE. Uns% q(staliou.'tecelve q .NONE):
END: .

PROCEDURE head Ie a q
IFP NOT arccessainmg THEN acces5s chbannoel .-o.

PROCEDLRE semi;.P
BEGIN

REF~cims msuiig;
IP xoggel (msglrme) THEN
BEGI N

form on %inor:

ELSE pelml lERROR -no insa In sq,1
END of semi;

PROCEDURE access chonnel;
BEGI.1N

REP(Msg 4) 4;
REF (time sii) msgt.
orre ssins:-TB E;
IF maon prim signal -0 THEN lead
ELSE A(TIVATE NF% eeal)THI cean pros.
Ceman pros.Bt% aceschamD0C NONE) delamy

aalfoe)B.@. Mrfieed).

PROCIDURE teemnate uccess. mccestsngP51.St. 0 .

22

.

,e..e..............

.WwJ .. l .. W .. -. ,a-FJ2 W-W A

NRL REPORT 8989

PROCEDU RE Wallettmgsmrd REF(csma msglmsg; INTEGER %Mirld P

B EG.IN

INSPECT station QUA link node DO
IF iii.firsi-NONE THEN ternminate-access
ELSE access-channel;

FND of cost; sent;

'IPROCEDURE sg ret(nst.imtr id): REF(cswn-msg~nsg; INTEGER xsfhiId;

BEkG IN
Ou,1ext (c5ma msg i:Out jot(m~g.ser no.4);

Oultgiet(* aborted in csma Ping:*)
Outtextilitlet: Out irnage; i

END;

PROCEDURE rstircdimg~rid); REFtcsma~msgimsg; INTEGER rid;

BEG IN
r q .pot (ins g I
ACTIVATE NEA eventiTHIS csmanprog,*net~prog.bandterq ,NONE);

END;

IF e,type-'prologue' THEN prologue

ELSE IF evcd tination- csmaprog' THEN
BEG IN Ia sk:;

IF evtype-"access cbnnnelV THEN access channel

ELSE IF e,type-bandle xti THEN h a ndlIe _ zq
ELSE PTin1 VU1MreC9&Uized erNtl teenived by csma peog")

END;
END of csbnn pro:;

csmaprom CLASS I nk net interface;

PROCEDURE send-tosgmmuss); REFinel wig) msg;

BEGIN
zq put (NEA cstos nsg(insg. len.insg))
ACTIVATE NEWA eent(THIS link nt tnlerfact.'csaprog.handlexq'.NONE);

END;

REF~neI bosgi PROCEDUJRE get nasgiq); REF(msgq)q;

BEG IN
REF(csma-zns:)ms;
IF q.seltinsg.TRJE) THEN getcosl:-zst.coatents

ELSE prinOt (ae r ge _ cx ERROR - stg NOT avit IlablIe In " q .lIIt Ie));

END of st nass;

END of link-net-interface;

r ea dd4e l ay;

EN'D of Iayer2;

The second block is not a context. Rather, it is our main block that defines our higher layer
* objects (that could not be defined in the physical or link layers) and provides the actions to execute the
* simulation.

" net_msg class data msg

We extend the definition of net msg by defining a subclass that adds the attributes ser no and
origtime. This gives our network layer message the same attributes useful for tracing and
statistics collection included in the messages of lower layers.

" controller class clopsys

This subclass of controller creates the controller subprogram with all its subclasses, net_progr
being the innermost subclass to be defined. The concatenated object, beginning with
controller-subprogram and ending with net prog, contains all the protocols and interfaces that
we have defined. The subclass of controller - cl opsys - acts as an operating system by
scheduling the controller-subprogram for execution. Scheduling in this example is trivial
since all that is required is a call to run sp to get things started. S

23

,:0- ve le.. e

J.P. HAUSER AND D.J. BAKER

. link-node class net node
Pt0

Here we give a node a few more objects that could not be defined in the lower layers - a
controller (cl_opsys) and a traffic generator.

Slinknetinterface class net prog

We use this subclass of linknetinterface to build our layer 3-7 receiving protolol, which
merely prints out incoming messages.

* process class traffic-generator

The traffic generator models the sending portion of the layer 3-7 protocol. It also uses the
2-3 interface, in this case to send messages.

