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SECTION 1

INTRODUCTION

The ability to predict the behavior and strength of reinforced

concrete structures is often crucial for design purposes and depends

very strongly on our understanding of, and capability to analytically

model, the nonlinear response of plain concrete to applied stresses.

From a constitutive modeling viewpoint, plain concrete is an

exceedingly complex material whose constitutive properties under

general load paths have, to date, largely eluded researchers. As

noted by Chen and Suzuki,( 1) a general constitutive relation capable

of describing both pre- and post-failure behavior of plain concrete

simply does not exist today. In fact, a general model capable of

describing the behavior of plain concrete under all possible

conditions, and yet is sufficiently simple for use in design

applications, may be out of reach at the present time.

In recent years, a variety of nonlinear constitutive models has

been proposed in the literature for describing the response of plain
-4'

concrete to short-term loads. These models have been based upon

nonlinear elasticity,(2) classical plasticity,(3) hypo-elasticity,(4)

endochronic plasticity,( 5'6) bounding surface plasticity,(7 ,8)

continuous damage theory, (g lO) plastic-fracture theory (11 ) and

microstructural considerations.(1 2)* In almost all cases, the rodels

were developed from, and validated against, data from standard

laboratory tests in which at least two of the principal stresses were

equal. Some true triaxial experiments have also been performed on

concrete, but these have been largely limited to proportional,

. For a revtj and critique of various modeling approaches, see Chen
and Ti ng.

'A1
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monotonically-increasing loading to failure.( 14 ,16) the results from

these tests are inadequate for identifying and characterizing the

salient constitutive features of concrete under arbitrary load paths,

unloading, stress reversals and reloading, which are generally

encountered in practice.

To fill the need for data on the response of plain con-rete to

complex, multi-axial loading paths, Gerstle, Ko and. coworkers recently

conducted an extensive laboratory testing program, (17 ) using a true

triaxial test device designed specifically for use in studying the

multi-axial behavior of geomaterials. This device independently

applies three normal stresses of up to 15,000 psi to the sides of 4-

inch cubical specimens. The focus of this experimental study was

confined to the range of load levels below that at which significant

cracking of the plain concrete would occur. A total of 47 different

non-standard stress paths were investigated. Of these, a number of

paths were chosen to provide insight into possible stress-path

dependence.

From the results of this study, it was found that plain concrete

exhibits behavior under complex loading which appears to be not well

represented by any of the current models. In particular, it was found

that the loading surface has the form of a box in principal stress

space, with sides parallel to the principal stress axes; hence, the

projection of the loading surface on the deviatoric plane is a

triangle, which is aligned with the principal deviatoric stress axes

in the deviatoric plane so that each of its sides is perpendicular to

one of the principal axes. Thus, the loading surface is not affine

with the failure surface. Except near the failure surface, the

plastic flow law appears to be associated, with the plastic strain

rate vector normal to the loading surface at the current stress point.

As the failure surface is approached, the plastic strain rate vector

2 %-
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begins to deviate from normality and ultimately becomes normal to the

failure surface.

In an effort to analytically represent the results from their

experimental study, Stankowski and Gerstle developed a simple, hypo-

elastic-type constitutive model(18) that is an extension of a previous

* model by Gerstle. (19) The model was applied to several of the complexaxisymmetric stress paths studied experimentally and, considering the

simplicity of the model, it showed remarkable predictive capability.

Several other more complex concrete models( 1 1,20) were also exercised

around the same paths by Gerstle and Willam, (3 3 ) but they failed to

show comparable predictive capabilities. While the simple model has

shown its ability to capture many of the response features of plain

concrete under several axisymmetric stress histories, it has not, to

date, been extended to, nor validated against, more general loading

conditions. In order to capture certain features of behavior that are

beyond the scope of the simple theory, and to have a theory that is-

applicable to general multi-axial loading states, we explored the

potential offered by the new endochronic theory for describing the

extensive experimental results given in Reference 17.

The new endochronic plasticity theory was originally developed

by Valanis,(2 1) and has since been applied with remarkable success to

various problems of metal plasticity(22,23) and geomaterials. (24 ) The

theory is based upon the hypothesis that the current state of stress .4

in a material is a linear functional of the entire history of

deformation, with the history defined with respect to a time scale,

called intrinsic time, which is itself a property of the material at

hand. Such an approach does not require the notion of yield surface

nor the specification of unloading-reloading criteria, and these

unique features make the theory particularly attractive for describing

N

* 3
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the behavior of concrete, which does not exhibit a well-defined yield

point. It should be noted that the new endochronic plasticity theory to

considered herein is substantially different from those versions of

the older theory used to develop the concrete models described in

References 5, 6, and 27. Proper closure of hysteresis loops is

guaranteed in the present theory, (2 1) so that artifices, such as the P

jump-kinematic hardening introduced into the concrete model described

in Reference 27, are not required. Some of the basic inelastic

response features of this new theory have recently been discussed by

Trangenstein and Read(
25) and Murakami and Read.( 26)

The purpose of the present report is to formulate an endochronic

plasticity theory for plain concrete, based upon the general framework a

described in Reference 21, and to explore the capabilities of this new

theory to predict the wide range of experimental results for complex

multi-axial load paths reported in Reference 17. For this purpose, .

the model is first fit to a small subset of the data, and then

exercised around a variety of different non-standard stress paths not

used in fitting the model. It is shown that the model can

successfully predict the nonlinear behavior of concrete under these .%

complex loading conditions. This appears to provide strong indication

that the present model has captured the basic constitutive

characteristics of plain concrete quite well.

It should be noted that the scope of the present model is

currently limited to stress levels in plain concrete that do not

produce significant cracking. The model is isotropic and therefore

incapable of describing stress-induced anisotropy produced by

significant microcracking with preferred orientation. In many .,"

practical applications, this limitation may not prove to be overly

4
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restrictive, since there are obviously many instances where a plain

concrete structure is driven into the nonlinear regime but not to the

point where substantial cracking occurs.

4 .°
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SECTION 2

THERMODYNAMIC FOUNDATIONS OF THEORY

Endochronic plasticity is founded on the theory of irreversible

thermodynamics of internal variables. The foundations have been laid

in detail elsewhere (see Ref. 21, for example) and will not elaborated

upon here. For the sake of completeness, however, we begin by

recalling the basic equations.

2.1 THERMODYNAMIC RELATIONS.

It is stipulated at the outset that concrete is macroscopically

homogeneous and isotropic even though at the local level it is highly

heterogeneous and anisotropic. Its mechanical response to strain (or

stress) is also highly dissipative and therefore inelastic. In the

thermodynamic formulation, interior dissipative mechanisms are

formally represented by internal variables. Isotropy permits the

separation of such mechanisms into deviatoric and hydrostatic ones,

represented respectively by the internal variables qr and Pr, where qr

are tensors of second order and Pr are scalars. In the context of

small deformation theory, #, the free energy of deformation, is

quadratic in the strain tensor and the internal variables and can

therefore be partitioned in the case of isotropic materials into its

deviatoric and hydrostatic parts. Thus

= CD H(2.1) OD.:OH

Specifically

6
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O= #D(9',gr) (2.2)

O= OH(EJPr) (2.3)

where e is the deviatoric part of the strain tensor and e is the

hydrostatic part. Thus

e ~ (2.4)

where I is the unit matrix. It has been shown that in the case of

materials which behave elastically at the onset of unloading or

reloading (points of reversal in the sign of the strain rate) OD can

be further partitioned into an elastic and plastic part such that

where

OD = D (2.6)

p= OPe,(2.7)

and

ds

(2.8)

pL e



s is the deviatoric stress tensor and I is the elastic shear modulus.

In a similar fashion

OH = H(2.)

where

= e)W (2.10)
H H

Op #H Pr) (2.11)

and

df" =.a (2.12)K|

f f f e(2.13)

a is the hydrostatic stress and K is the elastic bulk modulus. In

parallel to Eq. (2.4)

+ s(2.14)

The topological interpretation of the above partitioning in the devia-

toric case is given in Figure 1. The same intepretation applies to

the hydrostatic case.

