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I. INTRODUCTION

It is well known that cavities, or microporosity, can sensitize an
energetic material to shock or compression waves. There are many reasons for

this which have been discussed by many authors. Hader1 in considering shock
initiation, proposed a hydrodynamic mechanism in which the upstream surface of
a cavity is accelerated by the shock and hits the downstream side of the
cavity, producing a high impact pressure which is amplified by convergence
effects during the collapse process. In this mechanism, the heating is
produced by compression of the solid phase material and plastic or

viscoplastic work is not required. Bowden and Yoffe2 demonstrated that under
some conditions gas compression in pores could cause ignition. Other

experimental uork3 4 has demonstrated that this is not the controlling

mechanism under the usual conditions of shock initiation, but Starkenberg5 has
demonstrated that it can be a dominant mechanism under conditions where the

compression rate is relatively low (compared to shock waves) and the cavities
are relatively large (a millimeter or more in diameter). Khasainov6 and
Carroll and Holt7 have discussed heating due to plastic work in the vicinity

of collapsing cavities. Carroll and Holt8 considered inviscid plastic work
(in reference 8§ they considered viscous effects but did not discuss thermal
effects) and Khasainov considered purely viscous (stress varies linearly with
strain rate) plastic work. In each case, significant temperature increases
were predicted for a thin shell of material around the collapsing cavity. It
is also possible that shear bands could form in the vicinity of collapsing
cavities. Initiation as the result of shear banding was first discussed by

Winter and Field,10 although not in the context of cavity collapse. The
present author discussed shear banding in reference 10 and it appears that
shear banding is also a possible ignition mechanism,

A problem with all of the treatments mentioned above is that they do not
relate the ignition thresholds to such obvious physical parameters as cavity

size and pressurization rate or to such material properties as viscosity,

yield strength, and melt point. Much experimental work11 indicates that

particle size (which affects cavity size) has a strong effect on ignition
thresholds. Also, it is widely recognized that the pressurization rate must
affect ignition thresholds, and this effect has been observed experimentally

by Setchell.l‘ Of the theoretical treatments mentioned above, only
Starkenberg's addresses these two questions, and Starkenberg discusses only
the gas compression mechanism. None of the treatments mentioned above
discusses the effect of melting.

Our goal in this paper is to combine the various heating mechanisms which
can occur in the vicinity of a collapsing cavity into one model and to
determine the conditions under which each is dominant. The model, which is
described in the next section, i{s necessarily highly idealized, so we will be
interested in general trends rather than specific ignition thresholds. We
will consider the effects of pressurization rate, cavity size, viscosity,
yield strength, and melt point. Unfortunately, it was not possible to include
shear banding in the model, so this mechanism is ignored.
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II. PRINCIPAL ASSUMPTIONS USED IN THE MODEL

We based our model on the work of Carroll and Holt7 and Carroll, Holt,

and Butcher.8 They conaidered the collapse of a spherical cavity at the center
of a spherical shell of solid matrix material. The assumptions of the model’
are as follows:

1. The flow is spherically symmetric in the vicinity of the cavity, and
the pressure in the vicinity of the cavity depends only on radiuas, These are
severe restrictiona, but there are two cases where they are reasonable
assumptions, The first is the case where rate of pressure increase is
sufficiently low that there is never any aignificant pressure gradient across
the diameter of the cavity; i.e.,

dP A

max "’

vhere P 1is the ©pressure gradient across the cavity, dP/dt is the rate

of pressurization, A is the cavity radius, C 12 the sound speed, and Pmax is

the maximum applied pressure. For a 1000 micron cavity, assuming a sound
speed of 2.5 km/sec, this relation is satisfied as long as the pressurization
time (Pmax/(dp/dt)) is greater than one microsecond. It will thus apply to

all the situations of interest except those involving shocks with very short
rise times. The second case is where the time required for the shock or
compression wave to pass over the cavity is very short compared to the cavity
collapse time; i.e.,

c << 7, (2)

where r is the cavity collapse time. Viscous effects, which will be discusaed
later, typically require that the cavity collapse time be of the order of a
microsecond even for small cavities, Hence, this relation holds for cavities
as big as 1000 microns.

