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i. INTRODUCTION

In the November, 1966, issue of Technometrlci, a paper 'A Review of Response Surface

Methodology: A literature Survey' by lill and Hunter appeared. That particular revicw empha-

sized practical applications in the chemical and processing fields and featured an excellent bibli-

ography. In the December, 1975, issue of Biometrics, "A Review of Response Surface Methodology

from a Biometric Viewpoint' by Mead and Pike appeared. Emphasis was put on biological appLi-

cations, and a much broader dcfinition of RSM was made than that of the Hill and Hlunter paper.

In the Hill and Hunter review, the authors state that RSM began with the work by Box and

Wilson (1951). In the Mead and Pike paper, they move back the origin of RSM to include use of

"response curves' dating back into the 1930's. Such items as probit analysis, the use of Mitcherlich

response equations, and the early work in factorial arrays by Yates (1935) are mentioned as prob-

able motivators of the work by Box and co-workers. In reality there are diverse notions as to what

is the proper list of topics to be included under the response surface umbrella. This is not surpris-

ing. The term response surface analysis could be taken as any analysis dealing with a fitted function,

thus accommodating a large collection of techniques. Others view the term as implying a much

smaller collection of tools. This confusion is due in part to the very general, perhaps even unfor-

tunate, name response surface. The name implies something which is broad and all consuming.

Yet it is interesting that all too many subject matter scientists, many of which are experienced in

the use of statistical tools, are not aware of the term response surface analysis or of the problems

it addresses.

There is no question that the motivation for the work by Box et al. was the general and

perhaps ancient problem of planning and analyzing experiments in a search for desirable conditions

on a set of controllable, or design, variables, desirable often being defined more strictly as those

conditions which give rise to optimum response. We often refer to this problem in a more general

setting as one of exploring an experimental region, or exploring a response surface. This gives rise

to the inevitable applications in the chemical and process fields and the historical attraction to the

subject by Technometrics readers. We wish to make it clear to the present Technometric.s audience

that it is not our intention to travel the broad base of experimental design or to review the many
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aspects of model building. For examplc, wc wish to minimi&.c any overlap with the recent

Technometrics reviews by Steinberg and ) lunter (1984) in experimental design and I locking (1983)

in regression analysis, though some overlap with both will be necessary. ( is to provide

a review of important developments in response surface methodology, with the definition being

confined to that of a collection of tools in design or data analysis that enhance the exploration of

a region of design variables in one or more responses. -W,-w*i emphasize developments in the

statistics literature that have appeared since 1966 but w~l make reference to some pre-1966 work

where historical perspective is necessary.

In terms of subject matter applications, -we will not at all confine ourselves to applications in

the chemical and processing fields. -W -feel that one of the more important items to report is the

breadth of application of RSM that has evolved in the last 20 years. Applications have expanded

to areas such as ortions research, nuclear energy, defense systems research, cancer chemotherapy,

and many others. We-sh&ll reviewi'he spectrum from theoretical developments to practical notions

of current software availability in both the design and analysis aspects of RSM. Design and analysis

will be treated separately though the user must treat the two together in his total analysis. The

original intent by Box and company was to highlight a strategy--both experimental and analytic.

Yet precious little research employs a simultaneous consideration of both of these aspects. Finally,

_----w atirnptia-offer suggestions regarding the important areas for future research and future impact
- t - : 1 /-,

of RSM . - ' . '- r , . :,-; . .. , ,. .

The experimental strategy and analysis in RSM revolves around the assumption that a re-

sponse il is a function of a set of design variables x,, x2, ...., x, and that the function can be ap-

proximated in some region of the x's by a polynomial model. Prominent among the models

considered are the first order model

1l " 0 + [3XI + ""+ Pk/t-r I1

or the second order model
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Also in certain instances in the sequel we will deal specifically with nonlinear models. In what

follows, response surface design is treated, with some historical perspective given, followed by many

specialized areas such as mixture designs, design robustness, alphabetic optimal design theory, de-

signs for nonlinear models, and many others. This is followed by a treatrrent of response surface

analysis featuring multiple responses, sampling properties of optima, and analysis for models other

than polynomials. The paper then features subject matter applications, with emphasis on industrial

usage. Finally, software availability is reviewed and potent'A! areas for future directions and re-

search are discussed.

It. RESPONSE SURFACE DESIGN

In ibis section we deal with several aspects of response surface designs, beginning with the

"where we were' status of response surface design in the mid 60's. We consider three very general

areas:

i) design classes

ii) optimality criteria and choice of specific designs that achieve certain important prop-

erties

iii) designs which accomplish special design goals or have special design features.

Item (i) may be viewed as design families, e.g., composite designs, classes of three-level designs, etc.

Item (ii) reviews criteria from which choices of design parameters in (i) can be made; for example,

the choice of a composite design that is rotatable, or the choice of a three-level design that is D-

optimal. In item (iii) we consider less general topics such as designs for nonlinear models, robust

designs, designs for mixture problems, designs for estimating slope. etc. One may historically view

the development of RSM designs as taking on these three general areas of concentration. The user

has relied heavily on the application of properties Lnd criteria in (ii) and special features in (iii) to

3



design families in (i) that can be used in practice. In these areas much progress has bccn made since

the mid 60's.

2.1 Status of Response Surface Design in Mid 1960's

Among the many important works that preceded the Hill and Hunter review, three are note-

worthy here. The first was the benchmark paper by Box and Wilson (1951) in which the notion

of composite designs was introduced. The introduction of the 'axial portion' to augment a two.

level factorial array was done to allow for efficient estimation of quadratic terms in the second order

model of equation (1.2). This class of designs allows flexibility in thechoice of the axial parameter

and number of center runs. This would later prove very beneficial as more sophisticated properties

and criteria evolved. More details regarding the composite designs are given in section 2.2. Sharing

the sphere of influence with Box-Wilson is the Box-Hunter paper (1957) in which the notion of

rotatability was introduced. The property of rotatability requires that the variance of a predicted

value remain constant at points that are equidistant from the design center. Rotatability was and

remains an important design property. The reader can gain insight into its importance by observing

that in much of the RSM design research that appeared in the late 60's and 70's, investigators began

with the presumption of rotatability. No one doubts the elegance of the work that led to the

rotatability property. Most prudent consultants in RSM do not recommend designs that have

considerable deviation from rotatability. The influence of the Box-Hunter work was enhanced

greatly by the fact that the conditions for rotatability are so easily attained in the case of first and

second order designs.

A third very influential piece of work of the 50's and 60's appeared in Box and Draper (1959,

1963). It was an introduction of the notion of robustness of an RSM design to model misspecifi-

cation, though the word 'robustness' was not used in this regard until later. A mean squared error

type of design criterion was introduced which accounts for bias introduced when the fitted RSM

model is a polynomial of lower degree than the *true' model. Convincing arguments are made that

not only can bias not be ignored but that if there is even a modest amount of misspecification, the
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approach of choosing the design that 'protects' against bias does not deviate substantially from that

of minimization of mean squared error.

The fundamental philosophy of the Box-Drapcr work centered around the consideration of

the average mean squared error

Em RE ( - o)g(a)I

where .y() is the fitted polynomial of order d, and g(&) is a model of order d, > d, containing un-

known parameters and is regarded as the *true' mean response or at least it can be viewved as the

model that one chooses to protect against. Here, R is the region of interest in the design variables,

K is the reciprocal of the volume of R, N is the total number of observations, and a' is the error

variance. The expression I divides into the sum of the variance and squared bias averaged over the

region R. The notion of a minimunm bias design was introduced. In the formulation presented here,

the minimum J design cannot be achieved and evidence was put forth that a strategy of design

choice that minimizes the bias portion of J is an effective approach across a broad range of model

misspecification. The importance of the Box-Draper work lies in the fact that much of the more
specialized RSM design work that followed into the late 60's and 70's was flavored by the now es-

tablished need to consider model underspecification in any serious attempt in developing optimal

designs.

While much of the foundation of very fundamental work was established by that cited in the

"*" foregoing, the appetite of the practical user of RSM had been satisfied by the establishment of

families of useful experimental designs for first order and second order models. In the fist order

case, the need for orthogonal designs was nmotivated in the Box-Wilson paper, Box (1951), and an

excellent text Design and Analysis of Industrial Experiments by Davies (1954). Specific design

classes, two-level factorial and fractional factorial designs had been discussed at length in Box and

Hunter (1961a, 1961b). Simplex designs and Plackett-Burman (1946) 6csigns were available as

economical first order orthogonal designs. For second order models, many subject matter scientists

and engineers have a working knowledge of the family of central composite designs and a class of

special three-level designs by Box and Behnken (1960). Another important pre-1966 contribution



came from Hartley (1959), in which an effort was made to reduce the number of runs in the com-

posite design from those that had earlier been suggested. It also allowed for more flexibility in

choosing two.level fractions for the cube portion of the composite design.

The majority of response surface real-life appLications involve the use of a first or second order

m.,jdel. Where a second order model is inappropriate, a nonlinear model is generally used. How-

ever, there are instances in which a third order model is successful, and thus them is a need for third

order designs. By the mid 1960's, a majority of the work dealing in third order designs essentially

involved searching for designs that possess the property of rotatability. Included are papers by

Draper (1960, !961, 1962), Gardiner et al. (1959), and Herzberg (1964).

In the following sections we provide reviews of what we feel are important RSM design top-

ics, with the chronology, for the most part, beginning in the mid 1960's. We begin with specific

families of second order designs, with some emphasis put on alternatives to the central composite

designs, though the latter remains the most flexible and thus most popular family of second order

designs used in practice.

2.2 The Central Composite Design and Alternate Design Plans

The central composite design (c.c.d.) is a special case of the class of composite designs in

which the construction consists of three portions:

i) The 2k vertices of a cube (or a fraction of these vertices)

ii) The 2k vertices of a cross-polytope or "star', or axial portion with parameter a

iii) A chosen number, no, of center runs.

The points in (i) form a two-level factorial or fractional factorial array. The points in (ii) essentially

form an augmentation which represents a one-factor-at-a-time portion designed to provide esti-

mation of the 0,,, the pwre quadratic terms in equation (1.2). Center runs in portion (iii) obviously

provide an internal estimate of pure error variance. The choice of the number of center runs is ver:.

important to the practitioner. Figure I provides an illustration of the c.c.d. for k = 3 design vari-

ables.
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0,0,-a

Figure 1. A Central Composite Design for k =3 Design Variables

The design levels arm centered and scaled to design units with :k I being the levels in the factorial

portion and the parameter a being the axial distance as indicated in Figure 1. In large part, the

appeal of the c.c.d. is derived from its flexibility and due to the fact that it is a natural design plan

for sequential experimentation, since the factorial portion and center runs served as a preliminary

phase from which one may fit a first order model and yet gain evidence regarding the importance

of pure quadratic contribution. If pure quadratic terms are found to be significant on the basis of

the preliminary analysis, the design may be augmented with axial runs for the completion of the

second order fit. For a fundamental look at the central composite design, the reader is referred to

Davies (1954), Myers (1976), Box et al. (1978), and Cochran and Cox (1957).

Much of the flexibility of the central composite design is derived from the user's choice of a

and ne. There are many criteria used for the choice of these param-eters.

Choice of a

For a > k",2, the axia points are further from the design cen:er than the factorial points. A

value a = (F",where F is the number of factorial points, guarante-es rotatability. Rot~atability in

the c.c.d. was prominent in the early response surface design resrarch in the late 50's and 60's.

However, other criteria such as robustness to model misspecificalion, quality estimation of the

*., . . . .v . .. .



slope, robustness to errors in design levels, robustness to outliers, generalized variance of model

cocfficients, and orthogonal blocking are among the important considerations for choice of a con.

sidered by researchers. All of these are discussed in later sections where these topics or criteria are

introduced. In many cases, of course, the property chosen by the experimenter cannot be satisfied

with the rotatable value a - (F)114. It is generally considered that while exact rotatability is not

necessary in practice, a substantial deviation is not wise.

Choice of n0

The choice of the number of center runs is a vital ingredient in the successful use of the central

composite design for the construction of a second order response surface. Centts- runs have long

been considered important as a source of replication error in the analysis. From Box and Hunter

(1957), it becomes apparent that the early research into the proper choice of ,% presumed the design

in question is indeed rotatable. The recommendation was to choose no for which uniform Infor.

mation, or uniform precision is achieved; this property provides approximately a uniform value of

Var y(,z) inside a sphere of a specific radius. The purpose of this, of course, is to produce a stability

in the prediction variance in the region of interest of the design variables or, rather, to control the

prediction variance in such a way that equal precision in prediction is achieved everywhere in some

portion of the design region. It is a natural extension to the rotatability property, the foirmer re-

quiring Var y(z) to be constant on a sphere. However, there has long been confusion among users

about what constitutes this subregon. See Draper (1982). The original Box-Hunter definition of

uniform precision requires n% to be chosen such that Var ;(A) is approximately constant inside a

sphere of radius 1.0, with the metric of design units requiring scaling so that the second moment

of the design variables is unity. In the metric of the standard ± I scaling for the factorial portion

of the c.c.d., this is equivalent to a radius p - F + 2/ 2 . -As an example, if a uniform

precision rotatable design for k - 2 is constructed, the axial parameter a - ý" and no 5. (See

Myers (1976)). The implication is that the prediction variance is roughly constant inside a sphere

of radius p , - 0.83. This does not seem particularly pleasing in light of the fact that, in
ý13

this case, all design points are at a distance p = - from the design center, and no control is ex-

erted on Var y(,k) at a distance which approaches the perimeter of the design region. Thus the

I.,
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property of uniform precision does not guarantee stability in Var y'(z) everywhere in the design

region, and yet this fact is either overlooked by or unknown to subjcct matter users.

As we have described here, many of the recommendations regarding the number of center

runs for a c.c.d. have been confined to the rotatable c.c.d. Lucas (1977) offers alternative ideas on

number of center runs for both the family of composite designs and other designs. An excellent

general discussion of center runs in ,esponse surface designs appears in Draper (1982).

2.3 Orthogonal Blocking

The central composite design is the second order family that is rich in candidate designs that

block orthogonally. The latter describes a condition in which regression coefficients are orthogonal

to block effects and thus the analysis can be conducted with minimal effort free from blocks. Box

and Hunter (1957, 1961a, 1961b) developed the general conditions that give rise to orthogonal

blocking in the second order case. The Box-Behnken design also gives rise to orthogonal blocking

in some situations.