8
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* Figure 1. An elastic system and a plastic system in
series.
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The thermodynamic relations that apply are the following:(
21)

1) (2.15)

d - Qdr > 0 ,Ild 9rII <0 (2.16)
ar

a_ (2.17) 5

H dpr> 0 Idr > (2.18)

AlIso

80D

e (2.19)
82

.5 8~(2.20)

The above equations are obtained by applying the theory of irrever-

sible thermodynamics to each individual system in Figure 1. Strict

interpretation of the topological arrangement suggests that cannot

depend on ee and conversely #9 cannot* depend on eP.

aHowever, in the actual material, internal changes associated with
the plastic strain may affect the elast Ic moduli Pe and Ke and thus
render #D and #H dependent of tP and EP.

10
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We note again that the free energies all have quadratic forms

which have been shown to be reducible to the canonical forms given

below

0 P.IeIe112 (2.21)

#- lA p 112p r 2(-2= -' z II-' - rI(.2

D 2

- )2 (2.23)H2 e%

-#p K = -2 (2 24)""
" 'S

"°1"

H 2 - rEp P

It is physically appealing to introduce at this juncture the

concept of internal forces nr and r such that

B#.

D (2.25)S.r

I.

..{r

"- (2.26)
r a..

* It has been shown in previous work that qr and Pr represent internal

displacements either in terms of assemblies of mechanical models(21)

slip in crystals(31) or motion of atoms grouped together in terms of
specific energy states(32). Then in view of Eqs. (2.16) and (2.25) on

one hand and Eqs. (2.17) and (2.26) on the other,

.5..



r d g > 0 1 I~dOrlI > 0 (2.27)

Pr dpr > 0 ,IdrI > (2.28)

The above equations are a statement to the fact that the increment of

work done by an internal force is always positive, unless the associ-

ated internal variable is constant in which case the increment of work

is zero.

2.2 EVOLUTION EQUATIONS.

Inequalities (2.27) and (2.28) may be written in the alternative

*rate* form

>0 (2.29)

S~r Pr > 0 (2.30)

where a superposed dot indicates differentiation with respect to time.

In linear time-dependent systems

~r zr ~r(21

P = b~2  p (2 32)r r r

The above equations may be viewed as "internal constitutive equa-

tions," or "'rate equations"" because they relate the internal forces

'p 12



(linearly) to the rate of change of the internal displacements. In

traditional thermodynamics they are regarded as the "Onsager Rela-

tions" since they relate (linearly) the dissipative (internal) forces

to the "fluxes." Note that they satisfy the thermodynamic inequali-

ties (2.29) and (2.30) if

b ( ) >0 (2.32 and 2.33)r r

for all r.

We observe that Eqs. (2.31) and (2.32) in conjunction with Eqs.

(2.25) and (2.26) give the "evolution equations"

Sb()r =0 (2.34)r -  r

ai_ . (2)
r r =0 (2.35)

Equations (2.22) and (2.24) in conjunction with Eqs. (2.34) and (2.35)

respectively give linear differential equations in q and Pr from

which these can be calculated if one knows the history of plastic

. strain. Specifically these equations are:

""#r r b 1) = (2.36)

K (2) = K cP (2,37)
r Pr r r r

" 13
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These may also be given in terms of the internal forces i. and Pr uponl

use of Eqs. (2.25) and (2.26). Thus when Air and Kr are constant,

dgr d2

Ar

rp .- =K (2.38)
ir dt #rdt

r

2.3 THE NOTION OF INTRINSIC TIME.

In materials which are history dependent but rate-indifferent

anewtonian" time is not a proper time scale for the formulation of

evolution equations. The difficulty lies in f-c fact that in such

materials the stress is a function of the deformation path but not of

the rate at which the path is traversed. This fact was the basis of

" ~~~~ ~ato i-n 1r9d7-1r(282)8"-",.
.

the idea proposed by the first that every material

posses an intrinsic time scale with respect to which the evolution

equations of such material should be formulated.

With reference to System 2 in Figure 1, we note that the defor-

mation of that system is defined by the plastic strain tensor f We

define therefore a path in the plastic strain space whose length

increment dz is given by the relation

N'"°

WthP refe do (2.40)en

mario of hat yste is dek e Qth lsi.tri.esr P W -:
I.

defie threfre apat in he lastc stainspac whse lngt
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We stipulate that the tensor P is Isotropic. Thus it admits the

representation

P ijkP7 '1 ij6 kPR. 2 6i z(2.41)%

which when combined with Eq. (2.40) admits the result

2z k dc~ de + k2 df? df2.2
dz=1 kk Ii 2 ik ik (.2

or, within an immaterial multiplicative constant,

2 Lp~2 .2 1d~2
*.dz

2  Hu2 l k 4 E (2.43)

where jdf~I de= e I dEPI is the absolute value of dEp and k
I IJ

is a material parameter.

If one retains the form of the evolution Eqs. (2.31) and (2.32)

% and, therefore, (2.34) and (2.35) and regards dz in Eq. (2.40) as an

intrinsic time measure then in terms of this time scale z Eqs. (2.34)

and (2.35) become

D~ dzl 0 (2.44)

H b(2) d~-
% ap br dz 0(2.45)

r
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These two Eqs. lead to the counterparts of Eqs. (2.38) and (2.39) as

shown below.

Pr dgr de

1 r + z r JB - (2.46)

r

K dP ,
rP r K dE (247)-

b(2) r dz r dz
r

Equations (2.15) and (2.17) give the relations between the stresses

and the internal forces. Specifically in view of Eqs. (2.22) and

(2.24)

(2.48)
r

= > = P (2.49)
r

Equations (2.43) and (2.46 - 2.49), together with Eqs. (2.8) and

(2.12), provide a complete constitutive description of a dissipative,

rate-independent (plastic) material, subject to the above

stipulations.

2.4 INTEGRAL FORM OF THE EQUATIONS

In general the resistance tensors b 1) and b(2 ) are not constant

but depend on other variables associated with the deformed state of a

material. A propos of this eventuality we set

16%
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b F b~' (2.50)r s or

(2 F((.51
br F Hbor (-1

where F~ and FH are specified on the basis of the observed response of

a particular material. This question will be dealt with in the next

section. Let

a r~ (2.52)
r-

or

K
X r (2.53)

r b- 2
or

where b~)and b (2) are constants.or or

Further we define intrinsic time scales zsand z H by the relation

dz dzF (2.54a)

dz H V d (2-54b)

where k in Eq. (2.54) is the same as the parameter k appearing in the

definition of intrinsic time given by Eq. (2.43). The appearance of k

in Eq. (2.54) is not purely formal but has the advantage that the pure

hydrostatic response so derived is independent of k, as will be shown

later.

17



In the light of the above definitions, Eqs. (2.46) and (2.47)

become

d r  dep 255
ar Rr dz = rd

S p

p r K & (2.56)

r r dzH rdzH

.1*.

Let the reference configuration be one at which zH = = . We

define a *natural configuration" as one at which Qr(O) = 0, Pr= 0.

There are, of course, configurations (initially strained or arising

because of a nonequilibrium thermomechanical reference state) in which

() $ 0, Pr(O) 0 0. Thus for greater generality we set

= P(O) =0 (2.57a,b)

'p.