2. The matrix material is incompressible. The use of this assumption
has several ramificationsa. First, it limits us to cases where the collapse
velocity is much less than the sound speed. By calculation, this was true for
the results reported here., Second, it means that we cannot expliecitly
consider the hydrodynamic mechanism since the heating in this mechanism is due
to compression of the solid. However, we will be able to determine when the
collapse process leads to pressures where the hydrodynamic mechanism might
apply. Finally, we are limited to relatively low applied pressures. Ben

Reuven and Summerf1e1d13 analyzed the case of a collapsing cavity in an
inviscid fluid without strength. Their results indicate that compressibility
begins to affect the computed pressure in the cavity when that pressure
reaches about one gigapascual., When strength and viscosity are considered,
the importance of compressibility may be less, but we will generally restrict
ourselves to applied presaures of leas than one GPa. The computed pressure
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in the vicinity of the collapsing cavity may exceed this limit, and when it
does we must be aware of the possibility of error.

3. The following constitutive relation applies:

- 2
Sr-Zuér+§Y
(3)
Sy = 2ué, - 1y
g = 2} 3"

where ;; =z viscosity, Y = yield strenth, Sr and Se are the principle deviator
stresses, and ér and éy are the principle deviator strain rates. This

relation is appropriate for a rigid-plastic material, and it was our intention
to limit ourselves to this case. However, in doing the calculations we found
it necessary to relax this assumption as described below.

I1I. COMPUTATIONAL DETAILS

Carroll and Holt considered a hollow sphere with outer radius b, inner
radius a, and porosity ,, defined as the ratio of the actual volume to the

fully compacted volume, where = b3/(b3-a3). The equation of motion for this
system is

aOr 2 b

—3;+F(Or'0g=oro (u)

where Or and %gare the principle stresses, r is the radius, and dots imply
differentiation with respect to time. Following Carroll and Holt, we note
that

Cr - Og= Sr - 50 = ueL + Y, (5)

and apply the boundary conditions,

o]
r

P atr a
g

-Patr b,

c
r

where P is the applied pressure and P_ is the pressure in the gas filled
cavity. g

We also note that




..................................

where B(t) a’ - a3 = bg - b3

i b P

o w o w

(ao - tx)/(a!° -1

and ao. bo' and @, are the initial values of a, b, and a. The equation

of motion can then be integrated with respect to the radius and the result
expressed as the following differential equation for q:

b L]
2Y 4u B
r -n =g dr

3 rﬂ

e}
1
[}

Q.

-1 -1
- L] - - )
__________ [o 4 3 a [(d - 1)3 - 3] (73

For convenience, we will refer to the third term on the left side of Eq.(7)
as the inviscid plastic yield stress, Peq' and the fourth term as the viscous

stress, Pv. The rate of plastic work per unit volume at any point in the flow

may be comnuted from the following equation (14):

) £

. e.

. _ i

- W -Zlff S,de,, (8)
X 0

where Si is the principal deviatoric stress, e, is the principal deviatoriec

2 strain, e: is the final value of the deviatoric strain, and P is the density.

. In our case, we divide the total work, W, into a plastic work term, Wp. and a
viscoplastic work term, wv. Using Eq. (5, 6, and 8) yields the results that

-----
............

...............................................
.........................
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Eq. (7) was integrated numerically to determine B, B, r, and a.
Simultaneously, we numerically integrated the heat equation for the material
about the cavity to determine the local temperature T:

T
ot

2
=
Pe

9T aT
5;5 *F3% *7: (1)

where t i3 time, K is heat conductivity, and C 18 heat capacity.

The gas in the cavity was treated using an Abel equation of state,

nRT

Pg (v - nVc) (12)

where V is the volume of the cavity, Vc is the covolume of the gas, R is the

gas constant, n is the number of moles of gas present, and T is temperature.
The pressure was assumed to be uniform throughout the gas phase, but the
temperature and density could vary as a function of radius. The temperature
was obtained from the heat equation, which was simplified by assuming that the
source term, the heat generated by pressure-volume work, was constant
everywhere in the gas phase. When the temperature was known in each zone, the
pressure could be determined from the following equation,

T

b i
i (Voi - ni Vc) ;— Pgo
P = ° (13)
8 . 3
< \Y
4N 23 _ ;ni ¢
3

where Vo1 the initial volume of the ith element, n, is the moles of gas in the
ith element, T1 is the temperature of the ith element, T° is the initial

temperature, P, is the initial pressure, and a is the cavity radius. Knowing

go
Pg and Ti' EqQ.(12) was used to compute the volume of each element of the gas

phase.

