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ABSTRACT

An analytical study, using the STAGSC-! computer code, was conducted
on a graphite/epoxy (AS4/3501) composite cylindrical panel acting under
compressive loading considering cutouts positioned at critical locations
within the panels surface area. The study also investigated the material
degradation effects of temperature and moisture on the collapse load of
these cylindrical panels. Two temperatures (30 and 250 °F), in both a
symmetric and unsymmetric moisture condition, were investigated. The
overall material degradation characteristics were investigated by
degrading the Ez and Giz moduli of the 1individual plies.

It was found that the effects of moisture and temperature (material
degradation effects) can greatly reduce the collapse load of the cutout
panel. A 15X decrease in the collapse load occurred at the saturated
moisture conditions and elevated temperatures. The material degradation
effects were found to produce the same results no matter where the cutout
was located. The panel with cutouts was less effected, at the saturated
moisture condition and elevated temperature, then that of a panel with no
cutout.

It was also found that the collapse load, as expected, was dependent
upon the location of the cutout within the panel. There was a decrease in
the collapse load by as much as 26.2% when the cutout was moved from the
center of the panel to a position closer to the side edge. There was
very little change, 1%, when the cutout was positioned closer to the
loading edge of the panel. Ply layup was also of great importance. There
was a 21.3% increase or decrease in the collapse load 1f a certain ply
layup (0/%45/90)s, (symmetrically exchanging of the second and third

plies) was chosen for the cutout positioned near the side supports.
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SO I. INTRODUCTION
o
nd
%é Background
PYN
- Large, lightweight shell structures are used extensively in atircraft
‘i: for both strength and stability. These shell structures are greatly
) "
3%: influenced by either reinforced or nonreinforced cutouts and material
. degradation conditions. Due to these influences and with the recent
93
& '\.
-%ﬁ advances, a vast number of these shells are made from composite
>
e
:a: materials. The composite materials are desired because of the high
F%A strength to weight ratio when compared to conventional materials.
3§ 4 ': . B
) Therefore, from a practical point of view, there 1s a need for further
<9
:f research into composite shell structures and the effect of cutouts and
0 ‘E} material degradation conditions on the stability of the shell structures.
N
f;j Very few references can be found dealing with buckling of composite
lf“ panels and plates under axial compression with cutouts. In contrast,
'4~ numerous studies have been carried out on isotropic plates and
»
Y
,}: cylindrical panels without cutouts [1-6£]. These studies centered around
[
N various boundary conditions and their affect on the buckling load. If
e one considered the area of axially loaded isotropic panels with cutouts
=
..f.-
o [7-11], mainly, centered circular cutouts were analyzed numerically by
na
Lyl
M finite difference techniques to determine the buckling and bifurcation
¥¢“ loads.
f:: As mentioned earlier, composite panels have become an important part
hY
(J-'
L%, of aerospace structures due to their excellent strength to weight ratio.
A N Composite cylindrical panels without cutouts have been studied [12-1¢],
.‘I '-'.n Y
P
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but very little work can be found dealing with composite panels with
cutouts. Janisse [17) and Lee [13] are two authors who have studied the
problem of cutouts in composite cylindrical panels. Janisse [17] found
that the collapse characteristics of composite cylindrical panels are
dependent on ply layup and size of the cutout. Lee [13], in a follow-up
investigation, studied the effects of the cutout aspect ratio and
concluded that as the surface area of the cutout increased the buckling
load decreased with the effects of nonlinearity becoming more pronounced.
These are the only studies which deal specifically with composite
cylindrical panels containing cutouts. This shows that very little is
known about the effect of cutouts and further study into this area is
needed.

Temperature and moisture, the main emphasis of an environmental
study, is another important area of interest in composite shell
structures. Snead [19], while examining the effects of moisture and
temperature on the instability of cylindrical composite panels, concluded
that there was a definite degradation of the bifurcation load due to
elevated temperatures and moisture exposure. Various other authors
[20-23] have looked at the environmental effects and have come to the
same conclusion. There 1s, however, a lack of research into how elevated
temperature and moisture exposure (material degradation effects) relates
to the collapse of a composite cylindrical panel with a cutout.

With a need for faster, lighter aircraft and the increasing interest
in space, a better understanding of composite cylindrical shells with
cutouts is needed. All of the previous cutout studies that were found

dealt with centrally located cutouts and standard conditions. This
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COROIRINRI ol \ \2"2“'&“{":". > }&-{' 'y

N T U R T WU W W W IN IR FYIYLUYTNER




thesis addresses the issue of eccentrically located cutouts in composite
cylindrical panels, and the effect of material degradation due to

temperature and moisture on the collapse load of an axially loaded panel.

Objective

e

- The major purpose of this thesis is to study the effects of material
degradation on panels with cutouts. To observe this effect, one first
has to establish the critical positions of specific size cutouts within
the panel. In order to do this, the effect of a cutout located at
different positions within the composite cylindrical panel subjected to
an axial loading will be studied analytically using the Structural

GE} Analysis of General Shells (STAGSC-1) computer program. Then secondly,
material degradation effects due to temperature and moisture at the
critical cutout locations will be analyzed. Upon completion, this thesis
will allow for a better understanding of axially loaded composite

cylindrical shells with cutouts under less then perfect conditions.
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Approach

Due to the presence of the geometric discontinuity (cutout), a
nonlinear analysis was used. This nonlinear analysis is part of the
STAGSC-1 finite element computer program [26-27], developed by Lockheed,

qﬁ& which incorporates a modified Newton-Raphson iteration technique along

e R R s S D R
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with large displacement theory and moderate rotations to study the
collapse of cylindrical panels with cutouts. The cylindrical shell
geometry used by the STAGSC-! computer program is shown in Fig 1.1.

Eccentrically located cutouts were investigated by positioning the
cutout at four different locations as shown in Fig. 1.2. Both a 2" x 2"
cutout (2.73% of panels total area) and a 4" x 4" cutout (11.1%) were
examined along with the effect of interchanging ply positions.

Material degradation effects on a cutout located at different
positions within the panel were also investigated. Cutout locations A
and C, Fig. 1.2, were chosen for this analysis. For the cylindrical
panel, a symmetric and a unsymmetric moisture concentration condition was
used. Two time units were chosen for each of the moisture conditions; a
steady state distribution and a near zero moisture absorptisn. These
time units represent the two extremes of moisture conditions. Finally,
two different temperatures were chosen, 80 °F (300 °K) and 250 °F (394
°K). The runs produced by the combination of the fore-mentioned
conditions represents a near standard zero condition (room temperature

and near zero moisture) and that of a high temperature and fully

saturated moisture condition.
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Classical Lamination Theory

An in-depth understanding of composite laminae behavior is needed if
one is going to analyze composite structures. Presented here, 1s a brief
overview of the basic principles. The reader should refer to Ref. [24]
and [25] for the in-depth development of these relations and a better
understanding of Classical Lamination Theory.

