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SECTION 1

INTRODUCTION

LT

The ability to predict the behavior and strength of reinforced

lz concrete structures is often crucial for design purposes and depends N
52 very strongly on our understanding of, and capability to analytically f'
> model, the nonlinear response of plain concrete to applied stresses. .

From a constitutive modeling viewpoint, plain concrete is an >

conditions, and yet is sufficiently simple for use in design

R exceedingly complex material whose constitutive properties under =
2 general load paths have, to date, largely eluded researchers. As ::
;3 noted by Chen and Suzuki,(l) a general constitutive relation capable :i
,ﬁ' of describing both pre- and post-failure behavior of plain concrete ;
~ simply does not exist today. In fact, a general model capable of o
;: describing the behavior of plain concrete under all possible -{J

BHYTy I,

applications, may be out of reach at the present time.

; In recent years, a variety of nonlinear constitutive models has N
5 been proposed in the literature for describing the response of plain %Z
.q concrete to short-term loads. These models have been based upon i?

. nonlinear elasticity,(2) classical plasticity,(3) hypo-elasticity,(4)
-3 endochronic plasticity,(s's) bounding surface plasticity,(7'8) .

‘;j continuous damage theory,(g'lo) plastic-fracture theory(ll) and
- microstructural considerations.(12)* In almost all cases, the rodels N
) were developed from, and validated against, data from standard B
‘i laboratory tests in which at least two of the principal stresses were ::
‘E equal. Some true triaxial experiments have also been performed on ::
} concrete, but these have been largely limited to proportional, E‘
»

-
(NS

"y Al

. For a rekag and critique of various modeling approaches, see Chen
and Ting. )
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(14,16)

monotonical ly-increasing loading to failure. the results from
these tests are inadequate for identifying and characterizing the
salient constitutive features of concrete under arbitrary load paths,
unloading, stress reversals and reloading, which are generally

encountered in practice.

To fill the need for data on the response of plain con.rete to
complex, multi-axial loading paths, Gerstle, Ko and coworkers recently
conducted an extensive laboratory testing program,(17) using a true
triaxial test device designed specifically for wuse in studying the
multi-axial behavior of geomaterials. This device independently
applies three normal stresses of up to 15,000 psi to the sides of 4-
inch cubical specimens. The focus of this experimental study was
confined to the range of load levels below that at which significant
cracking of the plain concrete would occur. A total of 47 different
non-standard stress paths were investigated. 0f these, a number of
paths were chosen to provide insight into possible stress-path

dependence.

From the results of this study, it was found that plain concrete
exhibits behavior under complex loading which appears to be not well
represented by any of the current models. In particular, it was found
that the loading surface has the form of a box in principal stress
space, with sides parallel to the principal stress axes; hence, the
projection of the loading surface on the deviatoric plane is a
triangle, which is aligned with the principal deviatoric stress axes
in the deviatoric plane so that each of its sides is perpendicular to
one of the principal axes. Thus, the loading surface is not affine
with the failure surface. Except near the failure surface, the
plastic flow law appears to be associated, with the plastic strain
rate vector normal to the loading surface at the current stress point.

As the failure surface is approached, the plastic strain rate vector
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begins to deviate from normality and ultimately becomes normal to the

failure surface.

]

P
Es In an effort to analytically represent the results from their 3
experimental study, Stankowski and Gerstle developed a simple, hypo- o
o elastic-type constitutive mode! (18) that is an extension of a previous 2
EQ modellby Gerstle.(lg) The model was applied to several of the complex EZ
:2 axisymmetric stress paths studied experimentally and, considering the ?.
& simplicity of the model, it showed remarkable predictive capability. !
. Several other more complex concrete models(11'2o) were also exercised s
jss around the same paths by Gerstle and Willam,(33) but they failed to Ef
ii‘ show comparable predictive capabilities. While the simple model has iz
| shown its ability to capture many of the response features of plain f;
~ concrete under several axisymmetric stress histories, it has not, to b,
; date, been extended to, nor validated against, more general loading i‘
- conditions. In order to capture certain features of behavior that are ?
- beyond the scope of the simple theory, and to have a theory that is- 3
, applicable to general multi-axial Tloading states, we explored the ':
- potential offered by the new endochronic theory for describing the 2;
:? extensive experimental results given in Reference 17. E:
2
The new endochronic plasticity theory was originally developed ,
" by Valanis,(21) and has since been applied with remarkable success to E
; various problems of metal plasticity(22'23) and geomaterials.(24) The E:
~ theory is based upon the hypothesis that the current state of stress ::
- in a material is a [linear functional of the entire history of 3
: deformation, with the history defined with respect to a time scale, :'
., called intrinsic time, which is itself a property of the material at i'
\: hand. Such an approach does not require the notion of yield surface ?
nor the specification of unloading-reloading criteria, and these N
t; unique features make the theory particularly attractive for describing N,
3 N
L X "
2 '
: 3
. :

. _.'.._-‘...-_..-‘_v_..-:-...'\_--. ~\_._
- ~ - " )

PO P M{Lt.}f‘f;f.‘_xhwl‘ :




P R R N T N T v Y Yy VT N I R N I r Ena~ar
P!
N
:* A

~

A

Z:l;

the behavior of concrete, which does not exhibit a welli-defined yield .
point. It should be noted that the new endochronic plasticity theory ;E&
considered herein is substantially different from those versions of SEE'
the older theory used to develop the concrete models described in :;"
References 5, 6, and 27. Proper closure of hysteresis loops is phat
guaranteed in the present theory,(zl) so that artifices, such as the f&n(
jump-kinematic hardening introduced into the concrete model described ;ﬁ:t
in Reference 27, are not required. Some of the basic inelastic iﬁif
response features of this new theory have recently been discussed by s
Trangenstein and Read(25) and Murakami and Read.(26) =Y
RS
The purpose of the present report is to formulate an endochronic ;Ef‘
plasticity theory for plain concrete, based upon the general framework ~ A

described in Reference 21, and to explore the capabilities of this new
theory to predict the wide range of experimental results for complex
multi-axial load paths reported in Reference 17. For this purpose,
the model is first fit to a small subset of the data, and then
exercised around 3 variety of different non-standard stress paths not
used in fitting the model. It is shown that the model can
successfully predict the nonlinear behavior of concrete under these
complex loading conditions. This appears to provide strong indication
that the present model has captured the basic constitutive

characteristics of plain concrete quite well.

It should be noted that the scope of the present model is
currently limited to stress levels in plain concrete that do not
produce significant cracking. The model s isotropic and therefore

incapable of describing stress-induced anisotropy produced by

significant microcracking with preferred orientation. In many
practical applications, this |limitation may not prove to be overly
%
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restrictive, since there are obviously many instances where a plain
W, ) . . . . o
) concrete structure is driven into the nonlinear regime but not to the y
K)
. . . . &
) point where substantial cracking occurs. .
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SECTION 2

THERMODYNAMIC FOUNDATIONS OF THEORY

Endochronic plasticity is founded on the theory of irreversible

thermodynamics of internai variables. The foundations have been laid
in detail elsewhere (see Ref. 21, for example) and will not elaborated
upon here. For the sake of completeness, however, we begin by

recalling the basic equations.
2.1  THERMODYNAMIC RELATIONS.

It is stipulated at the outset that concrete is macroscopically
homogeneous and isotropic even though at the local level it is highly
heterogeneous and anisotropic. Its mechanical response to strain (or
stress) is also highly dissipative and therefore inelastic. In the
thermodynamic formulation, interior dissipative mechanisms are
formally represented by internal variables. Isotropy permits the
separation of such mechanisms into deviatoric and hydrostatic ones,
represented respectively by the internal variables g, and p., where qr
are tensors of second order and p,. are scalars. In the context of
smal| deformation theory, ¢, the free energy of deformation, is
quadratic in the strain tensor and the internal variables and can
therefore be partitioned in the case of isotropic materials into its

deviatoric and hydrostatic parts. Thus
=¥+ Wy (2.1)

Specifically
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= 'D(s'gr) (2.2)

-
o
[l

P = Pu(¢-Pr) (2.3)

where e is the deviatoric part of the strain tensor ¢ and € is the

hydrostatic part. Thus

c=e+le (2.4)

where I is the unit matrix. It has been shown that in the case of
materials which behave elastically at the onset of wunloading or
reloading (points of reversal in the sign of the strain rate) §p can

be further partitioned into an elastic and plastic part such that

Vo= ¥p * V5 : | (2.5)
where
v = ve(e°) (2.6)
¥ = (<" q,) 2.7)
and
e d§
de” = E;
(2.8)
f=e-¢
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;" S is the deviatoric stress tensor and 4 is the elastic shear modulus. ™
» .. .. Ly
:.; In a similar fashion
- "
o b=y P (2.9) ]
- H H H ' K
e 3
:;3 where 3
e e ]
~ ¥y = Yue) (2.10) X
o ~
~
~» .
~ W = 5P, (2.11) ;
o and o
‘q‘: n‘:
::.' d e - d_a .
A e® = ¢ (2.12) ‘o
9 e 1
. e =¢€-¢€% , (2.13) >
i R
\: ot
o0 is the hydrostatic stress and K is the elastic bulk modulus. In !
':j parallel to Eq. (2.4) A
e -
3 0
W g=5+ la . (2.14) oy
.: The topological interpretation of the above partitioning in the devia- \
t. toric case is given in Figure 1. The same intepretation applies to
, the hydrostatic case. N
&
.“ :*
d .
< o4
\
) 8 5
« -
5 .
>
\. - Y -
e L e I T T e D T e T T EERE R TNy =~



L s
.

o
LA RASCAL |

o

nta Sar o

|
|

¥p ¥p

RIS
o e »

>
.