At the gas-solid interface, the inner most layer of solid and the
outermost layer of gas were combined in a single zone. Heat inputs and
outputs (by heat conduction, by gas phase pressure-volume work, and by solid
phase plastic and viscoplastic work) were averaged over the entire zone. This
procedure permitted a little heat to be transferred from the gas phase to the
solid phase even when the gas phase heat conductivity was set equal to zero.

The computational mesh was set up so that the zones near the gas-solid
boundary were always very small., The zone size gradually increased further
from the boundary. The thickness of the innermost zone in the solid phase was
initially 0.02 times the cavity radius and during the calculation it was never

11

NN, .
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more than 0.25 times the instantaneous cavity radius, The calculation was
N rezoned to use a smaller zone size whenever this criterion was violated or
when a large temperature difference was noted between the two innermost zones.
Because of the small zone size, it was necessary to violate the VonNeumann

3 .
[N,

R
5 stability condition in order to achieve reasonable computer times, However,
y the finite difference calculation was carried out using a predictor/corrector
4 technique with several iterations at each time step, and no problems with
s stability were observed.

The yield strength, Y, was varied in the calculations to observe its
4

| effect on the temperature achieved. When the temperature was more than 30°K
! below the melt point, Y was constant, and above the melt point it was zero,

In the 30°K.range of temperature just below the melt point, Y decreased
linearly as a function of temperature. Two forms of the viscosity, u, were
used. In the constant viscosity model, the viscosity was independent of both
] temperature and pressure. This was convenient for studying the effect of

j viscosity, but not very realistic. In the variable viacosity model, the

; viscosity varied according to the following equation:

)

# = 1000 poise for T < T melt
: P E E (1“)
.3 B = p exp ;; exp & =~ is for T > T melt,

where Po' Ts' Uy and E are constants. This type of relation has been
discussed by Frankel15 and Bridgeman .16 The value of 1000 poise for the

viscosity below the melt point was chosen on the basis of Khasainov's6

Y analysis of Hackerle's‘7 data for the decay of pressure behind a shock wave in
B porous PETN. 1In another paper,18 Wackerle suggests a higher value of 10,000
poise, and at times we have used this value instead of 1000 poise in equation
_: (14), For Uy E, and Ts. we used values appropriate to TNT and determined by
. fit to very limited data in reference 19. For Po we used a value appropriate
. to nitrobenzene and determined from data in the International Critical Tables,

These values and values for some other parameters are shown in Table 1. 1In
using these parameters, we are not attempting to model any particular
material, but we are choosing parameters which we feel are representative of
secondary explosives, The melt point was varied, but where it is not

specified it is 353°K. Unless stated otherwise, we also assumed in all cases

that the melt point increased by 200°/GPa. Gas phase heat conductivities )
increase greatly with pressure, Starkenberg8 has shown that this effect must
be included if one is to correctly model the ignition of explosives due to gas
compression, In the calculations reported here, we restrict ourselves to a
! constant gas phase heat conductivity, but use a value ten times that of air at
; atmospheric pressure and room temperature. We also discuss the effect of

varying the gas phase heat conductivity.
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Table 1. Material Properties Used
u. = 1.39 x 10-2 kg/m/s
T, = 358%
E = 3,880°K

P, = 0.165 GPa

P = 1.6 x 10° kg/w

C = 1.4 x 103 joule/(kgC)
K = 0.262 joule/(m °C s)
Vc = 28 cm3/mole

K, = .33 joule/(m °c s)

¢, = 1x 103 joule/(kg °C)
a, = 1.05

(K8 and C8 are the gas phase heat conductivity and heat capacity. They were
assumed to be constant for simplicity, but see text.)