2.4 Other Second Order Designs

Though the central composite remains the second order design family that is most often use(,

there are other design classes that arc attractive in various circumstances. We earlier made reference

to the class of Box-Behnken designs. The Box-Behnken designs can be very useful in cases when

it is important that three levels be used. In what follows, we review other second order designs that

appeared in the literature after the 1960's.

Hoke Design

Hoke (1974) developed a class of economical second order designs based on irregular fractions

of the 3A factorial plan. These fractions are based on sets of partially balanced arrays and are

compared to Box-Behrken and other competing designs.

9



Hybrid Dcsign

Roquemore (1976) developed a family of second order designs for A - 3, 4, 6, and 7 that are

either saturated or near saturated and have some similarities to the central composite design. The

design for k variables is constructed by augmenting a (k - 1) dimensional central composite design

with an additional column in the design matrix. The values for the additional column are chosen

to achieve design moment characteristics that allow a degree of orthogonality that is similar to that

of the c.c.d. It is of interest to show an example. For k - 3, we have the following design matrix

xI xiac

I - 1 0.6386'
I 1 0.0386
1 - i 0.6386
1 1 0.6386

D 1.1736 0 -0.9273
D -1.1736 0 -0.9273

0 -1.1736 -0.9273
0 1.1736 -0.9273
0 0 1.2906
0 0 -0.1360

Note the central composite type structure in x, and x3 while constant levels in x3 reside at the fac.

torial portion and the axWia portion of x, and x3. In addition, two points enter along the axis of

x3. Center runs am also suggested. The constants in the design am determined so that all pun

second moments are equal and all odd moments are zero.

Other Second Order Economical Designs

The work by Hartley (1959) cited earlier and additional work by Westlake (1965) and Draper

(1985) produced a class of designs called small composite designs. These are central composite de.

signs but they are worthy of special note because, like the class of hybrid designs, they fnd con.

siderable use when experimentation is costly. The designs allow considerable reduction of cost

below what is required by the original and perhaps standard concept of the c.c.d., the latter re-

quiring the design to contain a full 2' or a fraction of resolution V or more, combined with the axial

portion. The purpose of this restriction, of course, is to allow orthogonality among the linear co-

efficients and two factor interactions in the second order model. The notion of "small' composite

results from the fact that additional information on linear coefficients is obtained from the axial

10



portion of the design though the intcraction coefficicnts arc estimated only from the factorial por-

lion. One may take advantage of this by using as the factorial portion a fraction in which linear

coefficients arc aliascd with two factor interactions. An example of a small composite design for

three design variables is given by

Sxt x0 x
-I -1 -i

! I -1
I -l 1

a 0 0

0 -a 0
0 a 0
0 0 -a
0 0 a

The above defines a saturated second order design in which all coefficients in the standard second

order model are estimable. Draper (1985) demonstrated that in some cases, Plackett-Burman de-

signs can be used in the factorial portion.

The classes of small composite designs and hybrid designs are by no means the only choices

that are available when one seeks a saturated or near saturated second order design. For example,

Notz (1982) suggested a method of constructing designs that are very efficient in terms of general-

ized variance, i.e., D-efficiency. (For more complete details on the use of D-efficiency and D-

optimality, see Section 2.5.) His designs am saturated and constructed from the 31 lattice. For

saturation, we have N - -- (k + l)(k + 2) - p, the number of parameters in a second order model,
2

and the design matrix is given by

[ DI

where D, is a (p - k) x k matrix chosen as a specific irregular fraction of a 2h, whereas D2 is a

k x k taken from (0,l1) with at least one coordinate being zero. For example, the/A = 3 design

matrix is given by

II
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xI x3  X)

I I I.
I 1 -1
1 -1 1

-1 1 1
I, - 1 -I

-1 1 -i
-i -l 1

1 0 0
0 1 0
0 0 1

The designs are shown to compare favorably (in the sense of D-cfficiency) with other economical

second order designs.

Box and Draper (1971, 1974) produce practical designs that arm saturated, efficient from a

generalized variance standpoint, and contain four levels for each variable. An example for k - 3

is as foUows:

xI xl xIl

"-1 -1 -1
1 -l -l

-1 1 -1
-l -1 1

)X -1 l

X1 X2 X3

jIL 1 1
I tt I
1 1 j1

where)7. - 0.1925 and 1, - -0.2912. T'he kandjranacchosen to minimize the generalized variance

of the regression coefficients in the second order model.

During the 70's and early 80's much of the work that resulted in the development of new

second order designs revolved around the concept of D-optiznality and D-efflciency. Some of this

work produced designs that are very practical and, from the foregoing, one can see that many useful

saturated or near saturated designs came from that search. The consideration of D-eficiency and

D-optirnality also produced other interesting results that allowed for a better understanding of the

comparison of competing designs. In a very interesting and timely paper by Lucas (1974), he em-

phasizes that in terms of generalized variance, if there is an experimental region fixed by practical

I2



considerations (say a cube or hypersphcre), the optimum central composite design is one in which

the experimental points are moved to the edge of the experimental region. If the permissible ex-

perimcntal region is a hypercube, the factorial points should be at the vertices of the hypercube

(* 1) and the axial parameter a - 1.0. If the region is a hypcrsphere with radius .Y&", then the

optimum o - /T

2.5 Application of Criteria Dealing with Optimal Dw3ign Theory

The important development of optimal design theory in the field of experimental design

emerged following World War 11. It was motivated by various authors including Elfving (1952,

1955, 1959), Chernoff (1953), Kiefer (1958, 1959, 1960, 1961, 1962a, 1962b) and Kiefer and

Wolfowitz (1959, 1960). Kiefer, in particular, was instrumental in providing the mathematical

groundwork for optimal design theory. Actually, the origin of this theory can be traced back to a

paper by Smith (1918). Some early work in this area was done by Wald (1943) and Mood (1946).
4,ý

Optimal design theory has clearly become an important component in the general develop-

ment of experimental design for the case of regression models. It also had an impact on how re.

searchers viewed and proposed response surface design criteria in the 1970's and early 1980's.

Methods were proposed for choosing RSM design parameters and developing second order eco-

nomical designs through the use of this theory. Though no one can reasonably deny contribution

and impact of optimal design theory, there are many who feel as if its use in RSM design work

should be done with extreme caution. In fact, the contrast in the views concerning this issue has

resulted in what some refer to as the 'Kiefer approach' and others refer to as the 'Box approach".

In Kiefer's approach a design is a probability measure, s, defined on a closed and bounded subset

X of a Euclidean space of dimension equal to the number of design variables in the fitted model.

Hence, this measure must satisfy the conditions

s(x) z 0 for all a c X

13
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In particular, a collection of N points in X, not ncccssarily distinct, form a design measure. In this

casc

nt/N if 4 is a dcsign point (i- 1, 2 .... m)•,•).(2.1)

0 otherwise

where ), denotes the number of replications at the I th design point, and m is the number of distinct

design points. Such a design measure is said to be discrete and is denoted by D), . Discrete design

measures are the traditional designs considered in Box's approach. Design measures other than

discrete are said to be continuous. These include design measures of the form

X1 if ,i is a design point (1 1, 2, ... , t)

0 otherwise 
,

where X., > 0 and 1" X, - I , and at least one X, is an irrational number, that is, it is not expressible
'- i

as a fraction. A continuous design measure is sometimes referred to as an approximate design

measure since it i. not realizable in practice, but can be approximated fairly closely by a discrete

design of the form given in (2.1). The latter design is, therefore, referred to as an exact design

measure.

Suppose that the fitted model is of the form

y - f-()MV + F, (2.3)

where y is the measured response at a point X e X, f (z) is a vector of known functions of x, i is

an unknown vector of p parameters, and c is a random error. If the design measure is discrete, then

model (2.3) can be written in vector form as

- Xa + ,, (2.4)

where X is an N x p matrix whose I th row consists of the elements of f'(Z) (i = 1, 2.. N).

In general, for any design measure s on X, the information matrix of s, denoted by M(s), is defined

as the p x p matrix Im, (s)] , where
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- JX f,()ffx)dj(x), 1,] -Q , 2..... p , (2.5)

where f, (a) is the i th element of f(Z) (I - 1, 2,..., p) . In particular, if s is a discrete design

measure, Dv, then M(DN) - XX/N, where X is the matrix in (2.4). In this case if we assume that

E(f,) f and Var(Lf) - c2Iv, then the variance of the predicted response at a point , is

A 2-
Vat y(x) - a 2"'(,)(X'X)- f(x) . (2.6)

Let v(&, DY) denote the standardized prediction variance (N/a2) Var y'(z), then

v(a, DI) - Nf '()(X'X) 'f(g) (2.7)

If , in (2.4) is normally distributed, then a confidence region for 0 of a given confidence coefficient

has the form

AA

(f0: (A - 0)'XX(fl - D) < constant)

which is an ellipsoid centered at i, the least squares estimator of A. The volume of this ellipsoid

is proportional to I X'XI - 1,2 , where I X'XI denotes the determinant of X'X. This volume can,

therefore, be minimized if the discrete design DN is chosen such that I X'XI is maximum over the

class of N-point discrete designs. A design having this property is said to be a discrete D-optimal

design.

In general, for any design menxsu.ire t defined on X, the standardized prediction variance de-

scribed in (2.7) will have the form

vUx, s) = f'(x)M - 1(s)f() (2.8)

provided that the information matrix M(j) is nonsingular. If H denotes the class of all design

measures on X, then a design measure so is D-optimal if it maximizes IA(s) I over H, that is,

IM(s)l sup IM(s) 1 (2.9)
sSH
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This is an cxtcnsion of the conccpt of D-optimality in the discrete case.

The D-optimality criterion has received a great deal of attention as evidcnced by the numer-

ous articles written about it. The review articles by St. John and Draper (1975), Ash and Hedayat

(1978), and more recently Atkinson (1982) contain many references on D.optimality and other

optimal design criteria.

The objective function in the D.optimality criterion, namely I M(s) I, can be expressed in

terms of the eigenvalues X, (s) of the matrix M(s) since I M(s) I = X ,, (s) , where p is the number
'-I

of parameters in the model. Other functions of these eigenvalues were considered in the develop-

ment of mainly continuous design measures. These include trAf(s)J - XI'.k (s) and X.11(s), where

%.(1)(s) is the smallcst eigenvalue of M(j). The design criteria based on these functions are called

A-optimaiity and E-optimality, respectively. More specifically,

i) a design measure $" is A-optimal if it maximizes T' XAs) over H, the class of all design

measures on X.

ii) a design measure j" is E-optimal if it maximizes X(.)(s) over H.

Another design criterion which is closely related to D-optimality is the G-optimality criterion. A

design measure sv is G-optinal if it minimizes over H the maximum variance function given in

(2.8), where the latter maximization is carried out over the experimental region x, that is,

sup v(x,s*) - inf 'sup V(x s) (2.10)

Kiefer and \Volfowitz (1960) proved that the D-optimality and the G-optimality, as defined in (2.9)

and (2.10), respectively, are equivalent. Furthermore, they showed that these two extremum

problems are equivalent to yet another extremum problem, namely

sup v(x, s) = p (2.11)
5 ex

It is to be noted that, in general,
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sup V.X, J.) k p (2.12)
a ex

(see Fedorov 1972, p. 69). Hence, the maximum standardized variance of the predicted response

achieves its minimum value of p whenever the design measure s* is D- or G-optimal.

The above results can be formalized in the following theorem, known as the Equivalence

Theorem of Kiefer and WVolfowitz:

Theorem; If H is the class of all design measures defined on a subset X of the k-dimensional

Euclidean space (k is the number of design variables in the model), and if p is the number of pa.

rameters in the model, then the following assertions are equivalent:

i) s" is D-optimal

ii) s* is G-optirnal

iii) sup v(Als) - p.
14Z

Assertion (iii) of the Equivalence Theorem is very useful. It provides an easy check on

whether a design measure is D-optimal by comparing the maximum of v(z, s) over X with the

number of parameters in the corresponding model. Furthermore, it can be effectively used to

construct a D-optimal design from a nondegenerate discrete design DNv0 (nondegenerate means that

the corresponding X'X matrix is nonsingular) by augmenting it sequentially with design points

chosen appropriately (see Wynn 1970, Silvey 1980, Chapter 4). The first point, x,, is chosen such

that

v(aj, DNo) = sup Y(a, D•,0). (2.13)

By augmenting DJ, with ,, we get DN1 , which, in turn, is augmented with the point z, which sat.

isfies

v(x2, DAN,) = sup v(x, DN,). (2.14)

a1ex

17



This process continues and results in the sequence of designs DN.O Dx, C D,,, ..., which, according

to the Equivalence Theorem, must converge to a D-optimal design measure (see Fedorov 1972,

Th. 2.5.3; Wynn 1970, Th. 1). Note that since by (2.12),

A4, DV,) - p a: 0 , i- 1,2..., (2.15)

the sequential generation of a D-optimal design can be terminated whenever the difference in (2.15)

is less than some value 8 > 0 chosen a priori. Thus. it is possible to approximate, with a given

precision, a D-optimal design measure with a discrete design. This fact has in effect brought D-

optimal designs out of the realm of theory into factual existence. Nalimov et al. (1970), and Box

and Draper (1971) pointed out, however, that the number of design points needed to adequately

approximate a D-optimal design measure might be too large as compared to the number of pa-

rameters in the model. It is for this reason that discrete D-optimal designs, that were mentioned

earlier, became attractive. We refer to an N-point D-optimal design as D. -optimal (see St. John

and Draper 1975). It is important here to point out that the Equivalence Theorem mentioned

earlier does not apply to Dy -optimal designs.

Several algorithms are available to construct DN -optimal designs. The DETMAX algorithm

by Mitchell (1974) and the one by Fedorov (1972, pp. 160-165) generate a sequence of N-point

designs with nondecreasing values of I XXI for a given N. Mitchell and Bayne (1978) constructed

D-optimal fractions of three-level factorial designs for second order models. Welch (1982) presented

a catalog of D, -optimal designs which can also perform well by other design criteria for a small loss

in the D-optimality efficiency. A review of algorithms for constructing D, -optimal designs was

given by Cook and Nachtsheim (1980).

