

US Army Corps of Engineers

The Hydrologic Engineering Center

.

Papers in this series have resulted from technical activities of the Hydrologic Engineering Center. Versions of some of these have been published in technical journals or in conference proceedings. The purpose of this series is to make the information available for use in the Center's training program and for distribution within the Corps of Engineers.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

210 Acc 1 • + er/ 00204 1.1 THEEL

NEW DEVELOPMENTS IN HEC PROGRAMS FOR FLOOD CONTROL

Vernon Bonner, M. ASCE^{*}

Since the Hydrologic Engineering Center (HEC) started in 1964, it has been developing and distributing computer programs. The evolution has been toward packaged programs that perform a variety of computation options, often with choice of methods. Two examples are the flood runoff a computation options of the HEC-1 Flood Hydrograph Package (HEC, 1981) and the variety of capabilities in the HEC-2 Water Surface Profile Program (HEC, 1982). The increased speed and memory available on the microcomputer makes these programs practical to use in this environment. Now that these batch programs have been converted for use on micros, what new developments are underway and what might be the next direction for new computer programs? The Center's current program development for flood control, with an emphasis on water surface profile computation, is presented.

Introduction

The HEC-2 computer program was developed at HEC by Bill S. Eichert (Eichert, 1968). The present version is the product of development involving several HEC engineers. The basic computational capabilities for calculating water surface profiles remain essentially unchanged; however, supplemental capabilities have been added over the years.

In response to a high demand from both the Corps and private engineering sectors, the HEC implemented HEC-2 for MS-DOS compatible microcomputers (PC) in 1984. The edit program for HEC-2 data (EDIT2) was also implemented at The PC program distribution started in the that time. of that year. The programs were modified to meet fall Fortran 77 standards. The PC versions maintained all the capabilities of the original mainframe version of the programs, except for internal trace and comment information.

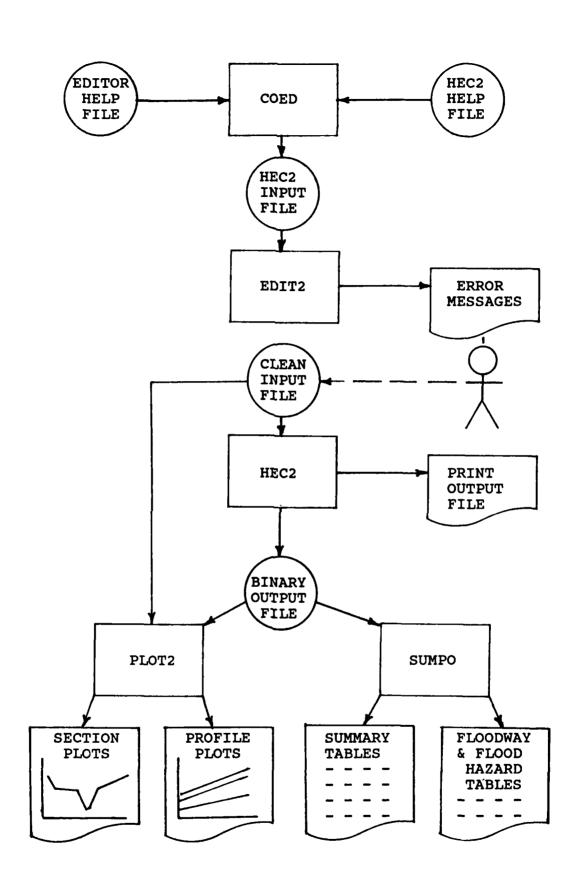
For the past two years, HEC program development has focussed on providing a more convenient set of programs

*Chief, Training Division, Hydrologic Engineering Center, 609 Second Street, Davis, CA 95616.

Presented at the ASCE Conference, Water Forum '86, August 1986, Long Beach, CA.

for PC use. The package of programs described here reflects our attempt to bring together all the necessary tools to accomplish a complete computation and display of water surface profiles on a personal computer. Refinements to the programs, to take advantage of the unique capabilities of the PC, will continue as funds are available.