Equations (2.55) and (2.56) may now be integrated subjected to the

initial conditions (2.57a,b) to give

-a z Vs -az-) dep
0~ r s rr • --

S r Jzr dz' (2.58a)

= p 0e -  rZH , Kr e r (ZH-Z) d p  dz' (2.58b)

'0

18
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Use of Eqs. (2.48) and (2.49) gives the stress in terms of convolution

integrals of the plastic strain history as follows

-a r e

r I p(zs-z,) -z' (2.59)
r .

p 0O e r -C dz_ - (2.60)r O(ZH Z) zr0

where

-a z
e SO r (2.61)

r r

TK r er H (2.62)

The condition that s 0 in the reference state requires that

go _0(2.63)
r

whereas the condition that a 0 in the ref rence state requires that

P 0 (2.64)
r%

If the reference state is a "natural" state, then

* 19



I (zs-z'T-7 dz" (2.65)

[ZH
di dz-(266

, O' = [(ZH-Z ") dz °  (2.66
.0%

2.5 SINGULAR KERNELS.
o-, a ,.

It was shown by the first author(2 1) that if the kernel p(zs) is

weakly singular in the sense that p(O) = but integrable,

P z( s)dZs < = Zs<  ac (2.67) ,

then the hysteresis loop of a material in the first quadrant of the

. stress-strain space is closed. It was also shown that the material

response at unloading and reloading points is elastic in the sense of

Figure 2. The reason for this is that

d = dr -~ =(2.68)
1A d7B d7 C

because of the singularity of the kernel. The elastic response at

these points is then the response of the elastic system of Figure 1.

20.
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In numerical computations the singular kernel is approximated by

a Prony series as in Eq. (2.61), in which care is taken so that p(O),

where

P(o) = r (2.69)
r

is a very large number in the sense that

p(O) >> #e (2.70)

where /se is the elastic slope at the loading point A of Figure 2.

S.,
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SECTION 3

SPECIFIC FORM OF THEORY FOR PLAIN CONCRETE

The application of endochronic plasticity to metals is facili-

tated by three assumptions which are quite realistic:

(i) Under moderate hydrostatic stress,u the hydrostatic

response of metals is elastic.

(ii) A constant moderate hydrostatic stress does not affect

the mechanical response of a metal in shear.

(iii) Shearing at constant hydrostatic stress does not

induce a change in the hydrostatic strain.

In concrete the above assumptions are not realistic.

In reference to item (i) above, the hydrostatic behavior of

concrete in compression is illustrated in Figure 3. It is initially

convex becoming concave and asymptotically elastic. Upon unloading at

A to a point B a significant amount of plastic strain, EB results.

There is obviously a great deal of hardening taking place, which

affects dramatically the subsequent loading-unloading-relcading

behavior as illustrated in Figure 3. While in metals hardening, in

general, is the result of multiplication of dislocations, in concrete

it is very much a function of compaction. In both cases however the

agents of hardening are the resistance coefficients br and in this

particular instance, b(2) .  Thus while in metals one achieves r"

*. Of the order of the yield stress in tension,

22 
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hardening by letting br be an increasing function of z, In concrete,

to account for the compaction effect in the hydrostat, we have set

b 2) = br F (3.1)
() (2) H

P.

PN
% where FH is a monotonicallmy increasing function of EP. 0

In reference to item (ii), the shear response depends strongly

on the existing level of hydrostatic stress. This effect is illus-

trated schematically in Figure 4 where the shear stress is plotted

versus the shear strain under monotonic loading conditions and at

various levels of constant hydrostatic stress. In regard to item

(iii), the mechanical response of concrete shows strong shear-hydro-

static interaction in that shearing at constant hydrostatic stress

produces a significant change in the hydrostatic strain and vice

versa. As will be shown subsequently, endochronic plasticity accounts

for this effect through the intrinsic time and specifically by virtue

of the coupling constant k which appears in Eq. (2.43). Note that in

materials which are plastically incompressible, dEp = 0. In such

materials shear-hydrostatic interaction is absent.

3.1 HYDROSTATIC RESPONSE.

Determination of the material functions O(ZH) and FH(EP). It is

assumed at the outset that the initial state is a natural state in

which case the hydrostatic response is given by Eq. (2.66) which we

write in the explicit form

ZHrpS zH  - dz" (3.2) i
ON (Z , z dz

24
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.

Under monotonic loading conditions, and in view of Eqs. (2.43) and

(2.54), it follows that

dpe-- H (3.3)
dz H

.4%

Thus letting

d5, = IdepI (3.4)

it follows that

k de p  dH (35)

dzH = 3() 5)

H H

Under monotonic straining conditions dzH = d p hence

dc° d~H (3.6)d H F H(EP)

Thus Eq. (3.2) becomes

= Z 'F (3.7)

Two material functions, therefore, are necessary and sufficient to

determine the hydrostatic response: the kernel O(zH) and the

hardening function FH(EP) ';

-I-
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3.1.1 The Hardening Function FH .  =

Tifucinwlbeexamined in reference to the hydrostatic

stress-strain curve shown in Figure S. The curve ON represents the

stress response corresponding to FH = 1. In the initial stage=G

(eP S OA) FH is substantially linear. In the stage OA < eP S OB It is .:.

substantially hyperbolic. In the final stage EP ) OB a as ,.

EP - eP, since there is a limiting material compressibility beyond "'.

which the material cannot be compressed no matter how high a stress or '

is appl ied. ?.

.- %-

We shall take the position that ",.-

FH  ~ (3.8) --

which, in the range eP .5 OA, we can write as ,.

FH = 1 #{P •o[ P] 2 (3.9) '

.a'

-.. ,.F

Theisea fupsnatoil be examindiheerence to Ehe hy)afdrsai

stess-sctri curved ohfw dtrinaFigur 5. the ue oN repesn there

It follows from Eqs. (3.67) and (3.9) that "("it

dZH dePr Pf0 (3.10)

26
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Figure S. Pressure versus plastic volumetric strain for
virgin hydrostatic compression.

to r.
it

0 Z H

Figure 6. General form of the relationship between co-C -
and zH .
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Hence

zH po~ IP (3.11)

or

A-
p H

f e i (3.12)

Thus

FH e (3.13)

* Following, therefore, Eqs. (2.62) and (3.7)

H' Kexr6 Z- 'eJIz'dz' (3.14)
r

or

a Z:K e e(3.15)

Thus, if we define a stress oa* such that

C (3.16)
H

it follows from Eq. (3.15) that

28
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K1

. ..or 5 e r AZHJf (3.17)%

r P+Xr

3.1.2 Determination of the Constants Kr, Nr and .

To determine these constants we proceed as follows. The cons-

tant Pi is found from the straight line portion of the hydrostat given

by the relation

a = a0(1 + PEP) (3.18)

where ao is the intercept shown in Figure 5.

The remaining constants are found by plotting a0 - a* versus zH

where zH is given by Eq. (3.11). The plot is shown in Figure 6. It

follows by virtue of Eq. (3.17) that

K -[ XzH (3.19)
S- *= ,e r,..-

r r

Hence a Prony series representation of the curve o- a* versus zH

gives Kr/(P + Xr) and P + Xr . Since P is already known, Kr and Xr are

thus also known.

3.2 SHEAR RESPONSE.

The deviatoric part of the stress tensor (the shear response) is

given by Eq. (2.65). Specifically

29
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s p

dep .,

where

dz2 = ide p 12 k2*dEp) 2  (3.21a)

and

z s Z (3.21b)s  F s-.._.

in accordance with Eqs. (2.42) and (2.54). Thus two material func-

tions, p(zs) and FS and the constant k are sufficient to determine the

shear stress from the plastic strain history. It has been found 4

experimentally that the failure stress of concrete in the r-plane

depends on the prevailing hydrostatic stress and the direction of

loading in the r-plane. To account for these two effects it is neces-

sary that. Fs depend on a and the Lode angle 0. Thus we set

Fs  F s (a,O) (3.22)

subject to the normalization condition Fs(0,0) = 1.

3.2.1 The Kernel p(zs).

The form of the function p(zs) is found most conveniently by

means of a pure shear test in the absence of hydrostatic stress. In

this case

30
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, = 0, =0, eP =0, Fs =1

If the non-vanishing stress component is Tr and the corresponding

plastic strain component is 7P, then in view of Eq. (3.21) we can

write

dz =F21d7P

(3.23)

dz= dz

Thus using Eq. (3.20)

M = 2M') (3.24)

where

x

M(x) p(z')dz (3.25)
.. 04

for all finite x. Thus

d(3T) d2r _ p2p) (3.26)

d(I7p) - diP

Thus, if one plots F2T versus T2_7P, the slope of the curve is the

kernel function p(x) where x =2P.

