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I. INTRODUCTION

In the November, 1966, issue of Technometrics, a paper “A Review of Response Surface
Mcthodology: A Litcrature Survey” by Hill and Hunter appeared. That particular review empha-
sized practical applications in the chemical and processing ficlds and featured an excellent bibli-
ography. In the December, 1975, issuc of Biometrics, “A Review of Response Surface Mcthodology
from a Biometric Vicwpoint” by Mcad and Pike appeared. Emphasis was put on biological appli-

cations, and a much broader definition of RSM was made than that of the Hill and Hunter paper.

In the Hill and Hunter review, the authors state that RSM began with the work by Box and
Wilson (1951). In the Mcad and Pike paper, they move back the origin of RSM to include use of
“response curves® dating back into the 1930°s. Such items as probit analysis, the use of Mitcherlich
response equations, and the early work in factonal arrays by Yates (1935) are mentioned as prob-
s.xblc motivators of the work by Box and co-workers. In reality there are diverse notions as to what
is the proper list of topics to be included under the response surface umbrella. This is not surpris-
ing. The term response swrface analysis could be taken as any analysis dealing with a fitted function,
thus accommodating a large collection of techniques. Others view the term as implying a much
smaller collection of tools. This confusion is due in part to the very general, perhaps even unfor-
tunate, name response swface. The name implies something which is broad and all consuming.
Yet it is interesting that all 100 many subject matter scientists, many of which are experienced in
the use of statistical tools, are not aware of the term response surface analysis or of the problems

it addresses.

There is no question that the motivation for the work by Box et al. was the general and
perhaps ancient problem of planning and analyzing experiments in a search for desirable conditions
on a set of controllable, or design, variables, desirable often being defined more strictly as those
conditions which give rise to optimum response. We often refer to this problem in a more general
setting as one of exploring an experimental region, or exploring a response surface. This gives rise
to the inevitable applications in the chemical and process fields and the historical attraction to the
subject by Technometrics readers. We wish to make it clear to the present Technometrics audience

that it 1s not our intention to travel the broad base of experimental design or to review the many
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aspects of model building. For example, we wish to minimize any overlap with the recent

Technometrics reviews by Steinberg and Hunter (1984) in experimental dcsigrli' and locking (1983)

in regression analysis, though some overlap with both will be nccessary. QLP-H\“M is to provide |

a review of important devclopments in response surface methodology, with the definition being

confined to that of a collection of tools in design or data analysis that enhance the exploration of

a region of design variables in one or more responses. We-will emphasize developments in the
~ N

statistics literature that have appeared since 1966 but w;ﬁ make reference to some pre-1966 work

i

where historical perspective is necessary.
U 6w & 27

In terms of subject matter app‘i'c‘:at’ions.wc will not at all confine ourselves to applications in
the chemical and processing fields. ‘4\;‘; feel that one of the more important items to report is the
breadth of application of RSM that bas evolved in the last 20 years. Applications have expanded
to areas such as o tifns rescarch, nuclear encrgy, defense systems research, cancer chemotherapy,
and many others. %\ﬁ‘c-s;nll\mvxcw;he spectrum from theoretical developments to practical notions
of current software availability in both the design and analysis aspects of RSM. Design and analysis
will be treated separately though the user must treat the two together in his total analysis. The
onginal intent by Box and company was to highlight a strategy--both experimental and analytic.
Yet precious little resecarch employs a simultancous consideration of both. of these aspects. Finally,
. .—we attemptto-offer suggestions regarding the important areas for future research and future impact

N . . .o~
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The experimental strategy and analysis in RSM revolves around the assumption that a re- '
sponse n is a function of a set of design varables x,, x;, ..., x, and that the function can be ap-

proximated in some region of the x’s by a polynomial model. Prominent among the models

. considered are the first order model

n=PBo+ Pyxy + o+ Brxy (I.hH

- or the second order model
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Also in certain instances in the sequel we will deal specifically with nonlinear modcls. In what
follows, response surface design is treated, with some historical perspective given, followed by many
specialized arcas such as mixture designs, design robustness, alphabetic optimal design theory, de-
signs for nonlinear modcls, and many others. This is followed by a treatment of response surface
analysis featuring multiple responses, sampling properties of optima, and analysis for models other
than polynomials. The paper then features subject matter applications, with emphasis on industrial
usage. Finally, software availability is reviewed and potent al areas for future directions and re-

search are discussed.

II. RESPONSE SURFACE DESIGN

In this section we deal with several aspects of response surtace designs, beginning with the
“where we were’ status of response surface design in the mid 60’s. We consider three very general
areas:

1)  design classes

i) optimality criteria and choice of specific designs that achieve certain important prop-
erlies

iil) designs which accomplish special design goals or have special design features.

Item (i) may be viewed as design families, ¢.g., composite designs, classes of three-level designs, etc.
Item (ii) reviews critena from which choices of design parameters in (i) can be made; for example,
the choice of a composite design that is rotatable, or the choice of a three-level design that is D-
optimal. In item (i) we consider less general topics such as designs for nonlinear models, robust
designs, designs for mixture problems, designs for estimating slope, etc. One may historically view

the development of RSM designs as taking on these three general areas of concentration. The user

has relied heavily on the application of properties wnd criteria in (ii) and special features in (iii) to




design families in (i) that can be used in practice. In these arcas much progress has been made since

the mid 60's.

2.1 Status of Response Surface Design in Mid 1960's

Among the many important works that preceded the Hill and Hunter review, three are note-
worthy here. The first was the benchmark paper by Box and Wilson (1951) in which the notion
of composite designs was introduced. The introduction of the "axial portion” to augment a two-
level factorial array was done to allow for efficient estimation of quadratic terms in the second order
model of equation (1.2). This class of designs allows flexibility in the choice of the axial parameter
and number of center runs. This would later prove very beneficial as more sophisticated properties
and criteria evolved. More details regarding the composite designs are given in section 2.2. Sharing
the sphere of influence with Box-Wilson is the Box-Hunter paper (1957) in which the notion of
rotatability was introduced. The property of rotatability requires that the variance of a predicted
value remain constant at points that are equidistant from the design center. Rotatability was and
remains an important design property. The reader can gain insight into its importance by observing
that in much of the RSM design research that appeared in the late 60°s and 70’s, investigators began
with the presumption of rotatability. No one doubts the clegance of the work that led to the
rotatability property. Most prudent consultants in RSM do not recommend designs that have
considerable deviation from rotatability. The influence of the Box-Hunter work was enhanced
greatly by the fact that the conditions for rotatability are so easily attained in the case of first and

second order designs.

A third very influential picce of work of the 50°s and 60's appeam;l in Box and Draper (1959,
1963). It was an intzoduction of the notion of robustness of an RSM design 10 model misspecifi-
cation, though the word “robustness” was not used in this regard until later. A mean squared error
type of design criterion was introduced which accounts for bias introduced when the fitted RSM

model is a polynomial of lower degree than the "true’ model. Convincing arguments are made that

not only can bias not be ignored but that if there is even a modest amount of misspecification, the




approach of choosing the design that “protects” against bias docs not deviate substantially from that

. of minimization of mecan squarcd error.

The fundamental philosophy of the Box-Draper work centered around the consideration of

the average mean squarcd error
NK Aoy o 2
J = -'c-;- ;R Epp(x) - g(x)]°dx

where y(x) is the fitted polynomial of order d, and g(x) is a model of order &, > d, containing un-
known parameters and is regarded as the “true” mean response or at least it can be viewed as the
model that one chocses to protect against. Here, R is the region of intercst in the design vanables,
K is the reciprocal of the volume of R, N is the total number of observations, and 62 is the error
variance. The expression J divides into the sum of the vanance and squared bias averaged over the
region R. The notion of a minimum bias design was introduced. In the formulation presented here,
the minimum J design cannot be achicved and evidence was put forth that a strategy of design
choice that minimizes the bias portion of J is an effective approach across a broad range of model
misspecification. The importance of the Box-Draper work lies in the fact that much of the more
specialized RSM design work that followed into the late 60°s and 70’s was flavored by the now es-
tablished need to consider model underspecification in any serious attempt in developing optimal

designs.

While much of the foundation of very fundamental work was established by that cited in the
foregoing, the appetite of the practical user of RSM had been satisfied by the establishment of
families of useful experimental designs for first ordes and second order modeis. In the first order
case, the need for orthogonal designs was motivated in the Box-Wilson paper, Box (1951), and an
excellent text Design and Analysis of Industrial Experiments by Davies (1954). Specific design
classes, two-level factorial and fractional factorial designs had been discussed at length in Box and
Hunter (1961a, 1961b). Simplex designs and Plackett-Burman (1946) designs were available as
economucal first order orthogonal designs. For second order models, many subject matter scientists

and engineers have a working knowledge of the family of central composite designs and a class of

special three-level designs by Box and Behnken (1960). Another imbortant pre-1966 contribution




came from Hartley (1959), in which an effort was made to reduce the number of runs in the com-
posite design from those that had earlicr been suggested. It also allowed for more flexibility in

choosing two-level fractions for the cube portion of the composite design.

The majority of response surface real-life applications involve the use of a first or second order
model. Where a second order model is inappropriate, a nonlincar model is generally used. How-
ever, there are instances in which a third order model is successful, and thus there is a need for third
order designs. By the mid 1960’s, a majority of the work dealing in third order designs essentially
involved searching for designs that possess the property of rotatability. Included are papers by
Draper (1960, 1961, 1962), Gardiner et al. (1959), and Herzberg (1964).

In the following sections we provide reviews of what we feel are important RSM design top-
ics, with the chronology, for the most part, beginning in the mid 1960's. We begin with specific
families of second order designs, with some emphasis put on alternatives to the central composite
designs, though the latter remains the most flexible and thus most popular family of second order

designs used in practice.

2.2 The Central Composite Design and Alternate Design Plans

The central composite design {c.c.d.) is a special case of the class of composite designs in
which the construction consists of three portions:
i) The 2* vertices of a cube (or a fraction of these vertices)
) The 2k vertices of a cross-polytope or “star”, or axial portion with parameter a

ii1) A chosen number, 7, of center runs.

The points in (i) form a two-level factorial or fractional factorial array. The points in (ii) essentially
form an augmentation which represents a one-factor-at-a-time portion designed to provide esti-
mation of the B,, the pwre quadratic terms in equation (1.2). Center runs in portion (iii) obviously
provide an internal estimate of pure error vanance. The choice of the number of center runs is very

important to the practitioner. Figure 1 provides an illustration of the c.c.d. for k = 3 design van-

ables.
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Figure 1. A Central Composite Design for k = 3 Design Variables

The design levels are centered and scaled to design units with = ] being the levels in the factonal
portion and the parameter a being the axial distance as indicated in Figure 1. In large part, the
appeal of the c.c.d. is derived from its flexibility and due to the fact that it is a natural design plan
for sequential experimentation, since the factonal portion and center runs served as a preliminary
phase from which one may fit a first order mode!l and yet gain evidence regarding the importance
of pure quadratic contribution. If pure quadratic terms are found to be significant on the basis of
the preliminary analysis, the design may be augmented with axial runs for the completion of the
second order fit. For a fundamental look at the central composite design, the reader is referred to

Davies (1954), Myers (1976), Box et al. (1978), and Cochran and Cox (1957).

Much of the flexibility of the central composite design is derived from the user’s choice of a

and n,. There are many criteria used for the choice of these paramsters.

Choice of a

For a > k'3, the axial points are further from the design cec:er than the factorial points. A
value a = (F), where F is the number of factorial points, guaranisss rotatability. Rotatability in

the c.c.d. was prominent in the ecarly response surface design ressarch in the late 50’s and 60's.

However, other critenia such as robustness to model misspecificaiion, quality estimation of the
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slope, robustness to errors in design levels, robustness to outlicrs, gencralized variance of model
cocfTicients, and orthogonal blocking arc among the important considerations for choice of a con-
sidered by researchers. All of these are discussed in later sections where these topics or critenia are
introduced. In many cascs, of course, the property chosen by the experimenter cannot be satisficd
with the rotatable value @ = (£)"¢. It is generally considered that while exact rotatability is not

necessary in practice, a substantial deviation is not wise.

Choice of ny

The choice of the number of center runs is a vital ingredient in the successful use of the central
composite design for the construction of a sccond order response surface. Center runs have long
been considered important as a source of replication error in the analysis. From Box and Hunter
(1957), it becomes apparent that the early research into the proper choice of 7, presumed the design
in question is indeed rotatal;le. The recommendation was to choose n, for which uniform infor-
mation, or uniform precision is achieved; this property provides approximately a uniform value of
Var y(x) inside a sphere of a specific radius. The purpose of this, of course, is to produce a stability
in the prediction variance in the region of interest of the design variables or, rather, to control the
prediction vaniance in such a way that equal precision in prediction is achieved everywhere in some
portion of the design region. It is a natural extension to the rotatability property, the fermer re-
quiring Var J(X) to be constant on a sphere. However, there has long been confusion among users
about what constitutes this subregion. See Draper (1982). The original Box-Hunter definition of
uniform precision requires n, to be chosen such that Var )‘a(,:) is approximately constant inside a
sphere of radius 1.0, with the metric of design units requiring scaling so that the second moment
of the design variables is unity. In the metric of the standard %1 scaling for the factonial portion
of the c.c.d., this is equivalent to a radius p = \% . -As an example, if a uniform
precision rotatable design for k = 2 is constructed, the axial parameter a = \/_2- and ny = 5. (See
Myers (1976)). The implication is that the prediction variance is roughly constant inside a sphere
of radius p = \/% = 0.83 . This does not secem particularly pleasing in light of the fact that, in
this case, all design points are at a distance p = \/? from the design center, and no control is ex-

erted on Var p(x) at a distance which approaches the perimeter of the design region. Thus the




property of uniform precision does not guarantee stability in Var y(x) everywhere in the design

_ rcgion, and yet this fact is either overlooked by or unknown to subject matter users.

As we have described here, many of the recommendations regarding the number of center
runs for a ¢.c.d. have been confined to the rotatable c.c.d. Lucas (1977) offers alternative idcas on
number of center runs for both the famnily of composite designs and other designs. An excellent

general discussion of center runs in response surface designs appears in Draper (1982).

2.3 Orthogonal Blocking

The central composite design is the second order family that is rich in candidate designs that
block orthogonally. The latter descnibes a condition in which regression coefficients are orthogonal
to block effects and thus the analysis can be conducted with minimal effort free from blocks. Box
and Hunter (1957, 1961a, 1961b) developed the general conditions that give rise 1o orthogonal
blocking in the second order case. The Box-Behnken design also gives rise to orthogonal blocking

in some situations.

