e R SR B

T
Tl

I
l= m

L2 it ne

'CROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARDS-1963-A

OTIC FILE COPY

ISI Special Report
ISI/SR-86-172
May 1986

Proceedings of

DARPA's 1986
STRATEGIC COMPUTING

DTIC

ELECTE
(& 0CT 0 1 1888

D

MAY 1986

(o]
o
<
N
™~
F
<
Q
<
Sponsored By

DARPA

[DISTAIBUTION STATEMENT A,

for public release|
% Unlimited *

Held At

USC INFORMATION

SCIENCES INSTITUTE
4676 Admiralty Way, Suite 1001
Marina del Rey, California 90292

{213) 822-1511

86 10 91 ove

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

UNCLASSIFIED
ECURITY i N 15 PA

Ab-A 123 ¢3¢

[73. REPORT SECURITY CLASSIFICATION

REPORT DOCUMENTATION PAGE

1b. RESTRICTIVE MARKINGS

Unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT

This document is approved for public release

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

IST/SR-86-172

(if applicable)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
USC/Information Sciences Institygte

6¢. ADDRESS (City, State, and ZIP Code)

4676 Admiralty Way
Marina del Rey, CA 90292

7b. ADDRESS (City, State, and ZIP Code)

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Advanced Research Projects Agengdy MDAS03 81 C 0335

8¢c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT

ELEMENT NO. NO. NO. ACCESSION NO.

Arlington, VA 22209

11. TITLE (include Security Classification)
Proceedings of the Strategic Computing Natural Language Workshop (Unclassified)

12. PERSONAL AUTHOR(S)
Sondheimer, Norman K., editor

13a. TYPE OF REPORT 13b. TIME COVERED
Special Report FROM TO

14. DATE OF REPORT (Year, Month, Day) ['S. PAGE COUNT
1986, May 294

e ————

16. SUPPLEMENTARY NOTATION
Proceedings of a workshop held at Marina del Rey, Calif., May 1-2, 1986.

17 COSAT! CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP artificial intelligence, natural language generation,
09 - 02 natural language processing, natural language understandine,

text generation, text processing, text understanding

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
This document contains the reviews and selected technical papers for the
Natural Language Processing Program, sponsored by the Information Sciences
& Technology Offices of the Defense Advanced Research Projects Agencv, which
were presented at a workshop conducted on 1-2 May 1986, in Marina del Rey,
California.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
B UNCLASSIFIEDUNUMITED Y00 SAME AS RPT. [JOTC USERS Unclassified

223. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (incfude Area Code) | 22c. OFFICE SYMBOL

Victor Brown/Sheila Coyazo (213) 822-151]

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

All other ec/:tions are obsolete.
UNCLASSIFIED

Strategic Computing
Natural Language Workshop

Proceedings of a Workshop
Held at

Marina del Rey, California
May 1-2, 1986

Sponsored by the
Defense Advanced Research Projects Agency

University of Southern California
Information Sciences Institute
Report Number ISI/SR-86-172
August, 1986

Norman K. Sondheimer
Workshop Organizer

This report was supported by
the Defense Advanced Research
Projects Agency Under DARPA

Contract No. MDA903 81 C 0335

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED
The views and conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing the official policies, either
expressed or implied, of the Defense Advanced Research Projects Agency or the United
States Government.

4
TABLE OF CONTENTS - —

FORWARD
LTC. Robert Simpson DARPA/ISTO

SECTION 1: OVERVIEW OF RESEARCH EFFORTS

lgsearch and Development in Natural Language Processing at BBN Laboratories

in the Strategic Computing Program{. L 1
R. Weischedel, R. Scha, E. Walker, D. Ayuso, A. Haas,
E. Hinrichs, R. Ingria, L. Ramshaw, V. Shaked, D. Stallard

PROTEUS and PUNDIT: Research in Text Understanding”., 11
R. Grishman, L. Hirschman ’

Overview of the TACITUS Project . . .« oo oo 19
J. Hobbs

The Counselor Project at the University of Massachusetts > 26
D. McDonald, J. Pustejovsky

Research in Natural Language Processing 80
A. Joshi, T. Finin, D. Miller, L. Shastri, B. Webber

Text Generation for Strategic Computing 37
W. Mann, N. Sondheimer, R. Albano, S. Cumming, T. Galloway
C. Matthiessen, B. Nebel, L. Poulton, G. Vamos, R. Whitney

SECTION 2: RESEARCH CONTRIBUTIONS - Bolt, Beranek, and Newman, Inc.

Out(of the Laboratory: A Case Study of the IRUS Natural Language Interface ! 44
R. Weischedel, E. Walker, D. Ayuso, J. de Bruin, K. Koile, L. Ramshaw, V. Shaked

.

A Terminological Simplification Transformation for Natural Language

Question-Answering Systems " 62
D. Stallard /

SECTION 3: RESEARCH CONTRIBUTIONS - New York University/SDC

Model-based Analysis of Messages about Equipment [. 78
R. Grishman, T. Ksiezyk, N. Than Nhan
New York University

An Equipment Model and its Role in the Interpretation of Nominal Compounds Do 81
T. Ksiezyk, R. Grishman
New York University
v

Recovering Implicit Information 96

M. Palmer, D. Dahl, R. Schiffman, L. Hirschman, M. Linebarger, J. Dowding
SDC

»Focusing and Reference Resolution in PUND!'II/' 114
D. Dahl
SDC

SECTION 4: RESEARCH CONTRIBUTIONS - SRI International

.

Commonsense Metaphysics and Lexical Semantics). o oo 127
J. Hobbs, W. Croft, T. Davies, D. Idwards, K. Laws

SECTION 5: RESEARCH CONTRIBUTIONS - University of Massachusetts

D. McDonald

A
TAG’s as a Grammatical Formalism Generation'. 146
D. McDonald, J. Pustejovsky

Hypotheticals as Heuristic Device

... 165

E. Rissland, K. Ashley

SECTION 8: RESEARCH CONTRIBUTIONS - University of Pennsylvania

-~

Living Up To Expectations: Computing Expert Responses /. 179
A. Joshi, B. Webber, R. Weischedel

The Role of Perspective In Responding to Property Misconceptions, 190
Ix. McCoy

Adapting MUMBLE: Experience with Natural Language Generationo 200
R. Rubinoff

Seme Computational Properties of Tree Adapting Grammars 212
K. Vijay-Shankar, A. Joshi ’

GUMS: A General User Modeling System | 224
T. Finin, D. Drager

SECTION 7: RESEARCH CONTRIBUTIONS - University of Southern California

A Logical-Form and Knowledge-Base Design for Natural Language Generation*. 2381
N. Sondheimer, B. Nebel

The Lexicon in Text Generation 242
S. Cumming

Assertions from Discourse Structure,. L 257

W. Mann, S. Thompson

FORWARD
LTC. Robert Simpson, DARPA/ISTO

Accesion For

NTIS CRA&I
pric TAB
U:annoced
Justitication

VORI

By
Di.t ib.tio]

b e —

Avay and]
Sp:Cial

1230

:
'

F e lamhan.

-A«m!ab.my Codes

J e

]

or

-

7C

Natural Language Technology Base Contracts within DARPA’s
Strategic Computing Program

LTC. Robert Simpson, DARPA/ISTO

May 1,1988
The overall objective of the Strategic Computing Program (SC) of the Defense Advanced Research
Projects Agency (DARPA) is to develop and demonstrate a new generation of machine intelligence
technology which can form the basis for more capable military systems in the future and also maintain a
position of world leadership for the US in computer technology. Begun in 1983, SC represents a focused
research strategy for accelerating the evolution of new technology and its rapid prototyping in realistic

military contexts. The more specific top level goals supporting this single broad objective are to produce

technology that will:

1. enable the operation of military systems under critical constraints such as time, information
overload, etc.,

2. enable the management of forces/resources under constraints of information overload,
geographic distribution, cost of operation, etc., and

3. facilitate the design, manufacture, and maintenance of defense systems within time,
performance, quality, reliability, and cost constraints.

Even though capabilities for man-machine interaction will ultimately form an important component of
systems in all of these areas, the second of those goals has been selected as the initial area to include

emphasis on decision-making aids, including natural language processing.
Subgoals of these top level goals include:

1. To strengthen/develop areas of science and technology that enables the building of computer
systems needed to attain the top level goals.

2. The technologies identified are:

o Artificial Intelligence,
o Software development and Machine Architectures,
® Micro-electronics, and related infrastructure.

3. To build demonstration systems in specific military areas that:

e Provide focus for technology development,

» Provide means for exercising technology in real environments,
o Facilitate manpower training,

e Facilitate development of industrial capability, and

e Facilitate technology transfer to the military.

There are four very ambitious demonstration prototypes being developed within the SC Program. They
are:

1. the Pilot’s Associate which will aid the pilot in route planning, aerial target prioritization,
evasion of missile threats, and aircraft emergency safety procedures during flight;

2. the Autonomous Land Vehicle (ALV) which integrates in a major robotic testbed the
technologies for dynamic image understanding, knowledge-based route planning with
replanning during execution, hosted on new advanced parallel architectures;

3. two battle management projects one for the for the Army, which is just getting started, called
the AirLand Battle Manigement program (ALBM) which will use knowledge-based systems
technology to assist in the generation and evaluation of tactical options and plans at the
Corps level; and

4. the other more established program for the Navy is the Fleet Command Center Battle
Management Program (FCCBMP) at Pearl Harbor. The FCCBMP is employing knowledge-
based svstems and natural language technology in a evolutionary testbed situated in an
operatio.al command center to demonstrate and evaluate intelligent decision-aids which can
assist in the evaluation of fleet readiness and explore alternatives during contingencies. It is
within this context that the natural language contractors are currently demonstrating the
potential of natural language technology.

Competitive awards were made to seven contractors in 1984. Four (BBN Laboratories, Inc., University of
Southern California Information Sciences Institute (USC-ISI), the University of Pennsylvania, and the
University of Massachusetts] are involved in research and development in natural language interfaces;
three others (New York University (NYU), Systems Development Corporation (SDC), and SRI

International) are involved in research and development in text processing.

The work in natural language for strategic computing, which includes no work currently directed to
speech recognition, focuses on producing and demonstrating two *"new generation systems.” One for
natural language interfaces and another for processing free form text from military messages. One of the
natural language new generation systems is a state-of-the-art interface being jointly designed and
implemented by BBN and USC-ISI. The other is a highly accurate natural language text understanding
system which is being constructed by the university/industry team of NYU and SDC. In each case, they
will serve the purpose of supporting the integration of specific research efforts produced by participating
component technology contractors. The design of the new generation systems will be developed in concert
with the needs of other research contractors and the resulting implementation will be furnished to them

for use as a framework to support their own research efforts.

This document is the proceedings of a workshop held to review the ongoing research. The first section of
the document contains summary reports from most of the participating groups. The second section

contains selected technical papers from the research groups.

The workshop was held May 1 & 2, 1986, at USC-ISI, Marina del Rey, California. Presentations were
also made by research groups focusing on speech understanding {Carnegie-Mellon University and BBN
Laboratories Inc.) and expert systems technology (Teknowledge, Inc., and Ohio State University). Also in

attendance were representatives from a variety of organisations within the Department of Defense.

ii

PR . S

—— e e mama ‘___*_-___‘ - ——

DARPA/ISTO would like to extend its thanks to USC-ISI for hosting the workshop and preparing this

proceedings.

iii

SECTION 1: OVERVIEW OF RESEARCH EFFORTS

Bolt, Beranek. and Newman, Inc.
New York University
SRI International
University of Massachusetts
{'niversity of Pennsylvania
University of Southern Cali fornia

Research and Development in Natural Language Processing
at BBN Laboratories
in the Strategic Computing Program

BBN Laboratories, Inc.
Cambridge, MA 02238

STAFF: Ralph Weischedel (Principal Investigator), Remko Sche, Edward Walker, vamaris
Ayuso, Andrew Haas, Erhard Hinrichs, Robert Ingria, Lance Ramshaw, Varda Shaked,
David Stallard

1 Background

BBN's responsibility is to conduct research and development in natural language
interface technology. This responsibility has three aspects:

o to demonstrate state—-of-the-—art technology in a Strategic Computing
application. collecting data regarding the effectiveness of the demonstrated
heuristics,

o to conduct research in natural language interface technology, as itemized in
the description of JANUS later in this note, and

o to integrate technology from other natural language interface contractors,
including USC/Information Sciences lnstitute, the University of Pennsylvania,
and the University of Massachusetts.

Of the three initial applications described in the overview, the Fleet Command
Center Battle Management Program (FCCBMP) has been the application providing the
domain 1n which our work is being carried out. The FCCBMP encompasses the
development of expert system capabilities at the Pacific Fleet Command Center in
Hawaii, and the development of an integrated natural language interface to these new
capabilities as well as to the existing data bases and graphic display facilities. BBN is
developing & series of increasingly sophisticated natural language understanding
systems which will serve as an integrated interface io several facilities at the Pacific
Fleet Command Center: the Integrated Data Base (IDB), which contains information
about ships, their readiness states, their capabilities, etc.; the Operations Support
Group Prototype (OSGP), a graphics system which cen display locations and itineraries
of ships on maps; and the Force Requirements Expert System (FRESH) which is being
built by Texas Instruments.

The target users for this aepplication are naval officers involved in decision

BBN Laboratories Incorporated

making at the Pacific Fleet Command Center; these are executives whose effort is
better spent on navy problems and decision making than on the details of which
software system offers a given information capability, how a problem should be divided
to make use of the various systems, or how to synthesize the results from several
sources into the desired answer. Currently they do not access the data base or OSGP
application programs themselves; instead, on a round—the-clock basis, two operators
act as intermediaries between the Navy staff and the computers. The utility of a
natural language interface in such an environment is clear.

The starting point for development of the natural language interface system at
the Pacific Fleet Commend Center was the IRUS system, which has been under
development at BBN for a number of years. A new version of this system, IRUS-86,
has been installed in the FCCBRM™ testbed area at the Pacific Fleet Command Center for
demonstration. Further * ¢ research on the problems of natural language
interfacing is continuin; and the results of this and future research will be
incorporated into a nex’ generation natural language interface system called JANUS, to
be delivered to the Pacific Fleet Command Center at a later date. JANUS will share
most of its domain-dependent data with IRUS-86, and it will share other modules as
well; IRUS-86 will therefore be able to evolve gradually into the final version of JANUS.

2 JRUS-88: The Initial Test Bed System

The architecture of IRUS [Bates 83] is a cascade consisting of a sequence of
translation modules.

¢ An ATN parser which produces a syntactic tree.

o A semantic interpreter which produces & formula of the meaning
representation language MRL.

0 A postprocessor for resolving anaphora and ellipsis.

o A translation module which produces a formula of the relational data base
language ERL {"Extended Relational Language").

o A translation module which produces a sequence of commands for the
underlying data base access system.

IRUS-86, the version of IRUS which is now installed at the Pacific Fleet Command
Center, is a version of IRUS which is extended in several ways. Two of these
extensions are especially worth mentioning:

o IRUS-B86 uses the NIKL system [Moser 83] to represent its domain model, i.e.,
the relationships between the predicates and relations of the meaning
representation language MRL. The NIKL domain model supports the system's
treatment of semantic anomaly, anaphora, and nominal compounds.

BBN Laboratories Incorporated

o IRUS-86 contains a new module which exploits this NIKL domain model to
simplify MRL expressions; this makes it possible to translate complex MRL-
expressions into ERL constants, thus allowing for significant divergences
between the input English and the structure of the underlying data base
[Stallard 86].

In addition to accessing the NIKL domeain model, the parser, semantic interpreter
and MRL-to-ERL translator access other knowledge sources which contain domain-
dependent information:

o the lexicon,
o the semantic interpretation rules for individual concepts,

o the MRL-to—ERL mapping rules for individual MRL constants, which introduce
the details of underlying system structure, such as file and field names.

To port IRUS to the navy domain, the relevant domain—dependent data had to be
supplied to the system. This task is being accomplished by personnel at the Naval
Ocean Systems Center (NOSC). In August, 1985, BBN provided NOSC with an initial
prototype system containing small example sets of lexical entries, semantic
interpretation rules, and MRL-to—ERL rules; using acquisition tools provided by BBN,
NOSC personnel have been entering the rest of the data.

IRUS~-86 was delivered to the FRESH developers at Texas Instruments in January
1986, was installed in a test bed area of the Pacific Fleet Command Center in April
1986, and will be demonstrated in June 1986. Currently, the lexicon and the domain-
dependent rules of the system only cover a relatively small part of the OSGP
capabilities and the files and attributes of the Integrated Data Base. Once enough
data have been entered so that the system covers a sufficiently large part of the data
base, it will be tried out in actual use by Navy personnel. This will enable us to
gather data about the way the system performs in a real environment, and to fine-
tune the system in various respects. For instance, IRUS-86 makes use of shallow
heuristic methods to address some aspects of natural language understanding such as
anaphora and ellipsis for which general solutions are still research issues. The
FCCBMP application provides a test bed in which such heuristic methods can be
evaluated, eand enhancements to them developed and tested, as part of the
evolutionary technological growth intended to continue throughout the Natural
Language Technology effort of the Strategic Computing Program.

BBN Laboratories Incorporated

3 Functional Goals for JANUS

The JRUS-86 system excels by its clean, modular structure, its broad
syntactic/semantic coverage, its sophisticated domain model, and its systematic
treatment of discrepancies between the English lexicon and the datea base structure.
We thus expect that it will demonstrate considerable utility as an interface component
in the FCCBMP application. Nevertheless, IRUS—86 shares with other current systems
several limitations which should be overcome if natural language interfaces are to
become truly "natural”. In developing JANUS, the successor of IRUS-86, we shall
attempt to overcome some of those limitations. The areas of increased functionality
we are considering are: semantics and knowledge representation, ill-formedness,
discourse, cooperativeness, multiple underlying systems, and knowledge acquisition.

3.1 Semantics and Knowledge Representation

IRUS-86, like most other current systems, represents sentence meanings as
formulas of a logical language which is a slight extension of first—order logic. As a
consequence, many important phenomena in English have no equivalent in the meaning
representation language, and cannot be dealt with correctly, e.g., modalities,
propositional attitudes, generics, collective quantification, and context—-dependence.
Thus, one foregoes one of the most important potential assets of a natural language
interface: the capacity of expressing complex semantic structures in a succinct and
comfortable way.

In JANUS, we will therefore adopt a new meaning representation language which
combines features from PHILIQAl's enriched lambda-calculus [Scha 76] with ideas
underlying Montague's Intensional Logic [Montague 70], and possibly a distributed
quote—operator [Haas 86). It will have sufficient expressive power to incorporate a
version of Carlson’s treatment of generics [Carlson 79), a version of Scha’'s treatment
of quantification [Scha B81], Montague's treatment of modality, and various possible
approaches to propositional attitudes and context-dependence.

In adopting a higher order logic as proposed, one confronts problems of formula
simplification and the need to apply meaning postulates to reduce the semantic
representation of an input sentence to an expression appropriate to the underlying
system, e.g., a relational algebra expression in the case that the underlying system is
a data base. To do this, we will investigate the limited inference mechanisms of KL—
TWO [Moser 83, Vilain 85], following up on our previous work [Stallard 86]. The
advantage of these inference mechanisms is their tractability; discovering their power
and limitations in this complex problem domain should be an interesting result.

BBN Laboratories Incorporated

3.2 Discourse

The meaning of a sentence depends in many ways on the context which has been
set up by the preceding discourse. IRUS and other systems, however, currently ignore
most of these dependencies, and employ a rather shallow model of discourse structure.
To allow the user to exploit the full expressive potential of a natural language
interaction, the system must track topics, reference times, possible antecedents for
anaphora, etc., it must be able to recognize the constituent units of a discourse and
the subordination or coordination relations obtaining between them. A substantial
amount of work has been done already on several of these issues, much of it by BBN
researchers [Sidner 85, Hinrichs 81, Polanyi 84, Grosz 86]. Research in this area
continues under a separate DARPA-funded contract. We expect to be able to integrate
some of the results of that research in the JANUS system.

3.3 Ill-formedness

A natural interface system should be forgiving of a user's deviations from its
expectations, be they misspellings, typographical errors, unknown words, poor syntax,
incorrect presuppositions, fragmentary forms, or violated selection restrictions.
Empirical studies show that as much as 25% of the input to data base query systems is
ill-formed.

IRUS currently handles some classes of ill-formedness by using a combination of
shallow heuristics and user interaction. It can correct for typographical misspellings,
for omitted determiners or prepositions, and for some ungrammaticalities, like
determiner—-noun and subject-verb disagreement. The JANUS system will employ a
more general approach to ill-formedness that will handle a larger class of
ungrammatical constructions and a larger class of word selection problems, and that
will also explore correcting several types of semantic ill-formedness.

These capabilites have major implications for the control of the understanding
process, since considering such possibilities can exponentially expand the search
space. Maintaining control will require care in integrating the ill-formedness
capability into the rest of the system, and also making maximal use of the guidance
that can be derived from a model of the discourse and user’'s goals to constrein the
search.

3.4 Cooperativeness

A truly helpful system should not react to the literal meaning of a sentence, but
to its perceived intent. If in the context of a given application it is possible to
characterize the goals that a user may be expected to be pursuing through his
interaction with the system, the system should try to infer from the user-input what
the underlying goal could be. A system can do this by accessing a goal-subgoal

e,

. e e rn,

-

—_—— -

BBN Laboratories Incorporated

hierarchy which links the speech acts expressed by individual utterances to the global
goals that the user may have. This strategy has been applied successfully to rather
small domains [Allen 83, Sidner 85]. We wish to investigate whether it carries over to
the FCCBMP applications.

3.5 Modelling the Capabilities of Multiple System

The way in which TRUS-86 decides whether an input sentence translates into an
IDB query or an OSGP command may be refined. There is a need for work on what
kind of knowledge would be necessary to interface smoothly and intelligently to
multiple underlying systems. A reasoning component is needed that can determine
which underlying system or systems can best fulfill a user's request. Such a
reasoning component would have to combine & model of the capabilites of the
underlying systems with a model of the user goals and current intentions in the
discourse context in order to choose the correct system(s}). Such a model would also
be useful for providing supporting information to the user.

3.8 Knowledge Acquisition

Further research is also called for to expand the power of the knowledge
acquisition tools that are used in adding to the lexicon, the set of case frame rules,
the model of domain predicates, and the set of transformation rules between the
Meaning Representation Language and the languages of the underlying systems. The
acquisition tools available in IRUS, unlike those in some other systems, are not tied to
the specific fields and relations in the underlying datebase. The acquisition tools
should work on the higher level of the domain model, since that provides a more
general and transportable result. The knowledge acquisition facilities for JANUS will
also need to be redesigned to support and to make maximal use of the power of the
new meaning representation language based on intensional logic.

4 New Underlying Technologies

4.1 Coping with Ambiguity

The new functionalities we described in the previous section, and the techniques
we intend to use to achieve them, raise an issue which has important consequences
for the design of JANUS: we will be faced with an explosion in the number of
interpretations that the system will have to process; every sentence will be manifold
ambiguous. One source of this phenomenon is the improvement of the semantic
coverage and the broadening of the discourse context. Distinctions and ambiguities
which so far were ignored will be dealt with: for instance, different interpretation and

BBN Laboratories Incorporated

scopes of quantifiers will be considered, and different antecedents for pronouns. Even
more serious is the processing of ill-formed sentences, which may require trying out
all partial interpretations to see which one can be extended to a complete
interpretation after relaxing one or more constraints.

To cut down on the processing of spurious interpretations, it is very important
that interpretations of sentences and their constituents be tested for plausibility at
an early stage. Different techniques must probably be used in conjunction:

o Simplification transformations may show that an interpretation is absurd, by
reducing it to TRUE or FALSE or the empty set.

o The discourse context and the model of the user's goals impose constraints
on expected sentences.

4.2 Paralle] Parsing

Since some of the techniques that we intend to use to fight the ambiguity
explosion are themselves rather computation-—-intensive, it is clearly unavoidable that
the improved system functionality that we aim for will lead to a considerable increase
in the amount of processing required. To avoid a serious decrease of the new
system’s response times, we will therefore move it to a suitable parallel machine such
as BBN's Butterfly or Monarch, running a parallel Common Lisp. This in itself has
rather serious consequences for the software design. It means that from the outset
we will keep parallelizability of the software in mind.

We have begun to address this issue in the area of syntax. A new declarative
grammai- is being written, which will ultimately have a coverage of English larger than
the current RUS grammar; the grammar is written in a side—effect-free formalism (a
context—free grammar with variables) so that different parsing algorithms may be
explored which are easily parallelizable. The first such algorithm was implemented in
May 1986 on BBN's Butterfly.

5 Contributions from Other Sites

5.1 ISI/UMass: Generation

We should not expect that JANUS will always be able to assess correctly which
interpretation of a sentence is the intended one. In light of such situations, it is
very important that the system can give a paraphrase of the input to the user, which
shows the system’s interpretation. This may be done either explicitly or as part of
the answer. To be able to develop such capabilities, work on Natural Language
Generation is needed. At USC/ISI a project directed by William Mann and Norman

BBN Laboratories Incorporated

Sondheimer is underway to develop the generation system PENMAN, using the NIGEL
systemic grammar. PENMAN will be integrated to become the generation component of
JANUS. PENMAN itself consists of several subcomponents. Some of these, specifically
the “text planning” component, will be developed through joint work between USC/ISI
and David McDonald at the University of Massachusetts, based on the latter's
experience with the MUMBLE system.

5.2 UPenn: Cooperation and Clarification

Under the direction of Aravind Joshi and Bonnie Webber at the University of
Pennsylvania, several focussed studies have been carried out to investigate various
aspects of cooperative system behaviour and clarification interactions. (For more
detail, see their paper in this issue.) As part of the Strategic Computing Natural
Lanauge effort, UPenn will eventually develop this into a module which can be
integrated into JANUS to further enhance its capabilities.

{Allen 83]

[Bates 83]

[Carlson 79]

[Grosz 86]

{Haas 86]

[Hinrichs 81}

[Montague 70)

{Moser 83]

[Polany1 84]

BBN Laboratories Incorporated

References

Allen, J.F.

Recognizing Intentions from Natural! Language Utterances.

In M. Brady and R.C. Berwick (editors), Computational Models of
Discourse, pages 107—-166. Massachusetts Institute Technology
Press, 1983.

Bates, M. and Bobrow, R.J.

A Transportable Natural Language Interface for Information Retrieval.

In Proceedings of the 6th Annual International ACM SIGIR Conference.
ACM Special Interest Group on Information Retrieval and American
Society for Information Science, Washington, D.C., June, 1983.

Carlson, G.
Reference to Kinds in English.
Garland Press, New York, 1979.

Grosz, B.J. and Sidner, C.L.
The Structures of Discourse Structure.

In L. Polanyi (editor), Discourse Structure. Ablex Publishers, Norwood,
NJ, 1986.

Haas, A.R.

A Syntactic Theory of Belief and Action.
Artificial Intelligence , 1986.
Forthcoming.

Hinrichs, E.

Temporale Anaphora 1m Englischen.

1981.

Unpublished ms., University of Tuebingen.

Montague, R.
Pragmatics and Intensional Logic.
Synthese 22:68—-94, 1970.

Moser, M.G.

An Overview of NIKL, the New Implementation of KL-ONE.

In Sidner, C. L., et al. (editors), Research in Knowledge Representation
for Natural Language Understanding — Annual Report, 1 September
1982 ~ 31 August 1983, pages 7-26. BBN Laboratories Report No.
5421, 1983.

Polanyi, L. and Scha, R.

A Syntactic Approach to Discourse Semantics.

In Proceedings of Int'l. Conference on Computational Linguistics.
Stanford University, Stenford, CA, 1984.

BBN Laboratories Incorporated

[Scha 76)

[Scha 81]

(Sidner 85]

[Stallard 86]

[Vilain 85]

Scha, R.J.H.

Semantic Types in PHLIQA1L.

In Proceedings of the 6th International Conference on Computational
Linguistics. 1976.

Scha, RJ.H.
Distributive, Collective and Cumulative Quantification.
Formal Methods in the Study of Language, Part 2.

Mathematisch Centrum, Amsterdam, 1981, pages 483-512.
Reprinted in: J.A.G. Groenendijk, T.M.V. Janssen and M.B.J. Stokhof
(editors). Truth, Interpretation and Information. GRASS 3.

Dordrecht, Foris, 1984.

Sidner, C.L.
Plan parsing for intended response recognition in discourse.
Computational Intelligence 1(1):1-10, February, 1985.

Stallard, D.G.

A Terminclogical Simplification Transformation for Natural Language
Question-Answering Systems.

In Proceedings of the 24th Annual Meeting of the Association for
Computational Linguistics. Association for Computational
Linguistics, June, 1986.

Vilain, M.

The Restricted Language Architecture of a Hybrid Representation
System.

In Proceedings of IJCAI8S, pages 547-551. International Joint
Confer *nces on Artificial Intelligence, Inc., Morgan Kaufmann
Publishers, Inc., Los Angeles, CA, August, 1985.

10

PROTEUS and PUNDIT:
RESEARCH IN TEXT UNDERSTANDING

at

the Department of Computer Science, New York University
and

System Development Corporation -- A Burroughs Company

prepared by
Ralph Grishman
(New York University)
and
Lynette Hirschman
(System Development Corporation)

1. Introduction

We are engaged in the development of systems capable of analyzing short narrative
messages dealing with a limited domain and extracting the information contained in the
narrative. These systems are initially being applied to messages describing equipment
failure. This work is a joint effort of New York University and the System Development
Corp. for the Strategic Computing Program. Our aim is to create a system reliable enough
for use in an operational environment. This is a formidable task, both because the texts are
unedited (and so contain various errors) and because the complexity of any real domain
precludes us from assembling a "complete” collection of the relationships and domain
knowledge relevant to understanding texts in the domain.

A number of laboratory prototypes have been developed for the analysis of short
narratives. None of the systems we know about, however, is reliable enough for use in an
operational cnvironment (the possible exceptions are expectation-driven systems, which
simply ignore anything deviating from these built-in expectations). Typical success rates
reported are that 75-80% of sentences are correctly analyzed, and that many erroneous
analyses pass the system undetected; this is not acceptable for most applications. We see the
central task of the work to be described below as the construction of a substantially more
reliable system for narrative analysis.

Our basic approach to increasing reliability will be to bring to bear on the analysis
task as many different types of constraints as possible. These include coanstraints
related to syntax, semantics, domain knowledge, and discourse structure. In order to be
able to capture the detailed knowledge about the domain that is needed for correct message
analysis, we arc initially limiting ourselves to messages about one particular piece of
equipment (the “starting air compressor”’); if we are successful in this narrow domain, we
intend to apply the system to a broader domain.

The risk with having a rich set of constraints is that many of the sentences will
violate one constraint or another. These violations may arise from problems in the
messages ot in the knowledge base. On the one hand, the messages frequently contain
typographical or grammatical errors (in addition to the systematic use of fragments, which
can be accounted for by our grammar). On the other hand, it is unlikely that we will be able
to build a "complete” model of domain knowledge; gaps in the knowledge base will
lead to constraint violations for some seatences. To cope with these violations, we intend
to develop a “forgiving” or flexible analyzer which will find a best analysis (one violating
the fewest coastraints) if no “perfect” analysis is possible. One aspect of this is the use
of syntactic and semantic information on an equal footing in assembling an analysis, so that

11

neither a syntactic nor a semantic error would, by itself, block an analysis.

2. Application

This work is work is a component of the Fleet Command Center Battle Management
Program (FCCBMP), which is part of the Strategic Computing Program. The FCCBMP
has two natural language components: one for interactive natural language access, the
other for message processing. The interactive component -- which is to provide access to a
data base and multiple expert systems -- is being integrated by Bolt Beranek and Newman.
The message processing component is being integrated as a joint effort of New York
University and the System Development Corporation.

Much of the information received by the Fleet Command Center is in the form of
messages. Some of these messages have a substantial natural language component.
Consequently, natural language analysis is required if the information in these messages is
to be recorded in a data base in a form usable by other programs. The specific class of
messages which we are studying are CASREPs, which are reports of equipment failures
on board ships. These messages contain a brief narrative, typically 3 to 10 sentences in
length, describing the symptoms, diagnosis, and possibly tne attempts at repair of the
failure. A typical narrative is shown in Figure 1. The problems we face in analyzing these
messages are similar to those in analyzing short messages and reports in other technical
domains, and we therefore expect that the solutions we develop will be widely
applicable.

3. Project organization

This work is a joint research effort of New York University and the System
Development Corporation. NYU has principal responsibility for development of the domain
knowledge base; SDC has principal responsibility for development of the flexible parser and
for the domain-independent discourse components. The division of the other tasks is noted
in the detailed component descriptions below. We will aiso be integrating work on the
knowledge base being done by SRI, which is a component technology developer for the
FCCBMP natural language work.

The work by NYU is being done in LISP (primarily in COMMON LISP), as is most of
the Strategic Computing research. SDC is doing its development in PROLOG because
Prolog provides a powerful framework for writing grammars; it also provides the inference
engine necessary for knowledge structuring and reasoning about the discourse structures in
text processing. This division will permit us to make some valuable comparisons between the
LISP and PROLOG developmeant environments, and between the resulting systems.

The system being developed in LISP by NYU is called PROTEUS (PROtotype TExt
Understanding System) (Grishman er al., submitted for publication); the SDC system is
called PUNDIT (Prolog UNDerstander of Integrated Text) (Palmer e: al. 1986).
Notwithstanding the difference in implementation languages, we have tried to maintain a high
level of compatibility between the two systems. We use essentially the same grammar and
have agreed oo common representations for the output of the syatactic analyzer (the
regularized syntactic structure) and the output of the semantic analyzer. This commonality
makes is possible assign primary responsibility for the design of a component to one group,
and then to take the design developed for ope system and port it to the other in a
straightforward way.

We are currently developing baseline systems which incorporate substantial domain
knowledge but use a traditional sequential processing organization. When these systems are
complete, we will begin experimenting with flexible parsing algorithms. The systems
currently being developed (Figure 2) process input in the following stages: lexical look-up,
parsing, syntactic regularization, semantic analysis, integration with the domain knowledge

12

representation, and discourse analysis. These components, and other tasks which are part of
our research program, are described individually below.

4. System Components

4.1. Lexicon (SDC + NYU)

The lexicon consists of a modified version of the lexicon of the NYU Linguistic String
Project, with words classified as to part of speech and subcategorized for various grammatical
propertics (e.g., verbs and adjectives are subclassified for their complement types).

4.2. Lexical acquisition (SDC)

The message vocabulary is large and will grow steadily as the system is modified to
handle a wider range of equipment; several measures are planned to manage the growth of
the lexicon. An interactive lexical entry program has been developed to facilitate adding
words to the dictionary. Special constructions such as dates, times, and part numbers are
processed using a small definite clause grammar defining special shapes. Future plans
include addition of a component to use morphological analysis and selectional patterns to
aid in classification of new lexical items.

4.3. Syntax analysis (NYU + SDC)

4.3.1. Grammar

The syntactic component uses a grammar of BNF definitions with associated
restrictions that enforce context-sensitive constraints on the parse. This grammar is
generally modelled after that developed by the NYU Linguistic String Project (Sager 1981).
The grammar has been expanded to cover the fragmentary constructions and complex noun
phrases characteristic of the Navy message domain. A wide range of conjunction types
is parsed by a set of conjunction rules which are automatically generated by metarules
(Hirschman, in press). To serve as an interface between the syntactic and semantic
components, an additional set of rules produces a normalized intermediate representation
of the syntax.

4.3.2. Top-Down Parsers

Two top-down parsers have been implemented using the common grammar just
described. In ecach case, the analyzer applies the BNF definitions and their associated
constraints to produce explicit surface structure parses of the input; the analyzer also invokes
the regularization rules which produce the normalized intermediate representation.

In the NYU (LISP-based) system the basic algo ‘thm is a chart parser, which provides
goal- directed analysis along with the recording (for possible re-use) of all intermediate goals
tried. The context sensitive constraints are expressed in a version of Restriction Language
(Sager 1975) which is compiled into LISP. The SDC (PROLOG-based) system uses a top-
down left-to-right Prolog implementation of a version of the restriction grammar (Hirschman
and Puder 1986).

4.4. Flexible Analyzer (SDC)

A major research focus for SDC during the first two years will be to produce a
flexible analyzer that integrates application of syntactic and semantic constraints. The
flexible analyzer will focus more quickly on the correct analysis and will have recovery
strategies to prevent syntactic analysis from becoming a bottleneck for subsequent
processing.

13

4.5. Semantic Analysis

The task of the semantic analyzer is to transform the regularized syntactic analysis into
a semantic representation. This representation provides unique identifiers for specific
equipment components mentioned in the text. It consists of predicates describing states and
events involving the equipment, and higher-order predicates capturing the syntactically-
expressed time and causal relations. Roughly speaking, the clauses from the syntactic
analysis map into states and events, while the noun phrases map into particular objects (there
are scveral exceptions, including nominalizations, e.g., "loss of pressure”, and adjectives of
state, such as "broken valve”). Accordingly, the semantic analysis is divided into two major
parts, clause semantics and noun phrase semantics. In addition to these two main parts, a
time analysis component captures the time information which can be extracted from the
input.

4.5.1. Clause semantics (SDC)

Semantic analysis of clauses is performed by Inference Driven Semantic Analysis
(Palmer 1985), which analyzes verbs into their component meanings and fills their semantic
roles, producing a semantic representation in predicate form. This representation
includes information normally found in a case-frame representation, but is more detailed.
The task of filling in the semantic roles is used to integrate the noun phrase analysis
(described in the next section) with the clausal semantic analysis. I[n particular, the selection
restriction information on the roles can be used to reject inappropriate referents for noun
phrases.

The semantics also provides a filtering function, by checking selectional
constraints on verbs and their arguments. The selectional constraints draw on domain
knowledge for type and component information, as well as for information about
possible relationships between objects in the domain. This function is currently used to
accept or reject a completed parse. The goal for the flexible analyzer is to apply selectional
filtering compositionally to partial syntactic analyses to rule out seman cally
unacceptable phrases as soon as they are generated in the parse.

4.5.2. Noun phrase semantics (SDC + NYU)

A noun phrase resolution component determines the reference of noun phrases,
drawing on two sources: a detailed equipment model, and cumulative information regarding
referents in previous sentences. SDC has concentrated on the role of prior discourse, and has
developed a procedure which handles a wide variety of noun phrase types, including
pronouns and missing noun phrases, using a focusing algorithm based on surface syntactic
structure (Dahl, submitted for publication). NYU, as part of its work on the domain model,
has developed a procedure which can identify a component in the model from any of the
noun phrases which can name that component (Ksiezyk and Grishman, submitted for
publication). After further development, these procedures will be integrated into a
comprechensive noun phrase semantic analyzer.

4.5.3. Time analysis (SDC)

SDC has started to develop a module to process time information. Sources of time
information include verb tense, adverbial time expressions, prepositional phrases, co-ordinate
and subordinate conjunctions. These are all mapped into a small set of predicates expressing
a partial time ordering among the states and events in the message.

4.6. Domain model (NYU)

The domain model captures the detailed information about the general class of
equipment, and about the specific pieces of equipment involved in the messages; this

14

j_——w

e e

information needed in order to fully understand the messages. The model integrates iy
partwhole information, type/instance links, and functional information about the various
components {Ksiczyk and Grishman, submitted for publication).

The knowledge base performs several functions: it provides the domain-specific
constraints needed for the semantics to select the correct arguments for a predicate, so that
modifiers are correctly attached to noun phrases. It enables noun phrase semantics to
identify the correct referent for a phrase. It provides the prototype information structures
which are instantiated in order to record the information in a particular message. It provides
the information on equipment structure and function which is used by the discourse rules in
establishing probable causal links between the sentences. And finally, associated with the
components in the knowledge base are procedures for graphically displaying the status of the
cquipment as the message is interpreted.

These functions are performed by a large network of frames implemented using the
Symbolics Zetalisp flavors system.

4.7. Discourse analysis (NYU)

The semantic analyzer generates separate semantic representations for the individual
sentences of the message. For many applications it is important to establish the (normally
implicit) intersentential relationships between the sentences. This is performed by a set of
inference rules which (using the domain model) identify plausible causal and enabling
rclationships among the septences. These relationships, once established, can serve to
resolve some semantic ambiguities. They can also supplement the time information extracted
during semantic analysis and thus clarify temporal relations among the sentences.

4.8. Diagnostics (NYU)

The diagnostic procedures are intended to localize the cause of failure of the analysis
and provide meaningful feedback when some domain-specific constraint has been violated.
We are initially concentrating on violations of local (selectional) constraints, and have built a
small component for diagnosing such violations and suggesting acceptable sentence forms;
later work will study more global discourse constraints.

REFERENCES

Dahl, Deborah A. (submitted for publication). Focusing and Reference Resolution in
PUNDIT.

Grishman, Ralph, Tomasz Ksiezyk, and Ngo Thanh Nhan. (submitted for publication).
Model-based Analysis of Messages about Equipment. j

Hirschman, Lynette and Karl Puder (1986). Restriction Grammar: A Prolog
Implementation, in Logic Programming and its Applications, ed. D.H.D. Warren and

M. VanCaneghem, pp. 244-261, Ablex Publishing Co., Norwood, N.J.

Hirschman, Lynette. (in press). "Conjunction in Meta-Restricion Grammar.” Journal of
Logic Programming.

Ksiezyk, Tomasz, and Ralph Grishman. (submitted for publication). An Equipment Model
and its Role in the Interpretation of Nominal Compounds.

Palmer, Martha S. (1985) Driving Semantics for a Limited Domain. Ph.D. thesis.
University of Edioburgh.

15

e

Palmer, Martha, Decborah Dahl, Rebecca Schiffman, Lynette Hirschman, Marcia
Linebarger, and John Dowding. (1986) Recovering Implicit Information. To appear
in Proc. 24th Annl. Meeting Assn. Comp utational Linguistics.

Sager, Naomi and Ralph Grishman (1975). The Restriction Language for Cemputer
Grammars of Natural Language. Comm. of the ACM, vol. 18, pp. 390-400.

Sager, Naomi (1981). Natural Language Information Processing: A Computer Grammar of
English and its Applications. Addison-Wesley, Reading, MA.

16

S S

A Sample CASREP
about a SAC (Starting Air Compressor)

DURING NORMAL START CYCLE OF 1A GAS TURBINE,
APPROX 90 SEC AFTER CLUTCH ENGAGEMENT, LOW
LUBE OIL AND FAIL TO ENGAGE ALARM WERE
RECEIVED ON THE ACC. (ALL CONDITIONS WERE
NORMAL INITIALLY). SAC WAS REMOVED AND
METAL CHUNKS FOUND IN OIL PAN. LUBE OIL PUMP
WAS REMOVED AND WAS FOUND TO BE SEIZED.
DRIVEN GEAR WAS SHEARED ON PUMP SHAFT.

Figure 1

17

el

PROTEUS/PUNDIT SYSTEM STRUCTURE

ir MESSAGE TEXT
EXICON ,l! WD LOOKUP '
CATEGORY/ATTRB. LISTS
GRAMMAR
(RESTRICTION PARSER
LANGUAGE)
PARSE TREES
SYNTACTIC . [SYNTACTICREGULAR.
REGULARIZATION >
| |RULES l

DOMAIN INFORMATION: ‘

® PROTOTYPE FRAMES ——

(for equipment structure
and function, discourse
structure)

1
I
‘ ® SEMAN. MAPPING RULES

OPERATOR-OPERAND TREES

l

SEMANTIC AND
ANAPHORIC ANALYSIS

l

|

SEMANTIC CASE MARKED TREES

l

INTEGRATION WITH
DOMAIN KNOWLEDGE

—
[

]

l

INSTANTIATED FRANICS

|

| DISCOURSE ANALYSIS
- CAUSALITY
- TIME

l

ANALYZED MESSAGE

al
'

i
1

i

Figure 2

18

Overview of the TACITUS Project

Jerry R. Hobbs
Artificial Intelligence Center
SRI International

1 Aims of the Project

The specific aim of the TACITUS project is to develop interpretation pro-
cesses for handling casualty reports (casreps), which are messages in free-
flowing text about breakdowns of machinery.! These interpretation pro-
cesses will be an essential component, and indeed the principal component,
of systems for automatic message routing and systems for the automatic
extraction of information from messages for entry into a data base or an
expert system. In the latter application, for example, it is desirable to be
able to recognize conditions in the message that instantiate conditions in
the antecedents of the expert system’s rules, so that the expert system can
reason on the basis of more up-to-date and more specific information.

More broadly, our aim is to develop general procedures, together with the
underlying theory, for using commonsense and technical knowledge in the
interpretation of written discourse. This effort divides into five subareas: (1)
syntax and semantic translation; (2) commonsense knowledge; (3) domain
knowledge; (4) deduction; (5) “local” pragmatics. Our approach in each of
these areas is discussed in turn.

2 Syntax and Semantic Translation

Syntactic analysis and semantic translation in the TACITUS project are
being done by the DIALOGIC system. DIALOGIC has perhaps as exten-
sive a coverage of English syntax as any system in existence, it produces

MThe TACITUS project is funded by the Defense Advanced Research Projects Agency
under Office of Naval Research contract N0O0014-85-C-0013, as part of the Strategic Com-
puting program.

19

a logical form in first-order predicate calculus, and it was used as the syn-
tactic component of the TEAM system. The principal addition we have
made to the system during the TACITUS project has been a menu-based
component for rapid vocabulary acquisition, that allows us to acquire sev-
eral hundred lexical items in an afternoon’s work. We are now modifying
DIALOGIC to produce neutral representations instead of multiple readings
for the most common types of syntactic ambiguities, including prepositional
phrase attachment ambiguities and very compound noun ambiguities.

3 Commonsense Knowledge

Our aim in this phase of the project is to encode large amounts of com-
monsense knowledge in first-order predicate calculus in a way that can be
used for knowledge-based processing of natural language discourse. Our ap-
proach is to define rich core theories of various domains, explicating their
basic ontologies and structure, and then to define, or at least to charac-
terize, various English words in terms of predicates provided by these core
theories. So far, we have alternated between working from the inside out,
from explications of the core theories to characterizations of the words, and
from the outside in, from the words to the core theories. Thus, we first pro-
ceeded from the outside in by examining the concept of “wear”, as in “worn
bearings”, seeking to define “wear”, and then to define the concepts we de-
fined “wear” in terms of, pushing the process back to basic concepts in the
domains of space, materials, and force, among others. We then proceeded
from the inside out, trying to flesh out the core theories of these domains,
a3 well as the domains of scalar notions, time, measure, orientation, shape,
and functionality. Then to test the adequacy of these theories, we began
working from the outside in again, spending some time defining, or charac-
terizing, the words related to these domains that occurred in our target set
of casreps. We are now working from the inside out again, going over the
core theories and the definitions with a fine-tooth comb, checking manually
for consistency and adequacy and proving simple consequences of the ax-
ioms on the KADS theorem-prover. This work is described in an enclosed
publication [1].

20

4 Domain Knowledge

In all of our work we are seeking general solutions that can be used in a wide
variety of applications. This may seem impossible for domain knowledge. In
our particular case, we must express facts about the starting air compressor
of a ship. It would appear difficult to employ this knowledge in any other ap-
plication. However, our approach makes most of our work even in this area
relevant to many other domains. We are specifying a number of “abstract
machines” or “abstract systems”, in levels, of which the particular device we
must model is an instantiation. We define, for example, a “closed producer-
consumer system”. We then define a “closed clean fluid producer-consumer
system” as a closed producer-consumer system with certain additional prop-
erties, and at one more level of specificity, we define a “pressurized lube-oil
system”. The specific lube-oil system of the starting air compressor, with
all its idiosyncratic features, is then an instantiation of the last of these. In
this way, when we have to model other devices, we can do so by defining
them to be the most specific applicable abstract machine that has been de-
fined previously, thereby obviating much of the work of specification. An
electrical circuit, for example, is also a closed producer-consumer system.

5 Deduction

The deduction component of the TACITUS system is the KLAUS Auto-
mated Deduction System (KADS), developed as part of the KLAUS project
for research on the interactive acquisition and use of knowledge through
natural language. Its principal inference operation is nonclausal resolu-
tion, with possible resolution operations encoded in a connection graph.
The nonclausal representation eliminates redundancy introduced by trans-
lating formulas to clause form, and improves readability as well. Special
control connectives can be used to restrict use of the formulas to either for-
ward chaining or backward chaining. Evaluation functions determine the
sequence of inference operations in KADS. At each step, KADS resolves on
the highest-rated link. The resolvent is then evaluated for retention and
links to the new formula are evaluated for retention and priority. KADS
supports the incorporation of theories for more efficient deduction, includ-
ing deduction by demodulation, associative and commutative unification,
many-sorted unification, and theory resolution. ‘v'he last of these has been
used for efficient deduction using a sort hierarchy. Its efficient methods for
performing some reasoning about sorts and equality and the facility for or-

21

dering searches by means of an evaluation function make it particularly well
suited for the kinds of deductive processing required in a knowledge-based
natural language system.

6 Local Pragmatics

We have begun to formulate a general approach to several problems that
lie at the boundary between semantics and pragmatics. These are problems
that arise in single sentences, even though one may have to look beyond the
single sentence to solve them. The problems are metonymy, reference, the
interpretation of compound nominals, and lexical and syntactic ambiguity.
All of these may be called problems in “local pragmatics”. Solving them con-
stitutes at least part of what the interpretation of a text is. We take it that
interpretation is a matter of reasoning about what is possible, and there-
fore rests fundamentally on deductive operations. We have formulated very
abstract characterizations of the solutions to the local pragmatics problems
in terms of what can be deduced from a knowledge base of commonsense
and domain knowledge. In particular, we have devised a general algorithm
for building an expression from the logical form of a sentence, such that a
constructive proof of the expression from the knowledge base will constitute
an interpretation of the sentence. This can be illustrated with the sentence
from the casreps

Disengaged compressor after lube oil alarm.

To resolve the reference of “alarm” one must prove constructively the ex-
pression

(3z)alarm(z)

To resolve the implicit relation between the two nouns in the compound
nominal “lube oil alarm” (where “lube oil” is taken as a multiword), one
must prove constructively from the knowledge base (he existence of some
possible relation, which we may call nn, between the entities referred to by
the nouns:

(3 z,y)alarm(z) A lube-oil(y) A nn(y,z)

A metonymy occurs in the sentence in that “after” requires its object to be
an event, whereas the explicit object is a device. To resolve a metonymy
that occurs when a predicate is applied to an explicit argument that fails to

22

satisfy the constraints imposed by the predicate on its argument, one must
prove constructively the possible existence of an entity that is related to the
explicit argument and satisfies the constraints imposed by the predicate.
Thus, the logical form of the sentence is modified to

... A after(d,e) A qle,z) A alarm(z) A ...
and the expression to be proved constructively is
(3 e)event(e) A q(e,z) A alarm(z) A ...

In the most general approach, nn and ¢ are predicate variables. In less
ambitious approaches, they can be predicate constants, as illustrated below.

These are very abstract and insufficiently constrained formulations of
solutions to the local pragmatics problems. Our further research in this
area has probed in four directions.

(1) We have been examining various previous approaches to these prob-
lems in linguistics and computational linguistics, in order to reinterpret them
into our framework. For example, an approach that says the implicit rela-
tion in a compound nominal must be one of a specified set of relations, such
as “part-of”, can be captured by treating “nn” as a predicate constant and
by including in the knowledge base axioms like

(vz,y)part'of(y’ I)) nn(a:, y)

In this fashion, we have been able to characterize succinctly the most com-
mon methods used for solving these problems in previous natural language
systems, such as the methods used in the TEAM system.

(2) We have been investigating constraints on the most general formula-
tions of the problems. There are general constraints, such as the Minimality
Principle, which states that one should favor the minimal solution in the
sense that the fewest new entities and relations must be hypothesized. For
example, the argument-relation pattern in compound nominals, as in “lube
oil pressure®, can be seen as satisfying the Minimality Principle, since the
implicit relation is simply the one already given by the head noun. In addi-
tion, we are looking for constraints that are specific to given problems. For
example, whereas whole-part compound nominals, like “regulator valve”,
are quite common, part-whole compound nominals seem to be quite rare.
This is probably because of a principle that says that noun modifiers should
further restrict the possible reference of the noun phrase, and parts are
common to too many wholes to perform that function.

23

(3) A knowledge base contains two kinds of knowledge, “type” knowledge
about what kinds of situations are possible, and “token” knowledge about
what the actual situation is. We are trying to determine which of these
kinds of knowledge are required for each of the pragmatics problems. For
example, refere.ce requires both type and token knowledge, whereas most
if not all instances of metonymy seem to require only type knowledge.

(4) At the most abstract level, interpretation requires the constructive
proof of a single logical expression consisting of many conjuncts. The deduc-
tion component can attempt to prove these conjuncts in a variety of orders.
We have been investigating some of these possible orders. For example, one
plausible candidate is that one should work from the inside out, trying first
to solve the reference problems of arguments of predications before attempt-
ing to solve the compound nominal and metonymy problems presented by
those predications. In our framework, this is an issue of where subgoals for
the deduction component should be placed on an agenda.

7 Implementation

In our implementation of the TACITUS system, we are beginning with the
minimal approach and building up slowly. As we implement the local prag-
matics operations, we are using a knowledge base containing only the axioms
that are needed for the test examples. Thus, it grows slowly as we try out
more and more texts. As we gain greater confidence in the pragmatics op-
erations, we will move more and more of the axioms from our commonsense
and domain knowledge bases into the system’s knowledge base. Our initial
versions of the pragmatics operations are, for the most part, fairly standard
techniques recast into our abstract framework. When the knowledge base
has reached a significant size, we will begin experimenting with more general
solutions and with various constraints on those general solutions.

8 Future Plans

In addition to pursuing our research in each of the areas described above,
we will institute two new efforts next year. First of all, we will begin to
extend our work in pragmatics to the recognition of discourse structure.
This problem is illustrated by the following text:

Air regulating valve failed.
Gas turbine engine wouldn’t turn over.

24

Valve parts corroded.

The temporal structure of this text is 3-1-2; first the valve parts corroded,
and this caused the valve to fail, which caused the engine to not turn over.
To recognize this structure, one must reason about causal relationships in
the model of the device, and in addition one must recognize patterns of
explanation and consequence in the text.

The second new effort will be to build tools for domain knowledge ac-
quisition. These will be ba:cd on the abstract machines in terms of which
we are presently encoding our domain knowledge. Thus, the system should
be able to allow the user to choose one of a set of abstract machines and
then to augment it with various parts, properties and relations.

Researchers

The following researchers are participating in the TACITUS project: John
Rear, William Croft, Todd Davies, Douglas Edwards, Jerry Hobbs, Kenneth
Laws, Paul Martin, Fernando Pereira, Raymond Perrault, Stuart Shieber,
Mark Stickel, and Mabry Tyson.

Publication

1. Hobbs, Jerry R., William Croft, Todd Davies, Douglas Edwards, and
Kenneth Laws, “Commonsense Metaphysics and Lexical Semantics”, Pro-
ceedings, 2{th Annual Meeting of the Association for Computational Lin-
gutstics, New York, June 1986., pp. 231-240.

25

The Counselor Project at the University of Massachusetts

David D. McDonald & James D. Pustejovsky
Department of Computer and Information Science
University of Massachusetts,

Amherst, Massachusetts 01003

Participants in the Counselor Project, Fall 1984 through Summer 1986:
Principal Investigators: Edwina L. Rissland, David D. McDonald, Wendy G. Lehnert
Research Associates: Beverly Woolf, James D. Pustejovsky

Graduate Students: Marie M. Vaughan, Brian Stucky, Penelope Sibun, Seth Rosenberg, Kelly
Murray, Kevin Galiagher, JoAnn M. Brooks. John Brolio, Sabine Bergler, Kevin D. Ashley, Scott
D. Anderson

Introduction

The CoUNSELOR PROJECT began in the fall of 1984 with the goal of exploring basic
problems in discourse structure and text processing within an integrated interface to a
strong expert system. The program that we have developed, COUNSELOR, integrates
separately developed components for natural language generation (MUMBLE see (7], [8],
[9]), parsing (PLum[5]), and case-based legal reasoning (Hveo (1], {2]). It adds a newly
developed component, Cicero ([10]), positioned between the two text processors and
the expert system; CICERO is responsible for managing textual inferences ("reading
between the lines”) by using common sense models of legal events. COUNSELOR can
provide advise to an attorney about how to argue cases involving violations of trade
secret law in the computer field. The attorney presents the facts of their case to the
system, which may ask questions to elicit other facts that it knows to be relevant. The
system then suggests lines of argument that the attorney might use, drawing on its
library of litigated cases to find ones with analogous dimensions.

At its present state of development, COUNSELOR can handle simple variations on a
single scenerio, exemplified by the following dialog:

User: I represent a client named HackInc, who waats to sus Swipelnc and Leroy
Soleil for misappropriating trade secrets in connection with software
developed by my client. Hacklnc markets the software, known as Autotell, a
program to sutomate some of a bank teller's functions, to the banking
industry.

Counselor: Did Soleil work for HacklInc.?

User: Yes, he was a key employee on the Autotell project.
Counselor: Did he later work for Swipelnc.?

User: Yes.

Counselor: You can argue that there is an implied agreement arising out of Sofeil's
employment with HackInc. that he not disclose any trade se.ret
information to vhich he gained sccess by virtue of his employment.

26

- M

Motivations

Consequential results in natural language research will only come from working
with a strong underlying program whose communicative needs will challenge the
capabilities of state of the art of l[anguage interfaces. As a group, we are not
interested in building yet another question answering system: our goal is to
understand the structure of discourse. We believe that an effective place to begin is
with task specific, mixed initiative dialog where the particiants’ goals cannot be
satisfied by single utterances.

Working with a legal reasoning system like Kevin Ashley and Edwina Rissland’s
Hypo provides particular challenges to natural language research:

(1) Legal text is structurally complex. The need to avoid ambiguity leads to deeply
embedded clauses and heavy noun phrases.

(2) As both the user and the system have a thorough knowledge of the law, they
communicate vastly more infor mation in conversations about legal arguments than
ever appears in their literal utterances.

(3) Hypo's role as an advisory system creates a natural motivation to communicate
through language.

(4) Legal cases are large, complex objects that can be viewed from many
alternative perspectives. The purpose for which a case is being described strongly
influences which of its attributes are salient and how that infor mation should be
structured as a text.