Overview of the HEC-2 Package


The basic steps for computing water surface profiles include: (1) develop a data file representing the physical reach under study, (2) check the data file for proper format and data errors, (3) compute water surface profiles, (4) review and evaluate computed results, and (5) produce required displays of computed results. The computational process is illustrated in Figure 1. The programs provided with the HEC-2 package provide the necessary tools to accomplish all the basic steps on a PC.

Almost any computer file text editor can be used to create and modify an input data file for the HEC-2 program. The Corps' editor, COED (HEC,1982), has been develped with some features specifically designed around the HEC format for computer program input. COED will take data in freeformat and place the input data in the format expected for HEC-2. It also has a HELP file for documenting available commands and a file for HEC-2 input variables.

Checking an HEC-2 input data file is facilitated with the EDIT2 computer program. The program provides tests for proper input sequence, format, and data ranges. Running the input data file with EDIT2 is recommended to assist in locating input errors. Also, the program can convert a "Free-Format" input file to the "Fixed-Format" required by the HEC-2 program.

The HEC-2 program operates with the input data file to compute the water surface profiles. The optional capabilities, provided in the program, can also be used to solve many flood plain hydraulic problems. The PC version of the program provides the full range of capabilities available on the mainframe version of the program.

Once the profile computations are complete, the job of reviewing the results begins. Besides the HEC-2 printed output file, computer program SUMPO can provide summary tables of results and computer program PLOT2 can provide graphical displays. Both programs operate interactively with an unformatted file from HEC-2. SUMPO provides the summary table capability of HEC-2. The PLOT2 program duplicates most of the capabilities of the Hydraulics Graphics Package (HEC, 1980), which produces HEC-2 cross

E LEASE A

10000

Figure 1. HEC-2 Computational Process

3

section and profile plots in interactive or batch modes on the Corps' mainframe computers.

-Program Support '

The primary documentation for the HEC-2 program is the User's Manual (HEC,1982). The manual provides a complete description of the HEC-2 program capabilities, theoretical basis for computations, program input and program output. There is no user's manual for the EDIT2, SUMPO, or PLOT2 computer programs. Those programs are described in a new Description and User Guidance Manual (Bonner,1986) for the program package. COED is treated as a separate program. It has an internal HELP file and a new user instruction manual is being developed to reflect its new capabilities.

There are several university extension short courses on the use of the HEC-2 program. A one-week course provides a good overview of the basic program capabilities. For those unable to attend a course, there are video tapes of most lectures given in HEC training courses on HEC-2. The tapes are distributed by a contractor, Modern Talking Picture Service, St. Petersburg, FL.

Computer Program, Video Tape, and Publications Catalogs are available from the HEC at no charge. To obtain the Catalogs, which provide ordering information and prices, write:

> The Hydrologic Engineering Center Water Resources Support Center 609 Second Street Davis, CA 95616-4687

Computer Equipment Requirements '

The following equipment is required to run the HEC-2 package of programs on MS DOS microcomputers.

DOS 2.0 (or later) Operation System 512K-byte (or more) RAM Memory Two 360K-byte floppy-disk drives

OR,

One 360K-byte floppy-disk drive and one 10M-byte (or larger) hard-disk drive

The graphic displays from PLOT2 can be directed to the screen or an HP 7475 pen plotter. Either of the following graphics cards (or their equivalent) are required:

IBM Color Graphics Adapter

OR,

IBM Enhanced Color Graphics Adapter

The programs will take advantage of the Intel 8087 math coprocessor, if present in your computer. This coprocessor greatly speeds up program run time and is recommended, but it is not necessary for program accuracy.

New Input/Output Programs

COED is a text editor that has been in use within the Corps on mainframe computers. The program has been converted to run on a PC and modified to include a full screen edit capability. With its HELP file, the program can provide onscreen documentation. It also has several features to greatly facilitate the data input process for HEC programs.