2.4 Other Second Order Designs

Though the central composite remains the second order design family that is most often used,
there are other design classes that are attractive in various circumstances. We earlier made reference
to the class of Box-Behnken designs. The Box-Behnken designs can be very useful in cases when
it is important that three levels be used. In what follows, we review other second order designs that
appeared in the literature after the 1960's.

Hoke Design

Hoke (1974) developed a class of economical second order designs based on irregular fractions

of the ¥ factorial plan. These fractions are based on sets of partially balanced arrays and are

compared to Box-Behnken and other competing designs.

paraea il gL




Hybrid Dcsign

Roquemorc (1976) developed a family of second order designs for k = 3, 4, 6, and 7 that are
cither saturated or near saturated and have some similarities to the central composite design. The
design for k variables is constructcd by augmenting a (k — 1) dimensional central composite design
with an additional column in the design matrix. The values for the additional column are chosen
to achieve design moment characteristics that allow a degree of orthogonality that is similar to that

of the c.c.d. It is of interest to show an example. For k = 3, we have the following design matrix

X X3 Xy

- -
-1 -1 0.6386
-1 ] 0.u386
1 -1 0.6386
| | 0.6386
D= 1.1736 0 -0.9273
-1.1736 0 -0.9273
0 -1.1736 -0.9273
0 1.1736 -=0.9273
0 0 1.2906
L 0 0 -=0.1360

Note the central composite type structure in x, and x, while constant levels in x, reside at the fac-
torial portion and the axial portion of x; and x,. In addition, two points enter along the axis of
x;. Center runs are also suggested. The constants in the design are determined so that all pure

second moments are equal and all odd moments are zero.

Other Second Order Economical Designs

The work by Hartley (1959) cited earlier and additional work by Westlake {1965) and Draper
(1985) produced a class of designs called small composite designs. These are central composite de-
signs but they are worthy of special note because, like the class of hybrid designs, they find con-
siderable use when experimentation is costly. The designs allow considerable reduction of cost
below what is required by the original and perhaps standard concept of the c.c.d., the latter re-
quiring the design to contain a full 2* or a fraction of resolution V or more, combined with the axial
portion. The purpose of this restriction, of course, is to allow orthogonality among the linear co-

efficients and two factor interactions in the second order model. The notion of “small” composite

results from the fact that additional information on linear coefficients is obtained from the axial




portion of the design though the intcraction coeflicicnts are estimated only from the factorial por-
tion. Onc may take advantage of this by using as thc factorial portion a fraction in which linear
coeflicicnts arc aliased with two factor interactions. An example of a small composite design for

three design varniables is given by

X
Ky
Ry
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The above defines a saturated second order design in which all coeflicients in the standard second

’ order model are estimable. Draper (1985) demonstrated that in some cases, Plackett-Burman de-

F signs can be used in the factorial portion.

The classes of small composite designs and hybrid designs are by no means the only choices

that are available when one secks a saturated or near saturated second order design. For example,

- e T -

Notz (1982) suggested a method of constructing designs that are very efficieat in terms of general-

ized vaniance, i.e., D-efliciency. (For more complete details on the use of D-efliciency and D-

optimality, see Section 2.5.) His designs are saturated and constructed from the 3* lattice. For

A e At

saturation, we have ¥ = -;—(Ic + 1)k + 2) = p, the number of parameters in a second order model,

gt

where D, is a (p = k) x k matrix chosen as a specific irregular fraction of a 2*, whereas D, is a

and the design matrix is given by

& aAa A

~ i AR .

k x k taken from (0,1)* with at least one coordinate being zero. For example, the k = 3 design

maltrix is given by
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The designs are shown to compare favorably (in the sense of D-efficiency) with other economical

second order dcsigns.

Box and Draper (1971, 1974) produce practical designs that are saturated, efficient from a
generalized variance standpoint, and contain four levels for each variable. An example for k = 3

is as follows:

X
Ry
R

11 |

i i t 9

e e P s P et s s e
[ |

L~
]

ﬁ
L

where A = 0.1925 and u = -0.2912. The A and p are chosen to minimize the generalized variance

of the regression coeflicients in the second order model.

During the 70’s and carly 80’s, much of the work that resulted in the development of new

second order designs revolved around the concept of D-optimality and D-efficiency. Some of this
work produced designs that are very practical and, from the foregoing, one can see that many useful
saturated or near saturated designs came from that search. The consideration of D-efficiency and

D-optimality also produced other interesting results that allowed for a better understanding of the

companison of competing designs. In a very interesting and timely paper by Lucas (1974), he em-

phasizes that in terms of generalized variance, if there is an experimental region fixed by practical

12




considcrations (say a cube or hypersphere), the optimum central composite design is one in which
the experimental poim;'. are moved to the edge of the experimental region. if the permissible ex-
perimental region is a hypercube, the factonial points should be at the vertices of the hypercube
{ £ 1) and the axial parameter @ = 1.0 . If the region is a hypersphere with radius \/ x , then the

optimuma = \/ k—

2.5 Application of Criteria Dealing with Optimal Design Theory

i The important development of optimal design thcory in the field of experimental design
'_: emerged following World War II. It was motivated by various authors including Elfving (1952,
.;: 1955, 1959), Chemoff (1953), Kiefer (1958, 1959, 1960, 1961, 1962a, 1962b) and Kiefer and
':i Wolfowitz (1959, 1960). Kiefer, in particular, was instrumental in providing the mathematical
5 groundwork for optimal design theory. Actually, the origin of this theory can be traced back to a
:'E: paper by Smith (1918). Some early work in this area was done by Wald (1943) and Mood (1946).

Optimal design theory has clearly become an important component in the general develop-
ment of experimental design for the case of regression models. 1t also had an impact »n how re-
searchers viewed and proposed response surface design criteria in the 1970's and early 1980's.

Methods were proposed for choosing RSM design parameters and developing second order eco-
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nomical designs through the use of this theory. Though no one can reasonably deny contribution
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and impact of optimal design theory, there are many who feel as if its use in RSM design work
should be done with extreme caution. In fact, the contrast in the views concerning this issue has
resulted in what some refer to as the “Kiefer approach’ and others refer to as the “Box approach”.
In Kiefer's approach a design is a probability measure, s, defined on a closed and bounded subset
x of a Euclidcan space of dimension equal to the number of design variables in the fitted model.

Hence, this measure must satisfy the conditions

x)20 forall xey
fydsxy=1.
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In particular, a collection of N points in x, not necessarily distinct, form a decsign measure. In this

casc

n/N if x isadcsignpoint (i= 1,2, .., m)
() = { @

0 otherwise ,

where n, denotes the number of replications at the i th design point, and m is the number of distinet
design points. Such a design measure is said to be discrete and is denoted by D, . Discrete design
measures are the traditional designs considered in Box's approach. Design tneasures other than

discrete are said to be continuous. These include design measures of the form

(2.2)

A, ifx isadesignpoint (i=1,2 ..,¢
(x) = .
0 otherwise ,

where A, 2 0 and éll, = 1, and at least one A, is an irrational number, that is, it is not expressible
as a fraction. A continuous design measure is sometimes referred to as an approximate design
measure since it it not realizable in practice, but can be approximated fairly closely by a discrete
design of the form given in (2.1). The latter design is, therefore, referred to as an exact design

measure.

Suppose that the fitted model is of the form
y=1xB +¢, 2.3)

where y is the measured response at a point x € x, {(x) is a vector of known functions of x, § is
an unknown vector of p parameters, and ¢ is a random crror. If the design measure is discrete, then

model (2.3) can be written in vector form as
y=XB +g, (29

where X is an N x p matrix whose ith row consists of the elements of f(x) (/= 1, 2, ..., M.
In general, for any design measure s on Y, the information matrix of s, denoted by M(s), is defined

as the p x p matnx |m, (s)] , where
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my(s) = [y H{xdsx) » bj=1 2. p (2.5)

where f, (X) is the ith element of f(x) (I = 1, 2,..., p) . In particular, if s is a discrete design
measure, Dy, then M(D,) = X' X/N, where X is thc matnx in (2.4). In this casc if we assume that
E(g) = 0 and Var(g) = 02/, then the variance of the predicted response at a point X is

Var y(@) = S (@D () (2.6)

Let v(x, Dy) denote the standardized prediction vanance (¥/6?) Var )‘*(x). then

W&, Dy) = M@~ () - 2.7

If ¢ in (2.4) is normally distributed, then a confidence region for § of a given confidence coefficient

has the form

(8: (B - BYX'X( - B) < constant) ,

which is an cllipsoid centered at ﬁ the least squares estimator of § . The volume of this ellipsoid
is proportional to | X’ X|-12 | where | X'X| denotes the determinant of X’X. This volume can,
therefore, be minimized if the discrete design D, is chosen such that | X°X| is maximum over the
class of N-point discrete designs. A design having this property is said to be a discrete D-optimal
design.

In general, for any design measure s defined on %, the standardized prediction variance de-
scribed in (2.7) will have the form

wx, 9 = @M~ (9f (x) (2.8)

provided that the information matrix M(s) is nonsingular. If H denotes the class of all design

measures on ¥, then a design measure s* is D-optimal i it maximizes | M(s)| over H, that is,

IM(s*)| = sup 1 M(s)] . (2.9)
SEH
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This is an cxtension of the concept of D-optimality in the discrete case.

The D-optimality critcrion has received a great deal of attention as evidenced by the numer-
ous articles written about it. The review articles by St. John and Draper (1975), Ash and Hedayat
(1978), and more recently Atkinson (1982) contain many refcrences on D-optimality and other

optimal design criteria.

The objective function in the D-optimality criterion, namely [M(s)|, can be expressed in
terms of the eigenvalues X, (5) of the matrix M(s) since | M(s)| = ‘r_’1l)., (5) , where p is the number
of parameters in the model. Other functions of these eigenvalues were considered in the develop-
ment of mainly continuous design measures. These include tr{M(s)] = "ill, (s) and A;,(s), where
Ay(9) is the smallest eigenvalue of M(s). The design criteria based on these functions are called

[}
A-optimality and E-optimality, respectively. More specifically,

i) adesign measure s* is A-optimal if it maximizes lf:ll,{.t) over H, the class of all design
measures on Y.

ii) a design measure 5 is E-optimal if it maximizes A,,(s) over H.

Weortdly (VARSI L2 AR | e

Another design cniterion which is closely related to D-optimality is the G-optimality criterion. A
design measure s* is G-optimal if it minimizes over 4 the maximum variance function given in

(2.8), where the latter maximization is carried out over the experimental region ¥, that is,

b
E
L}
sup WX, %) =inf fsup vx 9, 2.10
& €X s€H {xex } @9

Kiefer and Wolfowitz (1960) proved that the D-optimality and the G-optimality, as defined in (2.9)
and (2.10), respectively, are equivalent. Furthermore, they showed that these two extremum
problems are equivalent to yet another extremum problem, namely

sup (g, s%) =p . (2.11)
s€x

SO P T R K VS AT

It is to be noted that, in general,
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sup WX, s%) 2 p (2.12)
Z€Y .
(sce Fedorov 1972, p. 69). Hence, the maximum standardized vaniance of the predicted response

achieves its minimum value of p whenever the design measure s* is D- or G-optimal.

The above results can be formalized in the following theorem, known as the Equivalence

Theorem of Kiefer and Wolfowitz:

Theorem: If H is the class of all design measures defined on a subset x of the k-dimensional
Euclidean space (k is the number of design variablcs in the model), and if p is the number of pa-

rameters in the model, then the following assertions are equivalent:
i) s*is D-optimal
i) s*is G-optimal

iil) sup v(x,s*) = p.
a4

Assertion (iii) of the Equivalence Theorem is very useful. It provides an easy check on
whether a design measure is D-optimal by comparing the maximum of v(x, 5) over x with the
number of parameters in the comresponding model. Furthermore, it can be effectively used to
construct a D-optimal design from a nondegenerate discrete design Dy, (nondegencrate means that
the corresponding X'X matrix is nonsingular) by augmenting it sequentially with design points
chosen appropriately (see Wynn 1970, Silvey 1980, Chapter 4). The first point, x,, is chosen such
that

&1, Dy,) = sup W& Dy,). (2.13)
€Y

By augmenting Dy, with x, we get Dy, , which, in tum, is augmented with the point x, which sat-

isfies

WXy, D) = sup g, Dy))- (2.14)
s€Y




This process continucs and results in the sequence of designs Dy, €Dy, € Dy, ...y which, according
to the Equivalence Theorem, must converge to a D-optimal design measure (sce Fedorov 1972,

Th. 2.5.3; Wynn 1970, Th. 1). Note that since by (2.12),

W& Dy = P20, i=12., (2.15)

the sequential gencration of a D-optimal design can be terminated whenever the difference in (2.15)
is less than some value § > 0 chosen a priori. Thus. it is possible to approximate, with a given
precision, a D-optimal design measure with a discrete design. This fact has in effect brought D-
optimal designs out of the realm of theory into factual existence. Nalimov et al. (1970), and Box
and Draper (1971) pointed out, however, that the number of design points necded to adequatcly
approximate a D-optimal design measure might be too large as compared to the sumber of pa-
rameters in the model. It is for this reason that discrete D-optimal designs, that were mentioned
carlier, became attractive. We refer to an N-poiat D-optimal design as D, -optimal (see St. John
and Draper 1975). It is important here to point out that the Equivalence Theorem mentioned

earlier does not apply to Dy, -optimal designs.

Several algorithms are available to construct D, -optimal designs. The DETMAX algorithm
by Mitchell (1974) and the one by Fedorov (1972, pp. 160-165) generate a sequence of N-point
designs with nondecreasing values of | X' X/| for a given N. Mitchell and Bayne (1978) constructed
D-optimal fractions of three-level factorial designs for second order models. Welch (1982) presented
a catalog of Dy -optimal designs which can also perform well by other design criteria for a small loss
in the D-optimality efficiency. A review qf algorithms for constructing D, -optimal designs was

given by Cook and Nachtsheim (1980).