Component Parts

We began the project with three partially developed components, HYPo, MUMBLE,
and PLum, each designed with independent motivations. An initial tension was
whether to convert aspects of these programs that did not seem apt in their new
setting, or alternatively to interpose new components between them to smooth out the
differences. We concluded that the motivations underlying each component were
strong enough that we should not change them just because they were now working
together.

Hrro reasons with cases and hypotheticals. Actually litigated legal cases are
encoded and indexed by "dimensions”, which capture the utility of a case for making a
particular kind of argument. When evaluating new cases, Hypo first analyzes them in
terms of the dimensions they involve. Relevant cases are then retrieved to guide the
reasoning. The system may ask pertinent questions about facts now found to be
relevant. When the analysis is complete, Hypo describes the arguments available to
the user, and responses and counter responses that may follow.

MuMBLE, the linguistic component for generation, is responsible for realizing
conceptual specifications as grammatical text cohesive with the discourse which
proceeds it. MUMBLE works within a description directed framework. Its input
specification is a description of the message the underlying program wants Lo

27

communicate. This description is executed incrementally, producing an inter mediate
linguistic representation which defines the text's grammatical relations and imposes
constraints on further realization. This surface structure description is concurrently
executed, producing the actual text.

PLuUM is a conceptual analyzer which has been given a well defined schematic
structure so that it can be easily extended. It parses by doing prediction and
completion over semantic concepts implied by the words rather than over syntactic
categories. As in other conceptual analyzers, no explicit surface structure is recovered.
PLUM's output is the set of completed frames.

Cicemo is a new component, a discourse and inference manager between the
language components and the expert system. From the understanding side, CICERO
must integrate the clause by clause output of the parser into the larger discourse
context, recognizing, for example, when noun phrases refer to the same object. In
interpreting these small, lexically derived frames, CicEro draws on its own
representation of events which bridges the gap between the way such information is
expressed in language and the way it is organized for expert legal reasoning. For
generation, CICERO is responsible for planning the message that is given to the
generator. In particular, it determines what information should be included and what
may be omitted as inferable, and it sefects pivotal lexical items with appropriate
perspective and rhetorical force.

Future Directions

While the accomplishments of the individual components of Counselor are
interesting in their own right, the greatest effect of the project has been to provide a
workbench for studying the probiems of language in an integrated context. Perennial
problems in anaphora, lexical semantics, aspect, etc. become more tractable in an
integrated system where there is a discourse context and intensional motivation.
There are also semantic generalizations between the level at which the text processors
operate and the level of the expert system which are more easily captured when
parsing and generation can be studied in unison. On a larger scale, an explicit
discourse manager, a requisite for more complex dialogs, can only be developed once
an integrated system exists.

References

(1] Ashley, Kevin D. (1986) “Modelling Legal Argument: Reasoning with cases and hypotheticals
-- s thesis proposal”, Technical Report 10, The Counselor Project. Department of Computer
and Information Science, University of Massachusetts at Amherst.

(2] Ashley, Kevin D and Edwinsa L. Rissland (1983) “Toward Modelling Legal Argument”,
Proceedings of the 2nd International Congress LOGICA, INFORMATICA, DIRITTO, Instituto
Per La Documentazione Giuridica, Florence, Italy.

{31 Brooks, JoAnn M. (1983) “Themis: A Discourse Manager™ unpublished Master's thesis,
Department of Computer and Information Science, University of Massachusetts at Amherst.

28

e

(4] Gallagher, Kevin (1986) “The Design and Implementation of CICERO", unpublished Master's
thesis, Department of Computer and Information Science, University of Massachusetts at
Amherst

(5] Lehnert, Wendy G. and Seth Rosenberg (1985) “The PLUM User's Manual™ Technical Report I,
The Counselor Project, Department of Computer and Information Science, University of
Massachusetts at Amherst.

(6] McDonald. David D. (1986) “Natural Language Generation: Complexities and Techniques”. to
appear in Niceaburg (ed.) 7heoretical sad Methodological Issues in Machine
Trans/ation. Cambridge University Press.

(7] McDonald, David D. and James Pustejovsky (1985) “Description Directed Natural Langauge
Generation”, Proceedings of 1 JCAI-85, pp. 799-805.

{8] McDonald, David D. and James Pustejovsky (1985) “TAGs as a Grammatical Formalism for
Generstion”, Proceedings of the 23rd Meeting of the Association for Computational
Linguistics, pp. 94-103.

(9] McDonald, David D. and james Pustejovsky (1985) "SAMSON: A Computational Theory of Prose
Style for Natural Language Generation™, Proceedings of the 1985 meeting of the European
Association for Computational Linguistics.

{10] Pustejovsky. James (1986) “An Integrated Theory Discourse Analysis™, Technical Report 11,
The Counselor Project, Department of Computer and Information Science, University of
Massachusetts at Amherst.

[11] Rissland Edwina L., Edward Valcarce, and Kevin Ashley (1984) “Explaining and Arguing with
Examples”, Proceedings of AAAI-84.

(12] Vaughan, Marie M. and David D. McDonald (1986) “A Model of Revision in Natural Language
Generation”, Proceedings of the 24th Meeting of the Association for Computational
Linguistics.

29

RESEARCH IN NATURAL LANGUAGE PROCESSING

University of Pennsylvania
Department of Computer and Information Science

This a brief report summarizing our work to date, our intermediate and long term goals, and a summary of some of our
publications.
FACULTY Aravind Joshi, Tim Finin, Dale Miller, Lokendra Shastri, and Bonnic Webber

STUDENTS Brant Cheikes, John Dowding, Amy Felty, Ellen Hays, Robert Kass, Ron Katriel, Sitaram Lanka, Megan
Moser, Gopalan Nadathur, MaryAngela Papalaskaris, Martha Pollack, Robert Rubinoff, Yves Schabes, Ethel
Schuster, Sunil Shende, Jill Smudski, Vijayshankar, David Weir, Blair Whitaker

FACILITIES LINC (Langauge, Information, and Computation) laboratory, which consists of a dedicated VAX 11/785, 10
Symbolics Lisp machines, 7 HP 68020 based Al workstations, a SUN workstation, several Macintoshes, and
a laser printer. These machines are networked together and to other research facilities in the department.

MAJOR THRUST

Natural language interfaces providing support for many different communicative functions.
» Providing definitions of concepts
* Recognizing and correcting user misconceptions
¢ Providing explanations
» Offering to provide information later, when known
o Verifying and demonstrating understanding

» Exploiting and enriching the coatext of natural language discourse between user and system.

WORK-TO-DATE

¢ Integration of RUS-TEXT-MUMBLE (RTM) - This effort involves integrating three natural language system
components (BBN's RUS parser-interpreter, McKeown's TEXT sysiem (developed at Penn), and McDonald's
MUMBLE system (received from U. Mass in January [1985). This integration of three independently developed
systems has required suostantial effort. The version of RTM (to be completed in May 1986) [1] accepts a limited
number of English language requests for definitions of, descriptions of, or comparisions between terms in the ONR
database used by Kathy McKeown in her development of TEXT; (2] formulates appropriate reponscs using TEXT
and outputs those respoases in English using MUMBLE; and 3] runs on a SYMBOLICS Lisp machine. This work
has been done by Moser, Whitaker and Rubinoff.

* [nitial work on incorporating a sense of relevance in monitor offers. Mays’ dissertation work on monitor offers was
limited to issues of competancy. This work is being done by Cheikes and Schabes.

¢ Completion of McCoy's dissertation work on comecting certain types of object-related misconceptions and
implementation of a system called ROMPER which generates such comrections. (MUMBLE is used as the tactical
geueration component of this system as well.)

e Completion of Hirschberg's dissertation work on scalar implicatures and their use in constructing non-misleading
respoanses.

« Completion of Pollack'’s dissertation work on plan inference in which user’s and system’s beliefs about actions and
plans is decoupled.

e Continuation of work on integrating scalar-implicature-based reasoning within a general framework of
circumscription-based noa-monolonic reasoning.

* Development of methods for coaverting proofs in a system akin to first-order resolution into natural deduction (ND)
proofs, which are then reorganized into cohesive paragraphs using Chester’s 1976 algorithm.

30

 Development of methods of converting modal resolution proofs into modal ND proofe and higher-order resolution
proofs into higher-order ND proofs.

¢ Initial development of domain-independant tools for expressing and reasoning about user models - in particular, for
defining hierachies of stereotypical users, representing individual users, and drawing inferences about them using a
default logic.

¢ Continuation of basic rescarch on local coherence of discourse using the notions of centering and syntax, semantics,
and parsing of tree adjoining grammars.

FUTURE PLANS

Having gained the experience of integrating three natural language systerns and carrying out some of the basic research as
described in the previous section, we have now developed the plan described below, which suiamarizes the near term and long
term goals.

Near Term Goals
We have three tangible goals for the next year:

® Completing the RTM demonstration system (using the existing domain and knowledge representation) and
producing a videotape which explains and demonstrates it.

 Developing TEXT iato a more modular tool for defining and comparing terms, on the order of RUS and MUMBLE.
This will eliminate its tie to a particular knowledge representation and increase its portability.

¢ Acquiring familiarity with the PENMAN approach to NL generation through acting as a beta-test site for NIGEL.
Long Term Goals

Support for NL Definitions - Enriched Knowledge Representation

In our original proposal, we stated our intention of employing a richer knowledge representation as the basis for our work on text
gencration, especially for constructing definitions. Qur original idea was to make use of BBN's NIKL system. In the past year
though, we have become aware of some of NIKL's limitations, which essentially make it non-optimal, even as a next step, for
our text generation work. On the other hand, we have identified several features with which a NIKL-like language could be
cariched to make it more suitable for our work:

e associaling noan-definitional information with concepts in a way that maintains the underlying structure of that
information, without interferring with NIKL's automatic classification mechanism.

* associaling "evideptial” information with concepts, especially frequency information - how often the concept is
known to display particular features.

¢ allowing for what appears to be conflicting information coming down through inheritance - e.g., information that is
contrary to expectations grounded in an alternative perspective on a concept

¢ allowing mutual definition of concepts - each being defined with reference to the others in a set

¢ incorporaling notions of time and change - allowing the defining properties and evidential properties of concepts o
include how they change over time

¢ allowing assertions about usual relations between properties of subtypes

Work oo an enriched knowledge representation that includes all these features in a well-motivated way will take several years.
However one that includes at least the first three of them can probably be developed over the next two years, with work on
cmploying it in text generation beginning after the first six moanths to a year after the start of that work.

Support of NL Definitions - Use of Discourse and User Models

The TEXT system, as it is currently structured, will produce the same definition for a concept (or comparison between two
concepts) whenever it is asked. It does not take into account what the user may have already found out about the concept, or what
it is implicitly being contrasted with (c.g., some other concept the user has recent'y asked about), or what the user’s goal is in
making the request. Hence, other directions in which we would like (o take this definitional/clarificational capability is o
increase its sensitivity to (1) the discourse history, to avoid repetition and possibly to take advantage of the additional clarity
brought by contrasting a new term 0 one explained before; (2) the user’s level of expertise, to avoid cither stating the obvious or
going more deeply into a concept than the user can understand; and (3) the user’s goals, to focus on those aspects of the concept
being defined (or concepts being compared) which are significant to the current task. (The latter is related to the notion of
“perspective” used in Kathy McCoy's recent thesis here.) For both these apects of user modelling (in contrast with the first point,
which can be developed using the curmrent discourse alone), we will draw on the other work being done here on domain-
independent user-modelling mechanisms. This proposed work must be done in a domain in which tasks can be characterized and
recognized. Thus we plan to do this initially in investment advising domiin that we have started to develop. Work on

31

incorporating and using discourse history will involved about a one-year effort, once the knowledge base is built. Work on
incorporating and using a model of a user’s expertise and goals will take more time, on the order of two to three years.

Explanations

Again in our original proposal, we proposed work on constructing natural langusge explanations - more specifically, on ways o
loosen the current tight coupling between the form of the system’s proof of some statement to the form of its explanation of why
the statement is true. This coupling has kept systems which should be able to explain their reasoning from employing stronger
proof methods which do not have & natural, understandable form of presentation to their human users.

Our immediate goals involve:
¢ developing a demonstration system which responds to NL queries posed to RUS by doing an efficient first-order

resolution-based proof, transforming that proof into an ND proof, organizing that proof according t0 an improved
version of the Chester algorithm, and thea producing an English version of the text using MUMBLE or NIGEL.

 abstracting from the three separate sets of proof conversion methods (noted under WORK-TO-DATE) into general
methods of ransforming any resolution-style proof in any logic into its corresponding ND proof.

e determining whether existing methods of organizing first-order ND proofs into paragraphs are applicable to ND
proofs in these stronger logics or whether more must be done to produce high-quality, cohesive, understandable text.

Our long-term goals remain as stated in our original proposal - the production of explanations sensitive to users’ beliefs,
expertise, desired level of detail and expectations. In this long-term research, we see taking expertise and desired level of detail
into account in determining how much of the ND proof is made explicit. Of more interest is how users’ beliefs and expectations
should affect the explanations. Work on scientific explanation has shown that central to the explanation of what Is the case 1s 4
set of alternative situations which are not the case. One cxplains what is in contrast to what is not. However, this requires
additional work, o prove of each of the alternatives (which may be given explicitly by the user - “why this and oot that™ - or
inferred from the system's model of the user’s expectations) that it is not true. Our planned approach involves guiding the
(failing) proof of each alternative against the successful proof. The point is that although there may be many failing proofs «!
cach alternative, the most relevant of these in the current situation is the one which is analogous - up to the point of failure - w
the original successful proof not only should this technique provide relevant information, but is should also be efficient in
reducing the search space. We expect this work to take on the order of two to three years, provided we have enough resources to
pursue it in parallel with our more near-term goals.

Natural Language Parsing and Generation

While continuing o use the RUS system, we will continue our work on tree adjoining grammar (TAG) both from the parsing and
generation points of view. TAGs lead to some attractive approaches to parallelizing parsing aod also seem to provide natural
planning units for generation. This work will be integrated with our future work on parsing and generation. Our first languare
generator (used by TEXT) was one based on Kay's Functionai Unification Grammar. While theoretically elegant, it wus
unacceplably slow (in its straightforward implementation), leading us last year to import the MUMBLE generator from
McDonald at University of Massachusetts and adapt it to work with TEXT. Using MUMBLE has produced a 60-fold speed-up
in generation ume. However, adapting MUMBLE to work with TEXT and, independently, with two other systems has made s
aware of MUMBLE'’s limitations, primarily its lack of knowledge of words or grammar. Essentially, MUMBLE's knowledge s
limited to how to realize particular message units (i.e., to choose an acceptabie one from an a priori specified set of choices),
given constraints already imposed by message uagiis that have already been realized. The large amount of work that must be
invested in building a MUMBLE lexicon and the lack of inter-application portability of anything but the control structure comes
from this fact - that onc has to completely specify each set of choices beforehand for each message unit and the sets are
completely application specific. We propose to work on the development of a new architecture, including our work on tags, that
avoids these limitations by having more knowledge of syntax and words and hence is more portable between applications. The
time frame for this project is approximately three years.

Anaphora Resolution

The RUS parser/interpreter we received from BBN uses a limited method of resolving definite pronouns and noun phrascs that is
only a bit more advanced than the one originally developed for BBN's LUNAR syste.n back in 1971, Since thep, there have been
major theoretical advances in our understanding of discourse anaphora (in the works of Grosz (at SRI), Joshi, Sidner (at BBN),
Webber, and Weinstein), but these theoretical sdvances have not yet found their way into natural language understanding
systems. We feel strongly qualified to undertake this work, having two of the major participants (Joshi and Webber) here at Penn
already, and want to do so. For us, it is both of rescarch interest and of practical importance, since it can mean a major
improvement in sysiem’s understanding abilities. We will also integrate our work on tags with this effort as it relates to parsing
and generation. This work will also complement additional work being doae here on a theoretical and computational account of
anaphoric reference t0 actions and events. We see this work as taking about two to two and a half years.

32

User Modeling

The nced for systems 0 model the knowledge and beliefs of their users has already been pointed out. We plan to address a
number of issues which underly the succesful development and encorporation of explicit user models. Our current domain-
independent user-modelling system, GUMS, provides mechanisms for defining hierachies of stereotypical users, representing
individual users, and drawing inferences about them using a rich default logic. We will continue to develop this system as a tool
which will support the user modeling needs of various applications. We aiso plan to study the problem of how new knowledge of
individual users can be derived from their regular interaction - that is, how relevent information about users can be inferred from
their queries and responses. In other situations it may become necessary for the system to explicitly pose a few crucial questions
to the user to determine what he or she does and does not know.

System Integration

Finally, we plan to begin work on system integration. In recent years, we have identified many types of behavior that interfaces to
database systems and expert systems should demonstrate. Beginning with Kaplan's work on recognizing and responding 1o
existential presupposition failures in his COOP system, we have developed and produced several modules, each demoastrating
another type of desired behavior. These include the ability to recognize and respond to type failures, the ability to respond to
object-related misconceptions, the ability to caiculate and offer competant database monitors, the ability to use scalar
implicatures to convey additional information, and the ability to respond to a class of “inappropriate™ queries, and various
paraphrase abilities.

Foilowing the publication of Kaplan's thesis, the features of his COOP system were soon incorporated inlo several database
interfaces (both natural slanguage and formal query language). This gave the resulting systems the ability to give two types of
responses: either a direct answer, if there was one, or a statement concerning the absense of individuals satisfying some
description in the given query. Now we plan to tackle the more significant problem related to this:

Given a system that is able W call upon a variety of response strategies, how does it decide what 1o do in a given circumstance?
This is the issue we plan to explore by investigating the integration of multiple communicative behaviors. Given a sysiem with
several different types of useful behaviors, which can be combined in various ways, can one efficicntly and effectively coordinate
a response that is better (i.c., more useful, more helpful and more understandable) than simply a (direct) answer. While we
speculate that it will be the case that identifying what one might consider the best response might take complex reasoning about
the user's goals, level of expertise and need-to-know with respect to what the answer (if any) actually is, we also plan to look at
how, with more limited resources, we can still improve system behavior.

This aspect of our future plans is the most long term, involving both the actual component integration itself (in which, in many
cases, it is only the basic ideas that can be carried over, where the component must be re-programmed entirely to fit into the
integrated system) and the development of that part of the total system that reasons about what kin1i of response(s) to give. The
time frame here is approximately four years.

Architecture

We plan to investigate parallel and connectionist archilectures and algorithms for realizing our systems, especially those for
knowledge representation, reasoning, explanations, and integrated parsing and generation.

Abstracts of Recent Technical Reports

INTERACTIVE CLASSIFICATION A Technique for the Aquisition and Maintenance of Knowledge Bases, T'm Finin and
David Silverman, MS-CIS-84-17.

The practical application of frame-based knowledge-based systems, such as in expent systems, requires the maintenance of
potentially very large amounts of declarative knowledge stored in their knowledﬁe bases (KBs). As a KB grows in size and
complexity, it secomes more difficult o maintain and extend. Even someone who is familiar with the representation and the
contents of the existing KB may introduce inconsistencies and errors whenever an addition or modification is made.

This paper describes an zl:g roach to this problem based on a tool cailed an interactive classificr. An interactive classifier uses the
contents of the existing and knowlecF e about its representation o assist the person who is maintaining the KB in describing
new KB objects. The interactive classiﬁger will identify the appropriate taxonomic location for the newly described object and
add it to the KB. The new object is allowed to be a generalization of existing KB oojects, enabling the system lo leam more
about existing objects. The ideas have been tested in a system call KuBIC, for Knowledge Base lnteractive Classifier, and are
being extended to a more complete knowledge representation language.

Correcting Object-Related Misconceptions: How Should The System Respond?, Kathleen F. McCoy, MS-CIS-84-18.

This paper describes a computational method for correcting users’ misconceptions conceming the objects modeled by a computer
system. The method involves classifying objeci-related misconceptions according to the knowledge-base feature involved in the
incorrect information. For each resulting class sub-types arc identified, according w the structure of the knowledge base, which
indicate what information may be supporting the misconception and, therefore, what information to include in the response.
Such a characterization, along with a model of what the user knows, enables the system to reason in 2 domain-independent way
about how best to correct the user.

33

Default Reasoning in Interaction, Aravind Joshi, Bonnie Webber, and Ralph Weischedel, MS-CIS5-84-58

Nonmonotonic reasoning is usually studied in the context of a logical system in its own right or as reasoning done by an agpt_n. n
which the agent reasons about the world from partial information and hence may draw conclusions unsupported by traditional
logic. The main point of departure here is looking at nonmonotonic reasoning in the conlext of interacting with another agent.
This information ts partial, in that the other agent peither will not can make everything explicit. Knowing this, the agent may
attempt to derive more from the interaction than what has been made explicit, by reasoning g‘dcfaull about what has been made
explicit (often by contrast with what he assumes would have been made explicit, were something else the case). Thus ihere can
be rules for default reasoning that are operative in the inleractve situation ("intcractional defaults”) that are not operative with
only a single agent.

Preventing False Inferences, Aravind Joshi, Bonnie Webber, and Ralph M. Welschedel, MS-C1S-84-59

In cooperative man-machine interaction, it is taken as necessary that 2 system truthfully and informatively respoud Lo a user’s
question. It is not, however, sufficient. In particular, if the sysicm has reason to believe that its planned response might lead the
user to draw an inference that it knows to be false, then it must block it by modifying or adding to its response. The problem is
that a system neither can nor should explore all conclusions a user might possibly draw: its reasoning must be constrained in
some systematic and well motivated way.

Idgin ISUE To Expectations: Computing Expert Responses Aravind Joshl, Bonnie Webber, and Ralph Welischedel,

In cooperative man-machine interaction, it is necessary duf nof sufficient for a sustem (o respond truthfully and informatively to
a user’s question. In particular, if the system has reason to believe that its planned response might mislead the user, then it must
block that conclusion by modifying its response. This paper focusses on identifying and avoiding potentially misleading
responses by acknowledging types of "informing behavior” usually expected of an expert. We attempt o give a formal account
of several Lypes of assertauons that should be included in response to questions concemning the achievement of some goal (in
addition to the simple answer), lest the questioner otherwise be misled.

A Modal Temporal Logic for Reasoning About Changing Databases with Applications to Natural Language Question
Answering, Eric Mays, Aravind Joshi, Bonnle Webber, MS-CIS-85-01.

A database which models a changing world must evolve in correspondence to the world. Previous work on natural language

uestion answering systems for databases has largely ignored the issues which arise when the database is viewed as a dynamic
?ralhcr than a static) object. We investigate the question answering behaviors that become possible with the abili?' to represent
and reason about the possible evolution of a database. These behaviors include offering to monitor for a possible future state of
the database as an indirect response to a query, and directly answering questions about prior and future possibility. We apply a
propositional modal temporal logic that captures possibility and temporalily to represent and reason about dynamic databases,
and present a sound axiomatization and proof and proof procedure.

Explaining Concepts in Expert Systems: The CLEAR System, Robert Rubinoff, MS-CIS-85-06, LINC LAB 02

Existing ex systems provide limited explanatory ability. They can explain the sgeciﬁc reasoning the system uses, but if the
user is confused about the concepts and terms the system is using, no help is available. The CLEAI% system allows users to ask
for explanations of specific concepts. The system generates the explanations by cxamining the rule base, selecting rules that are
relevant to the concept asked about. These rules are then tummed into English by various simple translation schemes and
presented to the user, providing an explanation of how the concept is used by the system.

The Linguistic Relevance of Tree Adjoining Grammars, Anthony S. Kroch, Department of Linguistics, and Aravind
K. Joshi, Department of Computer and Information Science, MS-CIS-85-16, LINC LAD 03

In this paper the linguistic significance of the Tree Adjoining Grammar (TAG) has been investigated. An important property of

TAG is that it defines a constrained theory of syntactic embedding, one requiring that embedded structures be composed out of

elementary structures in a fixed way, and one wKich forces co-occurence relations between elements that are separated in surface

constituent structures to be stated broadly as constraints on elementary trees in which those elements are copresent. The extra

encrative power of TAG beyond context-free grammar emerges as a corollary of factoring recursion and co-occurence relations.
e linguistic details specifically discussed are raising constructions, passive, and WH-movements.

A Computational Logic Approach to Syntax and Semantics Dale A. Miller and Gopalan Nadathur, MS-CIS-85-17

It is well known that higher-order logics are very expensive, and for this reason have been used to represent many problems in
mathematics and theorelical computer science. [n the latter domain, higher-order logics are often used to describe the semantics
of first-order logics, natural languages, or programs, since the formalization of such semantics needs a recourse to quantification
over the domain of functions and sets. In these seuings, higher-order loFic has Eencrally veen limited to a descriptive role. Once
the formalization is roade little has been made of it computationally, largely because there is abundant evidence that theorem
proving in higher-order logics is very difficult. In this paper we shail look at a sublogic of a particular higher-order logic that is
derived from Church’s Theory of Types, and examine its representational power and its c ymputational tractability. This sublogic
can also be described as Hom clauses logic extended with quantifications over function variables and A-contraction. We shall
present a sound and complete theorem prover for this logic, which uses higher-order unification and may be described as an
extension of a unification procedure for the typed A-calculus. There are at least three ways in which this logic is different from
the first-order logic that it generalizes. First it possesses function variables which can be instantiated with A-terms and evaluated
through A-contractions. This provides the logic with a new source of computation. Secoud, since A-terms do not have most
general unifiers, the process of finding sppropriate unifiers must branch, and hence involves real search. This facet provides a
pew source of nondeterminism in specifying computations. Finally, this lolglic can directly encode first-order logic in its term
stucture and can manipulate such terms in logically meaningful ways. We illustrate this with examples taken from knowledge
representation and natural language parsing.

The Role of Perspective In Responding to Property Misconceptions, Kathleen F. McCoy, MS-CIS-85-31, May 198S

Ia order to adequately respond W misconceptions involving an object’s properties, we must have a context-sensitive method for
determining object similarity. Such a method is introduced here. Some of the necessary contextual information is captured by a
tew notion of object perspective It is shown how object perspective can be used to account for different responses to a given

34

misconception in different contexts.
Some Computational Properties of Tree Adjoining Grammars, Vijayshenkar and Joshi, MS-CIS-85-07

Tree Adjoining Grammar (TAG) is a formalism for natural language grammars. Some of the basic potions of TAG's were
introduced in {Joshi,Levy, and Takahashi 1975] and by [Joshi, 1983]. A detailed investigation of the lm_Fuulfc relevance of
TAG's has been carried out in [Kroch and Joshi,1985]. [n this paper, we will describe some new results for TAG's, cspecnal}? in
the following areas: (1) parsing complexity of TAG's, (2) some closure results for TAG's, and (3) the relationship to Head
grammars.

Grammar, Phrase Structure, Aravind K. Joshl, MS-CIS-85-45

Phrase-structure trees (phrasc-markers) provide structural descriptions for sentences. Phrase-structure trees can be generated by
phrase-structure grammars. Phrase-structure trees can be shown to be appropriate to characterize structural descriptions for
sentences, including those aspects which are usually characterized by transformational grammars, by making certain amendations
o CFG's, without increasing their power, or by generating them (rom clementary trees (phrase-markers) by a suitable rule of
composition, increasing the power only mildly beyond that of CFG's. Structural descriptions provided by phrase-structure trees
are used explicity or implicitly in natural language processing systems.

uestion, Answer and Responses: Interacting with Knowledge Base Systems, Bonnie Lynn Webber, MS-CIS-85-50, LINC
AB 04

The se of this chapter is to examine the character of information-seeking interactions between a user and a knowledge base

stem }KBS). In doing so, I advocate that a clear distinction be made between an answer to a question and a response. The
chapter characterizes questions, answers, and responses, the role they play in effective information interchanges, and what is
involved in facilitating such interactions between user and KBS.

A Theory Of Scalar Implicature Julia Bell Hirschberg, MS-CIS-85-56.

The Relationship Between Tree Adjoining Grammars And Head Grammars, K. Vijay-Shanker, David J. Weir and Aravind
K. Joshl, MS-CfS-86-01, LINC LAB 06

Tree Adjoining Grammars (TAG) and Head Grammars (HG) were introduced to capture certain structural properties of natural
languages. These formalisms, which were developed independently, appear to be quite different notationaily. In this paper we
discuss the formal relationship between the class of languages gener by TAG's (TAL) and the class of languages gencrated
by HG's (HL). In particular, we show that HL's are included in TAL’s and that TAG's are equivalent to a modification of HG's
called Modified Head Grammars (MHG's). The inclusion of MHL in HL, and thus the equivalence of HG's and TAG's, in the
most geacral case remains to be established. We show that this relationship is very close both linguistically and formally, the
difference hinging on the status of heads of empty strings and whether one deals with heads directly or with the left and right
wrapping positioas around the head.

Natural Language Interactions With Artificial Experts, Tim Finin, Aravind K. Joshi and Bonnie Lynn Webber, MS-
CIS-86-16, CsLAB 08).

The aim of this paper is (o justify why Natural Language (NL) interaction, of a very rich functionality, is critical to the effective
use of Expert Systems and 10 describe what is needed and what has been done to support such interaction. Interactive functions
discussed here include definung terms, paraphrasing, correcting misconceptions, avoiding misconceptions and modifying
questons.

Higher-Order Logic Programming, Dale A. Miller and Gopalan Nadathur, MS-CIS-86-17

In this paper we consider the problem of extending Prolog to include predicate and function variables and typed A-terms. For this
purpose, we use a higher-order logic to describe a generalization to first-order Hom clauses. We show that this extension
possesses certain desirable computational properties. Specifically, we show that the familiar operational and least fixpoint
semantics can be given to these clauses. A language, AProlong that is based on this generalization 1s then presented, and several
examples of its use are provided. We also discuss an interpreter for this language in which new sources of branching and
backtracking must be accommodated. An experimental interpreter has been constructed for the language, and all the examples in
this paper have been tested using il.

Some Uses of Higher-Order Logic in Computational Linguistics, Dale A. Miller and Gopalan Nadathur, MS-CIS-86-31,
LINC LAB 08

Consideration of the _}:csﬁou of meaning in the framework of linguistics often requires and allusion to sets and other
higher-order notions. The traditional approach to representing and reasoning about meaning in a computational setting has been
1o use knowledge representation systemns that are cither based on first-order logic or that use mechanisms whose formal
justifications are o be provided after the fact. In this paper we shall consider the use of a higher-order logic for this task. We
first present a vers: 'n of definite clauses (positive Horn clauses) that is based on this logic. Predicate and function variables may
occur in such clauses the terms in the language arc the typed I-lerms. Such term structures have a richness that may be exploited
In representing meanings. We also describe a higher-order logic programming langnage, called [Prolog, which represents
programs as higher-order definite clauses and interprets them using a depth-first interpreter. A virtue of this language is that it is
possible to wnte programs in it that integrate syntactic and semantic analyses into one computational paradigm. S is to be
contrasted with the more common practice of using two entirely different computation paradigms, such as DCGs or ATNs for
parsing and frames or semantic nets for semantic processing. We illustrate such and integration in this language by considering a
simpl?1 example, and we claim that its use makes the task of providing formal justifications for the computations specified much
more direct. .

Some ATcn Of Default Reasoning In Interactive Discourse, Aravind K. Jloshi, Bonnle L. Webber and Ralph
M. Welschedel, MS-CIS-86-27 (revised version of MS-CIS-84-58)

In cooperative interaction, it is taken as necessary that a system truthfully and informatively respond to a user’s question. It is
not, however, sufficient. In particular, if the system has reason to believe that its planned response might lead the user to draw an
inference that it knows 1o be false, then it must biock it by modifying or adding to its response. In this paper we investigate
several aspects of such reasoning in interactive discourse.

35

Adapting MUMBLE: Experience with Nutural Language Generation, Robert Rubinoff, MS-CIS-86-32, LINC LAB 09}

This paper describes the construction of a MUMBLE-based [McDonald 83b tactical component for the TEXT text

generation system [McKeown 85]. This new component, which produces fluent English sentences from the sequence of

structured message units output from TEXT's strategic component, has uced a 60-fold speed-up in sentence production.
Adapting MUM required work on cach of the three parts of the MUMBLE framework: the interpreter, the grammar, and the

gicn'onary. lmolpmvided some insight into the generation process and the consequences of MUMBLE's commitment o a
elerministic el.

GUMS, : A General User Modeling System, Tim Finin and David Drager, MS-CIS-86-35

This paper describes a geacral architecture of a domain independent system for building and maintaining long term models of
individual users. The user modeling system is intended to ‘rrovide a well defined set of services for an application system which
is interacting with various users has a need 1o build and maintain models of them. As the application system interacts with a
user, it can acquire knowledﬁe of him and pass that knowledge on to the user model maintenance system for incorporation. We
describe a prototype general user modeling system which we have implemented in Prolog. This system satisfies some of the
desirable charactenstics we discuss.

Breaking the Primitive Concept Barrier, Robert Kass, Ron Katriel, and Tim Finln, MS-CIS-86-36

Building and maintaining a large knowledge base of general information requires a knowledge representation system with precise

semantics and an easy knowledge acquisition pfoczgure. Systems such as KL-ONE meet these criteria by using a classifier to

install new concepts into a taxonomic structure. These systems use a formal notion of a definition for concepts. Unfortunately,

many concepts do not seem to have such precise definitions, and end up represented as primitive concepts. Primitive concepls

S’rm lae‘!;an:’er to classification, forcing the user to manually classify a new concept with respect to all primitive concepts in the
owledge base.

We propose an extension to KL-ONE which retains its soundness and greatly reduces the burden on the user during knowledge
acquisition. This exlension consists of adding an explicit definitional component 1o concepts and relaxing the strictness of
concept definitions themselves. The relaxed definition reduces the number primitive concepts in a knowledge base, enables the
classifier to handle concepts that do not have complete definitions and enhances the usefulness of an interactive classifier.

36

Text Generation for Strategic Computing

USC/Information Sciences Institute
Marina del Rey, CA 90292

Project Leaders: William Mann & Norman Sondheimer

Project Staff: Robert Albano, Susanna Cumming. Thomas Galloway, Christian Matthiessen,
Bernhard Nebel. Lynn Poulton, George Vamos, Richard Whitney

1 Objectives

The US military is an information-rich, computer intensive organization. It needs to have easy.
understandable access to a wide variety of information. Currently, information is often in obscure
computer notations that are only understood after extensive training and practice. Although easy
discourse between users and machines is an important objective for any situation, this issue is
particularly critical in regards to automated decision aids such as expert system based battle
management systems that have to carry on a dialog with a force commander. A commander can not
afford to miss important information, nor is it reasonable to expect force commanders to undergo

highly specialized training to understand obscure computer dialects which differ from machine to
machine.

The great deal of work that has been done in the area of natural language understanding is starting
to pay off with the delivery of functional interfaces that interact naturally with the user. Comparatively
Iittie. however. has been done in the area of natural language generation. Currently. there i1s no
effective technology for expressing complex computer notations in ordinary English. 1 there were
computer-based military information could be made more accessible and understandable in 2 manner
l2ss subject to personnel changes.

The Text Generation tor Strategic Computing project is creating and demonstrating new technology
to provide an English-in, English-out interface to computer data to be embodied in a system callec
Janus. IS| is developing the English-out (text generation) portion of this overall system. a module
named Penman. It's initial capability will be demonstrated on a naval database. but most ot the
techmques are more general and will be able to be reapplied to other military problems. The end
result will be an exciting new capability for the military that produces answers to queries and
commands in the form of text that is understandable to any user who understands English.

This project was put in place at the beginning of FY85 in order to develop the first natural language
generation capability robust and capable enough to be used in DARPA's Strategic Computing
Program. it is intended that this interface be coupled to the battie management system being
developed under DARPA’'s Fleet Command Center Battle Management Program(FCCBMP). In the
first 1.5 years of the effort, we were able to demonstrate the first generation system to produce
English from output demands in formal mathematical logic using a broad coverage grammar and an
artificial intelligence knowledge base We have developed the basic technology that wili permit the
realization of a full text generation system. In the next phase of the work, we will extend text
generation from sentences to paragraphs, increase the power of the grammar, dictionary. and
planner, expand the knowledge base to cover more fully the battle management problem. optimize

37

- el

and increase the robustness of the software, and tune the resulting system to the Navy problem.
Finally. we will delfiver our generation system to BBN. Inc, who will combine it with an understanding
system for delivery to DARPA and subsequent integration with FCCBMP.

This report details our approach, Penman’s current status, and our plans for future work.

2 OQur Approach

Both understanding and generation components are necessary in an effective information system
interface. It is also necessary that the technologies used by these two components be absolutely
consistent. If they are not, the embarrassing situation of the interface failing to understand a piece of
text which it has just output can occur, causing a lack of confidence in the system by users.

In order to alieviate this problem, we are developing Penman in close cooperation with a natural
language understanding project at Boit. Beranek. and Newman Inc. (BBN). This cooperation extends
to joint development of knowledge representation software and lexicon design. and work to insure
compatibility between the RUS understanding grammar and the Nigel generation grammar.

The understanding/generation compatibility effort can be considered the first of our goals for the
Penman system. Another is the ability to generate substantial amounts of English text. up to the
multiparagraph leval. A usetul intertace should not be restricted to short replies or comments.

A thrrd goal is to make Penman as portable and domain independent as possible. There are many
knowlzdge domains available for interface systems. and few specialists to create the interfaces.
Thus we are emphasizing domain independent capabilities over domain dependent ones.

Finally. there are many hnguistically and computationally significant issues that must be addressed
if high gquality generation 1s to be achieved. For example. we are working on improved inethods for
xnovledge representation. vocabulary development and for using semantics and discourse context
to guide the generation of text.

3 Accomplishments

By the time of this report. the project had created and delivered a Master Lexicon facility. called ML.
for vocabutary acquisition and use [Cumming 86a. Cumming 86b. Cumming 86¢]. MU is unusual in
that it is compatible with the two radically different grammars of English in Janus: the Nigel generation
grammar and the Rus understanding grammar. The system features a multi-window bit mapped
display which is manipulatable through the keyboard and a mouse. Online documentation is provided
for all lexical choices. ML is built to allow for the extension of the Janus lexical system. it is also

possible to use ML with other natural language processing systems by replacement of a single data
structure.

In addition. work has been done on bringing the Nigel and RUS grammars into compatibility.

Qur general goal is the development of natural language generation capabilities. Our vehicle for
these capabilities will be a reusable module designed to meet all of a system’s needs for generated
sentences. The generation module must have an input notation in which demands for expression are

38

represented. This notation should be of general applicability. For example, a good notation ought to
be generally useful in a reasoning system. Also, the notation should have a well-defined semantics

and the generator has to have some way of interpreting the demands. This interpretation has to be
efficient.

In our research, we have chosen to use formal logic as a demand language. Network
knowledge-bases are used to define the domain of discourse in order to help the generator
interpret the logical forms. And a restricted, hybrid knowledge representation is utilized to
analyze demands for expression using the knowledge base [Sondheimer 86]. We have:

1. Developed a demand language. Penman Logical Form (PLF), based on first order
logic [USC/ISI 85],

2. Structured a NIKL (New Implementation of KL-ONE) network [Kaczmarek 86] to reflect
conceptual distinctions observed by functional systemic linguists.

3. Developed a method for translation of demands for expression into a propositional logic
database.

4. Employed KL-TWO [Vilain 85] to analyze the translated demands, and

5. Used the results of the analyses to provide directions to the Nigel English sentence
generation system [Mann & Matthiessen 83].

To first order fogic. PLF adds restricted quantification. i.e.. the ability to restrict the set quantified
over. In addition. we allow for equality and some related quantifiers and operators, such as the
guantfier for "there exists exactly one ..." (3!). the operator for "the one thing that ..." (¢). We permit
the formation and manipulation of sets. including a predicate for set membership (ELEMENT-OF).
And we have some guantifiers and operators based on Habe!'s 7 operator {Habel 82].

QOur system s knowledge has been organized in a new way in order to facilitate English expression.
Abstract concepts corresponding to the major conceptual categories of English have been detined in
NIKL (a KL-ONE dialect) and used to organize the conceptual hierarchy of the domain. By defining
concepts such as process. event. quality. relationship and object in this way. fluent English
expression is facilitated.

KL - TWO 1s a hybrid knowledge representation system that uses NIKL's formal semantics. KL-TWO
links another reasoner, PENNI to NIKL. For our purposes. PENNI! can be viewed as restricted to
reasoning using propositional logic.

We translate a logical form into an equivalent KL-TWO structure. All predications appearing in the
logical form are put into the PENNI database as assertions. A separate tree is created which reflects

the variable scoping. Separate scopes are kept for the range restriction of a quantification and its
predication.

The Nigel grammar and generator realizes the functional systemic framework at the level of
sentence generation. Within this framework, language is viewed as offering a set of grammatical
choices to its speakers. Speakers make their choices based on the information they wish to convey
and the discourse context they find themselves in. Nigel captures the first of these notions by

39

organizing minimal sets of choices into systems. The grammar is actually just a collection of these
systems. The factors the speaker considers in evaluating his communicative goal are shown by
questions called inquiries inside of the chooser that is associated with each system. A choice
alternative in a system is chosen according to :he responses to one or more of these inquiries. It is
these inquiries which we have implemented.

Our implementation of Nigel's inquiries using the connection and scope structures with the NIKL
upper structure is fairly straightforward. Since the logical forms reflecting the world view are in the
highest level of the NIKL model, the information decomposition inquiries use these structures to do
search and retrieval. With all of the predicates in the domain specializing concepts in the functional
systemic level of the NIKL model, information characterization inquiries that consider aspects of the
connection structure can test for the truth of appropriate PENNI propositions. The inquiries that
relate to information presented in the quantification structure of the logical torm will search the scope
structure. Finally, to supply lexical entries, we associate lexical entries with NIKL concepts as
attached data and use the retrieval methods of PENNI and NIKL to retrieve the appropriate terms.

Although we have done some generation using the BBN naval knowledge base, our most extensive
experience comes from the Consul knowledge domain of computer mail and calendars [Kaczmarek.
Mark. and Sondheimer 83]. Using the developments above. translation from first-order logic to
English organized by NIKL has been demonstrated for a wide variety of sentence types.

Table 3 shows a series of independent sentences that Penman is now able to generate. We have
arranged and labeled them to show how they might enter into computer database dialogue
Paraphrases in <brackets> show corresponding .entences of the type that will be generated from
Naval domain knowiedge.

Besides the technology described above. work has been done on aspects of discourse modeling
This included a study of object description and an initial noun phrase planner. which space does not
allow us to detail

In order to produce the texts that are needed in a user assistance facility. work is under way to apply
Rhetorical Structure Theory to text planning. A procedure has been developed which can design

structures for paragraph-length texts given information about the text goal and communication
situation.

4 Future Effort

in the next phase of our effort. Penman will be delivered to BBN. integrated into Janus. and
demonstrated in an extensive series of laboratory exercises. This version of Penman will support
coordinated English input and output, paraphrasing. and user assistance. as well as constructive
rhetorical structure theory to create descriptive texts [Mann 84].

For a machine to create fluent English texts, several problems of text organization and presentation
must be solved. We will design. implement and demonstrate two kinds of new text planning
processes. One will be a planner for gross organization of text based on rhetorical structure theory.
and the other a low level planner for sentence configurations. in addition. we will examine the expert
system explanation functionality necessary within FCCBMP and will design a text planner to meet
those needs.

40

Table 1: Sentences from Penman

. User: What is the read status of the message which was sent by Jones? <What is the

readiness of the ship deployed by CINCPACFLT?>

. System: Message 40 is unread. <The Nimitz is C4.>

3. User: Are any messages which were sent by Jones in the tape file? <Are any ships

deployed by CINCPACFLT in the Atlantic fleet?

. User: Are any messages which were sent by Jones in the old IS| tape file which Smith

has? <Are any ships deployed by CINCPACFLT in the new battle group which Spivak
has?>

5. System: Yes. <Yes.>

6. System: Do you want me to display the read status of the messages? <Do you want me to

17

18.
19.

20.

We also plan to develop enhancements to the basic interface to Penman. As part of Janus, BBN
plans to develop methods for translating English inputs into a higher order predicate calculus form.
In addition. the logical form will be manipulated inside the BBN understanding component to reflect
database organization, expressions in this form are expected to be much more complex than the
direct expressions of the corresponding English, requiring muitiple sentence expression.

display the readiness of the ships?

. User: No. <No>

. System: There are messages which were sent by Jones. <There are ships which were

deployed by CINCPACFLT >

. System: However, the tape is in use. <However. the battle group is en route.>
10.
11,
12.
13.

User: Show me Message 40. <Show me the JFK.>
User: Did Smith send any messages? <Did the JFK send any CASREPs?>
System: Message 45 was sent by Smith. <CASREP 45 was sent by the JFK>

User: Did Smith schedule his meeting with me in New York? <Did the JFK schedule its
port visit in San Diego™

- System: Yes. <Yes>

User. What does the window show? <\Vhat doss the map show?

. System: The window shows a message which was sent by Jones. <The map shows a sail

plan which was sent by CINCPAC>

System: The window shows a request by Jones. {The map shows a request which was
sent by CINCPACFLT.>

User: Did | create the window? <Did ! create the map?>

System: The window was created when you asked me to display Message 50. <The map
was created when you asked me to display Sait Plan 33.>

System: You deleted the message. then you asked me to display it. <You deleted Sail
Plan 33. then you asked me to display it.>

will be extended so that it can express these complex forms in English.

Following successful completion of initial laboratory testing. Penman will be delivered to NOSC for
knowledge base development and testing. This Penman will have a basic text generation capability
with only limited capability for responding to the knowledge of the user and the state of the user-

41

Penman

machine interaction. In subsequent years, these basic capabilities will be extensively expanded to
provide a much more useful interface, with particular development in the areas of user assistance.
ability of the system to understand the user's knowledge and expectations, and needs for expert
system explanation and user dialogue. as described below.

Devefopment of extensions is required in the area of user assistance functionality. Text generation
can assist the user by explaining system actions and objects, and by clarifying its interpretation of
incoming English. These capabilities must be integrated into the Janus interface in a natural, easy-to-
use form. We expect to demonstrate increased user assistance functionality as time goes on.

Development of extensions is also required in the area of responsiveness to users knowledge and
expectations. This includes making the system aware of the ongoing topics and issues. what the user
has already been told. and what he can be expected to know without being told. This in turn involves
more extensive use of inference. It also requires implementing a notion of the state of the dialogue -
what things are in attention. what interactions are in process and what has been interrupted and
suspended.

Penman 1s scheduled for use in an expert-system explanation context whose details are yet to be
determimmed We will study what functionality is required in FCCBMP. The study will lead to a design
of code for this use of Penman. Implementation and demonstration of full functionality are expected
following the user assistance work.

42

References

[Cumming 86a] Susanna Cumming, Design of a Master Lexicon, USC/Information Sciences Institute,
Marina del Rey,CA, Technical Report ISI/RR-85-163, February 1986.

[Cumming 86b] Susanna Cumming, Robert Albano, A Guide to Lexical Acquisition in the JANUS
System, USC/Information Sciences Institute, Marina del Rey,CA, Technical Report
ISI/RR-85-162, February 1986.

[Cumming 86¢c] Susanna Cumming, The Lexicon in Text Generation, USC/Information Sciences
Institute, Marina del Rey.CA. Technical Report ISI/RR-86-168, 1986. Presented at The
Workshop on Automating the Lexicon, Pisa. italy. May, 1986.

[Habel 82] Christopher Habel, "Referential nets with attributes,” in Horecky (ed.), Proc. COLING-82,
North-Holland, Amsterdam, 1882.

[Kaczmarek 86]} T. Kaczmarek. R. Bates. G. Robins. "Recent Developments in NIKL," in AAA/-86.
Proceedings of the National Conference on Artificial Intelligence, AAAIL. Philadelphia, PA, August
1986.

[Kaczmarek, Mark. and Sondheimer 83] 7. Kaczmarek. W. Mark. and N. Sondheimer, "The
Consul/CUE Interface: An Integrated Interactive Environment.” in Proceedings of CHI 83
Human Factors in Computing Systems. pp. 98-102. ACM. December 1983.

[Mann 84] Mann. W.. Discourse Structures for Text Generation. USC/Iinformation Sciences Institute.
ttarina det Rey. CA, Technical Report RR-84-127, February 1984,

[Manp & Matthiessen 83] William C. Mann & Chnistian M.1.M. Matthiessen, Nigel: A Systemic
Grammar for Text Generation. USC/Information Sciences Institute, Technical Report
ISI/RR-83-105. Feb 1983.

{Sondheimer 86] Norman Sondheimer. Bernhard Nebel, " A Logical-Form and Knowledge-Base
Design for Natural Language Generation.” in AAA1-86. Proceedings of the National Conference
on Artilicial Intelhgence. AAAL August 1986.

[USC/1S185] Penman's Logical Language. USC/Information Sciences Institute. Marina del Rey. CA.
1985.

[Vilain 85]) M. Vilain, "The Restricted Language Architecture of a Hybrid Representation System.” in
Proceedings of the Ninth International Joint Conference on Ariificial Intelligence, pp. 547-551.
Los Angeles. CA, August 1985.

43

SECTION 2: RESEARCH CONTRIBUTIONS
Bolt, Beranek, and Newman, Inc.

Out of the Laboratory:
A Case Study with the IRUS Natural Language Interface’

by

Ralph M. Weischedel, Edward Walker, Damaris Ayuso, Jos de Bruin,
Kimberle Koile, Lance Ramshaw, Varda Shaked

BBN Laboratories Inc.
10 Moulton St.
Cambridge, MA 02238

Abstract

As part of DARPA's Strategic Computing Program, we have moved a large natural
language system out of the laboratory. This involved:

o Delivery of knowledge acquisition software to the Naval Ocean Systems
Center (NOSC) to build linguistic knowledge bases, such as dictionary entries
and case frames,

o Demonstration of the natural language interface in a naval decision—making
setting, and

o Delivery of the interface software to Texas Instruments, which has integrated
it into the total software package of the Strategic Computing Fleet Command
Center Battle Management Program (FCCBMP).

The resulting natursal language interface will be delivered to the Pacific Fleet Command
Center in Hawaii.

This paper is an overview of this effort in technology transfer, indicating the
technology features that have made this possible and reflecting upon what the
experience illustrates regarding transportability, technology status, and delivery of
natural language processing outside of a laboratory setting. The paper will be most
valuable to those engaged in applying state—of-the—sart techniques to deliver natural
language interfaces and to those interested in developing the next generation of
complete natural language interfaces.

11’ho work presented here wos supported under DARPA controct JNOOO14—85-C—0016. The views
and conclusions conteined in this document are those of the outhors and should not be
interpreted as necessarily representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or of the United States Government.

44

1 Introduction

DARPA's Strategic Computing Program in the application area of Navy Battle
Management has provided us several challenges and opportunities in natural language
processing research and development. At the beginning of the effort, a set of
domain—independent software components, developed through fundamental research
efforts dating back as much as seven years, existed. The IRUS software [1] consists of
two subsystems: one for linguistic processing and one for adding specifics of the back
end. The first subsystem is linguistic in nature, while the second subsystem is not.
Linguistic processing includes morphological, syntactic, semantic, and discourse
analysis to generate a formula in logic corresponding to the meaning of an English
input. The linguistic subsystem is application—-independent and also independent of
data base interfaces. (This is achieved by factoring all application specifics into the
back end processor or into knowledge bases such as dictionary entries and case frame
rules, that are domain-specific.) The non-linguistic components convert the logical
form to the code necessary for a given underlying system, such as a relational data

base.

The IRUS system, or its components, had been used extensively in the laboratory,
not just at BBN, but also in research projects at USC/Information Sciences Institute,
the University of Delaware, GTE Research, and General Motors Research. However, it

had not been exercised thoroughly outside of a research environment.

Our goals in participating in the Strategic Computing Program are manifold:

o To test the collection of state—of—-the-art heuristics for natural language
processing with a user community trying to solve their problems on a daily
basis.

o To test the heuristics on a broad, extensive domain.

o To incorporate research ideas (which are often developed in relative
isolation in the laboratory) into a complete system so that effective
evaluation and refinement can occur.

o To continue the feedback loop of incorporating new research ideas, testing
them in a complete system with real users, evaluating the results, and
refining the research accordingly on a repeated basis for several years.

There are several accomplishments in the first year and a haelf of this work.
First, the IRUS software has been delivered to the Naval Ocean Systems Center (NOSC)
so that their team may encode the dictionary information, case frame rules, and
transformation rules for generating queries appropriate for the underlying systems.

The NOSC staff involves a linguist plus individuals trained in computer science, but

45

& “_ il A

does not involve experts in natural language processing nor in artificial intelligence.
Second, the natural language interface software has been delivered to Texas
Instruments (TI), which has integrated it into the Force Requirements Expert System
(FRESH). Demonstrations of the natural language interface are being given at several
conferences this year as well as to the navy personnel at the Pacific Fleet Command
Center. Testing and evaluation of IRUS, both its software and the knowledge bases
defined by NOSC for the FCCBMP, will be carried out in the spring of 1986, by the Navy

Personnel Research and Development Center.

In this section and section two we present evidence that this is one of the most
ambitious applications and tests of natural language processing ever attempted.
Section two provides more background regarding the technical challenges inherent in
the application environment and in the goals of the Strategic Computing Program.
Section three describes what was changed in each system component to support the
technology transfer. Section four presents and illustrates the principles that have
been underscored in moving this substantial Al system from the laboratory to use;
while some principles may appear like common sense, reporting on all the experience
should be valuable to future efforts. Section five briefly discusses possible future

directions, while section six states our conclusions.

2 Background Constraints and Goals

The following sections summarize several constraints and goals which have made
this not only a demanding challenge for natural language processing but also an

ambitious demonstration of the fruit of Al research.

2.1 Multiple Underlying Systems

The decision support environment of the Fleet Command Center Battle
Management Program (FCCBMP) involves a suite of decision~making tools. A substantial
data base is at the core of those tools and includes roughly 40 relations and 250
fields. In addition, application programs for drawing and displaying maps, various
calculations and additional decision support capabilities are provided in the
Operations Support Group Prototype (OSGP). In a parallel part of the Strategic
Computing Program, two expert systems are being provided: the Force Requirements
Expert System (FRESH) and the Capabilities Assessment Expert System (CASES). TI is
building the FRESH expert system; the contract for the CASES expert system has not

been awarded as of the writing of this paper.

The target users are navy commanders involved in decision making at the Pacific

46

Fleet Command Center, these are top-level executives whose energy is best spent on
navy problems and decision making rather than on the details of which of four
underlying systems offers a given information capability, on how to divide a problem
into the various information capabilities required and how to synthesize the resulis
into the desired answer. Currently they do not access the data base or OSGP
application programs themselves; rather, on a round—-the-clock basis, two operators
are available as intermediates between commander and computer. Consequently, the

need for a natural language interface (NLI) is paramount.

2.2 The Need For Transportability

There are three weys that transportability has been absolutely required for the
natural language interface. First, since we had no experience previously with this
application domain, and since the schedule for demonstrations and delivery was highly
ambitious, only the application—independent software could be brought to bear on the
problem initially; therefore, transportability across application domains was required.
Second, the underlying systems have been and will continue to be evolving. For
instance, the data base structure is being modified both to support additional
information needs for the new expert systems and to provide shorter response time in

service of human requests and expert system requests to the data base.

Third, the target output of the natural language interface is subject to change.
For instance, the capabilities of FRESH are being developed in parallel with the
natural language interface and the CASES expert system has not been started as of
this date. Interestingly enough, the target language for the data base could change
as well. For instance, there 1s the possibility of replacing the ORACLE data base
management system with a data base machine, in which case the target language would
change though the application and data base structure remained constant during the

period of installing the data base machine.

2.3 Technology Testbed

The project has two goals which at first seem to conflict. First, the software
must be hardened enough to be an aid in the daily ope-ations of the Fleet Command
Center. Second, the delivered systems are to be a testbed for research results;
feedback from use of the systems is to provide a solid empirical base for suggesting

new areas of research and refinement of existing research.

As a consequence, software engineering demands placed upon the Al software are
quite rigorous. The architecture of the software must support high quality, well

worked out, non-toy systems. The software must also support substantial evolution in

47

the heuristics and methods employed as natural language processing provides new
research ideas that can be incorporated.

3 Adequacy of the Components

In this section we present a brief analysis of the adequacy of the various
components in the system, given that the software had not been built with this domain
in mind (but had been built with transportability in mind) and given that one of the
goals of the effort is to provide a flexible technological base allowing evolulion of the
techniques and heuristics employed.

3.1 Knowledge Representation

At the start of the project, the underlying knowledge representation consisted of
a hierarchy of concepts (unary predicates), a list of functions on instances of those
concepts, and a list of n—ary predicates. The knowledge representation served several

purposes:

o To identify the predicate symbols and function symbols that could be used in
the first order logic representing the meaning of sentences,

o To validate selection restrictions (case frame constraints) during the parsing
process.

Early on we concluded that greater inference capabilities were required. We wanted to
be able to:

o State and reason about knowledge of binary relationships. For instance,
every vessel has an arbitrary number of overall readiness ratings associated
with it, corresponding to the history of its readiness.

o Represent events and states of affairs flexibly. There may be a variable
number of arguments expressed in the input for a given event. For
instance, Admiral Foley deployed the Eisenhower yesterday or Admiral Foley
deployed the Eisenhower 3.2 Also, we needed to be able to count
occurrences of events or states of affairs over history, as in How many
times was the the FEisenhower (3 in the last 12 months? Consequently, we
have chosen to represent events and states of affairs as entities, which
participate in a number of binary relationships, for instance, specifying the
agent, time, location, etc. of the event.

Therefore, the initial ad hoc knowledge representation formalism was replaced with a
more general framework, NIKL [10], the new implementation of KL-ONE. This met the

needs stated above, and also provided inference mechanisms [15] which could serve as

203 is an overall readiness rating.

48

a partial consistency checker on the axioms for the navy domain. Of course, there are
other ways to achieve the goals above. However, NIKL was available, and this would be
its first use in a technology transfer effort, providing us the opportunity to further

explore the power and limitations of limited inference systems.

In NIKL, one can state the classes of entities, the binary relations between
entities (including functional relationships), subclass relationships. and subsumption

relations among binary relations. It is now used to support:

o The validation of selection restrictions during the parsing process,

o Proposal of possible case frame constraints and possible predicates by the
semantic knowledge acquisition component,

o Proposal of the meaning of vague relationships, such as “have”, and

o The mapping from first—order logic to relational data base queries.

Once the more powerful knowledge representation and inference mechanisms [15] were
available to IRUS, we began using them in unanticipated ways, for instance, the last
three in the list above.

3.2 The Lexicon and Grammar

The current grammar (RUS) [2] and lexicon are based on the ATN formalism [23].
Though RUS was designed to be a general grammar of dialogue and was clearly among
a handful of implemented grammars having the broadest coverage of English, the
question was how much modification would be needed for the Navy domain, which was

totally new to us.