"3

4.

31...

4. . .

S . * % ..'-" %',."* ., *; ;" " . 5 ,'..'. ","- "..*."- - .-.. % . .. " " . .. ".



3.2.2 The Function Fs.

The determination of the form of F. and the value of k is more

complex due to the strong coupling between the hydrostatic and devi-

atoric responses brought about by the presence of k in Eq. (3.21).

- Consider for instance a shear stress field in the presence of a

constant hydrostatic stress. More precisely a hydrostatic stress

field is applied until o = a,, whereupon a is held constant at, and

a shear stress field -r is then applied, so that while r is being

applied the total stress field is of the form

T a 0 (3.27)

0 0 0.

One first notes that the application of shear stress changes the

hydrostatic plastic strain by virtue of Eq. (3.2). To see this we

invert Eq. (3.2) i.e., express EP in terms of the history of a.

P= L[ZH - d z (3.28)

.0

where L is related to # by the integral equation "..

dz'

.0.

* IZ
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0where H(z) is the Heaviside step function. Let zH = zH at the ter- ..r

mination of the hydrostatic test, i.e., at = o1. Then in view of

Eq. (3.28)

do dz" 
..

P= LZ- dzH (3.30)

since d = 0 when zH > z 0

Since the application of shear stress will cause a change in the

shear strain, z will change by virtue of Eq. (3.21), and so will zH by

virtue of Eq. (2.54). Thus the integral on the righthand side of Eq.

(3.30) will change and hence so will EP. Thus, in the presence of

hydrostatic stress, dz is no longer given by Eq. (3.23) but by Eq.

(3.21), which is influenced by the value of k.

The problem simplifies somewhat and becomes amenable to analysis

if one adopts a simpler form of the hydrostat. With reference to Eq.

(3.2), the kernel O(zH) decays with sufficient rapidity to be approxi-

mated by a Direc 5 function. Thus we set

O =ZH) K06 (ZH) (3.31)

in which case by virtue of Eq. (3.2), it follows that

= 0 de (3.32)
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Specifically under purely hydrostatic monotonic loading conditions Eq.

(3.3) applies in which case

o K (1 . peP) (3.33)
,-. 

.-

by virtue of Eqs. (3.9) and (2.43). Equation (3.33) is then basically

-that of a plastic linearly hardening model. In particular if a1 is on

the linear part of the hydrostatic stress-strain curve, Eqs. (3.33) is

ftq certainly adequate.

It follows from Eqs. (3.32) that

de p = Ro dzH  (3.34)

where a, is the (constant) value of the hydrostatic stress during

sheari ng.

Adopting the sign convention commonly used in civil engineering

whereby a and e are positive when compressive, we note, in view of .t

Eq. (3.34), that deP will be positive, and hence the compressive

strain will increase, during shearing.

In view of the above observations we introduce the following

notation

d5 jldeptI d5 = IdiEPI (3.35a.b)

34 SI.
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Thus, because of Eq. (2.43),

dz2  d' k kd5 (3.36)%

We now combine Eqs. (2.54) and (3.32) to obtain

o= kK OP + AZ H) dzH (3,37)

where use was made of Eq. (3.33), (3.35b) and the fact that during the

hydrostatic as well as the shearing processes deP > 0. Equations

(3.36) and (3.37) combine to give the result

r a 211/2
- Ij) d~s (3.38)

Now let 5.j(=ET) be the value of 6Pat the completion of the purely

hydrostatic loading so that

s ~ (3.39)

where 5R is the hydrostatic strain induced by shear loading at cons-

tant pressure. Also let

Z Z' y (3.40)

%1
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where z' is the value of z at the completion of the purely hydrostatic

loading. Without going into extensive analytical detail Eqs. (3 36),

(3.37) and (3.38) combine to give the following results:

d~2s 1/2_ .2ay (3.41)dy 1 2ayJ 34):-

where

KoO
a - , (3 .4 2 )

and

.5 1 jxfI 1 log'x (3.43) "," = x - - o~ .x1).

where

KOP
x = 1(344)

Relations (3.41) and (3.43) will prove useful in determining the form

of Fs and the value of k.

We now return to the question of the shear stress response to

increasing shear strain in the presence of constant pressure, i.e., to

the case where the stress field is given by Eq. (3.27). In view of

Eq. (3.20), we can write

= d~dzs (3.45)

PI z Zl s sdz s

Jo S

sz
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However, 7P = 0 during pure hydrostatic loading, i.e., in the range

0 < z< z. Thus, if we set w = z- z' and recall Eq. (3.45), it

follows that

S_ p(w w') dw' (3.45a)

JO
.4.

We note that

~ 1 d~5 (3.46)
dw' d5s dw -- 2 dw

in view of Eq. (3.35a). Therefore, as a result of Eqs. (3.21b) and

(3.41)

d[ 2aFsw 1/

- Fs 1 2a' W. (3.47) ,.

where in this case

F = Fs (,O) (3.48)

4..

i.e., F is constant during the shearing process.
5 s ~4.-.

Thus as a result of Eqs. (3.45a), (3.46) and (3.47)

,0
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WWF r2aFw 1/
1____ I w (3.49)

f-2 P~w w / 1, aFw

.0d

It is shown in Append ix I that

rw 2aFs z 1/2

Z4.. lira P(z - z')1  2aF z' dz= M (3.50)

where M(z) is given by Eq. (3.25) and M. = M(w) < 0. Hence, denoting ,9

the asymptotic value of the shear stress by r. it follows from Eqs.

(3.49) and (3.50) that

F
= M (3.51)

During shearing at zero pressure one may set F 1. Thus
5

r-(o'] _ F (3.52)

r (0) s

Equation (3.52) determines the form of Fs under constant 0. Keeping asi

constant and performing shearing tests each at a different value of 0

one is able to determine the form of functional dependence of Fs on

3.2.3 Determination of the Kernel p(w) in the Presence of Pressure.

In the course of the development of the theory in conjunction

I with the experimental data of Scavuzzo, et aL.( 17 ) it transpired that

A' 38
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all shear experiments were performed in the presence of pressure i.e.,m
under conditions where a, 0 0. In this event Eq. (3.24) no longer

applies and Eq. (3.49) must be used for the determination of p(w). To

this end we setp Fs = 1 atn a reference pressure R, which is the one we

use in the determination of p(w), and which must lie on the straight

line segment of the hydrostat to ensure that Eq. (3.49) is applicable.

Thus setting Fs = 1 in Eq. (3.49) we obtain the following relation for

2ay''

,'>12ay-J dy (3.53)

where as before
0K (3.54)

Ka.

and since y = w when Fs =1,

A..

Thus given r (which is measured experimentally) and a, the task

at hand is to solve the integral equation (3.53) and thus obtain the

functional form of p. "j.

Before we proceed with the solution we take care to note that "

is measured as a function of the shear strain 7 and is therefore

reducible to a function of the plastic strain 7P. In the presence of

monotonic shearing conditions and in view of Eq. (3.35a)

d5= F d'P (3.55)

39 :71
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1i.

Furthermore, since at the initiation of the shear test s 0 0, it

follows that

5s = 7 p  (3.56)

Thus in view of the relation between 5s and y (Eq. 3.44), s can

be expressed as a function of y. Thus the function on the lefthand

side of Eq. (3.53) is a known function of y.

S..

3.2.4 Numerical Procedure for Determining the Kernel Function p(zs).

,. We proceed to give a numerical solution to the equation

'(y) = p(y - y') g(y')dy' (3.57)
,..0

where the object is to determine p(y) given the functions r(y) and

g(y). Note that Eq. (3.53) is a particular case of Eq. (3.57) where

g(y) 1 2 a ay1/2 (3.58)

Let Yn be a generic value of the variable y. We divide the interval

[O,y] into suitably small equal subintervals A such that

= nA (3.59)

40,
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The integral on the righthand side of Eq. (3.57) can then be written

in the form

A 5

'r(y n) r n {P(yn -y'Jg(y')dy' ..