The D-optimality criterion can also be used in situations where a subset of ¢ ( < p) parame-
ters in a model are of interest, whereas the remaining p — ¢ parameters are regarded as nuisance
parameters. A design measure, s5,*, is D,-optimal if it minimizes the determinant of the submatrix
of the inverse of the information matrix M(s) which corresponds to the vector of the ¢ parameters

of interest. An equivalence theorem similar to the Kiefer and Wolfowitz Equivalence Theorem

holds for D,-optimality (sce Kiefer 1961).
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A lesser known optimality critcrion is the c-optimality criterion. A dcsign mcasure s* is c.
optimal if it minimizes the variance of the lcast-squares estimator of a lincar function of the pa-
rameter vector B. Thus, if M(s) is the information matrix and ¢ is a given vector of known elements,
then s* is c-optimal if it minimizes ¢'M~'(s)¢ over the class of all design measures. Murty and
Studden (1972) used this criterion to obtain optimal designs for estimating the slope of a response

surface at a given point of the experimental region.

Design Efficiency

Any of the previously discussed optimal designs can be used to evaluate and compare designs
on the basis of efficiency. For example, for the D- and G-optimality criteria the corresponding ef-
ficiencies, as defined by Atwood (1969), are, respectively,

D-efficiency = [ M) jsup | M(s)l ]w

€N

G-efficiency = p/sup wx, s),
$€X

where s is a given design measure, p is the number of parameters in the model, H is the class of all
design measures, and v(x, 5) is the standardized prediction variance described in (2.8). Note that
by (2.12) the G-efficiency (as well as the D-efficiency) of s is less than or equal to unity and greater
than or equal to zero. Lucas (1974, 1976, 1977) used the D- and G-efficiencies to evaluate the

performance of some traditional response surface designs for second order models.

Additional Remarks Concerning Optimal Designs

The various optimality criteria described earlier are usually referred to as alphabetic design
optimality. This term was orginally coined by Box (1982) who expressed certain reservations about
“the usefulness of this approach as far-as response surface designs are concemed”. Researchers in
this theory have produced outstanding resuits based oa intricate mathematical formulations, but
have neglected to address important practical difficulties that are present in KSM applications. As
a result, there has been some confusion on the part of RSM practitioners who attempt 1o use the

alphabetic optimality results.



I

In the design optimality approach, the design of cxperiment is sct within a rigid framcwork
govened by a set of assumptions, the most prominent of which characterizes the fitted model as
the truc model over the experimental region. It is rarely the casc when an experimenter would be
willing to make such an assumption. Furthermore, the expcrimental conditions can vary in time
and may not conform to assumptions made a priori at the outset of the experiment. This has
prompted Box et al. (1978, p. 472) to state that “in recent years the study of optimal design has
become separated from real experimentation with the predictable consequence that its limitations

have not been stressed, or, often, even realized.”

In the traditional RSM approach, bias suspected of being present in the fitted model plays a
significant role. This is the basis for the Box-Draper criterion discussed in Section 2.1. In fact the
concern about model inadequacy in this approach has prompted other researchers to consider de-
signs solely on the basis of bias (see Karson et al. 1969). The bias criterion, howevez, provides
protection against a specific form of model inadequacy according to what we postulate as the true
model. Kiefer (1975, pp. 284-286) criticized certain aspects of the preoccupation with bias, pointing
out examples in which the variance criterion is compromised for the sake of the bias criterion. Both
Kiefer and Box agree that design selection should be guided by more than one criterion, “no single
simple prescription can be expected to yield satisfactory designs in all, or even most, applications”

(Kiefer 1975, p. 286) (see also Box 1982, Section 7).

The work of Fedorov represents a “middle ground® between Box's and Kiefer’s approaches.
It provides the mathematical apparatus for the derivation of the theoretical results, as well as the
necessary algonthms needed to apply them so that they are accessible to comparatively “broad cir-
cles of researchers and technologists” as Fedorov (1972) stated in the preface of his book on optimal

experiments.

Ln addition to Fedorov’s book, the book by Silvey (1980) and the review articles by Bandemer

(1980) and Atkinson (1982) provide recent surveys of optimal experimental designs.
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2.6 Design of Mixture Expcriments

Mughout this review we restate our frustration that much of the technology advanced in
RSM seems to not have been communicated to subject matter uscrs and thus they are “far behind”
recent advances. However, the area of mixture experiments is an exception. From the early pio-
neering work in the late 50°s, techniques in the use of mixture designs became important to users
of RSM where the response to a mixture of ingredients depends on the relative proportions of the
ingredients. These experiments are characterized as follows: If x,, i = 1, 2, ..., k represents the
proportion of the ith component in a k factor combination then for each experimental run
0<sx<1,i=1,2, ..., kand ‘:Elx, = ]|. The development of designs and the analysis of data
collected under these constraints has been the subject of much research. Indeed, the particular area
has been the subject of two reviews by Comell (1973, 1979), mentioned prominently in two addi-
tional reviews by Mead and Pike (1975), Steinberg and Hunter (1984), and the subject of a text
Cornell (1981).

/

Some highlights in the development of this area follow. Schcﬂ'ﬁﬁa (1958) is credited by
most with having initially considered the mixture problem although Claringbold (1955) recognized
that designs for studying such relationships are on a simplex. Scheff&eac. proposed the simplex
lattice design as well as a family of polynomial models 10 use in approximating the underlying re-
lationship between the response and mixture components. A deficiency of the simplex lattice design
is that its use tends to result in mixtures involving only two components regardless of the total
number of components under considcration. To remedy this Scheﬂ'gnc. (1963) proposed the
simplex centroid design which consists of 2+ — 1 design points which are the centroid of the simplex

and the centroid of all lower dimensional simplices contained within the original (k — 1) dimen-

sional simplex.

Thompson and Myers (1968) developed designs that allow the use of the minimum average
bias and variance critenia of Box and Draper. They make use of a transformation to (k = 1) di-
mensional vanables so that the standard designs can be used. A transformation is given 1o the user

which produces the design in the natural, mixture vanables.
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of the components of the combination. McLean and Anderson (1966) proposed the extreme

I vertices design for such situations. Snce (1981) uses the gasoline blending problem to illustrate
some practical problems that occur when considering mixture experiments. Attention is focused

on the design of the blending studies and appropriate models for analysis as well as the use to which

e

the fitted model is put. In this paper currcntly available algorithms are used in the construction of

lincar and quadratic mode! designs where there are single and multiple component constraints on

LR

It is not unusual for a mixturc expcriment to be such that there are bounds on some or all ’
the region of feasible blends. Piepcl (1983a) discusses several guidelines for developing constraints
on the levels of components in mixtures and presents techniques for checking the consistency of the ?
constraints that are developed. Picpel (1983b) notes that the centroid of a constraint region in
mixture experiments has been defined as the average of all extreme vertices of the region. Utilizing
the definition of the centroid as the center of mass or volume of the region Piepel develops an al-
gorithm to calculate centroids of various dimensional faces of the constraint region as well as the

centroid of the (k = 1) dimensional simplex. Whenever constraints, in the form of upper and lower

bounds, are placed on the components of a mixture the size and possibly the slope of the exper-

PP R ES AN RIS  { C RS

imental region is altered. Crosier (1984) proposes a transforr ation to pseudo components to re-

£

duce the ill-conditioning created by the constraints. Conditions are given which can be used to

determine when the use of the transformation is preferable to that of other transformations.

‘taf, -

Hare (1979) considers the development of designs for the situation where some of the design

. . , . |
variables, called process variables, are not subject to the simplex constraint, £ x, = 1. Of concern
{=]

SEER A

here is the choice of settings for the mixture variables as well as the process variables. The problem

W

has also been considered by Vuchkov et al. (1981) who proposed the use of a sequential procedure
to produce designs that were nearly D-optimal. The traditional Schcﬂ'gul. model in mixture ex-
periments that contain process variables contain cross-product terms between the mixture and
process variables as well as indicate that the process by mixture cross-product terms estimate the
eflects of the process variables on the blending properties of the mixture variables only and d5 not
give an overall measure of the main effects and interactions of the process variables alone. They

develop a reparametenized model that permits the experimenter to separatz the effects of the process
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variablcs from the mixture variables. From such a modecl it is demonstrated that reduced modcl

forms can be obtaincd through the use of a variable sclection procedure.

Aitchison and Bacon-Slone (1984) show that the constant sum constraint, i.e. 'f:.x, = | can
be removed by a log ratio transformation, z, = log% i= 1,2, .., k=1 When this is done
the modeled expected response can be expressed as a polynomial in the 2. Since the 2, ¢an be varied
independently the polynomial can include all terms of appropriate degree. For this paper attention

is restricted to lincar and complete quadratic models.

Rotatability in mixture experiments has received very little attention by comparison to other
more general response surface investigations. In an attempt to obtain constant prediction variance
within the simplex factor space, Thompson and Myers (1968) developed rotatable response surface
designs on the basis of their transformation of the & mixture variables to k& — 1 mathematically in-
dependent variables. These designs were used to fit polynomial models over some ellipsoidal region
inside the simplex factor space. Comell and Khuri (1979) introduced a different configuration of
rotatability, one that is suited for temary mixture problems. In this new configuration, the pre-
dicted response has constant variance on cach triangle of a set of concentric triangles within the
simplex factor space. This is achieved by using a nonlinear transformation which maps concentric
circles in a new coordinate sysiem onto concentric equilateral triangles in the mixture space.
Standard rotatable response surface designs in the new coordinate system can then be mapped onto
designs in the mixture space resulting in the prediction variance being constant on concentric tfi-

angles.

2.7 Designs for the Slope

In many applications of RSM, good estimation o1 the derivatives of the response function
may be as important or perhaps more important than estimation of mean response. Centainly, the
computation of a stationary point in a second order analysis, or the use of gradient techniques, e.g.,
steepest ascent or ridge analysis depend heavily on the partial derivatives of the estimated response
function with respect to the design variables. Since designs that attain certain properties in y (esti-

mated response) do not enjoy the same properties for the estimated derivatives (slopes), it is im-
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portant for the user to consider experimental designs that are constructed with the derivatives in

mind. -

Atkinson (1970) considersd designs for estimation of the slope at a fixed point with the re-
sponse function being of order one. The criterion used is the expected mean squared error for a
directional denivative, averaged over all possible directions. Ott and Mendenhall (1972) dealt with
the special case of a single design variable and a second order model. No model misspecification
was considered and the primary focus was on the properties of the variance of the estimated slope.
They considered optimum spacing of the levels of the design variables that gave desirable properties
of the variance function. Murty and Studden (1972) considered polynomial regression models with

the criterion being the variance of an estimated slope at a fixed point and averaged over an interval.

Hader and Park (1978) extended the notion of rotatability to cover the slope for the case of
second order models. They developed design parameters for central composite designs that result
in “slope rotatability,” i.c., the variance of the estimated derivatives is constant for all points
equidistant from the design center. Tables are produced of designs for values of k = 2, 3, ..., 8.
Some of the designs featured have replicated axial points rather than heavy replication in the design

center.

Myers and Lahoda (1975) extend the Box and Draper integrated mean squared error criterion
under model misspecification to cover sets of parametric functivns with the slopes being primary
applications. For the second order case they develop designs that are minimum slope variance,
conditional on achieving minimum integrated slope bias in case of both spherical and cuboidal re-

gions of interest. Their designs are central composite designs with dual axial levels and are tabulated

fork=2,3..17

Mukerjee and Heda (1985) develop designs associated with minimum variance of the esti-

mated slope maximized over all points in the factor space for second and third polynomial models

over a spherical region.




2.8 Design for Minimum Bias Estimation

" Kasson et al. (1969) introduced the notion of minimum bias estimation in response surface
analysis. The motivation was derived from the work of Box and Draper in which it was made clear
that considcration of bias in RSM is at lcast as important as considcration of variance. As a result,

an alternative to leas: squarcs was introduced for minimizing average bias at the estimation stage.

Given that minimum bias estimators are used, Karson (1970) introduced a design criterion
to provide protection against certain higher order model terms. This criterion results in conditions
on the design moments being met. With a single independent variable, conditions are given for
fitting up to a cubic polynomial and protecting against a possible fifth degree polynomual. The
author also considers the two factor case for fitting a first order polynomial and protecting against
the presence of second and third order terms. A general p factor result for the linear to quadratic
case is also given. Karson and Spruill (1975) examine four alternative design criteria given that
minimum bias estimation is used in the case of a single independent variable. The alternative design
criteria are minimaxes or minimum averages of the squared differences between the expected value
of the stationary point found by fitting the approximating polynomial and either a prior guess at
the location of the stationary point or the location of the stationary point as detennined from the
true model. Evans and Manson (1978) utilize the design flexibility associated with the use of min-
imum bias estimation to construct D-optimal, V-optimal, and A-optimal experimental designs in
two dimensions via a simplex search procedure. The designs are obtained for both square and cir-

cular regions of interest.

In a related work, Kupper and Meydrech (1973) consider the use of an estimator of the form
Kfi for the parameter of the fitted polynomial. They give conditions under which it is possible to
determine K's providing smaller J than when K = [ for any choice of experimental design. The
case where the fitted polynomial is of degree one and the true polynomial is of degree two is con-
sidered. These same authors (1974) compare their approach to that of Box and Draper (1959) as

well as that due to Karson et al. (1969).

28




2.9 RSM Design Robustness

As we indicated caslicr in this papet, the first notion of RSM design robustness appearcd in
the work by Box and Draper (1959, 1963) dealing in protection against model undcrspecification.
It formalized, in an RSM setting, the notion of proper placing of the design points in from the
boundary of the region of interest when underspecification is a concern. While specifics in the Box
and Draper work dealt with spherical regions, Draper and Lawrence (1965) applied the Box and

Draper approach to generate designs robust to model inadequacies in the case of cuboidal regions.

Aside from model misspecification, RSM design robustness includes the following categorics
i) Robustness to outliers in the data
ii) Robustness to errors in the design levels
iii) Robustness to nonnormality in the model errors

iv) Designs for extrapolation under conditions of model misspecifications.

We feel committed to extend the notion of RSM to include F-tests that are developed
through regression analysis. Papers by Jensen et al. (1975) and Vuchkov and Solakov (1980)
demonstrate that experimental design has a substantial impact on the robustness to normality of
the F-test in a regression or RSM model. In the former paper, the class of orthogonal designs was
found to be robust in the case of a first order response surface model. In the latter case, a similar
result was demonstrated. The approach was taken of considering the property of “quadratic bal-
ance” in a design. This property is one making the Aat diagonals equal, where the hat diagonals

are the diagonal elements of

He XXX~ 'x

Khuri and Myers (1981) implement the robustness criterion of Box and Watson (1962) for first
order RSM models. Again, the robustness here is a resistance of tests of significance to failure of
the distnibution of errors to be normal. A method is described for construction of a robust design
assuming a fixed number of experimental runs. Here, of course X is an N * p model matrix given

in the gencral linear model
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One very intriguing, albeit predictable, result from the Vuchkov and Solakov work is that the most
desirable prescription in terms of this type of robustness is a design with uniformly replicated trials ;

and equal hat diagonals. Example designs are the 2* factorial arrays and appropriate fractions.