Very few changes were needed to the software thal{ supports the lexicon and
morphological analysis. Those that were required centered around special military
forms, such as allowing 064ar86 as a date and 0600z as a time. Special symbols and
codes such as those are bound to arise in many applications, no matter how

transportable the software is.

Very few modifications to the grammar had to be made; those that have been
made thus far correspond to special forms and have required very little effort to add.
Examples include military (and European) versions of dates, such as 6 March 1986.
This is not to claim that everything a navy user types will be parsed; fully general
treatments for conjunction, gapping, and ellipsis, are still research issues for us, as
for everyone else. Rather, the experience testifies to the fact that domain-
independent grammars can be written for natural language interfaces and that

modification of them for a new application can be very small. Sager [12] has reported

49

that few rules of the Linguistic String Perser need to be changed when it is moved to

a new application.

The current system handles several classes of ill-formed input, including
typographical errors that result in an unknown word; omitted words such as
determiners and prepositions; various grammatical errors such as subject verb
disagreement and determiner noun disagreement; case errors in using pronouns; and

elliptical inputs. The strategy is that of [21].

3.3 Semantic Interpretation

Though the software for the semantic interpreter did not depend on domain
specifics, the limitations of the initial knowledge representation formalism and of the
class of linguistic expressions for which it could compute a semantic representation
meant thet the semantic interpreter had to be substantially changed. First, the
semantic interpreter was modified to take advantage of the stronger knowledge
representation formalism and inference available in NIKL. For instance, the
interpreter must compute the semantic representation for descriptions of events and
states of affairs. It now finds the interpretation of X has Y by looking for a relation

in the knowledge representation between X and Y.

Second, the semantic interpreter has been changed to correspond more and more
to general linguistic analysis. One strength of the initial version of the semantic
interpreter [1] was its ability to handle idiomatic expressions, such as blue forces.
Blue forces refers to U.S. forces, as opposed to forces that are blue (in color). The
semantic interpreter has been generalized now so that it is much easier to capture
the general meaning of blue as a predicate, as well as allowing for specification of

idiomatic expressions, such as blue forces.

A major focus in the next year will be continuing modification of the semantic
interpreter so that we have a fully compositional semantics and an intensional logic,
rather than a first order logic as the meaning representation of a given sentence.
The compositional semantics will still allow, of course, for idiomatic expressions. The
enhanced semantic interpreter will be applicable to a much broader class of English
expressions, while still being domain—-independent and driven by domain--specific case

frame rules.

The semantic interpreter does not allow for semantic ill-formedness at present;

removing this restriction is a high priority research area.

50

3.4 Discourse Phenomena

Since discourse analysis is the least understood area in natural language
processing, the discourse processing component in the system is limited. The system
handles anaphora based on the class of the entity required by the selection
restrictions upon the anaphor. A benefit of the change in representation making
events and states of affairs entities is that the simple heuristic above allows the

anaphor in each of the following sequences to be correctly understood.

o The Eisenhower was deployed C2. When did that occur?

o The Fiserthower had been C3. When was that?

Elliptical inputs that are noun phreases or prepositional phrases are handled as
follows: If the class of the entity inherent in the elliptical input is consistent with a
class in the previous input, the semantic representation of the new entity is
substituted for the semantic representation in the previous input. If not, the ellipsis

is interpreted as a request to display the appropriate information.

Far more sophisticated discourse processing is a high priority not only for our

project but for natural language work altogether.

3.5 Introducing Back end Specifics

The result of linguistic processing in IRUS is a formula in logic. Another
component translates the logical expression representing the meaning of an input into
an expression in an abstract relational algebra. Simple optimizetion of the resulting
expression is performed in the same component. The initial version of that component
(MRLLoERL) [17) used local transformations to translate the n-ary predicates of the
logic into the appropriate sequence of projections, joins, etc. on files and fields of the

data base.

A straightforward, syntax—directed code generator translates the abstract
relational expression into the query language required by the underlying data base
management system. Code generators have been built ‘or System 1022, the Britton-
Lee Data Base Machine, and ORACLE. An experienced person needs only two to three

weeks to create the code generator.

With the move to NIKL and the representation of events and states of affairs as
concepts participating in binary relations, the context-free translation of predicates
to expressions in relational algebra was no longer adequate. However, the limited

inference mechanism [15] of NIKL formed a basis for a simplifier [18] as a preprocess

51

to the MRLtoERL component so that the translation from logic to relational algebra
could still be done using only local transformations. Furthermore, the simplifier
enabled general translation of linguistic expressions whose data base structure bears
little resemblance to the conceptual structure of the English query [18]. We believe
the simplification techniques can be generalized further to support the simplification
of & subclass of expressions in the intensional logic to be generated by the planned

semantic interpreter [19]).

Introduction of back end specitfics for the OSGP application package and the
FRESH expert system is handled by an ad hoc translator from logic to target code at
present.

3.8 Linguistic Knowledge Acquisition

IRUS's four knowledge bases are:

o The lexicon, which states syntactic and morphological information,
o The taxonomy of case frame rules,
o The model of predicates in the domain, stated in NIKL, and

o The transformation rules for mapping predicates in the logic into
projections, joins, etc. of fields in the data base.

The first two of these are linguistic knowledge bases; sophisticated acquisition tools
are available to aid the system builder, though not necessarily trained in Al to build

the necessary linguistic knowledge about the vocabulary.

Powerful knowledge acquisition tools for building these domain-specific
constraints could greatly ease the process of bringing up a natural language interface
for a new application and consequently for broadening the applicability of NLI
technology. Perhaps the most powerful demonstration of acquisition tools to date has
been TEAM [6]. Based on the fields and files of a given data base, TEAM's acquisition
tools lead the individual through a sequence of questions to acquire the specific
linguistic and domain knowledge needed to understand a broad subset of language for
querying the data base. However, since those heuristics are in large part specific to
the task of accessing data bases, that technology coull not be directly applied to the
FCCBMP application, which encompasses a relational data base, an application package

including both map drawing and calculation, and expert systems.

Knowledge acquisition tools for IRUS, developed under earlier DARPA-funded work
at BBN, were not specific to data base applications and therefore could be applied in
the FCCBMP. Even if applicability of the TEAM heuristics were not a problem, there

52

are theoretical and technical difficulties in translating English requests into data base
queries {8] which would argue for a more general approach such as ours. As Scha
[13. 14] has argued, these difficulties, as well as the issues of transportability and
generality, suggest keeping linguistic knowledge rather independent of assumptions
about the back end.

IRACQ. the semantic acquisition tool made available to NOSC for specifying case
frames and their associated translations, is quite powerful. The initial version [11]
allowed one to specify the case frame for a new word sense by giving an example of a
phrase using that word sense For instance, if the admiral, a vessel, and C2 are
known to the system, then one can define a new case frame for deploy by giving a
phrase such as the admiral deployed a vessel C2. The system suggests generalizations
of the arguments specified in the example using the NIKL knowledge base, so that the
inferred case frame is the most general that the user authorizes. For example,
generalizations of admiral are commanding officer, person, and physical object;
generalizations of vessel are unit, platform, and physical object; generalizations of C2
are rating and code. Furthermore, based on the introduction of the more general
knowledge representation system NIKL, IRACQ is being extended to propose the binary
relations that might be part of the translation of the new word. Of course, if the
relations and concepts needed are not already present in the domain predicate model,

the user can define new concepts and relations in the NIKL hierarchy as well.

The availability of such knowledge acquisition tools has made it possible for NOSC
representatives, rather than Al experts, to define the naval language expected as
input. We have found that even with the tool described above, reasonable linguistic
sophistication is very helpful in defining the case frames. In fact, an individual with a
master’s degree in linguistics is defining the case frames at NOSC. More sophisticated
tools, which do not presuppose only one kind of back end, are one of the most
important research topics for natural language interfaces. These would combine the

strengths of the linguistic knowledge acquisition tools of both IRUS and TEAM.

4 Principles Underscored

In the course of the effort, a number of principles have been underscored. Many
of these once stated may appear to be common sense; however, we hope that

illustrating them from our experience will prove helpful.

53

4.1 The Necessity For General Solutions

The availability of domain-independent software driven by domain-dependent,

declarative knowledge bases was of paramount importance because of the following:

o The application was not only broad (three underlying systems) but also
evolving (with a fourth system to be added).

0 Great habitability is necessary for delivery to the Pacific Fleet Command
Center.

o The time frame for demonstration was relatively short compared to the scope
of the underlying systems to be covered.

Furthermore, it is critical that the knowledge bases state a linguistic or domain fact
once and that the domain-independent software be able to use that one fact in all
predictable linguistic variations. The reasons are obvious: the efficiency in building
the knowledge bases, the consistency of stating a fact only once, and the habitability

of the resulting system which can understand things no matter what form they are

expressed in.>

The IRUS system attains the goal mentioned above relatively well; a linguistic or
application constraint is stated once in the knowledge base but applied in all possible
ways in the language processing. This is particularly true because of the substantial
grammar [2, 3] and to a lesser extent due to the semantic interpreter. Recognition of
this fact is part of the reason that substantial changes, as menticned 1n section

three, are planned in the semantic interpreter to meke the linguistic facts that drive

it even more general.

3An interesting anecdote that arose in eorly discussions in the planning of this project
centered around the tight deadiines and the breadth of the application area. Since it was
cleor that one could not cover oll three underlying systems in every orea for which they
could provide information, the question arose whether to focus on a substontiol subpart of
the aopplicotion domain initially or to sacrifice linguistic coverage to gain in coverage of
the underiying systems. Becouse the information needs of the various novy personnel
differed widely, aond becouse the scope of needs seemed impossible to predict, navy personnel
initially suggested thot coverage of all possible information stored in the underlying
systems was of such importance that sacrifices regarding the language understood could be
made even if there were only one woy that o given piece of information could be accessed.
The interesting thing however is that as demonstraotions were given, the first things people
request following the demonstrotion is to try various rephrasings of the requests in the

demonstration, thereby in behavior indicating how importont not being restricted to special
forms is. '

54

4.2 The Necessity of Heuristic Solutions

In the previous section we have argued for the need of general purpose solutions
to problems in NLI. Clearly this cannot be taken to an extreme; otherwise one would
not have an NLI in the foreseeable future, since there are well-known outstanding
problems for which there is no general, comprehensive solution on the horizon.
Consequently, heuristic, state—of—the-art solutions are being demonstrated for
problems such as ambiguity, vagueness, discourse context, ill-formed input, definite
reference, quantifier scope, conjunction, and ellipsis. Though laboratory use of the
system embodying that set of heuristics is quite promising, we expect that placing the
system in the hands of individuals trying to solve their day-to—day problems will
produce interesting corpora of dialogues that cannot be handled by one or more of
those heuristics. Careful study of those corpora will tell us not only the effectiveness

of state—of-the—-art solutions but will also suggest new directions of research.

4.3 The Necessity of Extra-linguistic Elements in a Natural Language Interface

Having only a natural language processor is not sufficient to provide a truly
natural interface. Four elements seem highly valuable for typed input: editing, a
readily accessible history of the session, human factors elements in the presentation,
and a minimum of key strokes. Editing should include more than deleting the last
character of the string and deleting the whole string. We are currently relying on
Emacs, which is readily available on Symbolics workstations. However, that is also
unattractive because of the arcane nature of the link between the myriad control key

commands of Emacs and the actual textual tasks the user needs to perform.

IRUS's on-line history of the session provides reviewing earlier results, editing
the text of earlier requests to create new ones, and generating a standard protocol
for routine operations that occur on a regular basis. Our user community anticipates
a need for both routine sequences of questions as would be useful in preparing daily

or weekly reports, and ad hoc queries, e.g., when crises arise.

Issues in presentation are important as well. No matter what the underlying
application is, IRUS lets it produce output on the complete bitmap screen. A popup
input window and an optional popup history window can be moved to any part of the

screen so that all parts of the underlying system’s output may be visible.

Certain operations occur so frequently that one would like to have them
available on the screen at all times in menus to minimize memory load and key

strokes. Examples are clearing a window and aborting a request.

55

A future capability that would be quite attractive is pointing to individual data
items, classes of data items, field headings, or locations on maps, ceausing the
appropriate linguistic description of that entity to be made available as part of the
natural language input. While this is possible in the future, providing such a

capability is not currently funded.

Speech input as a mode of communication would also be highly desirable, even if
extremely limited initially. As a consequence, the next generation of natural language
understanding systems in the FCCBMP will include modifications specifically to provide

an infrastructure which could at a later date support speech input.

5 Future Possibilities

In addition to the enhancements we'have mentioned earlier regarding the
semantic interpreter, linguistic knowledge acquisition tools, and discourse processing,
there are three substantial areas of research and development possible. First,
research in ill-formed input is necessary in order to allow for additional grammatical
problems in the input and for relaxation of semantic constraints, e.g., to allow for
figures of speech. The problem with an ill-formed input is that there is no
interpretation which satisfies all linguistic constraints. Therefore, the very
constraints that limit search must be relaxed, thereby opening Pandora’s Box in terms
of the number of elternatives in the search space. Not only IRUS, but apparently all
systems that process any ill-formed input attain the success they do by considering
very few kinds of ill-formed input and by assuming that semantic constraints can
never be violated.* Consequently, determining what the user rnieant in an ill-formed

input is a substantial problem requiring research.

Second, we propose exploring perallel architectures to add functional! capability.
Run time performance of IRUS on a Symbolics machine is quite acceptable. Typical
inputs are fully processed to give the target language input to the underlying system
within a few seconds; naturally, the relational deta base and underlying expert
systems are not expected to be able to perform at comparable speeds. There are

three areas where functional performance could be improved by parallelism.

1. The current system ranks the partial parses using both semantic and
syntactic information, and it explores those partial parses based on
following up the most promising one first. The technique is relatively
effective, but clearly not infallible. Finding all interpretations and then

‘Eorly work on ollowing semantic relaxation is reported in [5, 21, 22].

56

ranking them based not only on local syntactic and semantic tests but also
on global semantic, pragmatic, and discourse information is critical to
improving the identification of what the user intended.

2. A second area related to the first, is greater coverage of ill-formed input.
As mentioned earlier, ill-formedness requires relaxing the rules that
constrain search; therefore the search space grows dramatically in
processing an ill-formed input.

3. Real-time, large vocabulary, large branching factor, continuous speech
recognition is beyond the state of the art, and requires highly parallel
machines to support speech signal processing. While this is highly desirable,
it is not part of our current effort.

Within the next two years we intend to replace the ATN grammar with a declarative,

side—effect free grammar and a parallel parsing algorithm, following work reported in

[16].

Third, our evolving system is being interfaced to the Penman generation
component from USC/Information Sciences Institute (USC/ISI) [8]. Penman is based
upon systemic linguistics. The ultimate goal of the effort with USC/ISI is twofold: to
have systems that can understand whatever they generate and to achieve this by
having common knowledge sources for the lexicon, for the NIKL model of domain

predicates, and for discourse information.

6 Conclusions

Though the project will be ongoing for several years yet, there are several
preliminary conclusions from the first year and a half of effort, given the constraints

and goals mentioned in section two.

1. Providing language coverage for this broad application with multiple
underlying systems has not been a problem. However, since determining
what system(s) must be accessed for a given input is a research problem
that has been little addressed, only simple linguistic clues are used in the
current version. The problem in general involves not only reasoning about
the capabilities of the underlying systems [7] but also significant linguistic
issues. For instance, if one says Show me the carriers whose condition code
changed in the last 24 hours, either a list (from the data base) or a map
(from OSGP) is appropriate. If cne says Show me a display of the rarriers
whose condition code changed in the last 24 hours, only OSGP is appropriate.
The linguistic cue is display. Furthermore, some contexts favor one
underlying system over the other, requiring the system to maintain a
dialogue context model, incluuing the user’'s inferred goals in the dialogue,
in order to integrate cues from dialogue context with the linguistic cues.

2. The architecture has supported transportability well. For instance, this -ew
applicetion required only minor changes to the grammar and morphological
analyzer. As FRESH has been further defined and as the data base
structure has evolved, only small local changes have been required to the
content of the knowledge bases. Should a data base machine replace the

57

current data base management system in Hawaii, only two to three person
weeks should be needed to generate the new target language. However,
more sophisticated linguistic knowledge acquisition tools not dependent on
the type of the underlying application system are a critical goal for NLI both
for far greater applicability of the technology and for far broader
availability of NLIs.

The success of this effort as a technology testbed depends on evaluation
after installation at the Pacific Fleet Command Center and on the success of
the architecture to support substantial enhancements, such as the planned
semantic interpreter based on compositional semantics and the planned
parallel parser. However, it already has supported massive changes well,
such as the change in underlying knowledge representation when NIKL was
introduced.

The potential of the testbed is great because it offers empirical research of
a realistic kind unfortunately largely lacking heretofore; the placement of
TQA in the hands of users to solve their daily problems for a year [4] is a
notable exception. The results of research on heuristics for definite
reference; semantic ambiguity; ellipsis; syntactically or semantically ill-
formed input, and inference from world knowledge and context, to name a
few studied in isolation, must be tested in & complete system. The
opportunity in the FCCBMP will help to determine the effectiveness of such
heuristics in a large diverse application domain where combinatorial issues
cannot be ignored. Collecting corpora in an experiment can be highly
instructive, as shown in [20]. However, corpus collection using people
solving their own problems provides an uncommon degree of realism and
legitimacy to the empirical process.

58

(1]

(2]

(3]

(4]

(5

{s)

(7]

(8}

(9]

[10]

References

Bates, M., Stallard, D., and Moser, M.

The IRUS Transportable Natural Language Database Interface.
Ezpert Database Systems.

Cummings Publishing Company, Menlo Park, CA, 1985.

Bobrow, R.J.

The RUS System.

In B.L. Webber, R. Bobrow (editors), Research in Natural Language
Understanding.Bolt, Beranek and Newman, Inc., Cambridge, MA, 1978.

BBN Technical Report 3878.

Bobrow, R. and Bates, M.

The RUS Parser Control Structure.

In Research in Knowledge Representation for Natural Language Understanding,
Annual Report.Bolt Beranek and Newman Inc., 1982.

BBN Report No. 5188.

Damerau, F.J.
Operating Statistics for the Transformational Question Answering System.
American Journal of Computational Linguistics 7(1):30-42, 1981.

Fass, D. and Wilks, Y.
Preference Semantics, [ll-Formedness, and Metaphor.
American Journal of Computational Linguistics 9(3-4):178-187, 1983.

Grosz, B., Appelt, D. E., Martin, P., and Pereira, F.

TEAM: An Ezxzperiment in the Design of Transportable Natural Language
Interfaces.

Technical Report 356, SRI International, 1985.

To appear in Artificial Intelligence.

Kaczmarek, T., Mark, W., and Sondheimer, N.

The Consul/CUE Interface: An Integrated Interactive Environment.

In Proceedings of CHI '83 Human Factors in Computing Sysiems, pages 98-102.
ACM, December, 1983.

Mann, W.C. and Matthiessen, C.M.I.M.

Nigel: A Systemic Grammar for Text Generation.

Systemic Perspectives on Discourses: Selected Theoretical Papers from the 9th
International Systemic Workshop.

Ablex, Norwood, NJ, forthcoming.

Moore, R.C.

Natural Language Access to Databases — Theoretical/Technical Issues.

In Proceedings of the 20th Annual Meetling of the Association for Computational
Linguistics, pages 44—45. Association for Computational Linguistics, June,
1982.

Moser, M.G.

An Overview of NIKL, the New Implementation of KL-ONE.

In Sidner, C. L., et al. (editors), Research in Knowledge Representation for
Natural Language Understanding — Annual Report, 1 September 1982 — 31
August 1983, pages 7—26.BBN Laboratories Report No. 5421, 1983.

59

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

Moser, M.G.

Domain Dependent Semantic Acquisition.

In The First Conference on Artificial Intelligence Applications, pages 13~-18.
IEEE Computer Society, December, 1984.

Sager, N.

The String Parser for Scientific Literature.

In R. Rustin (editor), Natural Language Processing, pages 681-88.Algorithmics
Press, Inc., New York, NY, 1973.

Scha, R.J.H.
English Words and Data Bases: How to Bridge the Gap.
In Proceedings of the 20th Annual Meeting of the Association for Computational

Linguistics, pages 57—59. Association for Computational Linguistics, June,
1982.

Scha, RJH.
Logical Foundations for Question Answering.
Technical Report, Eindhoven: Philips Research Labs, M.S. 12.331., 1983.

Schmolze, J.G., Lipkis, T.A.

Classification in the KL-ONE Knowledge Representation System.

In Proceedings of the Eighth International Joint Conference on Artificial
Intelligence. 1983.

Sridharan, N.S.
Semi—Applicative Programming: Ezamples of Context Free Recognizers.
Technical Report Report No. 6135, BBN Laboratories Inc., January, 1986.

Stallard, D.

Data Modelling for Naturael Language Access.

In The First Conference on Artificial Intelligence Applications, pages 19-~24.
IEEE Computer Society, December, 1984.

Stallard, D.G.

A Terminological Simplification Transformation for Natural Language Question-
Answering Systems.

In Proceedings of the 24th Annual Meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, July, 1986.

To appear.

Stallard, D.G.

Tazonomic Inference on Predicate Calculus Expressions.
Technical Report, BBN Laboratories Inc., 1986.

In preparation.

Thompson, B.H.

Linguistic Analysis of Natural Language Communication with Computers.

In Proceedings of the Eighth International Conference on Computational
Linguistics, pages 190—-201. International Committee on Computational
Linguistics, October, 1980.

Weischedel, R. M. and Sondheimer, N. K.
Meta—rules as a Basis for Processing Ill-Formed Input.
American Journal of Computational Linguistics 9(3-4):161-177, 1983.

Weischedel, R.M. and Sondheimer, N.K.
Relazing Constraints in MIFIKL.
Technical Report, USC/Information Sciences Institute, 1983.

60

(23]

Woods, W.A.
Transition Network Grammars for Natural Language Analysis.
CACM 13(10):591-6086, October, 1970.

61

A Terminological Simplification Transformation for
Natural Language Question-Answering Systems '

David G. Stallard
BBN Laboratories Inc.
10 Moulton St.
Cambridge, MA.
02238

Abstract

A new method is presented for simplifying the logical expressions used to represent
utterance meaning in a natural language system. This simplification method utilizes
the encoded knowledge and the limited inference—making capability of a taxonomic
knowledge representation system to reduce the constituent structure of logical
expressions. The specific application is to the problem of mapping expressions of the
meening representation lenguage to a database language capable of retrieving actual
responses. Particular account is taken of the model-theoretic aspects of this
problem.

1. Introduction

A common and useful strategy for constructing natural language interface systems is
to divide the processing of an utterance into two major stages: the first mapping the
utterance to a logical expression representing its “meaning” and the second producing
from this logical expression the appropriate response. The second stage is not
neccesarily trivial: the difficulty of its design is signifigantly affected by the
complexity anu generalness of the logical expressions it has to deal with. If this issue
is not faced squarely, it may affect choices made elsewhere in the system. Indeed, a
need to restrict the form of the meaning representation can be at odds with
particular approaches towards producing it - as for example the “compositional”
approach, which does not seek to control expression complexity by giving
interpretations for whole phrasal patterns, but simply combines together the meaning
of individual words in a manner appropriate to the syntax of the utterance. Such a
conflict i1s certeinly not desirable. we want to have freedom of linguistic action as well
as to be able to obtain correct responses to utterances.

This paper treats in detail the particular manifestation of these issues for natural-
language systems which serve as interfaces to a database: the problems that arise in a
module which maps the meaning representation to a second logical language for

1The work presented here was supported under DARPA contract #NOQO14-85-C-0016. The views
and conclusions contained in this document ore those of the ocuthor and should not be
interpreted as necessarily representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or of the United States Government. This
paper was originally published in the Proceedings of the 24th Annual Meeting of the
Association for Computational Linguistics, 1-13 June, 1986, Columbia University, New
York. Requests for copies should be addressed to:

Dr.Donald E. walker (ACL)
Bell Communicotions Research
435 South Street MRE 2A379
Morristown, NJ 07960, USA

62

expressing actual database queries. A module performing such a mapping is a
component of such question—answering systems as TEAM [4], PHLIQA1 [7] and IRUS [.].
As an example of difficulties which may be encountered, consider the question "Was
the patient’s mother a diabetic?” whose logical representation must be mapped onto a
particular boolean field which encodes for each patient whether or not this complex
property is true. Any variation on this question which a compositional semantics
might also handle, such as "Was diabetes a disease the patient's mother suffered
from?”, would result in a semantically equivalent but very different-looking logical
expression; this different expression would also have to be mapped to this field. How
to deal with these and many other possible variants, without making the mapping
process excessively complex, is clearly a problem.

The solution which this paper presents is a new level of processing. intermediate
between the other two: a novel simplification transformation which is performed on the
result of semantic interpretation before the attempl is made to map it to the
database. This simplification method relies on knowledge which is stored in a
taxonomic knowledge representation system such as NIKL [5]. The principle behind the
method is that an expression may be simplified by translating its subexpressions,
where possible, into the language of NIKL, and classifying the result into the taxonomy
to obtain a simpler equivalent for them. The result is to produce an equivalent but
syntactically simpler expression in which fewer, but more specific, properties and
relations appear. The benefit is that deductions from the expression may be more
easily "read off’; in particular, the mepping becomes easier because the properties
and relations appearing are more likely to be either those of the datebase or
composable from them.

The body of the paper is divided into four sections. In the first, I will summarize
some past treatments of the mapping between the meaning representation and the

query language, and show the problems they fail to solve. The second section
prepares the way by showing how to connect the taxonomic knowledge representation
system to a logical lenguage used for meaning representation. The third section

presents the "recursive terminological simplification” algorithm itself. The last section
describes the implementation status and suggests directions for interesting future
work.

2. A Formal Treatment of the Mapping Problem

This section discusses some previous work on the problem of mapping between the
logical language used for meaning representation and the logical language in which
actual deatabase queries are expressed. The difficulties which remain for these
approaches will be pointed out.

A common organization for a database is in terms of tables with rows and columns.
The standard formulation of these ideas is found in the relational model of Codd (3],
in which the tables are characterized as relations over sets of atomic data values.
The elements (rows) of a relation are called “tuples’, while its individual argument
places {(columns) are termed its “attributes”. Logical languages for the construction of
queries, such a3 Codd's relational algebra, must make reference to the relations and
attributes of the database.

The first issue to be faced in consideration of the mapping problem is what elements
of the database to identify with the objects of discourse in the utterance — that is,

63

with the non-logical constants? in the meaning representation. In previous work {9] 1
have argued that these should not be the rows of the tables, as one might first think,
but rather certain sets of the atomic attribute-values themselves. [presented an
algorithm which converted expressions of a predicate calculus—based meaning
representation language to the query language ERL, a relational algebra [3] extended
with second-order operations. The translations of non-logicel constants in the
meaning representation were provided by fixed and local translation rules that were
simply ERL expressions for computing the total extension of the constant in the
database. The expressions so derived were then combined together in an appropriate
way to yield an expre.sion for computing the response for the entire meaning
representation expression. If the algorithm encountered a non-logical constant for
which no translation rule existed, the translation failed and the user was informed as
to why the system could not answer his question.

By way of illustration, consider the following relational database, consisting of
clinical history information about patients at a given hospital and of information about
doctors working there:

PATIENTS(PATID,SEX,AGE,DISEASE,PHYS,DIAMOTHER)
DOCTORS (DOC1D, NAME , SEX, SPECTALTY)

where “PHYS" is the ID of the treating physician, and “DIAMOTHER" is a boolean field
indicating whether or not the patient's mother is diabetic. Here are the rules for the
one-place predicate PATIENTS, the one—place predicate SPECIALTIES, and the two-
place predicate TREATING-PHYSICIAN:

PATIENTS => (PROJECT PATIENTS OVER PATID)
SPECIALTIES => (PROJECT DOCTORS OVER SPECIALTY)

TREATING-PHYSICIAN => (PROJECT (JOIN PATIENTS
TO DOCTORS
OVER PHYS DOCID)
OVER PATID DOCID)

Note that while no table exists for physician SPECIALTIES, we can nonetheless give a

rule for this predicate in way that 1s uniform with the rule given for the predicate
PATIENTS.

One advantage of such local translation rules is their simplicity. Another advantage
is that they enable us to treat database question-answering model—theoretically. The
set-theoretic structure of the model is that which would be obtained by generating
from the relations of the database the much larger set of "virtual” relations that are
expressible as formulas of ERL. The interpretation function of the model is just the
translation function itself. Note that it is a partial function because of the fact that
some non-logical constants may not have translations. We speak therefore of the
database constituting a “partially specified model” for the meaning representation
language. Computation of a response to a user's request, instead of being
characterizable only as a procedural operation, beccmes interpretation in such a
model.

A similar model-theoretic approach is advocated in the work on PHLIQA1 {8). in
which a number of difficulties in writing local rules are identified and overcome. One
class of techniques presented there allows for quite complex and general expressions

2This term, while o standard one in formal logic, may be confused with other uses of the
word “constont. [t simply refers to the function, predicote and ordinary constaont symbols,
such as "MOTHER" or "JOHN", whose denotations depend on the interpretotion of the language,
os opposed to fixed symbols |ike "FORALL","AND", “TRUE".

64

M —

to result from local rule application, to which a post-translation simplification process
is applied. Other special-purpose techniques are also presented, such as the creation
of "proxies” to stand in for elements of a set for which only the cardinality is known.

A more difficult problem, for which these techniques do not provide a general
treatment, arises when we want to get at information corresponding to a complex
property whose component properties and relations are not themselves stored. For
example, suppose the query "List patients whose mother was & diabetic”, is
represented by the meaning representation:

(display t(setof X:PATIENT
(forall Y:PERSON (->(MOTHER X Y)
(DIABETIC Y)))))

The information to compute the answer may be found in the field DIAMOTHER above. It
is very hard to see how we will use local rules to get to it, however, since nothing
constructable from the database corresponds to the non-logical constants MOTHER and
DIABETIC. The problem is that the database chooses to highlight the complex property
DIAMOTHER while avoiding the cost of storing its constituent predicates MOTHER and
DIABETIC - the conceptual units corresponding to the words of the utterance.

One way to get around these difficulties is of course to allow for a more general
kind of transformation: a "global rule” which would match against a whole syntactic
pattern like the univerally quantified sub—~expression above. The disadvantage of this,
as is pointed out in [B], is that the richness of both natural language and logic allows
the same meaning to be expressed in many different ways, which a complete ‘“global
rule” would have to match. Strictly syntactic variation is possible: pieces of the
pattern may be spread out over the expression, from which the pattern match would
have to grab them. Equivalent formulations of the query may also use completely
different terms For example, the user might have employed the equivalent phrase
"female parent” 1n place of the word "mother” presumably causing the semantic
interpretation to yield & logical form with the different predicates “PARENT” and
"FEMALE”. This would not match the pattern. It becomes clear that the "pattern-
matching” to be performed here is not the literal kind, and that it involves unspecified
and arbitrary amounts of inference.

The alternative approach presented by this paper takes explicit account of the fact
that certain properties and relations, like "DIAMOTHER", can be regarded as built up
from others. In the next section we will show how the properties and relations whose
extensions the database stores can be axiomatized in terms of the ones that are more
basic in the application domain. This prepares the way for the simplification
transformation itself, which will rely on a limited and sound form of inference to
reverse the axiomatization and transform the meaning representation, where possible,
to an expression that uses only these database properties and relations. In this way,
the local rule paradigm can be substantially restored.

3. Knowledge Representation and Queshon-Answering

The purpose of this section of the paper is to present a way of connecting the
meaning representation language to a taxonomic knowledge representation system in
such a way that the inference—making capability of the latter is available and useful
for the problems this paper addresses. Our approach may be constrasted with that of
others, e.g. TEAM in which such a taxonomy is used mainly for simple inheritance and
attachment duties.

The knowledge representation system used in this work is NIKL {5]. Since NIKL has
been described rather fully in the references, 1 will give only a brief summary here.

NIKL is a taxonomic frame-like system with two basic data structures: concepts and

65

roles. Concepts are just classes of entities, for which roles function somewhat as
attributes. At any given concept we can restrict a role to be filled by some other
concept, or place a restriction on the number of individual “fillers” of the role there.
A role has one concept as its “domain” and another as its ‘“range”: the role is a
relation between the sets these two concepts denote. Concepts are arranged in &
hierarchy of sub-concepts and superconcepts; roles are similarly arranged. Both
concepts and roles may associated with names. In logical terms, a concept may be
identified as the one-place predicate with its name, and a role as the two-place
predicates with its name.

1 will now give the meaning postulates for a term—forming algebra, similar to the one
described in [2] in which one can write down the sort of NIKL expressions I will need.
Expressions in this language are combinable to yield a complex concept or role as
their value.

(CONJ C1 — CN) = (lombda (X) (ond (Ct X) — (Cn X)))

(VALUERESTRICT R C) = (lombda (X) (forall Y (=> (R X Y)
(c Y)))

(NUMBERRESTRICT R 1 NIL) = (lambda (X) (exists Y (R X Y)))
(VRDIFF R C) = (lambda (X Y) (ond (R X Y) (C Y)))
(DOMAINDIFF R C) = (tambda (X Y) (and (R X Y) (C X)))

The key feature of NIKL which we will make use of is its classifier, which computes
subsumption and equivalence relations between concepts, and a limited form of this
among roles. Subsumption is sound, and thus indicates entailment between terms:

(SUBSUMES C1 €2) => (forall X {=> (€2 X) (C1 X)))

If the classifier algorithm is complete, the reverse is also true, and entailment
indicates subsumption. Intuitively, this means that classified concepts are pushed
down as far in the hierarchy as they can go.

Also associated with the NIKL system, though not a part of the core language
definition, is a symbol table which associates atomic names with the roles or concepts
they denote, and concepts and roles with the names denoting them. If a concept or
role does not have a name, the symbol table is able to create and install one for it
when demanded.

The domain model

In order to be able to use NIKL in the analysis of expressions in the meaning
representation language, we make the following stipulations for any use of the
language in a given domain. First, any one—place predicate must name a concept, and
any two-place predicate name a role. Second, any constant, unless a number or a
string, must name an “individual” concept — a particular kind of NIKL concept that is
defined to have at most one member. N-ary functions are treated as a N+1 - ary
predicates. A predicate of N arguments, where N is greater than 2, is reified as a
concept with N roles. This set of concepts and roles, together with the logical
relationships between them, we call the “domain model".

Note that all we have done is to stipulate an one-to-one correspondence between
two sets of things - the concepts and roles in the domain model and the non-logical
constants of the meaning representation language. If we wish to include a new non-
logical constant in the language we must enter the corresponding concept or role in
the domain model. Similarly, the NIKL system’'s creating a new concept or role, and
creation of a name in the symbol table to stand for it, furnishes us with a new non-
logical constant.

66

Axiomatization of the database in terms of
the domain model

The translation rules presented earlier effectively seek to axiomatize the properties
and relations of the domain model in terms of those of the database. This is not the
only way to bridge the gap. One might also try the reverse: to axiomatize the
properties and relations of the database in terms of those of the domain model
Consider the DIAMOTHER field of our sample database. We can write this in NIKL as the
concept PATIENT-WITH-DIABETIC-MOTHER using terms already present in the domain
model: :

(CONJ PATIENT
(VALUERESTRICT MOTHER
DIABETIC))

If we wanted to axiomatize the relation implied by the SEX attribute of the PATIENTS
table 1n our database, we could readily do so by defining the role PATIENT-SEX in
terms of the domain model relation SEX:

(DOMAINDIFF SEX
PATIENT)

These two defined terms can actually be entered into the model, and be treated just
like any others there. For example, they ca:' now appear as predicate letters in
meaning representations. Moreover, to the associated data structure we can attach a
translation rule, just as we have been doing with the original domain model elements.
Thus, will attach to the concept PATIENT-WITH-DIABETIC-MOTHER the rule:

(PROJECT (SELECT FROM PATIENTS WHERE (EQ DIAMOTHER "YES"))
OVER PATID)

The next section will 1illustrate how we map from expressions using “original” domain
model elements to the ones we create for axiomatizing the database, using the NIKL
system and its classifier.

4. Recursive Terminological Simplification

We now present the actual simplification method. It 1s composed of two separate
transformations which are applied one after the other. The first, the "“contraction
phase”, seeks to contract complicated subexpressions (particularly nested
quantifications) to simpler one-place predications. and to further restrict the "sorts”
of remaining bound variables on the basis of the one-place predicates so found. The
second part of the transformation, the ‘'role-tightening” phase, replaces general
relations in the expression with more specific relations which are lower in the NIKL
hierarchy. These more specific relations are obteined from the more general by
considering the sorts ot the variables upon which & given relational predication is
made.

The contraction phase

The contraction phase is an algorithm with three st2ps, which occur sequentially
upon application to any expression of the meaning representation. First, the
contraction phase applies itself recursively to each non-constant subexpression of the
expression. Second, depending upon the syntactic category of the expression, one of
the "pre—simplification” transformations is applied to place it in a normalized form.
Third and finally, one of the actual simplification transformations is used to convert
the expression to one of a simpler syntactic category.

Before working through the example, I will lay out the transformations in detail. In

what follows, X and X1, X2 ——- Xn are variables in the meaning representation language.
The symbol "<rest>" denotes a (possibly empty) sequence of formulae. The expression

67

“"(FORMULA X)" denotes a formula of the meaning representation language in which the
variable X (and perhaps others) appears freely. The symbol “<quant>” is to be
understood as being replaced by either the operator SETOF or the quantifier EXISTS.

First, the normalization transformations, which simply re—arrange the constituents of
the expressions to a more convienent form without changing its syntactic category:

(1) (ond (P1 X1) (P2 X1) — (PN X1)

(Q1 x2) (Q2 x2) — (QN x2)
<rest>)

==> (ond (P’ X1) (Q' X2) <rest>)

where P’ := (CONJ P1 P2 — PN)
and Q° := (CONJ Q1 Q2 — ON)

(2) (<quant> X:S (and (P X) <rest>) ==>

{(<quant> X:S° (ond <rest>))
where S' := (CONJ S P)

(3) (<quont> X:S (P X)) w==>

(<quant> X:S5°)
where S* := (CONJ S P)

(4) (forall X:S (-> (and (P X) <rest>)
(FORMULA X)) =>

(forail X:S' (-> (ond <rest>)
{FORMULA X)))

In (2) and (4) above, the conjunction or implication, respectively, are collapsed out if
the sequence <rest> is empty.

Now the actual simplification transformations, which seek to reduce a complex sub-—
expression to a one—place predication.

(5) (forati x2:5 (—> (R X1 X2) (P X2)))

==> (P' X1)
where P' := (VALUERESTRICT (VRDIFF R S) P)

(6) (exists X2:S (R X1 X2)) ==> (P' X1)

where P' := (VALUERESTRICT R S)
and R must be o functional role

(7) (exists X2:S (R X1 X2)) ==> (P’ X1)

where P* := (NUMBERRESTRICT (VRDIFF R S) 1 NIL)
(8) (ond (P X)) ==> (P X)
(8) (R X C) ==> (P X)

where P := (VALUERESTRICT R C)
and R is functionol, C an individual concept

Now, let us suppose that the exercise at the end of the last section has been carried
out, and thet the concept PATIENT-WITH-DIABETIC-MOTHER has been created and given
the appropriate translation rule. To return to the query "List patients whose mother
was a diabetic”, we recall that it has the meaning representation:

(DISPLAY 4(SETOF X:PATIENTS
(FORALL Y:PERSON

68

(-> {MOTHER X Y)
(DIABETIC Y)))))

Upon application to the SETOF expression, the algorithm first applies itself to the
inner FORALL. The syntactic patterns of none of the pre-simplification
transformations (2) ~ (4) are satisfied, so transformation (5) is applied right way to
produce the NIKL concept:

(VALUERESTRICT (VRDIFF MOTHER PERSON)
DIABETIC)

This 1s given to the NIKL classifier, which compares it to other concepts already in the
hierarchy. Since MOTHER has PERSON as its range already, (VRDIFF MOTHER PERSON) is
just MOTHER agein. The classifier thus computes that the concept specified above is &
subconcept of PERSON — a PERSON such that his MOTHER was a DIABETIC. If this is
not found to be equivalent to any pre-existing concept, the system assigns the
concept a new name which no other concept has, say PERSON-1. The outcome of the
simplification of the whole FORALL is then just the much simpler expression:

(PERSON-1 X)

The recursive simplification of the arguments to the SETOF is now completed, and the
resulting expression is:

(DISPLAY t(SETOF X:PATIENT
(PERSON-1 X)))

Transformations can now be applied to the SETOF expression itself. The pre-
simplification transformation (3) is found to apply. and a concept expressed by:

(CONJ PATIENT PERSON-1)

is given to the classifier, which recognizes it as equivalent to the already existing
concept PATIENT-WITH-DIABETIC-MOTHER. Since any concept can serve as &a sort, the
final simplification is:

(DISPLAY t(SETOF X:PATIENT-WITH-DIABETIC-MOTHER))

This is the very concept for which we have & rule, so the ERL translation 1is:

(PRINT FROM (SELECT FROM PATIENT
WHERE (EQ DIAMOTHER “YES"))
PATID)

Suppose now that the semantic interpretation system assigned a different logical
expression to represent the quety “List patients whose mother was a diabetic"”, in
which the embedded quantification is existential instead of universal. This might
actually be more in line with the number of the embedded noun. The meaning
representation would now be:

(display t(setof X:PATIENT
(exists Y:PERSON (and (MOTHER X Y)
(DIABETIC Y)))

The recursive application of the algorithm proceeds as before. Now, however, the pre-—
simplification transformation (2) may be apphed to yield:

(exiats Y:DIABETIC (MOTHER X Y))

since a DIABETIC is already a PERSON. Transformation (6) can be applied if MOTHER is
a "functional” role - mapping each and every person to exactly one mother. This can
be checked by asking the NIKL system if a number restriction has been attached &t
the domain of the role, PERSON, specifying that it have both a minimum and a maximum
of one. If the author of the domain model has provided this reasonable and perfectly
true fact about motherhood, (6) can proceed to yield.

69

(PATIENT-WITH-DIABETIC~MOTHER X)
as in the preceding example.

The role tightening phase

This phase is quite simple. After the contraction phase has been run on the whole
expression, a number of variables have had their sorts changed to tighter ones. This
transformation sweeps thrrugh an expression and changes the roles in the expression
on that basis. Thus:

(10) (RXY) ==> (R' XY)

where S1 is the sort of X

and S2 is the sort of Y

and R' := (DOMAINDIFF (VRDIFF R S2)
St)

One can see that a use of the relation SEX, where the sort of the first argument is
known to be DOCTOR, can readily be converted to a use the relation DOCTOR~SEX.

Back conversion: going in the reverse direction

There will be times when the simplification transformation will "overshoot”, creating
and using new predicate letters which have not been seen before by classifying new
data structures into the model to correspond to them. The use of such a new
predicate letter can then be treated exactly as would its equivalent lambda-—definition,
which we can readily obtain by consulting the NIKL model. For example, a query about
the sexes of leukemia victims may after simplification result in & rather strange role
being created and entered into the hierarchy:

PATIENT-SEX-1 := (DOMAINDIFF PATIENT-SEX LEUKEMIA—PATIENT)

This role is & direct descendant of PATIENT-SEX, its name is system generated. By the
meaning - postulate of DOMAINDIFF given in section 3 above, it can be rewritten as the
following lambda—abstract:

(1ambde (X Y) (ond (PATIENT-SEX X Y)
(LEUKEMIA-PATIENT X)))

For PATIENT-SEX we of course have a translation rule as discussed in section 2. A
rule for LEUKEMIA-PATIENT can be imagined as involving the DISEASE field of the
PATIENTS table. At this point we can simply call the translation algorithm recursively,
and it will come up with a translation:

(PROJECT (SELECT FROM PATIENTS
WHERE {EQ DISEASE “LEUK"))
OVER PATID SEX)

This supplies us with the needed rule. As a bonus, we can avoid having to recompute
it later by simply attaching it to the role in the normal way. The similar computation

of rules for complex concepts and roles which are already in the domain comes for
free.

5. Conclusions, Implementation Status and Further
Work

As of this writing, we have incorporated NIKL into the implementation of our natural
language question-answering system, IRUS. NIKL is used to represent the knowledge in
a Navy battle-menagement domain. The simplification transformation described in this
peper has been implemented in this combined system, and the axiomatization of the
database as described above is being added to the domain model. At that point, the

70

methodology will be tested as a solution to the difficulties now being experienced by
those trying to write the translation rules for the complex database and domain of the
Fleet Command Center Battle Management Program of DARPA's Strategic Computing
Program.

I have presented a limited inference method on predicate calculus expressions, whose
intent is to place them in a canonical form that mekes other inferences easier to
make. Metaphorically, it can be regarded as "sinking” the expression lower in a
certain logical space. The goal is to push it down to the “level’ of the database
predicates, or below. We cannot guarantee that we will always place the expression as
low as it could possibly go - that problem is undecidable. But we can go a good
distance, and this by itself is very useful for restoring the tractability of the mapping
transformation and other sorts of deductive operations [10].

Somewhat similar simplifications are performed in the work on ARGON [6], but for a
different purpose. There the datebase is assumed to be a full, rather than a partially
specified, mcdel and simplifications are performed only to gain an increase in
efficiency. The distinguishing feature of the present work is its operation on an
expression in & logical language for English meaning representation, rather than for
restricted queries. A database, given the purposes for which it is designed, cannot
constitute a full model for such a language. Thus, the terminological simplification is
needed to reduce the logical expression, when possible, to an expression in a “sub-
language” of the first for which the database is a full model.

An important outcome of this work is the perspective it gives on knowledge
representation systems like NIKL. It shows how workers in other fields, while
maintaining other logical systems as their primary mode of representation, can use
these systems in practical ways. Certainly NIKL and NIKL-like systems could never be
used as full meaning representations - they don't have enough expressive power, and
were never meant to. This does not mean we have to disregard them, however The
right perspective is to view them as attached inference engines to perform limited
tasks having to do with their specialty - the relationships between the various
properties and relations that make up a subject domain in the real world.

Acknowledgements

First and foremost, I must thank Rewko Scha, both for valuable and stimulating
tech *cal discussions as well as for patient editorial criticism. This paper has also
benerited from the comments of Raiph Weischedel and Jos De Bruin. Beth Groundwater
of SAIC was patient enough to use the software this work produced. 1 would like to
thank them, and thank as well the other members of the IRUS pioject — Damaris
Ayuso, Lance Ramshaw and Varda Shaked - for the many pleasant and productive
interactions 1 have had with them.

71

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(sl

(10]

References

Bates, Madeleine and Bobrow, Robert J.

A Transportable Natural Language Interface for Information Retrieval.

In Proceedings of the 6th Annual International ACM SIGIR Conference. ACM
Special Interest Group on Information Retrieval and American Society for
Information Science, Washington, D.C., June, 1983.

Brachman, R.J., Fikes, R.E., and Levesque, HJ.
Krypton: A Functional Approach to Knowledge Representation.
IEEE Compuler, Special Issue on Knowledge Representation , October, 1983.

Codd.E.F.
A Relational Model of Data for Large Shared Data Banks.
CACM 13(8), June, 1970.

Barbara Grosz, Dougles E. Appelt, Paul Martin, and Fernando Pereira.

TEAM: An Experiment in the Design of Transportable Natural-Language
Interfaces.

Technical Report 356, SRI International, Menlo Park, CA, August, 1985.

Moser, Margaret.

An Overview of NIKL.

Technical Report Section of BBN Report No. 5421, Bolt Beranek and Newman Inc.,
1983.

Patel-Schneider, P.F., H.J. Levesque, and R.J. Brachman.

ARGON: Knowledge Representation meets Information Retrieveal.

In Proceedings of The First Conference on Artificial Intelligence Applications.
IEEE Computer Society, Denver, Colorado, December, 1984.

W.J.HJ. Bronnenberg, H.C. Bunt, S.P.J. Landsbergen, R.J.H. Scha, W.J.
Schoenmakers and E.P.C. van Utteren.
The Question Answering System PHLIQA1.

In L. Bolec (editor), Natural Language Question Answering Systems. Macmnillan,
1980.

Scha, Remko J.H.

English Words and Data Bases: How to Bridge the Gap.

In 20th Annual Meeting of the Association for Computational Linguistics,
Toronto. Association for Computational Linguistics, June, 1982.

Stallard, David G.

Data Modeling for Natural Language Access.

In Proceedings of the First IEEE Conference on Applied Artificial Intelligence,
Denver, Colorado. IEEE, December, 1984.

Stallard, David G.
Taxonomic Inference on Predicate Calculus Expressions.
Submitted to AAAI April 1, 1986.

72

SECTION 3: RESEARCH CONTRIBUTIONS
New York Universit y/SDC

Model-based Analysis of Messages about Equipment

Ralph Grishman, Tomasz Ksiezyk, and Ngo Thanh Nhan

Department of Computer Science
Courant Institute of Mathematical Sciences
New York University

ABSTRACT

The aim of PROTEUS -- a system for the analysis of short technical texts -- is to increase the
reliability of the analysis process through the integration of syntactic and semantic
constraints, domain knowledge, and knowledge of discourse structure. This system is
initially being applied to the analysis of messages describing the failure, diagnosis, and repair
of selected pieces of equipment. This has required us to develop a detailed model of the
structure and function of the equipment involved. We focus in this paper on the nature of
this model and the roles it plays in the syntactic and semantic analysis of the text.

73

1. Iatroduction

Considerable progress has been made in developing systems which understand short
passages of technical text. Several prototypes have been developed, for such domains as
paticnt medical records [Sager 1978], equipment failure reports [Marsh 1984}, and
intelligence messages [Montgomery 1983]. Except for very narrow domains such as weather
reports, however, none of these systems scem to be robust enough for operational use.
Typical success rates - where any are reported - are in the range of 70 to 80% of sentences
correctly analyzed; substantially beiter rates are very hard to obtain, even with careful system
tuning!.

Our objective in developing PROTEUS (the PROtotype TExt Understanding System) is
to see if this rate can be substantially improved for a domain of moderate complexity. In
order to achi~v- this improvement, we must bring to bear on the language analysis task the
vario s syntactic, semantic, and discourse constraints, along with a fairly detailed knowledge
of the domain of discourse. Our system is initially being applied to equipment failure reports
("CASREPs") for selected equipment on board Navy ships (initially, the equipment in the
starting air system); a sample message is shown in Figure 1. In this case, the domain
knowledge is the knowledge of the structure and function of these pieces of equipment.

In this paper we first present an overview of the PROTEUS system. We then focus on
the domain information: how it is represented, how it is integrated with the language
processing, and how it serves to resolve ambiguities in the input text.

2. Prior work

New York University has been involved in the automated analysis and structuring of
technical text for over a decade. Most of this work has been on medical records [Sager 1978,
Hirschman 1982, but we have also been involved with the Naval Research Laboratory on a
system for CASREP’s {Marsh 1984]). These systems used domain-specific frame-like target
structures, and employed selectional constraints to weed out bad parses, but did not
incorporate detailed domain models. Our experience with these systems - in particular, the
difficulty of obtaining success rates (% of sentences correctly analyzed) much above 75% -
led us to our work on PROTEUS.

The use of detailed domain models in language processing systems is, of course, not
new. Script-based systems, and some of the frame-based language analysis systems, have
been motivated by a desire to incorporate detailed domain knowledge. The task we confront,
however, differs in several regards from those of earlier systems. One is the matter of scale;
our initial set of equipment - the starting air system for a gas turbiae - includes several
hundred separately nameable components (and many lesser components, such as bolts and

DURING NORMAL START CYCLE OF 1A GAS TURBINE, APPROX 90 SEC
AFTER CLUTCH ENGAGEMENT, LOW LUBE OIL AND FAIL TO ENGAGE
ALARM WERE RECEIVED ON THE ACC. (ALL CONDITIONS WERE
NORMAL INITIALLY). SAC WAS REMOVED AND METAL CHUNKS
FOUND IN OIL PAN. LUBE OIL PUMP WAS REMOVED AND WAS FOUND
TO BE SEIZED. DRIVEN GEAR WAS SHEARED ON PUMP SHAFT.

Figure 1. A sample CASREP about a starting air compressor (SAC).

'Substantially better rates have been cited for strongly expectation-based parsers. which are considered
successful if they locate all the expected items within an input text.

74

gear teecth, without specific names). While not raising any intrinsic difficulties, a domain of
this size clearly provides a more rigorous test of our ability to acquire and organize domain
knowledge than did many earlier “toy” domains.

Another unusual aspect is the nature of the domain information. Scripts, for example,
encode essentially procedural information (how to perform complex actions). The
information for our domain, in contrast, is primarily structural (part-whole relationships,
interconnections, etc.) and to a lesser degree functional. This difference is reflected in
differences in the way the information is used - in particular, in the analysis of noun phrases,
as we shall see below. Our domain information bears greater resemblance to that used in
some equipment simulation packages (¢.g., STEAMER [Hollan 1984]) and diagnosis
packages [Cantone 1983] than it does to that conventionally seen in natural language systems.

The domain knowledge plays a role in many phases of the language processing task: in
the recovery of implicit operands and intersentential relations, in the analysis of noun-phrase
reference, and in the determination of syntactic and semantic structure. In particular, we
shall consider below its role in the processing of compound nominals, which appear
frequently in such technical domains. There have been several prior studies of the processing
of such compounds. The work both of Brachman [1978} and of McDonald and Haves-Roth
[{McDonaid 1978] emphasized the use of search procedures within semaniic networks to
identify the wide variety of implicit relations possible with compound nominals. We have
also used network search techniques, although of a more directed sort. However, their work
cited isolated examples from a variety of areas to show the generality of their approach,
while we have been concerned with achieving detailed and thorough coverage within a
narrower domain. Finin {1980, 1986} has sought to develop, within a sublanguage, general
semantic categories for the relations and consituents involved in compounds. Although there
are some similarities to our classification efforts, he also has aimed at providing a relatively
broad and loose set of constraints. In contrast, the detailed knowledge in our equipment
model -- provided for several purposes. of which noun phrase interpretation is only one --
make possible much tighter constraints in our system.

3. System overview

The PROTEUS system has three major components: a syntactic analyzer, a semantic
analyzer, and a discourse analyzer. The syntactic analyzer parses the input and regularizes
the clausal syntactic structure. The semantic analyzer converts this to a “logical form”
specifying states and actions with reference to specific components of the equipment. The
discourse component establishes temporal and causal links between these states and actions.

Initial implementations have bees completed of the syntactic and semantic components,
so that we are able to generate semantic representations of individual sentences. The
discourse component is still under development, and so will not be discussed further here.

The syntactic analyzer uses an augmented-context-free grammar and an active chart
parser. The grammar is generally based on linguistic string theory and the Linguistic String
Project English Grammar [Sager 1981) and includes extensions to handle the various sentence
fragment forms found in these messages [Marsh 1983]; it is written in a modified form of the
Restriction Language used by the NYU Linguistic String Parser [Sager 197S5]. Syntactic
regularization maps the various forms of clauses (active, passive, relative, reduced relative,
fragmentary) into a canonical form (verb operandi, operand2...) The regularization is
performed by a set of interpretation rules which are associated with the individual
productions and which build the regularized syntactic structure compositionally .’

on procedures were develaped hv Jean Mark Gawron The
regularization procedures were modeled after those developed tor a GPSG parser IGawron 1982}, although the
generated structures are quite different.

ine paisdei aid sy nitaclic TLg

75

The semantic analysis component consists of two parts: clause semantics and noun phrase
semantics. The clause semantics maps a clause (a verb plus operands which include syntactic
case labels) into a predicate with arguments representing a state or action. Each verb and
operand belongs to one or more semantic classes. Clause semantics relys on a set of pattern-
action rules to perform the translation. with one pattern for each valid combination of verb
and operand classes. Noin phrase semantics maps a noun phrase into the identifier of the
e¢quipment component specified by that phrase. Noun phrase semantics depends heavily on
the equipment model, and so will be discussed further in a later section.

(The division between the two parts of semantic analysis is not quite so neat as the
foregoing would suggest. Some noun phrases are nominalizations representing states or
actions; these are processed by clause semantics. In many noun phrases, some modifiers
identify the object and the remainder describe its state. For example, in "broken hub ring
gear”, hub and ring identify the gear, broken describes its state. We return to this problem in
our description of noun phrase semantics below.)

Our long-term objective is to dynamically schedule among the three analysis
components (svntax, semantics, and discourse), as is done in some blackboard models. For
program development, however, we have found it hetter to use a sequential organization
(first syntax, then semantics, then discourse). In order to have syntactic choices influenced
by semantics and discourse, and semantic choices influenced by discourse, each component
may generate multiple analyses, some of which are rejected by later stages. Sometime these
multiple analyses are transmitted explicitly, as a list of alternatives. More often, however,
they are transmitted using a representation neutral with respect to particular features. The
output of syntactic analysis is neutral with respect to quantifier scope. It is also neutral with
respect to the distribution of modifiers in conjoined noun phrases (for example, in “filter
change and adjustment of pressure regulator,” whether filter modifies adjustment and of
pressure regulator modifies changej. Furthermore, it does not assign structure to prenominal
adjectives and nouns (so for example, in the phrase "low lube oil pressure alarm” it does not
decide whether low modifies lube, oil, pressure, or alarm).

This system development has been conducted . close cooperation with a group at the
System Development Corp., Paoli, PA. Their system, PUNDIT [Palmer 1986], is written in
PROLOG but has many points of commonality with PROTEUS in terms of overall structure,
grammar, and semantic representation. They are involved in future development of several
areas, inciuding semantic representation, time analysis, and anaphora resolution, for both the
PUNDIT and PROTEUS systems.

4. The equipment model

The equipment model currently serves three functions within our system:

object identification. The noun phrases in the message are matched against the model (by a
procedure outlined in the mext section) in order to identify the objects referenced in the
message. This is important both for syatactic disambiguation and as a prelude to applying
domain-specific inferences.

identification of intersentential relations. The identification of these relations (temporal,
causal, and others) is important both for disambiguation (of adjuncts and anaphoric
references, in particular) and for establishing the meaning of the message as a whole. Much
of the information needed for this process - information on the structure of the equipment
and the function of its components - is recorded in the equipment model.

display of equipmens structure and siarus. In uider to provide sume fecdback 10 indicaic

whether the text was correctly understood, our system displays a structural diagram of the
equipment at several levels of detail. Objects mentioned in the text, and changes in

76

equipment status described in the message, can be shown on the display. The information
for generating these displays (positions, shapes, etc.) is stored with the equipment model.