Rigid Connectors

A Figure 1. An elastic system and a plastic system in f'
.-, series. .

% -

Ty S A V%Y

0

Sy ¥

Original
===-= Endochronic Model

~—— (bservations and Hew
Endochronic Model

i

e e,

e,

{

Figure 2. Elastic response at unloading and reloading.

-

PN

. »
7]
AU NN NN

oy
o
. L




'S

4
o

W

The thermodynamic relations that apply are the fol|owing:(21) _

d ::
P o

oy N

D .

$=—2 (2.15) i
de -

Y '
X 3yp 1
o ——g-:dgr >0 , ”dgrll <0 (2.16) -
I =

g = s (2.17) :.
de e

o~

. ad” g
: - 'a-;; dpr >0 , |dpr| >0 (2.18) :
: ’
\ <Y
4

Also b

e

a,D O

£= o (2.19) :.:

ag -:.

R

e 1)

ayH

. g = o (2.20) -
o 0e .
e )
The above equations are obtained by applying the theory of irrever- "

. sible thermodynamics to each individual system in Figure 1. Strict -
KN

Ax interpretation of the topological arrangement suggests that ¢B cannot e
depend on ¢° and conversely §§ cannot® depend on eP. s

$ -
N ». However, in the actual material, internal changes associated with N
» the plastic strain may affect the elastic moduli s, and Ko and thus K
3 render yp and y dependent of eP and €P. 5
‘ ‘-
)
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We note again that the free energies all have quadratic forms
which have been shown to be reducible to the canonical forms given

below
"

@.

(2.

2.

It is physically appealing to introduce at this juncture

- concept of internal forces Q. and P, such that

8

a¢,‘_’,
B

It has been shown in previous work that q, and p,. represent internal
displacements either in terms of assemblies of mechanical models(21),
slip in crystals(sl) or motion of atoms grouped together in terms of
specific energy states(32) Then in view of Egs. (2.16) and (2.25) on
one hand and Egqs. (2.17) and (2.26) on the other,

ced LAl il el i e me o
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9 °dg. >0 , ||dg. ]| >0 (2.27)

P dp, >0 , |dp | >0 (2.28)

The above equations are a statement to the fact that the increment of
work done by an internal force is always positive, unless the associ-
ated internal variable is constant in which case the increment of work
s zero.

2.2 EVOLUTION EQUATIONS.

Inequalities (2.27) and (2.28) may be written in the alternative

"rate® form

g °9, >0 (2.29)

P.p. >0 (2.30)

where a superposed dot indicates differentiation with respect to t.me.

In linear time-dependent systems

g =6t g (2 31)
- n(2) e
Po=bD (2 32)

The above equations may be v:iewed as " .nternal const:tut:ve equa-

tions," or "rate equat.ons" because they relate the internal forces
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(linearly) to the rate of change of the internal displacements. In
traditional thermodynamics they are regarded as the "Onsager Rela-
tions" since they relate (linearly) the dissipative (internal) forces

to the "fluxes."” Note that they satisfy the thermodynamic inequali-
ties (2.29) and (2.30) if

bfl) 50 , bfz) 50 (2.32 and 2.33)

for all r.

We observe that Eqs. (2.31) and (2.32) in conjunction with Egs.
(2.25) and (2.26) give the "evolution equations”

3yR

0, (1) o |

5g, " r 8 =0 (2.34)
3P

_H (2 ¢« _

ape * br P = 0 (2.35)

Equations (2.22) and (2.24) in conjunction with Eqs. (2.34) and (2.35)
respectively give linear differential equations in g, and p. from
which these can be calculated if one knows the history of plastic

strain. Specifically these equations are:

1 .
uog, + v g =usf (2.36)

(2) 3 _ kP
Kr Pr * br Pr = K€ (2.37)

13
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« These may also be given in terms of the internal forces Q. and P. upon 7ﬂ»
use of Eqs. (2.25) and (2.26). Thus when 4. and K. are constant, N

i

.
. be d8, deP o)
\ _— = _— S
: b(1) gr T B 3t (2.38) :{i
] r o
K dP P —

r g 9

b(2) Pr Tl Kr 3t (2.39) g

r o

2.3 THE NOTION OF INTRINSIC TIME.
o
In materials which are history dependent but rate-indifferent i::
"newtonian® time is not a proper time scale for the formulation of ::‘
evolution equations. The difficulty lies in t“e fact that in such L0
materials the stress is a function of the deformation path but not of i

the rate at which the path is traversed. This fact was the basis of 3:‘
the idea proposed by the first author in 1971(28) that every material ;:T

posses an intrinsic time scale with respect to which the evolution i

equations of such material should be formulated. oo

! oY
With reference to System 2 in Figure 1, we note that the defor- e

mation of that system is defined by the plastic strain tensor ¢P. We e

define therefore a path in the plastic strain space whose length N

increment dz is given by the relation ::i:

dz2 = P, ,deP. deP (2.40) I

ijke%€ij ke :

2o
A
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o
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X
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We stipulate that the tensor P is isotropic. Thus it admits the
AN ~
':: representation ;
~ ::-
\\

.i‘-’-’

-~ P - 4

2
* k2 8050

»

Y'Y
B,

which when combined with Eq. (2.40) admits the result

2
2

-
e (:lz2 = kf

p p p p .
dekk deii + k deik deik (2.42) =

or, within an immaterial multiplicative constant,

dz? = |[dgP||? + 2 laePI2 (2.43)

g where lldgpllz = de?jde?j, |depl is the absolute value of deP and k -

- is a material parameter.

If one retains the form of the evolution Eqs. (2.31) and (2.32)

{i and, therefore, (2.34) and (2.35) and regards dz in Eq. (2.40) as an S
5 intrinsic time measure then in terms of this time scaie z Eqs. (2.34) :Q
e and (2.35) become

- 3
N b 2
r.- ay dg -
e -0, 1) = .
¢ 33 ° by g5 =0 (2.44) :

r

.'J -
=~ _
N .
N o L@ P (2.45 -
~ 3p r dz 45) X
~ r -

A

OO |

’
P AL

'Y

Tree

*
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> These two Eqs. lead to the counterparts of Eqs. (2.38) and (2.39) as .
L] ‘e
V. -
5 shown below. N
- 3
» »
0 an
‘ s ¥
~, b(l) gr ‘47 = heaz (2.46) .._
L K dP p .
N r r de N
p(2) P e az =% 4z (2.47)
r
Equations (2.15) and (2.17) give the relations between the stresses
and the internal forces. Specifically in view of Egs. (2.22) and
. (2.24) -
~~ '
» =
s=2 48 (2.48)
- r
.:: :,‘-
> o= P (2.49) -
.'. r r :'.'
2 ¥
N Equations (2.43) and (2.46 - 2.49), together with Egs. (2.8) and o
%: (2.12), provide a complete constitutive description of a dissipative, {i
; rate-independent (plastic) material, subject to the above g
" stipulations.
ﬁ; 2.4 INTEGRAL FORM OF THE EQUATIONS -
: In general the resistance tensors b;l) and b£2) are not constant ;i
" but depend on other variables associated with the deformed state of a '
- material. A propos of this eventuality we set ::
f .
- N
, ‘o
o "
-
: o
; R
‘ 16 -
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bsl) = Fsbg) (2.50)
2 2
o) = Fp? (2.51)

where F. and Fy are specified on the basis of the observed response of
a particular material. This question will be dealt with in the next

section. Let

Ar
r b(1
or

(2.52)

K
I
)
or

(2.53)
where b(l) and b(2) are constants.
or or

Further we define intrinsic time scales z and z, by the relation

d
dz_ = 55 (2.54a)
S
_ 9z
dzH = kFH (2.54b)

where k in Eq. (2.54) is the same as the parameter k appearing in the
definition of intrinsic time given by Eq. (2.43). The appearance of k
in Eq. (2.54) is not purely formal but has the advantage that the pure
hydrostatic response so derived is independent of k, as will be shown

later.
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In the light of the above definitions, Eqs. (2.46) and (2.47)

S
7

become .
o
p.. B _ f’ff 2.55 ,
e, gr’dz = b 4z (2.55) »
. S S >
B Cx
o -
L dP P
A de
AP+ —L =K S (2.56)
For dzH r dzH _
7+, o
‘:: Let the reference configuration be one at which zy = 25 =0. We ::;
2 define a "natural configuration® as one at which §.(0) =0, P. =0. .
- There are, of course, configurations (initially strained or arising —
“ X
:.‘j because of a nonequilibrium thermomechanical reference state) in which oY
::j gr(O) #0, P.(0) #0. Thus for greater generality we set t
N : R
3 g () =0, P (0)=p° (2.57a,b)
- r TR T r 209, 2