(3.60)
nA.

f+ n Pl)A y')g(y')dy'

or

r n L gr{M ((n -r 1 )A] M[(n -r)A]) (3.61)
r=1

where y virtue of the mean value theorem

gr g(Y ) ,(3.62)

(r -1)A y; 5 rA (3.63)

and

JJ

The quantity gr may be determined to the required degree of accuracy

by making the interval A sufficiently small. V

5 In consequence, we have the relations

.

.5-
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Ag1 M(A)

2  AgM(2A) + Ag2 M(A)
(3.65)

= AgM(nA) * g2r(n - 1)4] • .... g M(A)

where

Agr = gr - gr-1 (3.66)

This is a system of a linear simultaneous equations in M(A), M(2A) ...

M(nA). Since the hgr are known, then knowing rl, 'r2 ... rn allows one

to determine M(rA), r = 1,2 .. n, by successive substitution. The

following algorithm applies:

if

n-1
4n = ml Agn 1 "M(mA) (3.67) U

n m=1 Im

then

M(rA) - ng1 (3.68)

Knowledge of M(y) thus allows the determination of p(y) since

= dy (3.69)
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SECTION 4

EVALUATION OF MODEL PARAMETERS FROM PLAIN CONCRETE DATA
'e e6

In the preceding section, a specific form of the general endo-

chronic model described in Section 2 was given for plain concrete, and

a basic approach was given for determining the material constants in

the model from experimental data. In this section, the model is

applied specifically to the data on plain concrete recently reported

by Scavuzzo, et aL.( 17) The model is first fit to a small subset of

the data, and the resulting model is then proof-tested against the

data from a wide variety of the complex strain path tests not used in

- fitting the model. The predictive capabilities of the model are

demonstrated.

4.1 DETERMINATION OF MODEL PARAMETERS.

Only a small subset of the data reported by Scavuzzo, et al.(17)

is needed to determine the values of the model parameters; for this

purpose, pure hydrostatic compression data, data on the response to

shear at several different fixed hydrostatic pressures and triaxial

failure data at various confining pressures proves sufficient.

Details of the manner in which this can be accomplished are given

below.

4.1.1 Hydrostatic Parameters.

The most extensive virgin pure hydrostatic compression curve

reported by Scavuzzo, et aL.( 17) is depicted by the dotted line in

Figure 7, covering the range of pressures up to nearly 14 ksi. Shown

also in Figure 7 by the solid line is the virgin hydrostatic

compression curve actually used in determining the model parameters.
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An examination of the virgin pure hydrostatic compression legs of many

of the complex strain path tests revealed that the dotted curve in

Figure 7 was probably too soft. Therefore, from this examination, the

curve shown by the solid line was constructed and appears to provide a

more accurate portrayal of the normal virgin hydrostatic behavior; the

linearization of the upper portion of the hydrostatic curve was felt

to be justified in view of the fact that none of the complex stress

path tests reported by Scavuzzo, et aL. exceeded hydrostatic pressures

of 12 ksi. Note that the curves shown in Figure 7 are expressed in

terms of octahedral normal stress co versus octahedral normal strain

o" Since o = 1/3Gii and Eo = 1/3eii, the mean stress (pressure) a

is synonymous with ao, and the volumetric strain E is equal to 3 eo"

Based on the curves given in Figure 7, and in agreement with

Stankowski and Gerstle,(18) the bulk modulus K was assigned the value
.4,

K = 2.1 x 103 ksi (4.1)

Using the solid curve in Figure 7, together with the expression

- K ' (4.2)and the value of K given by Eq. (4.10), a curve of a versus P was

obtained which is shown in Figure 8. From the straight line portion

of this figure, one finds by recalling Eq. (3.18) given earlier that

, = 64.8 (43

=5 ksi
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Using these values of f and co, a plot was made of ao - or versus zH,

- using the curve from Figure 8, and the definitions of a- and zH given

earlier by Eqs. (3.11) and (3.16), respectively. Six points, at

equally spaced values of ZH, were chosen from this plot, and a two-

term series of decaying exponentials of the form

2 -rZH
* -, = Ce (4.4)

0 r=1 r

was fit to these points by Prony's method. This led to the following

values of Cr and Pr:

C1 =2.434 ksi Io1= 6 3 5

(4.5) ..

C 2.566 ksi , . 2
= 2,289 2

A plot of Eq. (4.4), based on the constants given by Eq. (4.5), is

shown in Figure 9, where the six points to which Eq. (4.4) was fit are

also shown.

By comparing Eqs. (4.4) and (3.19), it then follows that

K
C- r

* r

(4.6)

from which we find
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k.0

K =-155 X10 3 ksi, X1 = 7

K 2 =5.87 x 10
3 ksi, X 2 =2,224

since P is known for Eq. (4.3). Therefore, Eq. (3.14), with the above

values of the constants, completely defines the hydrostatic behavior

of the model. An example of the hydrostatic behavior predicted by

this model, including unloading and reloading response, is given in

Figure 10. Comparison of this figure with the solid curve in Figure 7

% shows that the model portrays the hydrostatic behavior quite well.

4.1.2 Shear Parameters.

As noted earlier in Section 3.2, the most convenient and direct

way of determining the shear parameters is from data on shear response

under zero hydrostatic pressure. Unfortunately, Scavuzzo, et at.(1 7)

did not investigate this case in their extensive study. They did,

however, investigate shear behavior under several different fixed

hydrostatic pressures in Tests 4-9 to 4-11; the resulting data will be

used to determine the shear parameters and the shear-volumetric

coupling parameters in this section.

A composite of the results for those portions of Tests 4-9 to 4-

11 which consisted of shear at constant hydrostatic pressure is given

in Figure 11. An inspection of this figure reveals some apparent

discrepancies in the data. From the general characteristics of plain

Aconcrete reported in the literature, the initial slope at the onset of

shear generally increases with confining pressure, and the shear

stress-shear strain curves can be expected to fall above each other -
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not intersect -- as the confining pressure increases. Tests 4-9 and

4-10 follow the expected pattern, but Test 4-11, despite being at the Wj

highest confining pressure (8 ksi), does not; it has the smallest

initial slope and exhibits softer response than Test 4-10. There is

undoubtedly scatter in these data but since the tests were not

repeated, the magnitude of the data scatter is unknown.

In Section 3.2, an approach for determining the shear parameters

from shear data at constant hydrostatic pressures was described, which

required the use of shear data obtained at fixed hydrostatic pressures

that lay on the linear portion of the hydrostat. While the test

conditions for Test 4-11 meet this requirement, i.e., shear at

0 o = 8 ksi, the data are somewhat suspect, as noted above. In view of

this, we used our best judgement to construct a curve which we felt

provided a more realistic description of the response of plain

concrete to shear at a = 8 ksi, and this curve is shown by the solid

line in Figure 11. The reference pressure aR was therefore set at

8 ksi, and the shear parameters determined from the solid curve in

Figure 11.

The shear modulus, 2p, and its variation with deformation was

also determined directly from the curves shown in Figure 11. The

shear moduli were obta'ned from the initial slopes of the loading

curves, as well as from the slopes of the initial portions of the

unloading curves. Attempts were made to correlate the resulting

values of 2# against the plastic volumetric strain, the total

volumetric strain, the octahedral shear strain and the plastic

octahedral shear strain. The total volumetric strain and the plastic

volmetric strain provided poor correlation, while the octahedral shear

strain and the plastic octahedral shear strain led to reasonably good

correlations. Adopting the plastic octahedral shear strain, a linear

fit to the data points in Figure 12 led to the following expression

for 2# :
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2# 2# + m (4.8)
0 0

in which 2/o = 1.83 x 103 ksi and m 1.42 x 106 ksi.