The messages refer to relatively low-level comp nents, such as individual gears within the air
compressor. We therefore had to constuct a relatively detailed model of the equipment
involved. Our model has been developed through a study of the Navy manuals for this
equipment.

The model is basically organized as two hierarchies: a type-instance hierarchy and a
part-whole hierarchy. The leaves of the part-whole hiecrarchy are called basic parts,; the
internal nodes (composite objects) are called systems. We record for each system the primary
medium which it provides, conveys, or transforms; in our starting air system, the three media
are compressed air, lubricating oil, and mechanical rotation. We have organized our part-
whole hierarchy in part along functional lines (rather than purely on physical proximity),
grouping together parts which are connected together and operate on the same medium.

Since some parts are identified by their physical location, we provide a location field in
both basic part and system nodes. Both types of nodes also have a function field, which
indicates the effect of this part on the media or other parts. Nodes of specific types may
have additional fields; for example, some mechanical components have a speed field.

All of the fields just mentnoned record permanent characteristics of the parts. In
addition, each node has an operanonal-status field, which holds information about a part
which is reported in a message.

The model contains a lot of information about equipment structure which is specific to a
particular piece of equipment. Some information, however, is more general: for example,
that gears have teeth,or that impellors have blades. It would be most uneconomic to have a
separate instance of tooth for each gear in the model. Instead we create an instance of the
teeth for a specific gear when it is referenced in the text. Such very-low-level objects, which
are instantiated dynamically as needed, are called components.

The equipment model has been implemented using flavors on a Symbolics LISP
Machine. Types of objects are represented by flavors; instances of objects are represented by
instances of flavors. The part-whole hierarchy and other fields are stored in instance
variables. The structure display is performed by procedures associated with the flavors. The
equipment model, and its use in the system, are described in more detail in [Ksiezyk 1986].

5. Noun phrase analysis

The syntactic analysis component analyzes the clause structure and delimits the noun
phrases, but does not assign any structure to the pre-nominal modifiers. The noun phrase
analyzer within the semantic component therefore has a dual role: to determine the structure
of the pre-nominal modifiers and to identify the instance in the equipment model named by
the noun phrase (or the set of instances, if this phrase could be applied to any of several
parts). (Although there are a limited number of instances, it is not possible to record a single
name for each part and then interpret noun phrases by simply looking the name up in a table.
A single part can be named in many different ways -- depending in part on prior context -- so
a full-fledged interpretation procedure is required.)

The noun phrase is analyzed bottom-up using a set of reduction rules. Each reduction
rule combines the head of a phrase with some of its modificrs to form a larger constituent.
By reference to the model, each rule also determines the set of instances which con be named
by the constituent; if the set is empty, the application of the rule is rejected. Reductions are
performed repeatedly until the enrire phrase is reduced to 2 cingle constituent If no such
reduction is possible, the syntactic analysis is rejected; in this way noun phrase semantics can
weed out some incorrect syntactic analyses.

77

The applicable reductions are determined by the dictionary entries for the words in the
noun phrase. Each word is assigned two properties, its model class and its semantic class.
The model class indicates how the word can be related to some entity in the domain model.
One value of model class is instance, specifying that the word names a set of instances in the
model; this set is also included in the dictionary entry. Examples are "pump”, “shaft”,
“gear”, etc. Larger constituents built while analyzing the noun phrase are also considered to
be of type instance. One reduction rule allows us to combine two instances:

instance -~ instance - instance

for example, "LO" + "PUMP" - "LO PUMP", “SAC" + ("LO PUMP") - "SAC LO
PUMP". The set of model instances for the result consists of those instances of the second
constittent which can be linked through some path in the model to some instance of the first
constituent. The types of links traversed in the search are a function of the semantic class of
the first constituent; for example, "SAC" has the semantic class machinery, so we search the
partwhole links, the location links, and the from/to links (which tie together components of
the same system).

There are scveral other model classes and corresponding reduction rules. The class
slot-filler is used for wards which are values of features of instances, but are not themselves
instances (for example, "LUBE" in the phrase "LUBE OIL"). The class slot-name is used for
words which correspond to fcature pnames, such as "SPEED" in "HIGH SPEED
ASSEMBLY". The class component is used for parts which (as explained in the previous
section) are not instantiated in the permanent equipment model but can be instantiated
dynamically as needed.

Modifiers describing the state of a part, such as "cracked” or “sheared”, are handled
differently. If noun phrase semantics gets the input "sheared ring gear” it will look for an
instance of ring gear with the operational-state “sheared”. Such an instance would be present
if a previous sentence had mentioned that a gear was sheared. If such an instance is found, it
is identified as the correct referent; noun phrase semantics has in effect done anaphora
vesolution. If no instance is found, noun phrase semantics returns the instances of “ring
gear” and the left-over modifier "sheared”. Clause semantics (which invokes noun phrase
semantics) then treats this like a clause "ring gear was sheared”; later in the processing of this
sentence, this will cause “sheared” to be assigned as the operational-state of ring gear.

A related technique can be used to handle some of the ambiguities in cojoined noun
phrases. For example, in the sentence "INVESTIGATION REVEALED STRIPPED LO
PUMP DRIVE AND HUB RING GEAR", iyatax alone cannot determine which of the
modifiers "STRIPPED", "LO", "PUMP", or "DRIVE" also modify "HUB RING GEAR". So
syntax marks these as possibly applicable to "HUB RING GEAR" and passes the phrase to
semantics. If semantics finds that some of these modifiers cannot be integrated into the noun
phrase, they will be ignored, thus implicitly resolving the syntactic ambiguity.

6. Conclusion

We have described a new text-processing system, PROTEUS, for analyzing messages
about equipment failure. We have focussed on its equipment model and the role of this
model in the process of interpreting of noun phrases. This process is part of semantic
analysis but also plays a role in syntactic analysis and discourse analysis.

In addition to the elaboration of the existing components, substantial work will be
required in at least two areas before we can hope to obtain a robust text processing system.
First, we are developing a discourse component to identify temporal and plausible causal
links between sentences. This information is needed not only for some of the applicauons
(e.g., message summarization) but also to resolve some of the syntactic and semantic
ambiguities in the messages. Second, we will need to move from a pass/fail strategy for
enforcing our constraints to a best-fit strategy. Because of imperfections in the input, and the

78

inevitable omissions in a model as complex as ours, we must expect that many messages will
violate one or another constraint; by employing a rich set of constraints, however, and
sclecting the analysis which violates the fewest constraints, we beleive that we will be able to
identify the intended reading for most sentences.

The initial motivation for the system has been the conversion of a stream of messages to
a data base for subsequent querying, summarization, and trend analysis. However, the use
of a detailed equipment model, similar to that employed in simulation and diagnostic
systems, suggests that it may be equally useful as an interface for such systems. A diagnostic
system, for example, would then be able to accept initial observations in the form of a briet
textual summary rather than force the user to go through an elaborate questionnaire; this
may be a substantial advantage for broad-coverage diagnostic systems, which must be able to
accept a wide variety of different symptoms.

Acknowledgement

This research was supported in part by the Defense Advanced Research Projects
Agency under contract N0O0014-85-K-0163 from the office of Naval Research, and by the
National Science Foundation under grant DCR-85-01843.

79

REFERENCES

[Brachman 1978] Brachman, R. A. A structured paradigm for representing knowledge.
Tech. Rep. No. 3605, Boit Beranek and Newman Inc., Cambridge, MA.

[Cantone 1983] Cantone, R., Pipitone, F., Lander, W. B., and Marrone, M. Model-
based probabilistic reasoning for electronics troubleshooting. Proc. Eighth Initl. Joint Conf.
Artificial Intelligence, Karlsruhe, West Germany.

[Finin 1980) Finin, T. The semantic interpretation of compound nominals. Proc. First
National Conf. on Artificial Intelligence. Stanford, CA., Am. Assn. of Artificial Intelligence.

[Finin 1986) Finin, T. Nominal compounds in a limited context. In Analyzing Language
in Restricted Domains, R. Grishman and R. Kittredge, Eds. Lawrence Erlbaum Assoc.,
Hillsdale, NJ.

[Gawron 1982) Gawron, J. M., King, J. J., Lamping, J., Loebner, E. E., Paulson, E.
A., Pullum, G. K., Sag, I. A., and Wasow, T. A. Processing English with a generalized
phrase structure grammar. Proc. 20th Annual Meeting Assn. Computational Linguistics,
Toronto, Canada.

[Hirschman 1982] Hirschman, L., and Sager, N. Automatic information formatting of a
medical sublanguage. In Sublanguage: Studies of Language in Restricted Domains, R.
Kittredge and J. Lehrberger, Eds. Walter de Gruyter, Berlin.

(Hollan 1984 Hollan, J., Hutchins, E., and Weitzman, L. STEAMER: an interactive
inspectable simulation-based training system. A/ Magazine, Summer 1984, 15-27.

{Ksiezyk 1986] Ksiezvk, T. An equipmeat model and its role in noun phrase
interpretation. Submitted to ACM Conf. on Object Oriented Programming Systems, Languages,
and Applications, Portland, OR.

[Marsh 1983) Marsh, E. Utilizing domain-specific information for processing compact
text. Proc. Conf. Applied Natural Language Processing, Santa Monica, CA.

[Marsh 1984| Marsh, E., Hamburger, H., and Grishmaun, R. A production rule system
for message summarization. Proc. 1984 National Conf. on Aruficial Intelligence, Austin, TX,
Am. Assn. of Artificial Intellgience.

[McDonald 1978] McDonald, D., and Hayes-Roth, F. Inferential searches of
knowledge networks as an approach to extensible language understanding systems. In

Pattern-directed inference systems, Waterman and Hayes-Roth, Eds. Academic Press, New
York.

[Montgomery 1983] Montgomery, C. Distinguishing fact from opinion and events from
meta-events. Proc. Conf. Applied N« ...ral Language Processing, Santa Monica, CA.

{(Palmer 1986] Palmer, M., Dahl, D., Schiffman, R., Hirschman, L., Linebarger, M.,
aad Dowding, J. Recovering implicit information. To appear in Proc. 1986 Anni. Conf.
Assn. Computational Linguistics, New York, NY.

[Sager 1975]) Sager, N., and Grishman, R. The restriction language for computer
grammars of natural language. Comm. Assn. Computing Machinery 18, 390-400.

[Sager 1978] Sager, N. Natural language information formatting: the automatic
conversion of texts to a structured data base. Advances in Computers 17, 89-162.

(Sager 1981} Sager, N. Natural Language Information Processing. Addison-Wesley,
Reading, MA.

80

An Equipment Mode! and its Role in the Interpretation of Nominal Compounds

Tomasz Ksiezyk and Ralph Grishman

Department of Computer Science
Courant Institute of Mathematical Sciences
New York University
251 Mercer St.

New York, New York 10012
(212) 460-7446, (212) 460-7492

Abstract

For natural language understanding systems designed for domains including relatively
complex equipment, it is not sufficient to use general knowledge about this equipment.
We show problems which can be solved only if the system has access to a detailed
equipment model. We discuss features of such models, in particular, their ability to
simulate the equipment’s behavior. As an illustration, we describe a simulation model
for an air compressor. Finally, we demonstrate how to find referents in this model for
nominal compounds.

1. Introduction
The work presented here is part of the PROTEUS (PROtotype TExt Understanding
System) system currently under development at the Courant Institute of Mathematical
Sciences, New York University.! The objective of our research is to understand short natural
language texts about equipment. Our texts at present are CASualty REPorts (CASREPs)
which describe failures of equipment installed on Navy ships. Our initial domain is the
starting air system for propulsion gas turbines. A typical CASREP consists of several

sentences, for example:
Unable to maintain lube oil pressure to SAC [Starting Air Compressor]. Disengaged
immediately after alarm. Metal particles in oil sample and strainer.

It is widely accepted among researchers that in order to achieve natural language
understanding systems robust enough for practical application, it is necessary to provide them
with a lot of common-sense and domain-specific knowledge. However, s~ far, there is no
consensus as to what is the best way of choosing, organizing and using such knowledge.

The novelty of the approach presented here is that, besides general knowledge about
equipment, we also use a quite extensive simulation model for the specific piece of
cquipment which the texts deal with. We found that for understanding purposes it is more
appropriate to make the simulation qualitative rather than quartative. Thus, for example, we
are not interested in the precise value of oil pressure, but only whether it is too low or too
high. The model is built from instances of prototypes which contain the bulk of general
knowledge. It exists in the system permanently. In this situation the analysis of a piece of text
consists of two stages: (1) locating in the model the objects mentioned in text; (2) interpreting
the text using both the specific information residing in the model and the general knowledge
which is accessible from the model. There is no clear-cut distinction between these two stages
(see discussion of the examples in the next section).

! An overview of the system is given in {Grishman 1986}, submitted to the AAAI-86.

81

We see the following merits of having a simulation model:

(a) the model provides us with a reliable background against which we can check the
correctness of the understanding process on several levels: finding referents of noun phrases,
assigning semantic cases to verbs, establishing causal relationships between individual
senteaces of the text.

(b) the requirements of simulation help us to decide what kind of knowledge about the
equipment should be included in the model, how it could best be organized and which
inferences it should be possible to make. It appears that the information needed for
simulation largely coincides with that necessary for language understanding.

(c) the ability to simulate the behavior of a piece of equipment provides a very nice
verification method for the understanding process at the level of interaction with a user - it is
relatively straightforward to build a dypamic graphical interface which allows the user to
have a friendly insight in the way his input has been understoood by the system.

In the remainder of the paper we will show examples of problems which can be solved only
if the system has access to some kind of a simulation model of the domain equipment.
Having demounstrated the need for such 2 model, we will discuss the design decisions which
we found important for our domain and which seem to apply generally for complex
equipment. How these considerations influenced the model for the SAC may be seen in the
next section. Then we present a method of finding referents in the model for nominal
compounds describing SAC’s components. Finally, we briefly describe our future work.

2. Need for a Model

In most natural language understanding systems the knowledge about the domain of
discourse is organized n the form of prototypes for objects and actions, and for the relations
between them which are relevant for the domain. The prototypes are repositories for
knowledge about the instances they subsume. This knowledge is highly structured - there are
maony links through which apparently distant concepts may be connected. The text is
processed on a sentence by sentence basis. Usually, ecach sentence is split into linguistic
entinies with syntactic and semantic information attached. This information is used to
determine the prototype for each entity. Through these prototypes there is access to general
information about the concepts invoked by the sentence. This information is often necessary
for the adequate interpretation (i.e. understanding) of the sentence. To account for the fact
that the understanding of an utterance depends sometimes on the context in which the
utterance is sct, it is necessary to maintain information about the discourse context. One way
of organizing this information is by creating and storing instances of prototypes for enptities
from the text as they come under analysis. The combined information coming from the
context and from the processed sentence is used to solve problems likc anaphora resolution,
connectivity, etc.

Assuming this approach, let’s consider the following sentence (let it be the first sentence in

the analyzed text):
Starting air regulating valve failed.

Having completed the syntactic and semantic analysis of the sentence, we would recognize
starting air regulating valve as an example of the prototype regulating valve. We would then
fetch tts description and create an instance of a regulating valve. Next, using the general
knowledge about valves (of which regulating valve is a more specific case), and the semantic
infortination about starting air, we would modify the just created instance with the fact that
the substance the valve regulates is starting air. From the syntactic analysis we would know
that starting air regulating valve is the subject of verb fail. Using the prototype of the action
fail, we would create its instance and possibly also would further modify the instance of the
valve so that the fact about its operational state is recorded. These two instances would now
coostitute the discourse context so far. Now, suppose the message continues with the
sentence:

82

Unable to consistently start nr 1b turbine.
The processing would be similar to what has been described above for the first sentence. We
would create an instance of a gas turbine, would fill its proper name slot with ar /b and
finally use the instance as an argument in another instance recording the finding about start
problems.

These two sentences come from an actual CASREP. In the starting air system (our initial
domain) there are three different valves regulating starting air. Two questions might be
posed in connection with this short, two-sentence text: (1) which of the three valves was
meant in the first sentence? (2) could the failure of the valve mentioned in the first sentence
be the cause of the trouble reported in the second sentence?

The general knowledge of equipment may tell us a lot about failures, such as: if a
machinery clement fails, then it is inoperative, or if an element is inoperative, then the
element of which it is part is probably inoperative as well, etc. Unfortunately, such
knowledge is not enough: there is no way to answer these two questions (not only for an
artificial understanding system, but even for us, humans) without access to rather detailed
knowledge about how various eclements of the given piece of equipment are interconnected
and how they work as an enscmble. In our case we could hypothesize (using general
knowledge about text structures) that there is a causal relationship between the facts stated in
the two sentences. To test this, we would have to consider each of the three valves in turn
and check how its inopecrative state could affect the starting of the specific (i.e. nr 1b)
turbine. If one of the three valves, when inoperative, would make the turbine starting
unrehiable, then we could claim that this valve is the proper referent for the starting air
regulating valve mentioned in the first .2ntence. This finding would let us also answer
question (2) affirmatively.

The above example, as well as others of similar nature, demonstrate that in cases where
the domarn is very specialized and complicated (a typical situation for real-life equipment),
language understanding systems should be provided not only with general knowledge about
the equipment but also have access to its model.

With an equipment mode! available, the processing of the two sentences would change: for
the first sentence, instead of building a new description for the starting air regulating valve,
we would rather try to find an object / objects in the model which could be described by this
noun phrase. We would treat ar /b gas turbine similarly. The semantics of start weculd be a
kind of simulation procedure defined for the model. Now, let’s consider problems (1) and (2)
again. Viewing nr Ib as a proper name, we should easily find the object in the model which
corresponds to the referred turbine. The analysis of starting air regulating valve would leave
us with three pointers to the three objects in the model corresponding to the three starting air
regulating valves in the equipment. In order to resolve this ambiguity we could make the
following assumption, which seems very reasonable:

Suppose first, that the valve’s failure has indeed caused problems for the

turbine. Now, if we coafirm that at least one among the three valves, if

inoperative, bas this effect, then our assumption was correct and we found the

right referent(s); if none of the three valves has any impact on the turbine, then

our assumption was wrong: it answers question (2) negatively and leaves (1) sull

open. '
Then we would proceed with the confirmation phase, considerirg each of the three candidates
scparately. We would temporarily set its operational state t¢ [INOPERATIVE, initiate the
START procedure, and then check whether the functional state of the nr /b gas turbine in thc
modei has been set to RUNNING (for simplicity reasons let’s assume that there is no
consistently adverb in the second sentence). If for all three simulation experiments we wind
up with the value RUNNING for the turbine, then we must conclude that there is no causal
relationship between the sentences Otherwise, we would claim to have found the right
referent for the valve. Having unambiguously located the object referred to in the first
sentence, we would modify its operational state accordingly.

83

| o SR SRR

E

ll= Sy

L E s
s 2
22 it e

‘CROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

3. Characteristics of an Equipment Model

In the preceding section we tried to show that general knowledge about equipment is by
itself not enough to solve some problems of understanding. The decision to provide
PROTEUS with an equipment model confronted us with a new question. Where and how to
draw a division line between the knowledge about equipment in general and a model of a
specific piece of equipment? The ultmate objective of our research is to design PROTEUS in
such a way that it may be adapted easily to new equipment. Clearly, the model has to be built
ancw cach time we want to use PROTEUS for a new piece of equipment. The general
knowledge, on the other hand, should undergo, in such cases, only a slight extension due to
the new types of components in the new equipment. For example, moving from the starting
air system to the main reduction gear, we would have to build a new model for the gear, but
while doing this, we should be able to use many of the structures designed for modelling
components which also c¢ccured in the starting air system, like bearings, lubrication system
clements, etc. This g . can be achieved using prototypes and their instances: the model
would be built of instances of prototypes. The prototypes would constitute part of the
general knowledge data base. In the instances we would store only the information which is
specific to the object described by the instance. For example, in case of a gearbox, the
information about its function (i.c. speed change) should be stored in the prototype, and only
the ratio of this change should reside in the instance of a specific gearbox. Also the
information about how a specific gearbox is used in the domain equipment must be kept in
the instance. Of course, the prototype-instance scheme ensures that all the general knowledge
connected with the prototype is also accessible from instances of this prototype. We found
the rich repertoire of programming tools constituting the flavor system in Symbolics-Lisp a
very convenient vehicle for implementing this strategy.

On the level of protorypes we should apply the principle of generality as well. Hence, for
example, we should consider the prototype of a regulating valve as a special case of a valve
and have the knowledge characteristic for all possible types of valves connected with the
valve prototype. This knowledge could then be propagated down in the hierarchy if
necessary. Because the problems of structuring knowledge in the form of prototypes have
been extensively investigated (research on frames, scripts, semantic nets, ctc.), we won't
claborate on this here. We will comment on only one aspect of the hierarchy of prototypes. It
scems to us that, for purposes of equipment modelling, this hierarchy should bave the
structure of a graph rather than of a tree: its nodes should be allowed to have more than just
one immediate parent. We mentioned already that there are regulating valves in our
equipment. These are valves whose function is to regulate the medium in some manner,
usually changing one of its parameters, like pressure or temperature. We also have other
valves whose function is different, for example relief or shut-off valves. Thus, is it
conceivable to divide valves into classes according to their function. However, this is not the
only dimension along which classification is possible. Valves may be also categorized
according to their operating principle as electric, hydraulic or pneumatic valves. Now, the
problem with a tree-like taxonomy is that we have to arrange the dimensinns linearly: if we
decide to consider the functional aspect first, we will have to repeat the division according to
the operational aspect at each node of the functional level of the hierarchy tree. With the
reversed order of dimensions the problem remains the same. It would be therefore much
better to allow a node in the hierarchy to inherit properties from more than one immediately
preceding node. The flavor system, with its mechanism allowing flavors to be mixed, proved
to be very helpful here.

It's obvious that any real-life equipment deserving a natural language front end is big and
complex For example, the starting air system (our initial domain) consists of several
hundred elements each of which may be referred to by its descriptive name and be mentioned
in a casaully report A good measure of the system's complexity is the size of its description
1 the ship's manual: 28 pages of text, figures and tables. What is the best way of organizing

84

~

this vast amount of data into a managable model? Clearly, some simplification is
unavoidable. How much? Let us address the former problem first. A salient feature of a
piece of equipment is its task, i.c. what it should do. Generally speaking, all complex
equipment may be viewed as processors of something - if this something is changed
qualitatively into something else (e.g. fuel into rotary movement) we may speak of
generators; if only some parameters of this something arc changed (e.g. low-pressure air into
high-pressure air) we may speak of transformers. Usually only part of the equipment's
components are directly involved in this primary task. The rest are there to ensure that
special conditions are created at certain points in the equipment. This observation provides
us with an important structural hint: we can treat a piece of equipment as a functional system
consisting of component systems among which one is responsible for the primary function
(the equipment task) and the others fulfill auxiliary functions. If necessary, we may apply the
same approach recursively to any of the lower level systems. Systems of this kind may be
viewed as chains of components linked together in such a way that, at each node of the chain,
toe processed substance changes slightly, becoming thus more similar to its desired form at
the end of the chain. Many of these components work properly only if special conditions are
created. Hence the need for auxiliary systems. Another, more conventional way of
structuring the model is in the form of a part/whole hicrarchy. A natural question arises:
where one should stop with these two types of refinements (in system/basic-part and
part/whole hierarchies)? This is a more specific version of the question we posed above: how
much to simplify? A possible answer is to refine the hierarchy far enough so that everything
which potentially may be referred to in the reports would have a description in the model.

This, however, seéms impractical. Consider, for example, the following sentence:
Borescope investigation revealed a broken tooth on the hub ring gear.

Considering that there are several different gears in our starting air system and cach of
them has many teeth which are very much alike, it's obvious that creating a separate
description for each of them wouldn’t be reasonable. The same remark is true for balls in
bearings or for connecting elements like screws, bolts or pins. On the other hand,
information about the tooth conveyed in the above sentence cannot go unnoticed. The
solution we accepted for such elements is not to include their descriptions in the model on a
permanent basis but to keep the possibility open to create and to implant into the model their
descriptions if such a need arises during the analysis. A rule of thumb for deciding whether a
particular element deserves a permanent place in the model can be formulated in the form of
the question: how much information specific to this element is necessary to solve
understanding problems, like finding referents (see the section on nominal compounds) or
making inferences? As an example of the latter, let’s consider a specific gear. We would like
to know, among other things, what is this gear’s role and place in the modelled equipment so
that, in case of its damage, we could determine the impact of this on the equipment.
Information of this type can be deduced neither from the analyzed text nor from general
knowledge about gears. It must be known in advance. Our way to achieve this is to keep the
gear’s description permanently in the model.

There are, however, elements like teeth which have so little relevant structure that they are
always referred to as tooth, teeth together with the element higher up in the part/whole
hierarchy (let's call such an element a host). Thus, it is not necessary to maintain any specific
information about them in the model. It is enough, if we are able to create their descriptions
only when they occur in the text. All the possible information we will ever need to include
into such descriptions will come from the text. The information relating such elements with
other parts of the equipment will come from their hosts. For example, the impact of a
tooth’s damage on the equipment may be derived from the functional information connected
with its host.

It is important to notice that there is nothing absolute in distinctions such as the one made
above. It is conceivable to have a piece of equipment of a larger scale than the SAC, where
clements like gears are not essential enough for us to be bothered with their shapes or

85

locations; if broken they probably would be referred to by giving the higher-level element of
which they are part. In such cases we would rather treat gears like we treat tecth here.

It is desirable to be able to use the model on several levels of abstraction. For some
purposes it is enough to treat, say, a speed increasing gearbox as a system for which we only
know its outside behavior; in other cases, we would like to use information about its internal
structure as well. It should, of course, be possibie to deduce the external behavior of an
object by analyzing its parts; however, it wouldn’t be practical to go down to the level of
basic components each time we need to know something about the behavior of the equipment
on the intermediate level. Our approach of gradually refined levels of functional systems
described above fulfills this desideratum. It seems inevitable that any division into levels will
always be artificial and therefore, whatever structure of the model we could design, we

always will find sentences which mention objects from different levels. Consider for example:
Believe the coupling from diesel to SAC lube 01 pump to be sheared.

In our mode! for the starting air system the diesel and SAC arec at the same level of
abstraction. The lube oil pump is two levels below the SAC in the hierarchy. How we solve
the problem of determining the referent for the above coupling is described in the section on
nominal compounds (sece below). Here we want only to point out that for any multi-level
model, there must be mechanisms available for moving between abstraction levels flexibly.

In the preceding section we discussed two understanding problems. The solution we
proposed there relied beavily on the ability to simulate certain actions and processes of the
domain equipment. We have mentioned already in the introduction that it is sufficient to
simulate equipment behavior qualitatively. It is clear that the solution to the simulation
problem depends a lot on the structure of the model. Therefore, the simulation requirement
should be one of the important design criteria for the model. Dividing the equipment into
functional subsystems and modelling them as chains of components (comp. above) facilitates
the simulation task considerably.

There is another aspect of natural language understanding systems whose satisfactory
treatment depends a lot on an effective solution to the simulation problem. We may expect
that in real-life cases, the output of such systems is either fed into some expert system or
communicated to a human user. In both cases important decisions are presumably made,
based on this output - otherwise, why to spend money for building them. It is therefore very
important for such systems to provide users with means to check the quality of their
understanding. In the case of equipment, one quick and user-friendly way of verifying the
apalysis is through graphics (we elaborate on this a little more in the section describing future
work, below). Because equipment is very dynamic, most texts about them involve actions,
events, procedures occuring in a certain time sequence. In order to show this graphically, it is
necessary to simulate the essential aspects of this on the screen.

The simulation should be designed in such a way that its two independent applications in
the system (i.e. text understanding and communication with users) wouldn’t require two
seperate simulation systems.

4. The Starting Air System Model

As mentioned above, the equipment we have chosen as our initial domain is the starting air
system on Navy ships. Its function is to supply a ship’s propulsion gas turbines with the
high-pressure air necessary to start the turbines. The main part of the starting air system is
its compressor (SAC - Starting Air Compressor). It is by far the most complicated element
and therefore is prone to various kinds of damage and malfunction. Because of its
importance, we started our efforts by building a model of the SAC. So far we have
implemented parts of it on a Svmbolics Lisp machine using Zeta-Lisp.

86

ey

fAndrent)
Rir

SAC (1=1) \E—

- B T e
_ | o Uy L Bt Terce: atore |
) Digee | S:!loe'; 5vstreu 4“ Il‘l] “:‘:e .
— HITHTRETN] o ‘

Figure 1. Division of the SAC into subsystems.

Following the guidelines for equipment models given in the preceding section, we divided
the SAC into its three functional subsystems (comp. Fig. 1):

(a) Air System - this is the system partially responsible for the SAC's primary task: it
takes ambient air, compresses it to the desired pressure and outputs the flow to a system of
temperature and pressure regulating valves which precede the turbine starter;

(b) Motor System (auxiliary) - its function is to transmit mechanical rotation from the
diesel motor to the compressor blade assembly and lubrication oil pump;

(c) Lubrication Oil (LO) System (auxiliary) - it distributes the oil throughout the SAC
and supplies it under pressure to such elements as bearings and some couplings.

; Punp
| Cear Y |
. !
! Svsten i H
r o § 0 . ” c f |_ !
] . T tve N - Speed N oupling N o Speed
[[— Sheft u), Increasing’ iy Shaft I k Clutch [>:lncrf051ng!
N . Rssenbly ; | Cearpor : ! Assenbly 1 B Cearbon
——— ; L ! S ! [i " '
-

(1 o
Compressor
Shaft

! Rssenbly
} e

{Motor System (V1:1)

Figure 2. Division of the SAC Motor System into subsystems on level 1.

87

e

Each of these three systems may be split into further systems. For example, we view the
Motor System as consisting of subsystems shown in Fig. 2. Each of these constituents is
again s system consisting of more basic elements. So, for example, one of the two speed
increasing gearboxes consists of a hub, a ring gear, an arrangement of three star gears, and a
pinion mounted on a shaft.

Every system may be viewed on several levels of abstraction. For example, Fig. 2 shows
level 1 of the Motor System. Fig. 3 and 4 show the same system on level 0 and leve! 2,
respectively.

(120)
R,
o 'S
L A,

Figure 3. The SAC Motor System on level 0.

All the figures presented here are Symbolics screen images generated by PROTEUS from
descriptions of the model’s elements used for the understanding process. As a matter of fact,
we bave provided dynamic displays reflecting some of the simulation possibilities of the
model. Consider, for example, Fig. 4. It is possible, using the mouse, to position the cursor
on, say, the DIESEL ON switch and click on it causing the diesel to be turned on. The
compressor starts to run: the small globes inside eachb of the square clements (from diesel
shaft to the clutch) start to rotate in circles with different speeds depending on their place in
the system (before or after the speed increasing gearbox); furthermore, all the elements
which should be lubricated (those which have in- and outlets in the form of arrows) get oil
influx (depicted as dots appearing inside the elements). This follows from the way the SAC
operates: the Motor System transmits the rotary movement to the lube oil pump, which starts
to work and to supply oil via the LO System (not shown here). Similarly, when we set the
clutch to the IN position, the other elements (following the clutch in the chain) will start to
rotate. Again. all this is achieved as a side effect of the simulation used for understanding
purposes. We want to stress that the "movie” is not the point here. We have to know how the
rotary movement propagates in the system, if we want to conduct tests like the one described
in section 2, above. Such tests are the primary reason why we equipped our model with a
simulation capability.

88

Motor System (1=22)

O 03
i

SN

!

'

(o
Vi

ENENEIEN

i

L]

I

Switches

Comnynicat ion Uindow

ksiepyk

Figure 4. The SAC Motor System on level 2.

Let's turn now to the internal structure of our model for SAC. The structure of the model
is based on the Symbolics-Lisp flavor system. The prototypes of elements of which the model
is built are represented as flavors. The specific clements of the model are encoded as
instances of their prototype flavors. The general knowledge about clemeants is stored in the
prototype flavors and can be divided into two parts: (1) declarative knowledge expressed in
the form of defaults and restrictions on instance variables: (2) procedural knowledge in the
form of methods defined for the flavors. The flavor instances contain only declarative
knowledge comprised of instance-variable -- value pairs (we will use more traditional names
bere: slot -- slot-filler). The prototype flavors are built as mixtures of component flavors,
cach of which captures a certain aspect(s) of the prototype. The component flavors, which
form a grapb-like hierarchy, may be viewed as sets of isolated features cCOmmOon to several
different prototypes. The sophisticated inheritance mechanism of tue flavor system, which
works on the level of instance variables (slots) and on the level of methods, allows us to
design this hierarchy of flavors in a consisc manner. We illustrate these points below with a
couple of examples.

Every element which is represented permanently in the model is an instance of a flavor
which has the %building-block flavor as one of its components flavors (directly or indirectly
through intermediate flavors). This reflects the observation that certain facts about model

89

elements will have to be recorded for any kind of clement. For example, for every element
we want to know its operational state (remember that the texts we are dealing with are about
equipment failures) or the system of which it is a part. So, we define:

(defflavor %building-block
(location operational-state part-of screen-location caption)

0

(:sctiable-instance-variables :screen-location :operational-state)
:gettable-instance-variables

(:initable-instance-variables :function :location :part-of)
(:default-init-plist :operational-state 'OK))

In the above definition the first element is the flavor's name, the second is a list of instance
variables, the third is a list of component flavors (empty here), and the rest of the definition
describes various aspects of instance variables, such as their defaults, how they can be
initialized, accessed, etc. (we have omitted this part from flavor definitions given below).
The permanent elements in the model fall into two categories: systems and basic parts.
systems arc those building blocks which have structural information. They are chains of
clements united by a working substance which they process (for example, the lube oil
system). Systems are described at several levels of abstraction. The filler of the structure slct
is a list of descriptions of the system on different levels - each element in this list specifies,

among others, the start and end nodes of the chain of components on this level:
(defflavor %system
(working-substance structure)
(Zbuilding-bloch))

basic parts are those building blocks which are at the bottom of the part/whole hierarchy. The
components slot is initially set to an empty list. It is provided as a destination for those
equipment parts which were not included into the model a priori but have to be recorded if

they occur in the analyzed text (see section 3 for our discussion on this issue).
(defflavor %basic-part
(components)
{ %building-block))

Another very common flavor describes the aspects of a building block which capture its
role as a component (a2 node) in some system. It is used as a mixin flavor for building blocks
which are systems or basic parts. Its slots record how it is incorporated in the system (from.
to slots) and what its function is with respect to the working substance (i.e. how the substance
changes while passing this element). The filler of the funcrion slot is a formula interpreted by
a method defined for the prototype flavor of the element. This method accesses values of
several slots of the instance to which it is applied, for example input or operational-state. The
latter is important because of the potential of failure or damage of the element (see our

discussion in section 2, above):
(defflavor %system-node
(from to input output function)

0)

Complex cquipment is usually controlled from outside automatically or manually by service
personpel. There are, therefore, elements whose operational modes may be changed.
Examples of such elements in the SAC are the diesel and clutch. To account for such
clements, we defined a flavor %muitiplexer. which may be mixed with other component
flavors to form a prototype. The filler of switch-locations is a list of all places from which
switching is possible (in our case these are the local and remote control consoles). switch-
actions specifies for each possible switch position a procedure which has to be run in case the

clement is set into this position.
(defflavor %muiiplexer
(switch-locations switch-actions actual-switch-position)

90

0

None of the above are prototype flavors. They are component flavors which we can use to
define prototypes. Let us consider the prototype for diesel motors. It is a picce of equipment
complicated enough to treat as a system. Diesels generate rotary movement which is then
used to run other pieces of equipment. Thus they are parts of larger systems. Because they
run only if a need arises, there must be ways to influence their operational modes. All these
facts justify the following definition of a flavor which can serve as a prototype for diesel
motors. The point of this definition is to mix together several component flavors

corresponding to the just mentioned features.
(defflavor %diesel
0]

(%system %system-node %multiplexer))

Now we are ready to introduce the instance of a specific diesel motor which is part of the

starting air system.
(selq @diesel-2 (make-instance '%diesel
":part-of
‘@ssdg-2
:working-substance
(ROTATION)
*:caption
("Diesel™)
:to
'((ROTATION @sac-2 RIGHT))
"from
'((OIL @container-2 LEFT)
(AIR @conainer-1 UP))
":function
((ROTATION ((OIL . LOW) (AIR LOW)) . (ROTATION . LOW)))
":structure
'((0 . (DOWN | ((ROTATION OIL AIR) @diesel-2 (@diesel-2) (2. 2))))

1. ¢m)

This instance, its prototype, and the component flavors we showed, are in fact simplified
versions of the structures we use in our model. We have included here only these parts which
we considered helpful to convey the basic ideas of our prototype-instance scheme used for
building the model.

The examples discussed so far demonstrate only the declarative aspect (i.e. the inheritance
of instance variables) of the hierarchy we may build using flavors. We also define with each
flavor a set of methods which, when combined, provide each instance with a lot of procedural
knowledge. It is more difficult to show examples of this because methods are typically long
procedures. Describing the %system-node flavor above, we mentioned one such method.
similarly, for %multiplexer we define a method which, using the data stored in instance’s
slots, simulates the switching action. Still another example of a method is a drawing
procedure which we define for prototypes whose instances may be displayed on the screen.
The flavor system supports object-oriented programming. This is reflected in the way
methods are invoked - by sending messages (method names) to instances. This allow us to
usc identically named methods to invoke quite different procedures. For example, it's
obvious from looking at the pictures that we use several difierent drawing procedures.
However, we may use the same name, say, .draw for all cf them. Suppose we have
identified an element by locating its instance in the mode! and want to draw it. We don't have
to bother about its prototype in order to know how to draw it - it's enough to send the :draw
message to this instance. The right method will be chosen automatically. This situation is
advantageous for the language understanding process as well. The first thing we do during
clause analysis is to find referents in the model (i.e. instances) for linguistic entities occuring
in the sentence. The semantics of the verb or predicate adjective is typically expressed in the

91

form of a method. The interpretation of the clause with respect to the model consists then in
sending this method to ~ne of the arguments. The part of PROTEUS which deals with the
interpretation of clauses hasn't been implemented yet, so we won't go decper into this subject
here.

5. Finding Referents for Nominal Compounds

One notable feature of technical texts is the heavy use of nominal compounds. It seems that
their average length is proportional to the complexity of the discourse domain. In the domain

of the starting air system, examples like
stripped lube oil pump drive gear and hub ring gear,

are, by no means, seldom occurences.

The problem with nominal compounds is their ambiguity. The syntactic analysis is of
almost no help here. Semantically they are also very difficult to deal with [Finin 1986]. The
problem mav be metaphorically described as a jigsaw puzzle: given several pieces (compound
descriptions) put them together to build a sensible picture (nominal compound description).
The task becomes somewhat easier in cases when we know that nominal compounds refer to
objects existing in the system. In terms of our metaphor it iranslates into a hint: a set of
pictures is given with the assumption that the solution is one of these pictures.

The above observation is the next argument for maintaining an equipment model. Not all
nomina! compounds fall into this category (a notable class here are verb nomalizations, like
borescope investigation). However, most of them (especially the longest ones) refer to objects
maintained in the model.

PROTEUS processes sentences sequentially ({first syntax, then semantics, finally
discourse). Both the syntactic and semantic analvzers have been implemented already.
(Grishman 1986] describes the overall organization of PROTEUS in some detail. The
syntactic component delimits the noun phrases, but does not assign any structure to the pre-
noininai modifiers. The interpreter of nominal compounds takes as input an ordered list of
words of which the nominal compound consists, and tries to achieve two goals: (1) to
determine the structure of the pre-nominal modifiers; (2) to locate the instance(s) in the
equipment mode! referred to by the nominal compound.

The parsing of the nominal compound proceeds bottom-up without backtracking. The
words are analyzed from right to left. The parser maintains a Parse Stack where all possible
partial parses are kept. The information about each partial parse (State Vector) consists of
three lists: (1) the Word List: the unparsed part of the nominal compound; initially contains
the whole compound; (2) the Forest: list of partial parse trees for the part of the compound
which has been analyzed so far: initially empty; (3) the List of Referents: for each partial
parse trce in the Forest, a list of the model instances which may be named by the words in
that partial parse tree.

The condition for a successful parse is twofold: (1) the Werd List is empty; (2) the Forest
contains one treec (in such a case the List of Referents will, necessarily, also have one list of
instances - they will be considered the referents of the compound nominal). The parser works

as the following coroutine:
LOOP WHILE Parse Stack not empty
State-Vect = Pop (Parse Stack).
Word = next word from the Word List of Srare-Vecr;
Dict-Enrry = dictionary entry for Word:
FOR each reduction rule applicable to State-Vect and Dict-Entry
Create New-State-Veci,
IF (termination conditons fu'filled for Vew-Stare-Vecr)
THEN return (New-State-Vect)
ELSE push (Parse Stack New-State-Vecr)

Each word in the dictionary is assigned two properties: its model class (MOD-C) and its
semantic class (SEM-C). We use five different model classes:

92

Instance - a word of this class names a set of instances in the model; this set is part of the
dictionary entry (in Fig. 5 the word pump is an example; (p/ p2 p3) are instances of pumps
which occur in the model),

Slot-Filler - a word of this class can carry information used as slot fillers in some instances;
taken alone it doesa't name any model instance (in Fig. § the word lube is an example),

Slot-Name - a word of this class indicates how to interpret some other adajcent words in the
compound; an example is speed - it tells how to treat low in the nominal compound low speed
gearbox,

Procedure - each word of this class is assigned a procedure which, when called with
arguments coming from other parts of the noun phrase, returns a referent(s); an example is
coupling, as in coupling from diesel to sac lube oil pump - the coupling meant herc is not a
single coupling, but a whole sequence of them on the path between diesel and lube oil pump;
this sequence has to be evaluated using the model,

Componen: - a word of this class names a set of objects in the domain cquipment which are
not permanently present in the model (for examples and discussion of this issue see section
3).

DICTIONARY
(lube {MOD-C Siot-Filler) (SEM-C Function))
(oil (MOD-C Instance (o0l o2 03)) (SEM.C Working-Substance))
(purmp (MOD-C Instance (pl p2 p3)) (SEM-C Machinery))
(SAC (MOD-C Instance (sl1)) (SEM-C Machinery))

SEM-C --> SLOT-NAME TABLE

(Funcuon :function)

(Machinery .part-of :components :location)

(Working-Substance :working-substance)
INSTANCES

3+ SAC lube oi] pump
(setq p3 (make-instance %pump

":part-of 'los2
":working-substance '(OIL . 03)))

o SAC lube oil
(setq 03 (make-instance Yoworking-substance

':[l\..llnctjon ‘LUBE))

. SAC lube oil system
(setg los2 (make-1nstance Zsystem

:part-of 's1))
;i SAC

(setq s1 (make-instance %system

Figure 5. Fragments of data used by the parser of nominal compounds.

The two most often used reduction rules are:

(1) instance + instance --> instance
(2) slot-filler ~ instance --> instance

In (1), the set of model instances for the result consists of those instances of the second
constituent which can be linked through some path in the model to some instance of the first

93

constituent. In (2), the resuiting instances are those instances of the second constituent which
have a slot whose filler may be matched with the first constituent. The types of links
traversed in the search (in the first case) or the checked slots (in the second case) are a
function of the semantic class (SEM-C) of the first constituent. This function assigns to each
seman:ic class a set of slot names (see SEM-C --> SLOT-NAME TABLE in Fig. §).

Letr us illustrate the way the interpreter works with an example. Fig. 6 shows the trace of
parsing SAC (ube oil pump. We enclosed State Vectors in square brackets; the lists delimited
by curled brackets represent (from left to right): the Word List, the Forest, and the List of
Referents. The words are represented by numbers; the names (p!, p2, p3, ol, ...) are model
instances taken from the dictionary (comn. Fig. 5). We analyze the words from right to left.
We start with pump. We remove it from the Word List, find its definition in the dictionary
(Fig. S). and applying a rule not shown above. create the new State Vector (Fig. 6, first
vector above the compound). The next word is oid. Now, two reduction rufes are applicable:
the same one we used for pump - resulting in the left branch on Fig. 6 and rule (1) above. To
apply rule (1), we first find in the dictionary that od is of class Instance and names the
instances fo! 02 03). Next, we try to find out whether any of these instances may be linked to
any of the /p! p2 p2). To do this we take the semantic class of oil from the dictionary (Fig.
S): Working Substance. Then we check in the SEM-C --> SLOT-NAME TABLE (Fig. 5)
which slot names we should consider - the only candidate in this case is ‘working-substance.
Finally. we consider each of the instances (p/ p2 p3) and check the fillers of their ‘working-
substance slots. In Fig S we show onlv the instance p3 (the instances p! and p2 are similar).
For p3 we indeed find that it can be linked with one of the considered candidates (namely
with o3) through the :working-substance link. Thus, we include p3 into the resulting set. A
similar analysis for pl and p2 would result in including them into the resulting set as well.
Hence, the State Vector in the right branch in Fig. 6 hac (3 4) as a partial parse tree whose
leaves, when combined into one constituent, refer to the (pl p2 p3j. The analysis at the
other points of the trace 1s similar.

(SUCCESS)
Hr L) (02 3) (an)s {(p3)s]

!

[0 (02 3) (81 {(s1) (p2 p33Y)

f (SUCCESS)
{1 102 3) (80 {{p2 p3)}) [{0 (2 3 @ {(pHt]
{1 {(2 3) (43} {(02 03) (pl p2 p3)3] [{002 3) (401 {{p2 p3)})

e

[{1 2} {(3} (4): {(o! 02 03) (p! P2 p3);]

(DEAD END)
[{1 24403)} {(p] P2 p3)}]

H123}{(¢ (plp2p3)}

f

{1234} {} {}]
SAC lube oil pump
{1) 2y (3 (4)

Figure 6. The parsing trace for the nominal compound SAC lube oil pump.

94

[Grishman 1986] discusses how to treat modifiers describing the state of a part, such as
cracked or sheared, and also how to handle some ambiguitics in conjoined noun phrases (for
an example see the beginning of this section).

6. Future Work

The immediate next step in the development of cur system is to extend the coverage of the
interpreter of nominal compounds to full-fledged noun phrases (including relative clauses,
prepositional phrases and conjunctions). Then we plan to work on the interpretation of
clauses. It should be possible to define the semantics of most verbs from the domain as
operations on the equipment model. Finally, to obtain a robust system, it will be necessary to
develop components for finding temporal and causal links between sentences in the text. As
is known from previous research (e.g. [Charniak 1977]), success in this area depends mainly
on the quality of solutions to the knowledge representation and inference problems. As we
indicated in section 2 of this paper, one of the possible approaches to inference mechanism
involves the use of a simulation model.

The initial motivation for the system has been the conversion of a stream of messages to a
data for subsequent querying, summarization, and trend analysis. However, the use of a
detailed equipment model, similar to that employed in simulation systems (e.g. STEAMER
(Hollan 1984]), suggests that it may be equally useful as an interface for such systems.

Acknowledgement

This research was supported in part by the Defense Advanced Research Projects Agency
under contract N0O014-85-K-0163 from the Office of Naval Research.

References

{Bobrow 1977] Bobrow, D. and Winograd, T. An overview of KRL - a knowledge
representation language. Cognitive Science, 1977, 3-46

[Charniak 1977) Charpiak, E. Inference and knowledge in language comprehension. In
Machine Intelligence 8, D. Michie, Ed. American Elsevier, New York, 541-574

[Finin 1986] Finnin, T. Nominal compounds in a limited context. In Analyzing Language in
Restricted Domains, R. Grishman and R. Kittredge, Eds. Lawrence Erlbaum Assoc.,
Hillsdale, NJ

(Grishman 1986] Grishman, R., Ksiezvk, T., and Nhan, N.T. Model-based analysis of
messages about equipment. Submitted to the AAAI-86

(Hollan 1984] Hollan, J., Hutchins, E., and Weitzman, L. STEAMER: an interactive
inspectable simulation-based training system. Al Magazine, Summer 1984, 15-27

Reference Guide to Symbolics-Lisp, Symbolics, Cambridge, MA, 1984

95

Recovering Implicit Information

RECOVERING IMPLICIT INFORMATION

Martha S. Palmer, Deborah A. Dahl, Rebecca J. Schiffman, Lynette Hirschman,
Marcia Linebarger, and John Dowding
Rescarch and Development Division
SDC -- A Burroughs Company
P.O Box 517
Paoli, PA 19301 USA

ABSTRACT

This paper describes the SDC PUNDIT, (Prolog UNDerstands Integrated Text),

system for pr- .ssing natural language messages.! PUNDIT, written in Prolog,
is a high! - _dular system consisting of distinct syntactic, semantic and prag-
matics ¢ ,aponents. Each component draws on one or more sets of data, includ-
ing a lexicon, a broad-coverage grammar of English, semantic verb decomposi-
tions, rules mapping between syntactic and semantic constituents, and a
domain model.

This paper discusses the communication between the syntactic, semantic
and pragmatic modules that is necessary for making implicit linguistic informa-
tion explicit. The key is letting syntax and semantics recognize missing linguis-
tic entities as implicit entities, so that they can be labelled as such, and refer-
ence resolution can be directed to find specific referents for the entities. In this
way the task of making implicit linguistic information explicit becomes a subset
of the tasks performed by reference resolution. The success of this approach is
dependent on marking missing syntactic constituents as elided and missing
semantic roles as ESSENTIAL so that reference resolution can know when to look
for referents.

! This work is supported in part by DARPA under contract N00014-85-C-0012, administered by the Office of Na-
val Research APFROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED

96

Recovering Implicit Information

1. Introduction

This paper describes the SDC PUNDIT? system for processing natural
language messages. PUNDIT, written in Prolog, is a highly modular system
consisting of distinct syntactic, semantic and pragmatics components. Each
component draws on onc or more sets of data, including a lexicon, a broad-
coverage grammar of English, emantic verb decompositions, rules mapping
between syntactic and semantic constituents, and a domain model. PUNDIT
has been developed cooperatively with the NYU PROTEUS system (Prototype
Text Understanding System), These systems are funded by DARPA as part of
the work in natural language understanding for the Strategic Computing Bat-
tle Management Program. The PROTEUS/PUNDIT system will map Navy
CASREP’s (equipment casualty reports) into a database, which is accessed by
an experl system to determine overall fleet readiness. PUNDIT has also been
applied to the domain of computer maintenance reports, which is discussed
here.

The paper focuses on the interaction between the syntactic, semantic and
pragmatic modules that is required for the task of making implicit information
explicit. We have isolated two types of implicit entities: syntactic entities which
are missing syntaclic constituents, and semantic entities which are unfilled
semantic roles. Some missing entities are optional, and can be ignored. Syntax
and semantics have Lo recognize the OBLIGATORY Inissing entities and then
mark them so that reference resolution knows to find specific referents for those
entities, thus making the implicit information explicit. Reference resolution uses
two different methods for filling the different types of entities which are also
used for general noun phrase reference problems. Implicil syntactic entities,
ELIDED CONSTITUENTS, are treated like pronouns, and implicit semantic enti-
ties, ESSENTIAL ROLES are treated like definite noun phrases. The pragmatic
module as currently implemented consists mainly of a reference resolution com-
ponent, which is sufficient for the pragmatic issues described in this paper. We
are in the process of adding a time module to handle time issues that have
arisen during the analysis of the Navy CASREPS.

2. The Syntactic Component

The syntactic component has three parts: the grammar, a parsing mechan-
ism to execute the grammar, and a lexicon. The grammar consists of context-
free BNF definitions (currently numbering approximately 80) and associated res-
trictions (approximately 35). The restrictions enforce context-sensitive well-
formedness constraints and, in some cases, apply optimization sirategies to
prevent unnecessary structure-building. Each of these three parts is described
further below.

? Prolog UNDderstands Integrated Text

97

Recovering Implicit Information

2.1. Grammar Coverage

The grammar covers declarative sentences, questions, and sentence frag-
ments. The rules for fragments enable the grammar to parse the 'telegraphic"
style characteristic of message traffic, such as disk drive down, and has select
lock. The present grammar parses sentence adjuncts, conjunction, relative
clauses, complex complement structures, and a wide variety of nominal struc-
tures, including compound nouns, nominalized verbs and embedded clauses.

The syntax produces a detailed surface structure parse of each sentence
(where 'sentence" is understood to mean the string of words occurring between
two periods, whether a full sentence or a fragment). This surface structure is
converted into an 'intermediate representation" which regularizes the syntactic
parse. That is, it eliminates surface structure detail not required for the seman-
tic tasks of enforcing selectional restrictions and developing the final representa-
tion of the information content of the sentence. An important part of regulari-
zation involves mapping fragment structures onto canonical verb-subject-object
patterns, with missing elements flagged. For example, the tvo fragment con-
sists of a tensed verb + object as in Replaced spindle motor. Regulariza-
tion of this fragment, for example, maps the tvo syntactic structure into a
verb+ subject+ object structure:

verb(replace),subject(X),0bject(Y)

As shown here, verb becomes instantiated with the surface verb, c.g., replace
while the arguments of the subject and object terms are variables. The
semantic information derived from the noun phrase object spindle motor
becomes associated with Y. The absence of a surface subject constituent
results in a lack of semantic information pertaining to X. This lack causes the
semantic and pragmatic components to provide a semantic filler for the missing
subject using general pragmatic principles and specific domain knowledge.

2.2. Parsing

The grammar wuses the Restriction Grammar parsing framework
[Hirschman1982, Hirschman1985|, which is a logic grammar with facilities for
writing and maintaining large grammars. Restriction Grammar is a descendent
of Sager’s string grammar [Sager1981]. It uses a top-down left-to-right parsing
strategy, augmented by dynamic rule pruning for efficient parsing [Dowd-
ing1986]. In addition, it uses a meta-grammaticai approach to generate
definitions for a full range of co-ordinate conjunction structures [Hirsch-
man1986|.

2.3. Lexical Processing

The lexicon contains several thousand entries related to the particular sub-
domain of equipment maintenance. It is a modified version of the LSP lexicon
with words classified as to part of speech and subcategorized in limited ways
(e.g., verbs are subcategorized for their complement types). It also handles

98

Recovering Implicit Information

multi-word idioms, dates, times and part numbers. The lexicon can be
expanded by means of an interactive lexical entry program.

The lexical processor reduces morphological variants to a single root form
which is stored with each entry. For example, the form kas is transformed to
the root form have in Has select lock. In addition, this facility is useful in
handling abbreviations: the term awp is regularized to the multi-word expres-
sion waisting “for “part. This expression in turn is regularized to the root form
wait “for “part which takes as a direct object a particular part or part number,
as in s awp 2155-61417.

Multi-word expressions, which are typical of jargon in specialized domains,
are handled as single lexical items. This includes expressions such as disk drive
or select lock, whose meaning within a particular domain is often not readily
computed from its component parts. Handling such frozen expressions as
"idioms" reduces parse times and number of ambiguities.

Another feature of the lexical processing is the ease with which special
forms (such as part numbers or dates) can be handled. A special 'forms gram-
mar", written as a deflinite clause grammar|Perciral980] can parse part
numbers, as in ewasting part 2155-6147, or complex dale and time expres-
sions, as in disk drive up at 11/17-12%6. During parsing, the forms grammar
performs a well-formedness check on these expressions and assigns them their
appropriate lexical category.

3. Semantics

There are two separate components that perform semantic analysis, NOUN
PHRASE SEMANTICS and CLAUSE SEMANTICS. They are each called after parsing
the relevant syntactic structure to test secinantic well-formedness while produc-
ing partial semantic representations. Clause semantics is based on Inference
Driven Semantic Analysis {Palmer1985] which decomposes verbs into component
meanings and fills their semantic roles with syntactic constituents. A
KNOWLEDGE BASE, the formalization of each domain into logical terms, SEMAN-
TIC PREDICATES, is essential for the eflective application of Inference Driven
Semantic Analysis, and for the final production of a text representation. The
result of the semantic analysis is a set of PARTIALLY instantiated semantic
predicates which is similar to a frame representation. To produce this represen-
tation, the semantic components share access to a knowledge base, the DOMAIN
MODEL, that contains generic descriptions of the domain elements corresponding
to the lexical entries. The model includes a detailed representation of the types
of assemblies that these elements can occur in. The semantic components are
designed to work independently of the particular model, and rely on an inter-
face to ensure a well-defined interaction with the domain model. The domain
model, noun phrase semantics and clause semantics are all explained in more
detail in the following three subsections.

99

n |

Recovering Implicit Information

3.1. Domain Model

The domain currently being modelled by SDC is the Maintenance Report
domain. The texts being analyzed are actual maintenance reports as they are
called into the Burroughs Telephone Tracking System by the field engineers and
typed in by the telephone operator. These reports give information about the
customer who has the problem, specific symptoms of the problem, any actions
take by the field engineer to try and correct the problem, and success or failure
of such actions. The goal of the text analysis is to automatically generate a
data base of maintenance information that can be used to correlate customers
to problems, problem types to machines, and so on.

The first step in building a domain model for maintenance reports is to
build a semantic net-like representation of the type of machine involved. The
machine in the example text given below is the B4700. The possible parts of a
B4700 and the associated properties of these parts can be represented by an isa
hierarchy and a haspart hierarchy. These hierarchies are built using four
basic predicates: system,isa,hasprop, haspart. l'or example the system
itsell is indicated by system(b4700). The isa predicale associates TYPES
with components, such as isa(spindle”motor,motor). Properties are associ-
ated with components using the hasprop relationship, are are inherited by
anything of the same type. The main components of the system: cpu,
power_supply. disk, printer, peripherals, ctc.,, are indicated by
haspart relations, such as haspart(b4700,cpu),
haspart(b4700,power_supply), haspart(b4700,disk),,ctc. These parts
are themselves divided into subparts which are also indicated by haspart rela-
tions, such as haspart(power_supply, converter).

This method of representation results in a general description of a com-
puter system. Specific machines represent INSTANCES of this general represen-
tation. When a particular report is being processed, id relations are created by
noun phrase semantics to associate the specific computer parts being mentioned
with the part descriptions from the general machine representation. So a par-
ticular B4700 would be indicated by predicates such as these:
id(b4700,system1), id(cpu,cpul), id(power_supply,power_supplyl),
ete.