For a lamina of orthotropic material, the plane stress constitutive

relations in principal material coordinates are

o1 Q11 Qiz 0 €;

e 0z | = ]|Qi2 Q22 0 € (1)
Tyr2 -0 0 Qss Y12

and

Qi1 = Ei/(1- Y1z v21)
iz = vizEz/(1l- viz v21) = va1E1/(1- 112 v21) (2)
Uz22 = Ez./(l‘ Viz V21)
dee = BGi2

where Q1j's are the reduced stiffnesses in terms of the engineering
constants and €1 and €z are normal strains and Yiz is the shear strain
for the lamina principle axes as shown in Fig. 2.1. Poisson's ratio,

Vs, and shear modulus, Giz, for the 1-2 plane are defined as
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3 Viz: -( €/ €1)
Var = -( €,/ €3) (3)
Giz = ( Tiz2/ Y12)
So far, orthotropic materials have been dealt with in their
principal material directions. Expanding these relationships to cover
any coordinate system, with the fiber axis oriented at some angle 6,
(F1g. 2.1), the stresses become
Ox Q11 Q12 Qe €
Ty : 12 Q22 Q2¢ €, (4]
Txy U1s Q2¢ Qss Yiy
where
@ @11 = Or1cos® @ + 2(Q12 + 2Qes)sin? @ cos? @ + G22s5in? @
91z = (@11 + Q22 - 4066)sin2 @ cos?2 @ + Q1z(sin®* @ + cos* @ )
022 = Q115in? @ + 2(012 + 20se¢)sin? @ cos? @ + Qz2z2c05% 6
Q1e = (@211 - Qrz - 20ss)sin @ cos3 @ + (Q12 - Q22 + 2Q6s¢)
sin® @ cos @ (5)
Q2e = (Q11 - Q12 - 20se)sin® @ cos @ + (Giz - G2z + 2dee)
sin @ cos3 6
Uee = (W11 + @22 - 2012 - 206s)Sin? @ co0s? @ + dee(sin? @ + cos® @)
The above equations are derived for individual lamina and 1n order
to define the stress and strain variations through the thickness (Fig.
2.2), each k" layer of the multilavered laminate can be written as
i
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'zi- By extending the stress-strain relationships to the multilayered laminate
18
S . . R . .
.'“ two assumptions are made. First, the laminate is presumed to consist of
) perfectly bonded laminae. These laminae are infinitesimally thin with
bt
;i? the displacements continuous across the laminae so that no lamina can
e ¢
:{: slip relative to another. Secondly, the Kirchhoff-Love hypothesis
applies. This hypothesis s.ates that normals to the mid-surface remain
-
jﬁ plane and normal to that surface after bending.
e The middle surface strain-displacement relations for a cylindrical
; laminate with moderately large rotations of tangents to the panel
o,
4 reference are given by Sanders’ kinematic relations without :nitial
b
e imperfections as
20 e sye . - 2 2
e x T u°,x - u,x t+ 1/2 ¢x + 1/2 ¢‘
o
)"\,' y° T Ve,y T v,y ¥ N/R t 1/2 ¢3 - 1/2 ¢2 (7)
g xy® T Vix t U,y + Px oy
S
'H\
s
y,“ where u, v, and w denote the axial, circumferential, and radial
'is components of the mid-surface displacement. The ¢@’s are the rotation
33 components and in terms of displacement are
<.
o)
1"'
A ¥E
“ . ¢x S TWLx
"
QN @, = -u.y + V/R (8)
3,._ y = W,y V/ 1
S5
[
whY @ - 1/2(v,x - u,y)
ks
4, ¢
!.‘
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- :ﬁ: where R 1s the radius of curvature of the panel at the mid-surface.

j The middle surface curvatures are then written as

K.

: Ke = @x,x

[}

1 Ky = @yv.y (%)

¥ 2 Kxy =2 Kyx = @y,x + Px,y + @/R

'

',

. Using the Kirchhoff-Love hypothesis with the known middle surface
strains and curvatures, the strain-curvature relationship for a laminate
becomes

€ €°x Ky

l ‘ €y = ey )}t o2 Ky (10)

. @ VYxy Yoy 2 Kxy

:

4 If the strain-curvature relationship, (Eqn. 10), which represents

; the strain varliation through the thickness, is substituted into the

E stress-strain relations, (Eqn. 6), the stress for any k*P layer can be

; expressed 1n terms of the middle surface strains and curvatures as

‘o

‘ Oy i1 Grz  Qie €°x Kx

4 oy = {2z Q22 Q26 €y + 2 Ky (11)

, Yiv| « D1 Nz2e Qss | « Yoxy 2 Kxy

; By 1ntegrating the stresses of each laminate layer, the resultant

R forces and moments acting on a laminate become for example
A
12
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witer < . and Mx are the force and moment per unit length of the cross

Sorar

s

vy

section of the laminate as shown in Fig. 2.3.
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- If all the forces and moments for the N-layered laminate are collected,

the result is

dz  (13)
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where the zx and zx-1

Looking closely at Egn. 13,

recalling the fact that the stiffness matrix,

the lamina vields the following

Nx N Qi1 Q12 Qie

Ny ¢= E @12 Q22 WQzs

Nxy k=1 Q1e Q26 Qss Ik-1
Mx N Q11 Q12 e

M, ?: E Q12 @22 Qzs

Mxy k-1 316 Q26 Qes k-1
Recalling that e€°x, €°y, v°xv,

2z but are middle surface values so

signs and rewritten as

Nx A1l A1z Me €0y
Ny z Alz A22 Azs €%y
Nxy Alte A2¢ Ace YO xy

B T )

NN

BN
[ AN

. b
N
! '

Ik

Zk

K;(,

they

14

N
zdz - E
k-1 2

layers are defined in Fig. 2.2.

and substituting in Egn.

€O

yo

can

Bi1

Bi2

Cadlae o ST a- aliav s o Ra s e Aok A AL el Sl St Bad ek Seth Aad Bad At Sol wed hod - Bk \".'u-x'v\.'v\-_vvvw,1v:vt'\‘_‘sv\.\—\\\",\'\T

zdz {13)

J

k-1

11 while also

[Q:5), is constant within
X Tk Kx
y dz + Ky 1dz
xy Zk-1 Kxy

(14)
Zk Ky

zdz + Ky 72dz
y Ik -1 Kxy
and «kxy are not functions of
be removed from the summation
Biz Bis K x
B2z Bazs Ky (15)
B2s Bee Kxy




G abS ahi-ald ahl R ake *o Bh - ARt bt il e St hactundiaii A Gt e S 0 2 ol sad 2R A58 el o 4 4 H,"

": Mx Bi1 Biz Bie €9 % Di1 D12z Dis K x
My : Biz Bzz Bz €y + Diz D22 Dzs Ky (1S)
Mxy Bie¢ B2s Bss Youy Die Dzs Dss Kxy
where
N —
Aiy = Z(Uia)k {(Zk =~ 2x-1)
k=1
N —
Bis = 1/2 D (@i (2% - z%k-1) (16)
k=1
N
D1y = 1/3 Z(leJ)k (23« - 23%k-1)

The Aij’s are called the extensional stiffnesses, the Bij’s are called

(s

the coupling stiffnesses, and the Dij’s are called the bending

stiffnesses.
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AN STAGSC-1 Theory

*

% The Structural Analysis of General Shells (STAGSC-1) is a computer
?: program developed by Lockheed Palo Alto Research Laboratory [26-27]. The
% program is an energy based finite element program that uses a

N

Newton-Raphson nonlinear equation solver. STAGSC-1 is a general purpose,

s

thin shell, structural analysis program used to analyze general shells
under various static, thermal, and mechanical loadings. This nomnlinear

analysis, used to study the collapse of shells with cutouts, allows for

o - g

the determination of the critical load.

4 According to the energy method, a system’s total potential energy is
L
b used to derive its equilibrium equations from which stability can be
k. determined by the solution to an eigenvalue problem. A shell’s total
z 0 potential energy is equal to its internal strain energy minus the product
« of the external forces and their respective deflections.
o
.
. An element’s strain energy is given by [13]:
"‘
A U = 1/2 f {€}T [N] {€}o da (17)
¥
. area
K/
ﬁ where [ € i
9
b €,
K (€] 2 €xy (18)
. K,
3
KY
“ - n K
R K
)
!
K 16
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- The expressions for the mid-surface strains were presented in Ean’s. 7
- and 9 and [N] was given in Ean’'s. 15 and l6. In general, the strain
o
fg vector [ €]o is a function of the mid-surface displacements u,v,w, the
I
LJ first order derivatives of u,v,w and the second derivative of w.
;3 Therefore, we can let a vector {d] represent this functional dependence
o9 of [ €]o on the displacement by

S

® .