By using Eq. (4.8), the following incremental expression for the

plastic octahedral shear strain 7p

d'r
d7P  d7 (4.9)

0 0 '2

and the solid curve in Figure 11, the dependence of r on 7P at the

reference pressure aR = 8 ksi was determined, and the result is

depicted in Figure 13.

At this point, it becomes necessary to determine the shear-volu-

metric coupling coefficient k and, for this purpose, we consider

Figure 14, which shows the manner in which the octahedral normal

strain Eo varies with the octahedral shear stress 'ro during shear at

several different constant hydrostatic pressures. In the absence of

contrary information, it will be assumed that volumetric changes which

take place during shear at constant pressure are completely irrever-

sible. On this basis, and using the results for ao = 8 kss depicted

in Figures 13 and 14, a plot of the plastic volumetric strain eP

versus the plastic octahedral shear strain 7P was generated, and this

is shown in Figure 15.
-

The model provides a theoretical expression for the dependence

of EP on 7P through Eq. (3.43), given earlier, if we note that
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p1

p 1 "

(4.10)

CD (x- 1)/(ak)

With these identifications, the dependence of eP on 7p is obtained for

a specified value of k, since the constant a is known in terms of k

through Eq. (3.42). In this manner, plots of ep versus 7P were

generated with the aid of Eq. (3.43) for a range of assumed values for

k, and the results are shown in Figure 15. From an inspection of this

figure, the curve corresponding to k = 1.5 appears to provide the best

overall description of the data; thus, we set

k = 1.5 (4.11)

in the model.

In Appendix C, the following expression is derived, relating 5s

and zs during shear at constant pressure, for the case in which a is

at the reference pressure oR and on the linear portion of the virgin

hydrostat:

= {5 11. 2a z logjaz 5 -1*2z ) (4.12)s = 2a sss.,

During shear at constant pressure, it can be shown that

P 7p (4.13)
5s 0 %

4..

4.,

4',,
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~which, when combined with Eq. (4.12), provides a relationship between

. "Io~~P and z s during shear at, constant, pressure for a prescribed value of

b~a. Adopting the value of k given in Eq. (4.11), the value of the.-

~constanta is then known, and the resulting expression given by Eqs.

(4.12) and (4.13) between 7P and zs  is as shown in Figure 16. Using ..

0

this result,c and the relationship between o and 7P given in Figure

n13 the dependence of rO on zs during shear at constant pressure can

Sbe constructed. The numerical method described in Section 3.2 ofyt
be utilized in conjunction with the ro versus zs relationship just

found to give M(zs) , where M is defined by Eq. (3.64). In this

manner, the result shown in Figure 17 was obtained. Using this in

conjunction with Eq. (3.69), the shear kernel function p(Zs) can be

found by differentiation of the M(zs) relationship. A two-term series

of decay exponentials of the form

2 -a z
p(zs) = > Are r (4.14)

r=1

was fit to the shear kernel by Prony's method; this led to the fol1

lowing values for the Ar and ar:

A 1.46 x 103 ksi , a -100

(4.15)

A 19.0 x 103 ksi a2  6,554.

4°'

a. Because the numerical inversion of Eq. (3.53) was only approximate
(see Figure 17), the p(z) so obtained was also approximate. As a
result, an adjustment in the value of a, to that listed in Eq.
(4.15) was made to provide a better description of the shear
behavior.
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Finally, on the basis of the failure data given by Stankow-

ski,( 30) the following expression for the function Fs was adopted for

use in the present study:

F = - (4.16a)
s~~ P'R

in which

7, = 2 ksi

fi = 0.5 (4.16b)
5

OR  8 ks i

This completes the specification of the endochronic concrete model.

4.2 INTERNAL CONSISTENCY OF MODEL, DATA AND FITTING PROCEDURE.

We return now to determine how well the plain concrete model

just specified can describe the data to which it was fit, namely, the

data from Tests 4-9 to 4-11 of Reference 17.' Such an exercise does

not, of course, constitute a proof-test of the model, but simply

provides a test of the internal consistency of the fitting procedure.

It should be remembered that plain concrete data exhibits significant

data scatter and, in comparing a model prediction against an indivi-

. A comparison between the measured and predicted hydrostatic
behavior was given earlier in Figure 15, and will not be repeated
here.
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dual test result, one cannot expect to obtain the same level of agree-

.4 ment as is found for example in metals. With plain concrete, one is

looking more for a model that captures the overall, general character-

istics of response.

To explore the ability of the model to describe the data from

Tests 4-9 to 4-11, the model was driven around the appropriate

prescribed stress paths for these tests, using a stress-driven

computer program based upon the explicit incremental numerical scheme

described in Appendix B. The results from these calculations are

depicted in Figures 18 to 20. As an inspection of these figures

reveals, the overall agreement between predictions and the data is

quite good, considering the uncertainty in the data discussed earlier.

The figures reveal that the main discrepancies lie in the unloading

behavior, with the model showing noticeably more curvature of the

unloading path -- and hence more hysteresis -- than the data.

Although no effort was made in the present study to refine the model

so that it would more closely describe the unloading behavior, such an

improvement is straightforward and will be accomplished in a future

, -study.
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(b) Octrahedral shear stress versus volumetric strain.

Figure 18. Measured and predicted responses to shear at a
fixed hydrostatic pressure of 4 ksi (Test 4-9). a
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SECTION 5

PROOF-TESTS OF MODEL OVER COMPLEX STRESS PATHS

In the preceding section, the endochronic constitutive model

deve loped in Section 3 was applied to the plain concrete data

presented in Reference 17, with the model parameters evaluated from a

small subset of the reported data. The ability of the resulting model

to accurately portray the data to which it was fit was also described.

The test program reported in Reference 17 consisted of six different

series of stress-controlled tests, each series being designed to

explore a particular facet of plain concrete behavior. In that which

fol lows, the model is proof-tested by examining its capability to

predict the measured response around a selected number of prescribed

complex stress paths from this test series. None of the stress path

tests considered in this section were used in fitting the model

parameters, and no optimization techniques were employed to achieve

the results presented below.

5.1 SERIES NO. 1.

This test series was designed to explore the response of plain

concrete to triaxial load cycles which do not exhibit stress

reversals. Each test was repeated once. The model was applied in the

present study to Test 1-1 from this series, for which the prescribed

load paths are shown in Figure 21. The loading consisted first of

cyclic hydrostatic loading up to 8 ksi, as shown in Figure 21(a), -

followed by cyclic deviatoric loading along the triaxial compression

path, as illustrated in Figure 21(b). The predicted and measured

response for this loading history are given in Figure 22. As this

figure reveals, the predicted and measured responses are in good

agreement, considering the data scatter which can be assessed by
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Figure 21. Stress paths for Test 1-1.
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comparing the results from Test 1-1 with those from the replicate test

given in Reference 17, i.e., Test No. 1-10. If the data curve in

Figure 22 was simply shifted to the right a small amount, the

agreement would be excellent. Such a shift appears to be justified on

the basis of the data scatter, since a comparison of the hydrostatic

compression curves in Figures 7 and 22 reveals that the measured

hydrostatic response in Figure 22 is stiffer than the data given in

Figure 7 to which the model was fit. Aside from this difference, the

qualitative features of the plain concrete behavior are obviously

captured very well by the model.

5.2 SERIES NO. 3.

Test Series No. 3 was designed to examine the behavior of plain

concrete to circular stress paths in the deviatoric plane. The stress

paths consisted of monotonic hydrostatic loading, then proportional

deviatoric loading along the triaxial compression path, and finally a

circular load path in the deviatoric plane. In the present study, the

load paths corresponding to Tests 3-3 and 3-4, as well as Tests 3-10,

3-11 and 3-12 were considered; Tests 3-3 and 3-4 had the same load

path, as was also the case for Tests 3-10 to 3-12.