COED, in the input mode, will take "Free-Format" input and place it into the standard format for HEC programs. There is no need to count columns in order to get the data into the right location. To assist the program user with input requirements, the variables for any card type are displayed on the screen by entering the card identifier. Additionally, an on-line variable description can be obtained for any of the variables. Initially, only the input data descriptions for HEC-1 and HEC-2 are available, but any program data description set can be added.

Besides the HEC-2 batch print file, the program user can interactively obtain summary tables and plots of computed profile results and cross section data using the input data file and a binary output file from HEC-2. The program SUMPO is a stand-alone version of the summary output routines in HEC-2. Menus have been developed and linked with SUMPO to provide a convenient interactive output display program. All HEC-2 summary table options are available in SUMPO.

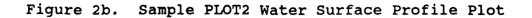
There are two SUMPO operation menus; one to create summary tables and one to select predefined tables. The CREATE menu provides the list of output variables available. The cursor can be used to move through the list to select the variables to be printed in the summary table. The user can also save a defined variable list to use again. The SELECT menu provides the available predefined tables in HEC-2 and the option to recall a saved variable list.

PLOT2 is a menu driven program that provides cross section and profile plots to the screen or an HP pen plotter. The MAIN menu allows the user to select menu colors and to call the PROFILE or CROSS SECTION menus for those two plot options. For both, there are options to provide titles, axis labels, and a plotting grid. Also, input and output files are defined. The input file for profile plots is the HEC-2 binary output file (TAPE95), while the input file for cross section plots is the input data file for the HEC-2 run. Figure 2 provides an example cross section and profile plot.

For profile plots, any variable can be plotted; the default is water surface elevation. Options allow you to add the invert profile, landmarks, and cross section locations and labels. Cross section plots can be developed from the input data file for a single section or a range of sections. For cross sections, there is optional plotting of water surface elevation, bridge data, n-values, encroachments, and channel modifications.

Current Program Developments.

The development of HEC programs for the PC are proceeding in two basic areas: more user-oriented, interactive input and modular program structure for a more flexible building block program construction. A recent input example is INFIVE, an Interactive Input Preparation Program for HEC-5 HEC-5 is a batch-processing, (HEC,1985). multiplepurpose, reservoir simulation program with many input options (HEC, 1982). INFIVE and the companion CKHEC5 Input Data Checking Program for HEC5 (HEC, 1985) provide a more convenient user interface with the HEC-5 program. Both input programs are operational on the PC and the HEC-5 program is being converted for PC execution.


New interactive input routines for HEC-1 and HEC-2 will be simular to INFIVE, in that they will generate traditional card-image input data files. However, the input routines will likely become the input structure for new versions of those programs. The planned new input structure will be more of a menu driven, file based system which will allow the basic information to be stored, retrieved, and assembled to do a variety of computations. Data checking For data, like will be provided as data are entered. cross sections, plots of the information will be available directly from the input as it is defined. Concerns about card identifiers, variable names, field locations, and input data sequence should become a thing of the past.

The next major change to HEC-2 will be the addition of the Federal Highway bridge loss computations for low flow (Shearman, et al,1984). This may be the last major modification to the existing HEC-2 program. A new structure of the operating program has been designed to provide functional subprogram building blocks. The new design will more easily allow added capabilities like divided flow analysis, mixed subcritical and supercritical flow, and sediment transport.

MERAMEC RIVER TELEGRAPH ROAD CROSS-SECTION NO. 2043.000 ELEVATION FEET STATION FEET Figure 2a. Sample PLOT2 Cross Section Plot MERAMEC RIVER 100 YEAR AND 10 YEAR PROFILES ELEVATION RIVER MILE

ļ

Ó

Flood damage computations are now available on the PC with several HEC programs. The integrated package of programs, referred to as the Flood Damage Analysis Package (HEC, 1986), is being converted and the data storage and linking system is being developed for the PC. When completed, the package will link the results from simulation programs (e.g., HEC-1, HEC-2, and HEC-5) with the flood damage computation programs to provide flood damage analysis in automatic, file transfer system. Flood damage an assessments of existing and proposed alternative flood plain development measures will be possible, and conveniently accomplished, on a PC.