- [uv Uyxy Uyy, V, Vyx,y, Vyy, W, Wyx, W,y, Wyxx, W,xy, vaY] (20)

‘-l
]
o By using vector [d], Bauld [13] carried out the integration of Egn. 17
') and found that the expression for strain energy is comprised of three
R/
\% distinct parts. The first part is quadratic in displacements, the second
o
W cubic in displacements, and the third quartic in displacements. 1In a
‘j finite element analysis, vector [d] is represented by an element's shape
3
-sj functions and nodal degrees of freedom. Thus, the strain energy can be
-
o,
N expressed in terms of an element’s degrees of freedom. An element’'s
»5 external potential enmergy 1s obtained by using a similar finite element
)
Y
'L. analysis on its external forces. The strain energy and external
Ny
KN potential energy are combined to give the total system's potential
1
e RRAN energy, ¥, and can be written in the form given by Bauld [13] as:
* ., ‘.-
L)
[}
)
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- O.QL
L) S
i )
N vV = (1/2 Ars + 1/6 Nles + 1/12 N2rs)Qrgs - Rsqs (21}
*.

ry

v,

& Ars 15 the system’s linear stiffness matrix with no dependence on the

. displacement vector, g. Nirs and N2rs are matrices with linear and

‘ﬁ quadratic dependence, respectively, on displacement. Rs is the surface
|

e force vector.

; The principle of total potential energy states that the equilibrium
3
E} configuration of a conservative mechanical system corresponds to a
£

¥
ph stationary value of the total potential energy of the system. Therefore,
f\ taking the first variation of Eqn. 21 and setting it equal to zero, we
N
;: have a set of nonlinear, algebraic equations of the form
:
Xy a (Ars + 1/2 Nlrs + 1/3 N2rs)gs - Rs = O (22)
4‘
K
Ly Loss of stability (collapse), results when the second variation of the
system's total potential energy ceases to be positive definite, or

ol
W

]

o DET (Ars + Nlrs + N2rs) = 0 (23)
{3 Equatlion 23 1is also used by STAGSC-1 to solve the eigenvalue problem of
o
ﬁ‘ the form
&

A (Al + A[B] + AZ[C] =0 (24)
[ o
5
:3 jE: where (B] and [C] represent nonlinear stiffness matrices in unknown

N
" 18

L 2
)

T AT

A0yt AR R W A S S S '.},\', B A A A A A E Rt SR LT RS - SN A A g Y S S LR Sy
Lo AP ASSP AP AT IERS I B : , : - v > Y >, 3
KRR, SRR S R GRS S CR LA S e R N S S A Erd e e e




~“ %A
¢ it

3

Ly

iy By
Lol

=
)F

o T i Sy
-';‘I.'?-‘t’

-

WRR!  SaraAn!

AP

%Y

displacements and products of displacements, respectively. For a linear
analysis the matrix C is neglected and A is the proportionality constant
of a convenient load level used in the equilibrium equations (Eqn’s. 22)
to solve for the unknown displacements. The quantities [A] and [B] or
equivalently, Ars and Nlrs are calculated once based on the equilibrium
displacements. Finally, the load proportionality parameter, A, is
incremented until a sign change on the left side of Eqn. 23 occurs,

signifying bifurcation.
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MATERIAL DEGRADATION INFLUENCES ON COMPOSITES

Extreme temperature, near or beyond the polymer’'s glass transition
temperature, and moisture (water absorbed by the polymer resin) can cause
severe degradation of the superlor properties of the composites. The
degradation factors which influence the resin properties are increased
with temperature, with the absorption by the polymeric resin material of
a swelling agent such as water vapor, and with the sudden expansion of
absorbed gases in the resin [21]. The composite fibers, on the other
hand, which are typically graphite, are not affected by either molsture
or temperature. Therefore, the resin which is influenced by temperature ‘
and moisture, plays the most important part in the changing of the
composite’s properties.

Temperature and moisture act on the polymeric resin in two ways.
The first is that moisture absorption makes the resin swell, causing a
change 1in the residual stresses of the composite and possibly micro-crack
formation. This matrix swelling and the rapid heating eventually leads
to surface cracks. Secondly, moisture absorbed in the resin results in
plasticization of the resin, the result of the lowering of the glass

transition temperature, Tg. The glass transition temperature 1s actually

a temperature range below which the resin i1s essentially brittle and |
above which 1t behaves rubbery. As the resin changes, one observes a 1
jecrease in the tensile properties and a reduction in the shear moduli of ;

the composite as well as a slight increase in the longitudinal elastic

moduli [23].
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! The primary mechanism for

absorption of moisture 1s through

diffusion. In this analysis, Fick's second law of diffusion [23], which

under certain circuastances has been shown to correlate with test data

[23], was used. Fick developed this equation in 1855 by drawing an

analogy between heat conduction in a solid and diffusion through the
equation can be written as

solid. Fick's

3c/ 3t = K ( 32C/ 3z?) (25)

where C is a measure of moisture of the laminate as a function of time
and distance through the thickness, z equals the space coordinate
measured normal to the surface, K the diffusion constant,
C is expressed as a ratio of the gain in the weight of the laminate due
to the absorption of moisture divided by the original weight of the
laminate.

25)

The solution to this partial differential equation (Eqgn. with

boundary and initial conditions pertinent to the problem is shown below.

[97]

This series solution in a slightly different form 1s found in Sec. 4.3.

of Ref.[23]

C(z,t) = Ci + (Ca - C1)*(z/h) + (26)
(=]
(z/7) :E: (C2 cos n7 - Ci1)/n) *¥(sin (nmz/h))x(exp (-Kn? 72t)/h2)+
[« <]
{4Ca/ 7 ) :E: (1/2m+1)*(sin {(2m+1) mz)/h)*x(exp {(-K(2m+1)Z w2t)/h2)
m=0
s
21
:x’-ﬁﬂﬁ?ﬁh&f?iﬁf"ﬁfb'vaiﬁﬂ?{;?“vnﬂckcf-f‘"q N *w-'fv "

and t the time.
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where C 1s as previously defined. Co the initial, uniform moisture

concentration through the thickness of the laminate, C: and Cz the
moisture concentration boundary conditions at the inside (-2) and the
outside (+z) surfaces of the laminate, respectively, and h the thickness
of the laminate.

This series solution, which is a combinatlon of a steady state
moisture effect and a transient moisture distribution, allows for
the determination of the through the thickness moisture distribution.
Because of a series solution, accuracy is dependent on the number of
terms that are used. Snead [19] wrote a computer program which
calculates the solution to the series approximation using the first 14
terms of the approximation, and thus the mechanical properties of each
ply can be determined.

There are limitations on the application of Fick's equation. The
series solution of Fick’s equation assumes that the moisture diffusion
coefficient X is constant (for this study K equals 0.52537 x 10-1¢
in2/sec [24]). In reality, the diffusion coefficient is a function of
the laminates temperature and moisture conc>ntration and a series
solution to the Fick eguation using this functional approach can be found
in Ref. [29]. However, for composite material studies, the diffusion
process may be assumed to take place at a constant temperature. This 13
true because moisture diffusion is a relatively slow process with many
months and years required before the molsture concentration distribution
through the laminate achieves equilibrium. Thus, X 1s considered to be a
constant as i1s usually done when the Fick equation is 1incorporated into

composite material studies [19,24].
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e X Fick's equation to model moisture diffusion 1n composites 1s also
. affected by rapid temperature changes. Rapid thermal heating of the
}ﬁ: laminate near the materials’ Ty has been found to increase the rate of
D moisture weight gain above that predicted by Fick’s equation [23]. This
W increase is believed to be due to the development of surface crazing and
O
0
fﬂ: cracking brought about by the rapid heating and resin swelling. With the
S*‘ restrictions of no rapid heating, no surface crazing or cracking, and

assuming K to be constant, Fick’'s equation gives a good initial

i

approximation of the moisture concentration distribution through a

composite laminate [24].
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o III. FINITE ELEMENT MODELLING
-
4
‘_ Panel Properties
. For the finite element analysis, a graphite epoxy composite panel
N~
. that i1s 12 inches long, a circumferential length of 12 inches, and a
I radius of curvature of 12 inches was modeled. The panel’s dimensions and
R material properties are shown in Fig. 3.1. The panel consists of eight
4
k 0.005 inch plies for a total thickness of 0.04 inches. Two different
K
k> symmetric ply orientations were examined, (0/+45/-45/90/90/-45/+45/0)
‘ referred to as (0/+45/-45/90)s and (0/-45/+45/90)s. All the panels uwere
iﬁ' loaded along the top edge which was clamped with the u displacement free.
¥ The vertical edges of the panel had u and v displacements (x and y
h ‘3. direction displacements, respectively) and rotation about the x axis, Ru,
T! free. The bottom of the panel was clamped with no free degrees of
!
§
% freedom (DOF).
&
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DIMENSIONS AND MATERIAL PROPERTIES