For simplicity, we had hoped to use a rigid plastic model, as shown by
equation (4) for determining the deviator stress. In some situations,
however, the cavity "bounces™ as it collapses. In these cases, e. changes

sign, and if the rigid plastic model is used the deviator stresses all
suddenly change sign. This causes convergence problems in the numerical
integration of equation (6). 1In principle, this problem could be eliminated
by using the full elastic-plastic form of the equations, as described in
reference 10, but we wished to keep the problem as simple as possible.
Consequently, we invented an artificial elastic behavior. During the first
phase of the collapse, the matrix is treated as rigid-plastic as described
above. If the cavity "bounces" and the radius begins to grow, the plastic
yield stress, P__, is computed from the following equations:

eq
P =F(a)f3! dr ‘ (15)
eq
r
a -« i
F(a) = 1 - ::-:1;!-9 for a < 2a' +ag, (16)
min

F(a) = =1 for a > 2a' + @ in

13
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Y
' - - — -
a % %min * 3G (amin LR
where @ in is the lowest porosity obtained on the preceding cycle of collapse

and G is the shear modulus., If the cavity has been expanding and begins to
contract, Peq is given by equation (15) with F(a) defined as follows:

- - - -

a -
Fla) = 22ecemp =1 @) 2a' - & (18)
max a
F(e) =1 a {2a" -« 3
max (19) .
. (2G @ ax * Y) X
a - 2G + Y '

where umax is the largest porosity obtained on the last cycle of expansion.

Peq' calculated for equation (15) to (17), replaces the third term on the left

side, of equation (7).

IV. PRESSURE AMPLIFICATION

\ During cavity collapse, the material in the vicinity of the cavity may be

X accelerated to relatively high velocity. In the final stage of cavity
collapse this material must be abruptly decelerated, and the pressure may
obtain very high values, many times that of the applied pressure. This is
called pressure amplification or overshoot. In an inviscid, strengthless

] fluid overshoot always occurs (for instance, see reference 13). When

Y overshoot occurs, the hydrodynamic ignition mechanism, which involves
compression of the solid matrix material, may be possible. When overshoot
does not occur, the hydrodynamic mechanism will not be important (at least for
the relatively low applied pressures which are considered here).

When the effects of viscosity and strength are considered, overshoot is coY
not inevitable. It is important to understand when it does and does not
occur. If the strength is sufficiently high and the pressurization rate is
sufficiently low, the inviscid plastic yield stress (Peq' the third term on . B

the left side of equation 7) will increase (as the cavity collapses) fast
enough to keep up with the applied pressure, and high collapse velocities
do not occur. A dimensionless parameter, N,. which describes this effect is

the following:

‘ A gf 4

, N, = S5 (20) 3
14

|- -.‘ J' -,. ' .' . !."J' \.q‘! ‘-'.-( . S '-‘n .'- \J“-‘.’\' ’-‘.- .'J“‘ ‘\\ >




where A is initial cavity radius, P is pressure, t is time, p is density, and

Y is the inviscid yield strength. Figure 1 shows the result of two

calculations where the applied pressure was 0.4 GPa, the pressurization time

was 10 microseconds, the viscosity was very low (1 poise), and the yield

» strength, Y, was 0.07 GPa. With a cavity size of 100 microns, the plastic

by yield stress keeps up with the imposed pressure and the cavity undergoes a

+ "gentle™ collapse. For larger cavities, with other parameters the same, P
exceeds Peq by a large amount early in the collapse process, and the radial

velocity becomes large. When the cavity collapse is nearly complete, P

)

s eq

} overshoots P, and the cavity "bounces", Peq can become very large in this
L case, producing pressures which invalidate this model but make Mader's

. hydrodynamic model possible. Based on our calculations, the critical value of

N1 is about 1.0.

R 4

Viscous effects can,also prevent overshoot. Khasainov, in discussing
purely viscous flow (Y=0) and infinitesimal pressure rise times, introduced

5
N another nondimensional parameter, which determines whether viscous damping can
A absorb the available energy fast enough to prevent the cavity from "bouncing.”
This parameter, N2' is defined by the following expression:
)
Rl A pp
’ N, = cmet \ . (21)
Y
: 2w
¢
Figure 2 shows the results of two calculations which have a short risetime (1
, microsecond), a yield strength of 0.035 GPa, an initial cavity size of 100
4 microns, and viscosities of 200 and 1000 poise. N1 i's large (2.73) so it
j permits the possibility of large collapse velocities and pressure overshoot in

all cases. With the smaller viscosity, the cavity bounces and pressure
overshoot occurs; with the higher viscosity, the cavity collapses "gently."
Based on our calculations, the critical value of N2 is about one.