Figure 23 gives the responses predicted by the model to the

circular stressed paths, as well as the corresponding data. Again,

the overall agreement between predictions and measurements is

considered good for plain concrete. If the data curve in Figure 23(b)

were translated vertically upward by a sufficient amount, the results

would show very good agreement. However, such a translation does not

appear to be justified if one considers the data from Tests 3-10 and

3-11, which had load paths identical to Test 3-12. Thus, the model

appears to be too soft during the proportional deviatoric leg of Test

3-12.
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Figure 23. Response of plain concrete to circular stress -
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The results shown in Figure 23 are also of interest from another

point of view. Recently, the new endochronic theory -- which forms the

basis of the model developed herein -- was criticized by Bazant,

Krizek and Shieh(29 ) as being unable to correctly describe the

response of geomaterials, such as concrete, to what has been termed

"loading-to-the-side". Without providing supporting experimental

evidence, they claim that the model is unrealistic because it predicts

purely elastic response for infinitesimal loading-to-the-side. To the

authors' knowledge, no data are currently available for plain concrete

which define its response to loading-to-the-side. Moreover, while the

models' response to infinitesimal loading-to-the-side is purely

elastic, its response to finite loading-to-the-side is inelastic. In

Tests 3-3 and 3-12, the plain concrete was subjected to loading-to-

the-side, at least at the beginning of the circular stress path and
i% Spossibly when the path crossed the other two principal stress axes. ,

In view of the reasonably good agreement between the data and the

predictions for these paths, the criticisms by Bazant, -et al.( 29)

appear to be premature and unjustified. For further elaboration on

this point, see the discussion by Read.(
3 4)

*.4.

5.3 SERIES NO. 4.

This series consisted of the largest number of tests, namely 22.

In general, the tests were designed to explore several aspects of

axisymmetric stress paths, i.e., paths for which at least two of the

principal stresses were equal; this included (a) development of shear

strain due to hydrostatic pressure increments in the presence of prior

deviatoric stress, (b) dependence of response on stress path, and

(c) behavior under nonproportional deviatoric stress paths. In that
which follows, eight selected stress paths from Series No. 4 which

Us
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shed light on each of the above aspects of plain concrete behavior are

considered.

Test 4-1 and its replicate, Test 4-2, provide insight into the

development of shear strain during hydrostatic pressure increments in

the presence of non-vanishing shear stress, i.e., shear-volumetric

coupling. These tests followed the stress path described by the

insert in Figure 24. This figure also shows the response to the

prescribed stress path predicted by the present model, as well as the

responses measured in the tests. The section of the path from (b) to

(c) is of primary interest, since this is where the shear-volumetric

coupling occurs under purely hydrostatic increments. As the results

given in the figure indicate, the agreement between the model and the

two sets of data is excellent.

Next, we consider Tests 4-9, 4-11, 4-13, 4-15, 4-16 and 4-17.

This group of tests was designed to explore the effect, if any, of

stress path dependence on plain concrete behavior. Except for Test 4-

13, the remaining tests consist of stress paths that, while quite

different from one another, nevertheless have at some point a common

stress state, namely, o = 8 ksi and o = 4 ksi. Thus, by comparing

the strains measured at this stress state in the various tests allows

an assessment of the magnitude of the stress path effect.

Table I summarizes the principal strains in the various tests

that were measured in Reference 17 at the common stress state.
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Table 1. Summary of the Principal Strains Measured

at the Common Stress State of ° =8 ksi

and T = 4 ksi.
0 0

Principal Strains x 103

Test Number Ex E z

4-09 5.10 4.18 15.89

4-11 2.86 3.13 11.15

4-15 1.64 1.72 12.72

4-16 10.25 10.00 13.27

4-17 1.19 1.33 12.78

As an inspection of this table reveals, there is substantial depen--

dence of the deformation at the common stress state on the particular

path taken to get to that state. The major principal strain, Ez,

varies from 11.15 x 10- 3 to 15.89 x 10-3 , while the other two strains

show much greater variation, ranging from about 1 x 10- 3 to 10 X 10- 3

The ability of the present model to describe the measured

responses for Tests 4-9, 4-11, 4-13, 4-15, 4-16 and 4-17 is ilius-

trated in Figures 25 to 32. Unfortunately, none of the tests in this

group were repeated, so we have no insight into the level of data

scatter. In view of the usual scatter found in concrete data,however,

the agreement between the model predictions and the data is considered

excellent; this agreement demonstrates the capability of the present

model to account for the influence of the stress path on the resulting

response.
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The final axisymmetric test to be considered here is Test 4-20.

The prescribed ;tress path for this test consisted of nonproportional

stress deviation, and is shown in Figure 33. The predicted response

*to this prescribed stress path, as well as the corresponding data, are

also shown in Figure 33. Although some discrepancy between the model

and the data is evident in the late stages of the stress history, the

agreement during most of the stress history is excellent. Therefore,

the overall agreement is considered good, considering the usual degree

of scatter in concrete data; this test was also not repeated

experimentally.

-: 5.4 SERIES NO. 5.

The purpose of the Series 5 tests was to investigate the

response of plain concrete to unsymmetric stress paths in a given

deviatoric plane. In the present study, attention was focussed on

Tests 5-1 to 5-3 from this series, with emphasis on the behavior

during the stress excursions in the deviatoric plane corresponding to

4 ksi. Details of the prescribed stress paths for these tests

are depicted in Figure 34(a). The measured and predicted deviatoric

strain paths, corresponding to those portions of the stress paths in

the deviatoric plane for Tests 5-1 to 5-3, are shown in Figure 34.

Also included in this figure for comparative purposes are corres-

ponding predictions made by Stankowski,( 30) using the Stankowski-

Gerstle model.( 18) From an inspection of this figure, one observes

that the point on the ez axis at which the nonproportional portion of

the path begins for the present model is consistently higher in all

-,hree tests than the data. It appears, therefore, that the model is

0 too soft for proportional excursions from the hydrostatic axis out

along the triaxial compression axis, confirming the same observation

made earlier in conjunction with the circular stress paths in Series

3. Despite these small differences, however, Figure 34 shows that the

present model does an excellent job of pre4;cting the
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measured responses in the deviatoric plane, and is clearly superior to

the Stankowski-Gerstle model. (18)

5.5 SERIES NO. 6.

The tests in this series were designed to investigate the

response of plain concrete to piecewise uniaxial load steps which

formed closed loops. The loading was applied in a manner such that

all possible uniaxial and equi-biaxial stress states of a given level

were reached. Attention in the present study was focussed on Test 6-

2, for which the prescribed stress history was as shown in Figure

35(a). The peak values of the principal stresses for this path were

3.6 ksi.

The response predicted by the present model to the prescribed

stress path is illustrated in Figure 35(b), where the corresponding

data are also given. Considering the typical scatter in concrete

data, the agreement between the model prediction and the data is again

considered excellent.
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SECTION 6

CONCLUSIONS

An advanced nonlinear constitutive model has been developed, on

the basis of the new endochronic plasticity theory, to describe the

general behavior of plain concrete over the range of stresses where

significant cracking does not occur. The model is isotropic, rate-

independent and thermodynamically sound. It satisfies Drucker's

Stability Postulate, Prager's Continuity Condition and the Second Law.

The model exhibits shear-volumetric coupling in the form of shear

compaction, dependence of shear behavior on hydrostatic pressure,

hysteresis and stress-path dependence. The wide variety of proof-

tests to which the model was subjected clearly demonstrate that, over

the intended range of application, the present endochronic model

provides an excellent description of the behavior of plain concrete.

Our future research activities will be devoted to extending the

capabilities of the present model to a wider range of behavior; this
will include focus on the following tasks:

Modify the unloading-reloading shear behavior

through the addition o' shear hardening to more

closely portray experimental data.

Extend model to cover the range of behavior over

which significant cracking occurs.

* Introduce strain-rate dependence.
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Develop an optimal (computationally efficient)

numerical scheme for treating the model in large

finite element computer codes.