MATERIAL: GRAPHITE-EPOXY
RADIUS: R=12"
LENGTH: L=12"
NUMBER OF PLIES: 8
ORIENTATION OF PLIES, §: (0/45/-45/90),

~ (0/-45/+45/90),
THICKNESS: 8 PLIES AT 0.005" = 0.04"
ELASTIC MODULI: E, =18850 ksi, E,=1413.8 ksi
SHEAR MODULUS: G=855 ksi
POISSON'S RATIO: 1,,=0.3
x.v. 2: STRUCTURAL COORDINATES
u, v, w: DISPLACEMENTS
R, R, R, ROTATIONS

Fig. 3.1 Panel Notation and Material Properties
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Element Selection

For the finite element analysis, the element selected is a
quadrilateral plate element referred to as the QUAF 411 in the STAGSC-1
documentation [26]. The QUAF 411 consists of three translational
displacements, two in-plane rotations and two independent normal
rotations at each corner node, plus tangential displacements at each of
the four midside nodes for a total of 32 DOF. QUAF 411, shown in Fig.
3.2, was developed to remove the displacement incompatibilities which
exist when flat shell elements do not lie in the same plane. The
in-plane shape functions are represented by cubic polynomials and if the
edge displacements are to be compatible, the transverse displacement
shape functions must be of the same order. This is accomplished by the
use of wo normal rotations at each corner node and tangential
displacements at mid-side nodes. The difference between these two
rotations yields a shear strain at each corner node which is introduced
as an extra degree of freedom. The shape functions for the u and v
displacements within the QUAF 411 element are cubic polynomials parallel
to the edge and quadratic perpendicular to the edge. Also, the bending
shape functions are cubic in both directions.

This thesis requires a nonlinear collapse analysis to be carried out
by the STAGSC-1 computer program and the QUAF 411 element was the best
avallable element to use [26]. The drawback to the QUAF 411 element is

that there 1s no transition element in the STAGSC-1 library so grid

selection becomes very important.




R A

Ny
i

ey,

o] PR

R
YT, T

R .
\-
NOY R

YN Qo
; " ,,A& t‘.,\ Al

F.e 2
ey
Wil e, l‘\.l 'r'*

rJ

- n ‘ N .
PRI S e S el “A
SR S SRS SRV LR s ol

Ouadwla‘.e';e‘. 4!, Plete Eieme "

27




rd

. .

': {&i Grid Sizing
"E Grid selection is a trade-off between cost and accuracy. Lee [18]

.; pointed out that the elements should be as close to an aspect ratio

. (axial dimension divided by circumferential dimension) of unity as can

i possibly be achieved. Elements with an aspect ratio of 0.5 should be no
o closer than at least two inches from the cutout and elements with an

y aspect ratio of 2 should be no closer than at least one and cne-half

;j inches from the cutout considering cutout areas of up to 112 of the
'; panels surface. These important parameters were used and an element mesh
: was constructed. The mesh used in this paper was refined around the

)]

;f cutout to obtain better accuracy.

$E ] The refined mesh that was chosen for the analysis was compared to

‘ @ the 17 x 19 grid of Lee [18] for a centrally located 2" x 2" cutout. The
? major difference between the two mesh models is located in the vicinity

: of the cutouts reentrant corners. The mesh used herein is 30 finer in

i these areas. Shown in Table 3.1 are the results of the comparison of the

17 x 17 grid of Lee with the refined 17 x 20 grid used in this analvysis.

a As the table shows, the 17 x 20 grid gives excellent results. Therefore,
{: since the grid refinement chosen compares favorably, it was used for the
é' cutout and material degradation analysis.
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Mesh Refinement Results for a 2" x 2" Cutout

(Note- a different set of material properties

was used to match the published results)

Published results [18]

17 x 19 grid

2321 Active DOF

o0

26 incremental steps

.1 lbs/in collapse load

Refined Grid

17 x 20 grid
2556 Actilve DOF
20%.7 lbs/in collapse load

24 incremental steps

0.3% difference
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AT IV. DISCUSSION AND RESULTS
by
Ax) The main study area of this thesis is the material degradation
M
;;: effects considering cutout location. Thus, in order to establish the
: critical characteristics of the effect that a true geometric imperfection
o
t (cutout) has on a composite panel, a study of the effect of the
ﬁﬁ discontinuity location in the panel has been carried out. The cutouts
: consisted of a 2" x 2" cutout which removed 2.73% of the panels total
ﬁ& surface area and the 4" x 4" cutout which removed 11.1% of the total
,?' area. The different ply layups, different size cutouts and the cutout
-
?"
f’ locations studied are shown in Table 4.1. The reader must recognize that
V.
29 . . . o
X2, the results presented within this thesis are based on a finite element
‘0‘::.i
;4 study and no attempt has been made to compare the results with
43 C experimental values.
o
8 The first cutout considered was located in the middle of the panel,
-
N
‘%; cutout location A (Fig. 1.2). A collapse analysis was completed an two
L\; symmetric ply orientations, (0/+45/-45/90)s and (0/-45/+45/90)s (collapse
5
4
p ; is considered the point in which the load can no longer increase with
.
b increased displacement). The different orientations had no effect on the
;f\ collapse load of 199.4 lbs/in. However, there was a difference 1n the
&g
N
é? radial displacement contours as shown 1in Figs. 4.1 and 4.2. As can be
h’
Wy seen in Fig. 4.1, at the final load level (collapse load), one can see
g the loss of symmetry and the formation of a trough of radial displacement
-
SAS
N that runs from the upper left of the panel to the lower right. In
~j“ looking at Fig. 4.2, (for the (0/-45/+45/90)s orientation) the trough of
“ﬂo S radial displacement runs from the upper right
e e
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X Table 4.1: Ply Layup, Cutout Size, and Cutout Location
4t,'

! Ply Layup Cutout Size (inches) Cutout Location (Fig. 1.2)
-

. (0/+45/-45/90) s 2 x 2 4 x 4 A c
K.

v 0 (0/-45/+45/90) s 2 x 2 4 x 4 A C
3 (0/+45/-45/90) s 2 x 2 B D
¢

¢ (0/-45/+45/90) s 2 x 2 D

!
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CONTOUR LEVELS ARE IN 10ths OF MAXIMUM DISPLACEMENTS

Le)
:j::: Fig. 4.1 Radial Displacement Contour Plot for 2° x 2° Cutout at
i Collapse Load of 199.4 ibs/in (0/+45/-45/90)s, Cutout A
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; Fig. 4.2 Radial Displacemsent Contour Plot for 2" x 2" Cutout at
¢ o Collapse Load of 199.4 lbs/in (0/-45/+45/90)s, Cutout A
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YR to the panel’'s lower left. This difference in the orientation of the
A troughs seems to be related to the orientation of the second ply (taken
LS
*
‘ﬁg from the outer surface edge). A (0/+45/-45/90)s orientation produces a
)
b0 trough along the direction of the +45° ply (ply angle defined in Fig.
- 3.1) while a (0/-45/+45/90)s orientation produces a trough along the
?ﬁ order of the -45° ply.
Yyt
g In order to explaln the unexpected collapse displacement for the
e 2" x 2" cutout, a comparison was made between the elgenvector solution
LY
‘a¥ and the radial contour plot. Fig. 4.3 represents the eilgenvector for the
X}
RN
e (0/+45/-45/90)s orientation, and one should observe that a trough similar
. .
? to the panel’s collapse mode 1s appearing. However, the overall
D
N eigenvector shape does not resemble that of the collapse mode. Further
s
Ry study into this area was required. Fig. 4.3.1 represents the total
dE} linear solution prior to the bifurcation (buckling) point and Fig. 4.4
‘ *" : " " .
:j represents the nonlinear 2" x 2" collapse analysis at 50X of the total
o
4" collapse force. As the two plots show, the displacement contours are
L nearly identical. This clearly shows that the 2" x 2" nonlinear analysis
>
e closely followed the linear solution through the initial stages of
N
"G loading. Further proof of this linear phenomena can be found in Fig.
o 4.5, the plot of the load displacement curves. As the plot shows, the 2°
“
)
:ig x 2" cutout closely followed the linear bifurcation plot. There 1s,
3, .,-"
b however, a difference between the final bifurcation load point and the
2 ctollapse load of roughly 13%. As the linear prebuckling contour
:k: indicates, a drastic change in the displacement function occurs at
v
) R . . R . .
Ly bifurcation in which the trough is developed. This shows that a greater
- o, force is needed to go from the linear displacement contour plot to the
WY -
A
N
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Fig. 4.3.1 Linea: Radial Displacement Contour Figt for 27 x 2°
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Fig. 4.4 Radial Displacement Contour Plot for 2° x 2" Cutout at 502
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:J © er1genvector then the force needed to collapse the panel, as would be