From a point of view of motivation, the paper by Box and Draper (1975) would appear to
have been very timely. Since the early 70°s considerable attention has been paid to the detection
of outiicrs and the accommodation of outlicrs in regression analysis. This work by Box and Draper
linked the awareness of outliers to notions of RSM experimental designs. Design properties were
sought that resulted in “minimal impact” of outliers in the resulting data. The result was the choice
of designs for which ‘_gih,’, is minimized where, again, the A, are diagonals of the hat matrix. Again,

in the first order case, the orthogonal designs are optimal.
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Herzberg and Andrews (1976) deal with optimal designs under nonoptimal conditions such

as missing observations and presence of outliers while dealing mostly in designs that are constrained
to be economical. They introduce a measure of robustness which is called a “probability of

breakdown’, given by

Pr{lXDX| = 0)

where D is a diagonal matrix with ith main diagonal element

p 0 with probability a(x)
” =
{ 1 with probability | — a(x)

and a(x) is the probability of losing a data point. When |X’DX| = 0, the coefficients cannot all
be estimated. In addition, they consider £(| X’D2X|"7) as an alternative measure of robustness. In

Andrews and Herzberg (1979) they introduce the notion of efficiency by working with the quantity

1 Elxpix|'
N imyte
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where M is the Fisher information matrix for the appropriatc D optimal design. Examples arc
given to indicate how notions like this can be used to select robust designs. The numerator of the
above expression is compared for central composite designs with varying number of center runs.
The probability value a(x) is varicd in the study and the results indicate clearly that criteria like
these can be used to provide a choice between designs when the uscr fears a loss of information in

' the form of missing data, 4

In a paper that considers protection against model misspeciication and outliers simultane-

ously, Draper and Herzberg (1979) deal with n integrated mean squared error criterion much like

that of Box and Draper in 1959 and 1963. The purpose, though, seemed to be to determine if the
presence of outliers produced any substantial change in the recommendations made earlier, when
one only considers model misspecification. Special cases of a single outlier and two or more outliers
are considered. As expected, in the case of a first order fitted model with protection against the
existence of second order terms, an orthogonal design is reconmumended. In addition, the recom-
mendation for the second moment is to make it slightly larger than the “minimum bias” value un-
covered in 1959, Specifically, a value roughly 10% larger is recommended. Simply put, this implies
that if outliers are present, the variance portion of the integrated prediction mean square error be-
comes somewhat more important. Extensions to the case of the second order fitted model were

made with similar recommendations.

A related notion of robustness deals with errors in the factor levels. Vuchkov and Boyadjieva
(1983) consider this problem and attempt 10 determine design families that are robust. The inter-
ested reader should first read Box (1963) in which the effect of errors in factor levels is considered
in both first and second order models. While no specific design criteria are considered in this work
by Box, it is an excellent account of what is the extent of the damage when efrors in design variables

occur.

In the paper by Vuchkov and Boyadjieva, some of the same concepts covered in Box are re-
stated. They define an estimator that is BLUE under the conditions of errors in factor levels, and
which depends upon the moments of the factor levels. Assuming this particular form of estimation

(which reduces to least squares if the model errors are unbiased), they define “criteria for robustness”
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and make some comparisons among thc Box-Behnken designs, rotatable central composite designs,

Hartey's small composite design, Lucas’ optimal composite designs, and others.

Finally, we dcal in a type of decsign property that some may not generally classify as
robusiness, namely designs that are resistant (o errors in extrapolation. This is particularly important
- in RSM work since a response surface is often used by necessity for extrapolation purposes. Draper
and Herzberg (1973) discuss designs that are robust in this sense under the setting that the fitted
model is first order and one’s ability to extrapolate is influenced by the existence of second order
terms in the true structure. Their work is confined to consideration of extrapolation in a specified

direction with a spherical region of interest.

Draper and Herzberg (1979) considered both the first and second order case in which interest
is in extrapolation outside a sphere. The region of extrapolation is a sphencal shell. Again, variance
and bias due to model misspecification are considered and are integrated over th= region. In the first
order case, they reduce the problem to one of selecting the pure second moment. Ai' odd moments
through order three are assumed zero. They are able to find the second design moment :hat mini-
mizes what they call 2 “proportional mean square error.” Designs with maximum spread, i.c., points
placed on the perimeter of the region of interest, are found to be optimal. In the second order case,
their work was restricted to second order rotatable designs with all odd moments less than or equal
to five being zero. Emphasis is put on the central composite design. The conclusions indicate that
the rotatable central composite designs that are most robust to extrapolation require design points

that are expanded 10 the edge of the region of interest.

In this section and in many others in this review, the influence of the Box and Draper pro-
tection against model inadequacy becomes evident. What we have seen occur in much of the design
robustness work is a blending of the problem of model inadequacy with other deviations from

ideality.

Though the foregoing might be viewed as representing the bulk of the “robust design” work
involved strictly in the use of RSM, there certainly are other important pieces of work that deal in
design robustness in regression models. Atkinson (1972) discusses designs that are best for detection

of model inadequacy. Atwood (1971, 1975) deals in robust procedures for estimating polynomial
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regression and methods for estimating a responsc surface when the number of parameters arc un-

certain.

One important notc of caution should be made to any user or potential user of RSM. De-
signs are chosen becausc they are optimal or near optimal in some scnse, or because they are robust
or near robust in some sense. But a dcsign may indced be near optimal in one scnse (say D-
optimality) but not ncar optimal with respcct to another criterion. Obviously, a desirable
robustness property of an RSM design is one in which the design enjoys a ncar optimal or at least
“steady” performance in several criteria that is important to the user. For example, Galil and Kicfer

(1977) and Kiefer (1975) show vanation in performance of designs as one moves across criteria.

2.10 Designs for Special Goals

Designs for Nonlinear Models

A nonlinear model is a model of the form
y=f(x9+¢, (2.16)

where 3 = (x;, x;, ..., x,)' is a vector of design variables, § = (8,, 6,, ..., §,)’ is a vector of un-
known parameters, € is a random error, and f (x, ) is a known function nonlinear with respect to
at least one element of §. Nonlinear models have not received a great deal of a‘tention in RSM,
even though they have many applications in several areas, particularly, in biological and chemical

sciences.

The main design criterion for nonlinear models is the D-optimality criterion, which actually
applies to a linearized form of the model in (2.16) (Box and Lucas 1959). More specifically, if
f(x, 9) is approximately linear in § in a neighborhood of § = §,, then a design D is chosen 5o that
the determinant |F'(D, &) F(D, §,)| is maximum, where F(D, 6,) is an N x p matrix whose

(i, /H)th clement is

&(x, 9) i=1 2, .., N;:
fy=—7%— 217
o9 '§=§ j=1L2 ...p.
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In (2.17), %}- denotes the partial derivative of f with respect to 0, X is the value of x in the ith
cxperimental run, and N is thc number of experimental runs. Aa optimal design obtained under
this criterion is morc appropriatcly called a iocally D-optimal design, a terminology used by
Chemofl (1953). A similar design criterion is available if the intcrest is in only 4 subset of the pa-

rameter vector § (see Box 1971, Hill and Hunter 1974).

Unlike D-optimal designs for linear models, those for nonlincar models depend upon the
unknown values of 8. This is an unappealing characteristic of nonlincar modcls and was most ap-
propriately depicted by Cochran (1973): “You tell me the value of § and 1 promise to design the
best experiment for estimating 8.° There are several procedures to remedy, or at least alleviate, the
problem of design dependency. One procedure treats §, as an initial guess which is used to obtain
a p-point design. Observations collected at the points of this design are then used to provide an
estimate of § . Thereafter, additional design points are augmented sequentially while updating the
estimate of @ (see Box and Hunter 1965). Onr advantage of this sequential approach is that it helps
reduce the dimensionality of the design optimization problem. If the initial value, §,, of § is a good
“guess”, then under certain conditions, Atkinson and Hunter (1968) showed that when the number
of design points N is a multiple of p, the number of parameters, the optimal N-point design consists

of replications of the optimal p-point design obtained on the basis of §,.

An alternative strategy for dealing with design dependency is to adopt a Bayesian approach.
Zacks (1977) considered maximizing the expected value of the determinant |F (D, 8) F(D, 9)I
with respect to some prior distribution of §. Bayes sequential designs can also be obtained. An
optunal design for a new stage of experimentation is determined by maximizing the aforementioned
expected value with respect to the posterior distribution of 9 given the results from the previous
stages. Another strategy that is applicable whea the number of design variables is equal 10 one is
to approximate the nonlinear function in (2.16) with a Lagrange interpolating polynomial (Khuri
1982). The interpolation points are chosen as the zeros of a Chebyshev polynomial of the first kind.

Another approximation using spline functions was considered by Bumrungsup (1984).

The dependency of the optimal nonlinear design on the parameter vector § is less severe if the

model is partially nonlinear. By that we mean that some elements of § appear linearly in the model
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while others appear nonlinearly. [lill (1980) showed that a locally D-optimal dcsign for a partially
nonlincar model depends only on the model’s nonlinear parameters. This property, however, docs

not always hold when the design is for estimating a subsct of the parameter vector (see Khuri 1584).

The use of the D-optimality criterion for choosing a nonlinear design may not always be ap-
propriate particularly in an RSM eziiing. One must remember that it is a variance criterion which
does not account for any possible bias in the model. Just like in linear models, bias is an important
consideration for the choice of design. In fact, in nonlinear models more emphasis should be given
10 the subject of bias since it is not quite clear how bias should be defined. Unfortunately, little
appears to be known about this subject. A brief mention of bias in nonlincar models is given in a

paper by Atkinson (1972, Section 5).

Designs for Fitting Spline Functions

Let [a, 4] be an interval that is partitioned into A + 1 subintervals by the points
a= 1, <1 <1< <1, <1t = b A spline function in one design variable x is a continuous
function f(x) defined on [a, 5] such that f(x) restricted to [t,_,, 1], i= 1,2, ..,h+1,is2
polynomial, and satisfies certain differentiability conditions at the points t,, 13, ..., T The
polynomials defined on these subintervals are different, and the partition points,
t,, %, .., and 1, are called knots. Spline functions are, therefore, segmented, or piecewise

polynomials. This definition of spline functions can be extendex to more than one dimension.

Spline functions are useful in approximating continuous functions, just like polynomials. In
certain situations, however, they are more suitable than polynomials. This is particularly true when
the function to be approximated is defined over a wide region where its bebavior in one part of the
region is unrelated to (or undetermined by) its behavior in another part. Polynomial approximation
on the other hand forces some kind of unwarranted semblance on the behavior of the function.
This is because the behavior of a polynomial over an entire regica can be fully determined by its

behavior over only a part of the region.

Even though spline functions have reczived considerable attention in the mathematical liter-

ature, their introduction into the statistical literature is relatively recent. Wold (1974) gave a review
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of the usc of splinc functions in lcast squarcs fitting and provided scveral uscful references on the
subject. Gallant and Fuller (1973) discusscd the estimation of the location of the knots when fitting
a spline function to a data set. Very little is known about the choice of design for fitting a spline
function. Studden (1971) discussed D-optimal and L-optimal designs for spline functions. Draper
etal. (1977) applicd the Box-Draper (1959) design criterion for protcction against model bias. Park
(1978) adopted the D-optimality criterion when fitting a spline function with only one knot. In all
of these papers, the knots of the fitted spline function were considered known. More recently,
Bumrungsup (1984) used spline functions to approximate the mecan response in a nonlinear model.
The knots were choscn so that the error of approximation did not exceed some specified value
chosen a priot. The approximating spline function was then used to obtain optimal designs for the
nonlinear model. These designs have the advantage of being not dependent on the model’s pa-

rameters.

More research is needed in this area. Optimal designs chosen on the basis of spline approxi-
mation depend on the number and location of the knots. Even if the number of knots is deter-
mined 50 that a certain degree of apprqximatir n is achieved, the positioning of the knots is an
important consideration which should be addressed. Extensions to more than one dimension are

also needed.
Design Augmentation

Design augmentation is an increasingly important component in the progression of RSM re-
search. It is consistent with the “sequential spirit” of RSM. In a large percentage of RSM appli-
cations more than one stage of experimentation and analysis is required. The notion of moving
from one experimental region to another and planning an experiment in sequence often becomes
necessary in real RSM situations. Quite often additional experimental runs are taken after an ex-

periment has been carried out. This may be necessary in the following situations:

1)  When the initial experiment is poorly planned and, consequently, results in observa-

tions that are not as informative about the fitted modecl as is desired.
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ii) When the prescribed design scttings are not attained by the actual values of the design
variables uscd in the initial experiment. This might be caused, for example, by tech-

nical limitation or by equipment malfunction.

iii) When there is a need to fit a model that is more complex than the onginal model,

which may be inadequate, and the initial design does not accommodate such an action.

iv) When the experimenter decides to change, or modify, the region of interest in the on-
ginal experiment. This usually occurs in sequential experimentation where information
obtaincd in one stage is used to plan the next stage. Also, there might be a need to
gain more information about the response in certain parts of the region that are not

adequately covered by the initial design.

In any of the above situations, the additional ruas are chosen in a manner that remedies, or
repairs, the initial design. Situation (i) was considered by several authors. Dykstra (1966) and
Gaylor and Merrill (1968) augmented a nonorthogonal design for fitting a first order model with
additional runs in order to reduce multicollinearity effects among the design variables. Dykstra
(1966) suggested several other cniteria for augmenting a nonorthogonal first order design. Covey-
Crump and Silvey (1970) and Mayer and Hendrickson (1973) adopted the maximization of | X" X|
criterion for the selection of the additional experimental runs, where X is the matrix of design var-
iables associated with the linear model for both the initial design and the augmented runs. In
Covey-Crump and Silvey (1970) the augmented design points were sclected from a spherical region,
whereas in Mayer and Hendrickson (1973), the augmented design points were constrained by cost
considerations. Dykstra (1971) descnbed a method for augmenting the initial de.sign with additional
points tzken one at a time. Each point is chosen from a list of candidates, the selection criterion
being the choice of the location for which prediction variance is maximized. This is equivalent to
the maximization of | X’ X| with each added point. Hebble and Mitchell (1972) followed a similar
procedure, except that the entire region of interest, instead of a set of candidate points, is searched
for the next design point. Wynn (1970) showed that this process leads in the limit to a D-optimal
design. Hebble and Mitchell’s (1972) procedure can also be useful in situations (iii) and (iv). Evans

(1979) used the simplex search technique 1o add several points simultaneously under the maximum
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of |X"X| critcrion. Suich and Derringer (1977), in their discussion of the adequacy of the regression
model, considered data augmentation as a means to catisfy their critcrion of adequacy. They did

not, however, providc a systematic procedure for the choice of the added points.