The D-optimahity criterion can also be used in situations where a subset of q ( < p) parame-

ters in a model are of interest, whereas the remaining p - q parameters are regarded as nuisance

parameters. A design measure, st*, is D,-optimal if it minimizes the determinant of the submatrix

of the inverse of the information matrix M(s) which corresponds to the vector of the q parameters

of interest. An equivalence theorem similar to the Kiefer and Wolfowitz Equivalence Theorem

holds for D,.optimality (see Kiefer 1961).
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A lesser known optimality criterion is the c.optimality criterion. A dcsign measure s* is c.

optimal if it minimizes the variance of the least-squares estimator of a linear function of the pa-

rameter vector A. Thus, if M(s) is the information matrix and g is a given vector of known elements,

then s* is c-optimal if it minimizes r'M" '(s)c over the class of all design measures. Murly and

Studden (1972) used this criterion to obtain optimal designs for estimating the slope of a response

surface at a given point of the experimental region.

Design Efficiency

Any of the previously discussed optimal designs can be used to evaluate and compare designs

on the basis of efficiency. For example, for the D- and G-optimality criteria the corresponding cf-

ficiencies, as defined by Atwood (1969), are, respectively,

D-efficiency = [ Ms)I /sup IM(s)I

G-efficiency = pisup v(x, s),
LECX

where s is a given design measure, p is the number of parameters in the model, H is the class of all

design measures, and v(x, s) is the standardized prediction variance described in (2.8). Note that

by (2.12) the G-efficiency (as well as the D-efficiency) of s is less than or equal to unity and greater

than or equal to zero. Lucas (1974, 1976, 1977) used the D- and G-efficiencies to evaluate the

,. performance of some traditional response surface designs for second order models.

Additional Remarks Concerning Optimal Designs

The various optimality criteria described earlier are usually referred to as alphabetic design

Foptimality. Ths term was originally coined by Box (1982) who expressed certain reservations about

"the usefulness of this approach as far as response surface designs arc concerned". Researchers in

this theory have produced outstanding results based on intricate mathematical formulations, but

have neglected to address important practical difficulties that are present in [<SM applications. As

a result, there has been some confusion on the part of RSM practitioners who attempt to use the

alphabetic optimality results.
1%
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In thc design optimality approach, the design of experiment is set within a rigid framework

governed by a set of assumptions, the most prominent of which characterizes the fitted model as

the true model over the experimental region. It is rarely the case when an experimenter would be

willing to make such an assumption. Furthermore, the experimental conditions can vary in time

and may not conform to assumptions made a priori at the outset of the experiment. This has

prompted Box et al. (1978, p. 472) to state that 'in recent years the study of optimal design has

become separated from real experimentation with the predictable consequence that its limitations

have not been stressed, or, often, even realized.'

In the traditional RSM approach, bias suspected of being present in the fitted model plays a

significant role. This is the basis for the Box-Draper criterion discussed in Section 2.1. In fact the

concern about model inadequacy in this approach has prompted other researchers to consider de-

signs solely on the basis of bias (see Karson et al. 1969). The bias criterion, however, provides

protection against a specific form of model inadequacy according to what we postulate as the true

model. Kiefer (1975, pp. 284-286) criticized certain aspects of the preoccupation with bias, pointing

out examples in which the variance criterion is compromised for the sake of the bias criterion. Both

Kiefer and Box agree that design selection should be guided by more than one criterion, "no single

simple prescription can be expected to yield satisfactory designs in all, or even most, applications'

(Kiefer 1975, p. 286) (see also Box 1982, Section 7).

The work of Fedorov represents a nmiddle ground' between Box's and Kiefer's approaches.

It provides the mathematical apparatus for the derivation of the theoretical results, as well as the

necessary algorithms needed to apply them so that they are accessible to comparatively 'broad cir-

cles of researchers and technologists' as Fedorov (1972) stated in the preface of his book on optimal

experiments.

In addition to Fedorov's book, the book by Sivey (1980) and the review articles by Bandemer

(1980) and Atkinson (1982) provide recent surveys of optimal experimental designs.
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2.6 Design of Mixture Experiments

Throughout this review we restate our frustration that much of the technology advanced in

RSM seems to not have been communicated to subject matter users and thus they are far behind'

recent advances. However, the area of mixture experiments is an exception. From the early pio-

neering work in the late 50's, techniques in the use of mixture designs became important to users

of RSM where the response to a mixture of ingredients depends on the relative proportions of the

ingredients. These experiments are characterized as follows: If x., i - 1, 2, ... , k represents the

proportion of the ith component in a k factor combination then for each exoerimental run

ko x, < 1, i = 1, 2, ... , k and z x, = 1. The development of designs and the analysis of data
i'l

collected under these constraints has been the subject of much research. Indeed, the particular area

has been the subject of two reviews by Cornell (1973, 1979), mentioned prominently in two addi-

tional reviews by Mead and Pike (1975), Steinberg and Hunter (1984), and the subject of a text

Cornell (1981).
/

Some highlights in the development of this area follow. Scheffl&a (1958) is credited by

most with having initially considered the mixture problem although Claringbold (1955) recognized

that designs for studying such relationships are on a simplex. Scbeff&eac. proposed the simplex

lattice design as well as a family of polynomial models to use in approximating the underlying re-

lationship between the response and mixture components. A deficiency of the simplex lattice design

is that its use tends to result in mixtures involving only two components regardless of the total

number of components under consideration. To remedy this Scheffbma. (1963) proposed the

simplex centroid design which consists of 2A - 1 design points which are the centroid of the simplex

and the centroid of all lower dimensional simplices contained within the original (k - 1) dimen-

sional simplex.

Thompson and Myers (1968) developed designs that allow the use of the minimum average

bias and variance criteria of Box and Draper. They make use of a transformation to (k - 1) di-

mensional variables so that the standard designs can be used. A transformation is given to the user

which produces the design in the natural, mixture variables.
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It is not unusual for a mixture experiment to be such that them are bounds on some or all

of the components of the combination. Mc Lcan and Anderson (1966) proposed the extreme

vertices design for such situations. Snce (1981) uses the gasoline blending problem to lustrate

some practical problems that occur when considering mixture experiments. Attention is focused

on the design of the blending studies and appropriate models for analysis as well as the use to which

the fitted model is put. In this paper currently available algorithms are used in the construction of

linear and quadratic model designis where there ame single and multiple component constraints on

the region of feasible blends. Piepcl (1983a) discusses several guidelines for developing constraints

on the levels of components in mixtures and presents techniques for checking the consistency of the

constraints that are developed. Piepcl (1983b) notes that the centroid of a constraint region in

mixture experiments has been defined as the average of all extreme vertices of the region. Utilizing
the definition of the centroid as the center of mass or volume of the region Piepel develops an al-

gorithm to calculate centroids of various dimensional faces of the constraint region as well as the

centroid of the (k - I) dimensional simplex. WVhenever constraints, in the form of upper and lower

bounds, am placed on the components of a mixture the size and possibly the slope of the exper-

imental region is altered. Crosier (1984) proposes a transforr ,ation to pseudo components to re-
duce the ill-conditioning created by the constraints. Conditions are given which can be used to

determine when the use of the transformation is preferable to that of other transformations.

Hare (1979) considers the development of designs for the situation where some of the design

variables, called process variables, are not subject to the simplex constraint, E- x, 1. Of concern

here is the choice of settings for the mixture variables as well as the process variables. The problem

has a&so been considered by Vuchkov et al. (1981) who proposed the use of a sequential procedure'I /

to produce designs that were nearly D-optimal. The traditional Scheff" ,. model in mixture ex-

periments that contain process variables contain cross-product terms between the mixture and

process variables as well as indicate that the process by mixture cross-product terms estimate the

effects of the process variables on the blending properties of the mixture variables only and do not

give an overall measure of the main effects and interactions of the process variables alone. They

develop a reparameterized model that permits the experimenter to separate the effects of the process
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variables from the mixture variables. From such a model it is demonstrated that reduced model

forms can be obtained through the use of a variable selection procedure..

Aitchison and Bacon-Slone (1984) show that the constant sum constraint, i.e. -I x, - I can

be removed by a log ratio transformation, z, - log-•- I - 1, 2, ... , k - 1. When this is done

the modeled expected response can be expressed as a polynomial in the z,. Since the z, can be varied

independently the polynomial can include all terms of appropriate degee. For this paper attention

is restricted to linear and complete quadratic models.

Rotatability in mixture experiments has received very little attention by comparison to other

more general response surface investigations. In an attempt to obtain constant prediction variance

within the simplex factor space, Thompson and Myers (1968) developed rotatable response surface

designs on the basis of their transformation of the k mixture variables to k - I mathematically in-

dependent variables. These designs were used to fit polynomial models over some ellipsoidal region

inside the simplex factor space. Cornell and Khuri (1979) introduced a different configuration of

rotatability, one that is suited for ternary mixture problems. In this new configuration, the pre-

dicted response has constant variance on each triangle of a set of concentric triangles within the

simplex factor space. This is achieved by using a nonlinear transformation which maps concentric

circles in a new coordinate system onto concentric equilateral triangles in the mixture space.

Standard rotatable response surface designs in the new coordinate system can then be mapped onto

designs in the mixture space resulting in the prediction variance being constant on concentric tri-

angles.

2.7 Designs for the Slope

In many applications of RSM, good estimation oi the derivatives of the response function

may be as important or perhaps more important than estimation of mean response. Certainly, the

computation of a stationary point in a second order analysis, or the use of gradient techniques, e.g.,

steepest ascent or ridge analysis depend heavily on the partial derivatives of the estimated response

function with respect to the de3ign variables. Since designs that attain certain properties in Y. (esti-

mated response) do not enjoy the same properties for the estniated derivairves (slopes), it is im-
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portant for the user to consider expenriental designs that ame constructed with the derivatives in

mind.

Atkinson (1970) considered designs for estimation of the slope at a fixed point with the re.

sponse function being of order one. The criterion used is the expected mean squared error for a

directional derivative, averaged over all possible directions. Ott and Mendenhall (1972) dealt with

the special case of a single design variable and a second order model. No model misspocification

was considered and the primary focus was on the properties of the variance of the estimated slope.

They considered optimum spacing of the levels of the design variables that gave desirable properties

of the variance function. Murty and Studden (1972) considered polynomial regression models with

the criterion being the variance of an estimated slope at a fixed point and averaged over an interval.

Hader and Park (1978) extended the notion of rotatability to cover the slope for the case of

second order models. They developed design parameters for central composite designs that result

in 'slope rotatability,' i.e., the variance of the estimated derivatives is constant for all points

equidistant from the design center. Tables are produced of designs for values of k - 2, 3, ..., 8.

Some of the designs featured have replicated axial points rather than heavy replication in the design

center.

Myers and Lahoda (1975) extend the Box and Draper integrated mean squared error criterion

under model misspecification to cover sets of parametric functins with the slopes being primary

applications. For the second order case they develop designs that are minimum slope variance,

conditional on achieving minimum integrated slope bias in case of both spherical and cuboidal re-

gions of interest. Their designs ame central composite designs with dual axial levels and are tabulated

fork 2,3, ..., 7.

Mukerjee and Heda (1985) develop designs associated with minimum variance of the esti.

mated slope maximized over all points in the factor space for second and third polynomial models

over a spherical region.
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2.8 Design for Minimum Bias Estimation

Karson et al. (1969) introduced the notion of minimum bias estimation in response surface

analysis. The motivation was derived from the work of Box and Draper in which it was made clear

that consideration of bias in RSM is at least as important as consideration of variance. As a result,

an alternative to least squares was introduced for minimizing average bias at the estimation stage.

Given that minimum bias estimators are used, Karson (1970) introduced a design criterion

to provide protection against certain higher order model terms. This criterion results in conditions

on the design moments being met. With a single independent variable, conditions are given for

fitting up to a cubic polynomial and protecting against a possible fifth degree polynomial. The

author also considers the two factor case for fitting a first order polynomial and protecting against

the presence of second and third order terms. A general p factor result for the linear to quadratic

case is also given. Karson and Spruill (1975) examine four alternative design criteria given that

minimum bias estimation is used in the case of a single independent variable. The alternative design

criteria ame minimaxes or minimum averages of the squared differences between the expected value

of the stationary point found by fitting the approximating polynomial and either a prior guess at

the location of the stationary point or the location of the stationary point as determined from the

true model. Evans and Manson (1978) utilize the design flexibility associated with the use of min.

imum bias estimation to construct D-optimal, V-optimal, and A-optimaJ experimental designs in

two dimensions via a simplex search procedure. The designs are obtained for both square and cir-

cular regions of interest.

In a related work, Kupper and Meydrech (1973) consider the use of an estimator of the form

KN for the parameter of the fitted polynomial. They give conditions under which it is possible to

determine K's providing smaller J than when K - I for any choice of experimental design. The

case where the fitted polynomial is of degree one and the true polynomial is of degree two is con-

sidered. These same authors (1974) compare their approach to that of Box and Draper (1959) as

well as that due to Karson et al. (1969).

2-
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2.9 RSM Design Robustness

As we indicated earlier in this paper, the first notion of RSM design robustness appeared in

the work by Box and Draper (1959, 1963) dealing in protection against model underspecification.

It formalized, in an RSM setting, the notion of proper placing of the design points in from the

boundary of !he region of interest when underspecification is a concern. While specifics in the Box

and Draper work dealt with spherical regions, Draper and Lawrence (1965) applied the Box and

Draper approach to generate designs robust to model inadequacies in the case of cuboidal regions.

Aside from model misspecification, RSM design robustness includes the following categories

i) Robustness to outliers in the data

ii) Robustness to errors in the design levels

ini) Robustness to nonnormality in the model errors

iv) Designs for extrapolation under conditions of model misspecifications.

We feel committed to extend the notion of RSM to include F-tests that are developed

through regression analysis. Papers by Jensen et al. (1975) and Vuchkov and Solakov (1980)

demonstrate that experimental design has a substantial impact on the robustness to normality of

the F-test in a regression or RSM model. In the former paper, the class of orthogonal designs was

found to be robust in the case of a first order response surface model. In the latter case, a similar

result was demonstrated. The approach was taken of considering the property of 'quadratic bal-

ance' in a design. This property is one making the hat diagonaob equal, where the hat diagonals

are the diagonal elements of

H - X(X')- IX

Khuri and Myers (1981) implement the robustness criterion of Box and Watson (1962) for first

order RSM models. Again, the robustness here is a resistance of tests of significance to failure of

the distribution of errors to be normal. A method is described for construction of a robust design

assuming a fixed number of experimental runs. Here, of course X is an N x p model matrix given

in the general linear model
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One very intriguing, albeit predictable, result from the Vuchkov and Solakov work is that the most

desirable prescription in terms of this type of robustness is a design with uniformly replicated trials

and equal hat diagonals. Example designs are the 2A factorial arrays and appropriate fractions.