’J expected. This 1s primarily true because the ngnlinear collapse analysis
'E contour plot responds gradually to the trough development. The collapse
,; analysis 1s still a nonlinear phenomena even though it appears to follow
'H the linear path. Shown in Fig. 4.5.1 is the load displacement curve for
is a point located halfway along the left side of the cutout. This curve
:x shows that the solution does become nonlinear as collapse approaches. It
N can also be shown using this same analysis that for the (0/-45/+45/90)s
.l

fz panel the eigenvector is such that, as mentloned previously, the

53

;? displacement trough is directed in an orlentation takenm on by a negative
F) angle, Fig. 4.6.

.; A further description can be made relative to the radial

. ‘3; displacement function. As pointed out previously, there was an initial
- surprise in seeing unsymmetric deflection movements. The symmetry was
;; evident when the panel is looked at for lower load values or what is

L.

58

called the linear portion. In this linear portion, the different
orientations, (0/+45/-45/90}s and (0/-45/+45/90)s, did not matter in the

solutions displacement contours as they were identical and symmetric. At

LY » » - .
S AL ST A P

the higher loadings the influence of the cutout comes into play and the

f& final contour plot results in the unsymmetrical secondary loading

:E arrangement (the eigenvectors) as previously mentioned. The question may
¥ be asked as to what feature of the stiffness coefficients could indicate
o an unsymmetrical and different displacement function within the shell by
'E only changing the ply orientation (actually just switching the second and
:_ third plies) of the quasi-isotropic layup. The answer lies in the Dis

?{ ﬂfﬁ and Dz¢ terms of the bending stiffness parameter matrix since the other
3 .

; :
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CONTOUR LEVELS ARE IN 10ths OF MAXIMUM DISPLACEMENTS

' Fig. 4.6 Eigenvector Contour Plot for 2° x 2° Cutout
s . (0/-45/+45/90)s, Cutout A
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_: stiffness parameters are equal. These Dij coefficients are related to

S the twisting moment. Mxy. The Mxy equatlon s written as

b Mxy = Die K« + D2¢ Ky + Dee Kxy {(27)
;é where the «x's are the changes in the surface curvatures and the D.j’'s are
N the bending stiffress elements [24,25]. 1In the (0/+45/-45/90}s
); arrangement the Die and Dze are positive and in the (0/-45/+45/90)s ply
EE orlientation the terms have the same magnitude but are negative in sign.

: This means that Mx, will change with ply orientation and since this
K>, noment function dominates the collapse for the small 2" x 2" cutout,

:' different contour arrangements are produc=d. Thus, there is a tie-in with
X

™ ‘jb the twisting moment, the curvature and the displacement w. However, in

- the linear loading portion, since there is very little bending moment the
;% Aij (extensional stiffrness parameters) matrix dominates the solution and

Die and Dz¢ can not affect the displacement contours. Therefore, at the

E: lower loads (linear range) the displacement contours do not follow the

. zerond ply angle. In looking at the offect a 4" x 4" cutout had on the
:ﬂ panel, one notices a difference from the 2" x 2" cutout. First, 1t can
E- be noticed 1n Fig. 4.5, collapse load versus end shortening and 1in Fig.
;E 4.5.2, load displacement curve of a point located halfway along the left
28
;' side of the cutout, that the solution is totally nonlinear for the 4" «
E: 4" cutout. This, as previously mentioned, is not true when considering
;: the 2" x 2" cutout. Furthermore, it can be observed that collapse load
‘ and bifurcation load are very close. It becomes obvious that the

} 5:; nonlinearity surrounding the 4" x 4" cutout is assoctiated with a larger

:

“
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amount of bending which allows the collapse to seek a level similar to
the linear load. VYet, this same phenomena Is not true for the 2" x 2"
cutout since it is depicting a linear relationship in the area
surrounding the actual cutout. Linearity is not conducive to direct
bending moment, such as Mx and My. Thus, the separation between
bifurcation and collapse load is apparent when one considers the 2" x 2"
cutout.

dnce again, looking at the larger cutout (4" x 4"), the radial
displacement contours are investigated. Flg. 4.7 represents the contour
displacements for a collapse load of 90.0 lbs/in and a ply orientation of
(0/+45/-45/90)s. For a ply orientation of (0/-45/+45/90)s (plot not
shown) the same symmetric contour displacements can be seen with only a
slight amount of non-symmetry that can be observed at the center of the
cutout’s vertical edges. 1In looking at the contour plot one can see that
the displacement pattern at collapse is more symmetric about the
circumferential and lonmgitudinal axes than the similar panel with a
smaller cutout. This Is because the larger cutout produces the direct
bending effect earlier and the moment change 1s more spread out,
therefore, a more symmetric displacement pattern. It can also be seen
that the larger (4" x 4") cutout does not display the inward displacement
trough along the second ply angle as was seen in the smaller (2" x 27)
cutout giving evidence the Mxy function is not as dominant relative to
the other moment resultants.

Fig. 4.8 is the radial component eigenvector contour plot of the

(0/+45/-45/90)s panel with the larger cutout (4" x 4"). 1In comparing the

eigenvector plot to the displacement contours at the collapse load, there

44
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Fig. 4.7 Radial Displacesent Contour Plot for 4" x 4° Cutout at

Collapse Load of 90.0 lbs/in (0/+45/-45/90)s, Cutout A
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*:: ;:}? is very little similarity. The radial displacement contour plat, Flig.
$¥ 4.7, at collapse produces a symmetric displacement along a vertical
:; centerline. 0n the other hand, the eigenvector plot, Fig. 4.3, has a
o displacement pattern that is slightly tilted and the overall pattern does
g&: not resemble the collapse displacement pattern. Fig. 4.3.1 represents
E the linear solution prior to bifurcation and closely resembles the
gy nonlinear collapse analysis plot, Fig. 4.7. In essence, when the panel
;f: collapsed it did not go intec the shape of the eigenvector as the panels
?3 with the smaller cutouts did. If the panel absorbs energy primarily
o through its axial stiffness (smaller cutout and uncut panel) then the
::3 displacement field at collapse is eigenvector oriented. However, if the
 § panel absorbs energy through both the axial and bending stiffness then
= ) the displacement field is not eigenvector oriented. This difference can
ij dlé also be explained by comparing the amounts of radial displacement. !
?f In looking at the radial displacements, the small cutouts had :
< maximum radial displacements approximately equal to the panel thickness !

!