The main criterion used in design augmentation has been the maximization of | X" X|. Re-
cently, Khuri (1985a) introduced a measure of rotatability which can be uscd to quantitatively as-
sess departure from rotatability of a nonrotatable design. Using rotatability as a criterion, this
measure can be utilized to. repair a nonrotatable design by desigh augmentation. Hebble and
Mitchell (1972) have indirectly restored rotatability through their maximization of | X' X| over a
spherical region. The measure of rotatability is particularly useful in situation (ii) where a design,
originally planned to be rotatable, becomes nonrotatable due to failure 10 attain the prescribed de-
sign settings for a rotatable design. It can also be used in situation (iv) where a rotatable design is
intentionally modified by design augmentation in order to gain more information in certain arcas

of interest (see Littell and Mott 1974). Such a modification usually results in lnss of rotatability.

Designs to Increase the Power of the Lack of Fit Test

Checking the adequacy of a fitted model is an important consideration in RSM. Draper and
Herzberg (1971) provided some insight into the nature of hypotheses that can be tested by the lack
of fit test when replicate observations are available at one or more design points. Equally important
is the ability to detect lack of fit in a model at an early stage of the experimental process. This
pecessitates the use of a design which can induce a certain degree of sensitivity in the lack of fit test.
To accomplish this the design should be selected so as to maximize the power of the associated lack

of fit test.

Suppose that at some stage of the experiment the following model is fitted:
ax) = X8, , (2.18)

where n(x) denotes the mean response vector. The random e¢rors associated with the observed

response values are assumed to be independently and identically norn 1lly distributed with zero

mean and constant variance. The true model is assutned 10 have the form
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n(x) e X8, + Xq8;, (2.19)

The noncentrality parameter associated with the lack of fit test for model (2.18) is proportional to

the quadratic form

8= g5L4, , (2.20)
where
L= XX = XX, (X, X))~ ' XX, .

In order to maximize the power of the lack of fit test, the design should, therefore, be chosen to

make 8 as large as possible.

Unfortunately, designs chosen under the above criterion depend on §; , which is unknown.
Several approaches were considered to overcome this problem. Atkinson (1972) proposed the
maximization of the determinant | L]. This is the same as the D,-optimality criterion discussed in
Section 2.5 for the precise estimation of a subset of the parameters consisting of the elements of'
8;. Desigas choscn in this manner, however, may provide poor estimates of 8, if the fitted model
is adequate. Atkinson (1972) suggested the maximization of |L| subject to maintaining a lower
bound on the eﬂiciend of the lack of fit design for estimating 8, . Atkinson and ngomv's (1975)
T-optimality criterion is esseatially the same as the one we have mentioned. They ;uggested three
possible solutions to deal with the problem of dependency on §; ; these are (i) a sequential proce-
dure to construct a T-optimal design whereby observations obtained at a given stage are used to
esiimate §; aud then select the next design point, (ii) a Bayesian solution which requires specifica-
tion of a pnior distnbution on §;, (i) a2 maximin procedure in which the minimum value of 6 over
a conver region ¢ i the §;-space is maximized by a proper choice of design. A special case of the
maximin procedure was adopted by Jones and Mitchell (1978) using a particuiar convex rezion ¢
deteriuned by the moment matrices of the experimental region. They called a design obtained
under the maximin crit:rion a A,-optimal design. They also considered another variant of the

maximin procedure, namely, the maximization of the average of 9 over the boundary of the region
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9. A désign obtained under this criterion is called a A; -optimal design. The latter criterion is

preforred over the A,-optimality criterion which cannot be used in situations where the mininum

value of 8 over @ is equal to zero.

The A,-optimality criterion was also applied by Morris and Mitchell (1983) to obtain designs
to detect the prescnce of two-factor interactions among several two-leve! factors when fitting a first 1
order model in these factors. An extension of the A-optimality criterion as well as the A;-opti- }
mality criterion to a multiresponse situation was recently developed by Wijesinha and Khun

(198%9).

The traditional lack of fit test mentioned earlier requires the availability of replicate observa-
tions. This allows the partitioning of the residual sum of squares from the analysis of the fitted
model into a sum of squares due to lack of fit and a sum of squares due to pure error. When such
a partitioning is not feasible (this occurs when the number of terms in the fitted model is equal to

the number of distinct design points), the method of check points (see Schefle 1958, Snee 1977) can

be used instead. Check points 2re points in the experimental region where data are collected and
compared to the predicted response values (at these points) as obtained under the fitted model.
Sheltoa et al. (1983) introduced a method for sclecting the check points so as to maximize the
power of Scheffé’s (1958) lack of fit test statistic, which makes use of the residuals at the check

points.
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I1I. RESPONSE SURFACE ANALYSIS

‘.f.

In the Hill and Hunter review of 1966, four steps were outlined as part of standard procedure
in a response surface analysis. We think they are worth repeatiog here. They are (i) perform a
statistically designed eaperiment, (i) estimate the coeflicients in the respoase surface equation, (ii)
check on the adequacy of the equation (via a lack of fit test), and (iv) study the response surface in
the region of interest. It is (iv) that we plan to consider in this section. We consider subscctions
on multiple responses, sampling properiies of optima, and models that are ajternatives to the
standard polynomial models. However, underlying all of these topics is the question “What do we

mean by a response surface exploration?
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The purpose of an RSM analysis is to answer cortain general questions regarding the nature
of the response function in the region of the experimental design  Determining whether the system
contains & maximum or minimum, or is a saddle system may be very important to the exper-
imenter. On the other hand, the existence of a ridge system may indicate the need for further ex-
perimentation in another region. In some situations, response surface analysis scrves as more than
merely an empirical device. It can lead to what Hill and Hunter call an “clucidation of an under-

lying mechanism®, and thus uncover theoretical information.

A distinction should be made between analyses whose goals are to explore the response sur-
face as indicated above and that in which the major goal is quailty estimation of optimum
condltions. The method of steepest ascent remains a viable technique for sequentially moving to-
ward the optimum response. The reader is referred to Davies (1954) and Myers (1976) for details
and examples. Brooks and Mickey (1961) and Myers and Khuri (1979) discuss strategy in steepest

ascent.

It is interesting to note that in the Mead and Pike review, they note that there were relatively
few applications of response surface opiimization with the use of procedures other than steepest
ascent. At this point, 1| years later, we might echo a similar observation but add that there have
been applications with the use of the Nelder Mead (1965) simplex procedure. What still surpris-
ingly appears to be lacking are many examples of formal RSM optimization in which a response
model other than first order is used. One of Meud and Pike's conjectures may still be valid, namely
there is a general conservative nature in many research workers. Of course, the theory associated
with most numerical optimization methods is developed in the literature under an ‘assumed
deterministic model, There are overriding reasons why the optimization phase of RSM is not
formally applied in practical situations. There is a general upawareness among RSM users that
optimization techniques are available. And certainly the commercially available software that data
analysts use for other phases of analysis generally does not contain the optimization phase. Nuy.
merical analysis has advanced 1o the extent that optimization of second order or certain nonlinear
response functions with or without constraints presents no serious difficulty. And yet how many

software packages put together a RSM package complete with canonical analysis and optimization
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proccdures? Indeed, we have cxperienced a real need for such packages in industry. We attempt

to shed more light on this subject in subsequent scctions.

One uscful procedure in a sccond order response gurface analysis is ridge anal):l:. introduced
by Hoerl (1959) and formalized by Draper (1963). The method is discussed with examples in Myers
(1976). Hoerl (1985) gives a historical, almost anecdotal account of his father’s development of
ridge analysis. Reasons are given for what has appeared 10 be a relative obscurity of this procedure,
which essentially is a steepest ascent procedure for second order models. It serves as a practical
optimization procedure in which maximum (or minimum) values of y are determined on radii
varying from zero to the perimeter of the design region. The resulting locus of points not only
produces an alternative to canonical analysis for exploring the response surface but it also can offer
a recommended set of operating conditions often sought by the analyst when the canonical analysis
does not indicate an optimum at a stationary point within the design region. With the entire locus
of points produced by the maximum ridge and a knowledge of the properties of the experimental
design at or pear the design perimeter, the user becomes armed with infonmtion that allows a

reasonable recommendation.

It has been our observation that, in practical RSM problems, occasions in which the sta-
tionary point produces a satisfactory result are rare. More often than not, ridge conditions or saddle
systems are expericnced. As a result, ridge analysis, the notion of finding best conditions subject
to “anchoring” the results inside the experimental region, or some other type of constrained opti-
mization, is often indicated. The advantage in ridge analysis as an exploratory tool has intuitive
appeal. Most users, ¢.g., engineers, biologists, etc., understand it and would certainly prefer it t0
drawing conclusions from response contour plots for cases where & 2 3. Hoerl (1985) laments the
lack of attention 1o ridge analysis in the statistics literature. He walks the reader through a nice
practical application. Smith (1976) relates situations in which ridge analysis is misleading. Khuri
and Myers (1979) offer modifications to ridge analysis in cases where the design is not near
rotatable. They suggest that the constraint applied should be on the prediction variance and point

out that if the design is not rotatable, the modification provides more desirable results for the user.
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In the subscctions that follow, response surface analysis in the case of multiplc responscs is
reviewed. Both cxploration of the response and estimation of coefficients are considered. This is
followed by the vitally important topic of sampling properties of estimated optimum conditions.
Mead and Pike, in the 1975 review, indicated that statistical research into experimental design (say
RSM design) has outstripped rescarch in the area of analysis. To a great extent, this remains true.
A quick count of the volume of our bibliography in design as opposed to papers in analysis (in

statistical journals) will underscore the point.

3.1 Multiresponse Analysis

In many experimental situations a number of responses can be measured at a time for each
setting of a group of design variables. Examples of multiresponse situations are numerous. In
chemical enginesring kinetics, several reactants might be involved in a chemical reaction which give
rise 10 a number of responses that can be measured simultaneously. These responses are usually
represented by nonlinear mechanistic models, or by linear empirical models whenever the reaction
mechanism is t00 complex such as in an industrial reaction. Ziegel and Gorman (1980) gave an
interesting exposé of the use of multiresponse data for studying kinetic models in the petroleum
industry. The area of foods and other consumer product research also represents a challenge be-
cause of the need to almost always study many responses. Typical studies require panel-type re-
sponses or “scores” on many features of the product. The review by Hill and Hunter (1966) listed
several examples of multiresponse experiments and is perbaps the first paper in the staiistical liter-

ature to direct attention to their important applications.

Subsequent papers on this subject have stressed the utility of analyzing muitiresponse data
by means of multivariate techniques which take into account interrelations among the responses.
A univariate analysis in which responses are analyzed individually does not recognize such interre-
lations and will undoubtedly fail to adequately describe the true mechanism underlying the multi-
response system. Unfortunately, of the very few techniques that are curreatly available in the
statistical literature for the analysis of multiresponse data, even fewer are actually used by practi-

tioners. Our search for practical RSM applications reveal that users are far from up-to-date in the
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usc of multiresponsc techniques. (Sce Section 1V.) It is, thercfore, imperative that existing as well
as future multiresponsc techniques be made accessible to data analysts. It is also equally important -

to demonstrate the utility of using the multiresponsc approach when several responscs ase analyzed.

Muliiresponse Estimation

The general multiresponse model is

u=12...N;
Yur = (X0 B) + €0 3.1

=12 ..,r
where g, is the vector of settings of k design variables at the uth experimental run, B is a vector of
unknown parameters, f, is a function of known form for the ith responses, and ¢, is a random error
associated with the ith response for the experimental run u. It is assumed that the €,,’s are normally
" distributed such that E(e,) = 0, E(e,,c,) =0 for all {, j, u#v; Var(e,) =g, i= 1,2,..,r;
E(e,c,) = o,forall u, i » j. If the o,’s are known, then an estimate of § can be obtained by using
weighted least squares. Most often, however, the o,’s are unknown. In this case, Box and Draper
(1965) using the Bayesian approach and assuming noninformative prior distributions for § and the
g, ‘s were able to show that an estimate of § can be obtained by minimizing the determinant

| S(B)! with respect to 8, where
S =(Y~-H(Y-F. (3.2)

In 3.2), Y = [yyp...:p) 18 the data matrix with y, being the vector of #h response values
(i=12 ..,7,and F‘is an N x r matrix whose (y, i )th element is f, (x,, 8) . The method of
estimation, which is basically equivalent to the maximization of the marginal posterior density of
g (under the assumed noninformative priors), is referred to as the Box-Draper estimation criterion.

This is a general criterion and applies 10 models whose functional forms can be either linear or

nonlinear in the parameters.

Box et al. (1973) cautioned that the Box-Draper estimation criterion can lead 10 meaningless

results when exact linear relationships exist among the responses. They called such relationshyps

stoichiometric. They also pointed out that small rounding errors in the responses can cause
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| S(B)! 10 be diffcrent from zero and to change as the elements of § are changed, even under
stoichiometric rclationships. To resolve this confusing situation, they introduced an eigenvaluc
analysis which checks for the possibility of S(8) having a zero eigenvalue afler accounting for

round-off errors. They were able 10 accomplish this by devising a detection procedure which in-

_volves the examination of the eigenvalues of the matrix DD’, where D is the 7 x N matrix

D=7Yl~ LN . (3.3)

In (3.3), / is the identity matrix of order N x N and 1 is the vector of ones of order N x 1. Box
et al. (1973) demonstrated that m lincarly independent relationships exist among the responses if
and only if the matrix DD’ has a zero eigenvalue of multiplicity m. The orthonormal eigenvectors
of DD’ which correspond to a zero eigenvalue of DD’ are used to identify lincar relationships among
the responses. These relationships can then be used to drop m responses (if m linear relationships
exist among the responses) so that the remaining 7 = m responses are not linearly related. It is not
always easy to determine which m responses to drop. In many cases, the structure of the problem
may well dictate a natural way for dropping responses. Having selected a subset of 7 — m linearly
independent responses, the estimation process can then proceed by applying the Box-Draper crite-

rion to these responses.