References

1. Bonner, Vernon R., 1986, "Computing Water Surface Profiles with HEC-2 on a PC, Description and User Guidance," Draft Training Document, HEC, Davis, CA.

2. Eichert, Bill S., 1968, "Survey of Programs for Water Surface Profiles," Technical Paper 11, HEC, Davis, CA.

3. Hydrologic Engineering Center, 1980, "Hydraulics Graphics Package," Users Manual, HEC, Davis, CA.

4. Hydrologic Engineering Center, 1981, "HEC-1, Flood Hydrograph Package," Users Manual, HEC, Davis, CA.

5. Hydrologic Engineering Center, 1982, "HEC-5 Simulation of Flood Control and Conservation Systems," Users Manual, HEC, Davis, CA.

6. Hydrologic Engineering Center, 1982, "COED (Corps Editor) Interactive Editor," User Document, HEC, Davis, CA.

7. Hydrologic Engineering Center, 1982, "HEC-2, Water Surface Profiles," Users Manual, HEC, Davis, CA.

8. Hydrologic Engineering Center, 1985, "INFIVE Interactive Input Preparation Program for HEC-5," User Manual, HEC, Davis, CA.

9. Hydrologic Engineering Center, 1985, "CKHEC5 Input Data Checking Program For HEC-5," User Manual, HEC, Davis, CA.

10. Hydrologic Engineering Center, 1986, "Flood Damage Analysis Package," Description, User Guidance and Example, Training Document No. 21, HEC, Davis, CA.

11. Shearman, J.O., et al, 1984, "HY-7 Bridge Waterway Analysis Model," Preliminary, U.S.G.S., Reston, VA.

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER	2. GOVT ACCESSION NO.	
Technical Paper No. 112	AD-HITZ	473
. TITLE (and Subilite) New Developments in HEC Programs fo	or Flood Control	S TYPE OF REPORT & PERIOD COVERED
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(6)
Vernon Bonner		
9. PERFORMING ORGANIZATION NAME AND ADDRESS	· · · · · · · · · · · · · · · · · · ·	10. PROGRAM ELEMENT, PROJECT, TASK
U.S. Army Corps of Engineers		AREA & WORK UNIT NUMBERS
The Hydrologic Engineering Center		
609 Second St., Davis, CA 95616		
1. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
		August 1986
		8
4. MONITORING AGENCY NAME & ADDRESS(II differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		Unclassified
		15a. DECLASSIFICATION DOWNGRADING SCHEDULE
7. DISTRIBUTION STATEMENT (of the abatract entered	in Block 20, 11 different fro	n Report)
18. SUPPLEMENTARY NOTES		
Presented at the American Society c 1986, Long Beach, California	of Civil Engineer	s Water Forum '86, 4-6 August
19. KEY WORDS (Continue on reverse side if necessary and	nd identify by block number)	
Numerical Models, One-Dimensional S Graphics.	Steady Flow, Oper	Channel Flow, Computer
20. ABSTRACT (Continue en reverse side if necessary an		
Since the Hydrologic Engineering Ce	nter (HEC) start	ed in 1964, it has been
Since the Hydrologic Engineering Ce developing and distributing compute backaged programs that perform a va	nter (HEC) start r programs. The riety of computa	evolution has been toward tion options, often with
Since the Hydrologic Engineering Ce developing and distributing compute backaged programs that perform a va a choice of methods. Two examples the HEC-1 Flood Hydrograph Package In the HEC-2 Water Surface Profile	nter (HEC) start r programs. The riety of computa are the flood run (HEC, 1981) and Program (HEC, 198	evolution has been toward tion options, often with noff computation options of the variety of capabilities 32). The increased speed and
Since the Hydrologic Engineering Ce developing and distributing compute backaged programs that perform a va a choice of methods. Two examples the HEC-1 Flood Hydrograph Package In the HEC-2 Water Surface Profile memory available on the microcomput	nter (HEC) start r programs. The riety of computa are the flood run (HEC, 1981) and Program (HEC, 199 er makes these p	evolution has been toward tion options, often with noff computation options of the variety of capabilities 32). The increased speed and
Since the Hydrologic Engineering Ce developing and distributing compute backaged programs that perform a va a choice of methods. Two examples the HEC-1 Flood Hydrograph Package in the HEC-2 Water Surface Profile memory available on the microcomput	enter (HEC) start r programs. The riety of computa- are the flood run (HEC, 1981) and Program (HEC, 198 er makes these pr atch programs have	evolution has been toward tion options, often with hoff computation options of the variety of capabilities 32). The increased speed and rograms practical to use in we been converted for use on