To meet these goals, appropriate and quality experimental data will be

required, which may necessitate additional advancements in testing '

methods (5

9'®
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APPENDIX A

A PROOF OF EQUATION (3.50)

The purpose of this appendix is to show that

* rj
Zr p(z z') CZ - U. (A.1)z., 1 z" -M

.0.

where

z

c > 0, M(z) = p(z')dz" (A.2a,b)

and

,M = M(W) < * (A.3)

Here, p(z) is a positive monotonically decreasing function of z in the

domain 0 < z < 00 and

l p(z) = 0 
(A.4a)

Therefore, M(z) is positive, monotonically increasing and convex in

the sense that

dm1 A . b
M(z) - M(z a) <a dzz (A.4b)t

dza
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Thus in view of Eqs. (A.2b) and (A.4)

M(z) - M(z - a) < ap(z - a) (A.4c)

It follows from Eqs. (A.4a) and (A.4c) that

limM(z) - M(z - a)) = 0 (A.5)

' Z40

To prove the validity of Eq. (A.1) we first prove the following

theorem.

Theorem: Let R(z) be a positive monotonically decreasing function

bounded from above and below in the sense that

0 < R(z) <. R(o) (A.6)

and

l imR(z) = 0 (A.7)

The operational definition of Eq. (A.7) is the following: Given an e

however small there exists a z ( a such that ,

R(z) < e (A. 8a)

Then the following is true:

*zlim
lintop(z - z')R(z')dz' = 0 (A.8b)

go
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Proof:

The integral I on the lefthand side of Eq. (A.8b) may be written in

the form

z z

p0

I = p(z - z')R(z')dz" + p(z - z')R(z')dz' (A.9)

where 0 z < z. Because of the properties of R(z), it follows that 1*.

z0

~z - z')R(z')dz' < R(o) p(z - z')dz" (A.10)

Or, in view of Eq. (A.2b),

Ip(z - z-)R(z')dz ( R(o) {M(z) . U~z - zoj) (A.11)

Jo

Hence, as a result of Eq. (A.5)

'a rz

ia JP(z - z')R(z')dz = 0 (A.12)

Also, following the same reasoning as above,

z
,p(z z')R(z')dz" < R(z 0 )M(z " zo) (A.13)

o 'a
zo

9.1
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Hance:

zo

Now because of the properties of R(z), i.e., Eqs. (A.8a) and

(A.Sb), the righthand side of Eq. (A.14) can be made as small as one

pleases, in the sense that given an e however small there exists a z0

such that '

M R(zo) < e (A.15)

Since zo may be any large finite number, M.R(z0 ) may differ from zero

by an amount which can be made as small as one pleases. In view,

therefore, of Eqs. (A.12) and (A.15), Eq. (A.8) is true and the

theorem is proved.

Returning to Eq. (A.1), we note that proving this equation is

tantamount to showing that 0

li z1 - 1cz 1/2 dz' =0 (A.16)

Hence, since the function 1 - cz'/(1 cz') has the properties of

R(z), Eq. (A.16) and hence Eq. (A.1) are proved.

VI
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APPENDIX B

NUMERICAL SCHEME FOR TREATING THE PRESENT CONSTITUTIVE "-:

MODEL UNDER STRESS-DRIVEN CONDITIONS

The numerical scheme used to generate the model predictions

presented in this report is described below. The approach consists of

an explicit incremental Euler scheme developed specifically for numer-

ically treating the governing system of equations for the model under

stress-driven conditions. Due to its explicit nature, care must be
taken to insure that the prescribed increments are sufficiently small
that the computed behavior is independent of the increment size.

Otherwise, the scheme is straightforward, efficient and easy to imple-

ment. *

The basic system of equations which govern the behavior of the

model are as follows:

sde p  "'-'
p{zs z') -, dz" (B.1)

'04

de
p

= Iz: - dz" (B.2)

dA = 2# de - d(p 8 (B.3)

. his numerical scheme is due to Dr. H. Murakami, a consultant to S-
CUBED and Assistant Professor, University of California, San Diego.

g3 4'
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do = K(de - dep) (8.4) I

I I
dz 2 = I~dep1 12  k k2(de p)2  (B .5)

dz s = dz/F (B.6)

dzH = dz/(kFH) (B.7)

Al

Following the approach described in Section 2, the kernel functions

p(zs) and O(ZH) are represented by exponential series of the form:

-o z ,
P = Ae r s (B.8)

r

ZB.ePiZH (8.9)

It then follows that the expressions for s and a given by Eqs. (B.1)

and (B.2) can be alternately written as

RJr (8.10)
r n

= P. (B.11)

where Qr and Pi satisfy the following ordinary differential equations:
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A

d2r e (13.12)
dz r r = r d s64

dP. dep B 3
dzH Pii idH

From Eqs. (B.10) to (B.13), we can write:

dj A dfp dz5  (B.14)

do dJ - P dzH (B.15)

where

AZA r
r

r

(B.16) ,

= B.

P Z Pi Pi

Introducing Eqs. (B.6) and (B.7) into Eqs. (6.14) and (B.15) leads to

the expressions:

P.
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dep 1 do . P dzj(.8

which when combined with Eq. (13.5), leads to the following quadratic

expression for dz:

a dz2 *bdz +c 0 (B.19)

9.-,4where

2pR
a ~ F S2 FH

r~ed~ kP 1
b-21 * F do (B.20)

s H

Thus, for prescribed values of ds and do, dz is given by the equation:

dz + -4a (13.12)

.1 2a 2a

and by using Eqs. (8.17) and (13,18), de and dE can then be found,

after which de and df are determined from Eqs. (B.3) and (8.4). 4
Therefore, this approach allows the strain increments df to be found

* for prescribed increments in the stress do.
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APPENDIX C

DERIVATION OF EQUATION (4.12)

When a is on the linear portion of the hydrostatic stress-strain

curve, it follows, from Eq. (3.37), that

a k K 0 I * TH~d (C.1) :2

'S'S This expression may be combined with Eq. (3.36), i.e., 4-

2 d'd 2 +*2 2 d 2
=dz* d H (C.2)

to give the following result:

dz{I - Ko(11 . = d 5s  (C.3)

. •

where ', denotes the reference pressure on the linear portion of the

hydrostat.

We may decompose 5H into two terms and write:

K (C.4)s @-
Ko(1 + P5H) = 'o (1 + N')i + Ko# (.) .

where 5H is the value of 5H due solely to hydrostatic compression,

while 5 is the component due strictly to shear. For shear at a :1,

it follows that

%



K K s (C.5

(C.6)

Upon subst itn Eq.ow fromnt Eq. (C.), eotanthaest

k kK r) S (C.7)
1 [ P 5 dz

so that

Let

y Z z (C. 9)

x ~1* 0 5 H (C.10)

-. 5z
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where z' denotes the value of z at which shearing begins. Then Eq.

(C.8) can be written%

dy = falx dx (C.11) 4

Integrating yields

y (x (C.12)

where we have set

a = K0(C.13)

From Eqs. (C.6) and (C.10), it follows thatN

dz x

Using Eq. (C.13), we can rewrite Eq. (3.11) in the form: !

dz X dx (C .15)
a

since dy =dz. Eqs. (C.14) and (C.15) may now be combined to give

d5 x ~/ dx (C .16)s a

which, upon integration, leads to the result:

x 11 ~ (C.17)
S zi'

99r
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But from (C.12), we have

x-1=2ay
2 (C .18)

%x 2 =1+2ay

IV

which, in view of Eq. (C.9), may be rewritten in the form:

x 2  1 = 2a z C9

x 1 =1 2a z

since for F =1, we have- S -

4. 'N

dz = dz
S

and

z = z - Z" (C.20)

Upon combining Eqs. (C.17) and (C.19),. the following expression is

obtained:

I

a,%

*which is Eq. (4.12) given in the main text.6

' - , 2a, .-.log . . .. . . .10
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