3.2. Noun phrase semantics

Noun phrase semantics is called by the parser during the parse of a
sentence, after each noun phrase has been parsed. It relies heavily on the
domain model for both determining semantic well-formedness and building par-
tial sermantic representations of the noun phrases. For example, in the sen-
tence, field engineer replaced disk drive at 11/2/0800, the phrase disk drive
al 11/2/0800 is a syntactically acceptable noun phrase, (as in partics-
panls at the meeling). However, it is not semantically acceptable in that at
11/20/800 is intended to designate the time c¢f the replacement, not a

100

— e e

p— e - = =

Recovering Implicit Information

properly of the disk drive. Noun phrase semantics will inform the parser
that the noun phrase is not semantically acceptable, and the parser can
then look for another parse. In order for this capability to be fully utilized,
however, an extensive set of domain-specific rules about semantic acceptability
is required. At present we have only the minimal set used for the development
of the basic mechanism. For example, in the case described here, at 11/2/0800
is excluded as a modifier for disk drive by a rule that permits only the name of
a location as the object of at in a prepositional phrase modifying a noun
phrase.

The second function of noun phrase semantics is to create a semantic
representation of the noun phrase, which will later be operated on by refer-
ence resolution. For example, the semantics for the bad disk drive would be
represeuted by the following Prolog clauses.

[id(disk “drive,X),

bad(X),

def(X), that is, X was referred to with a full, definite noun phrase,
full_npe(X)| rather than a pronoun or indefinite noun phrase.

3.3. Clause semantics

In order to produce the correct predicates and the correct instantiations,
the verb is first decomposed into a semantic predicate representation appropri-
ate for the domain. The arguments to the predicates constitute the SEMANTIC
ROLES of the verb, which are similar to cases. There are domain specific cri-
teria for selecting a range of semantic roles. In this domain the semantic roles
include: agent,instrument,theme, objectl,object2, symptom and
mod. Semantic roles can be filled either by a synlactic constituent supplied by
a mapping rule or by reference resolution, requiring close cooperation between
semantics and reference resolution. Certain semauntic roles are categorized as
ESSENTIAL, so that pragmatics knows that they need to be filled if there is no
syntactic constituent available. The default calegorizalion is NON-ESSENTIAL,
which does not require that the role be filled. Other semantic roles are categor-
ized as NON-SPECIFIC or SPECIFIC depending on whcther or not the verb requires
a specific referent for that semantic role (see Section 4). The example given in
Section 5 illustrates the use of both a non-specific semantic role and an essen-
tial semantic role. This section explains the decompositions of the verbs
relevant to the example, and identifies the important semantic roles.

The decomposition of have is very domain specific.
have(time(Per)) < -
symptom(object1(O1),symptom(S),time(Per))

It indicates that a particular symptom is associated with a particular
object, as in 'the disk drive has select lock." The objectl semantic role

101

Recovering Implicit Information

would be filled by the disk drive, the subject of the clause, and the symptom
semantic role would be filled by select lock, the object of the clause. The
time(Per) is always passed around, and is occasionally filled by a time
adjuncl, as in the disk drive had select lock al 0800.

In addition to the mapping rules that are used (o associate syntactic con-
stituenls with semantic roles, there are selection restrictions associated with
each semantic role. The selection restrictions for have test whether or not the
fitler of the objectl role is allowed to have the type of symptom that fills the
symptom role. For example, only disk drives have sclect locks.

Mapping Rules

The decomposition of replace is also a very domain specilic decomposition
that indicates that an agent can use an instrument to exchange two
objects.

replace(time(Per)) < -
cause(agent{A),
use(instrument(l),
exchange(object1(01),0bject2(02),Lime(Per))))

The following mapping rule specifies that the agent can be indicated by the
subject of the clause.

agent(A) <- subject(A) / X

The mapping rules make use of intuitions about syntactic cues for indi-
cating semantic roles first embodied in the notion of case
[Fillmore1968, Palmer1981]. Some of these cues are quite general, while other
cues are very verb-specific. The mapping rules can take advantage of generali-
ties like "SUBJECT to AGENT" syntactic cues while stil! preserving context
sensitivities. This is accomplished by making the application of the mapping
rules 'situation-specific"' through the use of PREDICATE ENVIRONMENTS. The
previous rule is quite general and can be applied to every agent semantic role
in this domain. This is indicated by the X on the right hand side of the '/
which refers to the predicate environment of the agent, i.e., anything. Other
rules, such as "WITH-PP to OBJECT?2," are much less general, and can only
apply under a set of specific circumstances. The predicate environments for
an objectl and objectZ are specified more explicitly. An objectl can
be the object of the sentence if it is contained in the semantic decomposition
of a verb that includes an agent and belongs to the repair class of verbs. An
object2 can be indicated by a with prepositional phrase if it is contained in
the semantic decomposition of a replace verb:

object1(Partl) <- obj(Partl)/ cause(agent(A),Repair_event)

object2(Part2) < -
pp(with,Part2) /

102

Recovering Implicit Information

cause(agent(A),use(l,exchange(object1(O1),0bject2(Part2),T)))

Selection Restrictions

The selection restriclion on an agent is that it must be a [ield engincer,
and an instrument must be a tool. The selecltion restrictions on the two
objects are more complicated, since they must be machine parts, have the same
type, and yet also be distinct objects. In addition, the first object must already
be associated with something else in a haspart relationship, in other words it
must already be included in an existing asscinbly. The opposite must be true of
the second object: it must not already be included in an assembly, so it must
not be associated with anything else in a haspart relationship.

There is also a pragmatic restriction associated with both objectls that has
not been associated with any of the semantic roles mentioned previously. Both
objectl and object2 are essential semantic roles. Whether or not they are
mentioned explicitly in the sentence, they must be filled, preferably by an an
entity that has already been mentioned, butl if not that, then entities will be
created to fill them [Palmer1983). This is accomplished by making an explicit
call to reference resolution Lo find referents for essentlial semantic roles, in the
same way that reference resolution is called to {ind the referent of a noun
phrase. This is not done for non-essential roles, such as the agent and the
instrument in the same verb decomposition. If they are not mentioned they
are simply left unfilled. The instrument is rarely mentioned, and the agent

could easily be left out, as in The disk drive was replaced at 0800.3 In other
domains, the agent might be classified as obligatory, and then it wold have to
be filled in.

There i~ another semantic role that has an important pragmatic restriction
on it in this cxample, the object2 semantic role in wasl "for "part (awp).

idiomVerb(wait"for”part,time(Per)) < -
ordered(object1(O1),0bject2(02),time(Per))

The sem:antics ol wast"for “part indicates that a particular type of part has
been ordered, and is expected to arrive. But it is not a specific entity that
might have already been mentioned. It is a more abstract object, which is indi-
cated by restricting it to being non-specific. This tells reference resolution that
although a syntactic constituent, preferably the object, can and should fill this
semantic role, and must be of type machine-part, that reference resolution
should not try to find a specific referent for it (see Section 4).

The last verb representation that is needed for the example is the represen-
tation of be.

be(time(Per)) < -

Note that an elided subject is handled quite differently, as in repleced disk drive. Then the missing subject is

103

Recovering Implicit Information

attribute(theme(T),mod(M),time(Per))

In this domain be is used to associate predicate adjectives or nominals with an
object, as in disk drive is up or spindle motor is bad. The representation
merely indicates that a modifier is associated with an theme in an attribute
relationship. Noun phrasc semantics will eventually produce the same represen-
tation for the bad spindle motor, although it does not yet.

4. Reference Resolution

Reference resolution is the component which keeps track of references to
entities in the discourse. It creates label; for entities when they are first
directly referred to, or when their existence is implied by the text, and recog-
nizes subsequent references to them. Reference resolution is called from clause
semantics when clause semantics is ready to instantiate a semantic role. It is
also called from pragmatic restrictions when they specify a referent whose
existence is entailed by the meaning of a verb.

The system currently covers many cases of singular and plural noun
phrases, pronouns, one- anaphora, nominalizations, and non-specific noun
phrases; reference resolution also handles adjectives, prepositional phrases
and possessive pronouns modifying noun phrases. Noun phrases with and
without determiners are accepted. Dates, part numbers, and proper names
arc handled as special cases. Not yet handled are compound nouns,
quantified noun phrases, conjoined noun phrases, relative clauses, and pos-
sessive nouns.,

The general reference resolution mechanism is described in detail in [Dahl1986).
In this paper the focus will be on the interaction between reference resolution
and clause semantics. The next two sections will discuss how reference resolu-
tion is aflected by the different types of semantic roles.

4.1. Obligatory Constituents and Essential Semantic Roles

A slot for a syntaclically obligatory constituent such as the subject appears
in the intermediate representation whether or not a subject is overtly present in
the sentence. 1t is possible to have such a slot because the absence of a subject
is a syntactic fact, and is recognized by the parscr. Clause semantics calls
reference resolution for such an implicit constituent in the same way that it
calls reference resolution for explicit constituents. Reference resolution treals
elided noun phrases exaclly as it treals pronouns, that is by instantiating them
to the first member of a list of potential pronominal referents, the FocusList.

assumed to fill the agemt r,. , and an appropriate relerent is found by refarence resolution

104

Recovering Implicit Information

The general treatment of pronouns resembles that of|Sidner1979|, although
there are some important differences, which are discussed in detail in
[Dahl1986]. The hypothesis that elided noun phrases can be treated in much
the same way as pronouns is consistent with previous claims by [Gundel1980),
and [Kameyamal985], that in languages which regularly allow zero-np’s, the
zero corresponds to the focus. If these claims are correct, it is not surprising
that in a sublanguage that allows zero-np’s, the zero should also correspond to
the focus.

After control returns to clause semantics from reference resolution, seman-
tics checks the selectional restrictions for that referent in that semantic role of
that verb. If the selectional restrictions fail, backtracking into reference resolu-
tion occurs, and the next candidate on the FocusList is instantiated as the
referent. This procedure continues until a referent satisfying the selectional res-
trictions is found. For example, in Disk drive ss down. Has select lock, the
system instantiates the disk drive, which at this point is the first member of the
FocusList, as the objectl of have:

[event39]
have(time(timel))
symptom(objectl([drivel0]),
symptom([lock17]),
time(timel))

Essential roles might also not be expressed in the sentence, but their
absence cannot be recognized by the parser, since they can be expressed by syn-
tactically optional constituents. For example, in the field engineer replaced
the motor., the new replacement motor is not mentioned, although in this
domain it is classified as semantically essential. With verbs like replace, the
type of the replacement, meotor, in this case, is known because it has to be the
same type as the replaced object. Reference resolution for these roles is called
by pragmatic rules which apply when there is no overt syntactic constituent to
fill a semantic role. Reference resolution Lreats these referents as if they were
full noun phrases without determiners. That is, it searches through the context
for a previously mentioned entity of the appropriate type, and if it doesn’t find
one, it creates a new discourse entity. The motivation for treating these as full
noun phrases is simply that there is no reason to expect them to be in focus, as
there is for elided noun phrases.

4.2. Noun Phrases in Non-Specific Contexts

Indefinite noun phrases in contexts like the field engineer ordered a disk
drive are generally associated with two readings. In the specific reading the
disk drive ordered is a particular disk drive, say, the one sitting on a certain
shelf in the warehouse. In the non-specific reading, which is more likely in this

105

Recovering Implicit Information

sentence, no particular disk drive is meant; any disk drive of the appropriate
type will do. Handling noun phrases in these contexts requires careful integra-
tion of the interaction between semantics and reference resolution, because
semantics knows about the verbs that create non-specific contexts, and refer-
ence resolution knows what to do with noun phrases in these contexts. For these
verbs a constraint is associated with the semantics rule for the semantic role

object2 which states that the filler for the object2 must be non-specific.?
This constraint is passed to reference resolution, which represents a non-specific
noun phrase as having a variable in the placc of the pointer, {or example,
id(motor,X).

Non-specific semantic roles can be illustrated using the object2 scmantic
role in watt “for "part (awp). The part that is Leing awatled is non-specilic,
i.c., can be any part of the appropriate type. This tells reference resolution not
to find a specific referent, so the referent argument of the id relationship is left
as an uninstantiated variable. The analysis of fe 1s awp spindle motor would
fill the objectl semantic role with fel from id(fe,fel), and the object2
semantic role with X from id(spindle”motor,X), as in
ordered(objecti(fel),object2(X)). If the spiudle motor is referred to later
on in a relationship where it must become specifie, then reference resolution can
instantiate the variable with an appropriate referent such as spindle "motor3
{Sce Section 5.6).

6. Sample Text: A sentence-by-sentence analysis

The sample text given below is a slightly cmended version of a mainte-
nance report. The parenthetical phrases have boen inserted. The following
summary of an interactive session with PUNDIT illustrates the mechanisins by
which the syntactic, semauntic and pragmalic components interact to produce a
representation of the text.

1. disk drive (was) down (at) 11/16-2305.

. (has) select lock.

spindle motor is bad.

(is) awp spindle motor.

(disk drive was) up (at) 11/17-1236.
replaced spindle motor.

[

SO oae W

b.1. Sentence 1: Disk drive was down at 11/16-23056.

As explained in Section 3.2 above, the noun phrase disk drive leads to the
creation of an id of the form: id(disk “drive,[drivel]) Because dates and
names generally refer to unique entities rather than to exemplars of a general
type, their ids do not contain a type argument: date([{11/18-

* The specific reading is not available at present, since it is considered to be unlikely to occur in this domain

106

Recovering Immplicit Information

1100]),name([paoli]).

The interpretation of the first sentence of the report depends on the
semantic rules for the predicate be. The rules for this predicate specify three
sernanlic roles, an theme to whom or which is attributed 2 modifier, and the
time. After a mapping rule in the semantic component of the system instan-
tiates the theme semantic role with the sentence subject, disk drive, the refer-
ence resolution component attempts to identify this referent. Because disk drive
is in the first sentence of the discourse, no prior references to Lhis entity can be
found. Further, this entity is not presupposed by any prior linguistic expres-
sions. [However, in the maintenance domain, when a disk drive is referred to it
can be assumed to be part of a B3700 computer system. As the system tries to
resolve the reference of the noun phrase disk drive by looking for previously
mentioned disk drives, it finds that the mention of a disk drive presupposes the
existence of a system. Since no system has been referred to, a pointer to a sys-
tem is created at the same time that a pointer to the disk drive is created.

Both entities are now available for future reference. In like fashion, the
propositional content of a complete sentence is also made available for future
reference. The entities corresponding to propositions arce given event labels;
thus eventl is the pointer to the first proposition. The newly created disk
drive, system and event entities now appear in the discourse information in the
form of a list ong with the date.

id(event,[eventl])
id(disk“drive,[drivel])
date({11/16-2305])
id(system,[system1])

Note however, that ouly those entities which have been explicitly mentioned
appear in the FocusList:

FocusList: {[event1],{drivel],{11/16-2305]]

The propositional entity appears at the head of the focus list followed by the

entities mentioned in full noun phrases.®

In addition to the representation of the new event, the pragmatic informa-

tion aboul the developing discourse now includes information about part-whole
relationships, namely that drivel is a part which is contained in system]l.

Part-Whole Relationships:
haspart([system1],[drivel])

The complete representation of eventl, appearing in the event list in the form
shown below, indicates that at the time given in the prepositional phrase at
11/16-2305 there is a state of affairs denoted as eventl in which a particular

* The order in which full noun phrase mentions are added to the Focuslist depends on their syntactic function
and linear order. For full noun phrases, direct object mentions precede subject mentions followed by all other men-
tions given in the ocder in which they occur in the sentence. See [Dahlt886], for details

107

Recovering Implicit Information

disk drive, i.e., drivel, can be described as down.

[event1]
be(time([11/18-2305]))
attribute(theme([drivel]),
mod(down),time([11/16-2305]))

5.2. Sentence 2: Has select lock.

The second sentence of the input text is a sentence fragment and is recog-
nized as such by the parser. Currently, the only type of fragiment which can be
parsed can have a missing subject but must have a complete verb phrase.
Before semantic analysis, the output of the parse contains, among other things,
the following constituent list: [subj([X]),obj([Y])]- That is, the syntactic
component represents the arguments of the verb as variables. The fact that
there was no overt subject can be recognized by the absence of semantic infor-
mation associated with X, as discussed in Section 3.2. The semantics for the
maintenance domain sublanguage specifies that the thematic role instantiated
by the dircct object of the verb fo have must be a symptlom of the entity
referred to by the subject. Reference resolution treats an empty subject much
like a pronominal reference, that is, it proposes the first element in the
FocusList as a possible referent. The first proposed referent, eventl is
rejected by the semantic selectional constraints associated with the verb have,
which, for this domain, require the role mapped onto the subject to be classified
as a machine part and the role mapped onto the direct object to be classified as
a symptom. Since the next item in the FocusList, drivel, is a machine part,
it passes the selectional constraint and becomes matched with the empty sub-
ject of has select lock. Since no select lock has been mentioned previously, the
system creates one. ['or the sentence as a whole then, two entities are newly
created: the select lock ([lock1]) and the new propositional event ([event2]):
id(event,[event2]), id(select“lock,[lock1]). The [ollowing representation
is added to the event list, and the FocusList and Ids are updated appropri-

ately.®

[event2]

have(time(timel))
symptom(objectl([drivel]),
symptom([lock1]),time(time1))

5.3. Sentence 3: Motor is bad.

In the third sentence of the sample text, a new entity is mentioned, motor.
Like disk drive from sentence 1, motor is a dependent entity. However, the
entity it presupposes is not a computer system, but rather, a disk drive. The

* This version only deals with explicit mentions of time, so for this sentence the time argument is filied in with a
gensym that stands for an unknown time period The current version of PUNDIT uses verb tense and verb semantics

108

Recovering Implicit Information

newly mentioned motor becomes associated with the previously mentioned disk
drive.

After processing this sentence, the new enlity motord is added to the
FocusList along with the new proposition event3. Now the discourse infor-
mation about part-whole relationships contains information about both depen-
dent entities, namely that motorl is a part of drivel and that drivel is a
part of systeml.

haspart([drivel],[motorl])
haspart([systeml],[drivel])

6.4. Sentence 4: is awp spindle motor.

Awp is an abbreviation for an idiom specific to this domain, awasting part.
It has two semantic roles, one of which maps to the sentence subject. The
second maps to the direct object, which in this case is the non-specific spindle
motor as explained in Section 4.2. The selectional restriction that the first
semantic role of awp be an engineer causes the reference resolution component
to create a new enginecer entity because no engincer has been mentioned previ-
ously. After processing this sentence, the list of available entitiecs has been
incremer:ted by tliree:

id(event,[event4])
id(part,[_2317])
id(field"engineer,[engineerl])

The new event is represented as follows:

[event4]

idiomVerb(wait”for"part,time(time2))

wait(objectl([engineerl]),
object2([_2317]),time(time2))

b.6. Sentence b: disk drive was up at 11/17-0800 In the emended
version of sentence 5 the disk drive is presumed to be the same drive referred
to previously, that is, drivel. The semantic analysis of sentence 5 is very
similar to that of sentence 1. As shown in the following event representation,
the predicate expressed by the modifier up i1s attributed to the theme drivel
at the specified time.

[eventB]

be(time([11/17-1238]))

attribute(theme([drivel]},

mod(up),time(/11/17-1236]))

to derive implicit time arguments

109

Recovering Implicit Information

5.6. Sentence 6: Replaced motor.

The sixth sentence is another fragment consisting of a verb phrase with no
subject. As before, reference resolution tries to find a referent in the current,
FocusList which is a scmantically acceptable subject given the thematic
structure ol the verb and the domain-specific selectional restrictions associated
with them. The thematic structure of the verb replace includes an agent role
to be mapped onto the sentence subjeet. The only agent in the maintenance
domain is a field engineer. Reference resolution linds the previously mentioned
engincer created for awp spindle motor, [engineerl]. It does not find an
instrument, and since this is not an essential role, this is not a problem. It
simply {ills it in with another gensym that stands for an unknown filler, unk-
nownl.

When looking for the referent of a spindle motor to {ill the objectl role, it
first finds the non-specific spindle motor also mentioned in the awp spindle
motor sentence, and a specific referent is found for it. However, this fails the
selection restrictions, since although it is a machine part, it is not already asso-
ciated with an assembly, so backtracking occurs and the referent instantiation
is undone. The next spindle motor on the FoecusList is the one from spindle
motor is bad, ([motorl]). This docs pass the scleclion restrictions since it par-
ticipates in a haspart relationship.

The last semantic role Lo be filled is the objeet2 role. Now there is a res-
triction saying this role must be filled by a machine part of the same type as
objectl, which is not already included in an assembly, viz., the non-specific
spindle motor. Reference resolution finds a new referent for it, which automati-
cally instantiates the variable in the id term as well. The representation can
be decomposed further into the two semantic predicates missing and
included, which indicate the current status of the parts with respect to any
existing assemblies. The haspart relationships are updated, with the old
haspart relationship for [motorl] being removed, and a new haspart rela-
tionship for [motor3] being added. The final representation of the text will be
passed through a filter so that it can be suitably modified for inclusion in a
database.

110

— g mm —m—

-

-

Recovering Implicit Information

[event8]

replace(time(time3))

cause(agent([engineerl]),

use(instrument(unknownl),
exchange(objectl([motorl]),

object2([motor2]),
time(time3))))

included(object2([motor2]),time(time3))

missing(objectl([motorl]),time(time3))

Part-Whole Relationships:

haspart([drivel],[motor3])
haspart([system1],[drivel])

6. Conclusion

This paper has discussed the communication between syntactic, semantic and
pragmatic modules that is necessary for making implicit linguistic information
explicit. The key is letting syntax and semantics recognize missing linguistic
entities as implicil entities, so that they can be marked as such, and reference
resolution can be direcled Lo find speciflic referents for the entities. Implicit enti-
ties may be either empty syntactic constituents in sentence fragments or
unfilled semantic roles associated with domain-specific verb decompositions. In
this way the task of making implicit information explicit becomes a subsel of
the tasks performed by reference resolution. The success of this approach is
dependent on the use of syntactic and semantic categorizations such as ELLIDED
and ESSENTIAL which are meaningful to reference resolution, and which can
guide reference resolution’s decision making process.

ACKNOWLEDGEMENTS

We would like to thank Bonnie Webber for her very helpful suggestions on
exemplifying semantlics/pragmatics cooperation.

111

Recovering Implicit Information

REFERENCES

(Dahi1986]
Deborah A. Dahl, Focusing and Reference Resolution in PUNDIT, sub-
mitted for publication, 1986.

[Dowding1986|
John Dowding and Lynette Hirschman, Dynamic Translation for Rule
Pruning in Restriction Grammar, submitted to AAAI-86, Philadelphia,
1986.

[Fillmore1968]
C. J. Fillmore, The Case for Case. In Unsversals tn Linguistic Theory,
E. Bach and R. T. Harms (ed.), Holt, Rinehart, and Winston, New
York, 1968.

[Gundel1980]
Jeanette K. Gundel, Zero-NP Anaphora in Russian. Chicago Linguis-
tic Society Parasession on Pronouns and Anaphora, 1980.

[Hirschiman1982]
L. Hirschman and K. Puder, Restriction Grammar in Prolog. In Proc.
of the [F'irst International Logic Programming Conference, M. Van
Caneghem (ed.), Association pour la Diffusion et le Developpement de
]g Prolog, Marseilles, 1982, pp. 85-90.

[HTirschman1985]
L. Hirschman and K. Puder, Restriction Grammar: A Prolog
hinplementation. In Logic Programming and ils Applications, D.11.D.
Warren and M. VanCaneghem (ed.), 1985.

fIirschman1986]
L. Hirschman, Conjunction in Meta-Restriction Grammar. J. of Logic
Programming, 1986.

Kameyamal985
y

| Megumi Kameyama, Zero Anaphora: The Case of Japanese, Ph.D.
{ thesis, Stanford University, 1985.
[Palmer1983)

M. Palmer, Inference Driven Semantic Analysis. in Proceedings of the
National Conference on Arlificial Intelligence (AAAI-83), Wash-
ington, D.C., 1983.

[Palmer1981]
Martha S. Palmer, A Case for Rule Driven Semantic Processing. Proc.
of the 19th ACL Conference, June, 1981.

Recovering Implicit Information

[Palmer1985)
Martha S. Palmer, Driving Semantics for a Limited Domain, Ph.D.
thesis, University of Edinburgh, 1985.

[Pereira1980|
F. C. N. Pereira and D. H. D. Warren, Definite Clause Grammars for
Language Analysis -- A Survey of the Formalism and a Comparison
with Augmented Transition Networks. Artificial Inlelligence 13, 1980,
pp. 231-278.

[Sager1981]
N. Sager, Natural Language Information Processing: A Computer
Grammar of English and Its Applications. Addison-Wesley, Reading,
Mass., 1981.

[Sidner1979]
Candace Lee Sidner, Towards a Computational Theory of Delinite Ana-
phora Comprehension in English Discourse, MIT-AI TR-537, Cam-
I bridge, MA, 1979.

113

————

Focusing and Reference Resolution in PUNDIT

Focusing and Reference Resolution in PUNDIT

Deborah A. Dabl

Research and Development Division
SDC -- A Burroughs Company
PO Box 517
Paoli, PA 19301

Science Track

Natural Language

ABSTRACT

Tt paper deseribes the use of focusing in the PUNDIT text processing system.'
FFoensing, as discussed by [Sidner1979] (as well as the closely related concept of center-
ing, as diseussed by [Grosz1983]), provides a powerful tool for pronoun resolution.
However, its range of application is actually much more general) in that it can be used
for several problems in reference resolution. Specifically, in the PUNDIT system, focus-
ing is used for enc-anaphora, clided noun plirases, and certain types of delinite and
indelinite noun phrases, in addition to its use for pronouns. Another important feature
in the PUNDIT reference resolution system is that the focusing algorithin is based on
syntactic constituents, rather than on thematic roles, as in Sidner’s system. This
feature is based on considerations arising from the extension of focusing Lo cover one-
anaphora. These considerations make syntactic focusing a more accurate predictor of
the interpretation of ene-anaphoric noun phrases without decreasing the accuracy for
definite pronouns.

v This work 1s supported in part by DARPA under contract NOOO14-85 C-0012, administered by the Office of Naval
Research

114

Focusing and Rcference Resolution in PUNDIT

1. Background

1.1. Focusing

Linguistically reduced forms, such as pronouns, arc typically used in texts to refer
to the entity or entities with which the text is most centrally concerned.? Thus, keep-
ing track ol this entity, (the topic, of [Gundel1974], the focus of [Sidner1979], and the
backward-looking center of |Grosz1983, Kameyamal985|) is clearly of value in the
interpretation of pronouns. However, while 'pronoun resolution’ is generally presented
as a problem in computational linguistics to which focusing can provide an answer (See
for example, the discussion in [Hirst1981}), il is useful to consider focusing as a prob-
lem in its own right. By looking at focusing from this perspective, it can be seen that
its applicalions are more general than simply finding referents for pronouns. Focusing
can in fact play a role in the interpretation of several different types of noun phrases.
In support of this position, I will show how focus is used in the PUNDIT (Prolog
UNDerstander of Integrated Text) text proecessing system to interpret a variety of
forms of anaphoric reference; in particular, pronouns, elided noun phrases, one-
anaphora, and context-dependent full noun phrase refercnces.

A second position advocated in this paper is that surface syntactic form can pro-
vide an accurate guide to determining what entities are in focus. Unlike previous focus-
ing algorithms, such as that of [Sidner1979], which used thematic roles (for example,
theme, agenl, instrument as described in [Gruber1976]), the algorithm used in this
system relies on surface syntactic structure to determine which entities are expected to
be in focus. The extension of the focusing mechanisin to handle oenc-anaphora has pro-
vided the major motivation for the choice of syntactic focusing.

The focusing mechanism in this system consists of two parts--a FocuslList, which
is a list of entities in the order in which they are to be considered as foci, and a focus-
ing algorithm, which orders the FocusList. T'he implementation is discussed in detail

in Section 5.

1.2. Overview of the PUNDIT System

I will begin with a brief overview of the PUNDIT system, currently under
development at SDC. PUNDIT is written in Quintus Prolog 1.5. It is designed to
integrale syntax, semantics, and discourse knowledge in text processing for limited
domains. The system is implemented as a set of distinct interacting components which
communicate with each other in clearly specified and restricted ways.

The syntactic component, Restriction Grammar,[Hirschiman1982, Hirschman1985].
performs a top-down parse by interpreting a sct of context-free BNEF definitions and
enforcing conlext-sensitive restrictions associated with the BNI® definitions. The gram-
mar is generally modelled after that developed by the NYU Linguistic String Project
[Sager1981]. Restrictions which enforce context-sensitive constraints on the parse are
associated with the bnl rules

! [am gratefu) for the helpfu! comments of Lynette Hirschinan, Marcia Linebarger, Martha Palmer, and Rebecca Schiffinan
on this paper John Dowding and Honnie Webber also provided useful comments and suggestions on an earlier version

115

Focusing and Reference Resolution in PUNDIT

Some semantic filtering of the parse is done at the noun phrase level. That is,
after a noun phrase is parsed, it is passed to the noun phrase semantics component,
which determines if there is an acceplable semantics associated with that parse. If the
noun phrase is acceptlable, the semantics component construels a semantic representa-
tion. I the noun phirase is nol semantically aceeptable, another parse is sought.

At the conelusion of parsing, the sentence-level semantic interpreter is called. This
interpreter is based on Pabmer’s Inference Driven Semantic Analysis system, [Pal-
mer1985], which analyzes verbs into their component meanings and fills their thematic
roles. In the process of (illing a thematic role the semantic analyzer calls reference reso-
lution for a speeilic syntactic constituent in order to find a referent to fill the role.
Reference resolution instantiates the referent, and adds to the discourse representation
any information inferred during reference resolution.

Domain-specific informalion is available for bolh the noun phrase and clause level
semantic components through the knowledge base. The domain currently being
modelled by SDC is that of computer maintenance reports. Currently the knowledge
Lase is implemented as a semantic net containing a part-whole hierarchy and an isa
hicrarehy of the components and entities in the application domain.

Following the semantic analysis, a discourse component is called which updates
the discourse representation to inelude the information from the current sentence and
which runs the foeusing algorithim.

2. Uses of Focusing

IFocusing, is used in four places in PUNDIT -~ for definite pronouns, for clided
noun phrases, for ene-anaphora, and fo- implicit associates.

As stated above, reference resolution is ealled by the semantic interpreter when it
is i the process of {illing a thematie role. Reference resolution proposes a referent for
the constituent associated with that role. For example, if the verh is replace and the
semantic interpreter is filling the role of agent, reference resolution would be ealled
for the surface syntactic subject. After a proposed referent is chosen for the subject.
any specifie selectional restrictions on the agent of replace {such as the constraint that
the agent has to be a human being) are checked. If the proposed referent fails selece-
tion, backiracking into refercnce resolution occurs and another referent is selected.
Cooperalion between reference resolution and the semantiec interpreter is discussed in
detail in {Palmer1986). The semantic interpreter itself is discussed in [Paliner1985].

2.1. Pronouns and Elided Noun Phrases

I’ronoun resolution is done by instantiating the referent of the pronoun to the first
member of the FocusList unless the instantiation would violate syntactic constraints

on coreferentiality.® (As noted above, if the proposed referent fails selection,

} At the moment, the syntactic constraints on coreferentiality used by the system are very simple. If the direct object is
reflexive it must be instantiated Lo the same referent as the subject Otherwise it must be a different referent. Obviously, as the
system as extended to cover sentences with more complex structures, a more sophisticated treatment of syntactic constraints on

116

Focusing and Rcference Resolution in PUNDIT

backtracking occurs, and another referent is chosen.)

The reference resolution situation in the maintenance texts however, is compli-
cated by the fact that there are very few overt pronouns. Rather, in contexts where a
noun phrase would be expectled, there is often elision, or a zero-np as in Won’t power
up and HHas not failed since Hill’s arrival. Zeroes are handled exactly as if they were
pronouns. The hypothesis that elided noun phrases can be treated in the same way as
pronouns is consistent with previous claims in [Gundel1980] and (Kameyamal985] that
in languages such as Russian and Japanese, which regularly allow zero-np’s, the zero
corresponds to the focus. If these claims are correct, it is notl surprising that in a sub-
language like that found in the maintenance texts, which also allows zero-np’s, the zero
should correspond to the focus.

Another kind of pronoun (or zero) also occurs in the maintenance texts, which is
not associated with the local focus, but is concerned with global aspects of the text.
For example, the field engineer is a default agent in the maintenance domain, as in
Thinks problem 1s in head select area. This is handled by defining default elided
referents for the domain. The referent is instantiated to one of these if no suitable
candidate can be found in the FocusList.

2.2. Implicit Associates

Focusing is also used in the processing of certain full noun phrases, both definite
and indelinite, which involve tmplicit associates. The term implicit associates refers
to the relationship between a disk drive and the motor in examples like The field
enginecr snslalled a disk drive. The motor failed. 1 is natural for a human reader to
infer that the motor is part of the disk drive. In order to capture this intuition, it is
necessary for the system to relate the motor to the disk drive of which it is part. Rela-
tionships of this kind have been extensively discussed in the literature on definite refer-
ence. For example, implicit associates correspond to inferrable entities described by
[Princel981], the associated use definiles of [Hawkins1978|, and the associated type
of implicit backwards specification discussed by [Sidner1979]. Sidner suggests that
implicit associates should be found among the entities in focus. Thus, when the system
encounters a definite noun phrase mentioned for the first time, it sequentially examines
cach member of the FocusList to determine if it is a possible associate of the current
noun phrase. The specific association relationships (such as part-whole, object-
property, and so on) are defined in the knowledge base.

This mechanism is also used in the processing of certain indefinite noun phrases.
In every domain, it is claimed, there arc certain types of entities which can be
classified as dependent. By this is meant an entity which is not typically mentioned on
its own, but which is referred to in connection with another entity, on which it is
dependent. In the maintenance domain, for example, parts such as keyboards, motors,
and printed circuit boards are dependent, since when they are mentioned, they are nor-
mally mentioned as being part of something else, such as a console, disk drive, or

coindexing using some of the insights of [Reinhart1976], and [Chomsky1981] will be required.

117

Focusing and Reference Resolution in PUNDIT

printer.! In an example like The system ss down. The ficld cngincer replaced a bad
printcd circutt board, it scemms clear that a relationship between the printed circuit
board and the system should be represented. Upon encountering a reference to a
dependent entity like the printed circuit board, the system looks through the
FocusList (o deternmine if any previously mentioned entities can be associated with o
printed circuil board, and il so, the relationship is made explicit. I no associate has
been mentioned, the entity will be associated with a default defied in the knowledge
bhase. Ior example, in the maintenance domain, parts are delined as dependent enti-
ties, and in the absence of an explicitly mentioned associate, they are represented as

associated with the system.

2.3. Onc-Anaphora

PUNDIT extends focusing to the analysis of enc-anaphora following [Dahl1981%,
which claims that focus is central to the interpretation of one-anaphora. Specifically,
the referent of a one-anaphorie noun phrasc (c.g., the blue one, somc large ones) is
claimed to be a member or members of a set which is the focus of the current clause.
IFor example, in Installed twe disk drives. Onc failed, the sel of two disk drives is
assumed to be the focus of One fatled, and the disk drive that failed is a member of
that set. This analysis can be contrasted with that of |[alliday1976), which treats
onc-anaphora as a surface syntactic phenomenon, completely distinet from reference.
It is more consistent with the theoretical discussions of [1976], and [Webber1983). >
These analyses advocale a discourse-pragmatic treatment for both enc-anaphora and
definite pronouns. The main computational advantage of treating enc-anaphora as a
discourse problem is that, since definite pronouns are treated this way, little
modification is needed to the basic anaphora mechanism to allow it to handle one-
anaphora. In contrast, an implementation following the account of Halliday and
Hasan would be much more complex and speeilie to enc-anaphora.

The process of reference resolution for one-anaphora occurs in two stages. The
first stage is resolution of the anaphor, ene, and Lhis is the stage that involves focus-
ing. When the system processes the head noun one, it instantiates it with the
calegory of the first sct in the FocusList (disk drive in this cxample).® In other
words, the referent of the noun phrase must be a member of the previously mentioned
set of disk drives. The sccond stage of relerence resolution for ene-anaphora assigns a
specific disk drive as the referent of the entire noun phrase, using the same procedures
that would be used for a full noun phrase, a disk drive.

The extension of the system to one-anaphora provides the clearest motivation for
the choice of a syntactic focus in PUNDIT. Before 1 discuss the kinds of examples

* There are exceptions to this generalization. For example, in a sentence like ficld engineer ordered molor, the motor on
order is not part of anything else (yet). lu PUNDIT, these cases are assumed Lo cepend on Lhe verb meaning. In this example, the
object of ordered is calegorized as non-specific, and reference resolution is not called. See [’aliner1986| for details.

¢ Although not Webber’s analysis in |Webber1978], which advocates an approach similar to lfalliday and Hasan's

¢ Currently the only sels in the FocusList are those which were explictly mentioned in the texl. However, as pointed out
by [Dahi1982.], and |Webber1983, Dahl1984|, other sels besides those explictly mentioned are available for anaphoric refcrence
These have not yet been added to the system

118

Focusing and Reference Resolution in PUNDIT

which support this approach, [will briefly describe the relevant part of the focusing
algorithm based on thematic roles which is proposed by[Sidner1979]. After each sen-
tence, the locusmg algorithms order the elements in the sentence in the order in which
they are to be considered as potential Toci in the next sentence. Sidne *'s ordering and
that of PUNDIT are compared in Iigure 1.

The idea that surface syntax is important in focusing comes from a suggestion by
[irteschik-Shir1979], that cvery sentence has a dominant syntactic constituent, which
provides a default topic for the following utterance’. lIntuitively, the dominant consti-
tuent can be thought of as the one to which the hearer’s attention is primarily drawn.
Operationally the dominance of a constituent is Ltested by seeing if a referent with that
constituent as the antecedent can be cooperatively referred to with an unstressed pro-
noun in the following sentence.

The feature of ene-anapliora which motivates the syntactic algorithm is that the
availability of certain noun phrases as antecedents for one-anaphora is strongly
aflected by surface word order variations which change syntactic relaticns, but which
do not affect thematic roles. Il thematic roles are crucial for focusing, then this pattern
would not be observed.

Consider the following examples:

(1) A: I'd like to plug in this lamp, but the bookcases are blocking the electrical
outlets.

BB: Well, can we move one?

(2) A I'd like to plug in this lamp, but the electrical outlets are blocked by the book-

cases.
Sidner PUNDIT
Theme Sentence
Other thematic rolcs Direct Object
Agent Subject
Verb Phrase Objects of Prepositional Phrases

Figure 1: Comparison of Potential Focus Ordering in
Sidner’s System and PUNDIT

! As discussed in [Dahl11984] there are problems with Erteschik-Shir's definition of dominance and slightly different definition
is proposed. However the details of this reforniulation do not concern us here.

119

Focusing and Refercnce Resolution in PUNDIT

B: Well, can we move one?

In (1), most informants report an initial impression that B is talking about moving
the clectrical outlets. This does not happen for (2). This indicates that the expected
focus following (1) A is the outlets, while it is the bookcases in (1) B. However, in each
case, the thematic roles are Lhe same, so an algorithm based on thematic roles would
predict no difference between (1) and (2).

Similar examples using definite pronouns do not seem to exhibit the same effect.
In (3) and (4), they seems to be ambiguous, until world knowledge is brought in. Thus,
in order to handle definite pronouns alone, either algorithm would be adequate.

(3) A: I'd like to plug in this lamp, but bookcases are blocking the electrical outlets.
B: Well, can we move them?

(4) A: I'd like to plug in this lamp, but the electrical outlets are blocked by the book-
cases.

B: Well, can we move them?

(5) and (6) illustrate another example with one-anaphora. In (5) but not in (6),
the initial interpretation seems to be that a bug has lost its leaves. As in (1) and (2),
however, the thematie roles are the same, so a thematic-role-based algorithm would
predict no difference belween the sentences.
(5) The plants are swarming with the bugs. One’s already lost all its leaves.

(6) The bugs are swarming over the plants. One’s already lost all its leaves.

In addition to theoretical considerations, there are a number of obvious practical
advantages Lo defining focus on constituents rather than on thematic roles. For exam-
ple, constituents can often be found more reliably than thematic roles. In addition,

thematic roles have to be defined individually for each verb.® Since thematic roles for
verbs can vary across domains, delining focus on syntax makes it less domain depen-
dent, and hence more portable, While in principle focus based on thematic roles does
not have to be domain-dependent, a general algorithim based on thematic roles would
have to rely on a a general, domain-neutral specification of all possible thematic roles
and their behavior in focusing. Until such a specification exists, a thematic-role hased
focusing algorithm must be redefined for each new domain as the domain requires the
definition of new thematic roles, and because of this, will continue to be less portable
than an approach based on syntax.

' Of course, some generalizations ran be made aboul how argumenls map to thematic roles For example, the basic
definition of the thematic role theme is that, for a verb of motion, the theme is the argument that moves. More generally, the
theme is the argument that is most affected Ly the action of the verb, and its typical syntactic manifestation is as a direct object
of a transitive verb, or the subject of an intransitive verh However, even if these generalizations are accurate, they are no more
than guidelines for finding the themes of verbs The verbs still have to be classified individually

120

Focusing and Reference Resolution in PUNDIT

3. Implcmentation
3.1. The Focusklist and CurrentContext

The data structures that retain information from senlence to sentence in the
PUNDI'T system are the FocusList and the CurrentContext. The FocusList is
a list of all the discourse entities which are eligible to be considered as foci, listed in
the order in which they are to be considered. For example, after a sentence like The
field engincer replaced the disk drive, the following FocusList would be created.

[[eventl],[drivel],[engineerl]]

The members of the FocusList are unique identifiers that have been assigned to the
three discourse entlities -- the disk drive, the field engineer, and the event. The
CurrentContext contains the information that has been conveyed by the discourse
so far. After the example above, the CurrentContext would contain three types of
information:

(1) Discourse 1d’s, which represent classifications of entities. For example,

id(field "engineer,[engineerl]) means that [engineerl] is a a field engineer.?

(2) Facts about part-whole relationships (hasparts). In the example in Figure 2,
notice that the lack of « representation of time results in hoth drives being part of
the system, which they are, but not at the same time. Work to remedy this prob-
lein is in progress.

(3) Representations of the events in the discourse. For example, if the event is that of
a disk drive having been replaced, the representation consists of a unique
identifier ([eventl]), the surface verb (replace(time(_))), and the decomposi-
tion of the verb with its (known) arguments instantiated!?. The thematic roles
involved are objectl, the replaced disk drive, object2, the replacement disk
drive, time and instrument which are uninstantiated, and agent, the field
engineer. (See|Palmer1986), for details of this representation). Figure 2 illustrates
how the CurrentContext looks after the discourse-initial sentence, The field
engineer replaced the disk drive.

3.2. The Focusing Algorithm

The focusing algorithm used in this system resembles that of [Sidner1979],
although it does not use the actor focus and uses surface syntax rather than thematic
roles, as discussed above. The focusing algorithm is illustrated in Figure 3. Removing
candidates from the FocusList when they arc no longer cligible to be the referents of
pronouns is not currently done in this system. The cor ditions determining this have
not been fully investigated, and since the texts involved are short, few problems are
created in practice. This problem will be addressed by future research.

? fckd engineer is an example of the representation used in PUNDIT for an idiom.

% _B176 is an uninstantiated variable representing the time of the replacement. It appears in several places, such as

incladed(object2([drive]),time(_8170)), and missing(objecti([drivel]),time(_81 70)).

121

Focusing and Reference Resolution in PUNDIT

id(field"engincer,[engineerl]),
id(disk “drive,[drivel]),
id(system,[systeml]),

id(disk “drive,[drivez]),

id(event,[eventl]),

haspart([systeml],[drivel]),

haspart([systeml],[drivez])]

event([eventt],
replace(time(8176)),
[included(objectZ([drive2]),time(8178)),
missing(objecti({drivel]),time(8178)),
use(instrument(84905),
cxchange(objectt([drivel]),objectZ([drivez]),time(8178))),
cause(agent([engincerl]),
use(instrument(8408),
cxchange(objectl([drivel]),object2([drive2]),time(81786))))])

Figurc 2: CurrentContext after The field engincer replaced the disk drive.

122

Focusing and Reference Resolution in PUNDIT

(1) First Sentence of a Discourse:
Establish expected foci for the next sentence (order FocusList): the
order reflects hew likely that constituent is to become the focus of
the following sentence.

Sentence

Direct Object

Subject

Objects of Prepositional Phrases

(2) Subsequent Sentences (update FocusList):

If there is a pronoun in the current sentence, move the focus to the
referent of the pronoun. If there is no promoun, retain the focus
from the previous sentence. Order the other elements in the sen-
tence as in (1).

Figure 3: The Focusing Algorithm

4. Summary

Several imteresting resenrch issues are raised by (his work. For example, what is
the sourece of the focusing aleorithm? s it derivable from theoretical considerations
about how language is processed by human beings, or is it sinply an empirical obser-
vation about conventions used in particular languages to bring discourse entities into
prominence? Fvidence bearing on this issue would be to what extent the focusing
mechanism «curries over to other, non-related languages. Kameyama’s work on
Japanese sugpests Lhat there are some similarities across languages. To the extent that
such similaritics exist, it would suggest that the algorithm is derivable from other
theoretical considerations, and is not simply a reflection of linguistic conventions.

This paper has deseribed the reference resolution component of PUNDIT, a large
text understanding system in Prolog. A focusing algorithm based on surface syntactic
constituents is used in the processing of several dillerent types of reduced reference:
definite pronouns, enc-anaphora, elided noun phrases, and implicit associates. This
generality points outl the usefulness of treating focusing as a problem in itself rather
than simply as a tool for pronoun resolution.

123

Focusing and Reference Resolution in PUNDIT

REFERENCUES

; [1976]
Jorge Hankamer and lvan Sag, Deep and Surface Anaphora. Linguistic In-
qutry 7(3), 1976, pp. 391-128.

|Clhomsky 1981]
Noam Chomsky, Lectures on Governmenl and Binding. Foris "ublications,
Dordrecht, 1981,

(Dahl1982.]
Deborah AL Dahl, Discourse Sirneture and one-anaphora in inglish, presented
at the 57th Annual Mecting ol the Linguistic Society of America, San Diego,
1982,

[Dahl19R1]
Deborah AL Dalil, The Structure and Funetion of One-Anaphora in English,
PhD Thesis: (also published by Indiana University Linguistics Club, 1985),
Universily of Minnesota, 1984,

—p——

. [Iirtesehik-Shirl979)]
Nowmi Isrteschik-shir and Shalom Lappin, Dominance and the Functional [9x-
planation of Istand Phenomena. Theorelical Linguistics, 1979, pp. 41-86.

Grosz 1983
Barbara Grosz, Aravind K. Joshi, and Scott Weinstein, Providing a Unilied
Aceount of Delinite Noun Phrases in Discourse. Proceedings of the 21st An-
nual Mceling of the Assoctalion for Computalional Linguistics, 1983, pp.
41-50.

(JrulwrlQT(i]
Jellery Gruber, Lezical Struclure sn Syntaz and Semantics. North Holland,
New York, 1976,

{Gundel 1974
Jeanette K. Gundel, Role of Topic and Comment in Linguistic Theory, Ph.D.
thesis, University of Texas at Austin, 1974.

fGundel 1980
Jeanette K. Gundel, Zero-NFP Anaphora in Russian. Chicage Linguistic So-
ctely Parasesston on Pronouns and Anaphora, 1980.

Halliday 1976]
Michael A. K. Halliday and Ruqaiya Hasan, Coheston in English. Longman,
London, 1976.

[Hawkins1978|
John A. Hawkins, Defintleness and Indefiniteness. Humanities Press, Atlan-
tic llighlands, New Jersey, 1978.

124

— e — "

—— . -

Focusing and Reference Resolution in PUNDIT

[Hirschman1982]

L. Hirschman and K. Puder, Restriction Grammar in Prolog. In Proc. of the
First Internalional Logic Programming Conference, M. Van

Caneghem (ed.), Association pour la Dillusion et le Developpement de Prolog,
Marscilles, 1982, pp. 85-90.

[Hirschiman1985]

L. Hirschman and K. Puder, Reslriction Grammar: A Prolog
Implementation. In Logic Programming and its Applications, D.H.D. Warren
and M. VanCaneghem (ed.), 1985.

[Hirst1981]
Graeme Hirst, Anaphora in Nealural Language Understanding. Springer-
Verlag, New York, 1981.

[Kameyainal985]
Megumi Kameyama, Zero Anaphora: The Case of Japanese, Ph.D. thesis,
Stanford University, 1985,

[Palimer1985]

Martha S. Palmer, Driving Semantics for a Limited Domain, Ph.D. thesis,
University of lidinburgh. 1985.

[Palmer1986]
Martha S. Paliner, Deborah A. Dahl, Rebecca J. Schifflman, Lynette Hirsch-
man, Marcia Linebarger. and John Dowding, Recovering Implicit Information,
to be presented at the 24th Annual Mceeting of the Association for Computa-
tional Linguistics, Columbia University, New York, August 1986.
[Prince1981]
Ellen F. Prince, Toward a Taxonomy of Given-New Information. In Radical
Pragmatics. Peter Cole (ed.), Academic Press, New York, 1981.
[Reinhart1976]
Tanya Reinhart, The Syntactic Domain of Anaphora, Ph.D. thesis, Mas-
sachusetts Institute ol Technology, 1976.
[Sager1981]
N. Sager, Nalural Lanqguage Informalion Processing: A Compuler Gram-
mar of [English and Its Applications. Addison-Wesley, Reading, Mass., 1981.
[Sidner1979]
Candace Lee Sidner, Towards a Computational Theory of Definite Anaphora
Comprehension in English Discourse, MIT-Al T'R-537, Cambridge, MA,
1979.
[Webber1978|

Bonnie Lynu Webber, A Formal Approach lo Discourse Anaphora. Garland,
New York, 1978.

125

Focusing and Reference Resolution in PUNDIT

[Webber1983)
Bonnic Lynn Webber, So What Can We Talk About Now?. In Computational
Modcls of Discourse, Michael Brady and Robert C. Berwick (ed.), 1983.

126

-

SECTION 4: RESEARCH CONTRIBUTIONS
SRI International

COMMONSENSE METAPHYSICS
AND LEXICAL SEMANTICS

Jerry R. Hobbs, William Croft, Todd Davies,
Douglas Edwards, sand Kenneth Laws

Artificial Intelligence Center
SRI Interpational

1 Introduction

In the TACITUS project for using commonsense knowl-
edge in the understanding of texts about mechanical de-
vices and their failures, we bave beep developing various
commonsense theories that are needed to mediate between
the way we talk about the behavior of such devices and
causal models of their operation. Of central importance in
this effort is the axiomatization of what might be called
“commonsense metaphysics®. This includes a number of
areas that figure in virtually every domain of discourse,
such as scalar notions, grapularity, time, space, material,
pbysical objects, causality, functionality, force, and shape.
Our approach to lexical semantics is then to construct core
theories of each of these areas, and then to define, or at
Jeast characterize, a large number of lexical items in terms
provided by the core theories. In the TACITUS gystem,
processes for solving pragmatics problems posed by a text
will use the knowledge base consisting of these theories in
conjunction with the logical forms of the sentences in the
text to produce an interpretation. In this paper we do
not stress these interpretation processes; this is another,
important aspect of the TACITUS project, aad it will be
described in subsequent papers.

This work represents a convergence of research in lexical
semantics in linguistics and efforts in Al to encode com-
tmonsense knowledge. Lexical semanticists over the years
bave developed formalisms of increasing sdequacy for en-
coding word meaning, progressing from simple sets of fea-
tures {Katz and Fodor, 1963) to motations for predicate-
argument structure (Lakoff, 1972, Miller and Johnson-
Laird, 1976), but the early attempts still limited access
to world knowledge and assumed only very restricted sorts
of processing. Workers in computational linguistics intro-
duced inference (Rieger, 1974; Schank, 1975} and other
complex cognitive processes (Herskovits, 1982) into our
understanding of the role of word meaning. Recently, lin-
guists have given grester attention to the cognitive pro-
cesses that would operate on their representations (e.g.,
Ta'my, 1983; Croft, 1986). Independently, in Al an ef-
fort aroee 10 encode large amounts of commonsense know}-

127

odge (Hayes, 1979; Hobbs and Moore, 1985; Hobbs et al.
1985). The research reported bere represents a conver-
gence of these various developments. By developing core
theories of several fundamental phenomena and defining
lexical items within these theories, using the full power
of predicate calculus, we are able to cope with compiex-
ities of word meaning that have hitherto escaped lexical
semanticists, within a framework that gives full scope to
the planning and reasoning processes that masipulate rep-
resentations of word meaning.

In constructing the core thecries we are attempting to
adhere to several methodological principles.

1. One should aim for characterization of concepts.
rather than definition. One cannot geperally expect to find
necessary and sufficient conditions for a concept. The most
we can hope for is to find a number of necessary cond:-
tions and a number of sufficient conditions. This amouats
to saying that a great many predicates are primitive, but
primitives that are highly interrelated with the rest of the
knowledge base.

2. One should determine the minimal structure neces-
sary for a concept to make sense. In efforts to axiomatize
some area, there are two positions ope may take, exem-
plified by set theory and by group theory. lo axiomatiz-
ing set theory, one attempts to capture exactly some con-
cept one has stroag intuitions about. If the axiomatization
turns out to have unexpected models, this exposes ap in-
adequacy. In group theory, by contrast, one characterizes
an sbetract class of structures. If there turn out to be
unexpected medels, this is a serendipitous discovery of a
new phenomenon that we can reason about using an old
theory. The pervasive character of metaphor in natural
language discourse shows that cur commonsense theories
of the world ought to be much more like group theory than
set theory. Ey seeking minimal structures in axiomatizing
concepts, we optimize the possibilities of using the theories
in metapborical and analogical contexts. This principle
is illustrated below in the section on regions. One conse
quence of this principle is that our approach will seem more
syotactic than semantic. We have councentrated more on

Tt S

specifying axioms than or coastructing models. Our view
is that the chief role of models in our effort is for proving
the cousistency and independeace of sets of axioms, and for
showing their adequacy. As an example of the last point,
many of the spatial and temporal theories we construct
are intended >t feast to have Euclidean space or the real
numbers as one model, and a subclass of grapb-theoretical
structures as other models.

3. A balance must be struck between sttempting to
cover all cases and aiming only for the prototypical cases.
In general, we have tried to cover as many cases as pos-
sible with ap elegant axiomatization, in line with the two
previous principles, but where the formalization begins to
Jook baroque, we assume that higher processes will suspend
some ijnferences in the marginal cases. We assume that in-
ferences will be drawn in a controlled fashion. Thus, every
outré, highly context-dependent counterexample need not
be accounted for, and to a certain extent, definitions can
be geared specifically for a prototype.

4. Where competing ontologies suggest themselves in a
domain, one should attempt to construct a theory that ac-
commodates both. Rather than commit oneself to adopt-
ing oue set of primitives rather than another, one should
show how each set of primitives can be characterized in
terms of the other. Generally, each of the ontologies s
useful for different purposes, and it is convepient to be
able to appeal to both. Our treatment of time illustrates
this

5. The theories one constructs should be richer in axioms
than in theorems In mathematics, one expects to state
hall a dozen axioms and prove dozens of theorems from
them. In encoding commonsense knowledge it seems to be
just the opposite. The theorems we seek to prove on the
basis of these axioms are theorems about specific situations
which are to be interpreted, in particular, theorems about
a text that the system is attempting to understand.

6. One should avoid falling into “black holes”. There
are a few “mysterious” concepts which crop up repeatedly
in the formalization of commonsense metaphysics. Among
these are “relevapt™ (that is, relevant to the task at hand)
and “normative” (or conforming Lo some norm or pattern).
To insist upon giving a satisfactory analysis of these before
using them in analyzing other concepts is to cross the event
borizon that separates lexical semantics from philosophy.
Onu the other hand, our experience suggests that to svoid
their use entirely is crippling; the lexical semantics of a
wide variety of other terms depends upon them. Instead,
we have decided to leave them minimally apalyzed for the
moment and use them without acruple in the anslysis of
other commoonsense concepts. This approach will allow us
to accumulate many examples of the use of these mysteri-
ous concepts, and in the end, contribute to their success-
ful apalysis. The use of these concepts appears below in
the discussions of the words *immediately”, “sample”, and
“operate”.

128

We chose as an initial target problem to encode the com-
monsense knowledge that underlies the concept of “wear”,
as in a part of a device wearing out. Our aim was to define
“wear” in terms of predicates characterized elsewbere in
the knowledge base and to infer consequences of wear. For
something to wear, we decided, i8 for it to lose impercepti-
ble bits of material from its surface due to abrasive action
over time. One goal,which we bave not yet achieved, s to
be able to prove as a theorem that since the shape of a part
of 3 mechanical device is often fuuctional and since loes of
material can result in a change of shape, wear of a part of
8 device can result in the failure of the device as a whole.
In addition, as we have proceded, we bave characterized a
number of words found in a set of target texts, as it bas
become possible.

We are encoding the knowledge as axioms in what is
for the most part s first-order logic, described in Hobbs
{1085a), although quantification over predicates is some-
times convenient. In the formalism there is a nominaliza-
tion operator * ' * for reifying events and conditions, as
expressed in the following axiom schema:

(Vzlp(z) = (3e)p (e, 2) A Ezist(e)

That is, p is true of = if and only if there is a condition ¢
of p being true of = and ¢ exists in the real world.

In our implementation 8o far, we have been proving sim-
ple theorems from our axioms using the CG35 theorem-
prover developed by Mark Stickel (1982), but we are only
sow beginning to use the knowledge base in text process.
ing.

2 Requirements on Arguments of
Predicates

There is a notational copvention used below that deserves
some explanation. It has frequently been noted that re-
lational words in patural language can take only certain
types of words as their arguments. These are usually de-
scribed as selectional constraints. The same is true of pred-
icates in our knowledge base. They are expressed below by
rules of the form

p(z.y) :r(z,y)

This means that for p even to make sense applied to r and
¥, it must be the case that r is true of £ and y. The logical
import of this rule is that wherever there is an axiom of
the form

(Yz.ylp(7.y) D qlz.y)
this is really to be read as

Vz,y)o(z,y) A r(z,y) D q(z.y)

The checking of selectional constraints, therefore, falls out
as a by-product of other logical operations: the constraint
r{z, y) must be verified if anything else is to be proven from
plz.y).

The simplest example of such an r{z, y) is a cosjunction
of sort constraints r,(z) A ry(y). Our approach is a gener-
slizatico of this, because much more complex requirements
can be placed on the arguments. Consider, for example,
the verb “range”. If z ranges from y to 2, there must be
a scale ¢ that includes y and z, and z must be & set of en-
tities that are Jocated at various places on the scale. This
can be represented as follows:

range(z,y,2) : (Fa)ecale(s) Ay€E e
Az € e A set(z)
A(Ve)lu€z D (Av)veEs A el(s,v)|

3 The Knowledge Base
3.1 Sets and Granularity

At the foundation of the knowledge base is an axiomatiza-
tion of set theory. It follows the standard Zermelo-Frankel
approach, except that there is no Axiom of lnfinity.