From a point of view of motivation, the paper by Box and Draper (1975) would appear to

have been very timely. Since the early 70's considerable attention has been paid to the detection

of outiecrs and the accommodation of outlicrs in rcegrssion analysis. This work by Box and Draper

linked the awareness of outliers to notions of RSM experimental designs. Design properties were

sought that resulted in 'minimal impact' of outliers in the resulting data. The result was the choice

of designs for which h2, is minimized where, again, the k are diagonals of the hat matrix. Again,

in the first order case, the orthogonal designs are optimal.

Herzberg and Andrews (1976) deal with optimal designs under nonoptimal conditions such

as missing observations and presence of outliers while dealing mostly in designs that art constrained
to be economical. They introduce a measure of robustness which is called a 'probability of

,, breakdown', given by

Pr( I XDXl - 0)

where D is a diagonal matrix with ith main diagonal element
14

dl (0 with probability u(o)

I with probability 1 - ct(&)

and a(g) is the probability of losing a data point. When I X'DXI - 0, the coefficients cannot all

be estimated. In addition, they consider E(I X'YXI UP,) as an alternative measure of robustness. In

Andrews and Herzberg (1979) they introduce the notion of efficiency by working with the quantity

i EX, D2XI"'/
N IMII/P
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where M is the Fishcr information matrix for the appropriate D optimal design. Examples arm

given to indicate how notions like this can be used to select robust designs. The numerator of the

above expression is compared for central composite designs with varying number of center runs.

The probability value a0() is varied in the study and the results indicate clearly that criteria like

these can be used to provide a choice between designs when the user fears a loss of information in

the form of missing data.

In a paper that considers protection against model misspechication and outliers simultane-

ously, Draper and llerzbcrg (1979) deal with n integrated mean squared error criterion much like

that of Box and Draper in 1959 and 1963. The purpose, though, seemed to be to determine if the

presence of outliers produced any substantial change in the recommendations made earlier, when

one only considers model misspecification. Special cases of a single outlier and two or more outliers
are considered. As e;.pected, in the case of a first order fitted model with protection against the

existence of second order terms, an orthogonal design is reconunended. In addition, the recom-

mendation for the second moment is to make it slightly larger than the 'minimum bias' value un-

covered in 1959. Specifically, a value roughly 10% larger is recommended. Simply put, this implies

that if outliers are present, the variance portion of the integrated prediction mean square error be-

comes somewhat more important. Extensions to the case of the second order fitted model were

made with similar recommendations.

A related notion of robustness deals with errors in the factor levels. Vuchkov and Boyadjieva

(1983) consider this problem and attempt to determine design families that are robust. The inter-

ested reader should first read Box (1963) in which the effect of errors in factor levels is considered

in both first and second order models. While no specific design criteria are considered in this work

by Box, it is an excclleat account of what is the extent of the damage when errors in design variables

occur.

In the paper by Vuchkov and Boyadjieva, some of the same concepts covered in Box are •.

stated. They define an estimator that is BLUE under the conditions of errors in factor levels, and

which depends upon the moments of the factor levels. Assuming this particular form of estimation

(which reduces to least squares if the model errors are unbiased), they define 'criteria for robustness'
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and make some comparisons among the Box-Behnken designs, rotatable central composite designs,

Hartley's small composite design, Lucas' optimal composite designs, and others.

Finally, we deal in a type of design property that some may not generally classify as

robustness, namely designs that are resistant to errors in extrapolation. This is particularly important

in RSM work since a response surface is often used by necessity for extrapolation purposes. Draper

and -erzberg (1973) discuss designs that are robust in this sense under the setting that the fitted

model is first order and one's ability to extrapolate is influenced by the existence of second order

terms in the true structure. Their work is confined to consideration of extrapolation in a specified

direction with a spherical region of interest.

Draper and Herzberg (1979) considered both the first and second order case in which interest

is in extrapolation outside a sphere. The region of extrapolation is a spherical shell. Again, variance

and bias due to model misspecification are considered and are integrated over th. region. In the first

order case, they reduce the problem to one of selecting the pure second momnint. AI? odd moments

through order three am assumed zero. They art able to find the second design moment *hat mini-

mizes what they call a 'proportional mean square error.' Designs with maximum spread, i.c., points

placed on the perimeter of the region of interest, are found to be optimal. In the second order case,

their work was restricted to second order rotatable designs with all odd moments less than or equal

to five being zero. Emphasis is put on the central composite design. The conclusions indicate that

the rotatable central composite designs that are most robust to extrapolation require design points

that are expanded to the edge of the region of interest.

In this section and in many others in this review, the influence of the Box and Draper pro-

tection against model Inadequacy becomes evident. What we have seen occur in much of the design

robustness work is a blending of the problem of model inadequacy with other deviations from

ideality.

Though the foregoing nright be viewed as representing the bulk of the 'robust design' work

involved strictly in the use of RSM, there certainly are other important pieces of work that deal in

design robustness in regression models. Atkinson (1972) discusses designs that arc best for detection

of model inadequacy. Atwood (1971, 1975) deals in robust procedures for estimating polynomial
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regression and methods for estimating a response surface when the number of parameters are un-

certain.

One important note of caution should be made to any user or potential user of RSM. De.

signs are chosen because they arm optimal or near optimal in some sense, or because they are robust

or near robust in some sense. But a dcsign may indeed be near optimal in one sense (say D-

optimality) but not near optimal with respect to another criterion. Obviously, a desirable

robustness property of an RSM design is one in which the design enjoys a near optimal or at least

"steady' performance in several criteria that is important to the user. For example, Galil and Kicfer

(1977) and Kiefer (1975) show variation in performance of designs as one moves across criteria.

2.10 Designs for Special Goals

Designsfor Nonlinear Models

A nonlinear model is a model of the form

y = f CK, 2) + E ,(2.16)

where a - (x,, x, ... , x,)' is a vector of design variables, 0 = (0 1, 0..., ,)' is a vector of un-

known parameters, E is a random error, and f (z, 0) is a known function nonlinear with respect to

at least one element of I. Nonlinear models have not received a great deal of a'tention in RSM,

even though they have many applications in several areas, particularly, in biological and chemical

sciences.

The main design criterion for nonlinear models is the D-optimality criterion, which actually

applies to a linearized form of the model in (2.16) (Box and Lucas 1959). More specifically, if

f (z, D) is approximately linear in 0 in a neighborhood of Q = 1 , then a design D is chosen so that

the determinant IF'(D, %)F(D, 2)I is maximum, where F(D, 0) is an N x p matrix whose

(i, J)th element is

OR4,Q i 1 2 (2.17)
9 -1, j = 1, 2. ., .
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In (2.17), A denotes thc partial dcrivativc of f Aith respect to 0, x is the value of ,; in the i th

cxpcrimcntal run, and N is the number of experimental runs. An optimal design obtained under

this criterion is more appropriately called a locally D-optinal design, a terminology used by

Chemoff (1953). A similar design criterion is available if the interest is in only a subset of the pa-

rameter vector Q (see Box 1971, Hill and Hunter 1974).

Unlike D-optimal designs for linear models, those for nonlinear models depend upon the

unknown values of 2. This is an unappealing characteristic of nonlinear models and was most ap.

propriately depicted by Cochran (1973): 'You tell me the value of 0 and I promise to design the

best experiment for estimating ý." There are several procedures to remedy, or at least alleviate, the

problem of design dependency. One procedure treats % as an initial guess which is used to obtain

a p-point design. Observations collected at the points of this design are then used to provide an

estimate of D. Thereafter, additional design points are augmented sequentially while updating the

estimate of 0 (see Box and Hunter 1965). On'- advantage of this sequential approach is that it helps

reduce the dimensionality of the design optimization problem. If the initial value, 1, of ý is a good

"guess', then under certain conditions, Atkinson and Hunter (1968) showed that when the number

of design points N is a multiple of p, the number of parameters, the optimal N-point design consists

of replications of the optimal p-point design obtained on the basis of 21.

An alternative strategy for dealing with design dependency is to adopt a Bayesian approach.

Zacks (1977) considered maximizing the expected value of the determinant I '(D, O) F(D, t) I

with respect to some prior distribution of 2. Bayes sequential designs can also be obtained. An

optimal design for a new stage of experimentation is determined by maximizing the aforementioned

expected value with respect to the posterior distribution of 2 given the results from the previous

stages. Another strategy that is applicable when the number of design variables is equal to one is

to approximate the nonlinear function in (2.16) with a Lagrange interpolating polynomial (Khuri

1982). The interpolation points are chosen as the zeros of a Chebyshev polynoomial of the first kind.

Another approximation using spline functions was considered by Bumrungsup (1984).

The dependency of the optimal nonlinear design on the parameter vector ý is less severe if the

model is partially nonlinear. By that we mean that some elements of ý appear linearly in the model

31

- . -



while others appear nonlinearly. I lill (1980) showcd that a locally D-optimal design for a partially

nonlinear model depends only on the model's nonlinear parameters. This property, however, does

not always hold when the design is for estimating a subset of the parameter vector (see Khuri 1984).

The use of the D-optimality criterion for choosing a nonlinear design may not always be ap-

propriate particularly in an RSM ntriing. One must remember that it is a variance criterion which

does not account for any possible bias in the model. Just like in linear models, bias is an important

consideration for the choice of design. In fact, in nonlinear models more emphasis should be given

to the subject of bias since it is not quite clear how bias should be defined. Unfortunately, little

appears to be known about this subject. A brief mention of bias in nonlinear models is given in a

paper by Atkinson (1972, Section 5).

Designs for Fitting Spline Functions

Let [a, bi be an interval that is partitioned into h + 1 subintervals by the points

a - to < C < < ... < I < -÷t + b. A spline function in one design variable x is a continuous

function f(x) defined on [a, b] such that f(x) restricted to Q J, i - 1, 2, ... , h + I , is a

polynomial, and satisfies certain differentiability conditions at the points tl, '12, .... IA. The

polynomials defined on these subintervals are different, and the partition points,

ti, ;, ... , and % are called knots. Spline functions are, therefore, segmented, or piecewise

polynomials. This definition of spline functions can be extendeI to more than one dimension.

Spline functions are useful in approximating continuous functions, just like polynomials. In

certain situations, however, they are more suitable than polynomials. This is particularly true when

the function to be approximated is defined over a wide region where its behavior in one part of the

region is unrelated to (or undetermined by) its behavior in another part. Polynomial approximation

on the other hand forces some kind of unwarranted semblance on the behavior of the function.

This is because the behavior of a polynomial over an entire region can be fully determined by its

behavior over only a part of the region.

Even though spline functions have received considerable attention in the mathematical liter-

ature, their introduction into the statistical literature is relatively recent. Wold (1974) gave a review
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I...
of the use of splinc functions in least squares fitting and provided several useful references on the

subject. Gallant and Fuller (1973) discussed the estimation of the location of the knots when fitting

a spline function to a data set. Very little is known about the choice of design for fitting a spline

function. Studden (1971) discussed D.optimal and L-optimal designs for spline functions. Draper

et al. (1977) applicd the Box-Draper (1959) design criterion for protection against model bias. Park

(1978) adopted the D-optimality criterion whcn fitting a spline function with only one knot. In all

of these papers, the knots of the fitted spline function were considered known. More recently,

Bumrungsup (1984) used spline functions to approximate the mean response in a nonlinear model.

The knots were chosen so that the error of approximation did not exceed some specified value

chosen a prioi. The approximating spline function was then used to obtain optimal designs for the

nonlinear model. These designs have the advantage of being not dependent on the model's pa-

rameters.

More research is needed in this area. Optimal designs chosen on the basis of spline approxi-

mation depend on the number and location of the knots. Even if the number of knots is deter-

mined so that a certain degree of approximati, n is achieved, the positioning of the knots is an

important consideration which should be addressed. Extensions to more than one dimension are

also needed.

Design Augmentation

Design augmentation is an increasingly important component in the progression of RSM re-

search. It is consistent with the 'sequential spirit' of RSM. In a large percentage of RSM appli-

cations more than one stage of experimentation and analysis is required. The notion of moving

from one experimental region to another and planning an experiment in sequence often becomes

necessary in real RSM situations. Quite often addi:ional experimental runs are taken after an ex-

periment has been carried out. This may be necessary in the following situations:

i) When the initial experiment is poorly planned and, consequently, results in observa-

tions that are not as informative about the fitted model as is desired.
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ii) When the prescribed design settings am not attained by the actual values of the design

variables used in the in-itial experiment. This might be caused, for example, by tech.

nical limitation or by equipment malfunction.

iii) When there is a need to fit a model that is more complex than the original model,

which may be inadequate, and the initial design does not accommodate such an action.

iv) When the experimenter decides to change, or modify, the region of interest in the ori-

ginal experiment. This usually occurs in sequential experimentation where information

obtained in one stage is used to plan the next stage. Also, there might be a need to

gain more information about the response in certain parts of the region that are not

adequately covered by the initial design.

In any of the above situations, the additional runs art chosen in a manner that remedies, or

repairs, the initial design. Situation (i) was considered by several authors. Dykstra (1966) and

Gaylor and Merrill (1968) augmented a nonorthogonal design for fitting a first order model with

adds'ional runs in order to reduce multicollinearity effects among the design variables. Dykstra

(1966) suggested several other criteria for augmenting a nonorthogonal first order design. Covey.