:;. (0.04 inches). The largest radial displacement in the panels with small
’E cutouts was 0.047 Inches and that was on the panel of (0/+45/-45/90)s. 0n
ig the other hand, the panels with the larger cutout (4" x 4") had radial
i: displacements of 0.0e6d4 inches which iIs over one and one-half the panels
;E; thickness. Therefore, the displacement field generated by the 2" x 2°
.;- cutout is not going to have that great of an effect on the nonlinear
iz collapse mode since the radial displacements are small (near the panel’s
fgs thickness). Thus, at collapse the panel will behave almost linear and
‘;‘ will have the shape of the linear bifurcation. Since the radial
j*' i;é displacements for the panel with the large cutout are one and one-half
I '
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the panels thickness, their effect on the nonlinear collapse analysis
will be greater. With these large displacements (greater than the
panel’s thickness) the nonlinear effect of the cutout on the collapse
analysls dictates the collapse displacement pattern as discussed
previously. This pattern is symmetric and there 1s no shift to the
secondary loading path. The nonlinearity in the presence of the 4" x 4"
cutout is felt by the panel throughout its loading history while the
nonlinearity of the smaller 2" x 2" cutout does not effect the panel’s
displacement pattern as much.

To continue on with the cutout placement study, a (0/+45/-45/90)s
ply orientation 2" x 2" cutout was placed near the top of the panel
{(cutout location B). This cutout location produced a collapse load of
201.15 lbs/in, or a 0.8% change from the 2" x 2" cutout located at the
exact middle (cutout location A). The radial displacement contour plot,
Fig. 4.9, looks exactly like the middle cutout (location A) except that
the cutout is displaced upward. Fig.4.10 is the elgenvector plot for the
cutout located on the top of the panel (location B). Once again we see
that at collapse the contour plot has shifted intc the secondarvy loading
path 'the eigenvectorj. Since the top cutout acts very nearly the same
as the middle cutout, 1ts analysis would yield the same Interpretation as
the middle curcnt divscussed earlier.

Next, 1f the 2" x 2" cutout 1s placed along one side, such as at
location C, there 1s a unique dependence on the ply orientation. A ply
orientation of (0/+45/-45/90)s produces a collapse load of 147.18 lbs/in

or a 26.2% decrease from the 2" x 2" middle cutout. With a ply

orientation of (0/-45/+445/90)s, a collapse load of 17%.& lbs/in 1s found,
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Fig. 4.9 Radial Displacement Contour Plot for 2° x 2° Cutout at
Collapse Load of 201.2 lbs/in (0/+45/-45/90)s, Cutout B
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il Fig. 4.10 Eigenvector Contour Plot for 2" x 2° Cutout
! (0/+45/-45/90)s, Cutout B
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ﬁ\ which 1s 10.4% less than the middle cutout collapse load and 17.62 more

oy than the (0/+45/-45/90)s side cutout. Radial displacement contour plots i
ﬁ; are different for the (0/+45/-45/90)s and the (0/-45/+45/90)s, Fig. 4.11

}: and 4.12 respectively. In looking at Fig. 4.11, the radial displacement 5
28 contour plot for (0/+45/-45/90)s, one observes again the inward |
.i displacement trough along a line near the second ply angle (+45°). This :
!: trough runs along the same angle as that of the middle cutout (cutout A). i
. A big difference 15 noticed when Fig. 4.12 is examined. This contour

‘E% plot, if it were similar to the middle (0/-45/+45/90)s, would have a

hﬁ trough along the -45° degree angle. However, there is no trough along

SE the -45° degree angle as we had seen earlier. What is seen 1s a

2; semicircular shaped trough that starts in the upper left and ends in the

;2 lower left. The semicircle trough allows for a greater curvature and the

‘.: (QL panel absorbs more energy and achieves a higher collapse load. Figs.

:E 4.13 and 4.14 represent radial displacement eigenvector contour plots far

.b the (0/+45/-45/90)s and (0/-45/+45/90)s respectively. In reviewing Fig.

'j 4.11, one can see that at collapse the (0/+45/-45/90)s ply orientation

;j has shifted to the secondary loading path {the eigenvector shown in Fig.

t? 4.13). However, in reviewing Fig. 4.12 and 4.13 both plots of the

_’ﬁ (0/-45/+45/90)s, one sees that at collapse the displacement contours are

E? not in the secondary (eigenvector) mode. This assoclated phenomena can

f; be axplained again by looking at Mxy. A side cutout means that there is

§: less materlal between the cutout and the edge. Therefore, loads build up

{S at a higher rate between the cutout and the side edge. Since the cutout

{; 1s closer to the edge, the values of Di¢ and Dze¢ (Eqn. 27) and there

;3 e positive or negative values depending on ply orientation, determine the
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I |
v amount of twisting moment, Mxy on the panel. The (0/+45/-45/%0}s j
- orientation, as seen earlier, has positive values for Die¢ and Dze and

EE thus a greater twisting moment dominance and thus a lower collapse load.

}: The opposite is true for the (0/-45/+45/90)s orientation. Here, since

o the Di¢ and Dze values are negative, the twisting moment 1s less and the

%S panel can withstand a higher collapse load then the (0/+45/-45/90)s

- configuration.

", Load displacement plots for cutout A and cutout C are shown in Fig.

3 4.15. This plot demonstrates the displacement in the direction of the

X

i; lcad. The slight curvature near the collapse load expresses the fact

P that the problem 1s nonlinear. Since cutout C has a greater slope then

3- cutout A, cutout C has greater axial stiffness.

: (Fi Now a 4" x 4" cutout was placed along one side, cutout location C.

:éf ) The 4" x 4" cutout does not have a unigque dependence on the ply .
v,

E: orientation as was seen with the 2" x 2" cutout. A ply orientation of

i' {0/+45/-45/90)s produces a collapse load of 66.0 lbs/in or a 2¢6.7%

‘; decrease from the 4" x 4" middle cutout. Now, with a ply orientation cf !
;3 {0/-45/+45/90)s, a collapse load of Aé.0 lbs/in was also obtained. The i
vj radial displacement contour plots are the same for the (0/+45/-45/90)s

f% and the (0/-45/+45/90)s, Fig. 4.1¢ and 4.17 respectively. In looking at

;E Flg. 4.16, the radial displacement contour plot for (0/+#45/-45/40)s, one é
;t observes that the inward displacement trough is not along the second ply i
;3 angle (+45°). The same displacement are noticed when Fig. 4.17 1s also |
;3 examined. As was the case with the middle 4" x 4" cutout, there 1s more

ks symmetry about the circumferential and longitudinal axes then similar

Z; ;:? panels with cutouts. As mentioned previously, the larger cutout produces

o
PR )
TS

57




.‘ WY T TR P PR TR I YCTY (o ab o ah, caii < Bl L gl Saba WAR ok ol Al BB cal .sit o ‘.;‘J“-Y‘m"‘-\iﬁ‘“w“““v“'"""'-‘-'“‘--"q
N

L]

L

[}

¥ LY

y

K .i_.'\
) g
A
-

v

200. 00
‘. J
o
[ )
§ 240. 00
W -
K
[ 200. 00 .
3 ‘ CUTGUT C JZ cutouT A
1 (-45) }_/ (+ and - 45)
u .‘E
A < i
3 v
K. £ 160.00
; = ] CuTOUT C
{ a )= } (445)
(-]
-
N © 4
2 @ )
R = 120.007
- a
. (-9 4
) < 1
o 4
-,
: 8C. 00
§
. ]
: ‘ /’ Ot‘ ;’ .4 4l Q' N
. : aL. 00— / )
s : -45:(0/-45/+45/90)s
4
3 ]
\: 1
| .00 MR B | MMM IV MR DRSM A B LN T
.00 2.80 6.00 .80 10.00
| Displacement U (inches x }0°3)
" o
o W Fig. 4.15 Loading Edge Displacement, U, versus Axial Loading for
e Cutout A and Cutout C
l
; 5@
)
e D R R S N S O U N N R DR



L e N oo o S i e i g inehs e Sac do adidet g Coh ded Mem GeB iy Sam Ans 40t S Bl s Al AR -A A LA LS A4 8.0 0oa e Aie Ste b Aea-8ks-fia Al WA Al b al |

A

/N o
( N
N

0.5

=0.5 \‘

W ® =0.0516 inches

ma

CONTOUR LEVELS ARE IN 10ths OF MAXIMUM DISPLACEMENTS

Fig. 4.16 Radial Displacement Contour Plot for 4" x 4% Cutout at
Collapse Load of 66.0 lbs/in (0/+45/-45/90)s, Cutout C

59
L AL TR W N T TR VRN NI s ~aJC VL SRR IE JL R SRR S Tal e T AT M et Tt e ettt e e et et e T et ATl Tyt e MU I LI I T Y
‘.r"'.r_ -f';."‘.f..-l' '.-.__.f:'f Ed ‘x_:.r TR RSO, Lol AR R N RV .'."'.P:‘}}‘.-\.-.‘(\.-“'a\ &
Z W W W e amnalon I Ve P B b St AN B e A M N A A AN R .‘-.n?..\;_-_.ﬁk.