Since s0 many concepts used in discourse are grain-
dependent, a theory of granularity is also fundamental (see
Hobbs 1985b). A grain is defined in terma of an indiatin-
guishability relation, which is reflexive and symmetric, but
not pecessarily transitive, One grain can be a refinement
of another with the obvious definition. The most refined
graip is the identity grain, i.e., the one in which every two
distinct elements are distinguishable. One possible rela-
tionship between two grains, one of which is a refinement
of the other, is what we call an “Archimedean relation®,
after the Archimedean property of real sumbers. Intu-
itively, if enough events occur that are imperceptible at the
coarser grain g; but perceptible at the fiver grain g, then
the aggregate will eventually be perceptible at the coarser
grain. This is an important property in phenpomena sub-
ject to the Heap Paradox. Wear, for instance, eventually
has significant consequences.

3.2 Scales

A great many of the most common words in English have
scales as their subject matter. This includes many preposi-
tions, the most common adverbs, comparatives, and many
abstract verbs. When spatial vocabulary is used metaphor
ically, it is generally the scalar aspect of space that carries
over to the target domain. A scale is defined as a set of
elements, together with a partial ordering and a granular-
ity (or an indistipguishability relation). The partial o~
dering and the indistinguishability relation are consistent
with each other:

(Yz,y.2)z<yAy~1D2<sVz~2

129

It is useful to have an adjacency relation between points on
a scale, and there are a number of ways we could introduce
it. We could simply take it to be primitive; in a scale
baving a distance function, we could define two points to
be adjacent when the distance between them is less than
some ¢; finally, we could define adjacency in terms of the
grain-sise:
(Vz,y,0)adj(z.5,0) =
(Az)s~zsAz~yA-jz~y)

Two important possible properties of scales are connect-
oedness and denseness. We can say that two elements of a
scale are connected by a chain of adj relations:

(Vz,y, 0)connected(z,y,0) =
edj(z,y,8) vV
(312)edj{z, 2,8) A connected(z,y,)

A scale is connected (sconnected) if all pairs of elements
are cognected. A scale is dense if between any two points
there is a third point, until the two points are so close
together that the grain-size won't let us tell what the situ-
stion is. Cranking up the magnification could well resolve
the continuous space into a discrete set, as objects into
astoms.

{Vs)denae(s) =
(Vz,y.<)z€EsApEsAorder(<,8) Az<y
D [PF:Mr<czazy)
V(B3z{z~2Az~y)

This captures the commonsense notion of continuity.

A subscale of a scale has as its elements a subset of the
elements of the scale and has as its partial ordering and its
grain the partial ordericg and the grain of the scale.

(Va,, <, ~Jorder(<,98,) A grain(~,¢,)
D (Yay)[eubacale(s,, o,)
= subsel(ay, 8,) Aorder(<, 83) Agrain(~, s,)]
An interval can be defined as a connected subscale:

(Vi)interval(s) = (3 s)scale(s)
A subscale(s, s) A sconnected(i)

The relations between time intervals that Allen and
Kauts (1985) have defined can be defined in a straight-
forward manner in the approach preseuted bere, applied
to intervals in general.

A concept closely related to scales is that of a “cycle”.
This is & syetem which bas a natural ordering locally but
contains a loop giobally. Examples include the color wheel,
clock times, and geographical locations ordered by “east
of". We have axiomatized cycles iti terms of a ternary
Selween relation, whose axioms parallel the axioms for a
partial ordering.

The Ggure-ground relationship is of fundamental impor-
tance in language. We encode this with the primitive pred-
icate at. The minimal structure that seems to be necessary
for something to be a ground is that of a scale; bence, this
is a selectional constraint on the arguments of at.

Bintd andil

at{z,y) : (3e)y € 9 A scale(s)

At this point, we are already in a position to define some
fairly complex words. As an illustration, we give the ex-
ample of “range” as in “r raoges from y to z":

(Vz,y z)rangei(z,y,2) =
(30,81, %,,u3)ecale(s). A subscale(s,,s)
Abottom(y, s,) A top(z,8;)
Avy €z A al(v,,y)
Avg €z A at(uy,2)
A(Vu)ju€z D (Av)vE & A at(y,v)]

A very important scale is the linearly ordered scale of
numbers. We do not plan to reason axiomatically about
pumbers, but it is useful in natural language processing to
bave encoded a few facts about pumbers. For example, a
set bas a cardinality which is an element of the aumber
scale.

Verticality is a concept that would be most properly an-
alyzed in the section on space, but it is a property that
many other scales have acquired metaphorically, for what-
ever reason. The number scale is one of these. Even in the
absence of an analysis of verticality, it is a useful property
to have as a primitive in lexical semantics.

The word *high” is a vague term that asserts an entity is
in the upper region of some scale. It requires that the scale
be a verlical one, such as the number scale. The vertical-
ity requirement distinguishes “high” from the more gen-
eral term “very”, we can say “very hard” but not “highly
bard”. The pbrase “highly planar® sounds all right be-
cause the high register of “planar” suggests a quantifiable,
scientific accuracy, whereas the low register of “fat™ makes
“highly flat” scund much worse.

The test of any definition is whether it allows one to draw
the appropriate inferences. In our target texts, the phrase
~high usage™ occurs. Usage is a set of using events, and the
verticality requirement on “high™ forces us to coerce the
phrase into “a high or large number of using events”. Com-
bining this with an axiom that says that the use of 3 me-
cbanical device involves the likelihood of abrasive events,
as defined below, and with the definition of “wear” in terms
of abrasive events, we should be able to conclude the like-
lihood of wear.

3.3 Time: Two Ontologies

Thbere are two possible ontologies for time. 1n the first, the
one most acceptable to the mathematically minded, there
is a time line, which is a scale having some topological
structure. We can stipulate the time line to be linearly
ordered (although it is not in approaches that build ig-
norance of relative times into the representation of time
(e.g., Hobbs, 1974) nor in approaches using branching fu-
tures (e.g., McDermott, 1985)}, and we can stipulate it to
be dense (although it is not in the situation calculus). We
take before to be the ordering oo the time lie:

130

(Y, ts)before(ly, by) =
(3T, <)Time-line(T) A order(<,T)
ALETALET ALl <ty

We allow both instants and intervals of time. Most events
occur at some instant or during some ioterval. In this
approach, nearly every predicate takes a time argument.

In the second ontology, the ope that seems to be more
deeply rooted in language, the world copsists of a large
sumber of more or less independent processes, or histories,
or sequences of events. There is a primitive relation change
between conditions. Thus,

change(e;,e3) A P'ey,Z) A ¢'le,7)

says that there is a change from the condition ¢, of p being
true of £ to the condition e; of ¢ being true of z.

The time line in this ontology is then an artificial con-
struct, a regular sequence of imagined abstract events—
thiok of them as ticks of a clock in the National Bureau
of Standards—to which other events can be related. The
change ontology seems to correspond to the way we ex-
perience the world. We recognize relations of causality,
change of state, and copresence among events and condi-
tions. When events are not related in these ways, judg-
ments of relative time must be mediated by copresence
relations between the events and events on a clock and
change of state relations on the clock.

The predicate change possesses a limited trapsitivity
There has been a change from Reagan being an actor to
Reagan being President, even though he was governor 1o
between. But we probably do not want to say there bas
been a change from Reagan being an actor to Margaret
Thatcher being Prime Minister, even though the second
comes after the first.

We can say that times, viewed in this ontology as events.,
always have a change relation between them.

(Vt.,l,)bcfore(l.,t;) D changc(l,,tz)
The predicate change is related to before by the axiom

(Ve,,e;)change(e,, e2) D
(34, t)at(en, ty)
A.‘(C’,‘,) A k/ore(l,,l,)

This does not allow us to derive change of state from tem-
poral succession. For this, we peed axioms of the form

(vcloolo‘h‘l-:)#(cht) A ‘l(clv‘l)
AQ’(G‘,S) A d‘(tz,‘;) A bC!OfC(lhlg)
D change(e,, €;)

That is, if z is p at time ¢, and ¢ at a later time {3, then
there has been a change of state from one to the other.
Time arguments in predications can be viewed as abbrevi-
ations:

(Vz,t)p(z,t) = (3e)p'(e, 2) A alle,)

The word “move”, or the predicate move, (as in “z
moves from y to z”) can then be defined equivalently in
terms of change

{(Vz,y9,z)move(z,9.2) =
(3 e,.e3)change(e,,e;)
A“‘(C.. z, ') A “’(‘2» z, ')

or in terms of the time line

(Vz,y, 2)move(z,9.2) =
(3‘], ‘1)“(’! "‘l) A .‘(:l z, ") A k!"e(‘l' ")

In Eoglish and apparently all other natural languages,
both ontologies are represented in the lexicon. The time
line ontology is found in clock and calendar terms, tense
systems of verbs, and in the deictic temporal locatives such
as “yesterday”, “today”, “tomorrow™, ®last night”, and so
on. The change ontology is exhibited in most verbs, and
in temporal clausal connectives. The universal presence
of both classes of lexical items and grammatical mark-
ers ip natural languages requires a theory which can ac-
commodate both ontologies, illustrating the importance of
methodological principle 4.

Among temporal connectives, the word “while” presents
interesting problems. In “¢, while ¢;", ¢; must be an event
occurring over a time interval, ¢; must be an event and
may occur either at a point or over an interval. One's first
guess is that the point or interval for ¢, must be included
in the interval for e;. However, there are cases, such as

It rained while I was in Philadelphia.
or

The electricity should be off while the switch is
being repaired.

which suggest the reading “e; is included in ¢,". We came
to the conclusion that one can infer no more than that
e; and ¢; overlap, and any tighter constraints result from
implicatures from background knowledge.

The word “immediately™ also presents a number of prob-
lems. It requires its argument ¢ to be an ordering relation
between two entities z and y on some scale s.

tmmediate(e) : (32, y, s)less-than'(e, 2, y, s)

1t is not clear what the constraints on the scale are. Tem-
poral and spatial scales are okay, as in “immediately after
the alarm”™ and “immediately to the left”, but the size scale
sa’t:

¢ John is immediately larger than Bill.

Etymologically, it means that there are no intermediate
entities between z and y on s. Thus,

(Ve,z,y,0)immediate(c) A less-than'(e, 2,y,s)
D =(3z2)less-than(z, z,8) A less-than(z,y,s)

131

_—-B

7
-~
-+

-
A .\\

N

Figure 1: The simplest space.

Bowever, this will only work if we restrict z to be a relcvant
entity. For example, in the sentence

We disengaged the compressor immediately after
the alarm.

the implication is that no event that could damage the
compressor occurred between the alarm and the disengage-
ment, since the text is about equipment failure.

3.4 Spaces and Dimension: The Minimal
Structure

The notion of dimension has been made precise in linear al-
gebra. Since the concept of a region is used metapborically
as well as in the spatial sense, however, we were concerned
to determine the minimal structure that a system requires
for it to make sense to call it a space of more than one
dimension. For a two-dimensional space, 1* ~re must be a
scale, or partial ordering, for each dimension. Moreover,
the two scales must be independent, in that the order of
elements on one scale can not be determined from their
order on the other. Formally,

(Y ep)epace(sp) =
(3 01, 83, <3, <3)scale (s, 8p) A scaley(s,, sp)
Aorder(<,.8,) A order(<,,8;)
AQBwn)(z<in Az <)
ABnNz<im A< T)

Note that this doecs not allow <, to be simply the reverse of
<;. An unsurprising consequence of this definition is that
the minimal example of a two-dimensional space consists
of three points (three points determine a plane), e.g., the
points A, B, aud C, where

A< B, A C,C<y A A<y B.

This is llustrated in Figure 1.

The dimensional scales are apparently found in all nat-
ural languages in relevant domains. The familiar three-
dimensional space of common sense is defined by the three
scale pairs “up-down”, “front-back™, and “left-right™; the
two-dimensional plane of the commonsense conception of
the earth’s surface is represented by the two scale pairs
“north-south” and “east-west".

The simplest, although pot the only, way to define ad-
jacency in the space is as adjacency on both scales:

(Vz.y. eplads(z.y. 8p) =
(3 8,.8:)8cale,(a,, 8p) A scaley(ss,8p)
Aadj(z,y.8,) A adjiz, y,)

A region is a subset of a space. The surface and interior of
a region can be defined in terms of adjacency, in a manner
paralleling the definition of a boundary in point-set topol-
ogy. lo the following. s is the boundary or surface of a two-
or three-dimensional region r embedded in a space sp.

(Vea,r)aurface(s,r 8p)
(Vr)rer D [z€2
(Ey)(y € sp A ~(y € 1) A adj(z,y, ep))]

mom

Fipally, we can define the notion of “contact” in terms of
points io different regions being adjacent.

(Vry.r;, ap)contact(r,,r;, ap) =
disjoint(r,, ry) A
(Ez.y)(z € ry A y€r; A adf(z,y.0p))

By picking the scales and defining adjacency right, we
can talk about points of contact between communicational
networks, systems of koowledge, and other metaphorical
domains. By picking the scales to be the real line and
defining adjacency in terms of ¢-neighborboods, we get Eu-
chidean space and cap talk about contact between pbysical
ob.jects

3.5 Material

Physical objects and materials must be distinguished, just
as they are apparently distinguished in every natural lan-
guage. by means of the count noun - mass poun distinc-
tion A pbysical object is pot a bit of material, but rather
1 comprised of a bit of material at any given time. Thus,
rivers and human bodies are physical objects, even though
their material constitution changes over time. This distinc-
tion also allows us to talk about an object losing material
through wear and still being the same object.

We will say that an entity b is a bit of material by means
of the expreasion material(b): Bits of material are char-
acterized by both extension and cohesion. The primitive
predication occupies(b r.t) encodes extension, saying that
a bit of material 8 occupies a region r at time {. The topol-
ogy of a bit of material is then parasitic on the topology of
the region it occupies. A part b, of & bit of material bis s
bit of material whose occupied region is always a subregion
of the region occupied by b. Point-like particles (particle)
are defined o terms of points in the occupied region, dis-
joint bits (diajointbit) in terms of disjointness of regions,
and contact between bits in terms of contact between their
regions. We can tben state as follows the Principle of Non-
Joint-Occupancy that two bits of material cannot occupy
the same place at the same time:

132

(Vby, 5){diajointbit (b, b,)

D (Yz,p.b, b)interior(by. b;)
Atnierior(by, b)) A particle(r, by}
Aparlicle(y, by)

D ~(Ez)(at(z,) A at(y,2))

At some future point in our work, this may emerge as a
consequence of a richer theory of cobesion and force

The cohesion of materials is also a primitive property,
for we must distinguish between a bump on the surface of
an object and a chip merely lying on the surface. Cohesioc
depends an a primitive relation bond between particies of
material, paralleling the role of adj in regions. The relation
attached is defined as the transitive closure of bond. A
topology of cohesion s built up in a manner analogous
to the topology of regions. In addition. we have encoded
the relation that dond bears to motion, i.e. that bonded
bits remain adjacent and that one moves when the other
does, and the relation of bond to force, i.e. that there is a
characteristic force that breaks a bond in a given material.

Different materials react in different ways to forces of
various strengths. Materials subjected to force exhibit or
fail to exhibit several invariance properties, proposed by
Hager (1985). I the material is shape-invariant with re-
spect to a particular force, its sbape remains the same.
If it is topologically iovariant, particles that are adjacent
remain adjacent. Shape invariance implies topological in-
variapce. Subject to forces of a certain strength or de-
gree d;, a material ceases being shape-invariant. At a
force of strength d; > d,, it ceases being topoiogically
invariant, snd at a force of strength dy > d;, it sim-

- ply breaks. Metals exhibit the full range of possibilities.

that is, 0 < d, < d; < dy < oo. For forces of strength
d < d,, the material is *hard™, for forces of strength d
where d, < d < d;, it is “flexible™; for forces of strength
d where d; < d < d,, it is “malleable”. Words such as
*ductile” and “elastic” can be defined in terms of this vo-
cabula:y, together with predicates about the geometry of
the bit of material. Words such as *brittle” (d, = d; = d,)
and *fluid” (d; = 0,d, = o0) can also be defined in these
terms. While we should not expect to be able to define
various material terms, like “metal” and “ceramic™, w:
can certainly characterize many of their properties with
this vocabulary.

Because of its invariance properties, material interacts
with containment snd motion. The word “clog” illustrates
this. The predicatr clog is a three-place relation: z clogs
9 sguinst the flow of 2. It is the obstruction by z of 2's
motion through y, but with the selectional restriction that
s must be something that can flow, such as a liquid, gas,
or powder. If a rope is passing through a bole in a board,
and a koot in the rope prevents it from going through, we
do not say that the hole is clogged. On the other hand,
there do not seem to be any selectional constraints on r.
In particular, £ can be identical with z: glue, sand, or
molasses can clog a passageway against its own flow. We

can speak of clogging where the obstruction of Sow is not
complete, but it must be thought of as “pearly” complete.

3.6 Other Domains
3.6.1 Causal Connection s

Attachment within materials is one variety of causal con-
pection. In general, if two entities z and y are causally
connected with respect to some behavior p of z, then when-
ever p happens to z, there is some corresponding behavior
g that bappeas to y. In the case of attachment, p and ¢
are both move. A particularly common variety of causal
connection between two entities is one mediated by the mo-
tion of a third entity from one to the other. (This might
be called a “vector boson™ comnection.) Pbotons medi-
ating the connection between the sun and our eyes, rain
drops coppecting 2 state of the clouds with the wetness of
our skin and clothes, a virus being transmitted from ope
person to another, and utterances passing between peo-
ple are all examples of such causal connections. Barriers,
openings, and penetration are all with respect to paths of
causal connection.

3.6.2 Force

The concept of “force” is axiomatized, in a way consistent
with Talmy’'s treatment (1985), in terms of the predica-
tions force(a. b, d\) and resist(d, a,dy)—a forces against b
with streogth d, and b resists a’s action with strength d,.
We cap infer mc ion from facts about relative strength.
This treatment can also be specialized to Newtonian force,
wbere we bave not merely movement, but acceleration. In
addition, in spaces in which orientation is defined, forces
cap have an orientation, and a version of the Parallelogram
of Forces Law can be encoded. Finally, force interacts with
shape in ways characterized by words like *stretch”, “com-
press”, “bend”, “twist”, and “shear”.

3.6.3 Systems and Functionality

An important concept is the notion of a *system”, which
is a set of entities, a set of their properties, and a set of
relations among them. A common kind of system is ope
in which the entities are events and conditions and the
relations are causal and enabling relations. A mechanical
device can be descriced as such a system—in a sense, in
terms of the plan it executes in its operation. The function
of various parts and of conditions of those parts is then the
role they play in this system, or plan.
The intransitive sense of “operate”, as in

The diesel was operating.

ipvolves systems and functionality. Y an entity £ oper-
ates, then there must be a larger system s of which z is
a part. The entity z itselfl is a system with parts. These

133

parts uodergo normative state changes, thereby causiog r
to undergo normative state changes, thereby causing z to
produce an effect with a normative fuaction in the larger
system a. The concept of “normative” is discussed below.

3.0.4 SBhape

We bave been approaching the problem of characterizing
sbape from a number of different angles. The classical
treatment of shape is via the notion of “similarity” in Eu-
clidean geometry, and in Hilbert's formal reconstruction of
Euclidean geometry (Hilbert, 1902) the key primitive con-
cept seems to be that of “congruent angles”. Therefore,
we first sought to develop a theory of “orieptation™. The
shape of an object can then be characterized in terms of
changes in orientation of a tangent as one moves about on
the surface of the object, as is done in vision research (e.g.,
Zahn and Roskies, 1972). In all of this, since “shape”™ can
be used loosely and metaphorically, one question we are
asking is whether some minimal, abstract structure can be
found in which the notion of “sbape” makes sense. Con-
sider, for instance, a grapb in which one scale is discrete,
or even unordered. Accordingly, we have been examining
a number of examples, asking when it seems right o say
two structures have different shapes.

We bave also examined the interactions of shape and
functionality (cf. Davis, 1984). What seems to be cru-
cial is bow the shape of an obstacle constrains the motion
of a substance or of an object of a particular shape (cf
Shoham, 1983). Thus, a funpel concentrates the flow of a
liquid, and similarly, a wedge concentrates force. A box
pushed against a ridge in the floor will topple, and a wheel
is a limiting case of continuous toppling.

3.7 Hitting, Abrasion, Wear, and Re-
lated Concepts

For z to hit y is for £ to move into contact with y with
some force.

The basic acenario for an abrasive event is that there is
an impinging bit of material m which hits an object 0 and
by doing so removes a pointlike bit of material b, from the
surface of o:

abr-event'(e, m, 0, by) : material(m)
Alopologi-ally-invariant(o)

(Ve,m, o0 b)atr-event’(e,m,0,8) =
(31,8,8,00,¢,,3,¢3)al(e, 1)
Aconsiste-of(o,b,t} A surface(s,b)
Aparticle(dy, 8) A changé(ec,e,, ;)
Aallached (e, by, b) A not'(e;, ¢,)
Acause(ey,) A hil'(eg, m, by)

After the abrasive event, the pointlike bit &, is no longer a
part of the object o:

(Vc‘m‘o‘bo,e..e,,l,)abr-evenl'(c,m,o, b)
Achangdle e, e5) A attached (e,, bo. b)
Anot'(eq.e,) A alfes, {3)
Aconsiste-of(o. b, t3)

> -partibe. b)

It 1s necessary to state this explicitly since objects and bits
of material can be discontinuous.

An abrasion is a large number of abrasive events widely
distributed through some nonpointlike region op the sur-
face of an object

(Vc,m,o)abrude’(e,m,o) =
(3ba8)[(Vey)ea €Ee D
(38o)bo € bs A abr-cvent'(e,,m, 0, b))
A(Vb s t}at(e.t)
Aconaista-of(0,b,t) A surface(s b)
O (3r)subregion(r. s)
Awidely-distributed(be, r)]]

Wear can occur by means of a large collection of abrasive
events distributed over time as well as space (so that there
may be no time at which enough abrasive events occur to
count as ap abrasion). Thus, the link between wear and
abrasinp is via the commop notion of abrasive events, not
via a definition of wear 1o terms of abrasion.

(Ve.m. o)urar'(e, 1,0} =
(3ba){Ve e, €e D
(3 5)bs € bs) A abr-event'(e,, m, 0, b)]
A (3 i)|interval(s) A widely-distributed(e, i)

The concept “widely distributed” concerns systems. If
z is distributed in y. then y is & system and £ is & eet
of entities which are located at components of y. For the
distribution to be wide, most of the elementa of a partition
of y determined independently of the distribution must
contais components which have elements of £ at them.

The word “wear” is one of a large class of other events
involving cumulative, gradual loss of material - events de-
scribed by words like *chip”, ®corrode®, *fle", “erode”,
*rub”. “sand”, “grind”, *weather”, “rust®, “tarnish®, “eat
away", *rot”, and “decay”. Al of these lexical items can
now be defined as variations on the definition of *wear™,
since we have built up the axiomatizations underlying
“wear”. We are now ip a position to characterigze the en-
tire class. We will illustrate this by defining two different
types of variants of "wear” - “chbip” and “corrode”.

“Chip" differs from “wear” in three ways: the bit of
material removed ip one abrasive event is larger (it need
ot be pomnt-like}, it veed pot bappen because of a mate-
ria) bitting against the object, and “chip” does not require
(though it does permit} a large collection of such events:
one cap say that some object is chipped if there is only
one chip m it. Thus, we slightly alter the definition of
ebr-event to accommodate these changes:

(Ve,m, o0, bo)chip'(e,m 0. b)) =
(31, b,8,09,¢,, €7, ¢5)at(e,)
Aconsista-of(0, b t) A surface(s, b)
Apart(bo, 8) A changé(e. ¢, e3)
Aattached (e,,bo,b) A not'(ez,¢,)

“Corrode” differs from “wear” in that the bit of material
is chemically transformed as well as being detached by the
contact event: in fact, in some way the chemical transfor-
mation causes the detachment. This can be captured by
adding a condition to the abrasive event which renders it
» (single) corrode event:

corrode-event(m, o, b) : fluid(m)
Aconfact(m, by)

(Ye.m. o, by)corrode-event’(e,m, 0, by)
(36,b,8,b, €1, €2, ¢5)at(c. 1)
Aconsists-of{0,b,t) A surface(s b}
Aparticle(by, a) A changd(ec, ey, ;)
Aattached (e, by, b) A not'(ez.¢,)
Acause(es, e) A chemical-change’(es. m, bo)

“Corrode” itself may be defined in a parallel fashion to
“wear”, substituting corrode-cvent for abr-event.

Al of this suggests the geperalization that abrasive
events, chipping and corrode events all detach the bit in
question, and that we may describe all of these as detach-
ing events. We can then generalize the above axiom about
sbrasive events resulting in loss of material to the following
axiom about detaching:

(Ye,m, 0,bo, 85,1, 02, t)detach’ (e, m, 0, b)
Achangd (e, e,, e:) A attached (), bo, b)
Anot'(eg. €,) A atles t;)
Aconaists-of (o0, by t3)

D ~(part{bo, b))

4 Relevance and the Normative

Many of the concepts we are investigating bave driven us
inexorably to the protdems of what is meant by “relevant”
and by “normative”. We do pot pretend to bave solved
these problems. But for each of these concepts we do have
the beginnings of an account that can play a role in anal-
ysis, if not yet in implementation.

Our view of relevance, briefly stated, is that something
is relevant to some goal if it is a part of a plan to achieve
that goal. [A form+l treatment of a similar view is given io
Davies and Russell, 1986.) We can illustrate this with an
example involviog the word “sample”. If a bit of material
2 is 3 sample of another bit of material y, then z is 3 part
of y. and moreover, there are relevant properties p and ¢
such that it is believed that if p is true of z then g is true
of y. That is, looking at the properties of the sample tells
us something important about the properties of the whole.
Frequently, p and g are the same property. In our target
texts, the following sentence occurs:

134

We retained an oil sample for futere inspection.

The oil in the sample is a part of the total lube oil in the
lube oil system, and it is believed that a property of the
sample, such as “contaminated with metal particles”, will
be true of all of the lube 0il as well, and that this will
give information about possible wear on the bearings. It is
therefore relevant to the goal of maintaining the machinery
in good working order.

We bave arrived at the following provisional account of
what it means to be “normative”. For an entity to exhibit
a normative condition or bebavior, it must first of all be a
component of a larger system. This system has structure
in the form of relations among its components. A pat-
tero is a property of the system, namely, the property of
a subeet of these stuctural relations holding. A norm is a
pattern which is established either by conventional stipula-
tion or by statistical regularity. An eotity is bebaving in a
normative fashion if it is a component of a system and in-
stantiates a norm within that system. The word “operate”
given above illustrates this. When we say that an engine
is operating, we have in mind a larger system, the device
the engine drives, to which the engine may bear various
possible relations. A subset of these relations is stipulated
to be the norm—the way it is supposed to work. We say
it is operating when it is instantiating this porm.

5 Conclusion

The research we bave been engaged 16 has forced us to ex-
plicate a complex set of commonsense concepts. Since we
have dooe it in as geperal a fashion as possible, we may
expect that it will be possible to axiomatize a large num-
ber of other areas, including areas unrelated to mechanical
devices, building oo this foundation The very fact that we
bave been able to characterize words as diverse as “range”,
“immediately”, “brittle”, “operate” and “wear™ gshows the
promise of this approach.

Acknowledgements

The research reported bere was funded by the Defense Ad-
vanced Research Projects Agency under Office of Naval
Research contract NOOO14-85-C-0013. 1t builds on work
supported by NIH Grant LM03611 from the Natiopal Li-
brary of Medicine, by Grant IST-8209346 from the Na-
tional Science Foundation, and by a gift from the Systems
Development Foundatinu.

References

{1] Allen, James F., and Heory A. Kautz. 1985 *A model
of vaive temporal reasoning " Formal Theomes of the
Commonsense World, ed by Jerry R. Hobbe and Robert
C. Moore, Ablex Publishiog Corp., 251-268.

135

(2] Croft, William. 1986. Cefegories and Relations in Syn-
taz: The Classe-Level Organization of Information
Ph.D. dissertation, Department of Linguistics, Stanford
University.

13] Davies, Todd R., and Stuart J. Russell. 1986. *A logi-
cal approach to reasoning by analogy.” Submitted to the
AAAL-86 Fifth National Conference on Artificial Intel-
ligence, Philadelphia, Pennsylvania.

{4] Davis, Ernest. 1984. “Shape and Function of Solid Ob-
jects: Some Examples.” Computer Science Technical
Report 137, New York University. October 1984.

[5] Hager, Greg. 1985. “Naive physics of materials: A re-
con mission.” In Commonsense Summer: Final Report,
Report No. CSLI-85-35, Center for the Study of Lan-
guage and Information, Stanford Unpiversity.

[6] Hayes, Patrick J. 1972. *Naive physics manifesto.” Ez-
pert Systems in the Micro-electronic Age, ed. by Donald
Michie, Edinburgh Unpiversity Press, pp. 242-270.

(7] Herskovits, Annette. 1982. Space and the Prepositions
in English: Regulanitics and Irregularities in @ Complez
Domain. Ph.D. dissertation, Department of Linguistics,
Stanford University.

(8] Hilbert, David. 1902. The Foundatior: of Geometry
Tbe Open Court Publishing Company.

{9] Bobbe, Jerry R. 1974. *A Model for Natural Language
Semantics, Part I: The Model.” Research Report #36,
Department of Computer Science, Yale University. Oc-
tober 1874.

{10] Hobbs, Jerry R. 1985a. *Ontological promiscuity ™
Proceedings, 23rd Annwal Meeling of the Association for
Computational Linguistics, pp. 61-69.

{11] Hobbs, Jerry R. 1985b.“Granularity.” Proceedings of
the Ninth International Joint Conference on Artificral
Intelligence, Los Angeles, California, August 1985, 432-
435,

{12] Hobbe, Jerry R. and Robert C. Moore, eds 1985 For-
mal Theories of the Commonsense World, Ablox Put-
lishing Corp.

[13] Hobbs, Jerry R. et al. 1985 Commonscnse Summer
Final Report, Report No. CSL1-85-35. Ceanter for the
Study of Language and Information, Stanford Univer-
sity.

{14] Katz, Jerrold J. and Jerry A. Fodor. 1963 “The stru-
ture of a semantic theory.” Language, Vol 39 (April-
June 1963), 170-210.

[15] Lakoff, G. 1972. “Linguistics and natural logic”. Se-
manlics of Natural Language, ed. by Dopald Davidson
and Gilbert Harman, 545-665.

(16] McDermott, Drew 1985 “Reasoning about plans.”
Formal Theores of the Commonaense World, ed. by
Jerry R. Bobbs and Robert C. Moore, Ablex Publishing
Corp., 269-318.

(17] Miller, George A and Pbilip N. Johnson-Laird. 1976.
Language and Perception Belknap Press.

(18] Rieger, Charles J. 1974. “Conceptual memory: A the-
ory and computer program for processing and meaning
content of natural language utterances.” Stanford AIM-
233, Department of Computer Science, Stanford Univer-

sity.

[19] Scbank, Roger. 1975. Conceptual Information Pro-
cessing. Elsevier Publishing Company.

{20] Shobam, Yoav. 1985. "Naive kinematica: Two aspects
of shape.” In Commonsense Summer: Final Report, Re-
port No. CSL1-85-35, Center for the Study of Language
and Information, Stanford University.

(21] Stickel, M.E. 1982 “A gonclausal cognection-graph
resolution theorem-proving program.” Proceedings of the
AAAI-82 National Conference on Artificial Intelligence,
Pittsburgh, Pennsyhania, 229 233

(22} Talmy, Leopard. 1983. “How language structures
space” Spatial Onentation. Theory, Research, and Ap-
plication, ed. by Herbert Pick and Linda Acredolo,
Pleoum Press.

{23] Talmy, Leonard. 19%5. *“Force dynamics in lan-
guage and thought™ Proceedings from the Pargsession
on Causalives and Agenfivily, 21st Reqional Meeting,
Chicago Linguiatic Society, ed. by Wilham H. Eilfort,
Paul D. Kroeber, and Karep L. Peterson.

{24] Zabo, C. T, and R. Z. Roskies. 1972. “Fourier de-
scriptors for plane closed curves.” [EEE Transactions
on Computers, Vol. C-21, No 3 262781, March 1972.

136

SECTION 5: RESEARCH CONTRIBUTIONS
University of Massachusetts

David D. McDonasld

This is a description of Mumble's approach to natural language generation. excerpted from
a technical survey of generstion entitled “Natural Language Generstion: compiexities and
techniques,” which will appear in Nirenburg (ed.) Theeretical and Methedelegical
Issues in Machinc Traaslatien, Cambridge University Press, to appear 1986.

8. MULTI-LEVEL, DESCRIPTION DIRECTED GENERATION

The principal deficit of the direct replacement approach is its difficulties with
grammar, ie. the avkwardness of maintaining an adequate representation of the
grammatical context, or of carrying out grammatically medisted text-level actions such ss
producing the correct syntactic form for an embedded ciause. In other respects, however,
the message-directed control flow that drives direct replscement has s grest deal to
recommend it. Compared with grammar-directed control schemes, message-directed
control is more efficient, since every action will contribute to the eventual production of
the text. Message-directed control also gives & planner a very clear semantic basis for its
communication to the realization component, since the message can be viewed simply asa
set of instructions to accomplish specific goals. The question then becomes: is there s way
of elaborating the basic, message-directed framework so as to overcome the deficits that
plague direct replacement approaches while still keeping the computationa] properties
that have made it attractive?

A number of generation researchers have independently choosen the same solution:
to interpose s level of explicitly linguistic representstion between the messsge and the
words of the text (McDonald 1973, 1984; Kempen and Hoenkamp 1982; Jacobs 1983; Swartout
1984). They believe that employing s syntactic description of the text under construction
is the most effective meaas of introducing grammatical information and coastraints into
the realization process, in particular, that it is a better locus for grammatical processing
than a separately stated, active grammar.

The specifics of their individual treatments differ, but a common thread is clearly
identifiable: Realization is organized as choices made by specialists, where the form of the
choice--the output of the specialist--is a linguistic representation of what is to be said. ie. a
structural eanotation of the syatactic relstions that govern the words (and embedded
conceptual efements) to be said, rather than just a list of words. These representations are
phrase structures of one or another sort--hierarchies of nodes and constituents--of
essentially the same kind that a theoretical linguist would use. They employ functional
terms like “subject” and “focus”, and are most aptly characterized as a kind of "surface
structure” in the generative linguist's sense, ¢.g. they undergo no derivation, and are a
proper and complete description of the syatactic properties of the text that is produced.

It will be convenient to restrict the present discussion to only one examplar of this
spproach; taking advantage of an suthor's prerogative, | will describe my own (cf.
McDonald 1984; McDonald & Pustejovsky 1985; McDonald, Pustejovsky & Vaughan 1986). As
it is the historical outgrowth of a direct replacement system, ! it will be useful to organize
the discussion in terms of how it extends that approach and addresses its deficits. This will

| Thissuthor's interest in nstural langusge generation began in 1971 while he was
working on extentions to the grammar and parser in Winograd's SHRDLU program. As
tlready discussed, SHRDLU employed & classic direct replacement technique for its
genersation. It was observations of the shortcomings of that design that were the original
motivation for the research. The influences of systemic grammar and dsta-directed
programming style also stem from that time.

137

be folded into the standard description of how it deals with the three general concerns one
should have in examining & generation system: how it organizes iis knowledge of
grammar; what its control structure is; and what its approach to realization is.

Referring to our approach as “multi-level, description-directed generation”
emphasizes specxﬁc features of its architecture and control protocols that we consider
important; it is, however, too large s phrase to use conveniently. The name of the
computer program that implements the design, MUMBLE (McDonald 1977, 1983), will serve
as a compact, agentive reference. Characterizing MUMBLE as muiti-level draws attention to
the fact that it carries out operstions over three explicitly represented levels of
representation simultaneously: message, surface structure, and word stream. Description-
directed is the name we have given to its control protocol, which is a specialization of the
common programming technique known as data- directed control. Under this protocol, the
dats in the representations at the three levels is interpreted directly as instructions to the
virtual machine that constitutes the generator proper. Since each of these
representational structures is also a valid description of the text at its own level of
abstraction and theoretical vocabulary, this characterization of the protocol emphasizes
the fact that the particulars of how the person developing messages or syntactic structures
chooses to design them has immediate consequences for the generator's performance
(McDonald 1984). The feedback that this gives a developer has proven to be invaluable in
refining the notations and their computational interpretations in all parts of the system.

MUMBLE's virtual machine is the embodyment of our computational theory of
generation. It consists of three interleaved processes that manage and carry out the
transitions between the representational fayers. (1) Phrase structure execution interprets
the surface structure, maintaining an eavironment that defines the grammatical
constraints active at any moment, and producing the word stream as its incremental
output. (2) Attachment interprets the message, transferring its component units to
positions within the surface structure according to the functional relationships between
them and their role in the message. (3) Realization takes the individual elements of the
message into surface structure phrases by selecting from finguistically motivated classes
of parameterized alternative forms. A minor fourth process, operating over the word
stream, morphologically specalizes individual words to suit their syntactic and
orthographic contexts (e.g. the article“a” going to "an” before vowels); later versions of
MUMBLE that produce speech should be much more active at this level.

Thus, as seen by the developer of a text planner that would pass messages to MUMBLE
for it to produce texts from, the virtual machine appears asa very high level, task-specific
language, with its own operators and intermediate representations. To a lesser extent this
is true also for the linguist writing generation-oriented grammars for MUMBLE to execute,
since the virtual machine includes no presumptions as to what specific syatactic
categories, functional relations, or syntactic constructions the natural language includes.
Instead it supplies & notation for defining them in terms of primitive notions including the
dominates and proceeds relations of phrase structure, bound thematic relations, configural
regularities such as head or complement from X-bar theory; and the tree combination rules
of Tree Adjoining Grammars (Kroch & Joshi, 1983).

As a message-directed design, MUMBLE is best discussed)y reference to & concrete
example message. situation, and resulting output text. To miminize the distraction that
introducing an actual underlying program from one of our generation projects would
entail. a relatively obvious excerpt from a message will have to suffice. The figure shows a
generated output paragraph describing & legal case from the UMass Counselor Project
(McDonald & Pustejovsky 1986). The structure below it is the message responsible for its
second sentence, wvhich details the events that were relevant to the court's decision. Using
this example. we will look at MUMBLE's knowledge of grammar: how it is manifest, and how
it has its effects, interleaving discussion of realization aand control at convenient places.

138

‘.w—‘q—‘-—,’—“-:*q

"In the Telex case, Telex was sued by IBM for misappropristing trade secrets
about its product Msrlin. One of the managers of the Merlin development
project, Clemens, left IBM to work for Telex, where he helped to develop
Telex's competing product. the 63830. The key fact in the case was that Clemens
brought a copy of the source code with him when he switched jobs. The court
held for IBM."

(temporal-sequence
(left-to-work-fo: (#<role *<«project-manager Merlin» *{ lemens>)
(nsmed-company *<IBM>)
(named-company *Telexr))
(helped-to-develop (named-person * Llements>)
(*<&ind product> *<«competition-by * Telex»
*.name "6830™)))

As previously discussed, one of the concomitant features of a message-directed

approach is that items? directly from the underlying program are part of the messages.
(These are indicated here by enclosing angle brackets, *<.>) Once in a message. such
items become instructions to the generator, and as such need interpretations, i.e. associated
functions from the item, and the linguistic and pragmatic environment, to the surface
specification of some text or text fragment. However, considered in terms of the space of
texts that might realize them, real program objects are large and vague as present day
programmers tend to use them: they stand in many different relationships to other objects
and w the underiying program’'s state, and consequently can have many different
interpretations depending on the context and the speaker's intent.

We take it to be part of the job of a text planner to choose among these relationships
and to indicate in the message the perspective from which an object is to be viewed. (The
perspective on the first accurance of Clemens, for example, is indicated to be his role as
(former) manager of the Merlin project.) Adopting a specific perspective often amounts
to selecting a specific wording (often just of the lexical head, e.g. "manager”; but also
entire conventional phrases such as “leave <employerl> to work for <employer2>"). These
examples indicate that many of the terms in a message are surface lexical relations (e.g.
"helped to develop”) rather than a more abstract conceptual vocabulary: this has the
deliberate corollary that syntactic realization will usually occur after key words have been
chosen. The text planner must therefore understand a good deal about how alternative
word choices cover the semantic fields of the situstion it is trying to communicate, and
what emphasis and what presupposed inferencing by the audience a given choice of
wording will convey. This appears to us to be a choice that is best made at & conceptual
level (i.e. during message construction). since it does not depend in any crutial way on the
details of the grammatical eavironment, the arguments of Danlos (1984) notwithstanding
(cf. McDonaid et al. 1986).

Even though the key lexical choices for an item will have occurred before it has been
syntactically realized, these message-level lexical decisicns can draw on the grammatical
context in which the text for it is going to occur. In particular, grammatical constraints
imposed by the syntactic relations in which the text will stand will filter out grammatically

2 The word “item", and st other times the word “object”, is intended as s general term that
denotes representational data structures in an underlying program without regard to the
kind of real worid entity that they model: individuals, kinds, relstions, constraints,
sttributes, states, actions, events, etc.

139

inconsistent possibilities from the planner's choice set.3 This is possible because the
realization of messages is hierarchical, following the message's compositional structure top

down, ie. the xpem interpreted much as a conventional afrouram would be. The
surface syntactic on of the higher, dominating conceptual elements of the message

is thus available to define and constrain the interpretations (i.e. linguistic realizations) of
the lower, more embedded elements. This protocol for “evaluation” of arguments is known
as normeal order. and is in direct contrast with the previously discussed applicative order
protocol used in most direct replacement designs.

The perspective that the text planner chooses to impose on an item from the
underlying program is represented at the message-level by designating the realization
class to be used for it. Realization classes are MUMBLE's equivalent of the “specialist
programs” in direct replacement. They are linguistic entities rather than conceptual, and
are developed by the designer of the grammar using control and data structures defined in
the virtual machine. New underlying programs are interfaced to MUMBLE by developing a
(possibly very minimal) text planner and assigning program items (or item types) to pre-
defined realization classes. A relatively seif-contained example of a class. “lacative-
relation”, developed originally for use with Jeff Conklin‘s program for describing pictures
of house scenes (see Conklin, 1984) is shown below:

(define-realization-class LOCATIVE-RELATION
:purameters (relation argl arg2)
:choices

((Argl-is-Relation-Arg?2)

"The driveway is next to the house”
cisusec focus(argl))

((Arg2-has-Argl-Relstion-Arg2)
“The house has a driveway in froat of it"
clause focus(arg))

((Thore-is-a-Argl-Relation-Arg2)
“There is a driveway next to the house”
root-clause shifts-focus-to(argl))

((Relation-Arg2-is-Argl)

“Next to the house is a driveway”
root-clsuse shifts-focus-to{argl)
final-position(argl))

((with-Argl-Relation-Arg2)

“..with a driveway next to it”
prepp modifier-to(argl)))

3 This filtering is sutomatic if the refevant parts of the text planner are impi{emented
using the same sbstract control device as MUMBLE uses for its own decisions, i.e.
parameterized, pre-computed annotated choice sets of the sort employed for realization
classes (see text). The descriptions of the lingustic character and potential of the choices
that the annotation provides are the basis for filtering out incompatible choices on
grammatical grounds, just as occurs st the syntactic level in selections within a realization
class.

This technique is proving convenient in our own work with some simple text
planners; however we can see a point where the requirement that the full set of
alternatives be pre-computed may be unnecessarily limiting or possibly psychologically
unrealistic, in which case an alternative design, presumably involving dynamic
construction of the choices, will be needed and an alternative means of imposing the
grammatical constraints will have to be found. For a discussion of another planning-level
control paradigm that has been used with Mumble, see Conklin (1984) or McDonald &
Conklin (1983).

140

The choices grouped together in a realization class will ali be effective in
communicating the conceptual item assigned to the ciass, but each will be appropriate fors
different context. This context-seasitivity is indicated in the annotation accompanying the
choice, for example “focus®, which will dictate the grammatical cases and surface order
given to the arguments, or the functional role “modifier-to”, which will lead to realization
as s postnominal prepositional phrase. These annotating characteristics indicate the
contexts in which s choice can be used. They act both as passive descriptions of the choice
that are examined by other routines, and as active test predicates that sample and define
the pragmatic situation in the text planner or underlying program. Such terms are the
basis of MUMBLE's model of language use--the effects that can be achieved by using s
particular linguistic form; as such they play the same kind of role as the “choosers”™ or the
controlling functional features in a systemic grammar like Mann's NIGEL.

The surface structure level, the source of grammatical constraints on realization, is
assembled top down as the consequence of the interpretation and realization of the items in
the message. In the example message (repeated below), the topmost item is a “sequence” of
two steps, each of which is a lexicalized relation over several program objects on which a
particular perspective has been imposed.

(temporal-sequence
(left-to-work-for (®<ole ®project-manager Merlin» *<name "Clemens™)
(named-company *<IBM>)
(named-company *#Telex>))
(helped-to-develop (named-person * Clements>)
(®*<«kind product> *«competition-by * Telex»
*qname "6830™")))

One of the goals of & multi-level approach is to distribute the text construction effort
and knowledge throughout the system so that no level is forced to do more of the work than
it has the natural capacity for. Thus for example in the interpretation of the first item the
message, temporal sequence, MUMBLE is careful to avoid taking steps that would exceed the
intent of the planner's instruction by being overly specific linguistically: As & message-
level instruction, temporal-sequence says nothing about whether the items it dominates
should appear as two sentences or one; it says simply that they occured after one another
in time and that their realizations should indicate this. Since there is no special emphasis
marked, this can be done by having them appear in the text in the order that they have in
the message. The decision about their sentential texture is postponed until & linguistic
context is available and the decision can be made on an informed besis.

Thisdelay is achieved by having the Attachment process, vhich moves items from the
message o the surface structure sccording to their functional roles. wait to position the
second item of the sequence until the first has been realized. Oaly the first item will be
moved into the surface structure initially. and it will appear as the contents of the second
sentence as shown below. Note that & message item is not realized uatil it has & position,
and then not until all of the items sbove it and to its left have been realized and the item
has been reached by the Phrase Structure Execution process that is traversing the surface
structure tree and coordinating all of these activities. By eanforcing this discipline one is
sure that all the grammatical constraints that could affect aa item's realization will have
been determined before the realization occurs, and consequently the virtual machine does
aot aced tg make provisions for chaaging aa item's realization efter it is finished (see
figure one).

Considered as & function, s realization class such as “Left-to-work-for™ specifies the
surface form of s grammatically coherent text fragment, which is instantisted when the
class is executed and s specific version of that phrase selected. Given its lexical specificity.
such a class is obviously not primitive. It is derived by sucessive specializations of two.
linguistically primitive subcategorization frames: one built around the verb class that

141

includes “leave” (shown below) and the other around the class containing “work for”. The
specialization ts done by a definition-time currying operation wherein arguments to the
subcategorization frames are bound to constants (e.g. the verb “leave”), producing new
realization classes of reduced arity. On its face, a class built around variants on the phrase
“«employee> leaves «companyl> to work for <«company2>” is more appropriate to 8 scmantic
grammar (cf. Burton & Brown 1977) than to a conventional syntactic phrase structure
grammar. This choice of linguistic modularity does however reflect the actual conceptual

modularity of the underlying program that drives the example,4 and we believe this is an
important benefit methodologically.

(define-phrase subject-verb-locative (subj vb loc)
specification (clause
subject subj
predicate (vp
verb vb
focative-complement foc)))

Comparing MUMBLE's organization of grammatical knowledge with that of the two
grammar-directed approaches that have been discussed, we see that it resembies an ATN
somewhat and a NIGEL-style systemic grammar hardiy at all. ATN designs are based on
procedurally encoded surface structures, which are executed directly, MUMBLE represents
surface structure explicitly and has it interpreted. ATNs select the surface form to be used
via a recursive, phrase by phrase, topdown and left to right consideration of the total set of
forms the grammar makes availsble (i.e. alternative arc sequences), and queries the state
of the underlying program to see which form is most appropriate. MUMBLE also preceeds
recursively, topdown and left to right, but the recursion is on the structure of an explicitly
represented message. Conceptual items or item types, through the the realization classes
that the planner associates with them, control the selection and instantiation of the
appropriate surface forms directly.

MUMBLE "packages” linguistic reiations into constituent phrases; it does not provide an
unbundied, feature-based representation of them as a systemic grammar daes. It cannot,
for example. reason about tense or thematic focus apart from a surface structure
configuration that exhibits them. This design choice is deliberate, and reflects what we
take to be a strong hypothesis about the character of linguistic knowledge. This
hypothesis is roughly that the space of valid feature configurations (to use sy~temic terms)
is smaller, less arbitrary, and more structured than a feature-heap notation can express
(see McDonald et al. 1986 for details). Simce our notation for surface structure incorporates
functional annotations as well as categorical, and especially since it is only one of three
representational levels opersted over in coordination, we believe that organizing
linguistic reasoning in terms of packaged. natural sets of relations will provide a great deal
of leverage in cesearch on text planning and computational theories of language use and
communicative intention.

Nowhere in MUMBLE is there s distinct grammar in the sense of a set of rules for
deriving linguistic forms from primitive features. Rather it manipulates & collection of

4 Asit happens, Leave-to-work-at is & primitive conceptual relstion in the legal reasoning
system that serves here as the underlying program (Rissland & Ashiey, submitted). The
csusal model that the phrase evokes in & person, i.e. that working for the new company is
the reasog why the employee is leaving (cf. " John washed his car to impress his
girifriend”) is encapsulated in this relation, and suppresses the causal model from
consideration by the legal reasoner’s rules. This encapsulation is deliberate. Reasoning
systems should function at the conceptual level best suited to the task. This does howeer
imply that some component of the natural language interface must now bridge the
conceptual ground between the internal model and the lexical options of the language; see
Pustejovsky (this volume) for & discussion of how this may be done.

142

predefined linguistic objects--the minimal surface phrases of the language and the
composite phrases derived from them. The phrases are grouped into the realization classes,
the projected linguistic images of different conceptus! types and perspectives. When
selected and instantiated to form the surface structure they take on an active role (through
interpretation by the three processes), defining the order of further actions by the
generator, defining the contraints on the realization of the embedded items from the
message now at some of its leaf positions, and defining the points where it may be extended
through further attachments from the message level. The figure below shows a snapshot
of the surface structure for the first part of the text in the example, and caa illustrate these
points. At the moment of this snapshot, the Phrase Structure Execution process has
traversed the structure up to the item * delex> and produced the text showa; its next action
will be to have that item realized, whereupon the realizing phrase (an NP like the one for
*BM>) will replace *delex in the surface structure and the process will traverse it and
move on (see figure two).

The first thing to consider is the differences in the details of this surface structure
representation compared with the more conventional trees used by generative
grammarians. Two of these are significant in this discussion. The first is the presence of
functional annotations over each of the constituents (indicated by Iabels inside square
brackets). Terms like “subject” or “prep-compiement” are used principally to summarize
the grammatical relations that the constituents are in by warraat of their configurational
positions, which makes these labels the source of most of the grammatical constraints on
message item realizations. The functional annotations aiso play s role in the dynamic
production of the word stream: Here this includes providing access to the subject when the
morphological process needs to determine the person/number agreement for tensed verbs,
and supplying grammatical function words like "of”" or the infinitive marker "to” directly

into the word stream 3

Formally the representation is not a tree but a sequential stream (as indicated by the
arrows): a stream of annotated positions that are interpreted, in order, as instructions to
the Phrase Structure Execution process. The grammar writer defines the interpretation an
annotating Iabel is to have, e.g. specifying control of morphological effects or function
words, constraints to be imposed on realizations, or establishing salient reference positions
(like the subject). Various useful technical details are expedited by defining the surface
structure as s stream rather than a tree (see McDonald & Pustejovsky 1985b). The stream
design provides a clean technical basis for the work of the Attachment process, which
extends the surface structure through the addition of successive items from the message.
The extensions are integrated into the active grammatical environment by breaking inter-
position links in the stream and kniting in the new items slong with any additional
covering syntactic ncdes or functional constituent positions needed to correctly
characterize the linguistic relationship of the new material to the old.

In the present example, the second item of the message's temporal sequence item, the
lexicalized relation “helped-to-develop”, remains unattached--its position in the surface

5 Introducing the closed class words that indicate syatactic function into the text as an
active consequence of traversing the corresponding part of the surface structure tree,
rather than having them first appear in constituent positions at the tree’s feaves, is an
experimentally motivated design decision. It is intended to explore the consequences of
employing computational grammars that distinquish the sources of closed and open class
words: positing that the open class words have a conceptual source and the closed class
"function” words a purely syatactic source. The two word classes are distinguished
psycholinguistically, e.g. they have very different behaviors in exchange errors (see
Garrett 1973); if this empirical difference can be given a successful computational
sccount, then that account can serve to anchor other aspects of the grammar's design and
eventuslly lead to psycholinguistic predictions derived from the consequences of the
computational design (McDonald 1984).

143

structure unestablished--until enough linguistic context has been established that a
reasonable decision can be made about stylistic matters, e.g. whether the item should
appear as an extension of the first item's sentence or start its own. Since the functional
constraints on a temporal sequence's realization prohibit embedding the second item
snywhere within the first, the only legal “attachment points” for it (i.e. links it could be
knit in at) are on the trailing edge of the first item’s sentence or as & focllowing sentence.
In terms of our theory of generation, attachment points are grammatical properties of
phrasal configurations: places where the existing surface structure may be extended by
splicing in “auxiliary” phrases (i.c. realizations of message items), for example adding an
initial adjunct phrase to a clause or embedding the NP headed by "manager” inside the
sclector “one of*. Every phrasal pattern (as indicated by the annotating labels) has
specific places where it can be extended and still be s grammatically valid surface
structure; the grammatical theory of such extensions is developed in studies of Tree
Adjoining Grammars (Kroch & Joshi 1985).

Vhat attachment points exist is a matter determined by the grammatical facts of the
language; which points are actually used in a given situation is a matter of stylistic
convention (see McDonald & Pustejovsky 19838). In this case there is 2 very natural,
compactly realized relationship between the first and second events: the final item in the
realization of the first event, the Telex company, happens to be where the second event
occurred. As neither clause is particularly complex syntactically, the attachment point
that extends the final NP of the first event with a relative clause is taken and the second
event knit into the surface structure there, to be realized when that position is reached in
the stream.

144

(left-to-work-for _.)

The Tirst item of the message in a top level position of the
surface structure annotated 8s a ‘sentence’

FIGURE ONE

——> [sentence | ——>

/ clause h\x_\

[subject | e« » [tns/modal | —>{predicate]
— L g
/NP\ >(apposative] fﬁgs“_"__ﬂ___,._—vp\
NP
(head |—>(partitive) T [verd] llocation] [(reason-inf]

([propername-head]

one ,/ NP (spec.) " Clemens leg/ Np\ /PP\

[head | —F{partitive) [propername-head] [(prep }-{p-obdj)

manager /NP (indiv) qu 1BM for #ctelex>

[clessifying-name] [clessifier] [head]
Merlin development project

Said s0 far:
“... One of the managers of the Merlin development project, Clemens left IBM for //”

FIGURE TWO

145

TAG’s as a Grammatical
Formalism for Generation
David D. McDonald and James D. Pustejovsky
March, 1985
CPTM #5

This paper will be presented at and published in The Proceedings of the 23rd Annual
Meeting of the Association for Computational Linguistics, July 8-12, 1985, University of
Chicago.

146

1. Abstract

Tree Adjoining Grammars, or “TAG's”, (Joshi, Levy & Takahashi 1975; Joshi 1983;
Kroch & Joshi 1985) were developed as an alternative to the standard syatactic
formalisms that are used in theorctical analyses of language. They are attractive
because they may provide just the aspects of context sensitive expressive power that
actually appear in human languages while otherwise remaining coatext free.

This paper describes how we have applied the theory of Tree Adjoining Grammars
to patural language generation. We have been attracted to TAG's because their
central operation—the extension of an “initial” phrase structure tree through the
inclusion, at very specifically constrained locations, of one or more “auxiliary”
trees—corresponds directly to certain cemtral operations of our own,
performance-oriented theory.

We begin by briefly describing TAG's as a formalism for phrase structure in a
competence theory, and summarize the points in the theory of TAG's that are
germaine to our own theory. We then consider gencrally the position of a grammar
within the generation process, introducing our use of TAG's through a coatrast with
how others have used systemic grammars. This takes us to the core results of our
paper: using examples from our research with well-written texts from newspapers, we
walk through our TAG inspired treatments of raising and wh-movement, and show the
correspondence of the TAG “adjunction™ operation and our “attachment™ process.

In the final section we discuss extensions to the theory, motivated by the way we
use the operation comresponding to TAG's” adjunction in performance. This suggests
that the competence theory of TAG's can be profitably projected to structures at the
morphological level as well as the present syntactic level.

2. Tree Adjunction Grammars

The theoretical apparatus of a TAG consists of a primitively defined set of
“elementary” phrase structure trees, a “linking” relation that can be used to define
dependency relations between two nodes within an clementary tree, and an “adjnction”
operation that combines trees under specifiable constraints. The elementary trees are
divided into two sets: initial and auxiliary. /nitial trees have oanly terminals at their
leaves. Auxiliary trees are distinguished by having one nop-terminal among their leaves;
the category of this node must be the same as the category of the root. Al
clemental trees are “minimal® in the sense that they do not recurse on any
non-terminal.

A node N1 in an elementary tree may be linked (co-indexed) to a second node
N2 in the same tree provided N1 ccommaands N2. Linking is used to indicate
grammatically defined dependencics between nodes such as subcategorization relationships
or filler-gap dependencies. Links are preserved (though “stretched out™) when their tree
is extended through adpnction; this is the mechanism TAG’s use to represent
unbounded dependencies.

147

Sentence derivations start with an initial tree, and continue via the adpnction of
an arbitrary number of auxiliary trees. To adjin an auxiliary tree A with root
category X to a initial (or derived) tree T, we first select some node of category X
within T to be the point at which the adjunction is to occur. Then (1) the subtree of
T dominated by that instance of X (call it X") is removed from T, (2) the auxiliary
tree A is knit into T at the position where X° bad been located, and (3) the subtree
dominated by X is knit into A to replace the second occurence of the category X at
T’s frontier. The two trees have now been merged by “splicing™ A into T, displacing
the subtree of T at the point of the adjunction to the frontier of A.