Further problems associated with the use of the Box-Draper estimation criterion were con-
sidered by McLean et al. (1579). Box et al. (1970) and Stewart and Sorensen (1981) discussed ap-
plications of the criterion when some of the observations are missing. More recently, Bates and
Watts (1985) proposed a new computing method for the determination of the parameter estimates
using this criterion. The method is based on a generalized Gauss-Newton algorithm for the min-
imization of | S(B)I. The pantial derivatives of the expectéd responses (with respect 1o the elements
of §), which are required in this algorithm, are generated automatically whenever the response
models are determined by dynamic medels defined by a system of differential equations. An ap-
prozimate confidence region on the parameter vector § was also described and develcped by Bates

and Watts (1985) using a quadratic approximation of | S(8)!.




Design of Experiments for Multiresponse Situations

This is an important aspect of multircsponse analysis, yct it is probably the least developed.
We would be understating by indicating that the@evclopment of multiresponse dcsfgns has becn
lagging. Yet, as we reveal in subsequent sections on practical applications, nearly all RSM appli-
Zations are multirésponse in nature. In a multiresponse situation, the choice of design should be

based on a criterion which involves all the responses.

Draper and Hunter (1966, 1967) obtained design criteria for parameter estimation for models
of the form described in (3.1). These critcria, however, require knowledge of Z, the vanance-
covariance matrix for the 7 responses. Fedorov (1972) introduced an algorithm for the construction
of a D-optimal design for a linear multiresponse model using a procedure whereby design points
are chosen sequentially. Fedorov’s algorithm also requires knowledge of £ . Recently, Wijesinha
and Khuri (1986) introduced a modification of Fedorov's algorithm which can be used when I is

not known.

Another criterion for the choice of a multiresponse design for a linear multiresponse model
is based on the multivariate lack of fit test developed by Khuri (1985b). The design is chosen so
as to increase the power of this test. Details conceming the construction of such a design are given

in Wijesinha and Khun (1987).
A Test for Lack of Fit of a Linear Multiresponse Mode!

When fitting a multiresponse model, provision should be made to test the adequacy of the
model to represent the behavior of the multiresponse system. Since, in general, the responses can
be correlated, one should avoid applying the usual single-response lack of fit test to cach response
model individually. Lack of fit in one response model may influence the fit of the other respoases.
Therefore, multivariate techniques are required 1o asscss the overall adequacy of the response

models under consideration. Khuri (1985b) presented such a test for linear multiresponse models.
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Multiresponse Optimization

" When several resp;::nses are considered sirnultaneously, the problcm of dctermining “the op-
timurm® is undefined until some multivariate optimization criterion bas been chosen. In a multire-
sponse situation, no unique way exists for ordering values of a multircsponse function.
Furthermore, conditions which are optimal for one response may be far from optimal or even
physically impractical for the other responses. It is interesting that many (perhaps most) users re-
quire multiresponse optimization and the primary medium for doing the analysis is simply over-
lapping response contout maps. Evidence of this will be revealed in the treatment of subject matter

applications in [V.

Graphical methods were used early in the history of RSM development. By superimposing
response contours and visually searching for a common region where the responses achieve near
optimal values (if s.uch a region exists), 2 practitioner might be able to somehow asrive at a location
(or locations) of a ‘compromised” optimum. Lind et al. (1960) used this-procedure to obtain op-
erating conditions for maximizing the yield and minimizing the cost of a certain antibiotic. Obvi-
ously, this procedure is difficult, if not impossible, to apply when the number of design variables
exceeds three. Myers and Carter (1973) introduced an algorithm for determining conditions on the
design variables which maximize a “primary response’ function subject to the condition that a
“secondary response” function not exceeds a certain value. The development of this algonthm is
somewhat similar to that of ridge analysis used with a single-response model. Biles (1975) extended
this concept of censtrained optimization by placing bounds on the values of several “secondary re-

sponse’ functions. Biles’ procedure employs a modification of the method of steepest ascent.

A different optimization approach bascd on the concept of utility or desirability was followed
by Harrington (1965) and Derringer and Suich (1980). In this approach, each response function
undergoes a certain transformation into a desirability function, @, such that 0 £ ¢ £ 1. The choice
of the transformation depends on a subjective judgment concerning the importance (or desirability)
of the corresponding response values. A measure of the overall desirability of the responses is ob-

tained by combining the individual desirability functions using the geometric mean

(@, X @3 X = x @), where @, is the desirability function for the ith response. The sumultaneous




optimization of the # response functions is then achicved by maximizing the overall desirability

function over the expcrimental region.

More recently, Khuri and Conlon (1981) introduced a procedure for the simultaneous opti-

mization of responses that are represented by linear models of the form

Eg)=XB . i=1,2 w.r,

where X is an N x p matnx of full-column rank and §, is a vector of p unknown parameters
(i=1,2 ..,r). The rows of ¥ = [p,:p;: ... ;p)} are statistically independent with each having a
2ero mean and a variance-covaniance matrix Z. A distance function is chosen which measures the
overall closeness of the response functions to achieving their respective optimal values at the same
set of operating conditions. This is referred to as an ‘ideal optimum”®. Optimum operating condi-
tions are then derived by maximizing this distance function over the experimental region. The
distance functién approach permits the user to take into consideration the variance-covariance

structure for the 7 responses.

3.2 Sampling Properties of Optima

In the typical analysis of a second degree response surface one is interested in
1)  The location of the stationary point

i) The response at the stationary point

i) The characterization of the stationary point, i.e. as a point of maximum or minimum

response or a saddle point

iv) The contours of constant response

By writing the true response equation as

n=f8,+ 58+ xBx (3.9)

~wherex = (x, x;, .., x,)’, i = By, By ... By and
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the location of the stationary point can be shown to be
=-3'&
X B 3
The response at the stationary point is given by
Mo ™= Bo — %‘ﬂ'B-'ﬁ 3.9

The nature of the stationary point can be ascertained by considering the matrix B. If B is a positive
(negative) definite matrix then the stationary point is a point of minimum (maximum) response.
If B is an indefinite matrix the stationary point is a saddle point. From this it follows that the

eigenvalues of B are important to the proper description of the stationary point.

The contours of constant response are obtained by finding all values of x for which (3.4) takes
on specified values. These contours are useful in graphically repres;enting a response surface since

they permit the presentation of a k dimensional surface in k = | dimensions.

Since the model parameters are unknown, they must be estimated. Point estimates of the
location of the stationary point, the response there, the eigenvalues of B, and contours of constant
response can be obtained by replacing the model parameters by their respective point estimates
obtained, for example, by the methods of least squares or maximum likelthood. Far too many users
of RSM allow conclusioas to be drawn concerning the nature of a response surface and the location
of optimum response without taking into account the distributional properties of the estimated at-.

tributes of the underlying response surface. While the distribution of these quantities has not been

considered directly, efforts have been made to develop interval estimates for them.




Bozx and Hunter (1954) consider the development of the 100(1 = @)% confidence regon for
the location of the stationary point. Letting & denote the coordinates of the truc stationary point
and assuming the adequacy of (3.4) it follows that | ‘

én 6
ox Ii =0 (36)

If § represents the estimator of the left-hand side of (3.6) formed by replacing the parameters in (3.5)

with normally distributed, unbiased estimates, it follows that
§(e* V)" 'a ~ 1k

where the elements of ¥ are functions of the elements of (X'X)"! and X is associated with 3.9
when expressed in general linear model notation. After accounting for the estimate of o2 it can be

shown that

Fv_'s
(N - p)s?

< Fu.lz.N"p

constitute a 100(1 ~ a)% confidence region for the location of the stationary point. Here s?is the
usual error mean square. It should be noted that this technique is applicable to any surface re-

presented by a linear model and not just for the quadratic model considered.

The construction of a confidence interval about the response at the stationary point of the
true surface bas only recently been a subject of interest in the statistical literature. Khur and
Conlon (1981) give an expression for the bounds of such an interval conditional on the estimated

location of the stationary point. For the general linear model
2=XB+g., s~ NQo'D
Spjetvoll (1972) and Rao (1973) indicate that for any particular continuous function g(3)

Pr(glég &p) < g8 < E’ié gB))21-a
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where C = (B: (B = BYX'X(B = B)ps* € Fo,u-,) is the 100(1 = )% confidence region for
8. ﬁ-’ (X'X)"X’z is the least squares estimator of ., and s is as dcfined previously. Thus
[:w_x 2(B), r;:‘agl g(ﬂ)] is a confidence interval for g(8) with a confidence cocflicient of at least
(1 = a). Carter et al. (1984) make use of this result to obtain a conscrvative confidence interval
on the response at the stationary point in RSM. They also discuss the computational aspects of

methodology.

The user of RSM techniques gains considerable insight into the nature of the stationary point
and the nature of the response systemn from estimates of the eigenvalues of B. As a result, some
indication of the quality of estimation of the eigenvalues of B should become an essential part of
a RSM analysis. Since the eigenvalues of the B matrix can be expressed as particular functions of
the model parameters, the approach described above can be used to obtain a conservative
100(1 = a)% confidence interval about each eigenvalue of B. Carter et al. (1986) illustrate this
methodology for constructing such intervals for the eigenvalues of B. In addition, they consider the
implications of having such an interval contain zero on the sampling properties of the estimated
response at the stationary point. They conclude in this case that a change in the strategy of analysis

is required and they suggest and illustrate one such change.

It is sometimes the case that the stationary point is outside the region of interest or that the
stationary point is unsatisfactory due 1o associated secondary responses. When either is the case,
constraints must be placed on the optimization. The estimation of the Incation of the statiopary
point subject to constraints is considered elsewhere in this review. Stablein et al. (1983) extend the
methodology developed by Box and Hunter (1954) to obtain a confidence region about the location
of the stationary point in the presence of constraints. In their, - Carter et al. (1986) discuss the
construction of a conservative confidence interval about the response at a constrained statiopary
point. [t is shown that when there is evidence that there is a ridge condition as opposed to a true
optimum point, i.e., the confidence interval about the largest or smallest eigenvalue of 8 contains
zero, the sampling properties of the response at an unconstrained optimum may be undesirable.

In such cases, it is shown that use of a region constraint as in a ridge analysis will provide a tighter

confidence interval about the response at the stationary point.




3.3 Uscof Allcmatc‘.\lodcls

There are many typical RSM situations in which the user can make use of known information
concerning the distribution of the observed response. Examples of such response variates are sur-
vival time, proportion of experimental units assigned to a given treatment group responding in a
predetcrmined way, and the number of events occurring per treatment group, i.e. count data. To
the extent that a continuous symmetric disiribution can be made to adequately approximate the
distribution of such data, the classical application of RSM has provided satisiactory results. Once
a proper distributional form has been determined the usual approach is to cxpress the mean of the
distribution as a function of the experimental conditions. Most often a second order polynomial
is used. However, in their review article Mead and Pike (1975) give an excellent discussion regarding
the choice of the response function to graduate the relationship between the dependent and inde-
pendent variables. They provide the algebraic form of a number of different response functions that
have been used and discuss the usefulness of each. The choice of the form of the underlying re.
sponse function is based on the assumed shape of the underlying relationship. While an important
topic, it is limited only by the ability of the investigator to formulate the mathematical relationship
with the desired properties. The distributional fcrm of the underlying data has an impact on the
estimation of the model parameters and on the inferences drawn from a RSM analysis. Thus, for
" the remainder of this section some developments in the choice of a distnbutional form will be re-

viewed.

Addelman et al. (1966) devised an experimental scheme for estimating the optimal combina-
tion of two drugs in preclinical cancer research. The procedure is such that at most three exper-
iments mus: be performed. The first experiment uses three doses from within the effective range
of each of the individual drugs and nine combinations arrived at by considering three different ratios

between the levels of the two drugs. The data from this experiment are analyzed by fitting the

quadratic function
7= Bo+ By + BoXy + B XE + Bigki + BipXi X,

where
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y = survival time of the cxpcrimental subject

X = lo'g[-l-"%-s— + dosc level of compound i]. i=1,2

X, = lower extreme of effective range of compound |
After the model parameters have been estimated by the method of least squares, the underlying
response surface is exploréd and the optimal combination is estimated. From this a second, and
sometimes third, experiment is performed and depending upon the realization of given conditions
data from the initial experiments are included in the final analysis. Unfortunately, the authors il-
lustrated their work with hypothetical data. Consequently, it was not possible to determine the

applicability of it.

Due to the nature of survival data, the assumptions required for the appropriate use of the
method of least squares may not be satisfied. Cox (1972) proposed the proportional hazards model
as a means of relating survival time to a set of independent variables. Instead of working directly
with survival times this mode] relates the hazard, or instantanenus risk of failure, A(¢), at timne t to

the concomitant v . iables r as
M) = do(t)exp (x'B) (3.7

where Aq(¢) is the hazard function, the form of which does not need to be specified, of the appro-
priately scaled reference group and § is the vector of unknown regression coefficients which can be
estimated by the method of maximum pantial likelihood. This model has been used by Carter et
al. (1979) in preclinical cancer therapy to relate the risk of failure to dosage levels of cytotoxic agents
given in combination. Since it is reasonable to assume that the risk of failure decreaszes with in-
creasing treatment levels until a minimum is reached and then increases due to toxicity with in-
creasing treatment levels beyond the minimum point, a complete second order polynomial was used

to approximate x'8 in equation (3.7) for the obvious RSM application. An exploration of the fitted

surface followed.

When it 1« desired to relate the number of events that have occurred 1o a set of concomitant

variibles, a Foisson regression analysis is often appropriate. However, in many experimental situ-

alions counting variables exhibit extra-Poisson variability in the sease that there is more variability
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in the data sct than can be explained by the Poisson distribution. A gencralization of the Poissen
is the negative binomial distribution. The particular formn of the ncgative binomial was discussed
by Collings and Margolin (1985). Rac’s eﬂ'xéient score principle (1973) can be applied to test the
adequacy of the Poisson model. Solana et al. (in press) make usc of these results to model the mean
number of sister chromatid exchanges induced per ccll as a polynomial function of the concen-
trations of ethylnitrosourea and cis-diaminedichloroplatinum. The function used was a complete
quadr;tic with three additional higher order interaction terms. Such an analysis yiclded a more
complete description of the interaction occurring between these two compounds than had been

obtained previously.