.
o
D

Equations (2.55) and (2.56) may now be integrated subjected to the
initial conditions (2.57a,b) to give

. v

' e
g "
o P\
“~ z . P -4
+& -a_z s =-a_(z_-z") de .
o r’s r ~ .
Oy g =40 ‘b, s 37 92 (2.58a) .
‘ 0]
3 '
. z :
H . S
: -\ z -\ (z,-2°) ..p ¢
_po. r'H r*°H de . \
: Pr = Pre + Kr e a2 dz (2.58b) \
0
o Z
% L
. .
A, .
e, .
\

N 18

)
4
<
v, 4
"
‘P
K,




Use of Eqs. (2.48) and (2.49) gives the stress in terms of convolution

integrals of the plastic strain history as follows

-
.
A
o,
.
-
-
"

The condition that g = 0 in the reference state requires that

»
.

a*

28 =0 (2.63)
r .

y % A

ey

whereas the cundition that ¢ = 0 in the refrence state requires that

I\'

ZP: =0 (2.64)
r

O .
.
."‘a .,

. -

P

If the reference state is a "natural" state, then
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s dgp
s = p(zs-z Jaz= 92 (2.65)
JO
sz
g = ¢(zy-2" 953 dz’ (2.66)
- ( H J dz’ '
J0

2.5 SINGULAR KERNELS.

It was shown by the first author(21) that if the kernel p(zg) is
weakly singular in the sense that p(0) = » but integrable,

z
s
p(z;]dz; o zs( ® (2.67)
0
then the hysteresis loop of a material in the first quadrant of the
stress-strain space is closed. It was also shown that the material

response at unloading and reloading points is elastic in the sense of

Figure 2. The reason for this is that

dr

a7 B
B dyP

d7p

= 97 = ® (2.68)
A dyf C

because of the singularity of the kernel. The elastic response at

these points is then the response of the elastic system of Figure 1.
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In numerical computations the singular kernel is approximated by

a Prony series as in Eq. (2:51), in which care is taken so that p(0),

where

ﬂddiﬁ‘

A

pO) = 2 . (2.69)
r

Yol ..'- a

is a very large number in the sense that

L4

e

pO) > 4, (2.70)

RIS

-

where u, is the elastic slope at the loading point A of Figure 2.
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SECTION 3
' SPECIFIC FORM OF THEORY FOR PLAIN CONCRETE

The application of endochronic plasticity to metals is facili-

tated by three assumptions which are quite realistic:

(i) Under moderate hydrostatic stress,” the hydrostatic

response of metals is elastic.

* (i) A constant moderate hydrostatic stress does not affect
; the mechanical response of a metal in shear.
(iit) Shearing at constant hydrostatic stress does not
; induce a change in the hydrostatic strain.
a In concrete the above assumptions are not realistic.
s In reference to item (i) above, the hydrostatic behavior of
\ concrete in compression is illustrated in Figure 3. It is initially
N convex becoming concave and asymptotically elastic. Upon unloading at
N A to a point B a significant amount of plastic strain, eg results.
f There is obviously a great deal of hardening taking place, which
N affects dramatically the subsequent loading-unloading-relcading
N behavior as illustrated in Figure 3. While in metals hardening, in
., general, is the result of multiplication of dislocations, in concrete -
Ef it is very much a function of compaction. In both cases however the é:

agents of hardening are the resistance coefficients b" and in this

particular instance, bEQ). Thus while in metals one achieves

X

A |

”
" 8 & a a

». Of the order of the yield stress in tension.
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hardening by letting b” be an increasing function of z, in concrete, 'ﬁ
A

to account for the compaction effect in the hydrostat, we have set

by = bl2) F,y(eP) (3.1)

where Fyy is a monotonically increasing function of eP.

f In reference to item (ii1), the shear response depends strongly Y
E on the existing level of hydrostatic stress. This effect is illus- §
o’ trated schematically in Figure 4 where the shear stress is plotted f,
b versus the shear strain under monotonic loading conditions and at 2
t: various levels of constant hydrostatic stress. In regard to item :ﬁ
; (iii), the mechanical! response of concrete shows strong shear~hydro- ;}
< static interaction in that shearing at constant hydrostatic stress o
' produces a significant change in the hydrostatic strain and vice
- versa. As will be shown subsequently, endochronic plasticity accounts NG
3 for this effect through the intrinsic time and specifically by virtue ?1
: of the coupling constant k which appears in Eq. (2.43). Note that in :f
- materials which are plastically incompressible, deP = 0. In such '
" materials shear-hydrostatic interaction is absent. .
" %
3.1  HYDROSTATIC RESPONSE. E
Determination of the material functions ¢(zy) and Fy(eP). It is -

assumed at the outset that the initial state is a natural state in

which case the hydrostatic response is given by Eq. (2.66) which we

write in the explicit form




f; [N
i :
o 73
“ -
Iy
¢ X
" :
Y ~
[ 3 ~
- b
> 3
: Under monotonic loading conditions, and in view of fgqs. (2.43) and ',:
[ :
; (2.54), it follows that S
o »
g deP _ :
. dz,, = FH (3.3) :
o R
~ Thus letting
3 :
2 dg,, = |de?l (3.4) o
o Ky
~ o
< it follows that
& ) :
& k_deP SH 5
-.' dZ = = (35) -
& H ok (eP)  Fy(eP) ]
H H o
A:'_:_ Under monotonic straining conditions dzH = deP hence :',':
.:; N
- .
" deP -
dgy = (3.6) N
H FH(ep) ~
o S
- x
':.' Thus Eq. (3.2) becomes 3
- 3
™
*
o ZH p
* o= | ¢5[zH -z ]FH(e “)dz’ 3.7) =
':: 0 :.
.;: o
— Two material functions, therefore, are necessary and sufficient to
A _
§: determine the hydrostatic response: the kernel ¢(z2y) and the ~
; hardening function FH(ep). ,*_
) -
’n R
“ N3
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3.1.1 The Hardening Function Fy.

This function will be examined in reference to the hydrostatic
stress-strain curve shown in Figure §5. The curve ON represents the
stress response corresponding to Fy = 1. In the initial stage
(eP < DA) Fy is substantially linear. In the séage 0A (P < OB it is
substantially hyperbolic. In the final stage eP > 0B g + ® as
P - eg, since there is a Iimiting material compressibility beyond

which the material cannot be compressed no matter how high a stress o

is applied.

We shall take the position that

p . .
F, = ef€ (3.8)
which, in the range P < 0A, we can write as

FH =1+ feP » O(Ep)2 (3.9)

The linear representation of Fy inherent in Eq. (3.9) affords an

explicit method of determination of the value of f and the kernel

#(zy) -
3.1.2 Method of Analysis.

It follows from Eqs. (3.67) and (3.9) that

p
dz,, = —de” (3.10)
1+ ﬁep
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Hence -

P

2y = i log[l + ﬂep) (3.11) ':}'..

A g N
: or :.'
n -

. fz
: e = % [e H. 1] (3.12) G
e

; Thus ii.
- pz \':E:

y - Fy=e " (3.13) 1]
>

\ 2]
N Following, therefore, Eqs. (2.62) and (3.7) =
N ‘.

A LTI -z ;
S| Ke (272 ]eﬂ’ dz’ (3.14)

g =
4 r R,
A 0 L
"\ e
< or .

Q
1]
X

o

' -A A G
2 rZH[ 1 He( Pt ﬂ)zH_l] o

(3.15)
Xr + p

- r o

, -

Thus, if we define a stress o+ such that =

: Ox = g— = — ’ (315) .:-:

8 H 1+ feP o
it follows from Eq. (3.15) that

> D)

“ e

: R

X o

. .
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(3.17)

3.1.2 Determination of the Constants K., . and f.
To determine these constants we proceed as follows. The cons-

tant § is found from the straight line portion of the hydrostat given
by the relation

g = 00[1 + pep) (3.18)

where oo is the intercept shown in Figure 5.

The remaining constants are found by plotting og - 0% versus zy
where 2z is given by Eq. (3.11). The plot is shown in Figure 6. It
follows by virtue of Eq. (3.17) that

Og = 0% = 2: R e (3.19)
r

Hence a Prony series representation of the curve o, - 0+« versus zy

gives K./(f + X.) and f + A\.. Since f is already known, K. and X, are
thus also known.