.

If both N1 and N2

hydrodynamic heating is possible. Figures 3 and 4 are intended to provide
some perspective on the range of cavity sizes, pressures, and pressurization
rates for which this can happen. 1In Figure 3, we have plotted the
pressurization rate versus the cavity size on the curve N1 = 1 for the case

2
:Q ) where p = 1.6 g/cm3 and Y = 0.035 GPa. In Figure U, we have plotted the
‘o cavity radius as a function of pressure on the curve "2 2 1, If either N, or

are greater than one, pressure overshoot can occur and

ZIAE N

N2 is less than one, pressure overshoot does not occur and the hydrodynamic

’ mechanism is not possible. If both are greater than one, hydrodynamic heating
M may occur as well as viscous and plastic work. Under shock wave conditions,
Lt where pressurization rates are very high, Figure 3 indicates that overshoot is
o possible, based on the N, criterion and the parameters mentioned above, for

N 4 cavities larger than about one micron., However, if the pressurization rate
was reduced to 0.052 GPa/microsecond, which is slow when compared to shock

y waves but still large when compared to many stimuli, a cavity as large as 1000

o microns could collapse without overshoot. Figure U4 shows that for an applied

" pressure of 0.4 GPa, the "2 criterion prevents overshoot for cavities as large
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Figure 1a. The radial velocity of two collapsing cavities is shown as a
function of time. + = 10 microseconds; Y = 0.07 GPa, and n = 1.0 poise. For
the solid curve, A = 100 microns; for the dashed curve, A = 400 microns.
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as 40 micron., Figure 4 was computed with a viscosity of 1000 poise. If this

value was raised to 10,000 poise, as suggested by Hackerle18 the cavity size
required for overshoot would increase by an order of magnitude.

V. VISCOPLASTIC HEATING

We will now consider the heating which occurs in the vicinity of the
collapsing cavity due to viscoplastic work. The temperature which is produced
is controlled by a number of factors, which are described as follows:

1. The relation between the cavity collapse time and the pressurization
time. The energy dissipated in the vicinity of the cavity is the integral of
the pressure with respect to the change in volume., If the pressurization time
is large compared to the collapse time, most of the volume change occurs while
the pressure is low, and the energy dissipated is relatively small (but not
negligible). Two characteristic collapse times may be considered. One is an
inertial collapse time, ti. which applies to inviscid flows and is given by

the following expression [13]:
1

t = A (ﬂ 2 (22)
P

For large cavities (greater than a millimeter) it is frequently the
controlling parameter., The second is a viscous collapse time, tv. which is

independent of cavity size (a surprising fact in the opinion of this author).
Khasainov6 gave the following expression for tv:

Uu
TV s -p IS (23)

For a viscosity of 1000 poise and an applied pres sure of 0.4 GPa, tv is about

one microsecond. Since it is independent of cavity size, it is frequently the
controlling parameter for small cavities (less than a millimeter). Figure 5§
shows how the dissipated energy varies with the rise time, r, of the pressure
for a calculation with a cavity size of 40 micron, a pressure of 0.4 GPa, a
yield strength of 0.07 GPa, and a viscosity of 1000 poise. The curve is "S"
shaped with high dissipated energy for short rise times and low dissipated
energy for long rise times. For the situation in Figure 5, the ratio of tv/r

is the important parameter, and the dissipated energy changes as this
parameter changes from more than one to less than one.

This has obvious implications for initiation by a ramped pressure
wave, If 7 > tv' hot spot formation will be much more difficult. As
mentioned above, for x = 1000 poise and P = 4§ kbar, tv is about 1 microsecond.
At 30 kbar, tv drops to about 0.3 microseconds, 1In situations of interest to

explosive initiation, even very short rise times can be significantly
desensitizing.
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2. The relation between inviscid plastic work and viscoplastic work.
Depending upon circumstances, the plastic work may be predominantly of the
inviscid type (controlled by the yield strength Y) or the viscous type
(controlled by viscosity). From equations 9 and 10, we can see that
viscoplastic work has a much stronger dependence on radius than does inviscid
plastic work. Therefore, when viscoplastic work dominates, we expect the
dissipation to be more localized and the temperature to be higher.
Futhermore, the inviscid plastic yield stress goes to zero at the melt point,
and this limits the heating which can be caused by inviscid plastic work. We
find that there is a critical parameter, N3. which determines whether viscous
or inviscid effects dominant. It is the quotient of N1 divided by "2 and is
expressed as follows:

‘)B
AR

N3 - -Y;— ’ (2”)

where p is viscosity, P is the applied pressure, Y is the inviscid yield

strength and r is the rise time of the applied pressure. When N3 is much

greater than one (high viscosity, low yield strength, low rise time) viscous
effects dominate. Figure 6 illustrates the effect of N3. It is a plot of the

maximum temperature, T, obtained in the solid phase in the vicinity of a
collapsing cavity, as a function of the rise time of the applied pressure for
calculations where the viscosity was 1000 poise, the initial cavity radius was
40 microns, the applied pressure was 0.4 GPa, and the yield strength was 0.07
GPa. The curve has an "S" shape, and the transition from low to high

temperature occurs when N3 is about one. For the situation in Figure 6, the

parameter tv/f changes from less than one to greater than one at about the

same place, and this increases the effect of rise time on the temperature. As
can be seen, the computed temperature is very strongly dependent on rise time,
with the transition from low to high temperatures occurring for rise times in
the one to ten microsecond range. Figure 7 shows the effect of viscosity on
the maximum computed temperature (solid phase). The cavity size was 40
microns; the applied pressure was 0.4 GPa, and two curves are shown with
different pressurization times. The temperatures increase with increasing
viscosity, and the most rapid increase occurs as N3 changes from less than one

to more than one. Figure 8 shows how the rise time varies with the applied

pressure P on the curve N3 = 1 when # = 1000 poise and Y = 0.035 GPa. For

shock waves, where is very short, viscous heating will be dominant, and high
temperatures are expected. With slower pressurization rates, plastic work may
be dominant, and the temperature will be lower.

3. Cavity size and level of applied pressure. The maximum energy
avallable for dissipation at the cavity is the product of the cavity size and
applied pressure. These parameters also influence the computed temperatures
by their effect on the parameters N1. N2. and N3 discussed above. 1t is

interesting to note that in a purely hydrodynamic model, with plastic work and
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gas phase heating iinored, the temperature which can be achieved at a cavity
is independent of cavity size if the rise time is infinitesimal (the size of
the hot spot increases with cavity size, but its temperature does not).
However, when plastic work is considered, cavity size has a strong effect on
the results, This is shown in Figure 9. The upper curve in Figure 9 shows
how the maximum computed temperature (in the solid phase) varies as a function
of cavity size for a series of calculations with r= 1000 poise, 7= 0.1
microseconds, and Y = 0,07 GPa. For this series of calculations, N3 is large,

and viscous heating dominates. Rather high temperatures are thus computed
over the entire range of cavity sizes, but the temperature increases with
cavity size, When the cavity size exceeds 100 micron, N2 becomes larger than

one, and pressure overshoot occurs, A sharp increase in the temperature
occurs because the cavity radius is driven down to a very small value, and
this causes greater localization of the energy (the high pressure may also
cause hydrodynamic heating, but we do not consider that effect here). The
lower curve in Figure 9 shows similar results for calculations with r equal to
ten microseconds. In this case, N3 is less than one, and the temperatures are

relatively low until the cavity size reaches 400 microns. At that point, both

"1 and “2 become greater than one; overshoot occurs, and high temperatures are

achieved.

4. Heat conductivity. Khasainov6 noted that heat conductivity did not
significantly effect the temperature achieved unless the cavity size was less
than one micron. He noted that the characteristic time for the cooling of the
surface of a sphere is

v, = A% C/K, (25)
vhere A is cavity radius, p is density, C is heat capacity, and K is heat

conductivity. For a one micron cavity, tc is of the order of ten

microseconds, and for b’ iger cavities it increases rapidly. We have already
seen that tv is of the crder of one microsecond when the pressure is 0.4 GPa

and the viscosity is 10(C) poise. Thus cavity collapse should be complete
before heat conduction cin significantly affect the results. In the
calculations which we ha-e performed, with cavities in the range of 1 to 1000
microns, we have seen no effect due to heat conductivity unless gas
compression was a major contributing mechanism (this will be discussed in the
next section).