144

55.54

20.36

 \mathbf{N}

ð

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

micros, what new developments are underway and what might be the next direction for new computer programs? The Center's current program development for flood control, with an emphasis on water surface profile computation, is presented.

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

ECORITY CERSIFICATION OF THIS TROD

TECHNICAL PAPERS (TP)

2002002

200000000

Technical papers are written by the staff of the HEC, sometimes in collaboration with persons from other organizations, for presentation at various conferences, meetings, seminars and other professional gatherings.

This listing includes publications starting in 1978.

HEC <u>NUMBER</u>	TITLE	HEC PRICE	NTIS <u>NUMBER</u>
		\$2.00 Eac	<u>h</u>
TP-52	Potential Use of Digital Computer Ground Water Models, D. L. Gundlach, Apr 78, 38 pp.		AD-A106 251
TP-53	Development of Generalized Free Surface Flow Models Using Finite Element Techniques, D. M. Gee and R. C. MacArthur, Jul 78, 21 pp.		AD-A106 252
TP-54	Adjustment of Peak Discharge Rates for Urbanization, D. L. Gundlach, Sep 78, 7 pp.		AD-A106 253
TP-55	The Development and Servicing of Spatial Data Management Techniques in the Corps of Engineers, R. P. Webb and D. W. Davis, Jul 78, 26 pp.		AD-A106 254
TP-56	Experiences of the Hydrologic Engineering Center in Maintaining Widely Used Hydrologic and Water Resource Computer Models, B. S. Eichert, Nov 78, 16 pp.		AD-A106 255
TP-57	Flood Damage Assessments Using Spatial Data Management Techniques, D. W. Dav and R. P. Webb, May 78, 27 pp.	is	AD-A106 256
TP-58	A Model for Evaluating Runoff-Quality in Metropolitan Master Planning, L. A. Roesner, H. M. Nichandros, R. P. Shubinski, A. D. Feldman, J. W. Abbott, and A. O. Friedland, Apr 72, 81 pp.		AD-A106 257