3.2  SHEAR RESPONSE.

The deviatoric part of the stress tensor (the shear response) is

given by Eq. (2.65). Specifically

29




) K
s = p[zs - 25]3;7 dzs (3.20)
0 s

where

dz? = ||deP||? + Kk2(deP)? (3.21a)
and

dz
dzs = E; (3.21b)

in accordance with Eqs. (2.42) and (2.54). Thus two material func-
tions, p(zg) and Fg and the constant k are sufficient to determine the
shear stress from the plastic strain history. It has been found
experimentally that the failure stress of concrete in the r-plane
depends on the prevailing hydrostatic stress and the direction of
loading in the 7-plane. To account for these two effects it is neces-

sary that F  depend on 0 and the Lode angle §. Thus we set

F, = F (0,8) (3.22)

subject to the normalization condition F (0,0) = 1.
3.2.1 The Kernel p(zg).
The form of the function p(zg) is found most conveniently by

means of a pure shear test in the absence of hydrostatic stress. In

this case

30
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If the non-vanishing stress component is 7 and the corresponding

plastic strain component is 7p, then in view of Eq. (3.21) we can

write
dz = f§|d7p|
(3.23)
dz_ = dz
s
Thus using Eq. (3.20)
1
T=— M(I§7p] (3.24)
2
" where
X
M(x) = | p(z7)dz’ (3.25)
0
for all finite x. Thus
M— = g‘r— = p(ﬁ’]p] (3.26)

d(iZ4P) ~ 4yP

Thus, if one plots {27 versus {§7p' the slope of the curve is the
kernel function p(x) where x = I§7p.
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\, 3.2.2 The Function Fg. o
: N
\ The determination of the form of Fg and the value of k is more };
& complex due to the strong coupling between the hydrostatic and devi- X
. atoric responses brought about by the presence of k in Eq. (3.21). -
;t Consider for instance a shear stress field in the presence of a ?.
if constant hydrostatic stress. More precisely a hydrostatic stress "
field is applied until ¢ = 0y, whereupon ¢ is held constant at gy and
2
r a shear stress field 7 is then applied, so that while 7 is being o
' . . . N
5N applied the total stress field is of the form e
R ‘."
-h- \!
N w5
: 94 T 0
3 g=1|r o, © (3.27) e
i, 0 0 o4
A A
r. One first notes that the application of shear stress changes the "
.E hydrostatic plastic strain by virtue of Eq. (3.2). To see this we i‘
> invert Eq. (3.2) i.e., express €P in terms of the history of o. "f
78 .
) zy y
P . - .90 4,
- € = L[zH zH]dzé dzH (3.28) y
’ 0 .
‘ - Kl
‘{: where L is related to ¢ by the integral equation "
¥ z g
s <o
dl -’ .
_ p(z - z )a;7 dz’ = H(2) (3.29)
-‘. o ’.'
” 5
K 2
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2
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where H(z) is the Heaviside step function. Let zy = zﬁ at the ter-
mination of the hydrostatic test, i.e., at o =0;. Then in view of
Eq. (3.28)
,0
H
P _ AN -
€ = L[zH zH]dzﬁdzH (3.30)
0

. do_ _ o
since dzH = 0 when 2, > 7, -

Since the application of shear stress will cause a change in the
shear strain, z will change by virtue of Eq. (3.21), and so will zy by
virtue of Eq. (2.54). Thus the integral on the righthand side of Eq.
(3.30) will change and hence so will €P. Thus, in the presence of
hydrostatic stress, dz is no longer given by Eq. (3.23) but by Eq.
(3.21), which is influenced by the value of k.

The problem simplifies somewhat and becomes amenable to analysis
if one adopts a simpler form of the hydrostat. With reference to Eg.

(3.2), the kernel ¢(zy) decays with sufficient rapidity to be approxi-

mated by a Direc § function. Thus we set

#(z4) = Kob(2) (3.31)

o =Ky 5 (3.32)
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Specifically under purely hydrostatic monotonic loading conditions Eq.

(3.3) applies in which case

g = Ko(l . pep) (3.33)

by virtue of Eqs. (3.9) and (2.43). Equation (3.33) is then basically

. that of a plastic linearly hardening model. In particular if gy is on

the linear part of the hydrostatic stress-strain curve, Eqs. (3.33) is

certainly adequate.
It follows from Eqs. (3.32) that

o
deP = -1 dz

Ky (3.34)

H

where 0y is the (constant) value of the hydrostatic stress during

shearing.

Adopting the sign convention commonly used in civil engineering
whereby o and €P are positive when compressive, we note, in view of
Eq. (3.34), that deP will be positive, and hence the compressive

strain will increase, during shearing.

In view of the above observations we introduce the following

notation

dg, = lldgpll , dgy = |dePl (3.35a.b)
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Thus, because of Eq. (2.43),

dz? = dg? + K%dgf (3.36)

We now combine Eqs. (2.54) and (3.32) to obtain

dgH
o = kKo(l + ﬂzH] P (3.37)

where use was made of Eq. (3.33), (3.35b) and the fact that during the
hydrostatic as well as the shearing processes deP > 0. Equations
(3.36) and (3.37) combine to give the result

211/2
] = dg, (3.38)

d [1 [ !
ST Kol Ay

Now let ¢jj(=€f) be the value of €P at the completion of the purely
hydrostatic loading so that

SH = SH * S (3.39)

where gﬁ is the hydrostatic strain induced by shear loading at cons-

tant pressure. Also let

z2=2 +y (3.40)
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where 2° is the value of z at the completion of the purely hydrostatic
loading. Without going into extensive analytical detail Eqs. (3 36),
(3.37) and (3.38) combine to give the following results:

;%s- = [T—fa-ga—y]ln (3.41)
where

a= ;g? , (3.42)
and

$g = %; {xfza—:_z - Iog[x + x2 - 1]} (3.43)
where

x=1+ ;%e g: (3.44)
Relations (3.41) and (3.43) will prove useful in determining the form

of Fs and the value of k.

We now return to the question of the shear stress response to
increasing shear strain in the presence of constant pressure, i.e., to
the case where the stress field is given by Eq. (3.27). In view of
Eq. (3.20), we can write

s P
= - 29 4,
T = p(zs zs]dz; dzs (3.45)
0
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However, 7P = O during pure hydrostatic
0 ¢ zg ¢ Thus, if we
follows that

loading, i.e.,

Zg. set w Zg - g

w P
T pw - w’)%%v dw’

0

We note that

in view of Eq. (3.352). as

(3.41)

Therefore, a result of Egs

s, 1/2

dw *

2aF w
Fl—3——
s|l « Zanw

where in this case

F_=F_(0,0)

i.e., Fs is constant during the shearing process.

Thus as a result of Eqs. (3.45a), (3.46) and (3.47)

TR
”?»?a;

':-
o, 7

N

»

in the range

> v v
«
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w “a
‘ Fy [Zanw ]1/2 %
::. T = E plw = w’) 1+ 23Ew dw (3.49) E:
b5 0 2
b .
j: It is shown in Appendix I that o
2 3
v ' w 2afF z° 1/2 R
<. im . s . "o
¥ som | P2 -2 )[—————1 ~—aF 2,} dz” = M (3.50) .
s
0

. G
d ~
<1 b
% where M(z) is given by Eq. (3.25) and My, = M(®) ¢ ®». Hence, denoting ~
\‘ [}
% the asymptotic value of the shear stress by 7, it follows from Egs. Py
; (3.49) and (3.50) that -
) D3,
o~ ﬁ‘
..J F "
N T o=-2N (3.51) Y
x "z | 2
- During shearing at zero pressure one may set Fs = 1. Thus k:
L [
L2 .
), & D
-- T (a ]

"« [ ] 1 ]
- —_—L _F 3.52 .
" T, (0) s ( ) b
: :
,.“' \.
L~ v
b% Equation (3.52) determines the form of F. under constant §. Keeping o {
o constant and performing shearing tests each at a different value of § %
- one is able to determine the form of functional dependence of Fg on 6. e
- ff
e 3.2.3 Determination of the Kernel p(w) in the Presence of Pressure. X
4, o
2 In the course of the development of the theory in conjunction _
;; with the experimental data of Scavuzzo, et at. A7) g transpired that "
¥ :
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all shear experiments were performed in the presence of pressure i.e.,
under conditions where gy # 0. In this event Eq. (3.24) no longer
applies and Eq. (3.49) must be used for the determination of p(w). To
this end we set F, = 1 at a reference pressure op, which is the one we
use in the determination of p(w), and which must |ie on the straight
line segment of the hydrostat to ensure that Eq. (3.49) is applicable.
Thus setting Fg = 1 in Eq. (3.49) we obtain the following relation for
T:

r=2 0 -2 W (3.53)

where as before

Egg

= (3.54)
KoR

and since y = w when F = 1.

Thus given 7 (which is measured experimentally) and a, the task
at hand is to solve the integral equation (3.53) and thus obtain the

functional form of p.
Before we proceed with the solution we take care to note that 7
is measured as a function of the shear strain 7 and is therefore

reducible to a function of the plastic strain yP. In the presence of

monotonic shearing conditions and in view of Eq. (3.35a)

dg, = {2 d7P (3.55)
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Furthermore, since at the initiation of the shear test ¢4 =0, it
follows that

so =121 (3.56)

Thus in view of the relation between ¢  and y (Eq. 3.44), ¢4 can
be expressed as a function of y. Thus the function on the lefthand

side of £q. (3.53) is a known function of y.
3.2.4 Numerical Procedure for Determining the Kernel Function p(z).