For example we could take the initial tree:

(g Who; does g John like ¢;]]
(the subscript “i” indicates that the “who” and the trace “e¢” are linked) and adpin to
it the auxiliary tree:

[g Bill believes S |

to produce the denived tree:
[s- Who; does [g Bill believe [g Jobn likes ¢;] 11

Adjunction may be “constrained”. The grammar writer may specify which specific
trees may be adpined to a given node in an eclementary tree; if no specification is
given the default is that there is no constraint and that any auxiliary tree may be
adpined to the node.

2.1 Key features of the theory of TAG's

A TAG specifies surface structore. There is no notion of derivation from deep
structure in the theory of TAG’s—the primitive trees are not transformed or otherwise
changed once they are introduced into a text, only combined with other primitive trees.
As Krorch and Joshi point out, this means that a TAG is incomplete as an account of
the structure of a natural language, eg. a TAG grammar will contain both an active
and a passive form of the same verbal subcategorization pattern, without an
theory-mediated description of the very close relationship between them.

To our minds this is by no means a deficit. The procedural machinery that
generative grammars have traditionally carried with them to characterize relations like
that of active to passive has only gotten in the way of employing those
characterizations in processing models of generation. This is because a generation
model, like any theory of performance, has a procedural structure of its own and
cannot coexist with an incompatible one, at least not while still operating efficiently or
while retaining a simple mapping from its actual machine to the virtual n«achine that
its authors put forward as their account of psycholinguistic data.

Our own generator uses surface structure as its only explicitly represented linguistic
level. Thus grammatical formalisms that dwell on the rules governing surface form are
more useful to us than those that hide those rules in a deep to surface
transformational process.

148

DUV SN

A TAG involves the wmanipolation of very small elementary structures. This is
because of the stipulation that clementary trees may not include recursive nodes. It
implics that the senteaces one sees in everyday usage, eg. newpaper texts, are the
result of many sucessive adjunctions. This melds nicely with a move that we have
made in receat years to view the conceptual represeatation from which generation
proceeds as consisting of a heap of very small, redundantly related information units
that have been deliberately selected by a text planning process from the total state of
the knowledge base at the time of utterance; each such unit will correspond in the
final text to a head lexical item plus selected thematic arguments—a linguistic entity
that is easily projected onto the elementary trees of a TAG.

TAG theory Includes only one operation, adjonction, and otherwise makes no
changes to the eclementary trees that go into a text. This comports well with the
indelibility stipulation in our model of generation, since sclected text fragments can be
used directly as specified by the grammar without the need for any later
transformation. The composition options delimited by the constraints on adjunction
given with a TAG define a space of alternative text forms which can correspond
directly ‘a generation to alternative conceptual relations among information units,
alternatives in rhetorical intent, and alternatives in prose style.

3. Adapting TAG's to Generation

The mapping from TAG’'s as a formalism for competence theories of language to
our formalism for generation is strikingly direct. Their adjunction operation corresponds
to our “attachment process”; their constraints oa adjnction correspond to our
“attachment points™; their surface structure trees correspond to our surface structure
trees.! We further hypothesize that two quite strong correspondence claims can be
made, though considerably more experimentation and theorizing will have to be done
with both formalisms before these claims can be coafirmed.

1. The primitive information units in realization specifications can be realized
exclusively as one or another elementary tree as defined by a suitable TAG,
i.. linguistic criteria can be used in determining the proper modularity of the
conceptual structure 2

2. Conversely, for agy textual relationship which our generator would derive by
the attachment of multiple information units into a single package, there is a
corresponding rule of adjnction. Since we use attachment in the realization
of nominal compounds like “oil ranker™, this has the force of extending the
domain of TAG analyses into morphology. (See section 7).

1 Our model of generation does ot employ the simple trecs of labelod podcs that appear in most
theoretical linguistic analyses. Our surface structure incorporates the semantic properties of trees, but
it abo iocludes reifications of oconstitucat positions Like ‘subject™ or ‘seatence” and is better
characterized overall as an ‘“executable sequence of labeled positions”. We discuss this further in

--section 5.1.

2 i his hypothesis is mucemful, it has very comsequemtial implicatioss for the ‘rize® of the
information units that the text planncr constructing the realization specification can use, eg. they would
oot be realized as texts that iuclude recursive nodes. We will discuss this and other implications in s
later paper. 149

4. The Place of Grammar in a Theory of Generation

To understand why we are looking at TAG's rather thaa some other formalism,
onc must first understand the role of grammar within our processing model. The
following is a brief summary of the model; a more complete description can be found
in McDopald & Pustejovsky [1985b].

We have always had two complementary goals in our research: on the one hand
our gencration program has had to be of practical utility to the knowedge based expert
systems that use it as part of a natural language interface. This means that
architecturally our generator has always been designed to produce text from conceptual
specifications, “plans”, developed by another program and consequently has had to be
scnsitive to the limitations and varying approaches of the present state of the art in
conceptual representation.

At the same time, we want the architecture of the virtual machine that we
abstract out of our program to be effective as a source of psycholinguistic hypotheses
about the actual generation process that humans use; it should, for example, provide
the basis for predictive accounts of human speech error behavior and apparent planning
limitations. To achieve this, we have restricted ourselves to a highly coonstrained set of
representations and operations, and have adopted strong and suggestive stipulations on
our design such as high loalhty, information encapsulation, online quasi-realtime runtime
performance, and indelibility.3 This restricts us as programmers, but disciplines us as
theorists.

We see the process of generation as involving three temporally intermingled
activities: (1) determining what goals the utterance is to achieve, (2) planning what
information content and rhetorical force will best meet those goals given the context,
and (3) realizing the specified information and rhetorical intent as a grammatical text.
Our linguistic component (henceforth LC), the Zetalisp program MUMBLE, handles the
third of these activities, taking a “realization specification™ as input, and producing a
stream of morphologically specialized words® as output.

As described in [McDonald 1984), our LC is a “description-directed” process: it uses
the structure of the realization specification it is given, plus the syntactic surface
structure of the text in progress (which it extends incrementally as the specification is
realized) to directly control its actions, interpreting them as though they were sequential
computer programs. This technique imposes strong demands on the descriptive
formalism used for represcnting surface structure. For example, nodes and category
labels now designate actions the generator is to take (c.g. imposing scoping relations
or coastraining embedded decisions) and dictate the inclusion of function words and

morphological specializations.

3 “Indetibility” in a computation requires that no action of a process (making decisions, coustructing
representations, changing state, cic) can be tramspareatly undone ooce it has been performed. Many
nonbacktracking, nonparallel program designs bhave this property; it is our term for what Marcus [1980]
referred 10 as the property of being ‘“strictly deterministic™.

4 A realization specification can informally be taken (0 correspond to what many rescarchers,
particularly psychologists, think of as the ‘message lovel” representation of a text.

Which is to say that it prescotly produces writtca rather than spoken texts. We expect to work
with speech output shortly, however, and the nced 10 support the rep. meatational basis of ao
intonational contour is beginning to influcnce our designs for constituency patterns in surface structure.

150

4.1 Uabundling Systemic Grammars

Of the established linguistic formalisms, systemic grammar ([Halliday 1976] has
always been the most important to Al researchers on generation. Two of the most
important generation systems that have beea developed, PROTEUS [Davey 1974] and
NIGEL [Mann & Matthiessen 1983}, use systemic grammar, and others, including our
own, have been strongly influenced by it. The reasons for this eathusiasm are central
to the special concerns of generation. Systemic grammars employ a functional
vocabulary: they emphasize the uses to which language can be put—how languages
achieve their speakers’ goals—rather than its formal structure. Since the generation
process begins with goals, unlike the comprehension process which begins with structure,
this orientation makes systemic grammars more immediately useful than, for example,
transformational generative grammars or even procedurally orieated Al formalisms for
language such as ATN’s.

The generation rescarcher’s primary question is why use one construction rather
than another—active instead of passive, “the™ instead of “a”. The principle device of a
systemic grammar, the “choice system”, supports this question by highlighting how the
coanstructions of the language are grouped into sets of altcrmatives. Choice systems
provide an anchoring point for the rules of a theory of language usc since it is natural
to associate the various semantic, discourse, or rhetorical criteria that bear on the
sclection of a given construction or feature with the choice system to which the
construction belongs, thus providing the basis of a decision-procedure for selecting from
its listed alternatives; the NIGEL system does precisely this in its “chooser” procedures.

In our formalism we make use of the same information as a systemic grammar
captures, however we have choosen to bundle it quite differently. The underlying reason
for this is that our concern for psycholinguistic modeling and efficient processing takes
precedence in our design decisions about how the facts of language and language use
should be represented in a generator. It is thus instructive to look at the different
kinds of linguistic information that a network of choice systems carry. In our system
we distribute these to separate computational devices.

o Dependencies among structural features: A generator must respect the
constraints that dependencies impose and appreciate the impact they have on its
realization options: for example that some subordinate clauses can not express
tense or modality while main clauses are required to; or that a pronominal
direct object forces particle movement while a lexical object leaves it optional.

o Usage criteria. The decision procedures associated with each choice system are
not a part of the grammar per se, aithough they are naturally associated with it
and organized by it. Also most systemic grammars include very abstract
features such as “generic reference™ or “completed action”, which crosscorrelate
the language’s surface features, and thus are more controllers of why a coastruct
is used rather than constructs themselves.

o Coordinated structural alternatives. A sentence may be cither active or passive,
cither a question or a statement. By grouping these alternatives into systems
and using these systems exclusively when constructing a text, one is guaranteed
not to combine inconsistent structural features.

o Efficient ordering of choices. The nctwork that coanects choice systems provides
a natural path between decisions, which if followed strictly guarentees that a
choice will not be made unless it is required, and that it wil not be made
before any of the choices that it is itself dependent upon, insuring that it can

151

be made indelibly.

o Typology of surface structure. Almost by accideat (since its specification is
distributed throughout all of the systems implicitly), the grammar determines the
pattern of dominance and coastituency relationships of the text. While not a
principle of the theory, the trees of clauses, NPs, etc. in systemic grammars tend
to be shallow and broad.

We believe, but have not yet established, that equivalence transformations can be
defined that would take a systemic grammar as a specification to coastruct the
alternative devices that we use in our generator (or augment devices that derive from
other sources, eg. a TAG) by decomposing the information in the systemic grammar
along the lines just listed and redistributing it.

S. Example Analyses

One of the task domains we are currently developing involves newspaper reports of
current events. We are “reverse enginecring™ leading paragraphs from actual newspaper
articles to produce narrow but complex conceptual representation, and then designing
realization specifications—plans—that will lead our LC to reconstruct the original text or
motivated variations on it. We have adopted this domain because the news reporting
task, with its requirement of communicating what is new and significant in an event as
well as the event itself, appears to impose exceptionally rich constraints on the selection
of what conceptual information to report and on what syntactic cospstructions to use in
reporting it (sec discussion in Clippinger & McDonald [1983)). We expect to find out
how much complexity a realization specification requires in order to motivate such
carefully composed texts; this will later guide us in designing a text planner with
sufficient capabilities to construct such specifications on its own.

Our examples are drawn from the text fragment below (Associated Press, 12/23/84);
the realization specification we use to reproduce the text follows.

“LONDON - Two oil tankers, the Norwegianowned Thorshavet and a
Ubonmog:sterod vessel, ware reported to have been hit by missiles Friday in the

Tho Thorshavet was ablazre and under tow to Bahrain, officials in Oslo said.
Lioyds reported that two crewmen were injured on the Liberian ship.”

(tho-d-y ‘s-events-in-the-Gulf-tanker-war

as-io-source
(mltnvem #<same-event-typa_varying-patient
#<hit-by-missies Thorshavel>

#<hit-by-missles Lberian> >
unusual | #<number-of-ships-hit 2>
identlfy-the-ships)

{particutars #<damage-report Thorshavet Oslo-officials>
#<damage-report Libertan Mm@:x)

152

This realization specification represents the structured object which gives the
toplevel plan for this utterance. Symbols preceded by colons indicate particular features
of the utterance. The two expressions in parenthcses arc the conteat items of the
specification and are restricted to appear in the utterance in that order. The first
symbol in ecach expression is a label indicating the function of that item within the
plan; embedded items appearing in angle brackets arc information uaits from the
current-events knowledge base.

Obviously this plan must be oconsiderably refined before it could serve as a
proximal source for the text; that is why we point out that it is a “toplevel” plan. It
is a specification for the general outline of the utterance which must be fleshed out by
recursive planning once its realization has begun and the LC can supply a linguistic
context to further constrain the choices for the units and the rhetorical features.

For preseat purposes, the key fact to appreciate about this realization specification
is how different it is in form from the surface structure. One cannot produce the
cited text simply by traversing and “reading out™ the elements of the specification as
though one were doing direct production. Structural rearrangements are required, and
these must be done under the control of coastraints which can only be stated in
linguistic vocabulary with terms like “subject™ or “raising™.

The first unit in the specification, #<same-evem-type.>>, is a relation over two
other units. It indicates that a commonality between the two has been noticed and
deemed significant in the underlying representation of the event. The present LC
always realizes such relations by merging the realizations of the two units. If nothing
else occurred, this would give us the text “T'wo oil tankers were hit by missiles™.

As it happens, however, a pending rhetorical constraint from the realization
specification, wsvents-requre-certification-as-to-souce will force the addition of yet another
information unitS the reporting event by the news service that announced the aledged
event (e.g. a press release from Iraq, Reuters, etc.). In this case the “content” of the
reporting event is the two damagereports which have already been planned for inclusion
in the utterance as part of the “particulars” part of the specification. Let us look
closcly at how that reportiing eveat unit is folded into surface structure.

When not itself the focus of attention, a reporting event is typically realized as
“so-and-s0 said X", that is, the content of the report is more important than the report
itself; whatever significance the report or its source has as news will be indicated subtly
through which of the alternative realizations below is selected for it.

6 We will not discum the mechanism by which features in the specification influcnoe realization.
Realization specifications of the complexity of this example arc still very new in our research and we
arc unsure whether the process is better organized at the conceptual level directing a composition
process within the planning compoocat (during ome of the recursive invocations) or within the LC
~ mediating a sclection between anticipated alternatives. At this point our design experiments are
inconclusive.

7 These scatences are artificial; actusl ones would be considerably longer. Interestingly, certain
other syntactically permimable versions such as "/t was roported that™ do not occur in any of the
lexts we have cxamined. Pethaps the “lead NP™ position is too important 1o waste on a pronoun.

153

Desired characteristic Resulting text

de-emphasize report Two tankers were hit, Gulf shipping sources said.
source Is given elsewhere Two rankers were reported hit.
emphasize report Iragq reported it hit two tankers.

Figure 2 Possibllities for expressing report(source, (nfo) in newpaper prose

In our LC, these alternative “choices” are grouped together into a “realization
class” as shown in Figure 3. Our realization classes have their historic origins in the
choice systems of systemic grammar, though they are very different in almost every
concrete detail. The most important difference of interest theoretically is that while
systemic choice systems select among single alternative features (e.g. passive, gerundive),
realization classes select among entire surface structure fragments at a time (which
might be scen as prespecified realizations of bundles of features). That is, our
approach to generation calls for us to organize our decision procedures so as to select
the values for a number of linguistic features simultaneously in ome choice where a
systemic grammar would make the selection incrementally$

8 The standard tochnique of using choice systems o control the active aclection of utterance
features is cmployed by the most well-known applications of systcmic grammars to geacration (ic. the
work of Davey [1974] aod Maan sod Matthiessen (1983). However very rocemt work with systemic
grammars st Edinburgh by Pattca [1985] departs from this technique. Patico uses a scmantic-level
planning componeat to directly scloct groups of featurcs at the rightward, ‘output™, side of a systemic
network, and thea works backwards through the nctwork to determine what other, not scmatically
specified features must be added to the text for it to be grammatical; control is thus outside the
grammar proper, with grammar rules relegated to constraint specification only. We are intrigued by
this technique and look forward to its further development.

154

¢ parameters (proposition verb)
: v
: cholces agort
« (AGENT -VERBe-that-PROP agent verb prop)
focus(emphasize(self))
; eg “Lioyds reports Iraq hit two tankers.”
; encompasses variations with and without rhar, and
; also tenseless complements like “Jolm believes him

; 10 be a fool”
((mbe-VERB-im—PROP verb) prop)
damo focus((agent prop)) nmwewhere(aoau))

; “Two tankers were reported to have been hit”
((ItVERBPﬂOP verdb prop)

clause inferable(agent))

; e8. “It is reported that 2 tankers were hi1."
(Qeft-disiocated-PROP verb prop)

clause

W
; “Two tankers were hit, Gulf sources said.”
)

Figure 3 Realization class assigned to report(raqhit(..)

Returning to our example, we are now faced now with the need to incorporate a
unit denoting the report of the Iraqi attacks into the utterance to act as a certification
of the #<hit-by-missles> cvents. This will be done using the realization class
beleve-verbs; the class is applicable to any information unit of the form report(source,
Info) (and others). It determines the realization of such units both when they appear in
issolation and, as in the present case, when they are to augment an utterance
corresponding to one of their arguments.

From this realization class the choice raise-VERB-Mo-PROP will be sclected since (1)
the fact that two ships were hit is most significant, meaning that the focus will be on
the information and not the source (n.b. when the class executes the source kaq will be
bound to the sagent parameter and the information about the missile hits to the
proposition parameter); (2) there is no rhetorical motivation for us to occupy space in
the first seatence with the sources of the report since thev have already been planned
to follow. These conditions arc scased by attached procedures associated with the
charscteristics that annotate the choice (i.c. focus and mentioned-eisawhere).

Since the PROP is already in place in the surface structure tree, the LC will be
interpreting raise-VERB-into-PROP as a specification of how it may fold the auxiliary tree
for reported into the tree for Two oil tankers were hit by missiles Friday in the Gulf.
This corresponds to the TAG analysis in Figure 4 [Kroch & Joshi 1985].

155

Initial Tree: Auxiliary Tree.

N

> INF
N N
ﬁs IyFL INFL VP
two tankers \ //‘_:_
INFL VP bLe reported INFL
‘/ff_

be hit by missiles

Figore 4 Initial and auxilliary trees for Raising-to-subject

The tnitial tree for Two oil tankers were hit by missiles, I}, may be extended at its
INFL" node as indicated by the constraint given in parenthesis by that node. Figure §
shows the tree after the auxiliary tree A, named by that constraint, has been adjoined.
Notice that the original INFL° of Figure 4 is now in the complement position of
report, giving us the sentence Two oil tankers were reported hit by missiles.

NP INFL
two mugzileez [NFL VP

be reported INFL

INFL VP

be hit by misailesg

Figure 5 After embedding report

5.1 Path Notation

As readers of any of our earlier papers are aware, we do not employ a
conventional tree notation in our LC. A gencration model places its own kinds of
demands on the represcatation of surface structure, and these lead to principled
departures from the conventions adopted by theoretical linguists. Figure 6 shows the
surface structure as our LC would actually represeat it just before the moment whea
the adjunction is made.

156

. ——» [SENTENCE] ----> ...

(SUBJECT) ———— |PREDICATE]

NP (plural) (O ———Attech-
- cmiamiles Raiging-
Schit-by -missiles.. > Pregicete

[quent] — (head)
two N

[premod] — [hesd]
oil tenker

Figure 6 Surface structure in path notation

We call this representation path notation because it defines the path that our LC
follows. Formally the structure is not a tree but a uni-directional linked list whose
formation rules obey the axioms of a tree (¢.g. any path “down” through a given node
must eventually pass back “up™ through that same node). The path consists of a
stream of entities representing phrasal nodes, constituent positions (indicated by square
brackets), instances of information units (in boldface), instances of words, and activated
attachment points (the labeled circle under the predicate; sec next section). The
various symbols in the figure (c.g. sentence, predicate, etc.) bave attached procedures
that are activated as the point of speech moves along the path, a process we call
“phrase structure execution”. Phrase structure execution is the means by which
grammatical coastraints are imposed on embedded decisions and function words and
grammatical morphemes are produced. (For discussion sce McDonald [1984].)

Once one has begun to think of surface structure as a traversal path, it is a short
step to imagining being able to cut the path and “splice in" additional position
sequences.” This splicing operation inherits a patural set of coostraints on the kinds of
distortions that it can perform, siice, by the indelibility stipulation, existing position
sequences can not be destroyed or rethreaded. It is our impression that these
constraints will turn out to be formally the same as those of a TAG, but we have not
yet carried out the detailed analyses to confirm this.

52 Attachment Points

The TAG formalism allows a grammar writer to define “constraints” by annotating
the nodes of elementary trees with lists indicating what auxiliary trees may be adjpined
to them (including “any” or “none™).’’ In a similar manner the “choices” in our
realization classes—which by our hypothesis can be taken to always correspond to TAG
clementary trees—include specifications of the arrachment points at which new
information units can be incorporated into the surface structure path they define.
Rather than being constraints on an otherwise freely applying operation, as in a TAG,
attachment points arc actual objects interposed in the path noiation of the surface
structure. A list of the attachment points active at any moment is maintained by the
attachment process and consulted whenever an information unit needs to be added.
Most units oould be attached at any of several points, with the decision being made on
the basis of what would be most consistent with the desired prose style (cf. McDonald
and Pustejoviky [1985a]). When one of the points is selected it is instantiated, usually
splicing in new surface structure in the process, and the new unit added at a
designated position within the new structure. Figure 7 shows our preseat definition of
the attachment point that ultimately leads to the addition of “was reported”.

(define-attachment-point attach-raising-predicate
reference-

points
esent-predicate (siot-contents phrase
4 (ui-?o&m‘mdm e 0
(ralsing-verb-with-complement(present-predicats))
(scumbaiot prodoats phrase)
e
now
(emasﬂngcommm-m
(vp-infinitive-complement) ; ication of new phrase

verb ; where the unit g attached goes
inflnitve-complement) ; where the existing coatents go
effect-on-other-pending-attachment-points
none
choices-that-introduce-it
cholces-passing-test (includes-siot ‘predicate))

Figure 7 The attachment-point used by was reported

10 Constraints of this sort are an inovation introduced in Kroch & Joshi [1985].
Previous versions of TAG theory allowed “context seasitive” constraint specifications
that in fact were never exploited. The preseat constraints are more attractive formally
since they must be stated locally to a single tree.

158

This attachment point goes with any choice (clementary tree) that includes a
coastituent position labeled predicate. It is placed in the position path immediately
after (or “under™) that position (see Figure 6), where it is available to any new unit
that passes the indicated requirements.

When this attachment is selected, it builds a new VP node that has the old VP as
one of its constitueats, then splices this new node into the path in its place as shown
in Figure 7.

The unit being attached, ¢.g. the report of the attack on the two oil tankers, is
made the verb of the new VP. Later, once the phrase structure execution process has
walked into the new VP and reached that verb position, the unit’s realization class
(bellef-verbs) will be consulted and a choice selected that is consistent with the
grammatical constraints of being a verb (ic. a conventional variant on the
raise-VERB-no-PROP choice), giving us “was reported™.

> [SENTENCE] — . ..

/8‘\

[SUBJECT] » [PREDICATE]
NP VP (passsive)
two oil tankers [verb) ---> linfinitive-
report complement]

Schit-by-miggiles. >

Figure 8 The path after attachment

From this discussion one can sec that our treatment of attachment uses two
structures, an attachment point and a choice, where a TAG would only use one
structure, an auxiliary tree. This is a consequence of the fact that we are working
with a performance model of generation that must show explicitly how conceptual
information units arc rendered into texts as part of a psycholinguistically plausible
process, while a TAG is a formalism for competence theories that only need to specify
the syntactic structure of the grammatical strings of a language. This is a significant
differeace, but not one that should stand in our wu.y in comparing what the two
theories have to offer each other. Coasequently in the rest of this paper we will omit
the details of the path notation and attachmeat point definitions to facilitate the
comparison of theoretical issues.

159

6. Generating questions using a TAG version of wh-movement

Earlier we illustrated the TAG concept of *linking™ by showing how one would
start with an initial tree consisting of the imnermost clause of a question plus the
fronted wh-phrase and then build outward by successively adjoining the desired auxiliary
phrases to the S node that intervenes between the wh-phrase and the clause.
Wh-questions are thus built from the bottom up, as in fact is any seatence involving
verus taking sentential complemeants.

This analysis has the desirable property of allowing one to state the dependencies
between the Wh-phrase and the gap as a local relation on a single elementary tree,
climinating the need to include any machinery for movement in the theory. All
unbounded dependencies now derive from adjunctions (which, as far as the grammar is
concerned, can be made without limit), rather than to the explicit migration of a
constituent across clauses.

We also find this locality property to be desirable, and use an analogous procedure
in our production of questions and other kinds of Whquestions and unbounded
dependency constructions.

This “bottom-up” design has consequences for how the realization specifications for
these constructions must be organized. I[n particular, the logician’s usual represeatation
of senteatial complement verbs as higher operators is not tenable in that role. For
example we cannot have the source of, say, How many ships did Reuters report that
Irag had said it attacked? be the expression:

Lambda(quantity-of-ships) . report(Reuters, say(Iraq, attack(Iraq, quantity-of-ships)))
Such an expression defines a natural sequence of exposure when used as realization
specification, namely that one realize the Lambda operator first, the report operator
second, the say third, and so on. A local TAG analysis of Wh-movement requires us
to have the Lambda and the expression containing its matrix trace, attach, be present
in a single “layer” of the specification, otherwise we would be forced to violate one of
the strong principles of our theory of generation, namely that the characteristics in a
realization class may “see” only the immediate arguments of the unit being realized;
they may not look “inside™ those arguments to subscquent levels of conceptual
structure.

This principle has served us well, and we are disinclined to give it up without a
very compelling reason. We elected instead to give up the internal representation of
seatential complement verb te -+ single expressions. This move was easy for us to
make since such expressions are awkward to manipulate in the “East Coast” style frame
knowledge bascs that we usc in our own reasoning programs, and we have preferred a
representational style with redundant, smaller sized occnceptual units for quite some
time.

The representation we use instead amounts to breaking up the logical expression
into individual units and allowing them to include references to each other.

Uy = lambda(quantity-of-ships) . attack(lraq,quantity-of-ships)
Uy = say(Iraq, Uy)
Uj = report(Reuters, U,)

160

Given such a network as the realization specification, the LC must have some
principle by which to judge where to start: which unit should form the basis of the
surface structure to which the others are then attached? A natural principle to adopt
is to begin with the “basis” unit, i.. the one that does not mention any other units in
its definition. @ We are considering adopting the policy that such units should be
allowed only realizations as initial trees while units whose definition involves “pointing
to” (naming) other units should be allowed oanly realizations as auxiliary trees. We
have not, however, worked through ail of the ramifications such a policy might have
on other parts of our geaeration model; without yet knowing whether it would improve
or degrade the other parts of our theory, we are reluctant to assert it as one of our
hypotheses relating our generation model to TAGs.

Given that three part source, the realization of the question is fairly
straightforward (See Figure 9). The Lambda expression is assigned a realization class
for clausal WA constructions, whercupon the extracted argument quantity-of-ships is
placed in COMP, and the body of the expression is placed in the HEAD position. At
the same time, the two instances of quantity-of-ehips arc specially marked. The one in
COMP is assigned to the realization class for Wi phrases appropriate to quantity (e.g.
it will have the choice how many X and possibly related choices such as <quantity> of
which and other variants appropriate to relative clauses or other positions where Wh
constructions can be used). Simultaneously the instance of quantity-ofehips in the
argument position of the head frame attack is assigned to the realization class for
Wh-trace. These two specializations are the equivalent, in our model, of the TAG
linking relation.

S
. Reuters reports S

S / &; -
cor{p \S Iraq say S
WH(ships)

Figure 9 Question formation with seatential complement verbs

The two pending units, U, and Uj, are then attached to this matrix, submerging
first the attach unit and then U, into complement positions.

161

7. Extensions to the Theory of TAG

Context-free grammars are able to express the word formation processes that seem
to exist for natural languages (cf. Williams [1981], Selkirk [1982]). A TAG analysis of
such a grammar scems like a natural application to the current version of the theory
(cf. Pustejovsky (in preparation)). To illustrate our point, coasider compounding rules
in English. We can say that for a context-free grammar for word formation, G, there
is a TAG, T, that is equivalent to G, (cf. Figures 10 and 11). Coasider a fragment
of G, below.!!

AIVIP N
AP A

<>z
Vv
nzZ

|
I
v
Figure 10 CFG Fragment for Word Formation

The corresponding G, fragment would be:

: : PN
AN /\
comp N comp A P v
AUXILIARY TREES

N N N

I I |
oil tanker port

INITIAL TREES

Figure 11 TAG Fragment for Word Formation

Now coansider the compound , “of tanker terminal, taken from the newspaper reporting
domain, and its derivation in TAG theory, shown in Figure 12.

11 Whether the word formation component should in fact have the power of a TAG
or CFG is an open question. Langendoen [1981] discusses the possibility that a finite
state grammar migh¢ be sufficient for the generative capacity of natural language word
formation components.

162

~d

N (\JN N(\N
/\N tanker mp/ \N .

Figore 12 TAG Derivation of oil ranker terminal

Let us compare this derivation to the process used by the LC. The underlying
information units from which this compound is derived in our system are shown below.
The planner has decided that the units below neced to be communicated in order to
adequately express the concept. The top-level unit in this bundle is #<terminal>.

Ul = # <terminal>

U, = #<docks-at Uy Uy>
U = #<tanker>

Uy = #<cames Uy U>

The first uait to be positioned in the surface structure is Uy, and appears as the head
of an NP. There is an attachment point on this position, however, which allows for the
possibility of expressing U, prenominally. One of the choices associated with this unit is
a compound structure—expressed in terms of an auxiliary tree. A snapshot at this point
in the derivation shows the following structure.

N [comp U2] Uy

The next unit opened up in this structure is Uy, which also allows for attachmeant
prenominally. Thus an auxiliary tree corresponding to Uy is introduced, giving us the
structure below:

[N[Conv [(Jomp Uy) U3D Ul]

The selectional cocstraints imposed by the structural positioning of information unit
Uy allows only a compounding choice. Had there been no word-level compound
realization option, we would have worked our way into a corner without expressing the
relation between #<oil> and #<tanker>. Because of this it may be better to view
units such as Uy as being associated directly with a lexical compounded form, ie. oil
tanker. This partial solution, however, would not spcak to the problem of active word
formation in the language. Furthermore, it would be interesting to comparc the
strategic decisions made by a gencration system with those planning mistakes made by

humans when speaking. This is an aspect of generation that merits much further
research.

163

et e

8. Acknowledgements

This research bas been supterminaled in part by contract N0014-85-K-0017 from the
Defense Advanced Research Projects Agency. We would like to thank Marie Vaughan
for help in the preparation of this text.

9. References

Chppug & McDonald (1983) “Why Good Writing is Easier to Understand™, Proc.

Al-83 pp. 730-732.

Davey (1974) Discourse Production, Ph.D. Dissertation, Edinburgh University; published
in 1979 by Edinburgh University Press.

Haiiiday (19760) Sysiem and Funcilon in Language, Oxford University Prcss.

Joshi (1983) “How Much Context-Sensitivity is Required to Provide Reasonable
Structural Descriptions: Tree Adjoining Grammars”, preprint to appear in Dowty,
Karttunen, & Zwicky (eds.)) Natural Language Processing: Psycholinguistic,
Compatationsal, and Theoretical Perspectives, Cambridge University Press.

Kroch, T. and A. Joshi (1985) “The Linguistic Relevance of Tree Adjpining Grammar”,
University of Penosylvania, Dept. of Computer and Information Science.

Langendoen, D.T. (1981) “The Generative Capacity of Word-Formation Componeants”,

¢ Inqoiry, Volume 122

Mann & Matthiessen (1983) Nigel: A Systemic Grammar for Text Generation, in Freedle
(ed.) Systemic Perspectives on Discourse, Ablex.

Marcus (1980) A Theory of Syntactic Recognition for Natural Language, MIT Press.

McDonald (1984) “Description Directed Control: Its Implications for Natural Language
Generation”, in Cerccre (ed.) Computational Linguistics, Pergamon Press.

McDonald & Pustc)ovsky (1985a) “SAMSON: a computatlonal theory of prose style in
generation”, Proceedings of the 1985 meeting of the European Association for
Computatlonal Linguistics.

- (1985b) ‘“Description-Directed Natural Language Generation”, Proceedings
of UCAI-85, W Kaufmann Inc., Los Altos CA.

Patten T. (1985) “A Problem Solving Approach to Generating Text from Systemic
Grammars”, Proceedings of the 1985 meeting of the European Associaiion for
Computational Linguistics.

Pustejoviky, J. (In Preparation) "Word Formation in Tree Adjoining Grammars”

Selkirk (1982) The Syntax of Words, MIT Press.

Williams (1981) “Argument Structure and Morphology™ The Linguistic Review, 1, 81-114.

l64

Hypotheticals as Heuristic Device

Edwina L. Rissland and Kevin D. Ashley
Department of Computer and Information Science
University of Massachusetts
Ambherst, MA 01003

Abstract

In this paper we examine the use of hypotheticals as a heuristic device to assist a
case-based reasoner test the strengths, weaknesses, and ramifications of an analysis or
argument by exploring and augmenting the space of known cases and indirectly, the
attendant spaces of doctrine and argument. Our program, HYPO, works in the task
domain of the law, particularly, the area of trade secret protection for software. We
describe how HYPO generates a constellation of legally-meaningful hypothetical fact
situations (“hypos”) which are "near” a given fact situation. This is done in two
steps: analysis of the given situation and then generation of the hypos. We discuss
the heuristics HYPO currently uses, which include: (1) make a case weaker or
stronger; (2) generate an extreme case; (3) generate a near miss, (4) manipulate a
near win; and (5) generate a case on a related "dimension".

1. Introduction

HYPO is a program to model reasoning with cases and hypotheticals ("hypos”). The program
comprises a means of representing and indexing cases in a Case Knowledge Base ("CKB"), a
computational definition of relevance in terms of "dimensions” which capture the utility of a
case for making a particular kind of argument, a dimension-based method for comparing cases,
and methods for generating hypotheticals to help an arguer formulate an argument, gather
relevant facts, and explain his argument. HYPO's domain is legal argument where, as
illustrated below with examples of oral arguments before the Supreme Court, cases and
hypotheticals are primary tools.

In this paper, we concentrate on HYPO's creation of hypothetical new cases to accomplish such
tasks as: (1) test the sensitivity of one's argument to absence or presence of certain facts; (2)
locate and explore subspaces of relevant cases in the CKB; (3) augment and “flesh out™ sparse
areas of the CKB; (4) sample the space of implications of a given argument; (5) formulate
refinements and refutations of an argument. Thus, we are using hypotheticals as a heuristic
device to explore several "spaces” -- the CKB itself, and the spaces of legal doctrine and
argument -- and to acquire new case knowledge. HYPO generates these hypotheticals
heuristically using certain well-known general heuristics (e.g., examine extreme cases) as well as
HYPO-specific ones (e.g., examine weaker/stronger cases along a HYPO dimension).

While HYPO is a program whose primary task domain is legal argument, the lessons learned
from HYPO should prove useful for other case-oriented tasks like strategic planning and
learning by experimentation. The posing and manipulating of hypotheticals is important in
strategic planning where one must examine a proposed plan in light of telling what if's -- all
too often the advocate of a plan only tells of its good points and and a devil's advocate is
needed to unmask its weaknesses. In learning, some of the questions concerning how to
intelligently select examples as training instances have a large overlap with our concerns here.

Yrhis work supported in part by the Advanced Research Projects Agency of the Department of Defense and
monitored by the Office of Naval Research under contract no. N000I4-34-K-0017

165

BERPN_ S

In case-based systems, one cannot afford to wait passively for the "right" case to come along
before grappling with a potential problem; one must create cases to reason in anticipation. So
too in learning systems, one (i.e., the problem generator) must select or generate cases to drive
the learning system. The heuristics we discuss here are the subject of another on-going project
of ours on intelligent example selection for rule-learning systems like Buchanan and Fu's RL
[1985].

Before going into details, we must mention that in the law there is a distinction between "real”
and "hypothetical™ cases. A real case is a case that has been litigated and decided; a hypo has
not {(even though it might be a very slight variation of one that has, or foretells of cases in the
process of coming to light or just “waiting to happen™) [Rissland, 1985]. Real cases are the
basis of our Anglo-American legal system which reasons according to the standard of
precedent, or stare decisis, which means roughly that like cases should be decided similarly and
that one gives support for a legal outcome by citing other similar cases which share the desired
conclusion and by distinguishing those that do not [Levi, 1949]. Of course, whal counts as
"similarity” is often up for grabs and one can apply the idea of precedent "loosely" allowing
broad matches and interpretations or "strictly" allowing only narrow ones [Llewellyn, 1930,
1933]. Legal concepts are "open-textured”, that is, they cannot be defined in a purely logical
way with necessary and sufficient conditions [Hart, 1961; Gardner, 1984]. Further the meaning
of concepts (and rules) changes over time, and, in fact, the law can be viewed as a system
which learns (in a LEX-like manner) from the cases presented to it [Risstand & Collins,
1986].

These observations apply mostly to “"common law"” systems, like our own, which reason in a
case-based manner. Others, such as the Continental systems (e.g., German or French) rely
mostly on rules and to a much lesser degree on cases. However, even in the most rule-like
legal orientations, like statute law, one must rely on cases since rarely is a statute so well-
defined as to leave no room for ambiguity or interpretation [Levi, 1949].

Note, there are two situations where hypotheticals may actually be preferred over real cases:
(1) taw school teaching; and (2) aspects of litigation. In law school, hypos are used (sometimes
unmercifully) to ferret out unspoken assumptions and prejudices of students, to focus attention
on subtle or troublesome points, and to exercise the student's argumentative powers [Gewirtz,
1981; Rissland, 1984]. In litigation, hypos are used primarily at two points: (a) preparation
and “"debugging” of an argument in the way a strategic planner "dry runs” his plan, and (b) in
oral argument. In oral argument, the hypos usually come from the judges trying to probe an
advocate’s position and the ramifications of it; once in a while, when a hypo is parlicularly
strong or compelling an advocate might recite a hypo in support of his position, or he might
present a "counter-example” hypo to refute or limit his opponent's position [Prettyman, 19785;
Rissland, in press].

Our model of legal reasoning is based on actual verbatim data from experts, namely the
Justices of the United States Supreme Court, on legal jurisprudential scholarship, and on
scholarly analysis in legal journals. We have also gathered and analyzed interchanges from law
school classes (at Harvard Law School) [Rissland, 1983], and interviews with a few of our own
experts on software trade secret law [Werner, Ashley & Stucky, 1986].

2. Examples from Supreme Court Oral Argnments

The uses that attorneys and judges make of cases and hypotheticals as tools in argument are
illustrated in the oral arguments before the United States Supreme Court. To the chagrin of
counsel before the bar of the Supreme Court, the Justices frequently interrupt an attorney's
presentation to pose hypotheticals. For example, in Lyach v. Donnelly, 104 S. Ct. 1355 (1984),
a case involving the constitutionality of a Christmas creche display of a city on municipal
land, the Justices posed the following hypotheticals:

166

To the attorney for the City:

Q: Do you think .. that a city should display a nativity scene alone without other
displays such as Santa Claus and Christmas trees...?

Q: [CJould the city display a cross for the celebration of Easter, under your view?

To the attorney opposing the display:

Q: [S]supposing the creche were just one ornament on the Christmas tree and you
could hardly see it unless you looked very closely, would that be illegal?

Q: What if they had three wiseman and a star in one exhibit, say? Would that be
enough? ... What if you had an exhibit that had not the creche itself, but just three
camels out in the desert and a star up in the sky?

Q: Well, the city could not display religious paintings or artifacts in its museum
under your theory.

Q: There is nothing self-explanatory about a creche to somebody ... who has never
been exposed to the Christian religion.

Q: Would the display up on the frieze in this courtroom of the Ten
Commandments be unconstitutional then, in your view?

Q: Several years ago .. there was a ceremony held on the Mall, which is federal
property of course. ..[T]here were 200,000 or 300,000 people .. and the ceremony
was presided over by Pope John Paul Il. Would you say that was a step towards an

establishment of religion violative of the religion clauses? .. Then you think it
would be alright to put a creche over on the Mall? .. How do you distinguish a high
mass from a creche? ... [T]here was a considerable involvement of government in

that ceremony, hundreds of extra policeman on duty, streets closed... That was a
considerable governmental involvement, was it not?

SUP, Lynch v. Donnelly, Case No. 82-1256, Fiche No. 5

In the above questions, one can see the Justices modifying the fact situation along various
dimensions:

location, size, and focus of display
religious content of the display,
nature of the viewer,

degree of government involvement

Sornetimes the purpose of the modifications (and thus the derivative hypos) is to compare the
fact situation to actual cases previously decided by the Court to test whether the current case
presents stronger or weaker facts.? Or a hypothetical case, like the Mall example, may be
significant because it did not give rise to litigation.

Frequently, the Justices use hypotheticals to apply pressure to the rule proposed by an attorney
for deciding the case. That can be seen in the Mall example above and in the following
example from New Jersey v. T.L.O, 105 S.Ct. 733 (1985), a case involving the consitutionality
of a high school principal's search of a female student's handbag for cigarettes after a teacher
reported that she had been smoking in the girls’ room. A Justice asked:

Q: Do you think then that a male teacher could conduct a pat-down search of a
young women at age sixteen (o find the cigarettes?

In response, the attorney for the state took the position that the Fourth Amendment, which

2Scc eg.. Stone v. Graham, 449 US. 39 (1980) Posting copies of Ten Commandments in schools held
unconstitutional; Gilfillan v. City of Philadelphia, 637 F. 2d 924 (CAJ, 1980). City-financed platform and cross used
by Pope John Paul 1l 1o celebrate public mass held unconstitutional; McCreary v. Stone, 575 F.Supp. 1112 (SDNY
1983): Not unconstitutional for village not to refuse permit (0 private group to erect creche in public park.

167

prohibits unreasonable searches by law enforcement authorities, does not apply to high school
administrators. The Justice rejoined:

Q: And does that mean that their authority then to make searches, if the Fourth
Amendment is completely inapplicable, extends to any kind of search, strip search or
otherwise?

SUP, New Jersey v. T.L.0, 1984 Term, Fiche No. §

In this T.L.0. example, the Justices have posed a short but typical “"slippery slope” sequence of
hypos, where each hypo is successively more extreme than ils predecessor, and the culminating
"reductio” case (of strip search) is clearly undesireable and suggests refutation of the attorney's
position.

Another slippery slope -~ this time involving the numerical range of a variable -- can be seen
in the following exchange from oral argument from Sony Corp. v. Universal City Studios, 464
U.S. 417 (1984). The attorney was advocating the position that if Sony sold video recorders
while knowing that consumers would use them to copy copyrighted materials, then Sony should
be legally responsible to the owners of the copyrights:

Q: Suppose ... that about 10 percent of all programming could be copied without
interference by the producer or whoever owned the program...

A: | don't think that would make any difference. 1 think 10% is too small of an
amount.

Q: Well, what about 50?

The attorney then asserted even if there were only one television program that was copyrighted,
if Sony knew the program would be copied, it should be legally responsible. Finally, the Justice
asked:

G: Under your test, supposing somebody teils the Xerox people that there are
people who are making illegal copies with their machine and they know it. ... Xerox
1s a contributory infringer?

A: To be consistent, Your Honor, I'd have to say yes.
Q: A rather extreme position.
SUP, Sony Corp v. Universal City Studios, Case No. 81-1687, Fiche No. 2

In these last two questions, although the altered fact situations posed by the Justice are still
covered by the proposed rule, it is progressively harder for the attorney to justify his position
because the hypotheticals present progressively weaker facts; the Justice has "stacked™ the
hypothetical with extreme facts. The attorney to keep his argument alive must distinguish the
current Sony situation and the hypos. Indeed, the attorney failed. The Court beld for Sony on
the ground that the Beltamax was capable of substantial noninfringing use because so many
programs were not subject to copyright restrictions, 464 US. 417, 456.

To summarize, the above example illustrate how cases, especially hypotheticals, are used:

+ To present, support and attack positions (e.g., by testing the consequences of a
tentative conclusion, pressing an assertion to its limits, and exploring the meaning
of a concept);

« To relate a fact situtation to significant past cases;
« To augment an existing case base with meaningful test or training cases,

« To factor a complex situation into component parts (e.g., by exagerating strengths,
weaknesses or eliminating features);

« To control the course of argument (e.g., by focussing discussion on particular issues)

168

Such observations translate into our heuristics for using hypotheticals which we discuss after we
present some background on the workings of HYPO.

3. Background on HYPO: Some definitions.

For the purposes of this research, cases are disputes between parties tried by a court, whose
decisions are reported in published opinions. The opinion sets forth the facts of the case, the
claims made by one party against the other, and the court’s holding. Facts are statements about
evenls associated with the dispute that were proved at trial or which the court assumed to be
true. A claim is a recognized kind of complaint for which the courts will grant relief (e.g.,
breach of contract, negligence, trade secrels misappropriation, copyright infringement). The
elements of a claim are generalized statements of what facts must be proven in order to
prevail on the claim (e.g., the three elements for the existence of a trade secret: "novelly,
secrecy, and value in the trade or business of the putative trade secret owner” [Gilburne &
Johnson, 1982, p. 215]1). The holding is the decision of the court as to the legal effect on each
claim of the facts of the case, either in favor of the plaintiff or defendant.

In HYPQO, cases are represented by a hierarchical cluster of frames (flavor instances) with slots
for relevant features (plaintiff, defendant, claim, facts, etc.). Some features are in turn
expanded and represented as frames (e.g., plaintiff) [Rissland, Valcarce, & Ashley, 1984]. The
library of cases is called the Case Knowledge Base (CKB). HYPO's current CKB contains a
dozen or so of the leading cases for trade secret law for software. See the Appendix Table 1
for a partial list of cases and a very brief indication of their content.

Besides the CKB and the understanding of the legal domain that this case representation
implicitly contains, the other major source of domain-specific legal knowledge is in HYPO's
dimensions. Dimensions capture the notion of legal relevance of a cluster of facts to the
merits of a claim: that is, for a particular kind of case, what collections of facts represent
strengths and weaknesses in a party's position. The short answer is that facls are relevant iv a
claim if there is a court that decided such a cfaim in a real case and expressly noted the
prescuce or absence of such facts in its opinion. Examples of dimensions in HYPO's area of
software trade secret law are: Secrets-volumarily-disclosed, Disclosure-subject-to-restriction,
Competitive-advantage-gained, Vertical-knowledge.

Each dimension has several facets:

Claims

Prerequisites

Focal-slots

Ranges
Direction-to-strengthen-plaintiff
Significance

Cases-indexed

SN WN -

For instance, the prerequisites of the Secrets-voluntarily-disclosed dimension are that two
corporations, plaintiff and defendant, compete with respect to a product, plaintiff has
confidential product inforination to which defendant has gained access and plaintiff has made
some disclosures of the information to outsiders. The prerequisites are stated in terms of
factual predicates, which indicate the presence or absence of a legal fact or attribute (eg.,
existence of a product, existence of a non-disclosure agreement). The focal slot of this
dimension is the number of disclosees and its range is a ncn-negative integer. To strengthen
the plaintiff’s position in a fact situation to which this dimension applies, decrease the number
of disclosees; the best case being that with 0 disclosees. The significance of the dimension is
that courts have found that the prerequisite facts are a reason for deciding a trade secrets
misappropriation claim. This dimension indexes at least two cases in the CKB: Midland-Ross
in which the court heid for the defendant where the plaintiff disclosed the secret to 100
persons, and Data-General in which the court held for plaintiff where plaintiff disclosed to
6000 persons. Some of the dimensions relevant to this paper are summarized in the Appendix;
HYPO knows about 30 dimensions in all (some of the others are described in [Rissland,
Valcarce & Ashley, 1984]). The dimensions were gieaned Irom law journal articles describing

169

the state of the (case) law in this area [Gilburne & Johnson, 1982].

The overall flow of information n HYPO is presented in Figure 1. Particularly of interest to
us here is HYPO's CASE-ANALYSIS module. In essence, this module works as a diagnostic
engine to determine which dimensions apply to a fact situation. The prerequisites, in effect,
define antecedent conditions and a dimension (i.e., a possible reason for deciding a claim in a
particular way) is the consequent. To make an analogy with the medical domain and MYCIN-
like diagnosis, the prerequisile facts are like symptomatic features and the dimensions are like
intermediate disease classes. The other modules are described in more detail in [Ashley and
Rissland, 1985] and in [Ashley, 1986].

The output of the CASE-ANALYSIS MODULE is the Case-analysis-record which contains:

applicable factual predicates
applicable dimensions
near-miss dimensions
applicable claims

relevant CKB cases

conflict examples
points-and-responses

The case-analysis-record is used by HYPO's ARGUMENT and HYPO-GEN modules. HYPO's
argument task is to generate 3-ply arguments, which means given the statement of the current
facts, (1) side 1 generates a point which includes citation of supporting cases, in particular the
one[s] HYPO considers the "best” supporting case, abstracting from it the "rule” of that case,
and stating how it applies to the current facts; (2) side 2 generates a response which might
include citation of a best opposing case, refutation of side 1's point with use of a single
hypothetical or slippery slope sequence, re-explanation of side 1's best case in a way more in
line with side 2's position; and (3) side I's counter-response to side 2's response.

NN W -

For the remainder of the paper, we concentrate on HYPQO's ability to generate hypotheticals.

4. Heuristics for Generating Hypotheticals

Basically what HYPO does is to start with a given fact situation, or seed case, and generate
legally relevant or plausible derivative hypotheticals by modifying the seed case. Since one
cannot explore all the "legally” possible (in the sense of syntactic legal move), one needs to
explore the space heuristically, Dimensions provide a handle on how to do this exploration in
a legally meaningful way.

The process occurs in two steps:
(1) analyze the seed case;
(2) generate legally relevant derivative hypotheticats.

Step one is.accomplished by the CASE-ANALYSIS module and results in the case-analysis-
record described in the previous section. To recall, this is like a "legal-diagnosis".

Step two i1s accomplished by the HYPO-GEN module which given high level argument goals
(e.g.. generate a slippery slope sequence to refute side i's position), uses the case-analysis-
record, and heuristics like the following to generate hypotheticals derived from the seed case:

H1. Pick a near miss dimension and modify the facts to make it applicable.

H2. Pick an applicable dimension and make the case weaker or stronger
along that dimension.

H3. Pick a dimension related to one of the applicable dimensions and apply 1
or 2.

H4, Pick a: applicable dimension and make the vase extreme
wilh respect to that dimension.

170

H5. Pick a target case that is a win and, using 1 and 2, move the seed
case toward it to create a near win.

In order to illustrate these methods, we will use the following hypothetical case, Widget-King
v. Cupcake, whose facts are as follows:

Plaintiff Widget-King and defendant Cupcake are corporations that make -
competing products. Widget-King has confidential information concerning ils own
product. Cupcake gained access to Widget-King's confidential information. Cupcake
saved expense developing its competing product.

The parts of the case-analysis-record for Widget-King v. Cupcake that are relevant for the
following sections are:

applicable dimensions: competitive-advantage-gained
near-miss dimensions: secrets-voluntarily-disclosed; vertical-krowledge
relevant CKB cases: Telex v. IBM

4.1. Make a near miss dimension apply

To make a hypothetical out of a fact situation according to this heuristic method, HYPO
selects a near miss dimension and “fills in” the missing prerequisites. HYPO instantiates
objects and makes appropriate cross references among objects’ slots so that the missing factual
predicates are satisfied. For example, secrets-voluntarily-disclosed would apply to Widget-King
but for the fact that the confidential information had not been disclosed to anyone. The
program instantiates, let us say, five disclosures and sets the subject of the disclosures to be the
confidential information. As discussed below, the number of disclosures, five, may be derived
from an actval case that the program is considering in the context of making up the
hypothetical, or it may be somewhat arbitrarily chosen by the program from within the range
of the dimension.

4.2. Make a case weaker or stronger

HYPO generates a derivative hypothetical weaker/stronger than the seed case by using the
information it knows about dimensions. It can make a case weaker or stronger in two ways:
(1) independently of the “"caselaw" represented by the CKB; or (2) based on the CKB using a
weak form of analogy. To accomplish a CKB-independent strengthening/weakening, HYPO
simply changes the values of a focal slot in the manner specified by the direction-to-
strengthen slot; the amount of change is somewhat arbitrary. To accomplish a CKB-based
modification, for instance to strengthen, HYPO first chooses a case that (a) shares the
dimension being manipulated, and (b) is further along the dimension in the stronger direction.
HYPO then adjusts the values of the focal stots of the seed in the stronger direction so that
the derivative case is stronger than the "precedent” chosen from the CKB. These changes can
involve numerical, symbolic or Boolean values. For symbolic values, this means using a partial
ordering on values.

Modifications can involve more than one focal slot, for instance a ratio. For example, given
our fact situation involving Widget-King and Cupcake which involves some expenditure of
money by Widget-King for product development, the Telex v. [BM case in the CKB is
relevant. In Telex the ratio of paintiff's to defendant's expenditures was 2:1 (and the paintiff
won). So to strengthen Widget-King's case, change ratio of Widget-King's to Cupcake's
expenses to be at least 2:1. An example of such ratio manipulation can also be found in
[McCarty & Sridharan, 1981].

Even a simple change in a single numerical focal slot value can have serious tegal implcations.
Again consider our Widget-King case, as modified by the introduction of 5 disclosees, and
make it weaker along the secrets-voluntarily-disclosed dimension by using cases from the
CKB. HYPO increases the number of Widget-King disclosees from 5 to 150 based on
Midland-Ross which was decided for the defendant because there were 100 many disclosees
(100) and now Widget-King has passed the 100-disclosee threshold. Note, Widget-King could

171

still rely on Data-General and argue that since the plaintiff won in that case (with 6000
disclosees), it should still win with only 150. HYPO could make the case weaker still by
increasing the number of disclosees near or above 6000, the highest value in the CKB or even
greater (in a CKB-independent way) to the highest value allowed by HYPO.

There are pros and cons to the «wo methods. The CKB-independent method is easy to do, but
the precedential value of the derivative hypothetical is not predictable. The CKB-based method
generates a hypo with known precedents; the drawback is that it can get complicated. HYPO
tries to do CKB-based strengthening/weakening first. If it can't (eg., because no relevant case
exists in the CKB), it uses the CKB-independent approach. In either case, the task of actually
generating the explanation (as we did above) why the hypo is stronger or weaker betongs to
HYPO's EXPLANATION module.

4.3. Generate a hypo on a related dimension

The dimensions disclosures-subject-to-restriction and secrets-voluntarily-disc/osed are related;
in particular they conflict with one another. Dimensions conflict where there is a particular
case to which the dimensions apply and the facts of the case make it strong for the plaintiff
on one dimension and weak on the other. Such a case is called a conflici-example. Data-
General is a conflict-example: it is weak for the plaintiff along the secrets-voluntarily-
disclosed dimension (100 disclosees) and strong for the plaintiff along the disclosures-subject-
to-restriction dimension (each disclosure subject to nondisclosure agreement). In Data-General,
the conflict was resolved in favor of the plaintiff.

A hypothetical on a related dimension can be generated by taking the seed case and adding
facts sufficient to make the related dimension apply to it in a manner similar to that with
heuristic H1. For example, the Widget-King case, as modified by H1 and H2 above, can be
further modified so that disclosures-subject-to-restriction applies by making all of the
disclosures subject to nondisclosure agreements. In this example, the related dimension is also a
near miss dimension but that need not always be true.

A hypothetical generated on a conflicting dimension is interesting because 1t 15 an example of
a case where, at least arguably, facts associated with one dimension can override the effects of
the other dimension's facts.

4.4. Examine an extreme case

To generate an extreme case, HYPO simply changes the value of a focal slot to be an extreme
of its range of values. This can also be done in either a CKB-based or CKB-independent
manner. The former method pushes the slot value to the extreme actually existing in a case in
the CKB, the latter simply pushes the slot value to its permissible extreme.

For instance, the extreme case on the strongest end of the secrets-voluntarily-disclosed
dimension for Widget-King is the facls as stated above with the exception that there are 0
disclosees. The other extreme is the maximum value for number of disclosees which in the
CKB is 6000 and which in HYPO is 10,000,000.

4.5. Manipulating a near win

A near win hypo is one in which a seed fact situation is weak on behalf of, let us say, the
plaintiff. It can be "moved” in the direction of a real target case from the CKB that has been
decided in favor of the plaintiff. Using methods H1 through H3, HYPO endows the seed
situation with the facts to make the case strong for the plaintiff. As a result, the target case
becomes relevant to the seed hypothetical and an argument can be made, based on the pro-
plaintiff target case, that the hypo should be decided in favor of the plaintiff. Correspondingly
a near win hypo can start with a pro-plaintiff fact situation and be moved in the opposite
difection away from the pro-plaintiff target ease or towards a pro-defendant target case

For example, consider two cases: Telex, which we have already seen above, and Automared
Systems, where court held in favor of the defendant where the confidential information that

172

the plaintiff wanted to protect was about a customer's business operations, that is, the
knowledge was about a "vertical market”. Using the Telex case as a seed, and Automated
Systems as target, HYPO could make Telex a near win by making IBM's confidential
information be vertical knowledge (i.e., be about a customers business operations). As a result,
an argument could be based on Automated Systems that, in the hypo, defei.dant Telex should
win.

5. Examples of Heuristic HYPO Expioration

HYPO's heuristical y guided generation of hypotheticals makes it possible to explore a fact
situation’s legal significance in a manner not unlike the sequence of hypotheticals in the creche
example from the Lynch case oral argument.

Suppose (a) the original Widget-King case is modified so that the confidential information is
about customer business operations. Suppose on appeal to the Supreme Court, Cupcake's
counsel, citing Automared Systems, has just argued to the Justices that his client should win
because vertical knowledge is not protectible as a trade secret. One can imagine a lustice
posing the following line of hypotheticals:

.Q: What never? Suppose (b) Widget-King's alleged trade secret information,
eventhough it was vertical knowledge, helped it to produce its competing product in
half the time like in the Telex case?

Q: Suppose (c) the vertical knowledge allowed Widget-King to bring its product to
market in one fourth the time and at one fourth the expense.

Q: Suppose (d) that Cupcake paid a large sum to a former employee of Widget-
King to use the information to build a competing product, as Telex did. Wouldn't
the information be protectible as a trade secret then?.