HEC <u>NUMBER</u>	TITLE	HEC <u>Price</u>	NTIS <u>NUMBER</u>
		\$2.00 Eac	<u>h</u>
TP-59	Testing of Several Runoff Models on an Urban Watershed, J. Abbott, Oct 78, 53 pp.		AD-A106 258
TP-60	Operational Simulation of a Reservoir System with Pumped Storage, G. F. McMahon, V. R. Bonner and B. S. Bichert, Feb 79, 32 pp.		AD-A106 259
TP-61	Technical Factors in Small Hydropower Planning, D. W. Davis, Feb 79, 35 pp.		AD-A109 757
TP-62	Flood Hydrograph and Peak Flow Frequency Analysis, A. D. Feldman, Mar 79 21 pp.		AD-A109 758
TP-63	HEC Contribution to Reservoir System Operation, B. S. Eichert and V. R. Bonner, Aug 79, 28 pp.		AD-A109 759
TP-64	Determining Peak-Discharge Frequencies in an Urbanizing Watershed: A Case Study SF. Daly and J. C. Peters, Jul 79, 1		AD-A109 760
TP-65	Feasibility Analysis in Small Hydropower Planning, D. W. Davis and B. W. Smith, Aug 79, 20 pp.		AD-A109 761
TP-66	Reservoir Storage Determination by Computer Simulation of Flood Control and Conservation Systems, B. S. Eichert, Oct 79, 10 pp.		AD-A109 762
TP-67	Hydrologic Land Use Classification Using LANDSAT, R. J. Cermak, A. D. Feldman and R. P. Webb, Oct 79, 26 pp.		AD-A109 763
TP-68	Interactive Nonstructural Flood-Control Plannng, D. T. Ford, Jun 80, 12 pp.		AD-A109 764

HEC <u>NUMBER</u>	<u>TITLE</u>	HEC <u>Price</u>	NTI: <u>NUMBI</u>	
		\$2.00 Eac	<u>h</u>	
TP-69	Critical Water Surface by Minimum Specific Energy Using the Parabolic Method, B. S. Eichert, 1969, 15 pp.		AD-A951	599
TP-70	Corps of Engineers Experience with Automatic Calibration of a Precipitation-Runoff Model, D. T. Ford E. C. Morris, and A. D. Feldman, May 80, 12 pp.	1,	AD-A109	765
TP-71	Determination of Land Use from Satellite Imagery for Input to Hydrologic Models R. P. Webb, R. Cermak, and A. D. Feldr Apr 80, 18 pp.		AD-A109	766
TP-72	Application of the Finite Element Method to Vertically Stratified Hydrodynamic Flo and Water Quality, R. C. MacArthur and W. R. Norton, May 80, 12 pp.	0 W	AD-A109	767
TP-73	Flood Mitigation Planning Using HEC-SAM, D. W. Davis, Jun 80, 17 pp.		AD-A109	756
TP-74	Hydrographs by Single Linear Reservoir Model, J. T. Pederson, J. C. Peters, and O. J. Helweg, May 80, 17 pp.		AD-A109	768
TP-75	HEC Activities in Reservoir Analysis, V. R. Bonner, Jun 80, 10 pp.		AD-A109	769
TP-76	Institutional Support of Water Resource Models, J. C. Peters, May 80, 23 pp.		AD-A109	770
TP-77	Investigation of Soil Conservation Service Urban Hydrology Techniques, D. G. Altman, W. H. Espey, Jr. and A. D. Feldman, May 80, 14 pp.		AD-A109	771
TP-78	Potential for Increasing the Output of Existing Hydroelectric Plants, D. W. Davis and J. J. Buckley, Jun 81, 20 pp.		AD-A109	772