We proceed to give a numerical solution to the equation

T(y) = o ply - y') 9(y )dy’ (3.57)

where the object is to determine p(y) given the functions 7(y) and
g(y). Note that Eq. (3.53) is a particular case of Eq. (3.57) where

[__zax__

1/2
1+ 2ay]

a(y) = (3.58)

~l e

Let y, be a generic value of the variable y. We divide the interval

[0,y] into suitably small equal subintervals & such that

y, = nb (3.59)
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The integral on the righthand side of Eq. (3.57) can then be written

in the form

A
T(vo) =7Tn = | (Yo - ¥ )o(y)dy™ +
0
nd
+ P(yg - ¥ )oly)dy’

(n-1)A

or

n
Ty = 3 o Ut - e 1] - MG - )
r=

where y virtue of the mean value theorem

9. = 9(vz)

(r - 1)A <y= < rhA

»
r
and

rA
M(rd) = [ p(y')dy’
0

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

The quantity g. may be determined to the required degree of accuracy

by making the interval A sufficiently small.

In consequence, we have the relations
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= g M(8)

—
[l

= AglM(2A) + Ag2M(A)

N
[

(3.

-
[

= AglM(nA) + AgzM[(n - 1DA) + ...+ %g M(8)

where

Ag. =g, -9, 4 3.

This is a system of a linear simultaneous equations in M(8), M(24)
M(nd). Since the Ag, are known, then knowing 7y, 7o ... T, allows
to determine M(rd), r = 1,2 ... n, by successive substitution.

following algorithm applies:

If
_ n-1
T = Z Ag,,;_M(mb) (3.
then
ro-7
M(ra) = 24—2L (3.

Knowledge of M(y) thus allows the determination of p(y) since

aM(y) 3.

ply) = dy
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SECTION 4
EVALUATION OF MODEL PARAMETERS FROM PLAIN CONCRETE DATA

In the preceding section, a specific form of the general endo-
chronic model described in Section 2 was given for plain concrete, and
a basic approach was given for determining the material constants in
the model from experimental data. In this section, the model is
applied specifically to the data on plain concrete recently reported
by Scavuzzo, et al.(17)  The model is first fit to a small subset of
the data, and the resulting model s then proof-tested against the
data from a wide variety of the complex strain path tests not used in
fitting the model. The predictive capabilities of the model are

demonstrated.
4.1 DETERMINATION OF MODEL PARAMETERS.

Only a small subset of the data reported by Scavuzzo, et at. (17)
is needed to determine the values of the mode! parameters; for this
purpose, pure hydrostatic compression data, data on the response to
shear at several different fixed hydrostatic pressures and triaxial
failure data at various <confining pressures proves sufficient.
Details of the manner in which this can be accomplished are given

below.
4.1.1 Hydrostatic Parameters.

The most extensive virgin pure hydrostatic compression curve
reported by Scavuzzo, et al. (A7) s depicted by the dotted line in
Figure 7, covering the range of pressures up to nearly 14 ksi. Shown
also in Figure 7 by the solid line is the virgin hydrostatic

compression curve actually used in determining the model parameters.
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Figure 8. Octahedral normal stress versus plastic

octahedral normal strain for virgin hydrostatic
compression.
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An examination of the virgin pure hydrostatic compression legs of many
of the complex strain path tests revealed that the dotted curve in
Figure 7 was probably too soft. Therefore, from this examination, the
curve shown by the solid |ine was constructed and appears to provide a
more accurate portrayal of the normal virgin hydrostatic behavior; the
linearization of the upper portion of the hydrostatic curve was felt
to be justified in view of the fact that none of the complex stress
path tests reported by Scavuzzo, et al. exceeded hydrostatic pressures
of 12 ksi. Note that the curves shown in Figure 7 are expressed in
terms of octahedral normal stress o, versus octahedral normal strain

€ Since 0, = 1/30;; and €, = 1/3¢;;, the mean stress (pressure) ¢

o
is synonymous with 0,, and the volumetric strain ¢ is equal to 3 ¢,.

Based on the curves given in Figure 7, and in agreement with

Stankowski and Gerstle,(ls) the bulk modulus K was assigned the value

K=2.1x 105 ksi (4.1)
Using the solid curve in Figure 7, together with the expression

? =€ - % , (4.2)

and the value of K given by Eq. (4.10), a curve of 0 versus €P was
obtained which is shown in Figure 8. From the straight line portion

of this figure, one finds by recalling Eq. (3.18) given earlier that

64.8

R~
H

(4.3)
5 ksi

Q
1]
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Using these values of f and 0,, a plot was made of 0, - 0= versus z,
using the curve from Figure 8, and the definitions of g+ and z given
earlier by Eqs. (3.11) and (3.16), respectively. Six points, at
equally spaced values of z, were chosen from this plot, and a two-

term series of decaying exponentials of the form

2 -
przH (4.4)

was fit to these points by Prony’s method. This led to the following

values of C. and f,:

p1 = 635

o
n

L = 2.438 ksi ,
(4.5)

(gl
"

2 2.566 ksi , .ﬂz 2,289

A plot of Eq. (4.4), based on the constants given by Eq. (4.5), is
shown in Figure 9, where the six points to which Eq. (4.4) was fit are

also shown.

By comparing Eqs. (4.4) and (3.19), it then folliows that

(4.6)
B.=p o,

from which we find
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1.55 x 10° ksi, A\, = 570

x
H

[}

1
(4.7)
5.87 x 10° ksi, )

X
]

9 = 2,224

since f is known for Eq. (4.3). Therefore, Eq. (3.14), with the above
values of the constants, completely defines the hydrostatic behavior
of the model. An example of the hydrostatic behavior predicted by
this model, including unloading and reloading response, is given in
Figure 10. Comparison of this figure with the solid curve in Figure 7
shows that the model portrays the hydrostatic behavior quite well.

4.1.2 Shear Parameters.

As noted earlier in Section 3.2, the most convenient and direct
way of determining the shear parameters is from data on shear response
under zero hydrostatic pressure. Unfortunately, Scavuzzo, et aL.(17)
did not investigate this case in their extensive study. They did,
however, investigate shear behavior under several different fixed
hydrostatic pressures in Tests 4-9 to 4-11; the resulting data will be
used to determine the shear parameters and the shear-volumetric

coupling parameters in this section.

A composite of the results for those portions of Tests 4-9 to 4-
11 which consisted of shear at constant hydrostatic pressure is given
in Figure 11. An inspection of this figure reveals some apparent
discrepancies in the data. From the general characteristics of plain
concrete reported in the |iterature, the initial siope at the onset of
shear generally increases with confining pressure, and the shear

stress-shear strain curves can be expected to fall above each other --

48

C o ey N

AROAA

'-

e

[

-y

’
el

v v
v
e

-

1

p .f Rt

. .... o

e,

s, s,

e c e
A A

-
L)

N

»

oo 1 4370,



- - - . AY " I F . i ; v b any dihdit g . 3 I . . -
! ..;I} XY, .l\.nn\-!\h(r i ...»-\.;J _u.‘. . -.- ..- ... ..... AN ! ufc..-.-n-u.-{h-c ‘.. ...W................- AN :\... fe ..... L .......... ..\wM . ..-..-.-.- .....- ‘s un\-\.-.\" h--- ..
w
5 [ - —
e © ©
e 0 Y}
£ £
[ 1] v
o~ {i= — —_—
n o
© s [
[ - -
O el
@ [ Y]
= P
4 o © «
....w w +
[%}
o ~ o
] (] <
s .
Lot 0
O~ < =
> ) 1~ hond
{o . 2 3
N O I [}
0 o E
e D'O
Py ’
Jo e o1 H . N b A
~ “ < 3¢ -9 N
»
. cal # 5
- @ 4 5 v
o | 23] 3i= «
" ® @ £55 e ©
Go " [ ¥ W 1- Q
o = S 285 v
~ -~ © ; -
o ~—u [Pt - c
« L] 0 ogc Q -
- 2 $sc 20
5 v} © © 258 ; w Q9o
3 . S 285 S
b o o~ v O
@ ~o o ] (=" o awv
€
3 -~ . N
.h m L] u
< ()
1 1 I I A
; - ° —@B—0 ° o
H Mg ~ ¥ w - L] o~ ~ > [
! 3 o
o (1sn) g-01 x ™2 o
L J N . | o F w
uy < (2] kY] _— o
0
((rsy) D2
- PO ~— i R . e e P . . - -
JE CAS  Srvwrer  AAROTMMY, XX AAANY ADDINEAS AR, YRR, RRASOOER TRAAAY. "HRNEAR!



not intersect -- as the confining pressure increases. Tests 4-9 and
4-10 follow the expected pattern, but Test 4-11, despite being at the
highest confining pressure (8 ksi), does not; it has the smallest
initial slope and exhibits softer response than Test 4-10. There is
undoubtedly scatter in these data but since the tests were not

repeated, the magnitude of the data scatter is unknown.

In Section 3.2, an approach for determining the shear parameters
from shear data at constant hydrostatic pressures was described, which
required the use of shear data obtained at fixed hydrostatic pressures
that lay on the |linear portion of the hydrostat. While the test
conditions for Test 4-11 meet this requirement, i.e., shear at
0, = 8 ksi, the data are somewhat suspect, as noted above. In view of
this, we used our best judgement to construct a curve which we felt
provided a more realistic description of the response of plain
concrete to shear at 0, = 8 ksi, and this curve is shown by the solid
line in Figure 11. The reference pressure oR was therefore set at
8 ksi, and the shear parameters determined from the solid curve in

Figure 11.