In some applications binary (e.g. response/no response) responses are encountered. In such
situations it is often desired to relate the proportion, p, of responses 10 a set of concomitant vasi-
ables. Assuming a constant probability of response within treatment groups, this has been ac-

complished through use of the logit transformation of the binomial parameter, i.c.,

I"Té';' = Bo + Brxy + Baxy + - + By
The estimation of the mode! parameters and other aspects of the analysis of such data are given

by Cox (1977).

Such an approach bas been used to relate the probability of a favorable treatment outcome
10 the dosage levels of two anticancer drugs given in combination (Carter et al. 1977). The use of
a complete second order model was justified. The fit of the model was shown to be adequate and

the fitted dose response surface was explored and the estimated optimal treatment was obtained.

It sometimes is the case that there is more variability in the data than can be explained by the
binomial distribution. In such situations, the beta-binomial distribution, a generalization of the

binomial, has been useful.

The form of the beta binomial distribution was discussed by Segreti and Munson (1981).
As in the use of the negative binomial distribution to account for extra-Poisson vanability Rao’s

efficient score principle (1973) can be applied to test the adequacy of a binomial model. Chinchilli
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and Chinnici (1986) have uscd this approach to model the proportion of Drosophila melanogaster
cggs that hatch as a function of cxposure to caffeine and aflatoxin B! given in combination. -They
used a full second order polynomial to approximate the dosé-nspome relationship and found

extra-binomial vaniability in their data.

IV. SUBJECT MATTER APPLICATIONS

In the two previous RSM reviews, much attention was given to subject matter applications.
'.. the Hill and Hunter review, chemical and processing applications were illustrated, with real life
examples demonstrating canonical analysis and use of multiple responses. An example where a
canonical analysis provided some insight (“elucidation”) into the mechanism in question was also
given. The Mead-Pike review produced examples in the biological area. From our search, it is clear
that standard use of RSM has accelerated. In this section we separate applications that were re-
ported in subject matter journals from applications that are {inding use in industry. As expected,
many imaginative applications were found in the chemical and processing areas. But we were
somewhat surprised to find that uses have spread rather dramatically into other areas. We choose

1o highlight a number of applications here. 1n this survey of the subject matter literature, several

interesting facts become apparent:
i)  The central composite is used more than any other family of RSM designs.

i) While the methods of exploring the response surface have become somewhat more
sophisticated, users nevertheless are not close 10 making maximal use of the enormous
wealth of analytic tcols that are available. This is due, in lasge part, to the “lag time*
that naturally exists between the time at which a publication appears in the statistics
literature and the point at which it is adopted by subject matter users. However, as
in the case of many areas of statistics, our communication with the user remains
woefully inadequate. Perhaps the quickest medium of communication is through ef-

fzctive computer software. But in the area of RSM, there has been little planning and

leadership in this area of development, though there have been some recent rays of




iii) Nearly all practical RSM problems arc truly multiple response in nature. Many uscrs

handle multiple responses with some creativity but little sophistication.

In what follows, examples of subject matter applications are given in areas of science and engi-
neering, biology and biomedicine, and applications in management science, operations rescarch, and

food science.

4.1 Applications in Physical and Engineering Sciences

ln the late 70s scientists dealing in the important area of gas chromotograpby began using
RSM methods. Scott (1970), Swingle and Rogers (1972), Kambara et al. (1968), and Turina et al.
(1974) use variations of RSM to detenmine optimum conditions for gas chromotography. Morgan
and Jacques (1978) study relationships between flow rate, temperature, stationary phue loading,
and the responses, level of separation and analysis time. They indicate how helpful an under-
standing of the system comes from elucidating the nature of the response surface. Cross sectional
plots in this, a natural three variable system, were used to estimate the conditions where desirable
separation and analysis tirne were achieved. A modified simplex algorithm was used to demonstrate

the minimization of analysis time at flxed threshold values of peak separation.

Person (1978) used RSM notions to analyze containment leakage from a sodium fire. “Sen-
sitivity studies” were conducted in which a study was made of the influence of sodium mass, con-
tainment volume, radiation heat transfer coeflicient, and sodium oxide fraction on fraction leakage.
Prato and Morris (1984) studied the effect of detergent concentration, agitation time, and washing
time on the amount of soil removed frou: fabric. In order to underscore the natural application
of RSM and second order composite designs in human factors engineering type experiments, Simon
(1970) illustrates with a study involving three display panel-type vasiables and their cffect on target

recognition for airline pilots.

Olivi (1980) discusses the need for use of RSM in exploring and identifying certain features

of systems. He uses as a “typical” application a study involving five design vaiiables with an
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orthogonal central composite design. The application involves factors that influence ballooning

time, an important variable in nuclear safcty.

Bodden and Edwards (1982) use a Box-Bchnken design in an RSM study in the investigation
of the mechanism involved in the assay of cretinine. Claycomb and Sullivan (1976) use a three
factor central composite design and a ridge analysis of the data 1o illustrate the methodology for

selecting a cutting tool for maximization of profit.

Contour plots of constant response without an analytic method for finding optimum condi-
tios are often the source of conclusions drawn by RSM analysts. Such was the case in the work
by Bretaudiere et al. (1980) in 2 study of the Analine Aminotransferase Kinetic Assay. Fujiwara
et al. (1975) study the atomization mechanism in air-acetylene flames using response contours.
Burtis et al. (1981) used data from a central composite design to produce useful contours of con-
stant response and a canonical analysis that allowed for optimization of a kinetic method that ap-
plies to the enzymatic measurement of ethanol. Response contours are also the subject of
information obtained from a response surface analysis in which interest centers on formulation and
optimization of vitreous bonds in a paper by Chait and Fotlz (1981). The field of nuclear engi-
peering bas not been without studies involving RSM, particularly where simulation is involved.
Heller et al. (1977) use data from a central composite design to study .thc mechanism involved in
thermal-hydraulic margin analysis. Vaurio and Mueller (1978) use response surfaces generated from
reactor simulations to obtain probability distributions of selected consequences of a liquid-metal

fast breeder reactor core accident.

4.2 Applications in Food Science

The food industry has been a prime user of RSM since the early 1970°s. This is reflected in
study of content of journal articles and industrial usage as well. We cannot begin to cite all of the
work in this area. Johnson and Zabik (1981) use a mixture design to build a response surface to
study interactions among proteins in angel food cake. Lah et al. (1980) use a 2=} factorial with
an impressive application of steepest ascent to optun... . whipping properties of an ultrafiltered soy

product. R.G. Henika began using RSM at Foremost Foods in the carly 1970’s. His leadership
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resulted in usage by others even though many of the applications in this ficld involve rather pre-
carious or tricky pancl data from scnsory evaluations. The papers by Henika and Palmer (1976)
and Henika (1982) arc ertainly important contributions. In the latter, particular attention is paid

1o applications with scnsory data.

Second order models were used to find the nature of the system relating gelling properties of
a meat loaf analog to pH, salt content, cooking time, soil isolate, and egg white leve’. While formal
optimization proccdurcs. were not used, the response surface allowed Jao et al. (1982) to better
understand the mechanism. Desirable gelling properties can be obtained with reduced egg white

usage with proper manipulation of salt content and cooking time.

The extrusion of starch has important applications in food and industrial applications. El-
Dash et al. (1983) used response surface methods to find ideal operating conditions in this area of
technology. They discovered that, depending on the application, one can control levels of extrusion

temperature, screw speed, and moisture content to produce the proper level of gelatination.

Daley et al. (1978) used RSM to determine the optimal combination of soy, sodium
tripolyphosphate, and water to produce the most acceptable sausage-type product from minced
mullet. A central composite design was used to study the effects of calcium chloride and cysteine
on heat induced whey protein gelatin by Schmidt et al. (1979). After the parameters of a second
order polynomial were estimated, plots of the fitted surface were generated. Sefa-Dedeh and Stanley
(1979) made use of a central composite design to fit the percent of nitrogen extracted from a type
of meal as a complete quadratic in time of extraction, temperature of extraction and meal to solvent
ratio. The fitted polynomial was explored to estimate the levels of the independent variables asso-
ciated with optimal extraction of protein nitrogen. Mixture response surface methodology was used
by Huor et al. (1980) in conjunction with laboratory sensory evaluation and small scale consumer
tests to optimize the proportions of watermelon, pineapple, and orange juice in a fruit punch. Min
and Thomas (1980) utilized RSM analytic techniques to determine the relationship between ingre-
dients and physical characteristics of dairy whipped topping and optimize the ingredient concen-
tration by the simultanecus analysis of fat, com syrup solids, and stabilizer to produce a dairy

hipped topping which could be frozen for ctorage and distribution without adverse affects. Lee

58




and Hloscney (1982) used response surface methodology to optimize the formulation of single-stage
cake mixcs for whitc layer cakes. RSM techniques were used by Tseo et al. (1983) to'c_!ctermine'
the optimum combination of lcvels of washing temperature, washing ratio of .water volume to
sample weight and washing time on the quality of minced mullet flesh. Tong et al. (1984) used a
central composite design to study the effects of safflower oil concentration, emulsifier concentration
and freezing temperature on maximum overrun and fat destabilization of ice cream. McLellan et
al. (1984) used a rotatable experimental design to generate data for a sensory analysis of carbonated
apple juice as a function of levels of carbonation and soluble solids. The fitted surface for accepta-
bility was described as having a ridge of high acceptability running through the range of typical

soluble solids and carbonation levels.

4.3 Applications in Social Sciences

Much use has been made of RSM in certain areas in social sciences. Economics, operations
research, and system simulation are but a few fields that have benefitted. Shechter and Heady
(1970) use response surface techniques to design and analyze experiments from a simulation model
dealing with the feed grain program. Four responses, net farm revenue, pet farm revenue partic-
ipants, stock accumulation, and government costs were considered. Multiple response analysis is
discussed. In this case, the apalysis allows for an optimum decision rule regarding trade-offs be-
tween increasing farm income and reducing gbvemmcnt costs. Moantgomery and Bettencount
(1977) produced an excellent account in which the advantages of RSM methods in simulation
studies were reviewed. Heavy emphasis is put on use in multiple response studies. An interesting
illustration was given in which a simulation of a military tank duel is analyzed to ascertain the
values of two design variables (mean time to fire first round and mea..n time between rounds) that
give desirable values of four responses. They use a nonlinear programming technique to analyze

data taken from a rotatable central composite design.

Montgomery and Evans (1975) discuss the use of various classes of second order fesponse
surface designs in simulaticn work. Two variable cquiradial designs, uniform precision rotatable

ced’s and other designs are discussed. An illustration is given in which a simulation of a six inter-
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scction strect network system was used.  Data was taken using a rotatable ¢.c.d. with two design
variables. Canonical analysis revealed a maximum at the stationary point. The results produced
. optimum conditions on the sclection of traffic signal settings. Hunter and Naylor (1970) point out
that a simulation system is, indced, the source of an experiment similar to a biological or chemical
system and thus experimental design and RSM methods do apply. Factorial and {ractional factorial

arrays are discussed in the context of an inventory problem.

Smith (1975) made an empirical study of various optimum secking procedures that are fre-
quently used in computer simulation situations. The methods studied were random search, one
factor at a time movement, RSM Version / and RSM Version [l. Version I involves use of two-
level first order designs and the method of stcepest ascent, while Version 1] involved steepest ascent
with the use of the simplex design. In addition, acceleration versions of steepest ascent were
studied. RSM Version | appeared 10 give best results. Any attempt to accelerate the steepest ascent
procedure was fruitless. Biles (1981) describes a two phase procedure in which a complex search
procedure is employed followed by a second order analysis of the resulting data. An illustration

of the method is given from an inventory system.

4.4 Applications in the Biological Sciences

The techniques that comprise a response surface analysis are being used more and more often
in the biological sciences. This is evidenced by the large number of citations in the bibliography
of this report. In this section some of the more novel applications will be highlighted.

RSM techniques have been found useful in the study of the relationship between the chemical
structure of a compound and its biological activity. Mager (1982a, 1983) studied the structure-
neurotoxicity relationship of organophosphorous pesticides in this manner and used a canonical
analysis of the fitted equation to elucidate properties of the response surface. Mager (1982b) also
studied the activity of rnfamycin denivatives against a rfamycin-MS-resistant mutant of

Staphylococcus aureus.

Several references in the microbiologic literature, Maddox and Richert (1977), Cinto et al.

(1977) and Farrand et al. (1983), indicate the useful application of RSM techniques, including the




usc of rotatable central composite designs, to optimize nﬁcrobiological mcdia for the growth of
van'c;us microorganisms. Cheynicr et al. (1983) were able to demonstrate that a yeast isolated from
the digestive tubc of the larva of a parasite of eucalyptus trees was capable of bioconverting
citroncllal to citronellol. RSM procedures were used to achieve the optimization of the exper-

imental conditions for that bioconversion process.

Various industrial pollution studies have employed response surface methodology. Huck et
ai. (1977) determined the polymer properties and mixing conditions required to produce optimal
flocculation for mine waters of specified strengths containing iron, zinc, and copper ecither singly
or in combination. Wallis (1978) reperts on the use of RSM in studies related directly to power

station cooling systems.

Dincer and Ozdurmus (1977) used the method ot: steepest descent to determine the most
suitable combination of four independent formulation and process variables for the disintegration
time’ of coated tablets in simulated intestinal fluid. Shek et al. (1980) evaluated the potential of the
Nelder-Mead simplex search procedure for optimizing a capsule formulation. At the completion
of the search, these investigators fitted a polynomial model to the data and plotted the estimated
response surface. In a similar study Chowhan et al. (1982) studied the effects of moisture and
crushing strength on tablet friability and in vitro dissolution. They used a complete second order
model in the independent variables to graduate the response surface. The fitted model was explored
by plotting contours of constant response and estimating the location of the stationary point. Fast
et al. (1983) used a central composite design with five independent variables in an assay for creatine
kinase. A simplex maximization algorithm was used to determine areas of maximum sensitivity.
Belloto et al. (1985) used RSM to study the solubility of pharmaceutical formulations. They also

discussed the optimization of one response in the presence of constraints due to the consideration

of other response variables.