Crump and Silvey (1970) and Mayer and Hendrickson (1973) adopted the maximization of IX'XI

criterion for the selection of the additional experimental runs, where X is the matrix of design var-

iables associated with the linear model for both the initial design and the augmented runs. In

Covey-Crump and Silvey (1970) the augmented design points were selected from a spherical region,

whereas in Mayer and Hendrickson (1973), the augmented design points were constrained by cost

considerations. Dykstra (1971) described a method for augmenting the initial design with additional

points ta.ken one at a time. Each point is chosen from a list of candidates, the selection criterion

being the choice of the location for which prediction variance is maximized. This is equivalent to

the maximization of I X'XI with each added point. Hebble and Mitchell (1972) followed a similar

procedure, except that the entire region of interest, instead of a set of candidate points, is searched

for the next design point. Wynn (1970) showed that this process leads in the limit to a D-optimal

design. Hebble and Mitchell's (1972) procedure can also be useful in situations (iii) and (iv). Evans

(1979) used the simplex search technique to add several points simultaneously under the maximum

34



of IX'XI criterion. Suich and Derringr (1977), in their discussion of the adequacy of the remssion

model, considered data augmentation as a means to satisfy their criterion of adequacy. They did

not, however, provide a systematic procedure for the choice of the added points.

The main criterion used in design augmentation has been the maximization of I x'Xl. Re-

cently, Khuri (1985a) introduced a measure of rotatability which can be used to quantitatively as-

sess departure from rotatability of a nonrotatable design. Using rotatability as a criterion, this

measure can be utilized to. repair a nonrotatable design by design augmentation. Hebble and

Mitchell (1972) have indirectly restored rotatability through their maximization of IX'XI over a

spherical region. The measure of rotatability is particularly useful in situation (ii) where a design,

originally planned to be rotatable, becomes nonrotatable due to failure to attain the prescribed de-

sign settings for a rotatable design. It can also be used in situation (iv) where a rotatable design is

intentionally modified by design augmentation in order to gain more information in certain areas

of interest (see Littell and Mott 1974). Such a modification usually results in loss of rotatability.

Designs to Increase the Power of the Lack of Fit Test

Checking the adequacy of a fitted model is an important consideration in RSM. Draper and

Herzberg (1971) provided some insight into the nature of hypotheses that can be tested by the lack

of fit test when replicate observations are available at one or more design points. Equally important

is the ability to detect lack of fit in a model at an early stage of the experimental process. This

necessitates the use of a design which can induce a certain degree of sensitivity in the lack of fit test.

To accomplish this the design should be selected so as to maximize the power of the associated lack

of fit test.

Suppose that at some stage of the experiment the following model is fitted:

n(x) = Xf I , (2.18)

where 1L(z) denotes the mean response vector. The random enors associated with the observed

response values are assumed to be independently and identically nom -ly distributed with zero

mean and constant variance. The true model is assumed to have the form
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n(a) "X- D + X222, (2.19)

The noncentrality parameter associated with the lack of fit test for model (2.18) is proportional to

the quadratic form

0 - , (2.20)

where

L. - X2X2 - X2XI(X'IXI)-IX'IX2

In order to maximize the power of the lack of fit test, the design should, therefore, be chosen to

make e as large as possible.

Unfortunately, designs chosen under the above criterion depend on , which is unknown.

Several approaches wer. considered to overcome this problem. Atkinson (1972) proposed the

maximization of the determinant I L I. This is the same as the D,.optimality criterion discussed in

Section 2.5 for the precise estimation of a subset of the parameters consisting of the elements of

e. Designs chosen in this manner, however, may provide poor estimates of a if the fitted model

is adequate. Atkinson (1972) suggested the maximization of I L I subject to maintaining , lower

bound on the efficiency of the lack of fit design for estimating A, . Atkinson and Fedorov's (1975)

T-optimality criterion is essentially the same as the one we have mentioned. They suggested three

possible solutions to deal with the problem of dependency on % ; these are (i) a sequential proce-

dure to construct a T-optimal design whereby observations obtained at a given stage ame used to

estimate a2 3d thcn sclect the next design point, (ii) a Bayesian solution which requires specifica-

tion of a prior distribution on %, (iii) a max.imin procedure in which the minimum value of 0 over

a convc. region (p iLi the Az-space is maximized by a proper choice of design. A special case of the

mnaximin pyocedure was adopted by Jones and Mitchell (1978) using a particuiar convex regon p

determined by the moment matrices of the experimental region. They called a design obtained

under the maximin crit .rion a A,-optinial design. They also considered another variant of the

maximin procedure, namely, the maximization of the avezage of 0 over the boundary of the region
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ip. A design obtained under this criterion is called a A3 .optimal design. The latter crtcrion is

preferred over the A,.optimality criterion which cannot be used in situations whcru tLe minLnum

value of 0 over qi is equal to zero.

The A3-optimality criterion was also applied by Morris and Mitchell (1983) to obtain designs

to detect the presence of two-factor interactions among several two-lcvel factors when fitting a first

order model in these factors. An extension of the A,-optimality criterion as well as the A2.opti-

mality criterion to a multiresponse situation was recently developed by Wijesinha and Khuri
'7

(198ib).

The traditional lack of fit test mentioned earlier requires the availability of replicate observa-

tions. This allows the partitioning of the residual sum of squares from the analysis of the fitted

model into a sum of squares due to lack of fit and a sum of squares due to pure error. When such

a partitioning is not feasible (this occurs when the number of terms in the fitted model is equal to

the number of distinct design points), the method of check points (swe Scheffe 1958, Snee 1977) can

be used instead. Check points Pse points in the experimental regon where data are collected and

compared to the predicted response values (at these points) as obtained under the fitted model.

Sheltoa et al. (1983) introduced a method for selecting the check points so as to maximize the

power of Scheff''s (1958) lack of fit test statistic, which makes use of the residuals at the check

points.

II1. RESPONSE SURFACE ANALYSIS

In the Hill and Hunter review of 1966, four steps were outlined as pant of standard procedure

in a response surface analysis. We think they are worth repeating here. They are (i) perform a

statistically designed experiment, (Ui) estimate the coefficicnts in the response surface equation, (iWi)

check on the adequacy of the equation (via a lack of fit test), and (iv) study the response surface in

the region of interest. It is (iv) that we plan to consider in this sectson. We consider subsections

on multiple responses, sampling properties of optima, and models that are alternatives to the

standard polynomial models. However, underlying all of these topics is the question 'What do we

mean by a response surface exploration?'
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The purpose of an RSM analysis is to answer certain general questions rmgarding the natune

of the response function in the regon of the expcermcntal desip Determining whether the system

contains a maxinum or minimum, or is a saddle system may be very important to the exper-

imentcr. On the other hand, the existence of a ridge system may indicate the need for further ex-

perimentation in another regon. In some situations, response surface analysis serves as more than

merely an empirical device. It can lead to what Hill and Hunter call an 'elucidation of an under.

lying mechanism", and thus uncover theoretical information.

A distinction should be made between analyses whose goals are to explore the response suir.

face as indicated above and that in which the major goal is quaity eitimation of optimum

conditions. The method of steepest ascent remains a viable technique for sequentially moving to.

ward the optimum response. The reader is rtferred to Davies (1954) and Myers (1976) for details

and examples. Brooks and Mickey (1961) and Myers and Khuri (1979) discuss strategy in steepest

ascent.

It is interesting to note that in the Mead and Pike review, they note that there were relatively

few applications of response surface optimization with the use of procedures other than steepest

a&vent. At this point, I1 years later, we might echo a similar observation but add that there have

been applications with the use of the Nelder Mead (1965) simplex procedure. What still surpris-

ingly appears to be lacking are many examples of formal RSM optimization in which a response

model other than first order is used. One of Mead and Pike's conjeiures may still be valid, namely

them is a general conservative nature in many research workers. Of course, the theory associated

with most numerical optimization methods is developed in the literature under an assumed

deterministic model. There are overriding reasons why the optimization phase of RSM is not

formally applied in practical situations. There is a general unawareness among RSM users that

optimization techniques are available. And certainly the commercially available software that data

analysts use for other phases of analysis generally does not contain the optimization phase. Nu-

tatical analysis has advanced to the extent that optimization of second order or certain nonlinear

response functions with or without constraints presents no srious difficulty. And yet how many

software packages put together a RSNI package complete with canonical analysis and optimization
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procedures? Indeed, we have experienced a real nced for such packages in industry. We attcmpt

to shcd more light on this subject in subsequent sections.

One useful procedure in a second order response surface analysis is ridge analysts, introduced

by Hoedi (1959) and formalized by Draper (1963). The method is discussed with examples in Myers

(1976). Hoerl (1985) gives a historical, almost anecdotal account of his father's development of

ridge analysis. Reasons are given for what has appeared to be a relative obscurity of this procedure,

which essentially is a steepest ascent procedure for second order models. It serves as a practical

optimization procedure in which maximum (or minimum) values of .ý are determined on radii

varying from zero to the perimeter of the design region. The resulting locus of points not only

produces an alternative to canonical analysis for exploring the response surface but it also can offer

a recommended set of operating conditions often sought by the analyst when the canonical analysis

does not indicate an optimum at a stationary point within the design region. With the entire locus

of points produced by the maximum ridge and a knowledge of the properties of the experimental

design at or near the design perimeter, the user becomes armed with information that allows a

reasonable recommendation.

It has been our observation that, in practical RSM problems, occasions in which the sta.

tionary point produces a satisfactory result are rare. More often than not, ridge conditions or saddle

systems are experienced. As a result, ridge analysis, the notion of finding best conditions subject

to 'anchoring' the results inside the experimental region, or some other type of constrained opti.

mization, is often indicated. The advantage in ridge analysis as an exploratory tool has intuitive

appeal. Most users, e.g., engineers, biologists, etc., understand it and would certainly prefer it to

drawing conclusions from response contour plots for cases where k 2: 3. Hoerl (1985) laments the

lack of attention to ridge analysis in the statistics literature. He walks the reader through a nice

practical application. Smith (1976) relates situations in which ridge analy3is is misleading. Khuri

and Myers (1979) offer modifications to ridge analysis in cases where the design is not neaw

rotatable. They suggest that the constraint applied should be on the prediction variance and point

out that if the design is not rotatable, the modification provides more desirable results for the user.
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In the subscctions that follow, response surface a.nalysis in the case of multiple responscs is

reviewcd. Ioth cxploration of the response and estimation of coefficients are considered. This is

followed by the vitally important topic of sampling properties of estimated optimum conditions.

Mead and Pike, in the 1975 review, indicated that statistical research into experimental design (say

RSM design) has outstripped research in the area of analysis. To a great extent, this remains true.

A quick count of the volume of our bibliogaphy in design as opposed to papers in analysis (in

statistical journals) will underscore the point.

3.1 Multiesponse Awalysis

In many experimental situations a number of responses can be measured at a time for each

setting of a Sroup of design variables. Examples of multiresponse situations are numerous. In

chemical enginezring kinetics, several reactants might be involved in a chemical reaction which give

rise to a number of responses that can be measured simultaneously. These responses are usually

represented by nonlinear mechanistic models, or by linear empirical models whenever the reaction

mechanism is too complex such as in an industrial reaction. Ziegel and Gorman (1980) gave an

interesting expose of the use of multiresponse data for studying kinetic models in the petroleum

industry. The area of foods and other consumer product research also represents a challenge ýb-

cause of the need to almost always study many responses. Typical studies require panel-type re-

sponses or 'scores- on many features of the product. The review by Hill and Hunter (1966) listed

several examples of multiresponse experiments and is perhaps the first paper in the statistical liter-

ature to direct attention to their important applications.

Subsequent papers on this subject have stressed the utility of analyzing multiresponse data

by means of multivariate techniques which take into account interrelations among the responses.

A univariate analysis in which responses are analyzed individually does not recognize such interre.

lations and will undoubtedly fail to adequately describe the true mechanism underlying the multi.

response system. Unfortunately, of the very few techniques that are currently available in the

statistical literature for the analysis of multiresponse data, even fewer are actually used by practi.

tioners. Our search for practical RSM applications reveal that users are far from up-to.date in the
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use of multiresponsc techniques. (Sce Section IV.) It is, thereforc, imperative that existing as well

as future multiresponse techniques be made accessible to data analysts. It is also equally important

to demonstrate the utility of using the multirtsponse approach when several responses are analyzed.

Muldresponse Etilmation

The general multiresponse model is

u- 1, 2... N;
S- fA(4, 6) + c,1, (3.1)

1 =,2,...,r

where & is the vector of settings of k design variables at the uth experimental run, a is a vector of

unknown parameters, f, is a function of known form for the ith responses, and r,, is a random error

associated with the Ith response for the experimental run u. It is assumed that the C,6's are normally

distributed such that E(E.,) - 0, E(E., c,) - 0 for all 1, J, u 0 v; Var(,.) - I•, -- 1, 2,...

E(e,, ev) - (7 for all u, i , J. If the as's are known, then an estimate of J can be obtained by using

weighted least squares. Most often, however, the o,'s are unknown. In this case, Box and Draper

(1965) using the Bayesian approach and assuming noninformative prior distributions for a and the

CY 's were able to show that an estimate of A can be obtained by minimizing the determinant

I S(WI with respect to a, where

S(Ai) '- (Y - FA(Y- F) .(3.2)

In (3.2), Y -XI: ... :,, is the data matrix with X, being the vector of ith response values

(I - 1, 2, ... , r) , and F is an N x r matrix whose (u, )th element is f, (a, B) . The method of

estimation, which is basically equivalent to the maximization of the marginal posterior density of

a (under the assumed noninforrnative priors), is referred to as the Box-Draper estimation criterion.

This is a general criterion and applies to models whose functional forms can be either line=r or

nonlinear in the parameters.

Box et al. (1973) cautioned that the Box-Draper estimation criterion can lead to meaningless

results when exact linear relationships exist among the responses. Thcy called such relationships

stoichiometric. They also pointed out that small rounding errors in the responses can cause
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I S(1) I to be diffcrent from zero and to change as the elements of • are charged, even under

stoichiometric relationships. To resolve this confusing situation, they introduced an eigcnvaluc

analysis which checks for the possibility of S(A) having a zero eigcnvalue after accounting for

round-off errors. They were able to accomplish thlis by devising a detection procedure which in-

volves the examination of the eigenvalues of the matrix DD', where D is the r x N matrix

D - Y1,"- '/NI . (3.3)

In (3.3), 1 is the identity matrix of order N x N and I, is the vector of ones of order N x 1. Box

et al. (1973) demonstrated that mn linearly independent relationships exist among the responses if

and only if the matrix DD' has a zero eigenvalue of mdltiplicity m. The orthonormal eigenvectors

of DD' which correspond to a zero eigenvalue of DD" are used to identify linear relationships among

the responses. These relationships can then be used to drop m responses (if m linear relationships

- exist among the responses) so that the remaining r - mn responses are not linearly related. It is not

always easy to determine which m responses to drop. In many cases, the structure of the problem

may well dictate a natural way for dropping responses. Having selected a subset of r - m linearly

independent responses, the estimation process can then proceed by applying the Box-Draper crite-

rnon to these responses.