5. The effect of yield strength and initial gas pressure. Yield
strength (Y) and the initial gas pressure, Pgo' in the cavity affect the

results in a way that may seem surprising. Although there are exceptions,
high strength generally reduces the temperature, sometimes markedly so. The
results of some calculaticns demonstrating this are shown in Table II. The
effect of high strength is to shift the dissipation from viscous to plastic
forces and to increase the final radius of the cavity. Both of these effects
are desensitizing. Higher values for the initial gas pressure are
desensitizing for the sam reason. The effect of initial gas pressure in two
pairs of calculations is .nown in Table III., The calculations on the last two
lines of Table III are ca:es where gas phase heating contributed significantly
to the result, but even here a lower gas initial pressure produced a higher
temperature.
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TABLE II: EFFECT OF STRENGTH ON COMPUTED TEMPERATURE.

The applied pressure is 0.4 GPa and the viscosity is 1000 poise.

Cavity Size Rise Time Yield Strength Gas Phase Heat Computed

(microns) (microseceonds) (GPa) Conductivity Temperature
K o
s Joule ('K)
$ n°c
¥ 400 10 0.07 0 T49
; 400 10 0.007 0 976
1000 100 0.07 0 360
1000 100 0.007 0 687
1000 100 0.07 33 x 103 48y
! 1000 100 0.007 33 x 10° 898
6. The effect of melt point and the temperature dependence of
viscosity, The calculations shown so far all used the constant viscesity
model and a melt point of 353°K. Varying the melt peint and using the
” variable viscosity model (equation 14) have some interesting effects on the
N results. When the constant viscosity model is used and N3 << 1, inviscid
Y plastic work dominateas, and the temperature is limited to the melt point,
f With the conatant velocity model and N3 >> 1, viscous effects dominate, and
’ the temperature is not affected much by melt point. A better understanding of
the real effect of melting is probably preovided by the variable viscosity
madel which allows for a reduction of viscosity as well as yield strength
s upen melting., Figure 10 shows a comparisen of the maximum temperature
1

computed with the variable and constant viscosity models, The temperature is
plotted as a function of cavity radius for a case where P = 0.4 GPa, 7 = 0,1
miocrosecond, and Y = 0.07 GPa. With the conatant viscesity model, N3 » 1,

N viscous effects are dominant, and the temperature is relatively high for all
b radii. When the variable viscosity meodel is used, the computed temperatures
are much lower (approaching the melt peint) for small cavities, but they are
quite large for big cavities and may even exceed those computed with the
constant viscosity model. With the variable viscosity medel, melting

b. 30
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TABLE III. EFFECT OF INITIAL GAS PRESSURE.

The applied preasure is 0.4 GPa, the viscosity i{f 1000 poise, and the yield
strength is 0,07 GPa.

Cavity Radius Rise Time Gas Phase Heat Initial Gas Maximum
(microns) (micreosecends) Conductivity Pressure Temperature
Joule (atm) (&'
m°C gec

400 10 0 0.0001 1773

400 10 0 1.0 749

1000 100 33 x 103 0.01 635

1000 100 33 x 103 1.0 48y

reduces the viscosity and reduces the heating as long as the pressure in the
vicinity of the cavity (where the deformation is concentrated) is low.
However, in the final stage of cavity collapse, the pressure may rise, and
this will increase the viscosity and the rate of heating. For small cavities,
where pressure amplification dees not occur, melting tends to be strongly
desensitizing when the variable visccsity model is used. With large cavities,
melting may make overshoot more likely, by reducing viscosity (and thus
increasing Nz). In this case the variable visceosity model may give higher

temperatures than does the constant viscosity medel. However, the most
important observation is that melting can be strongly desensitizing for small
cavities (of the order of 4 microns or less).