The shear modulus, 2y, and its variation with deformation was
also determined directly from the curves shown in Figure 11. The
shear moduli were obta ned from the initial slopes of the loading
curves, as well as from the slopes of the initial portions of the
unloading curves. Attempts were made to correlate the resulting
values of 2u against the plastic volumetric strain, the total
volumetric strain, the octahedral shear strain and the plastic
octahedral shear strain. The total volumetric strain and the plastic
volmetric strain provided poor correlation, while the octahedral shear
strain and the plastic octahedral shear strain led to reasonably good
correlations. Adopting the plastic octahedral shear strain, a linear
fit to the data points in Figure 12 led to the following expression
for 2u:
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25 = 2po +m 7p (4.8)

in which 2u, = 1.83 x 10 ksi and m = 1.42 x 10% ksi.

By using Eq. (4.8), the following incremental expression for the

plastic octahedral shear strain 75

dTo
d7z =d, -2 (4.9)

and the solid curve in Figure 11, the dependence of T, on 70 at the
reference pressure ogp = 8 ksi was determined, and the result is

depicted in Figure 13.

At this point, it becomes necessary to determine the shear-volu-
metric coupling coefficient k and, for this purpose, we consider
Figure 14, which shows the manner in which the octahedral normal
strain €, varies with the octahedral shear stress 7q during shear at
several different constant hydrostatic pressures. In the absence of
contrary information, it will be assumed that volumetric changes which
take place during shear at constant pressure are completely irrever-
sible. On this basis, and using the results for o, = 8 ksi depicted
in Figures 13 and 14, a plot of the plastic volumetric strain P
versus the plastic octahedral shear strain 78 was generated, and this

is shown in Figure 15,

The model provides a theoretical expression for the dependence

of €P on 73 through Eq. (3.43), given earlier, if we note that
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Figure 16.

Dependence of 72 on zs-zg predicted by Eqs. (4.12)
and (4.13) for shear at a constant pressure of
8 ksi.
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(x - 1)/ (ak)

With these identifications, the dependence of €P on 78 is obtained for

a specified value of k, since the constant a is known in terms of k

o
o, S % e

!

through Eq. (3.42). In this manner, plots of €P versus 7g were

g

generated with the aid of Eq. (3.43) for a range of assumed values for

> .
v k, and the results are shown in Figure 15. From an inspection of this 23
% figure, the curve corresponding to k = 1.5 appears to provide the best ::
" overall description of the data; thus, we set .
X i
N k=15 (4.11) g5
in the model. =
[~ . o
j In Appendix C, the following expression is derived, relating ¢g &
>
2 and zg during shear at constant pressure, for the case in which g is {t
S
- at the reference pressure op and on the linear portion of the virgin
2N hydrostat: ;‘

R 2

ey % NS

Y S

Ss = %; {jZa z, Il + 2 z_ - loglj?a z - 11 + 23z l} (4.12)

During shear at constant pressure, it can be shown that

s = 1310

o)



s

[ NS

.

AKX A

- S

Y

A R

-
2’ uls

bt}

.’
o

..'.,

J‘A P4

R

o
"¢
7
A
AC
o
oy
)

IS Rad Rl B J A e 0 A bt hia b Anl i R b e & tall tn B Sn N At Y & A b St e A oA 2o i el o i 2 LI il At el

which, when combined with Eq. (4.12), provides a relationship between
78 and zg during shear at constant pressure for a prescribed value of
a. Adopting the value of k given in Eq. (4.11), the value of the
constant a is then known, and the resulting expression given by Egs.
(4.12) and (4.13) between 78 and z, is as shown in Figure 16. Using
this result, and the relationship between 7, and 78 given in Figure
13, the dependence of 7, on 2z during shear at constant pressure can
be constructed. The numerical method described in Section 3.2 may now
be utilized in conjunction with the 7, versus zg relationship just
found to give M(zg), where M is defined by Eq. (3.64). In this
manner, the result shown in Figure 17 was obtained. Using this in
conjunction with Eq. (3.69), the shear kernel function p(zg) can be
found by differentiation of the M(zg) relationship. A two-term series

of decay exponentials of the form
plzg) = 2_ Ae " ° (4.14)

was fit to the shear kernel by Prony’s method; this led to the fol-

lowing values for the A and ar:‘

>
]

1.46 x 10° ksi a, = 100
(4.15)

>
"

19.0 x 10° ksi , a, = 6,554.

22

=. Because the numerical inversion of Eq. (3.53) was only approximate
(see Figure 17), the p(z) so obtained was also approximate. As a
result, an adjustment in the value of a, to that listed in Eq.
(4.15) was made to provide a better description of the shear
behavior.
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) Finally, on the basis of the failure data given by Stankow- ftf_
\ ski,(3o) the following expression for the function Fg was adopted for 5:?
: use in the present study: }:%
| é:.~
T* « ﬂ o AT
F_ = ;:—:_ﬁég- (4.16a) o
il s R i.}:.-
in which N
T+ = 2 ksi
ﬁs = 0.5 (4.16b)
R = 8 ksi

This completes the specification of the endochronic concrete model.
3 4.2  INTERNAL CONSISTENCY OF MODEL, DATA AND FITTING PROCEDURE.

We return now to determine how well the plain concrete model
just specified can describe the data to which it was fit, namely, the
data from Tests 4-9 to 4-11 of Reference 17.% Such an exercise does
not, of course, constitute a proof-test of the model, but simply
provides a test of the internal consistency of the fitting procedure.
It should be remembered that plain concrete data exhibits significant

data scatter and, in comparing a model prediction against an indivi-

*. A comparison between the measured and predicted hydrostatic O
behavior was given earlier in Figure 15, and will not be repeated
here.
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dual test result, one cannot expect to obtain the same level of agree-
ment as is found for example in metals. With plain concrete, one is
looking more for a model that captures the overall, general character-

istics of response.

To explore the ability of the mode!l to describe the data from
Tests 4-9 to 4-11, the mode!l was driven around the appropriate
prescribed stress paths for these tests, using a stress-driven

computer program based upon the explicit incremental numerical scheme

described in Appendix B. The results from these calculations are
depicted in Figures 18 to 20. As an inspection of these figures
reveals, the overall agreement between predictions and the data is

quite good, considering the uncertainty in the data discussed earlier.
The figures reveal that the main discrepancies lie in the unloading
behavior, with the model showing noticeably more curvature of the
unloading path -- and hence more hysteresis -- than the data.
Although no effort was made in the present study to refine the model
so that it would more closely describe the unloading behavior, such an
improvement is straightforward and will be accomplished in a future

study.
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Figure 19,
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Measured and predicted responses to shear at a
fixed hydrostatic pressure of 6 ksi. (Test 4-
10) .
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Figure 20. Measured and predicted responses to shear at a
fixed hydrostatic pressure of 8 ksi (Test 4-

11).
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SECTION 5

PROOF-TESTS OF MODEL OVER COMPLEX STRESS PATHS

In the preceding section, the endochronic constitutive model
developed in Section 3 was applied to the plain concrete data
presented in Reference 17, with the model parameters evaluated from a
smal! subset of the reported data. The ability of the resulting model
to accurately portray the data to which it was fit was also described.
The test program reported in Reference 17 consisted of six different
series of stress-controlled tests, each series being designed to
explore a particular facet of plain concrete behavior. In that which
follows, the model is proof-tested by examining its capability to
predict the measured response around a selected number of prescribed
complex stress paths from this test series. None of the stress path
tests considered in this section were used in fitting the model
parameters, and no optimization techniques were employed to achieve

the results presented below.

§.1 SERIES NO. 1.

This test series was designed to explore the response of plain
concrete to triaxial load cycles which do not exhibit stress
reversals. Each test was repeated once. The model was applied in the
present study to Test 1-1 from this series, for which the prescribed
load paths are shown in Figure 21. The loading consisted first of
cyclic hydrostatic loading up to 8 ksi, as shown in Figure 21(a),
followed by cyclic deviatoric loading along the triaxial compression
path, as illustrated in Figure 21(b). The predicted and measured
response for this loading history are given in Figure 22. As this
figure reveals, the predicted and measured responses are in good

agreement, considering the data scatter which can be assessed by
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comparing the results from Test 1-1 with those from the replicate test
given in Reference 17, i.e., Test No. 1-10. If the data curve in
Figure 22 was simply shifted to the right a small amount, the
agreement would be excellent. Such a shift appears to be justified on
the basis of the data scatter, since a comparison of the hydrostatic
compression curves in Figures 7 and 22 reveals that the measured
hydrostatic response in Figure 22 is stiffer than the data given in
Figure 7 to which the modei was fit. Aside from this difference, the
qqalitative features of the plain concrete behavior are obviously

captured very well by the model.
§.2 SERIES NO. 3.

Test Series No. 3 was designed to examine the behavior of plain
concrete to circular stress paths in the deviatoric plane. The stress
paths consisted of monotonic hydrostatic loading, then proportional
deviatoric loading along the triaxial compression path, and finally a
circular load path in the deviatoric plane. In the present study, the
load paths corresponding to Tests 3-3 and 3-4, as well as Tests 3-10,
3-11 and 3-12 were considered; Tests 3-3 and 3-4 had the same [oad
path, as was also the case for Tests 3-10 to 3-12.