A aca o s oia aad aih ot and ol okl o ad - alht ohatadinl i Bt akiind YT TR T T 'VY‘I"W"'"-’"Z‘T"Y"."'L"","'\‘W

=]

w

4

\

=0.6

Y = —0.0506 inches

max

CONTOUR LEVELS ARE IN 10ths OF MAXIMUM DISPLACEMENTS

Fig. 4.17 Radial Displacement Contour Plot for 4° x 4" Cutout at
Collapse Load of 66.0 lbs/in (0/-45/+45/90)s, Cutout C

60

rr’.

o’ =
. g n e e e e p p) '. M
o ] \'\ilk‘; .'




R T T A N e . Wy T T il T WO WO N T W T TN ERE T TEAREANE TR TR/ AN TR A W T VIAW T VT Y T T w " el TR LR WL w

: )
!: ‘
' |
3 |
1 -_:\ !
¢ Nt the direct bending effect earlier and the moment change is more spread

o out, therefore, a more symmetric displacement pattern. As before, when

. the panels collapsed, they did not go into the shape of the elgenvector

2 {(plot not shown) as the panels with the smaller cutouts did.

¥ This same phenomena that was observed for the cutout at location C

;3 ¢can be seen for a cutout located along the right side, cutout location D

K

» (Fig. 1.2}. There, however, is one slight change. Ffig. 4.18 the cutout

h D (0/+45/-45/90)s ply orientation contour plot exhibits exactly the same

;{ characteristics as the (0/-45/+45/90)s ply orientation plot, Fig. 4.12,

R for cutout location C. The same is true for the cutout D (0/-45/+45/90)s

’ plot, Fig. 4.19, and the cutout C (0/+45/-45/90)s plot, Fig. 4.1l. That

{ ¢

Pj is, there is a swapping phenomena. The +45° second ply arrangement an

) <

4

" Q the right side looks like and has the same collapse load as that of the

") . . R

-45° second ply arrangement of the left side cutout. Likewise, the -45°

s right side arrangement acts exactly like the +45° left side arrangement.

8,

\

t . ) . . )

v Due to this special phenomena, the analysis of the right side would be

y exactly the same as its counterpart, the left side, as discussed earlier.

d

X The results of the discontinulty location study ic presented 1in

l’

v Table 4.2. For the small cutout (2" x 2"), the different ply

o orientations really do not matter for cutouts located on the vertical

M

34 . . . . . .

t axls of symmetry. However, if a cutout 1s repositioned to either side of

.

- this vertical axis of symmetry the ply orientation makes a significant

=

Y difference. For the larger cutout (4" x 4") the ply orientation does not

9

; make a difference as the problem has become totally nonlinear.
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hﬁh W Table 4.2: Discontinulty Location Study Results

- Cutout Ply Collapse Linear percent of

A Location Orientation Load (lbs/in)} Bifurcation (lbs/in) Collapse at A

2 A (0/+45/-45/90)s 199.4 229.014 --
e A (0/-45/+45/90)s 197.4 225.014 --
*:: 8 (0/+45/-45/90)s 201.15 222.035 0.9
;ﬁ 8 (0/-45/+45/90)s 201.15 222.035 0.9
% C  (0/+45/-45/90)s 147.18 198.479 -26.2
- C C  (0/-45/+45/90)s 178.6 198.530 -10.4

?ﬁ¥. D (0/+45/-45/90) s 173.¢6 198.530 -10.4

(>

- D (0/-45/+45/%0) s 147.16 193.479 -26.

Y
" A (0/+45/-45/%0) s 90.0 a5

(@3]
rd
i
'

[/
oy
b
>
o
e
w
(9%}
ro
|
I

(0/-45/+45/70) 90.

L A
Yy
LR ‘- .A K3

]
o

{(0/+45/-45/90) s 66.0 32.57 ~2e.7

st
E '\_"

i
>
(]

(0/-45/+45/30) 66.0 32.57 -26.7

.‘..
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R
R * Material Degradation Effects Study
A8
yJ‘ The previous study indicated that the critical cutout locations
Y
) for establishing upper and lower bound effects can be attributed to the
ﬁr. center and eccentric positions. Thus, these two positions were
1& investigated relative to material degradation effects. For the material
o degradation 1nvestigation carried out within this study, a combination of
:ij moisture conditions, temperature and time intervals were looked at in |
%Eé order to produce the widest change in phenomena possible. The weight
;:% gain due to moisture concentration distribution and the molsture and
A4 temperature induced degradations in the Ez and Giz moduli are shown in
ﬁa Fig. 4.20 and 4.21, respectively [24]. For this analysis two temperatures
e (!D were examined, 80 °F (300 °K) and 250 °F (394 °K). The 80 °F temperature
'SS represents room temperature conditions and the 250 °F temperature is
}fz roughly 100 degrees below the glass transition temperature. This 250 °F
“, temperature does represent the point where the material properties really
";i start to play an important role. Two moisture concentration conditions
.ﬁ were chosen (Table 4.3). One was symmetric {Co:0.0, C1:0.0105,
!
- €2:0.0105) and the other unsymmetric (Co:=0.0, €1:0.0, C2:=0.0105). The
{E, moisture concentration ic measured as a percentage of the original weight
i
f% gained through molisture absorption. For the AS4/3501 graphite/epoxy, the
?f saturation moisture concentration is assumed to be 1.05Z. Finally, two
3;& different time events were chosen, a short 0.35 days (t*=0.001) and a
)
‘Eé steady state 176.24 days (t®=0.5) where t* is a normalized time equal to
I/ Kt/h?. Shown in Table 4.4 are the relations between real and
.~ A dimensionless time. With the combinations mentioned above, there will be
] ’ :
R0 65
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Note:

Table 4.3 Moisture Conditions

Moi{sturc Conditions

Cond. No. Co ] C,
1 0.00 0.00 0.0105
2 0.00 0.0105 0.0105
Table 4.4 Relation Between Real and Dimensionless Time

Relation Between Real and Dimensionless Time

Real Time Real Time Dimensionless Time t*
(sec) (days)

0.0 0.0 0.0

3.045E04 0.135 0.001

3.045E05 3.52 0.01

3.045E0% 35. 24 0.1

1.527LG7 176. 24 0.5

These times were calculated using K = 0.52537E-10 (1n2/sec)
for an 8-ply, 0.04 thick, AS/3501-5 laminate.
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a total of & runs for each case. Two cases were chosen for thls study, a
o' ox 2" (utout located in the middle of the panel (cutout location A) and

a 2" x 2" cutout located on the side of the panel (cutout location C)

2 s 14k

which were found to represent the overall nature of cutout location.
The easiest way to analyze the material degradation effects is

through the use of Figs. 4.22 and 4.23. In these plots Nxerig represents

LG ]

43

the bifurcation load for the rocom temperature condition at time equal to
zero (t*=0.0) for the various cutout conditions lnvestigated. This
condition is unaffected by either temperature or moisture degradations.
As was expected, the panel bifurcation load decreased with lncreasing

g temperature and absorbed moisture. Fig. 4.22, the unsymmetric moisture

condition plot, shows that as time increases there 1s little effect on

1 GE' the reduction in collapse load for the cutouts studied. Whereas, for the |
panel with no cutout, there is a significant reduction in the collapse

load as the temperature is increased. Moreover, there is very little

PO A el ol 4

change in collapse for the two cutout locatlons considered as time
progresses. In Fig. 4.23, the symmetric moisture condition plot, there
is an effect on the reduction in the collapse load as temperature 1<
increased for both the mon-cutout and cutout panel. Again, there 1s very
. little effect due to different cutout locations on the change 1in the
reduction of the collapse load due to the material degradation effects.