VI. GAS PHASE HEATING

With the exception of the last two lines of Tables II and III, gas phase
heating contributed a negligible amount to all of the calculations discussed
so far. This was demonstrated by running the calculations with the gas phase
heat conductivity set equal to zero as well as to the value specified in Table
I. However, in some cases, the gas phase heating can have a significant or
dominant effect. The conditiens under which gas phase heating is dominant are
relatively large cavity size (8o the gas will contain enough heat energy to
affect the solid significantly), long rise time or low viscosity (otherwise
viscous effects dominate), and a melt point below the ignition temperature (to
suppress inviscid plastic work effecta). When all of these conditions are
met, gas phase heating can be dominant., Some cases where gas phase heating
was important are shown in Table IV, and the importance of cavity radius in
this mechanism is shown in Figure 11, However, in the context of this model
it was difficult to find cases where gas phase heating was dominant, because
the available energy was usually dissipated largely in the solid phase by

32

W A A PR



800
P=0.8 GPa
r2100.0 us

700 +
>
= GAS PHASE HEAT J
2 CONDUCTIVITY=O.337LT
(@)
* 600
oL
w
.
- ¢
o
2 500
g
("4
[¥¥)
o
2 GAS PHASE HEAT
= 400 CONDUCTIVITY =0.0

300 ' ' —

0 100 400 1000

CAVITY RADIUS (micron)
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viscous or plastic forces, In situations where cavity collapae can eccur
without deformation ef the solid (feor instance, a planar gap at the base of an
artillery shell), gas phase heating will be much meore important, Starkenberg
has shown that a pressure of 0.15 GPa applied to a planar gap of 0.5 mm can
cause ignitien in compesition B,

TABLE IV: CALCULATIONS WHERE GAS PHASE HEATING WAS IMPORTANT.

Cavity Rise Viscosity Yield Pressure Gas Phase Heat Max.
Radius Time (Poise) Strength (GPa) Conductivity Temp.

(micren) (x8) (GPa) 103 joute  (°0)
m°C
1000 100 1000 0.07 0.4 0 687
1000 100 1000 0.07 0.4 33 898%
1000 100 1000 0.7 0.4 0 463
1000 100 1000 0.7 0.4 33 635%
400 100 1000 0.7 0.4 0 361
400 100 1000 0.7 0.4 33 505%
400 100 b 0.7 0.8 0 375
400 100 L 0.7 0.8 33 656%

# Temperature was still rising when calculation was stopped.
#8% Calculations used the variable viscosity model described
earlier.

VII. CONCLUSIONS

High temperatures may be produced in the vicinity of a collapsing cavity
by visceplastic work, plastic work, hydrodynamic cempression, or gas phase
heating. We have presented an analysis of the conditions where each mechanism
will occur, Viscoplastic work is by far the most efficient mechanism for
preducing high temperatures, and it is favered by high viscosity, low yield
strength, and short rise times. Using best guess estimates of viscosity (1000
poise) and yield strength (0.035 GPa), and considering pressures in the range
of 0.1 to 2.0 GPa, viscoplastic work will dominate when the rise time is less
than 5 to 20 micreseceonda., The hydrodynamic mechanism gccurs when the
parameters N1 and N2' diacussed earlier, are both greater than one. This

mechanism is probably never required, because other effects (viscoplastic
heating) occur at the same time., For a 100 micron cavity, and using best
guess estimates of yield strength and viscosity, the hydrodynamic mechanism
will occur when the pressure is greater than 0.4 GPa and when the rise time
(for a 0.4 GPa pulse) is less than about 8 microseconds. Smaller cavities
require shorter rise times and higher pressure. Inviscid plastic work (as
distinct from viscoplastic work) can cause ignition only if the melt point is
higher than the ignitien temperature. Gas phase heating is generally not a
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dominant effect in the context of this model, because the available energy is
dissipated by viscous or plastic forces rather than in the gas phase. It can
be important for large cavities and relatively long rise times (which
suppresses other mechanisms). If cavity closure can occur without deformation

of the solid (as in a planar gap), the gas phase mechanism will be more
important.

In the context of this model, cavity size and pressurization rate both
have a strong effect on the temperature which may be achieved. Risetimes as
short as a few tenths of a microsecond can be significantly desensitizing in
some situations,

The effect of some material properties on the temperature achieved is as
follows. High strength is almost always desensitizing. High viscosity is
sensitizing. A low melt point can be either sensitizing or desensitizing
depending on conditions, but for small cavities (a few microns) it is
significantly desensitizing. Heat conductivity is important only for very
small cavities (less than a micron) or for situations where gas phase heating
is important. These conclusions apply only for the cavity collapse mechanism
and may not be extrapolated to other situations,
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