3

STALL MARAGE

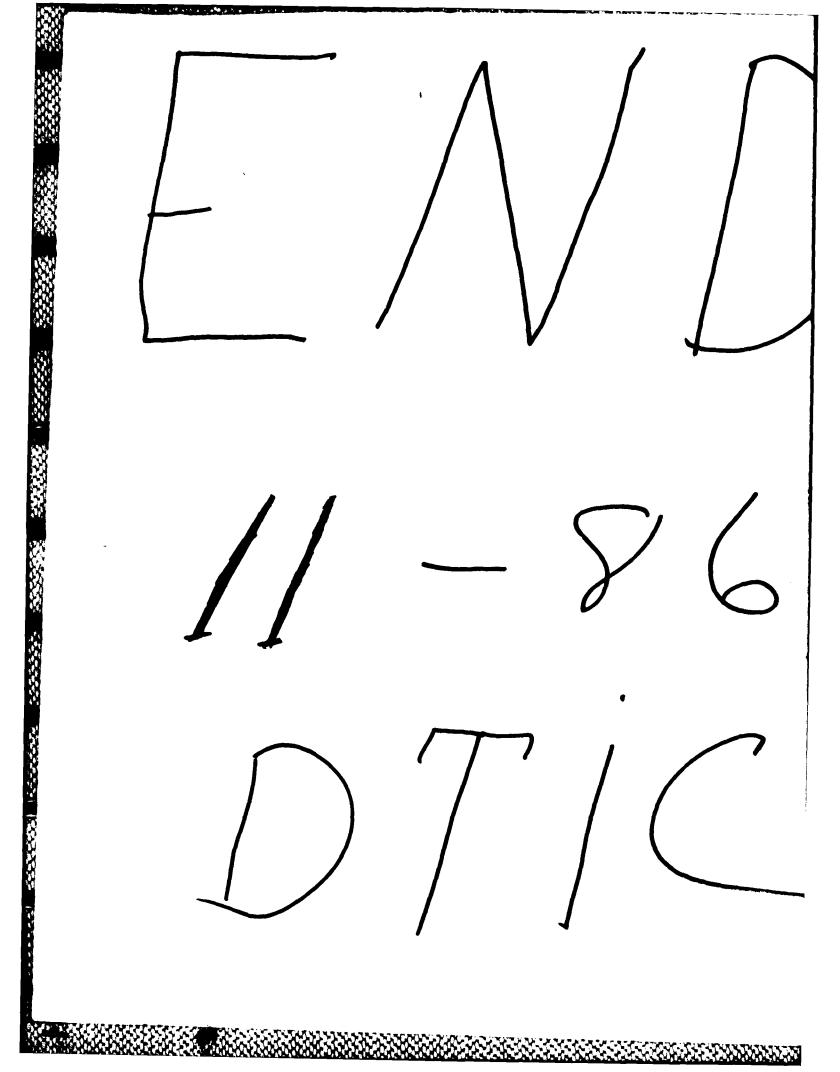
HEC NUMBER	TITLE	HEC <u>Price</u>	NTIS <u>NUMBER</u>
		\$2.00 Eac	<u>h</u>
TP-79	Potential Energy and Capacity Gains from Flood Control Storage Reallocation at Existing U. S. Hydropower Reservoirs, B. S. Eichert and V. R. Bonner, Jun 81, 18 pp.		AD-A109 787
TP-80	Use of Non-Sequential Techniques in the Analysis of Power Potential at Storag Projects, G. M. Franc, Jun 81, 18 pp.	e	AD-A109 788
TP-81	Data Management Systems for Water Resource Planning, D. W. Davis, Aug 81, 12 pp.	S	AD-A114 650
TP-82	The New HEC-1 Flood Hydrograph Package, A. Feldman, P. B. Ely and D. M. Goldman, May 81, 28 pp.	D.	AD-A114 360
TP-83	River and Reservoir Systems Water Quality Modeling Capability, R. G. Willey, Apr 82, 15 pp.		AD-A114 192
TP-84	Generalized Real-Time Flood Control System Model, B. S. Eichert and A. F. Pabst, Apr 82, 18 pp.		AD-A114 359
TP-85	Operation Policy Analysis: Sam Rayburn Reservoir, D. T. Ford, R. Garland and C. Sullivan, Oct 81, 16 pp.		AD-A123 526
TP-86	Training the Practitioner: The Hydrologic Engineering Center Program, W. K. Johnson, Oct 81, 20 pp.		AD-A123 568
T P-87	Documentation Needs for Water Resources Models, W. K. Johnson, Aug 82, 16 pp.		AD-A123 558
TP-88	Reservoir System Regulation for Water Quality Control, R.G. Willey, Mar 83, 18 pp.		AD-A130 829
TP-89	A Software System to Aid in Making Real-Ti Water Control Decisions, A. F. Pabst and J. C. Peters, Sep 83, 17 pp.	me	AD-A138 616