Further problems associated with the use of the Box-Draper estimation criterion were con-

sidered by McLean et al. (1979). Box et al. (1970) and Stewart and Sorensen (1981) discussed ap-

plications of the criterion when some of the observations are missing. More recently, Bates and

Watts (1985) proposed a new computing method for the determination of the parameter estimates

using this criterion. The method is based on a generalized Gauss-Newton algorithm for the min-

imization of I S(a) I. The partial derivatives of the expected responses (with respect to the elements

of 1), which are required in this algorithm, are generated automatically whenever the response

models are determined by dynamic mcdels defined by a system of differential eauations. An ap-

proximate confidence region on the parameter vector a was also described and developed by Bates

and Watts (1985) using a quadratic approximation of I S(B) 1.
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Design of Experiments for Muhiresponse Situations

This is an important aspect of Multirtsponse analysis, yet it is probably the least developed.

We would be understating by indicating that the development of multiresponse dcsigns has been

lagging. Yet, as we reveal in subsequent sections on practical applications, nearly all RSM appli-

cations are multiresponse in nature. In a multiresponse situation, the choice of design should be

based on a criterion which involves all the responses.

Draper and Hunter (1966, 1967) obtained design criteria for parameter estimation for models

of the form described in (3.1). These criteria, however, require knowledge of Z, the variance-

covariance matrix for the r responses. Fedorov (1972) introduced an algorithm for the construction

of a D-optimal design for a linear multiresponse model using a procedure whereby design points

are chosen sequentially. Fedorov's algorithm also requires knowledge of Z . Recently, Wijesinha

and Khuri (1986) introduced a modification of Fedorov's algorithm which can be used when Z is

not known.

Another criterion for the choice of a multiresponse design for a linear multiresponse model

is based on the multivariate lack of fit test developed by Khuri (1985b). The design is chosen so

as to increase the power of this test. Details concerning the construction of such a design are given

in Wijesinha and Khuri (1987).

A Test for Lack of Fit of a Linear Multiresponse Model

When fitting a multiresponse model, provision should be made to test the adequacy of the

model to represent the behavior of the multiresponse system. Since, in general, the responses can

be correlated, one should avoid applying the usual single-response lack of fit test to each response

model individually. Lack of fit in one response model may influence the fit of the other responses.

Therefore, multivariate techniques are required to assess the overall adequacy of the response

models under consideration. Khuri (1985b) presented such a test for linear multiresponse models.
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Af uhtiresporse Optimization

When several responses are considered simultaneously, the problem of determining the op-

timnum is undefined until some multivariate optimization criterion has been chosen. In a multie-

sponse situation, no unique way exists for ordering values of a multiresponse function.

Furthermore, conditions which are optimnal for one response may be far from optimal or even

physically impractical for the other responses. It is interesting that many (perhaps most) users re-

quire multiresponse optimization and the primary medium for doing the analysis is simply over-

lapping response contour maps. Evidence of this will be revealed in the treatment of subject matter

applications in IV.

Graphical methods were used early in the history of RSM development. By superimposing

response contours and visually searching for a common region where the responses achieve near

optimal values (if such a region exists), a practitioner might be able to somehow arrive at a location

(or locations) of a 'compromised' optimum. Lind et al. (1960) used this procedure to obtain op-

erating conditions for maximizing the yield and minimizing the cost of a certain antibiotic. Obvi-

ously, this procedure is difficult, if not impossible, to apply when the number of design variables

exceeds three. Myers and Carter (1973) introduced an algorithm for determining conditions on the

design variables which maximize a 'primary response' function subject to the condition that a

.secondary response' function not exceeds a certain value. The development of this algorithm is

somewhat similar to that of ridge analysis used with a single-rtsponse model. Biles (1975) extended

this concept of ccnstraired optimization by placing bounds on the values of several 'secondary re-

sponse' functions. Biles' procedure employs a modification of the method of steepest ascent.

A different optimization approach based on the concept of utility or desirability was followed

by Harrington (1965) and Derringer and Suich (1980). In this approach, each response function

undergoes a certain transformation into a desirability function, 9p, such that 0 & p _- 1. The choice

of the transformation depends on a subjective judgment concerning the importance (or desirability)

of the corresponding response values. A measure of the overall desirability of the responses is ob-
taned by combining the individual desirability functions using the geometric mean

( x fP x ... x (p,)"',, where (p, is the desirability function for the ith response. The simultaneous
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optimization of the r response functions is then achicvcd by maxirmz.ing the overal desirability

function over the experimental region.

Morm recently, Khuri and Conlon (1981) introduced a procedure for the simultaneous opti-

mization of responses that are represented by linear models of the form

where X is an N x p matrix of full-column rank and 2, is a vector of p unknown parameters

(i 1, 2, .... , r). The rows of Y - .1:.2:.--- -_,A arc statistically independent with each having a

zero mean and a vaniance-covaniance matrix E. A distance function is chosen which measures the

overall closeness of the response functions to achieving their respective optimal values at the same

set of operating conditions. This is referred to as an "deal optimum'. Optimum operating condi-

tionm are then derived by maximizing this distance function over the experimental region. The

distance function approach permits the user to take into consideration the variance-covaniance

structure for the r responses.

3.2 Sampling Properties of Optima

In the typical analysis of a second degree response surface one is interested in

i) The location of the stationary point

ii) The response at the stationary point

iii) The characterization of the stationary point, i.e. as a point of maximum or minimum

response or a saddle point

iv) The contours of constant response

By writing the true response equation as

-= 00 + a'a + X- T (3.4)

where x - (xi, x3, ..... x)', = (9, .. )"and
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the location of the stationary point can be shown to be

- - 2

The response at the stationary point is given by

11= - o - - -I'5B-l (3.5)
4

The nature of the stationary point can be ascertained by considering the matrix B. If B is a positive

(negative) definite matrix then the stationary point is a point of minimum (maximum) response.

If B is an indefinite matrix the stationary point is a saddle point. From this it follows that the

eigenvalues of B are important to the proper description of the stationary point.

The contours of constant response are obtained by finding all values of j for which (3.4) takes

on specified values. These contours are useful in graphically representing a response surface since

they permit the presentation of a k dimensional surface in k - I dimensions.

Since the model parameters are unknown, they must be estimated. Point estimates of the

location of the stationary point, the response there, the eigenvalues of B, and contours of constant

response can be obtained by replacing the model parameters by their respective point estimates

obtained, for example, by the methods of least squares or maximum likelihood. Far too many users

of RSM allow conclusions to be drawn concerning the nature of a response surface and the location

of optimum response without taking into account the distributional properties of the estimated at.

tributes of the underlying response surface. While the distribution of these quantities has not been

considered directly, efforts have been made to develop interval estimates for them.
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Box and Hunter (1954) consider the development of the 100(0 - a)% confidcnce rc~on for

the location of the stationary point. Letting 9 denote the coordinates of the truc stationary point

and assuming the adequacy of (3.4) it follows that

(3.6)

If represents the estimator of the left-hand side of (3.6) formed by replacing the parameters in (3.5)

with normally distributed, unbiased estimates, it follows that

,(2v) Ak•., •

where the elements of V are functions of the elements of (X'X)" I and X is associated with (3.4)

when expressed in general linear model notation. After accounting for the estimate of o2 it can be

shown that

5 , F a , k , ,N -p

(N - p)s2

constitute a 100(l - a)% confidence region for the locatiorn of the stationary point. Here s2 is the

usual error mean square. It should be noted that this technique is applicable to any surface re-

presented by a linear model and not just for the quadratic model considered.

The construction of a confidence interval about the response at the stationary point of the

true surface has only recently been a subject of interest in the statistical literature. Khuri and

Conlon (1981) give an expression for the bounds of such an interval conditional on the estimated

location of the stationary point. For the general linear model

! - XD + r. , I - N(2, oa1)

SpjotvoU (1972) and Rao (1973) indicate that for any particular continuous function g(a)

Pr(min g(D) < g() < max g(f)} 2 I - a
Ce e
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where C = (0: (1 - Al)'XX(l - 3)/ps2 S F,,,,-.,) is the 100(1 - a)% confidence mgion for

1a. a - (X'X)-r'X is the least squares estimator of 1. and .s is as dcf'ncd previously. Thus

(mi g(a),Bic , g(A)] is a confidence interval for g(A) with a conridcnc coefficient of at least

(1 - a). Carter et al. (1984) make use of this result to obtain a conservative confidence interval

on the response at the stationary point in RSM. They also discuss the computational aspects of

methodology.

The user of RSM techniques gains considerable insight into the nature of the stationary point

and the nature of the response system from estimates of the eigenvalues of B. As a result, some

indication of the quality of estimation of the eigenvalues of B should become an essential part of

a RSM analysis. Since the eigenvalues of the B matrix can be expressed as particular functions of

the model parameters, the approach described above can be used to obtain a ..onservative

100(1 - a)% confidence interval about each eigenvalue of B. Carter et al. (1986) illustrate this

methodology for constructing such intervals for the dgenvalues of B. In addition, they consider the

implications of having such an interval contain zero on the sampling properties of the estimated

response at the stationary point. They conclude in this case that a change in the strategy of analysis

is required and they suggest and illustrate one such change.

It is sometimes the case that the stationary point is outside the region of interest or that the

stationary point is unsatisfactory due to associated secondary responses. When either is the case,

constraints must be placed on the optimization. The estimation of the location of the stationary

point subject to constraints is considered elsewhere in this review. Stablcin et al. (1983) extend the

methodology developed by Box and Hunter (1954) to obtain a confidence region about the location

of the stationary point in the presence of constraints. In their, 'Carter et al. (1986) discuss the

construction of a conservative confidcnce interval about the response at a constrained stationary

point. It is shown that when there is evidence that there is a ridge condition as opposed to a true

optimum point, i.e., the confidence interval about the largest or smallest eig-envalue of B contains

zero, the sampling properties of the response at an unconstrained optimum may be undesirable.

In such cases, it is shown that use of a region constraint as in a ridge analysis will provide a tighter

confidence interval about the response at the stationary point.
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3.3 Use of Altcrnatc Models

"There are many typical RSM situations in which the user can make use of known information

concerning the distribution of the observed response. Examples of such response variatcs are sur-

vival time, proportion of experimental units assigned to a given treatment group responding in a

predetermined way, and the number of events occurring per treatment group, i.e. count data. To

the extent that a continuous symmetric dibtribution can be made to adequately approximate the

distribution of such data, the classical application of RSM has provided satisfactory results. Once

a proper distributional form has been determined the usual approach is to express the mean of the

distribution as a function of the experimental conditions. Most often a second order polynomial

is used. However, in their review article Mead and Pike (1975) give an excellent discussion regarding

the choice of the response function to graduate the relationship between the dependent and inde.

pendent variables. They provide the algebraic form of a number of different response functions that

have been used and discuss the usefulness of each. The choice of the form of the underlying re-

sponse function is based on the assumed shape of the underlying relationship. While an important

topic, it is limited only by the ability of the investigator to formulate the mathematical relationship

with the desired properties. The distributional fcrm of the underlying data has an impact on the

estimation of the model parameters and on the inferences drawn from a RSM analysis. Thus, for

the remainder of this section some developments in the choice of a distributional form will be re.

viewed.

Addelman et al. (1966) devised an experimental scheme for estimating the optimal combina-

tion of two drugs in preclinical cancer research. The procedure is such that at most three exper-

iments must be performed. The fist experiment uses three doses from within the effective range

of each of the individual drugs and nine combinations arrived at by considering three different ratios

between the levels of the two drugs. The data from this experiment are analyzed by fitting the

quadratic function

y :=20 + 0II+02 +0A + 022X + 0ý X

where
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y - survival time of the expcrimnntal subject

ke, log4 + dosc lcvel of compound ( , i= 1,2

X,. - lower extreme of effcctive range of compound I

After the model parameters have been estimated by the method of least squares, the underlyinig

response surface is explored and the optimal combination is estimated. From this a second, and

sometimes third, experiment is performed and depending upon the realization of given conditions

data from the initial experiments are included in the final analysis. Unfortunately, the authors il-

lustratcd their work with hypothetical data. Consequently, it was not possible to determine the

applicability of it.

Due to the nature of survival data, the assumptions required for the appropriate use of the

method of least squares may not be satisfied. Cox (1972) proposed the proportional hazards model

as a means of relating surival time to a set of independent variables. Instead of working directly

with su.rvival times this model relates the hazard, or instantaneous risk of failure, X(t), at time t to

the concomitant v i lables x as

W) X %(t)exp (1'1) (3-7)

where Xg(t) is the hazard function, the form of which does not need to be specified, of the appro-

priately scaled reference group and a is the vector of unknown regression coefficients which can be

estimated by the method of maximum partial likelihood. This model has been used by Carter et

al. (1979) in preclinical cancer therapy to relate the risk of failure to dosage levels of cytotoxic agents

given in combination. Since it is reasonable to assume that the risk of failure decrea.es with in.

creasing treatment levels until a minimum is reached and then increases due to toxicity with in-

creasing treatment levels beyond the minimum point, a complete second order polynomial was used

to approximate a'2 in equation (3.7) for the obvious RSM application. An exploration of the fitted

surface foMowed.

When it ih desired to relate the number of events that have occurred to a set of concomitant
varibles, a Foisson recession analysis is often appropriate. However, in many experimental situ-

ations counting variables exhibit extra-Poisson variability in the sen.se that thcre is more variability
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in the data set than can be explained by the Poisson distribution. A generalization of the Poisson

is the negative binomial distribution. The particular form of the negative binomial was discussed

by Collings and Margolin (1985). Rao's efficient score principle (1973) can be applied to test the

adequacy of the Poisson model. Solana et al. (in press) make use of these results to model the mean

number of sister chromatid exchanges induced pcr ccU as a polynomial function of the concen-

trations of ethylnitrosourea and cis-diaminedichloroplatinum. The function used was a complete

quadratic with three additional hiWher order interaction terms. Such an analysis yielded a more

complcte description of the interaction occurring between these two compounds than had been

obtained previously.