Figure 23 gives the responses predicted by the model to the
circular stressed paths, as well as the corresponding data. Again,
the overall agreement between predictions and measurements s
considered good for plain concrete. If the data curve in Figure 23(b)
were transiated vertically upward by a sufficient amount, the results
would show very good agreement. However, such a translation does not
appear to be justified if one considers the data from Tests 3-10 and
3-11, which had load paths identical to Test 3-12. Thus, the model
appears to be too soft during the proportional deviatoric leg of Test
3-12.
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The results shown in Figure 23 are aiso of interest from another

point of view. Recently, the new endochronic theory -- which forms the

basis of the model developed herein -- was criticized by Bazant,

Krizek and Shieh(29) 4 being unable to correctly describe the

response of geomaterials, such as concrete, to what has been termed

"joading-to-the-side". Without providing supporting experimental

evidence, they claim that the model is unrealistic because it predicts

purely elastic response for infinitesimal loading-to-the-side. To the

authors’ knowledge, no data are currently available for plain concrete

which define its response to loading-to-the-side. Moreover, while the

models’ response to infinitesimal loading-to-the-side is purely

elastic, its response to finite l!oading-to-the-side is inelastic. In

Tests 3-3 and 3-12, the plain concrete was subjected to loading-to-

the-side, at least at the beginning of the circular stress path and

possibly when the path crossed the other two principal stress axes.

In view of the reasonably good agreement between the data and the

predictions for these paths, the criticisms by Bazant, et aL.(Qg)

appear to be premature and unjustified. For further efaboration on

this point, see the discussion by Read. (34)

5.3  SERIES NO. 4.

This series consisted of the largest number of tests, namely 22.

In general, the tests were designed to explore severa! aspects of

axisymmetric stress paths, i.e., paths for which at least two of the

principal stresses were equal; this included (a) development of shear

strain due to hydrostatic pressure increments in the presence of prior

deviatoric stress, (b) dependence of response on stress path, and

(c) behavior under nonproportional deviatoric stress paths. In that

which follows, eight selected stress paths from Series No. 4 which

. KXERPERS



shed [ight on each of the above aspects of plain concrete behavior are

considered.

Test 4-1 and its replicate, Test 4-2, provide insight into the
development of shear strain during hydrostatic pressure increments in
the presence of non-vanishing shear stress, i.e., shear-volumetric
coupling. These tests followed the stress path described by the
insert in Figure 24. This figure also shows the response to the
prescribed stress path predicted by the present model, as well as the
responses measured in the tests. The section of the path from (b) to
(¢) is of primary interest, since this is where the shear-volumetric
coupling occurs under purely hydrostatic increments. As the results
given in the figure indicate, the agreement between the mode! and the

two sets of data is excellent.

Next, we consider Tests 4-9, 4-11, 4-13, 4-15, 4-16 and 4-17.
This group of tests was designed to explore the effect, if any, of
stress path debendence on plain concrete behavior. Except for Test 4-
13, the remaining tests consist of stress paths that, while quite
different from one another, nevertheless have at some point a common
stress state, namely, 0, = 8 ksi and 7, = 4 ksi. Thus, by comparing
the strains measured at this stress state in the various tests allows

an assessment of the magnitude of the stress path effect.

Table I summarizes the principal strains in the various tests

that were measured in Reference 17 at the common stress state.
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Table 1. Summary of the Principal Strains Measured
at the Common Stress State of a, = 8 ksi

‘ and T, = L ksi.
p
N Principal Strains x 103
}? Test Number €y €y €,
.é

4-09 5.10 4.18 15.89
g 4-11 2.86 3.13 11.15
5 4-15 1.64 1.72 12.72
N 4-16 10.25 10.00 13.27
¥ 4-17 1.19 1.33 12.78
.
v As an inspection of this table reveals, there is substantial depen-
- dence of the deformation at the common stress state on the particular
i path taken to get to that state. The major principal strain, ¢€,,
: varies from 11.15 x 10”2 to 15.89 x 10'3, while the other two strains
N show much greater variation, ranging from about 1 x 1073 to 10 x 1073,
E The ability of the present model to describe the measured
- responses for Tests 4-9, 4-11, 4-13, 4-15, 4-16 and 4-17 is illus-
* trated in Figures 25 to 32. Unfortunately, none of the tests in this
A group were repeated, so we have no insight into the level of data
i scatter. In view of the usual scatter found in concrete data, however,
3 the agreement between the model predictions and the data is considered
Y excellent; this agreement demonstrates the <capability of the present
. model to account for the influence of the stress path on the resulting
}' response.
:
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Figure 25. Measured and predicted responses for Test 4-9.
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Figure 28. measured and predicted responses for Test 4-13.
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Figure 32. Measured and predicted responses for Test 4-17.
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The fiqal axisymmetric test to be considered here is Test 4-20.
The prescribed stress path for this test consisted of nonproportional
stress deviation, and is shown in Figure 33. The predicted response
to this prescribed stress path, as well as the corresponding data, are
also shown in Figure 33. Although some discrepancy between the model
and the data is evident in the Iate stages of the stress history, the
agreement during most of the stress history is excellent. Therefore,
the overall agreement is considered good, considering the usual degree
of scatter in concrete data; this test was also not repeated

experimentally.
5.4 SERIES NO. 5.

The purpose of the Series 5 tests was to investigate the
response of plain concrete to unsymmetric stress paths in a given
deviatoric plane. In the present study, attention was focussed on
Tests 5-1 to 5-3 from this series, with emphasis on the behavior
during the stress excursions in the deviatoric plane corresponding to
0o = 4 ksi. Details of the prescribed stress paths for these tests
are depicted in Figure 34(a). The measured and predicted deviatoric
strain paths, corresponding to those portions of the stress paths in
the deviatoric plane for Tests 5-1 to 5-3, are shown in Figure 34.
Also included in this figure for comparative purposes are corres-

(30)

ponding predictions made by Stankowski, using the Stankowski-

(18) From an inspection of this figure, one observes

Gerstle model .
that the point on the e, axis at which the nonproportional portion of
the path begins for the present mode! is consistently higher in all
three tests than the data. It appears, therefore, that the model is
too soft for proportional excursions from the hydrostatic axis out
along the triaxial compression axis, confirming the same observation
made earlier in conjunction with the circular stress paths in Series
3. Despite these smail differences, however, Figure 34 shows that the

present  model does an excellent job of predicting the
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Figure 34. Stress paths for Tests 5-1 to 5-3.
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measured responses in the deviatoric plane, and is clearly superior to
the Stankowski-Cerstle model.(ls)

5.5 SERIES NO. 6.

The tests in this series were designed to investigate the
response of plain concrete to piecewise uniaxial ‘load steps which
formed closed loops. The loading was applied in a manner such that
all possible uniaxial and equi-biaxial stress states of a given level
were reached. Attention in the present study was focussed on Test 6-
2, for which the prescribed stress history was as shown in Figure
35(a). The peak values of the principal stresses for this path were
3.6 ksi.

The response predicted by the present model to the prescribed
stress path is illustrated in Figure 35(b), where the corresponding
data are also given. Considering the typical scatter in concrete
data, the agreement between the model prediction and the data is again

considered excellent.
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SECTION 6

CONCLUSIONS

An advanced nonlinear constitutive mode! has been developed, on
the basis of the new endochronic plasticity theory, to describe the
general behavior of plain concrete over the range of stresses where
significant cracking does not occur. The mode! is isotropic, rate-
independent and thermodynamically sound. It satisfies Drucker’s
Stability Postulate, Prager’s Continuity Condition and the Second Law.
The mode! exhibits shear-volumetric coupling in the form of shear
compaction, dependence of shear behavior on hydrostatic pressure,
hysteresis and stress-path dependence. The wide variety of proof-
tests to which the model was subjected clearly demonstrate that, over
the intended range of application, the present endochronic model

provides an excellent description of the behavior of plain concrete.

Dur future research activities will be devoted to extending the
capabilities of the present model to a wider range of behavior; this

will include focus on the following tasks:
. Modify the unioading~reloading shear behavior
through the addition of shear hardening to more

closely portray experimental data.

. Extend model to cover the range of behavior over

which significant cracking occurs.

. Introduce strain-rate dependence.
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J Develop an optimal (computationally efficient)
N numerical scheme for treating the model in large
& finite element computer codes.
A To meet these goals, appropriate and quality experimental data will be
2 required, which may necessitate additional advancements in testing
2 methods (3%)
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APPENDIX A
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A PROOF OF EQUATION (3.50)

G

.
-

S

The purpose of this appendix is to show that

LI

b4

. . 31/2
ii: p(z - z')[I—%£;;7} dz” = M, (A.1)
o)

L 4

R A |
R AR
o
v D)

o« v t_ e e
) 1]
v 5 % '-"c.:-':_x
.
‘ I."l 0_|‘_

where

»

z
c >0, M(2) = | p(z7)dz’ (A.2a,b) s

0 s

and ;
M“ = M(n) ¢ ® (A3) ,t",

Here, p(z) is a positive monotonically decreasing function of z in the

domain O ¢ z ¢ ® and : e

lim J(2) = 0 (A.4a) o,

2%

Therefore, M(z) is positive, monotonically increasing and convex in e

the sense that .