*' The main block ends with several actions that prompt for event tracing, create the node objects, start
the simulation, prompt for the simulation period, and reschedule the main block at the end of the
simualtion period. The code follows:

BEGIN
EXTERNAL CLASS layer2;

Iayer2(I0,1,1.I)
BEGIN

REAL simperiod:
INTEGER coumter:

net msg CLASS dtmsamng;
BEGIN

REAL origtime;

INTEGER ser no;

Oriltime:-Time;

ser oo:-coomter:-couoter+l;
END;

cootroller CLASS cl opsys;

BEGIN
sobprg(l):-NEW netpros
(merge text(unet pro8 FOR cntr l t aode I.im teatts %t*oA.tdnmi))

osation,'oet-prog*.THIS controller);
ACTIVATE subprg(I);
runsp("oet prog");

END of clopsys;

.ink node CLASS not-node;
' BEG IN

REFtglafflegeer ltorigem;
cargil():- NEW ci opusy (THIS lIohn aode.I); ACTIVATE cotelg l);

aen:- NEW traffic_gemerator(cutri(II).subprg(I));
ACTIVATE Ser;

END of net-mode;

IIak net Imterfl ce CLASS ee pro ;
BEGIN

NPROCEDURE prologue;:

PROCEDURE handI erq;

BEGIN
REFldatamsg)msg;
m E : -get _ms g)s g

Out test (Proress me : "); Outint(mS.ser 00.4);

Outtell(" a *)at Outtext(title); Ou image;

0 END;

IF evtype-'prologue" THEN prologue

ELSE IF evdestlol t iomuoet pro8
"

THEN
BEG IN

took:

IF estpe-hule rq THEN baudiegq
ELSE prlot(mengeg test'Uonreogtlred eet to otprog: eype))

END;
END;

. 24
0 %.%.

- * t, r .. .-. ... ".. ' • ", "% -. " . . .'. . .. '. , ." '-'-'.'-'. -.... '. -" . .- \ . .'.,,'- *-'. ,'."* ,-S
, !. t ', ' ','- '"'- "- "- *......'' ' .".*' **- **' ' *** " "- '-. ' . '¢,''V,''"''" ,, , k'

.EII§EVVF wz-,Tl IL 10117%7

NRL REPORT 8989

Process CLASS r a fItC £ .me rater(later laCe);

REF(Ilek-met-laterfaceltaterface;
BEGIN
REF(datoamsg) usg;
INTEGER tg seed;
REAL message rate;
REAL message leagtb; 1

prompt('Message generater seed *);tg-seed:-Iniat ;
p rem, (* me ssage -rate (# /ri.) I sI: ;nsts ge-rate - aorea I/560.4S;
pr SEpt(.me ssage est h (b its 0, r ae-I ath:-ae
PASS IVATE;
WHILE TRUE DO
BEG IN

HOLD(Negesp(aessase rate. a seed));
nag:- NEW data meg (mtessass.lenat h; I
Iaterface.seeaimsg(osgl;

END;
END of traffIc geaeraior;

PROCEDURE mst$ simulation; !Uses should call this ot appropriate time;
BEGIN

INTEGER I;
FOR I:1I step I UNTIL muomdes DO ACTIVATE sodes(tI QUA aetawoie.gea;

END of start smlmatt ea;

PROCEDURE create objects;

BEGIN INTEGER 1;F
createphyscas(I,FALSEI;
chas (I).coaa. flil ceaaect tety mettle;
FOR 1:-1 step I UNTIL amofaoies DOanodesM:-; NEWaead~...I

END of create objects;

prompt('Namber of nodes ; *I; a moies:-Ialat;

prompt (Eveat trading? (Y/0I :
IF getl Im*ey" THEN V
BEGIN P

ove at~trace; -TRUE;C.

prompt('Eater a trace Spec:*;
trace*spoc:.setIIse;r

END;
creole objects;
s ta rt - simulIa t iona
prompt(Ea2ter the simulation period (aee);:1 simperled:laresal; 0
HOLD(simperiod);

END.
END;

25.

% %C

.4

4.

i

I
I.

g

4 L V

I - ~ I
~ * *i.