In some applications binary (e.g. response/no response) responses are encountered. In such

X situations it is often desired to relate the proportion, p, of responses to a set of concomitant va.i.

ables. Assuming a constant probability of response within treatment groups, this has beer ac-

complished through use of the Iogit transformation of the binomial parameter, i.e.,

In 9 P 0 + 1 X1X + 3•2X2 + .. + k
-P

The estimation of the model parameters and other aspCcts of the analysis of such data am given

by Cox (1977).

Such an approach has been used to relate the probability of a favorable treatment outcome

to the dosage levels of two anticancer drugs given in combination (Caner et al. 1977). The use of

a complete second order model was justified. The fit of the model was shown to be adequate and

the fitted dose response surface was explored and the estimated optimal treatment was obtained.

It sometimes is the case that there is more variability in the data than can be explained by the

binomial distribution. In such situations, the beta-binomial distribution, a generalization of the

binomial, has been useful.

The form of the beta binomial distribution was discussed by Segreti and Munson (1981).

As in the use of the negative binomial distribution to account for extra-Poisson variabijity Rao's

efficient score principle (1973) can be applied to test the adequacy of a binomial model. Chinchilli
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and Chinnici (1986) havc used this approsch to model the proportion of Drojophila mclanoosater

eggs that hatch as a function of exposure to caffeine and aflatoxin B I given in combination. They

used a full second order polynomial to approxmiate the dose.response relationship and found

extra-binomial variability in their data.

IV. SUBJECT MATTIER APPLICATIONS

In the two previous RSM reviews, much attention was given to subject matter applications.

. the Hill and Hunter review, chemical and processing applications were illustrated, with real life

examples demonstrating canonical analysis and use of multiple responses. An example where a

canonical analysis provided some insight (elucidation') into the mechanism in question was also

given. The Mead-Pike review produced examples in the biological area. From our search, it is clear

that standard use of RSM has accelerated. In this section we separate applications that were re-

ported in subject matter journals from applications that aue finding use in industry. As expected,

many imaginative applications were found in the chemical and processing areas. But we were

somewhat surprised to find that uses have spread rather dramatically into other areas. We choose

to highlight a number of applications here. In this survey of the subject matter literature, several

interesting facts become apparent:

i) The central composite is used more than any other family of RSM designs.

ii) While the methods of exploring the response surface have become somewhat more

sophisticated, users nevertheless are not close to making maximal use of the enormous

wealth of analytic tcils that ame available. This is due, in large part, to the -lag time'

that naturally exists between the time at which a publication appears in the statistics

literature and the point at which it is adopted by subject matter users. However, as

in the case of many areas of statistics, our communication with the us remains

woefully inadequate. Perhaps the quickest medium of communication is through ef.

fcctive comruter software. But in the area of RSM, there has been little planning and

leadership in this area of development, though there have been some recent rays of

hope.
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iii) Nearly all practical RSM problems arm truly multiple response in nature. Many users

handle multiple responses with some creativity but little sophistication.

In what follows, examples of subje-t matter applications am given in areas of science and engi-

neering, biology and biomedicine, and applications in management science, operations research, and

food science.

4.1 Applications in Physical and Engineering Sciences

ln the late 70's scientists dealing in the important area of gas chromotography began using

RSM methods. Scott (1970), Swingle and Rogers (1972), Kambara et al. (1968), and Turina et al.

(1974) use variations of RSM to determine optimum conditions for gas ch€romotography. Morgan

and Jacques (1978) study relationships between flow rate, temperature, stationary phase loading,

and the responses, level of separation and analysis time. They indicate how helpful an under.

standing of the system comes from elucidating the nature of the response surface. Cross sectional

plots in this, a natural three variable system, were used to estimate the conditions where desirable

separation and analysis time wer achieved. A modified simplex algorithm was used to demonstrate

the minimization of analysis time at Aixed threshold values of peak separation.

Person (1978) used RSM notions to analyze containment leakage from a sodium fim. 'Sen-

sitivity studies' were conducted in which a study was made of the influence of sodium mass, con.

tainment volume, radiation heat transfer coefficient, and sodium oxide fraction on fraction leakage.

Prato and Morris (1984) studied the effect of detergent concentration, agtation time, and washing

time on the amount of soil removed Erou, fabric. In order to underscore the natural application

of RSM and second order composite designs in human factors engineering type experiments, Simon

(1970) illustrates with a study involving three display panel-type variables and their effect on target

recognition for airline pilots.

Olivi (1980) discusses the need for use of RSM in exploring and identifying certain features

of systems. He uses as a 'typical' appLication a study involving five design vaniables with an
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orthogonal central composite design. The application involves factors that influcnce ballooning

time, an important variable in nuclear safety.

Bodden and Edwards (1982) use a Box-Bchnken design in an RSM study in the investigation

of the mechanism involved in the assay of cretinine. Claycomb and Sullivan (1976) use a three

factor central composite design and a ridge analysis of the data to illustrate the methodology for

selecting a cutting tool for maXimization of profit.

Contour plots of constant response without an analytic method for finding optimum condi-

tions are often the source of conclusions drawn by RSM analysts. Such was the case in the work

by Bretaudiere et &i. (1980) in a study of the Analine Aminotransferase Kinetic Assay. Fujiwara

et &1. (1975) study the atomization mechanism in air-acetylene flames using response contours.

Butis et al. (1981) used data from a central composite design to produce useful contoun of con.

stant response and a canonical analysis that allowed for optimization of a kinetic method that ap-

plies to the enzymatic measurement of ethanol. Response contoun are also the subject of

information obtained from a response surface analysis in which interest centers on formulation and

optimization of vitreous bonds in a paper by Chait and Fotlz (1981). The field of nuclear engi-

neering has not been without studies involving RSM, particularly where simulation is involved.

Heller et al. (1977) use data from a central composite design to study the mechanism involved in

thermal-hydnulic marlin analysis. Vaurio and Mueller (1978) use response surfaces generated from

reactor simulations to obtain probability distributions of selected consequences of a liquid-metal

fast breeder reactor core accident.

4.2 Applications in Food Science

The food industry has been a prime user of RSM since the early 1970's. This is reflected in

study of content of journal articles and industrial usage as well. We cannot begin to cite all of the

work in this area. Johnson and Zabik (1981) use a mixure design to build a response surface to

study interactions among proteins in angel food cake. Lah et al. (1980) use a 27-3 factorial with

an impressive application of steepest ascent to optin,,. whipping properties of an ultrafdltered soy

product. R.G. Henika began using RSM at Foremost Foods in the early 1970's. His leadership
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resulted in usage by others cvcn though many of the applications in this field involve rather pre-

carious or tricky panel data from sensory evaluations. The papers by Ilcnika and Palmer (1976)

and Henika (1982) am .ertainly important contributions. In the latter, particular attention is paid

to applications with sensory data.

Second order models were used to find the nature of the system relating gelling properties of

a meat loaf analog to pH, salt content, cooking time, soil isolate, and egg white leve. While formal

optimization procedures were not used, the response surface allowed Jao et al. (1982) to better

understand the mechanism. Desirable gelling properties can be obtained with reduced egg white

usage with proper manipulation of salt content and cooking time.

The extrusion of starch has important applications in food and industrial applications. El-

Dash et al. (1983) used response surface methods to find ideal operating conditions in this area of

technology. They discovered that, depending on the application, one can control levels of extrusion

temperature, screw speed, and moisture content to produce the proper level of gelatination.

Daley et al. (1978) used RSM to determine the optimal combination of soy, sodium

tnpolyphosphate, and water to produce the most acceptable sausage-type product from minced

mullet. A central composite design was used to study the effects of calcium chloride and cysteine

on heat induced whey protein gelatin by Schmidt et al. (1979). After the parameters of a second

order polynomial were estimated, plots of the fitted surface were generated. Sefa-Dedeh and Stanley

(1979) made use of a central composite design to fit the percent of nitrogen extracted from a type

of meal as a complete quadratic in time of extraction, temperature of extraction and meal to solvent

ratio. The fitted polynomial was explored to estimate the levels of the independent variables asso-

ciated with optimal extraction of protein nitrogen. Mixture response surface methodology was used

by Huor et al. (1980) in conjunction with laboratory sensory ev-.luation and small scale consumer

tests to optimize the proportions of watermelon, pineapple, and orange juice in a fruit punch. Min

and Thomas (1980) utilized RSM analytic techniques to determine the relationship between ingre-

dicnts and physical characteristics of dairy whipped topping and optimize the ingredient concen-

tration by the simultaneous analysis of fat, corn syrup solids, and stabilzer to produce a dairy

hipped topping which could be frozen for storage and distribution without adverse affects. Lxe
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and I losency (1982) used response surface methodology to optimize the formulation of singlC-stage

cake mixcs for White layer cakes. RSM techniques were used by Taeo et al. (1983) to determine

the optimum combination of levels of washing temperature, washing ratio of water volume to

sample weight and washing time on the quality of minced mullet flesh. Tong et al. (1984) used a

central composite design to study the effects of safflower oil concentration, emulsifier concentration

and freezing temperature on maximum overrun and fat destabilization of ice cream. McLellan et

al. (1984) used a rotatable experimental design to generate data for a sensory analysis of carbonated

apple juice as a function of levels of carbonation and soluble solids. The fitted surface for accepta-

bility was described as having a ridge of high acceptability running through the range of typical

soluble solids and carbonation levels.

4.3 Applications in Social Sciences
I'

Much use has been made of RSM in certain areas in social sciences. Economics, operations

research, and system simulation are but a few fields that have benefitted. Shechter and Heady

(1970) use response surface techniques to design and analyze experiments from a simulation model

dealing with the feed grain program. Four responses, net farm revenue, net farm revenue partic. C

ipants, stock accumulation, and government costs were considered. Multiple response analysis is

discussed. In this case, the analysis allows for an optimum decision rule regarding trade-offs be-

tween increasing farm income and reducing government costs. Montgomery and Bettencourt

(19777) produced an excellent account in which the advantages of RSM methods in simulation

studies were reviewed. Heavy emphasis is put on use in multiple response studies. An interesting

illustration was given in which a simulation of a military tank duel is analyzed to ascertain the

values of two design variables (mean time to fire first round and mean time between rounds) that

give desirable values of four responses. They use a nonlinear programming technique to analyze

data taken from a rotatable central composite design.

Montgomery and Evans (1975) discuss the use of various classes of second order response

surface designs in simulaticn work. Two variable equiradial designs, uniform precision rotatable

ccd's and other designs are discussed. An illustration is given in which a simulation of a six inter-
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section street network systcm was used. Data was takcn using a rotatable c.c.d. with two dcsign

variables. Canonrical analysis revealed a maximum at the stationary point. The results produced

optimum conditions on the selection of traffic signal settings. Hunter and Naylor (1970) point out

that a simulation system is, indeed, the source of an experiment similar to a biological or chemical

system and thus experimental design and RSM methods do apply. Factorial and fraction.al factorial

arrays are discussed in the context of an inventory problem.

Smith (1975) made an empirical study of various optimum seeking procedures that are fre-

quently used in computer simulation situations. The methods studied were random search, one

factor at a time movement, RSM Version I and RSM Version 11. Version I involves use of two-

level first order designs and the method of steepest ascent, while Version II involved steepest ascent

with the use of the simplex design. In addition, acceleration versions of steepest ascent were

studied. RSM Version I appeared to give best results. Any attempt to accelerate the steepest ascent

procedure was fruitless. Biles (1981) describes a two phase procedure in which a complex search

procedure is employed followed by a second order analysis of the resulting data. An illustration

of the method is given from an inventory system.

4.4 Applications in the Biological Sciences

The techniques that comprise a response surface analysis are being used more and more often

in the biological sciences. This is evidenced by the large number of citations in the bibliography

of this mport. In this section some of tihe more novel applications will be highlighted.

RSM techniques have been found useful in the study of the relationship between the chemical

structure of a compound and its biological activity. Mager (1982a, 1983) studied the structure-

neurotoxicity relationship of organophosphorous pesticides in this manner and used a canonical

analysis of the fitted equation to elucidate properties of the response surface. Mager (1982b) also

studied the activity of rifamycin derivatives against a rifamycin-NIS-resistant mutant of

Staphylococcus aureus.

Several references in the microbiologic literature, Maddox and Richert (1977), Cinto et al.

(1977) and Farrand et aJ. (1983), indicate the useful application of RSM techniques, including the

57



use of rotatable ccntral composite designs, to optimize microbiologcal media for the growth of

various microorganusms. Chcynicr et al. (1983) were able to demonstate that a yeast isolated from

the digestive tube of the larva of a parasite of eucalyptus trees was capable of bioconverting

citroncllal to citronellol. RSM procedures were used to achieve the optimization of the exper-

imental conditions for that bioconversion process.

Various industrial pollution studies have employed response surface methodology. Huck et

al. (1977) determined the polymer properties and mixing conditions required to produce optimal

flocculation for mine waters of specified strengths containing iron, zinc, and copper either singly

or in combination. Wallis (1978) reports on the use of RSM in studies related directly to power

station cooling systems.

Dincer and Ozdurmus (1977) used the method of steepest descent to determine the most

suitable combination of four independent formulation and process variables for the disintegration

time of coated tablets in simulated intestinal fluid. Shek et al. (1980) evaluated the potential of the

Nelder-Mead simplex search procedure for optimizing a capsule formulation. At the completion

of the search, these investigators fitted a polynomial model to the data and plotted the estimated

response surface. In a similar study Chowhan et al. (1982) studied the effects of moisture and

crushing strength on tablet friability and in vitro dissolution. They used a complete second order

model in the independent variables to graduate the response surface. The fitted model was explored

by plotting contours of constant response and estimating the location of the stationary point. Fast

et al. (1983) used a central composite design with five independent variables in an assay for creatine

kinase. A simplex maximization algorithm was used to determine areas of maximum sensitivity.

Belloto et al. (1985) used RSM to study the solubility of pharmaceutical formulations. They also

discussed the optimization of one response in the presence of constraints due to the consideration

of other response variables.