There are numerous reports in the clinical chemistry literature on the use of response surface
metheds. Rautela et al. (1979) describe the theory and application of the response surface approach
to simultaneous optimization of multiple interdependent variables. .They point out that such an

approach permits the determination of accurate optima which is required for the formulation of
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analytically rcliable clinical methods. Thompson et al. (1981) report on the use of simultancous

RSM optimization techniques to optirmize an assay for alkaline phosphatase. London et al. (1982) -

usc RSM 1o optimize the assay of gamma-glutamyltransferase. The authors note that while such
technigues do not yield a mechanistic understanding of an enzyme assay they do produce an oper-
ational understanding of how an assay functions. In a similar paper, Coleman et al. (1983) use:

RSM to optimize assays for antithrombin 111 and plasminogen.

Roush et al. (1979) discuss the usefulness of a RSM approach in poultry nutrition research.
Body weight and feed convcrs;ion response for Japanese quail were optimized as functions of protein
and energy levels. Heady et al. (1980) express egg production as a quadratic function of the
amounts of corn and soybean meal with time as an independent variable. Contours of constant

response were generated to help determine the least cost feed mix. Roush (1983) utilizes a central

" composite experimental design with male broilers to examine quantitatively the protein levels in

starter and finisher rations and the time of ration change to optimize body weight, carcass weight,
feed conversion, and net profit. The optimization was done for each response variate independently

of the other responses.

Response surface methods have been used to clucidate the actions and interactions of
cytotoxic drugs in combination and to estimate the optimal levels of each drug for the treatment
of cancer with and without side effect constraints. Carter et al. (1983) discuss the use of logistic and
proportional hazards regression models to this end. These authors give software for the estimation
of the stationary point and confidence regions about its location obtained from the use of these
models. The history of the use of RSM in cancer rescarch has been reviewed by Carter and
Wampler (1986). While the examples used involve data from animal studies there is interest ia
applying these techniques to clinical studies. The biggest change required to accomplish this will
be in the design of the studies. The classical clinical trial in cancer research results in a number of
patients being randomized to two or more treatment groups and followed until an event occurs.
The number of patients assigned is determined so that there is a reasonable chance of detecting a
difference of a predetermined. size among the treatment groups. While such an approach provides

considerable information about a few treatment groups, it does not offer much about the underlying

s9



dose response rclationship. Box (1958) in a discussion of a paper by Mantel (1958) was early to
suggest the usefulness of RSM in this area. Currently the Mid Atlantic Oncology Program is run-
ning a clinical trial in the study of breast cancer that is designed as a factonial experiment and will

be analyzed using response surface techniques.

4.5 Industrial Use of RSM

The 1980°s brought a new urgency in industry in the U.S., an urgency that underscores the
need for quality. There is a new motivation in American industry brought about by the success
enjoyed in Japan in the use of Quality Control and efficient statistical methods. The areas of ex-
perimental design and, specifically, response surface methods are receiving considerably more at-
tention than ever before. This new and renewed interest are “fallout’ from this search for quality

and precision.

In our communication with industrial statisticians and research workers, we found use of
RSM among a wide variety of types of industrial companies. In most cases they sought and, of
course, were promised anonymity. As expected, we found response surface analysis and design in
the chemical industry, and we were able to uncover a growing number of applications in the areas
of foods, tobaccos, military research, pharmaceuticals, petroleum, electronics, and many other

fields. Our scarch did reveal some interesting but not unexpected information:

i)  Aside from the central composite and s0x-Behnken designs, fractions of 2-level fac-
torials and Plackett-Burman designs are used 10 a large extent, with the simplex design
used in conjunction with the Nelder-Mead Simplex Search Algorithm. There is also

a growing usage of computer generated RSM designs.

i) In regard to RSM analysis, some analysts carry the computations through to an opti-
mization phase, while others do not. Ridge analysis is used for finding candidates for

optimum operatirig conditions though usage is not as extensive as one might expect.

Some users merely use graphical methods with overlaid contour plots.




There is no universal softwarc tool for doing RSM analysis. In particular, somc uscrs use
IMSL (Intcrnational Mathematical and Statistical Librasies) subroutines, while some resort 10 iq-
house software versions for finding optimum conditions. Some users in industry appear frustrated
by the lack of software for finding optimum conditions and resort 10 two dimensional contours for

analysis.

In what follows, a sample of RSM scenarios is given that apply to actual RSM users in in-

dustry. We have attempted here to give samples across many fields of application.

A tobacco company uses RSM as a primary tool for elucidation of fundamental relationships

and searching for optimum conditions in the case of nearly every new product considered in a re-
ch effort. They use no software for design construction but use in-house software developed
from numerical apalysis algorithms for analysis. The latter allows for optimization under various
types of constraints on the dzsign variables. The designs used vary considerably. For problems
where cost is important, Plackett-Burman screcning designs are used and hybrid and small com-
posite designs are used in the second order case. Central composite and Box-Behnken designs are
used extensively. Problems are almost always multiple response in pature, though the responses
are 100 many in number to often do formal multiple response optimization. Some of the responses

ase discrete “scores” from sensory analysis but many responses are naturally continuous in nature.

A large oil company uses RSM 1o a moderate extent. Applications vary from polymer opti-
mization to the exploration of a detergent system. In some applications the design vanables are
of the mixture type. Mixture variables and process variables often occur in the same setting. The
computer program, ACED (sce Welch 1985), is often used to generate the design in the mixture
situation. Basic 2-level factorials and central composite designs are also used. In some cases, de-
termination of optimum conditions is important. The algorithms in GRG2 (see Cornell 1981) and
XSTAT (1984) are generally used to find optiroum conditions. This company also envisions con-
sidering RSM in the future for plant scale problems dealing in perhaps more than 1000 variables,

i.c., allow the technique to play a role in control theory.

A chemical company finds that RSM design and analysis can be used to solve two types of

problems. The first is a region seeking procedure in which one is seeking the general vicinity of




“best” operating conditions. The mecthod of EVOP described by Box (1957) is used with slight
modification. Steepest ascent has been used at times with little success. Some success has been
expericnced with the Spendley et al. (1962) simplex algorithm. A computer program has been
developed which makes use of various types of designs, allows input of experimental results, and
calculation of the next experimental run. It has been found that the most difficult aspect of this
procedure is obtaining from the experimenter a commitment on combining response values from
the multiple dependent variables so that the simplex will move. In the sccond problem encountered
by the chemical company, they are near the optimum and wish to locate or confirm its exact lo-
cation. Central composite designs are used a'lmost exclusively. Small composite designs are often
used with no concern for cither orthogonality or rotatability. An in-house program is used to
construct central composite designs for researchers. The model fitting aspect of the analysis is done
by the all possible subset procedure in BMDP. Optimization is “accomplished” with two dimen- i

sional contour plots.

A large food cormpany uses RSM in several cases. It is used in product development in de-
veloping new products and in cost reducing old products. The responses are either continuous
variables or consumer acceptability ratings. RSM is also used in process control and in the evaluy-
ation of new equipment. Generally, for first order models, 2-level factonial or Plackett-Burman
designs are used. In the case of scco;nd order models, Box-Behnken designs and central composite
designs are used. At times, the c.c.d. is resisted by the experimenter because five levels become in-
convenient because it is difficult to adjust equipment accordingly. Errors in controlling factor levels

occur quite often.

Another large and well diversified chemical company makes use of RSM on a research level.
This company has a large group of professional statisticians and an in-depth program to teach basic
experimental design o engineers and scientists. They make use of an in-house computer program \
that assists non-statisticians in designing and analyzing experiments. The program involves contour
plots and optimization routines. There is great potential for use of RSM in this company, and
most problems are multiresponse in nature. Mixture problems are the rule, and an ajgorithm has

been programmed in-house to generate mixture designs descnibed in Thompson and Myers (1968).
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Extreme vertices designs are used as well.  In addition, considerable use is made of the ACED

(Welch, 1985) algorithm for design construction.

A large research and development organization makes use of RSM in several topical areas,
including chemical and fermentation optimization and development of consumer food products.
In addition, it is also used for oplimization of settings associated with processes in the refining and
hydrogenation of vegetable oils. In almost all cases, “optimization’ requires arriving at the most
agreeable compromise among various conflicting responses. In the case of two design vanables, the
choice of best conditions is found by use of graphical overlay contour plots. For more than two
variables, a utility function is constructed and a Nelder-Mead simplex optimization routine is used
to identify an acceptable region in the design space. In some instances ridge analysis is used to ei-
ther find optimum conditions in a single response situation or to find regions for subsequent cx-
perimentation. The class of central composite designs is relied upon heavily. Blocking is often
required and c.c.d.’s are used which block orthogonally. At times rather involved constraints are
induced on the ‘optimum” conditions. !a this case they use “brute force” grid search routines that

are supplemented with confirmatory nais.

A consulting firm used the results of an RSM study to develop a generic method for evalu-
ating submarine tracking algonthms. Simulation experiments were conducted under common sets
of scenarios and then algorithm performance was evaluated according to the behavior of the re-
sponse surfaces generated. RSM is also under consicieration for several sonar operator studies to
determine the effects on performance of various processing schemes. Their analyses are performed

using [MSL subroutines.

V. FUTURE DIRECTIONS OF RSM

To comment about future directions of RSM, one must ponder the present status with regard
to utilization and importance. [t is rather uafortunate that the expanse of knowledge gained over
the past 25 vears in RSM has not blossomed into a full-scale deployment of the techniques devel-
oped in this area. As we indicated earlier, RSM is being used in industry more and more, but the

use does not reflect recent advances as much as one might wish. This is true more in analysis than
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design. The “fallout” of the recent, almost passionate, ‘push” for quality and experimental design
in industry is bringing RSM to the attention of many potential users. However, usage lags far be-
hind its potential. Several factors may have contributed to this, the most prominent of which we

belicve are explained in the following paragraphs.

There is a severe lack of communication between academic statisticians in this country and
those in industry. There are some atiempts at communication and few successes. This is true in
many areas, not merely RSM. One testament to this is the fact that Japanese statisticians give
lectures and short courses to industrial companies in this country on effective use of experimental
designs that are based, in large part, on basic concepts developed in the U.S. years ago. There is
no question that the historical underpinnings of RSM were produced with particular applications
in mind When we move away from reseaich that does not have particular problem solving as
motivation, 'we lose our line of comsunication. Statisticians in academia bear much but not the
entire burden. They have little access to what is actually going on in industry as far as the de-
ployment (or lack of it) of RSM ir. concerned. This can be partly attributed to the fact that
“sometimes, those in industry are dissuaded from publishing for fear of revealing proprietary infor-
mation’, as Gerald Hahn (1984) explains. As a result, some of the research that has been under-
taken in RSM was not geared to solving a particular practical problem. Even a search of the
literature, statistical or otherwise, in an effort to find a real data set to use in an example, can

sometimes be unwieldy.

There is a severe software problem. It is unfortunate but true that data analysts are attracted
to statistical techni jues for which software has been written. There are many historical illustrations
of this in our field. Good efficient, well documented software is a swift and sure fora of commu-
nication. As we indicated in a previous section, there is no commercial up-to-date RSM package
for doing analysis. Of course, there are many new available packages for comstructing experimental
designs, and RSM designs are the subjects of some of these packages. But as it was expressed in

the Steinberg and Hunter experimental design review, the ‘expert system” for design generation is

not near, particularly in RSM situations.




There is apathy on the pant of some practitioners who cither belicve that RSM is of little use
to them, or simply ignore new developments in favor of antiquated, and often ad hoc, methods.
There is also insufficient training in RSM. In academia, very few statistics departments offer a

course in RSM. In industry, little exposure, if any, to RSM is provided in the form of short

|
! courses.

Tte review paper by Steinberg and Hunter (1984) along with the several discussion papers
that followed it have expressed concern about the above-mentioned communication problems and
| offered several remedies. We believe that greater emphasis should be placed on the teaching of

RSM. A better cooperation and more formal lines of communication between academia and in-
‘ dustry is needed. Statisticians, scientists, and engincers can leam and benefit from one another.
This fact is certainly not specific to RSM but applies more bruadly in our profession. Far too many

academuicians conduct and are rewarded (i.e., tenure ard promotion) for research in which math-

emat’  ‘legance i3 far more prominent than application to real problems. More academic re-
st + -~ need to let their work be motivated by real problems, much like the case of Box in the

early 50's and Scheflé with the development of mixture designs in the mid 50°s. New developments

in RSM should be made accessible to practitioners and research workers with the proper software.
In retum, engineers and applied statisticians working in industry should make a genuine effort to

share their experience with those in academia.

There is no doubt that many scientists and engineers can benefit from tools of RSM but do
not know that they ex.ist/ We do not presume that this is a problem solely with RSM. Our earlier
comments may very well be relevant in regard to ail areas of applied statistics. However, the
eaormity of the problem becomes evident when one “reaches out” and essentially contacts and
interviews many scientists in industry as we have done. In what follows, we indicate what, in our

opinion, are proper directions for future research. But let us emphasize that users are sufficiently

TEE LT .8 P S . e Tmmwss m v v.-

“far behind” in use of RSM tools that the need for proper communication is far more pressing.
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Future Research Directions

Multiple responses., sequential dcsigﬁs and analyses, and designs for the less orthodox RSM
applications are many areas where one may benefit from immediate research. Both design and
analysis involving multiple responses have received precious little attention in spite of the acute need
for it. Biologists as well as engineers are finding applications of RSM in which the model is non-
linear, e.g., logistic and other standard growth models. A fruitful area of research deals in the study

of designs or cenain specific nonlinear functional forms.

Much has been written, of course, about computer generated design. The comments on the

Steinberg- Hunter review reflect the general opinion that computer generated designs present 4 very
promising area for the future. This is certainly true in regard to the field of RSM designs. The
“danger’ that is projected by concemned academicians is even more acute in the RSM area. Many
(though not all) methods of generating experimental designs employ special criteria that do not
address robustness notions such as model misspecification, anticipation of outliers, errors in control,
extrapolation, etc. Model misspecification is the most crucial of these since one often presumes
from the outset that the model is empirical and is, indeed, an approximation. All of this suggests
that preparing for the nonideal and very detailed interactive properties are high priorities in a com-
puter generated RSM design. We would like to underscore the opinion that construction of the
“expert system” in computer driven design must be a product of considerable deliberation and pa-

tience.

There appears to be some need for the development of nonparametric techniques in RSM.
Most of our analytic procedures depend on a model. The use of model-free techniques would avoid
the assumption of model adequacy or low crder polynomial approximations and, in particular, the
imposed symmetry associated with a second degree polynomial. The use of nonparametric kernel

estimation shcws some promise.

Analytic methods need to be developed for the case of repeated measures and other situations

where correlated observations are encountered. This is a frequent occurrence in biological appli-

cations.
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