(i U

2011225

Contraction and the second second

1000000


de la sec

HEC <u>NUMBER</u>	TITLE	HE PRI		R
		<u>\$2.00</u>	Each	
TP-90	Calibration, Verification and Application of a Two-Dimensional Flow Model, D. M. Gee, Sep 83, 6 pp.		AD-A135 6	668
TP-91	HEC Software Development and Support, B. S. Eichert, Nov 83, 12 pp.		AD-A139 0	009
TP-92	Hydrologic Engineering Center Planning Models D. T. Ford and D. W. Davis, Dec 83, 17 pp.		AD-A139 0	010
TP-93	Flood Routing Through a Flat, Complex Floodplain Using A One-Dimensional Unsteady Flow Computer Program, J. C. Peters, Dec 83, 8 pp.		AD-A139 0	011
TP-94	Dredged-Material Disposal Management Model, D. T. Ford, Jan 84, 18 pp.		AD-A139 0	800
TP-95	Inflitration and Soil Moisture Redistributi in HEC-1, A. D. Feldman, Jan 84,	on	AD-A141 6	526
TP-96	The Hydrologic Engineering Center Experience in Nonstructural Planning, W. K. Johns and D. W. Davis, Feb 84, 7 pp.		AD-A141 8	860
TP-97	Prediction of the Effects of a Flood Contro Project on a Meandering Stream, D. M. Gee, Mar 84, 12 pp.	1	AD-A141 9	51
TP-98	Evolution in Computer Programs Causes Evolu in Training Needs: The Hydrologic Engineering Center Experience, V. R. E Jul 84, 20 pp.			01
TP-99	Reservoir System Analysis for Water Quality J. H. Duke, D. J. Smith and R. G. Will Aug 84, 27 pp.		AD-A145 6	80

CON STREET

1.1.200.00

HEC NUMBER	TITLE	HEC <u>Price</u>	NTIS <u>NUMBER</u>
		\$2.00 Eac	: <u>h</u>
TP-100	Probable Maximum Flood Estimation - Easter United States, P. B. Ely and J. C. Pe Jun 84, 5 pp.		AD-A146 536
TP-101	Use of Computer Program HEC-5 For Water Supply Analysis, R. J. Hayes and Bill S. Eichert, Aug 84, 7 pp.		AD-A146 535
TP-102	Role of Calibration in the Application of HEC-6, D. Michael Gee, Dec 84, 19 pp.		AD-A149 269
T P-103	Engineering and Economic Considerations in Formulating Nonstructural Plans, M. W. Burnham, Jan 85, 16 pp.		A 150 154
TP-104	Modeling Water Resources Systems for Water Quality, R. G. Willey, D. J. Smith and J. H. Duke, Feb 85, 10 pp.		AD-A154 288
TP-105	Use of a Two-Dimensional Flow Model to Quantify Aquatic Habitat, D. M. Gee and D. B. Wilcox, Apr 85, 10 pp.		AD-A154 287
TP-106	Flood-Runoff Forecasting with HEClF, J. C. Peters and P. B. Ely, May 85, 7 pp.		AD-A154 286
TP-107	Dredged-Material Disposal System Capacity Expansion, D. T. Ford, Aug 85, 23 pp.		
TP-108	Role of Small Computers in Two-Dimensional Flow Modeling, D. M. Gee, Oct 85, 6 p		AD-A159 666
TP-109	One-Dimensional Model For Mud Flows, D. R. Schamber and R. C. MacArthur, Oct 85, 6 pp.		AD-A159 921
TP-110	Subdivision Froude Number, David H. Schoellhamer, John C. Peters and Bruce E. Larock, Oct 85, 6 pp.	5,	AD-A160 486
TP-111	HEC-5Q: System Water Quality Modeling, R. G. Willey, Jan 86, 10 pp.		