There are numerous reports in the clinical chemistry literature on the use of response surface

methcds. Rautela et al. (1979) describe the theory and application of the response surface approach

to simultaneous optimization of multiple interdependent variables. They point out that such an

approach permits the determination of accurate optima which is required for the formulation of

38



analytically reliablc clinical methods. Thompson et al. (1981) report on the use of simultancous

RSM optimization tcchniques to optimize an as.say for alkaline phosphatase. London et al. (1982)•

use RSM to optimize the assay of gamma-glutamyltransferase. The authors note that while such

techniques do not yield a mechanistic understanding of an enzyme assay they do produce an opcr-

ational understanding of how an assay fuinctions. In a similar paper, Coleman et al. (1983) use,

RSM to optimize assays for antithrombin III and plasminogen.

Roush et al. (1979) discuss the usefulness of a RSM approach in poultry nutrition research.

Body weight and feed conversion response for Japanese quail were optimized as functions of protein

and energy levels. Heady et a. (1980) express egg production as a quadratic function of the

amounts of corn and soybean meal with time as an independent variable. Contours of constant

response were generated to help determine the least cost feed mix. Roush (1983) utilbies a central

composite experimental design with male broilers to examine quantitatively the protein levels in

starter and Gnisher rations and the time of ration change to optimize body weight, carcass weight,

feed conversion, and net profit. The optisnizatina was done for each response variate independently

of the other responses.

Response surface methods have been used to elucidate the actions and interactions of

cytotoxic drugs in combination and to estimate the optimal levels of each drug for the treatment

of cancer with and without side effect constraints. Carter et al. (1983) discuss the use of logistic and

proportional hazards regression models to this end. These authors give software for the estimation

of the stationary point and confidence regions about its location obtained from the use of these

models. The history of the use of RSM in cancer research has been reviewed by Carer and

Wampler (1986). While the examples used involve data from animal studies there is interest in

applying these techniques to clinical studies. The biggest change required to accomplish this will

be in the design of the studies. The classical clinical trial in cancer research results in a number of

patients being randomized to two or more treatment groups and followed until an event occurs.

The number of patients assigned is determined so that there is a reasonable chance of detecting a

difference of a predetermined size among the treatment groups. While such an approach provides

considerable information about a few treatment groups, it does not offer much about the underlying
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dose response relationship. Box (1958) in a discussion of a paper by Mantcl (1958) was early to

suggest the usefulness of RSM in this area. Curently the Mid Atlantic Oncology Program is run-

ning a clinical trial in the study of breast cancer that is desipged as a factorial experiment and will

be analyzed using response surface techniques.

4.5 Industrial Use of RSM

The 1980's brought a new urgency in industry in the U.S., an urgency that underscores the

need for quality. There is a new motivation in American industry brought about by the success

enjoyed in Japan in the use of Quality Control and efficient statistical methods. The areas of ex-

perimental design and, spccifically, response surface methods are receiving considerably more at-

tention than ever before. This new and renewed interest are 'fallout' from this search for quality

and precision.

In our communication with industrial statisticians and research workers, we found use of

RSM among a wide variety of types of industrial companies. In most cases they sought and, of

course, were promised anonymity. As expected, we found response surface analysis and design in

the chemical industry, and we were able to uncover a growing number of applications in the areas

of foods, tobaccos, military research, pharmaceuticals, petroleum, electronics, and many other

fields. Our search did reveal some interesting but not unexpected information:

i) Aside from the central composite and ijux-Behnken designs, fractions of 2-level fac-

torials and Plackett-Burman designs are used to a large extent, with the simplex design

used in conjunction with the Nelder-Mead Simplex Search Algorithm. There is also

a growing usage of computer generated RSM designs.

ii) In regard to RSM analysis, some analysts carry the computations through to an opti-

mization phase, while others do not. Ridge analysis is used for finding candidates for

optimum operating conditions though usage is not as extensive as one might expect.

Some users merely use graphical methods with overlaid contour plots.
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Thcrc is no untivcrsal software tool for doing RSM analysis. In particular, some users use

IMSL (IntcrnationaJ Mathcmatical and Statistical Ubraries) subroutines, whilc some resort to in.

house software versions for finding optimum conditions. Some users in industry appear frustrated

by the lack of software for finding optimum conditions and resort to two dimensional contours for

analysis.

In what follows, a sample of RSM scenarios is given that apply to actual RSM users in in.

dustry. We have attempted here to gve samples across many fields of application.

A tobacco company uses RSM as a primary tool for elucidation of fundamental relationships

and searching for optimum conditions in the case of nearly every new product considered in a re-

search effort. They use no software for design construction but use in-house software developed

from numerical analysis algorithms for analysis. The latter allows for optimization under various

types of constraints on th: design variables. The designs used vary considerably. For problems

where cost is important, Plackett-Burman screening designs are used and hybrid and small com.

posite designs are used in the second order case. Central composite and Box-Behaken designs are

used extensively. Problems are almost always multiple response in nature, though the responses

are too many in number to often do formal multiple response optimization. Some of the responses

are discrete 'scores' from sensory analysis but many responses are naturally continuous in nature.

A large oil company uses RSM to a moderate extent. Applications vary from polymer opti-

mization to the exploration of a detergent system. In some applications the design variables are

of the mixture type. Mixture variables and process variables often occur in the same setting. The

computer program, ACED (see Welch 1985), is often used to generate the design in the mixture

situation. Basic 2-level factorials and central composite designs are also used. In some cases, de-

termination of optimum conditions is important. The algorithms in GRG2 (see Cornell 1981) and'

XSTAT (1984) are generally used to find optimum conditions. This company also envisions con-

sidering RSM in the future for plant scale problems dealing in perhaps more than 1000 variables,

i.e., alJow the technique to play a role in control theory.

A chemical company finds that RSM design and analysis can be used to solve two types of

problems. The first is a region seeking procedure in which one is seeking the general vicinity of
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"bcst' operating conditions. The method of EVOP described by Box (1957) is used with slight

modification. Steepest asccnt has been used at times with little success. Some success has been

expecrienccd with the Spcndley et al. (1962) sinplcx algorithm. A computer program has been

developed which makes use of various types of designs, allows input of experimental results, and

calculation of the next experimental run. It has bccn found that the most difficult aspect of this

procedure is obtaining from the experimenter a comfmitment on combining re"sponse values from

the multiple dependent variables so that the simplex will move. In the second problem encountered

by the chemical company, they are near the optimum and wish to locate or confi'm its exact lo-

cation. Central composite designs are used almost exclusively. Small composite designs are often

used with no concern for either orthogonality or rotatability. An in-house program is used to

construct central composite designs for researchers. The model fitting aspect of the analysis is done

by the all possible subset procedure in BMDP. Optimization is 'accomplished' with two dimen-

sional contour plots.

A large food company uses RSM in several cases. It is used in product development in de-

veloping new products and in cost reducing old products. The responses axe either continuous

variables or consumer acceptability ratings. RSM is also used in process control and in the evalu-

ation of new equipment. Generally, for firt order models, 2-level factorial or Plackett-Burman

designs are used. In the case of second order models, Box-Behnken designs and central composite

designs ame used. At times, the c.c.d. is resisted by the experimenter because five levels become in-

convenient because it is difficult to adjust equipment accordingly. Errors in controlling factor levels

occur quite often.

Another large and well diversified chemical company makes use of RSM on a rsesarch level.

This company has a large group of professional statisticians and an in-depth program to teach basic

experimental design to engneers and scientists. They make use of an in-house computer program

that assists non.statisticians in designing and analyzing experiments. The program involves contour

plots and optimization routines. There is great potential for use of RSNI in this company, and

most problems are multiresponse in nature. Mixture problems are the rule, and an algorithm has

been programmed in-house to generate mixture designs described in Thompson and Myers (1968).
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Extreme vcrtices dcsins arc used as wcU. In addition, considerable usc is made of the ACED

(Wclch, 1985) algorithm for design construction.

A large research and development organization makes use of RSM in several topical areas,

including chemical and fermentation optimization and development of consumer food products.

In addition, it is also used for optimization of settings associated with processes in the refining and

hydrogenation of vegetable oils. In almost all cases, "optimization' rquires arriving at the most

agreeable compromise among various conflicting responses. In the case of two design variables, the

choice of best conditions is found by use of graphical overlay contour plots. For more than two

variables, a utility function is constructed and a Nelder-Nlead simplex optimization routine is used

to identify an acceptable region in the design space. In some instances ridge analysis is used to ei-

ther find optimum conditions in a single response situation or to find regions for subsequent cx-

perimentation. The class of central composite designs is relied upon heavily. Blocking is often

required and c.c.d.'s are used which block orthogonally. At times rather involved constraints are

induced on the 'optimum' conditions. 'a this case they use 'brute force grid search routines that

are supplemented with confi-rmatory Mais.

A consulting firm used the results of an RSM study to develop a generic method for evalu-

ating submarine tracking algorithms. Simulation experiments were conducted under common sets

of scenarios and then algorithm performance was evaluated according to the behavior of the re-

sponse surfaces generated. RSM is also under consideration for several sonar operator studies to

determine the effects on performance of various processing schemes. Their analyses are performed

using IMSL subroutines.

V. FUTURE DIRECTIONS OF RSM

To comment about future directions of RSM, one must ponder the present status with regard

to utilization and importance. It is rather unfortunate that the expanse of knowledge gained over

the past 25 years in RSM has not blossomed into a fuLl-scale deployment of the tec1-hniques devel-

oped in this area. As we indicated earlier, RSM is being used in industry more and more, but the

use does not reflect recent advances as much as one m7ight wish. This is true more in analysis than
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design. The "falou: of thc recent, almost passionate, 'push' for quality and experimental dcsign

in industry is bringing RSM to the attention of many potential users. However, usage lags far be-

hind its potential. Several factors may have contributed to this, the most prominent of which we

believe are explained in the following paragraphs.

There is a severe lack of communication between academic statisticians in this country and

those in industry. There are some attempts at communication and few successes. This is true in

many areas, not merely RSM. One testament to this is the fact that Japanese statisticians give

lectures and short courses to industrial companies in this country on effective use of experimental

designs that are based, in large part, on basic concepts developed in the U.S. years ago. There is

no question that the historical underpinnings of RSM were produced with particuldar applications

in mind When we move away from reseamch that does not have particular problem solving as

motivation, we lose our line of communication. Statisticians in academia bear much but not the

entire burden. They have little access to what is actually going on in industry as far as the de.

ployment (or lack of it) of RSM in concerned. This can be partly attributed to the fact that

"sometimes, those in industry are dissuaded from publishing for fear of revealing proprietary infor-

mation', as Gerald Hahn (1984) explains. As a result, some of the research that has been under.

taken in RSM was not geared to solving a particular practical problem. Even a search of the

literature, statistical or otherwise, in an effort to find a real data set to use in an example, can

sometimes be unwieldy.

There is a severe software problem. It is unfortunate but true that data analysts are attracted

to statistical technJ ques for which software has been written. There are many historical illustrations

of this in our field. Good efficient, well doc'amented software is a swift and sure forw of commu-

nication. As we indicated in a previous section, there is no commercial up-to-date RSM package

for doing analysis. Of course, there are many new available packages for constructing experimental

designs, and RSM designs are the subjects of some of these packages. But as it was expressed in

the Steinberg and Hunter experimental design review, the 'expert system' for design generation is

not near, particularly in RSM situations. r
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There is apathy on the part of some practitioners who either bclicve that RSN1 is of little use

to them, or simply ignore new developments in favor of antiquated, and often ad hoc, methods.

There is also insufficient training in RSM. In academia, very few statistics departments offer a

course in RSM. In industry, little exposure, if any, to RSM is provided in the form of short

courses.

The review paper by Steinberg and Hunter (1984) along with the several discussion papers

that followed it have expressed concern about the above-mentioned communication problems and

offered several remedies. We believe that greater emphasis should be placed on the teaching of

RSM. A better cooperation and more formal lines of communication between academia and in-

dustry is needed. Statisticians, scientists, and engineers can learn and benefit from one another.

This fact is certainly not specific to RSM but applies mor b:-,jdly in our profession. Far too many

academicians conduct and are rewarded (i.e., tenure ard promotion) for research in which math-

en'aa -legance is far more prominent than application to real problems. More academic re-

st need to let their work be motivated by real problems, much Like the case of Box in the

early 50's and ScheflT with the development of mixture designs in the mid 50's. New developments

in RSM should be made accessible to practitioners and research workers with the proper software.

In return, engineers and applied statisticians working in industry should make a genuine effort to

share their experience with those in academia.

There is no doubt that many scientists and engineers can benefit from tools of RSNI but do

not know that they exist/. We do not presume that this is a problem solely with RSM. Our earlier

comments may very well be relevant in regard to ail areas of applied statistics. However, the

enormity of the problem becomes evident when one 'reaches out' and essentially contacts and

interviews many scientists in industry as we have done. In what follows, we indicate what, in our

opinion, are proper directions for future research. But let us emphasize that users are sufficiently

"far behind" in use of RSM tools that the need for proper communication is far more pressing.
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Future Research Directions

Multiple responses, sequential designs and analyses, and designs for the less orthodox RSM

applications axe many areas where one may benefit from immediate research. Both design and

analysis involving multiple responses have received precious little attention in spite of the acute need

for it. Biologists as well as engineers are finding applications of RSM in which the model is non-

linear, e.g., logistic and other standard growth models. A fruitful area of research deals in the study

of designs or certain specific nonlinear functional forms.

Much has been written, of course, about computer generated design. The comments on the

Steinberg-Hunter review reflect the general opinion that computer generated designs present a very

promising area for the future. This is certainly true in regard to the field of RSM designs. The

"danger' that is projected by concerned academicians is even more acute in the RSM area. Many

(though not all) methods of generating experimental designs employ special criteria that do not

address robustness notions such as model Misspecification, anticipation of outliers, errors in control,

extrapolation, etc. Model mi3specification is the most crucial of these since one often presumes

from the outset that the model is empirical and is, indeed, an approximation. All of this suggests

that preparing for the nonideal and very detailed interactive properties are high priorities in a com-

puter generated RSM design. We would like to underscote the opinion that construction of the

"expert system' in computer driven design must be a product of cunsiderable deliberation and pa-

tience.

There appears to be some need for the development of nonparametric techniques in RSM.

Most of our analytic procedures depend on a model. The use of model-free techniques would avoid

the assumption of model adequacy or low order polynomial approximations and, in particular, the

imposed symmetry associated with a second degree polynomial. The use of nonparametric kernel

estimation shcows some promise.

Analytic methods need to be developed for the case of repeated measures and other situations

where correlated observations are encountered. This is a frequent occurrence in biological appli-

cations.
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