M(z)-M(z-a)mg'fz_a (A.4b) ?
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Thus in view of Eqs. (A.2b) and (A.4)
M(z) - MN(z - a) ¢ ap(z - a) (A.4c)

It follows from Eqs. (A.4a) and (A.4c) that

lif{M(Z) - M(z - a)} =0 (A.5)

To prove the validity of Eq. (A.1) we first prove the following
theorem.

Theorem: Let R(z) be a positive monotonically decreasing function

bounded from above and below in the sense that
0 ¢ R(2) € R(o) (A.6)
and

i@ =0 . (A.7)

The operational definition of Eq. (A.7) is the following: Given an ¢

however small there exists a z ¢ ® such that
R(2) ¢ ¢ (A.8a)

Then the following is true:

2
bimi e 2)R(z7)dz” = 0 (A.8b)
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Proof:

The integral I on the lefthand side of Eq. (A.8b) may be written in

the form

z z
I-= °p(z - z)R(z)dz" p(z - z")R(z7)dz’ (A.9)
0

z
[+

where 0 ¢ z, ¢ z. Because of the properties of R(z), it follows that

z z
°p(z - z2°)R(z")dz" < R(o) °p(z - 27)dz’ (A.10)
0 0

Or, in view of Eq. (A.2b),

zo
p(z - 2)R(z )4z < R(o) {M(2) - M(z - )
0

Hence, as a result of Eq. (A.5)

r 4

. )
il: p(z - z')R(z")dz" = 0
0

Also, following the same reasoning as above,

p(z - 2°)R(z7)dz" ¢ R[zO)M(z - zo)

z
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t
Hence: f‘ﬁ

ml ptz - RG22 < MR(z,) (A.14) )

2% ‘
3 Seat
1 z'.') oot

Now because of the properties of R(z), i.e., Eqs. (A.8a) and
(A.8b), the righthand side of Eq. (A.14) can be made as small as one .
pleases, in the sense that given an ¢ however small there exists a z, ;,n
such that

MR(z) <e (A.15) R

Since z, may be any large finite number, MyR(z,) may differ from zero =
by an amount which can be made as small as one pleases. In view,
therefore, of Eqs. (A.12) and (A.15), Eq. (A.8) is true and the F:$

theorem is proved. N

Returning to Eq. (A.1), we note that proving this equation is T
tantamount to showing that ,ﬂ:i

/2
}1

lim . cz’
m | p@ - {1 - 12

TE dz” = 0 (A.16) .
0

Hence, since the function 1 - c2'/(1 + cz') has the properties of i
R(z), Eq. (A.16) and hence Eq. (A.1) are proved.

92 :

AN AN NN
|4 f '.

R NN
/ 1’



APPENDIX B

NUMERICAL SCHEME FOR TREATING THE PRESENT CONSTITUTIVE
MODEL UNDER STRESS-DRIVEN CONDITIONS

The numerical scheme used to generate the model predictions
presented in this report is described below. The approach consists of
an explicit incremental Euler scheme developed specifically for numer-
ically treating the governing system of equations for the model under
stress-driven conditions. Due to its explicit nature, care must be
taken to insure that the prescribed increments are sufficiently small
that the computed behavior is independent of the increment size.
Otherwise, the scheme is straightforward, efficient and easy to imple-

ment.”

The basic system of equations which govern the behavior of the

model are as follows:

(2
s deP
s = p(zs - z']a;7 dz’ (B.1)
Jo
sz
p
o=| (- 2)5 & (8.2)
Jo
ds = 2u(dg - 4¢P (8.3)

». This numerical scheme is due to Dr. H. Murakami, a consultant to S-
CUBED and Assistant Professor, University of California, San Diego.
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do = K(de - deP) (8.4)

dz? = ||ag?||? - k2 (deP) 2 (B.5)

dzs dz/Fs (B.6)

dzH dz/[kFH) 8.7

Following the approach described in Section 2, the kernel functions

p(zg) and $(zy) are represented by exponential series of the form:

-a_2
p=2 Ae rs (8.8)
-

¢ = }_:eie-p‘z“ (8.9)

It then follows that the expressions for s and ¢ given by Egs. (B.1)

and (B.2) can be alternately written as
=28 (8.10)
- .

}_: P. (B.11)

where Er and P; satisfy the following ordinary differential equations:
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From Eqs. (B.10) to (B.13), we can write: ‘Eﬁ;
e

* e P B
| dg = A de” - § dz_ (8.14) =Y

; do = B deP - P dz, (B.15) a0

where

>
"
™
>
-

(8.16) o

Introducing Eqs. (B.6) and (B.7) into Eqs. (B.14) and (B.15) leads to t:;

the expressions: o

p 2 o
def = 1 |ds « . dz (8.17) ?\-.

| i

B3

LN 3o

95

L

&
¥




S

" deP = é [da . ;E; dz] (B.18) 3

, which when combined with Eq. (B.5), leads to the following quadratic Y
\ expression for dz: t¢

adzZebdzec=0 (B.19)

where

AT

.= da] (B.20) )
F
H

g -'. A -'.‘ "' 3

PN

Thus, for prescribed values of ds and do, dz is given by the equation: s

dz:-g—a-oé—a'Jbz-4aC (8.12) T

[ A O B N

and by using Eqs. (B.17) and (B.18), deP and deP can then be found, po
after which de and de are determined from Eqs. (B.3) and (B.4).
N Therefore, this approach allows the strain increments de¢ to be found NN

.. for prescribed increments in the stress dg. <
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APPENDIX C
DERIVATION OF EQUATION (4.12)

When 0 is on the linear portion of the hydrostatic stress-strain

curve, it follows, from Eq. (3.37), that

dgH
a=kK° (1 ¢ng]5— (C.1)

This expression may be combined with Eq. (3.36), i.e.,
2 2 2
dz? = dg? + k? dgf (.2)

to give the following result:

oy ]2 1/2 ) _ Ca
"’{“[K'o(i ) } =% (€3)

where 0y denotes the reference pressure on the linear portion of the

hydrostat.

We may decompose ¢y into twe terms and write:
. s
Ko(l * ng) = Ko(l * ng] * Kong (€.4)

where ¢, is the value of ¢y due solely to hydrostatic compression,
while gﬁ is the component due strictly to shear. For shear at ¢ = 0y,

it follows that
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g, = Ko(l + f gh] (C.4)

Hence, Eq. (C.4) can be rewritten in the form:

oL+ 26 =0y * KPS 5)

Upon substituting Eq. (C.5) into Eq. (C.3), we obtain the result

dgs 1 2 12 C. 6
@z TR (€.8)
1’_..;55
74 H
When 0 = 9, it follows from Eq. (C.1) that
d ¢t
. H
9 = k Ko[1 * ng + P S:] dz (€.7)
so that
Kop s s
dz = k 100—1-§Hd§H (C.8)
Let
y=sz=12 (€.9)
KA
x:lof-g: (C.10)
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o o
N where z° denotes the value of 2z at which shearing begins. Then Eq. ":
::, (C.8) can be written by
y '
N “!
dy = |75 x dx (C.11) s
.$ Kop -~
e ‘.
{-: Integrating yields i
= y=L (2.1 (€.12) :
-
X where we have set f:k
> ” 5
N T
A _T e ’
a == (C.13) N
1 —
Ve 4
o, .
b From Eqs. (C.6) and (C.10), it follows that ™
~7 o
~ .
,
d¢ 1/2
2s _ [y . 1]2]

& ==0-0 (C.14) 2
. S-
- =
; Using Eq. (C.13), we can rewrite Eq. (3.11) in the form: ‘::-
- dz = X 9% (C.15) o
- 2 ..
N since dy = dz. Egs. (C.14) and (C.15) may now be combined to give .\
o )
-~ b
N dg, = 1 (2 - 1)M2 4 (C.16) 2
m'. :::
- which, upon integration, leads to the result: el
4 -
»' :\
-': ’.\.
1 { I 2 ' 2 H b
N Ss = 57 \* VX 1 - log(x + ix" -1 (€.17) ::
L d i
v ’
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] I‘ .

But from (C.12), we have )

] ‘
't‘ .
x2 -1=2ay . =
< -
s 9 (C.18) !
E x“ =1+ 2ay o
N "
5 el
which, in view of Eq. (C.9), may be rewritten in the form: e
o -y
. x2 -1=2a z, O
;- 2 ‘.‘-.
] x“ =1+ 2a z, o'
A since for F_ = 1, we have R
- S ~
o .‘.
' S
> dz_ = dz N
" and :ﬁ
-, '
7 %
: z =2z -2 . (C.20) i
¢
: ..
f': Upon combining Eqs. (C.17) and (C.19),. the following expression is "
:v:: obtained: ;'.',
"

[P

hY
"

~ ~
(N RN
N «
' & e ) \
; Ss = 22 {P.a z Jl + 2z log J2a z_ 11 + 22z l (C.21) X
- \
f! . . . . .
. which is Eq. (4.12) given in the main text. :(
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