Looking once again at Figs. 4.22 and 4.23, involving buckling versus
time for two different boundary conditions, one cobserves certain

characteristics (previously mentioned), especially the fact that the

. et ..

symmetric boundary condition produces a greater reduction of the buckling

#}

;Z load as temperature and time are increased. In order to explain these
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l
o
o N characteristics, look at Figs. 4.20 and 4.21. For the unsymmetric case
= at t*=0.00l, the weight gain due to moisture (Fig. 4.20) conditions is
o
‘:{ concentrated on only one edge of the panel. In comparison, the symmetric !
- i
e moisture conditions produce twice as much welght gain. If one now looks
A at Fi1g. 4.21, 1t can be seen that the molsture concentration percentages
B0 . . R . .
Pl follow a negative slope. The symmetric moisture condition, which is
-
'
. . .
twice as concentrated as the unsymmetric case, would then produce greater
Sy changes in the material propertles as temperature increases. [f the same
AR
N i .
:}t comparison is made for t*=d.5, an even greater change can be seen.
\':'.
5L Therefore, the symmet:ic boundary condition, which 1s affected the most,
L2
ﬁﬂﬁ produces a greater affect on the reduction of the buckling load as time
J.‘ 1]
;ki and temperature are increased.
_q&}_.
L ‘ﬁ, The radial displacement contour plots for the temperature and
- -
o moisture affected panels produce the same results obtained for the
g non-material degraded panels. There is, however, a reduction in the
‘:ﬁ:::' .
‘) collapse load as the moisture and temperature changes take effect. Shown
v . . .
;}: in F19s. 4.24 and 4.25 are the radial displacement contour plots for the
EAn
ﬁ}} 2" ¢ 2" cutout A at collapse load for room temperature (30 °F) and for
g
» A _ .
_ ot the high temperature (250 °F) both at symmetric moisture conditions
b respectively. As can be seen by both Figs. 4.24 and 4.25 the conditions
AN
A . . .
K"o- at collapse are almost identical for both cases as well as looking like
~:..'~:
A the non-affected (no temperature or moisture degradation) panels. Fig.
e .
e, 4.26 represents the material degradation effect of the 4" x 4" cutout A
15
ARY
[Py . 3
'fbf which has nearly the same contour displacement plot as the normal
‘]
Y
o
non-affected 4" x 4" panel.
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2 N N Now shown in Table 4.5 are the results of the material degradation
.;#ﬁ study. This table clearly shows that the symmetric molsture condition
AN
A
f}l produces a greater affect on the collapse load. Also, as temperature and
._-.'\
0 moisture saturation are increased (t* = 0.5 and 250 °F) the value for the
:%ﬂ collapse load decreases. The overall affect of the material degradation
P
o~ can be seen more clearly in Figs. 4.27 and 4.28. These figures represent
S
wS the reduction in collapse load as a panel with no cutout is altered by
o both a cutout and then temperature and moisture for both the symmetric
.'.\.:
:ﬁ§ and unsymmetric cases respectively. As Fig. 4.27 shows, material
3 ."n
ol Jegraded panels could have their collapse load decreased by as much as
F
K- «7% for a cutout located at position A and 75.5% for a cutout located at
e C. In other words, the effect of placing a 2" x 2" cutout in a panel and
s ‘:: having this panel subjected to high temperature and symmetric saturated
Qng\ molsture conditions is to develop collapse at one-quarter of the uncut,
ey
S
::}: room temperature panel’s buckling load.
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and Symmetric Moisture Distribution, t*=0.5, and High
Tesperature (250 °F)
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Table 4.5: Material Degradation Results
2" x 2" Cutout
Unsymmetric Symmetric
Moisture Molsture
Temperature Nondimensional Cutout Collapse b4 Collapse b4
(°F) Time (t*) Location Load Change Load Change
30 0.001 A 199.4 0.00 133.5 0.45
C 147.2 0g.00 146. 8 0.26
NON 514.4 0.083 513.3 0.19
a0 0.5 A 198.8 0.30 196.0 1.71
‘; c 147.0 0.12 145.3 1.23
N NON 510.7 0.80 506.8 1.55
250 0.001 A 137.3 6.09 133.3 7.32
C 135.9 5.63 136.3 7.39 |
NON 479.2 h.92 47p .06 7.42
250 0.5 A 136.3 6.57 169.8 14.34
C 137.79 6.31 126.3 14.19
NON 452.6 12.08 432.6 15.97
t*=kt/h? Cutout A = 199.4
collapse load in lbs/in Room temp./no moisture Cutout C = 147.2
d%} No Cutout = 514.3
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“: A V. CONCLUSIONS

"

“

‘s
o4

": The following conclusions can be stated based on the results developed
‘o from this study.
s
s
N 1. Collapse characteristics of composite panels are dependent on the
e ply layup and the size of the cutout.

J-"
§¢Q 2 Two ply arientations (0/+45/-45/90)s and (0/-45/+45/90)s were
;\ studied, and for cutouts located along the vertical axis of symmetry
- there was no affect on the collapse load due to the two ply

- ‘E} orientations (cutouts A and B).

)

Wi . . .

E. 3. For the same two ply orientations stated in (2), there was a
,‘: reduction in the collapse load of 17.6% for a 2" x2" cutout located
-}j near the side support (eccentric location).
o !
W 4. Cutouts moved from the middle to the side can produce as much as a
fin 26.7% reduction in the collapse load.

“»

Cal

v
n
E/ f.'
‘ 5. A panel with a small cutout (2" x 2") behaves almost linearly

4 throughout the loading and at collapse produces a trough like that
~

;; of the secondary loading path {(the eigenvector).
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Y
J{}
\*.
TN
A .'_.J
::',": o
SN . A panel with the larger cutout (4" x 4"), due to the larger amount
? ‘ of bending, behaves nonlinearly throughout the entire loading range.
B
A
.';.
:b » 7. Material degradation effects (high temperature and saturated
s molsture conditions) can result in as much as a 15% reduction 1in
u:;-f'
lzi collapse load for a panel with a cutout.
o
B \'
& 3. Material degradation effects on collapse load have nearly the same
‘._‘:J- .
s percentage change no matter where the cutout is located.
o
(‘.'
N
i
-~ 7. The unsymmetric molsture condition produces up to a «.57% reduction
T
tal
ﬂﬂﬁ- in the collapse load of a panel with cutouts.
LS
>
L . 10. The symmetric moisture condition produces up to a 14.34% reduction
- in the collapse load of a panel with cutouts.
o
o
oyl 11. A panel with a cutout located along one edge subjected to saturated
\
'
é o mcisture conditions and high temperature will have the collapse load
?ﬁ? reduced by as much as 75.5% when compared to a room temperature, no

moisture, uncut panel.
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VI. RECOMMENDATIUNS AND SUGGESTIONS |

Panels subjected to damage (a satellite panel striking a small
object in space) result in a cutout that is not square in
nature but more closely resembles a circle. Therefore, work
could be done in the area of an axially loaded composite panel

with a circular cutout.

Experimental work to verify the results of this thesis would be

very helpful and an area for further stu-

More work should be done with the STAGS user-written subroutines.
STAGS has the option for the user to enter his own subroutines
and this would allow for a wider range of problems to be

investigated.
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ool APPENDIX A

e

Appendix A consists of a collection of plots that were used

-Z,
ne

%

in the analysis of the information presented in this theslis.

°Y

These plots are not formally discussed but are 1ncluded as
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additional information for the reader.
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M- Appendix Al

) CUTQUT LOCATION A:

RN Radial displacement as a function of location, taken 3, &,

and 9 inches from the loading edge, as load is increased.

I Moment profiles as a function of location, taken 3, 6, and

9 inches from the loading edge, as locad is increased.
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Appendix A2

LOADING EDGE DISPLACEMENT STUDY
Cutout location A - A2.1 - A2.3
Cutout location C - A2.4 - A2.&

Cutout locatlion D - A2.7 - A2.9
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