In this example, heuristic methods 1,23 and 5 are at work. Near miss dimension vertical-
knowledge is used with 1 to create the intial hypo (a). The modification at (b) is produced by
5 and 2 using the the Telex case as the target. Method 2 is used to make the stronger hypo at
(c). Methods 5, 1 and 2 are used to create the hypo at (d) where the near miss dimension is
common-employee-paid-to-change-employers.

It is interesting that a previous version of HYPO serendipitously generated a hypothetical very
much like this. The starting point was a fact situation presenting a very strong position for
the plaintiff along various dimensions: it involved alleged misappropriation of plaintiff's
unique, novel technical knowledge about computer system hardware for a particular purpose,
knowledge that was not learnable by an employee working for one of the plaintiff's
competitor’s and that conferred on the plaintiff a year's competitive advantage in bringing its
product to market. Then, by accident, the hypo was changed by turning the technical
knowledge about hardware into vertical knowledge about bank accounting practices. Although
according to the Automated Systems case, the new hypo presented a very much weakened
position for the plaintiff, it was immediately apparent to the attorney using the program that
the Autamated Systems case was distinguishable -- it did not involve the facts that the
knowledge, though vertical, was unique, novel, not learnable elsewhere and conferred a
substantial competitive advantage on its possessor -- and suzgested the germ of an argument
for the protectibility of vertical knowledge -- demonstrate that the vertical knowledge is
unique, novel, etc.

Since that accidental discovery, we have provided the system with the above heuristic methods
so that, given a case, it can generate a hypo that is distinguishable from the case in a legally
significant way. Starting from a real case, methods 3 and S, in particuler, are recipes for
creating hypo's with facts that justify a different holding from the real case. Our goal is for
the system itself to realize that the hypo is significantly distinguishable and why and (0
generate such hypos on purpose to make points in an argument.

Having reached step (d) in the above extended example, a hypothetical has been constructed
that is fairly strong for the plaintiff. But plaintiff's positicn can be eroded by moves aiong

173

other dimensions. One can imagine the scene at 11 p.m. in the oak-paneled library at 14 Wali
Street as two first year associate attorneys, assigned to preparing an initial memorandum as to
the strengths of Widget-King's clair against Cupcake, play devil's advocate with the facts:

Q: Suppose (e) that Widget-King made disclosures to 100 outside persons as in the
Midland-Ross case.

Q: Well, maybe (f) all of the disclosees entered into nondisclosure agreements as
in Data-General. Under that case, Widget-King (g) could have made restricted
disclosures to as many as 6000 people.

Q: What if (h) Widget-King made restricted disclosures to 10,000,000 people. s it
still a secret? (Not an idle hypothetical in this day of mass marketing of software.)

Q: Are the nondisclosure agreements enforceable? What did all of these people
get in exchange for agreeing not to disclose the secret? Suppose (i) that the disclosees
did not receive anything of value for entering into the nondisclosure agreements?

With secrets-voluntarily-disclosed as near miss dimension and the Midland-Ross case as
target, the hypo at (e) can be generated from (d) using methods 5, 1 and 2. (f) represents a
method 3 move to a conflict dimension, disclosures-subject-to~restriction. We assume that the
Data-General case has been recognized as a conflict-example. Otherwise this could be regarded
as a method 5 move with Data-General as a target. Using method 4, the hypo at (g) has been
moved to the extreme value in Dara-General and at (h) to the extreme of the range of the
dimension. The program does not know that a secret told to 10,000,000 people is not a secret,
even if they promise not to tell anyone else, but the program does know that two dimensions
conflict and that moving to an extreme on one dimension may cause the conflict to be moot.
Having exhausted the possibilities for weakening the case along the secrets-voluntarily-
disclosed dimension, the program moves, using methods 1 and 2, (0 a dimension that became a
near miss as soon as nondisclosure agreements came into the hypo at (f), agreement-supported-
by-consideration.

One can also analyze the sequence of hypotheticals about the civic creche display from the
Lynch case oral argument in terms of the dimensional model and heuristics for building hypo's.
The justices make the basic fact situation weaker and stronger along a dimension that might be
called focus-of-attention: they remove all of the secular images teaving only the religious one,
they physically shrink the symbol to an extreme and relegate it to a corner, they remove the
religious symbols and leave the secular ones. They weaken plaintiff's case along the dimension
of civic-content-message by moving it to a municipal art museum or the frieze of 3
courtroom. They compare the case along the dimension of government-involvement to an
extreme example, the Pope’'s mass on the Mall.

6. Conclusions

In this paper, we have discussed an aspect of regsoning involving the use of hypothetical cases.
In particular, we have discussed how our case-based legal reasoning program HYPQ currentiy
uses case examples, dimensions, and five or so heuristic methods (0 compare the legal
consequences of facts and to generate hypothetical fact situations to augment and explore its
case base. The hypos help accomplish analysis tasks, such as testing the sensitivity of positions
and relating a faci situation to significant past cases, and argument tasks, such as generating a
slippery slope to refine or refute an argument and controlling the course of argument. HYPO's
heuristics involve (1) strengthening/weakening of a case; (2) laking the case to ex(remes; 3)
making a near miss case a winning one; (4) manipulating a near win; and (5) examining a case
along a related dimension.

As indicated earlier, one of our performance goals for HYPO is to have HYPQ generate 3-ply
argument exchanges which involve a heavy dose of case-based reasoning like distinguishing
cases and using hypotheticals. Eventually we hope to bring tlogether our descriptive work on
argument moves and hypotheticals [Rissland, 1985; Stucky, 1985] with our computational 3-ply
argument work. We also hope that this work on HYPO will cross-potentiate with work on the
intelligent setection of exampies for iearning sysicms, u i0pic, we feel hus been ivo ofien
glossed over. The heuristic generation of hypotheticals is a step towards both (hese goals.
However even as they now stand, HYPO's current hypotaetical reasoning powers can be heipful
in formulating, testing, debugging, and learning in case-based tasks.

174

References

[1] Kevin D. Ashley. Modelling Legal Argument: Reasoning with Cases
and Hypotheticals - A Thests Proposal Project Memo 10, The COUN-
SELOR Project, Department of Computer and Information Science,
University of Massachusetts, 1986.

[2] Kevin D. Ashley. Reasoning by Analogy: A Survey of Selected A.L Re-
search with Implications for Legal Expert Systems. In Charles Walter,
editor, Computing Power and Legal Reasonsng, West Publishing Co.,
St. Paul, MN, 1985.

[3] Kevin D. Ashley and Edwina L. Rissland. Toward Modelling Legal Ar-
gument. In Antonio A. Martino and Fiorenza Socci Natali, editors, Atts
preliminari del II Convegno internanionale ds studs su Logica Informat-
ica Diritto, pages 97-108, Consiglio Nazionale delle Ricerche, Istituto
per la documentarione giuridica, Florence, Italy, September 1985.

[4) William J. Clancey. Classification Problem Solving. In Proccedings
of the Fourth National Conference on Artificsal Intelligence, American
Association for Artificial Intelligence, Austin, TX, August 1984.

[S] A. vdL. Gardner. An Artificial Intelligence Approach to Legal Reason-
ing. PhD thesis, Department of Computer Science, Stanford University,
1984.

(6] Paul Gewirtz. The Jurisprudence of Hypotheticals. American Bar
Assoctation Journal, 67:864-866, 1981. '

[7] M. R. Gilburne and R. L. Johnston. Trade Secret Protectica for Soft-
ware Generally and in the Mass Market. Computer/Law Journal, I11(3),
1982.

[8] H.L.A. Hart. The Concept of Law. Clarendon Press, Oxford, 1961.

[9) Wendy G. Lehnert, David D. McDonald, and Edwina L. Rissland.
Natural Language Generation in Battiefield Management, A Proposal
for the DARPA Strategic Computing Program. University of Mas-
sachusetts, Department of Computer and Information Science, 1984.

{10) Edward H. Levi. An Introduction to Legal Reasoning. University of
Chicago Press, 1949.

175

PR A ——————

[11] Karl N. Llewellyn. Praejudizienrecht und Rechtssprechung in Amerika.
Section 52, Certainty in Case Law; In Doubtful Cases the Legal Rule
is not Decisive, pages 72-86. 1933.

[12] K.N. Llewellyn. The Bramble Bush: On Our Law and Its Study.
Oceana Publications, Dobbs Ferry, NY, 1960 edition, 1930.

(13] L. Thorne McCarty and N.S. Sridharan. A Computational Theory of
Legal Argument. Technical Report LRP-TR-13, Laboratory for Com-
puter Science Research, Rutgers University, 1982.

[14) L. Thorne McCarty and N.S. Sridharan. The Representation of an
Evolving System of Legal Concepts: II. Prototypes and Deformations.
In Proceedings of the Seventh International Joint Conference on Arti-
ficsal Intellsgence, International Joint Conferences on Artificial Intelli-
gence, Inc., Vancouver, B.C., August 198].

[15] E. Barrett Prettyman, Jr. Opposing Certiorari in the United States
Supreme Court. Virginia Law Review, 61:197-209, February 1975.

{16] Edwina L. Rissland. Hypotheticals from Oral Argument before the
Supreme Court: an Analysis. 1986. in press.

(17} Edwina L. Rissland. Argument Moves and Hypotheticals. In Charles
Walter, editor, Computing Power and Legal Reasoning, West Publishing
Co., St. Paul, MN, 1985.

[18] Edwina L. Rissland. Hypothetically Speaking: Experience and Reason-
ing in the Law. In Proccedings First Annual Conference on Theoretical
Issues in Conceptual Information Processsing, Georgia Institute of Tech-
nology, Atlanta, GA, March 1984.

(19] Edwina L. Rissland. Examples in Legal Reasoning: Legal Hypothet-
icals. In Proceedings of the Eighth Internaticnal Josnt Conference on
Artificial Intelligence, International Joint Conferences on Artificial In-
telligence, Inc., Karlsruhe, Germany, August 1983.

[20] Edwina L. Rissland and Robert T. Collins. The Law as a Learning
System. Submitted to the 8th Annual Conference of the Cognitive
Science Society. 1986.

176

[21] Edwina L. Rissland, E. M. Valcarce, and Kevin D. Ashley. Explain-
ing and Arguing with Examples. In Proccedings of the Fourth National
Conference on Artificial Intelligence, American Association for Artifi-
cial Intelligence, Austin, TX, August 1984.

[22] Brian Stucky. Understanding Legal Argument. Project Memo 11, The
COUNSELOR Project, Department of Computer and Information Sci-
ence, University of Massachusetts, 1986.

[23] The Complete Oral Arguments of the Supreme Court of the United
States. University Publications of America, Frederick, MD.

(24] Philip Werner, Kevin D. Ashley, and Brian Stucky. Analyzing Expert
Discourse: A Knowledge Acquisition Strategy for Building an Expert
Advice Giver. 1986. in preparation.

177

N R

. 3.2
] E I: ““ 2.2
=l

err

T

re

=
—_ N
= IS 1

JL2s g poe

““ .
=

'‘CROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

APPENDIX

Teles Corp. o. IBM Corp., 510 F.2d 894 (5th Cir., 1975).
Held for plaintiff IBM on trade secrets misappropriation claim where Telex gained access to IBM's
confidential product development information by hiring an IBM employee, paying him a large bonus
to develop a competing product. The employee used development notes he brought from IBM. Telex
saved time and expense developing the competing product.

Midland-Ross Corp. v. Sunbeam Egqsipment Corp., 316 F.Supp. 171 (W.D. Pa,, 1970).
Held for defendant Sunbeam on trade secrets misappropriation claim where Midland-Ross disclosed
it's tecbnical product developyment info to 100 persons.

Dete Generel Corr ». Digital Computer Controls, Inc., 38T A.2d 105 (Del. Ch. 1975).
Held for plz _..iff Data General on trade secrets misappropriation claim where Data General disclosed
its technical product development info to 6000 persons, all of whom were subject to nondisclosure
agreements.

Astomated Systems, Inc. 9. Service Bureas Corp., 401 F.24 619 (10th Cir., 1968).
Held for defendant SBC on trade secrets misappropriation claim where Automated-Systems’ confiden-
tial info was about customer’s business operations (i.e., vertical info).

7 Table 1;: Sample Cases from Case Knowledge Base.

Secrets-voluntarlly-disclosed:
Significance: Plaintiff’s (P's) position stronger the fewer persons to whom secrets disclosed.
Prerequisites: P and Defendant (D) compete; D had access to P's product information and gained
some competitive advantage; some disclosures.
Focal slot: Number of disclosees. To Strengthen P: Decrease number of disclosees. Range: 0 to
N. Cases Indexed: Midland-Ross, Dats-General

Disclosures-subject-to-restriction:
Significances P’s position stronger the fewer disclosees not subject to nondisclosure agreements.
Prerequisites: Competition; access to info; some disclosures and nondisclosure agreements.
Focal slot: Number of disclosees subject to restriction. To Strengthen P: Increase percentage of
disclosees subject to restriction. Range: 0 - 100 %. Cases Indexed: Data-General

Competitive-advantage-galned:
Significance: P’'s position stronger the greater competitive advantage gained by D.
Prerequisites: Competition; access to info; D saved some expense.
Focal slot: Development expense saved. To Strengthen P: Increase expense saved by D. Range:
0 - 100 %. Cases indexeds Telez v. IBM

Vertlcal-knowledges
Significances P’s position stronger if information technical, not -rertical
Prerequisites: P and D compete; D had access to P's product information: info abount something.
Focal slott What information is about. To Strengthen P: Make information about technical
development of product. Ranges (technical, vertical} Cases Indexed: Astomated Systemas, et al.

Table 23 Sample Dimensions.

178

SECTION 6: RESEARCH CONTRIBUTIONS

University of Pennsylvania

I S

LIVING UP TO EXPECTATIONS:
COMPUTING EXPERT RESPCNSES!

Aravind Joshi and Bonnie Webber
Department of Computer and Information Science
Moore School/D2
University of Pennsylvania
Philadelphia PA 19104

Ralph M. Weischedel?
Department of Computer & Information Sciences
University of Delaware
Newark DE 19716

ABSTRACT
In cooperative man-machine interaction, it is necessary but not sufficient for a system to respond
truthfully and informatively to a uset's question. In particular, if the system has reason to believe that its
planned response might mislead the user, then it must block that coaclusion by modifying its response.
This paper focusses on identifying and avoiding potentially misleading responses by acknowledging types
of ®informing behavior® usually expected of an expert. We attempt to give a formal account of several
types of assertions that should be included in response to questions concerning the achievement of some

goal (in addition to the simple answer), lest the questioner otherwise be misled.

1. Introduction)

In cooperative man-machine interaction, it is necessary but not sufficient for a system to respond
truthfully and informatively to a user’s question. In particular, if the system has reason to believe that its
planned response might mislead the user to draw a false conclusion, then it must block that conclusion by

modiiying or adding to its response.

Such cooperative behavior was investigated in [5], in which a modification of Grice’s Mazim of Quality

- *Be truthful® - is proposed:
If you, the speaker, plan to say anything which may imply for the hearer something that you
believe to be false, then provide further information to block it.

This behavior was studied in the context of interpreting certain definite noun phrases. In this paper, we
investigate this revised principle as applied to responding to users’ plan-related questions. Our overall aim
is to:

1. characterize tractable cases in which the system as respondent (R) can anticipate the

possibility of the user/questioner (Q) drawing false conclusions from its response and hence
alter it so as to prevent this happening;

2. develop a formal method for computing the projected infercnces that Q may draw from a

IThis work is partially supported by NSF Grants MCS 81-07200, MCS 82-05221, and IST 83-11400.

34t present visiting the Department of Computer sad Information Science, University of Pennsylvania PA 10104.

179

- ket

particular response, identifying thc:« factors whose presence or absence catalyzes the
inferences;

3. enable the -system to generate modifications of its response that can defuse possible false
infcrences and that may provide additional useful informaztion as well.

la responding to any question, including those related to plans, a respondent (R) must conform to

Grice's first Mazim of Quantity as well as the revised Mazim of Quality stated above:

Mzke your contribution as informative as is required (for the current purposes of the
exchange).

At best, if R's response is not so informative, it may bc seen as uncooperative. At worst, it may end up
violating the revised Mazim of Quality, causing Q to conclude something R either believes to be false or
does not know to be true: the consequences could be dreadful. Our task is to characterize more precisely
what this expected informativeness consists of. In question answering, there seem to be several quite
different types of information, over and beyond the simple answer to a question, that are nevertheless

expected. For example,

1. When a task-related question is posed to an expert (R), R is expected to provide additional
information that he recognizes as necessary to the performance of the task, of which the
questioner (Q) may be unaware. Such response behavior was discussed and implemented by
Allen {1] in a system to simulate a train information booth attendant responding to requests
for schedule and track information. In this case, not providing the expected additional
information is simply uncooperative: Q won’'t conclude the train doesn’t depart at any time if
7 fails to volunteer one.

Tl respect to discussions axid/or arguments, a speaker contradicting another is expected to
suppoit bis contrary contention. Again, failing to provide support would simply Le viewed as
uzcoererative (2, 3],

3. With respect to an expert's responses to questions, if Q expects that R would inform him of P
if P were true, then Q may interpret R's silence regarding P as implying P is not true.3 Thus if
1. s20ws P to be true, his silence may lead to Q's being misled. This third type of expected
informaativeness is the basis for the potentially misleading responses that we are trying to
avoid aad that constitute the subject of this paper.

What is of interest to us is characterizing the Ps that Q would expect an expert R to inform him of, if
they hold. Notice that these Ps differ from script-based expectations [8], which are based on what is
taken to be the ordinary course of events in a situation. In describing such a situation, if the speaker
doesn’t explicitly reference some element P of the script, the listener simply assumes it is true. On the
otlier hand, the Ps of interest here are based on normal cooperative discourse behavior, as set out in
Grice's maxims. If the speaker doesn't make explicit some information P that the listener believes he

would possess and inform the listener of, the listener assumes it is false.

Ia this paper, we attempt to give a formal account of a subclass of Ps that should be included (in
addition to the simple answer) in response to questions involving Q's achieving some goal! - eg., *Can |

3This is an interactional version of what Reiter {13] has called the *Closed World Assumption® and what McCarthy [0] has
di-cussed in the context of *Circumscription®. ’

A companion paper [6] discusses responses which may mislead Q into assuming some default which R knows not to hold.

Related work [4] discusses providing indirect or modified responses to yes/no questions where a direct response, while
truthful, might mislead Q.

180

drop CIS577?°, *1 want to enrol in CIS577?®, *How do I get to Marsh Creek on the Expressway?®, etc.,
lest that response otherwise mislead Q. In this endeavor, our first step is to specify that knowledge that an
expert R must have in order to identify the Ps that Q would expect to be informed of, in response to his
question. Our seccnd step is to formalize that knowledge and show bow the system can use it. Our third
step is to show how the system can modily its planned response so as to convey those Ps. In this paper,
Scction 2 addresses the first step of this process and Sections 3 and 4 address the second. The third step

we mention here only in passing.

2. Factors in Computing Likely Informing Behavior]

Before discussing the factors involved in computing this desired system behavior, we want to call
attention to the distinction we are drawing between actions and events, and between the stated goal cf a
question and its intended goal. We limit the term action to things that Q has some control over. Things
beyond Q's control we will call events, even if performed by other agents. While events may be likely or
even necessary, Q and R nevertheless can do nothing more than wait for them to happen. This distinction
between actions and events shows up in R's response behavior: if an action is necded, R can suggest that

Q perform it. If an event is, R can do no more than inform Q.

Our second distinction is between the stated goal or *S-goal®* of a request and its intended goal or
*l-goal®. The former is the goal most directly associated with Q’s request, beyond that Q know the
information. That is, we take the S-goal of a request to be the goal directly achieved by using the

information.

Underlying the stated goal of a request though may be another goal that the speaker wants to achieve.
This intended goal or *I-goa!® may be related to the S-goal of the request in any of a number of ways:

® The [-goal may be the same as the S-goal.

¢ The I-goal may be more ahstract than the S-goal, which addresses only part of the I-goal.
(This is the standard goal/sub-goal relation found in hierarchical planning [14].) For example,
Q’s S-goal may be to delete some files (e.g., *How can I delete all but the last version of
FOO.MSS?*), while bis I-goal may be to bring his file usage under quota. This more abstract
goal may also involve archiving some other files, moving some into another person's directory,
etc.

e The S-goai may be an enabling condition for the l-goal. For example, Q’s S-goal may be to get
tead/write access to a file, while his l-goal may be to alter it.

e The I-goal may be more general than the S-goal. For example, Q's S-goal may be to know how
to repeat a controlN, while his I-goal may be to know how to effect multiple sequential
instazces of a control character.

o Conversely, the I-goal may be more specific than the S-goal - for example, Q's S-goal may be
to know how to send files to someone on another machine, while his I-goal is just to send a
particular file to a local network user, which may allow for a specialized procedure.

Inferring the I-goal corresponding to an S-goal is an active area of research (1, Carberry83, 10, 11]. We
assume [or the purposes of this paper that R can successfully do so. One problem is that the relationskip
that Q believes to hold between his S-goaf and his I-goal may not actueally hold: for example, the S-goal

181

may not fulfill part of the I-goal, or it may not instantiate it, or it may not be a pre-condition for it. In
fact, the S-goal may not even be possible to effect! This failure, undsr the rubric "relaxing the
appropriate-query assumption®, is discussed in more detail in |10, 11). It is zlso reason for augmenting R's

response with appropriate Ps, as we note informally in this section and more formally in the next.

Having drawn these distinctioas, we now claim that in order for the system to compute both a direct
answer to Q's request and such Ps as he would expect to be informed of, were they true, the system must

be able to draw upon knowledge/beliefs about

e the events or actions, if any, that can bring about a goal
o their enabling conditions

o the likelihood of an event occuring or the emabling conditions for 2n action holding, with
respect to a state

e ways of evaluating methods of achieving goals - for example, with respect to simplicity, other
consequences (side effects), likelihood of success, etc.

o general characteristics of cooperative expert behavior

The roles played by these different types of knowledge (as well as specific examples of them) are well

illustrated in the next section.

3. Formalizing Knowledge for Expert Response

In this scction we give examples of how a formal model of user beliefs about cooperative expert behavior
can be used to avoid misleading responses to task-related questions - in particular, what is a very
representative set of questions, those of the form *How do I do X?*. Although we use logic for the model
because it is clear and precise, we are not proposing theorem proving as the means of computing
cooperative behavior. In Section 4 we suggest a computational mechanism. The examples ara from a
domain of advising students and involve responding to the request *] want to drop CIS577*. The set of
individuals includes not only students, instructors, courses, et~. but also states. Since events and acticns
change states, we represent them as (possibly parameterized) functions from states to states. All terms

corresponding to events or actions will be underlined. For these examples, the following notation is

convenient:
Q the user
R the expert
Sc the current state of the student
RE(P) R believes proposition P
RBQB(P) R believes that Q believes P
admissible(¢(S)) event/action ¢ can apply in state S
likely(a,S a is a likely event/action in state S
bolds(P,S P, a proposition, is true in S
waat(x,P) x wants P to be true

To encode the preconditions and consequences of performing an action, we adopt an axiomatization of
STRIPS operators due to [Chester83, 7, 15]. The preconditions on an action being applicable are encoded
using *holds® and ®admissible® (essentially defining "admissible®). Namely, if ¢l, ..., cn are preconditions

on an action a,

182

holds{c1,8) &...& bolds(cn,s) = admissible{a(s))
a's immediate consequences pl, ..., pm can be ctated 2s
admissible(a(s)) = holds(pl, a(s)) & ... & holds(pm, a(s))
A frame axiom states that only pl, ..., pm have changed.
~(p=p1) & ... & ~(p=pm) & holds(p,s)3 & admissible(a(s)) = holds,a(s))

In particular, we can state the preconditions and consequences of dropping CIS577. (h acd n are
variables, while C stands for CIS577.)

RB(holds(enrolled(h, C, fall), n) & holds(date(n)<Nov16, n)
= admissible{drop(h,C An)))

RB(admissible(drop(h,C n)) = holds(—~enrolled(h,C fall),drop(h,C \n)))
RB(~(p==enrolled(h,C,fall}) & admissible(drop(h,C)n)) & bolds(p,n)
=3 holds(p,drop(h,C)\n}))
Of course, this only partially solves the frame probiem, since there will be implications of pl, ..., pm in
general. For instance, it is likely that one might have an axiom stating that one receives a grade in a

course only if the individual is enrolled in the course.

Q's S-goal in dropping CIS577 is not being in the course. By a process of reasoning discussed in {10, 11],
R may conclude that Q's likcly intended goal (I-goal) is not failing it. That is, R may believe:

RBQB(holds(~fail(Q,C), drop(Q,CXSc)))?
RB(want(Q,-1ail(Q,C)))

What we claim is: (1) 1 must give a truthful response addressing at least Q's S-goal; (2) in addition, R
may have to provide information in order not to mislead Q; and (3) R may give additional information to
be cooperative in other ways. In the subsections below, we enumerate the cases thiat R must check in
effecting (2). In each case, we give both a formal representation of the additional information to be
conveyed and a possible English gloss. In that gloss, the part addressing Q's S-goal will appear in normal
type, while the additional information will be underlined.

For each case, we give two formulae: a statement of R’'s beliefs about the current situation and an
axiom stating R's beliefs about Q’s expectations. Formulae of the first type have the form RB(P).
Formulae of the second type relate such beliefs to performing an informing action. They involve a
statement of the form

RE[P] = likely(s, Sc),
where i is an informing act. For example, if R believes there is a better way to achieve Q's goal, R is
likely to inform Q of that better way. Since it is assumed that Q has this belief, we have

QE(RB[P] = likely(i, S¢)).

51t will also be the case that RBQB(sdmissible(drop(Q,C)Sc))) if Q's asks *How can I drop CIS5777°, but not if he asks
*Can | drop CISS771". In the latter case, Q must of course believe that it may be admissible, or why ask the question. "2
either case, R's subsequent behavior d 't seem contingent on his beliefs about Q's beliels about admissibility.

183

where we can equate *Q believes 1 is likely® with *Q expects ¢.* Since R has no direct access to Q's
beliefs, this must be embedded in R's model of Q's belief space. Therefore, the axioms have the form
{modulo quantifier placement)

RBQB(RB[P] = likely(s, Sc)).
An informing act is meant to serve as a command to a natural language gencrator which selects
appropriate lexical items, phrasing, ete. for a natural language utterance. Such an aci has the form

inform-that(R,Q,P) R informs Q that P is true.

3.1. Fallure of enabling condiilons
Suppose that it is past the November 15th deadlipe or that the official records don’t show Q earolled in
CIS577. Then the enabling conditions for dropping it are not met. That is, R believes Q's S-goal cannot be

achieved from Sc.
(1] RB(want{Q,-{2iQ,C))} & —admissible{drop(Q,C XSc)))
Thus R initially plans to answer ®*You can't drop CIS577°. Beyond this, there are two possibilities.

3.1.1. A way
If R knows another action b that would achieve Q's goals {cf. formula [2]), Q would expect to be
informed about it. If not so informed, Q may mistakenly coaclude that there is no other way. Formula

|3] states this belief that R has about Q's expectations.
[2] RB((3b) [admissible{i{Sc)) & holds(-iail{Q,C), ¥Sc))))

[3] RBQB(RB[want(Q,~2i}(Q,C)) & -~admissible{drop(Q,CSc}))| &
RB[(36){admissible(8(Sc)) & holds(=rail(Q,C),5(5¢c)}]]
= likely(¢nform-that(RR, Q,
(3b) fadmissibl (5(Se)) & holds(~fail(Q,C)b(Sc)) &
can(Q,b))5c))

R's full response is therefore *You can't drop 577; you cen b.* For instance, b could be changing status to

auditor, which may be performed until December 1.

3.1.2. No way
If R doesn’t know of any action or event that could achieve Q's goal (cf. [4]), Q would expect to be so

informed. Formula [5] states this belief about Q's expectations.

[4] RB(~(3a){admissible(a(Sc)) & holds(~fai}(Q,C),a{Sc))])
|5] RBQB(RB(want(Q,~fail(Q,C)) & -(3a){admissible{a(Sc))
& holds(~12i)(Q,C), 4(Sc))])

= likely(inform-that(R, Q, —~(Ja)fadmissible(a(Sc))
& holds(~fail(Q,C},a(Sc}}]),Sc))

To say only that Q cannot drop the course does not exhibit expert cooperative behavior, since Q would be
uncertain as to whether R had considered other alternatives. Therefore, R's full response is *You can't

drop 577, there sant enything you can do to prevent failing.®

Notice that R's analysis of the situation may turn ep additional informatica which a cooperative expert

184

could provide that does not involve avoiding misleading Q. For instance, R could indicate enabling
conditions that prevent there being a solution: suppose the request to drop the course is made after the
November 15th dead'ine. Then R would believe the following, in addition to {1]

RB{holds(enrolled{Q,C,fall),Sc) & bolds(date(Sc)>Nov15,5c))
More generally, we need a schema such as the following about Q's beliefs:

RBQB(RB{want(Q,~fail{Q.C))
& (holds(P1, S) &...& holds{Pn, S) = admissible(a(S)))
& (—holds(Pi, S), for some Pi above)|
= likely{inform-that(R,Q,~holds(Pi,5)),S))

In this case the response should be *You can't drop 577; Py isn't true.® Alternatively, the language

generator might paraphrase the whole response as, *if Pi were true, you could drop.*

Of course there are potentially many ways to try to achieve a goal: by a single action, by a single
event, or by an event and an action, ... In fact, the search for a sequence of events or actions that would
achieve the goal msy consider many alternatives. If all fail, it is far from obvious which blocked condition
to notify Q of, and knowledge is needed to guide the choice. Some heuristics for dealing with that problem

& given m [12].

3.2. An nongprciuctlve act

Suppose the proposed action does not achieve Q's I-goal, cf. [6]. For example, dropping the course may
still mean that failing status would be recorded as a WF (withdrawal while failing). R may initially plan to
answer *You can drop 577 by ...*. However, Q would expect to be told that his proposed action does not

achieve his I-goal. Formula [7] states R's belief about this expectation.

[6] RB(~holds(~1ail(Q,C). drep(Q,CXSc)) & admissible(drop(Q,CXSc)))

(7] RBQB(RB| want(Q,~fail{Q.C)) & ~bolds(~{ail(Q,C),drop(Q,CXSc))
& admissible(drop(Q,CASc))]
= likely(in form-that 2,Q,
~holds{~fail{Q.C)drop(Q,C)(Sc)))Sc))

R’s ftull response is, *You can drop 577 by ... However, you will still fail®* Furthermore, given the
teasoning in section 3.1.1 above, R's full response would also inform Q if there is an action b that the user

can take instead.

3.3. A better way

Suppose R believes that there is & better way to achieve Q's I-goal, cf. [8] - for example, taking an
incomplete to have additional time to perform the work, and thereby not fosing all the effort Q has
already expended. Q would expect that R, as a cooperative expert, would inform him of such a better
way, cf. [9]. If R doesn’t, R risks misleading Q that there isn’t one.

(8] RB((3b)[bolds(~fail(Q,C), ¥Sc)) &
admissible(b{Sc)) & better(b,drop(Q,C)(Sc))])

9] RBQB(RB|want(Q,~£ail(Q,C))| &
RB|(3b)[bolds(~fail(Q,C), &{Sc)) & admissible(}(Sc)) &
better(,drop(Q,C)(Sc))
= likely(inform-that(R,Q,

185

(3b)Mholds(~fail(Q,C),b(Sc)) & admiasible(b(Sc)) &
better(3,drop(Q,C)(Sc)))|, Se)l)

R's direct response is to indicate how f can be domne. R's full response includes, in addition, *b is a better

way.*

Notice that if R doesn't explicitly tell Q that he is presenting a better way (i.e., he just presents the
method), Q may be misled that the résponse addresses his S-goal: i.e., he may falsely conclude that he is
being told how to drop the course. (The possibility shows up clearer in other examples - e.g., if R omits

the first sentence of the response below

Q: How do 1 get to Marsh Creek on the Expressway?
R: It’s faster and shorter to take Route 30. Go out
Lancaster Ave until....

Thus even when adhering to expert response behavior in terms of addressing an I-goal, we must keep the

system aware of potentially misleading aspects of its modified response as well.

Note that R may believe that Q expects to be told the best way. This would change the second axiom to

include within the scope of the existential quantifier

(Ya){~(3=b) = [holds(~ail{(Q,C), a(Sc)) & admissible(a(Sc})) & better(b,a)}}

3.4. The only way

Suppose there is nothing inconsistent about what the user has proposed - i.e., _.. preconditions are met
and it will achieve the user's goal. R’s direct response would simply be to tell Q how. However, if R
notices that that is the only way to achieve the goal (cf. [10]), it could optionally notify Q of that, cf. {11].
|10) RB((3!e)[holds{~1ail(Q,C),a(Sc)) & admissible(a{Sc)) & a=drop(Q,C)(Sc})
{11} RBQB(R2(want(Q,~fai}(Q,C)))

& RB{(3'e)|holds(~fail{Q,C), a(Sc)) & admissible(a(Sc)) & a=dro,(Q,C)(Sc))
= likely{inform-that(R, Q,

(Alajfholds(~fail(Q,C),a(Sc})
& admissiblefa(Sc})) & a=drop(Q,C)(Sc)]), Sc}))

R's ful) response is *You can ‘rop 577 by That s the only way to prevent failing.*

3.5. Something Turning Up

Suppose there is no appropriate action that Q can take to achieve his I-goal. That is,

RB(~(3 a)[admissible(a(Sc)) & holds(g, a{Sc))])
There may still be some event ¢ out of Q's control that could bricg about the intended goal. This gives
several more cases of R's modifying his response.

3.5.1. Unlikely event
If ¢ is unlikely to occur (cf. [12]), Q would expect R to inform him of ¢, while noting its implausibility, cf.
(13]

{12] RB((3e)[admissible(e{Sc)) & bolds{-a:}{Q,C), ¢{Sc))
& Slikely(e, Sc)])

186

[13] RBQB(RB(want(Q,~f2il{Q,C)) &
RB(~(3a)[admissible{a(Sc})) & holds(~fail(Q,C),a(Sc))| &
{3e)|admissible(e{Sc)) & holds{~fail(Q,C),e{Sc))
& ~likely(e,Sc)))
= likely(inform-that(R, Q,
(3 ejfadmissiblefe,Sc) 8 holds(~[fail(Q,C) e(Sc))
8 ~likelyfe, Scjj), Sc))

Thus R's full response is, *You can't drop 577. If e occurs, you will not fail 577, but e is unlikely.®

3.5.2. Likely event
If the event e is likely (cf. [14]), it does not seem necessary to state it, but it is certainly safe to do so. A

formula representing this case follows.

[14] RB({3¢){admissible{ chk &
holds(-fail{Q,C),e(Sc)) & likely(e,Sc)])

R’s beliefs about Q's expectations are the same as the previous case except that likely(e, Sc) replaces
-likely(e, Sc). Thus R's full response may be *You can't drop 577. However, e is likely to occur, in which
case you will not fail 577.*

3.5.3. Event followed by action

If event e Lrings about a state in which the enabling conditions of an effective action a are true, cf. [15]

{15) RB{(3e){3a){admissible{e{Sc)) & admissible(a(e{Sc))) &
holds{~fail(Q,C), a{c{Sc)))])

|16) RBQB(fiB((3e)(Ia)|want{Q,-12il{Q,C)) £ admissible(e(Sc))
& admissible{a({Sc))) & holds(~fail{Q,C),a{e{Sc)))])
= likely(inform-that(R,Q,
(3e)3a) [holds(~jai!(Q,C),afe(Sc)))) &
admigaiblefa{c(Sc)j])).Sc))

then the same priaciples about informing Q of the likelihood or unlikelihood of ¢ apply as they did befure.
In additior, R must inform Q of a, cf. [16]. Thus R's full response would be *You can't drop 577. If ¢

were to occur, which is (un}ikely, you could ¢ and thus not fail 577.%

4. Reasoning
Our intent in using logic has been to have a precise representation language whose syntax informs R’s
reasoning about Q's heliefs. Having computed a full response that conforms to all these expectations, R

may go on to 'trim’ it according to principles of brevity that we do not discuss here.

Our proposal is that the informing behavior is *pre-compiled®. That is, R does not reason explicitly
about Q’'s expectations, but rather has compiled the conditions into a case anzlysis similar to a

discrimination net. For instance, we can represent informally several of the cases in section 3.

If admizssible(drop(Q,CAS¢c))
then If ~holds(~fail(Q,C),drop(Q,CAS¢))

then begin nonproductive act
if (3b){admissibie(8{Sc)) & bolds(~f=il(Q,C),&Sc))}
then a way

else no way
end
else 17 (3b)|admissible(d{Sc)) &

-

187

holds{~(2il(Q,C).%Sc)) & better(s,1)]
then a better wa
else If (3 b)ladmissible(F@%)) & holds(~fail(Q,C), b(Sc))]
then a way
else no way

Note that we are assuming that R assumes ilke most demanding expectztions by Q. Therefore, R can

reason solely within its own space without missing things.

5. Conclusion
Since the behavior of expert systems will be interpreted in terms of the behavior users expect of

cooperative human experts, we (as system designers) must understand such behavior patterns so as to
implement them in our systems. If such systems are to be truly cooperative, it is not sufficient for them to
be simply truthful. Additionally, they must be able to predict limited classes of false inferences that ucers
might draw from dialogue with them and also to respond in a way to prevent those false infercaces. The
current enterprise is a small but non-trivial step in this direction. In addition to questions about achieving
goals, we are investigating other cases where a cooperative expert should prevent false inferences by

another agent, including preventing inappropriate default reasoning |6, JWW84nonmon].

Future work should include

e identification of additional cases where an expert must prevent false inferences by another
agent, ’

s formal statement of a general principle for constaining the search for possible false inferences,
and

¢ design of a natural language planning component to carry out the informing acts assumed in
this paper.
ACKNOWLEDGEMENTS

We would like to thank Martha Pollack, Deborah Dahl, Julia Hirschberg, Kathy McCoy and the AAAI

program committee reviewers for their comments on this paper.

188

References

1. Allen, J. Recogpizing Inteations from Natural Language Utterances. In Computational Models of
Discourse, M. Brady, Ed., MIT Press, Cambridge MA, 1982.

2. Birabaum, L., Flowers, M. & McQuire, R. Towards an AI Model of Argumentation. Proceedings of
1980 Conference, American Assoc. for Artificial Intelligence, Stanford CA, August, 1980.

3. Cohen, R. A Theory of Discourse Coherence for Argument Understanding. Proceedings of the 1984
Conference, Canadian Society for Computational Studies of Intelligence, University of Western Ontario,
London Ontario, May, 1984, pp. 6-10.

4. Hirschberg, J. Scalar Implicature and Indirect Responses in Question-Answering. Proc. CSCSI-84,
London, Ontario, May, 1984.

S. Joshi, AK. M- .l Beliefs in Question Answering Systems. In Mutual Belief, N. Smith, Ed.,
Academic Pre ~.w York, 1982.

6. Joshi, A Webber, B. & Weischedel, R. Preventing False Inferences. Proceedings of COLING-84,
Stanford CA, July, 1984.

7. Kowalski, Robert. Logic for Problem Solving. North Holland, New York, 1979.

8. !chnert, W. A Computational Theory of Human Question Answering. In Elements of Discourse
Unee standing, A. Joshi, B. Webber & 1. Sag, Ed., Cambridge University Press, 1981.

4. McCarthy, John. *Circumscription — A Form of Non-Monotonic Reasoning®. Artificial Intelligence
;5 (1980), 27-39.

10. Pollack, Martha E. Goal laference in Expert Systesm. MS-CIS-84-07, Universiiy of Pennsylvania,
1984. Doctoral dissertaion proposal..

11. Pollack, M. Good Answers to Bad Questions. Proc. Canadian Society for Computational Studies of
Intelligence (CSCSI), Univ. of Western Ontario, Waterloo, Canada, May, 1984,

12. Ramshaw, Lance and Ralph M. Weischedel. Problem Localization Strategies for Pragmatics
Processing in Natural Language Front Ends. Proceedings of COLING-84, July, 1984.

13. Reiter, R. Closed World Databases. In Logic and Databases, H. Gallaire & J. Minker, Ed., Plenum
Press, 1978, pp. 149-177.

14. Sacerdoti, Earl D.. A Structure for Plans and Behavior. American Elsevier, New York, 1977.

16. Warren, D.H.D. WARPLAN: A System for Generating Plans. Proceedings of [JCAI-75, August,
1975.

189

s e ———————— — —

———— e = = = a

THE ROLE OF PERSPECTIVE
IN RESPONDING TO PROPERTY
MISCONCEPTIONS

" MS-CIS-85-31
May 1985

Kathleen F. McCoy
Department of Computer & Information Science
University of Pennsylvania
Philadelphia, PA 19104

This work is partially supported by the ARO grant DAA20-84-K-0061 and by the NSF
grant #MCS81-07290.

This paper appears in The Proceedings of 1JCAI-85, August 18-23, 1985, University of
California, Los Angeles, Ca.

190

Abstract

In order to adequately respond to misconceptions involving an object's properties,
we must have a context-sensitive method for determining object similarity. Such a
method is introduced here. Some of the necessary contextual information is captured by
? a new notion of object perspective. It is shown how object perspective can be used to

account for different responses to a given misconception in different contexts.

191

.

ST S

1. Introduction

As a user interacts with a database or an expert system, s/he may attribute a
property or property value to an object that that object does not have. For instance,
imagine the following query to a database.

U. Give me the HULL-NO of all DESTROYERS whose MAST-HEIGHT is above
190.

If a system were to evaluate such a query, it might find that there are no such ships in
the database. The reason for this is that the user has queried a value of the property
MAST-HEIGHT that it cannot have for the object DESTROYER. I term this error a
property misconception. Upon encountering such a query, even a very cooperative

system could only respond:

S. There are no DESTROYERS in the database with a MAST-HEIGHT above
190. Would you like to try again?

In most cases, however, this is not the way a human would respond. A study of
human/human transcripts reveals that a human conversational partner often tries to get
at the cause of the misconception and offer additional information to correct the wrong
information. The additional information often takes the form of a correct query that is a
possible alternative to the user’s query. In this paper I describe some of the knowledge
and reasoning that are necessary for a natural language interface to a database or expert

system to mimic this human behavior.

In the above query, since there is an object similar to a DESTROYER that has the
value of HULL-NO given, the user's misconception may result from his/her confusing the

two objects. Hence a reasonable response would be:

S. All DESTROYERS in the database have a MAST-HEIGHT between 85 and
90. Were you thinking of an AIRCRAFT-CARRIER?

Notice the strategy used to correct the misconception is to (1) deny (implicitly) the
property/value given, (2) give the corresponding correct information, (3) suggest an
alternative query containing the object the user may have confused with the
misconception object.

In other situations, a reasonable alternative query might involve the same object
the user asked about, with a different property/value pair. This is the case in the

following query.

U. Give me the HULL-NO of all DESTROYERS whose MAST-HEIGHT is above
3500.

192

S. All DESTROYERS in the database have a MAST-HEIGHT between 85 and
90. Were you thinking of the DISPLACEMENT?

This response is similar to the one given above except that the alternative query suggests

an attribute rather than an object which may have been confused.

In general, there can be two major reasons why a wrong attribution may occur.
Either (1) the user has the wrong object — that is, s/he has confused the object being
discussed with a similar object or has reasoned (falsely) by analogy from a similar object;
or (2) the user has the wrong attribute — that is, s/he has confused the attribute being
discussed with a similar attribute. If one of these two can be seen as likely in a given
situation, then a revised query can be suggested which mentions the similar object or the

similar attribute.

To propose alternative queries, a system must have a method for determining
similarity of objects and attributes. In this paper I will focus on responses involving
object confusion; thus I will examine a similarity metric for objects. In the next section
such a similarity metric is introduced. The following section introduces a new notion of
object perspective which is needed to provide the similarity metric with some necessary
contextual information, in particular, attribute salience ratings. Finally, an example of
how perspective information and the similarity metric can be used to give reasonable

responses to misconceptions involving object properties is given.

2. Object Similarity

As was shown above, in order to respond effectively to property misconceptions, we
must have a method for determining object similarity. Object similarity has previously
been shown to be important in tasks such as organizing explanations [6], offering
cooperative responses to pragmatically ill-formed queries [2], and identifying metaphors
[9]. In the above systems the similarity of two objects is based on the distance between
the objects in the generalization hierarchy. One problem with this approach is that it is
contezt invariant.’ That is, there is no way for contextual information to affect

similarity judgments.

However, Tversky [8] proposes a measure of object similarity based on common
and disjoint features/properties of the objects involved, which enables contextual

*See [5] for additional problems and discussion of this point.
193

. e o rem . -

- -y e——

information to be taken into account. Tversky’s similarity rating for two objects a and
b, where A is the set of properties associated with object a and B is the set of properties

associated with object b, can be expressed as:
s(a,b) =of(ANB) - af(A-DB) - g£(B - A)

for some 4, a, #)= 0. This equation actually defines a family of similarity scales where
4, a, and g are parameters which alter the importance of each piece of the equation, and
f maps over the features and yields a salience rating for each. The equation states that
the similarity of two objects is some function of their common features minus some
function of their disjoint features. The importance of each feature involved (determined
by the function f) and the importance of each piece of the equation (determined by ¢, a,
and $) may change with context.

Previous work [4, 7] has discussed the effect of *focus® on the prominence of
objects. Focusing algorithms can be adapted to set the values of 4, «, and 5. For
instance, if object a is ®*in focus® and object b is not, then the features of a should be
weighted more heavily than the features of b. Thus we should choose « > 4 so that the
similarity is reduced more by features of a that are not shared by b than vice versa.

The problem then is to determine f. Other work (3, 9] has hand encoded salience
values for the attributes of individual objects in the knowledge base, effectively setting
the f function once and for all. This approach, however, is not sufficient since salience
values must change with context. The following examples in which two objects
(Treasury Bills and Money Market Certificates) are compared in two different

circumstances, illustrate the importance of context on the similarity rating.

Consider someone calling an expert financial advisor to see if she can better invest
her money. She begins by telling the expert where her money is:

U. We have $40,000 in money market certificates. One is coming due next week
for $10,000... I was wondering if you think this is a good savings...

E. Well, I'd like to see you hold that $10,000 coming due in a money market
fund and then get into a longer term money market certificate.

U. Hm... well I was just wondering, what about a treasury bill instead?
E. That’s not a bad idea but it doesn't replace your money market certificate in

any way — it's an exact duplicate. They're almost identical types of
instruments - so one, as far as I'm concerned, is about the same as another.

Now consider how the same two objects can be seen quite differently when viewed
194

in a different way. Imagine the following conversation:

U. I am interested in buying some US Government Securities. Now I was
thinking of Money Market Certificates since they are the same as Treasure
Bills.

E. But they're not - they are two very different things. A Treasury Bill is
backed by the U.S. Government: you have to get it from the federal reserve.
A Money Market Certificate, on the other hand, is backed by the individual
bank that issues it. So, one is a Government Security while the other is not.

In the first example the objects are viewed as savings instruments. This view
highlights attributes such as interest-rates and maturity-dates that are common to
Treasury Bills and Money Market Certificates. This highlighting causes the two
instruments to be seen as *identical®. In contrast, the second example views the objects
as instruments issued by a particular company or organization. In this case attributes
such as issuing-company and purchase-place are highlighted. Since these highlighted
attributes are different for the two objects, the objects are seen as being quite different.

As the examples illustrate, a context-free metric of similarity is not sufficient;
contextual information is needed. A notion of object perspective, introduced below, can
capture the needed contextual information. In particular, perspective accounts for how
the f function (the assignment of salience values to various attributes) changes with
context.

3. Perspective

[4, 1] note that the same object may be viewed from different perspectives. For
instance a particular building may be viewed as an architectural work, a home, a thing
made with bricks, etc. According to this work, an object viewed from a particular
perspective is seen as having one particular superordinate, although in fact it may have
many superordinates. The object inherits properties only from the superordinate in
perspective. Therefore different perspectives on the same object cause different
properties to be highlighted.

Although this notion of perspective is intuitively appealing, in practice its use is
rather difficult since it hinges on the use of a limited inheritance mechanism. The
problem is that attributes may be inherited from the top of the generalization hierarchy,
not just from immediate superordinates. So, an object's perspective involves not just one
superordinate but a chain of superordinates. Therefore one must not only determine

what perspective a particular object is being viewed from, but also what perspective its
195

superordinate is viewed from, and so on. As one continues up the hierarchy in this
fashion, the definition of perspective as viewing an object as a member of a particular

superordinate becomes less and less appealing.

In addition, this notion of object perspective says nothing about the density of the
generalization hierarchy. That is, in some situations the immediate superordinate of an
object (and the properties it contributes) may be ignored. For example, even though a
whale is a cetacean (a class of aquatic mammals including whales and porpoises), this
classification (and all attributes contributed by the classification) may be ignored in some
situations in which the important attributes instead are inherited from a superordinate of
cetacean, say, mammal. In other situations, the class "cetacean® may be central. The
notion of object perspective outlined above has no way of determining whether or not

certain superordinates should be ignored or included.

Here [introduce a new notion of perspective which is able to handle both the
assignment of differing salience values and the density problem. In this notion,
perspectives sit orthogonal to the generalization hierarchy. Each comprises a set of
properties and their salience values. A number of perspectives must be defined a priors
for the objects in a particular domain. The specification of perspectives, just like the
specification of an object taxonomy, must be done by a domain expert. Knowledge of

useful perspectives in a domain then, is part of the domain expertise.

With this new notion of perspective, when an object is viewed through a particular
perspective, the perspective essentially acts as a filter on the properties which that object
inherits from its superordinates. That is, properties are inherited with the salience
values given by the perspective. Thus properties of the object which are given a high
salience rating by the perspective will be highlighted, while those which are given a low
salience value or do not appear in the perspective will be suppressed. The density
rroblem is handled by ignoring those superordinate concepts which contribute only
-uusibutes suppressed by the current perspective.

4. Using Perspective to Determine Responses

Perspective information can be used with Tversky's similarity metric to help
determine alternative queries to a query containing a misconception. To see how this
works, consider a domain containing the following three objects with the attributes

shown:
196

Money Market Certificates
Maturity: 3 months
Denominations: $1,000
Issuer: Commercial Bank
Penalty for Early Withdrawal: 10%
Purchase Place: Commercial Bank
Safety: Medium

Treasury Bills
Maturity: 3 months

Denominations: $1,000

Issuer: US Government
Purchase Place: Federal Reserve
Safety: High

Treasury Bond
Maturity: 7 years
Denominations: $500
Issuer: US Government
Penalty for Early Withdrawal: 20%
Purchase Place: Federal Reserve
Safety: High

and the following perspectives:

Savings Instruments
Maturity - high
Denominations -- high
Safety — medium

Issuing Company
Issuer - high
Safety -- high
Purchase Place - medium

Notice that the perspective of Savings Instruments highlights Maturity and
Denominations, and somewhat highlights Safety. This indicates that when people are
discussing securities as savings instruments, they are most interested in how long their
money will be tied up and in what denominations they can save their money. The
perspective of Issuing Company, on the other hand, highlights different attributes.
When securities are discussed from this perspective, things like who the issuer of the

security is and how safe a security issued from that company is, become important.

Suppose the perspective is Savings Instruments and the user says:

197

- el ———eesdethenmi e R

U. What is the penalty for early withdrawal on a Treasury Bill?

This query indicates that the user has a misconception since s/he has attributed a
property to Treasury Bills that they do not have. One reasonable correction to the
query would contain an alternative query which to replaces Treasury Bills with another
object that has the property specified and is similar to Treasury Bills. The system may
reason that both Money Market Certificates and Treasury Bonds have the penalty
specified, and so check to see if either of these objects is similar to Treasury Bills.
Notice that the Savings Instruments perspective highlights attributes common to
Treasury Bills and Money Market Certificates (they have the same Maturity and
Denominations), as well as attributes disjoint to Treasury Bills and Treasury Bonds (they
have different Maturity and Denominations). Using these salience values, the similarity
metric will find that Money Market Certificates are very similar to Treasury Bills while
Treasury Bonds are very different. Thus Money Market Certificates will be deemed a

probable object of confusion and the following correction may be offered:

S. Treasury Bills do not have a penalty for early withdrawal. Were you thinking
of a Money Market Certificate?

Notice that if the perspective had instead been Issuing Company, which highlights
attributes common to Treasury Bills and Treasury Bonds and disjoint to Treasury Bills
and Money Market Certificates, the most reasonable response would be:

S. Treasury Bills do not have a penalty for early withdrawal. Were you thinking
of a Treasury Bond?

Selecting the appropriate perspective is in itself a difficult question which is
currently under investigation and will be reported in [5]. Certainly important in the
selection procedure will be the attributes that have entered into the conversation so far:
these attributes should be of fairly high salience in the selected perspective. Other clues
to the selection process include the objects under discussion, the superordinates which
contribute the attributes under discussion to these objects, and the current goals of the

user.

5. Conclusion

In this paper we have seen that a context-dependent similarity metric is needed in
order to respond adequately to misconceptions involving the properties of an object.
Such a metric has been suggested and a notion of perspective has been introduced to
account for some of the contextual information required by the metric. These notions

have been shown to account for differences in the way a particular misconception is best
198

corrected in two different circumstances.

6. Acknowledgements
I would like to thank Julia Hirschberg, Aravind Joshi, Martha Pollack, Ethel
Schuster, and Bonnie Webber for their many comments and discussions concerning the

direction of this research and the content and style of this paper.

7. References

[1) Bobrow, D. G. and Winograd, T. ®*An Overview of KRL, a Knowledge
Representation Language.® Cognitive Science 1, 1 (January 1977), 3-46.

[2] Carberry, Sandra M. Understanding Pragmatically Ill-Formed Input. 10th
International Conference on Computational Linguistics & 22nd Annual Meeting of the
Association of Computational Linguistics, Coling84, Stanford University, Ca., July, 1984,
pp. 200-206.

[3] Carbonnell, Jaime R. & Collins, Allan M. Mixed-Initiative Systems For Training and
Decision-Aid Applications. Tech. Rept. ESD-TR-70-373, Electronics Systems Division,
Laurence G. Hanscom Field, US Air Force, Bedford, Ma., November, 1970.

[4] Grosz, B. Focusing and Description in Natural Language Dialogues. In Elements of
Discourse Understanding, A. Joshi, B. Webber & I. Sag, Ed.,Cambridge University
Press, Cambridge, England, 1981, pp. 85-105.

[5] McCoy, K.F. Correcting Object-Related Misconceptions. 1985. Forthcoming
University of Pennsylvania doctoral thesis

[6] McKeown, K. . Generating Natural Language Text in Response to Questions
About Database Structure. Ph.D. Th., University of Pennsylvania, May 1982.

[7] Sidoer, C. L. Focusing in the Comprehension of Definite Anaphora. In
Compulational Models of Discourse, Michael Brady and Robert Berwick, Ed. MIT
Press, Cambridge, Ma, 1983, pp. 267-330.

[8] Tversky, A. ®Features of Similarity.* Psychological Review 84 (1977), 327-352.

[9] Weiner, E. Judith. *A Knowledge Representation Approach to Understanding
Metaphors.®* Computational Lingusstics 19, 1 (January - March 1984), 1-14.

199

Adapting MUMBLE:

Experience with Natural Language Generation

Robert Rubinoff
Computer and Information Science Department
Moore School of Electrical Engineering
University of Pennsylvania
Philadelphia, PA 19104
April 24, 1986

Abstract

This paper describes the construction of a MUMBLE-based [McDonald 83b] tactical
component for the TEXT text generation system [McKeown 85]|. This new component,
which produces fluent English sentences from the sequence of structured message units
output from TEXT’s strategic component, has produced a 60-fold speed-up in sentence
production. Adapting MUMBLE required work on each of the three parts of the MUM-
BLE framework: the interpreter, the grammar, and the dictionary. It also provided
some insight into the organization of he generation process and the cansequences of
MUMBLE’s commitment to a deterministic model.

Track: Engineering
Topic: Natural Language Generation

200

1 TEXT’s Message Vocabulary

The TEXT system [McKeown 85] is designed to answer questions about the structure of
a database. It is organized into two relatively independent components: a strategic com-
ponent which selects and organizes the relevant information into a discourse structure,
and a tactical component which produces actual English sentences from the strategic com-
ponent’s output. The original tactical component [Bossie 81| used a functional grammar
[Kay 79); it is this component that has been replaced.!

A tactical component for TEXT must be tailored to the form in which TEXT’s strategic
component organizes information. The strategic component responds to a query with a
list of rhetorical propositions. A rhetorical proposition indicates some information about
the database and the rhetorical function the information TEXT intends it to perform. For
example, the rhetorical proposition:

(identification GUIDED PRCJECTILE
(restrictive (TRAVEL-MEANS SELF-PROPELLED))
(non-restrictive (ROLE PROJECTED-~OBJECT)))

indicates that TEXT wants to identify guided missiles by saying that they are projectiles
and that they have certain attributes. This same information might be presented with
a different rhetorical function such as attributive, i.e. attributing certain information to
guided missiles rather than using it to identify them.

The information in the propositions generally consists of objects and attributes from
TEXT’s database model, indicating attributes of the mentioned objects and sub-type rela-
tionships between the objects. Some of the rhetorical functions allow other sorts of infor-
mation. Inference propositions, for example, can indicate comparisons between database
values:

(inference OCEAN-ESCORT CRUISER
(HULL_KO (1 2 DE) (1 2 CA))
(smaller DISPLACEMENT)
(smaller LENGTH)
(PROPULSION STMTURGRD STMTURGRD))

Here TEXT ‘infers that ocean escorts have smaller length and displacement than cruisers,
that the two kinds of ships have the same form of propulsion and that their hull numbers
differ in their first two letters.

The strategic component also produces focus information for each proposition to insure
that the individual sentences will form a coherent paragraph when combined. Following
Sidner’s model [Sidner 83], TEXT indicates a discourse focus and potential focus list for
each proposition. The tactical component uses this information to decide when to pronom-
inalize and what sentence-level syntactic structure to use. '

1No attempt was made to investigate changing the overall division into strategic and tactical components.
In part this was because the task of adapting the MUMBLE system to work with an independently developed
text planner seemed like an interesting experiment in itself. Also, TEXT’s strategic component was in the
process of being ported from a VAX to a Symbolics 3600, and was thus already in a state of flux.

201

2 Adapting MUMBLE to TEXT

MUMBLE is a general-purpose generation framework which has been used with several do-
mains and message representations|McDonald 83b,Karlin 85].z MUMBLE-based systems
are constructed out of three components: the interpreter, the grammar, and the dictionary.
The interpreter controls the overall generation process, co-ordinating the propagation and
enforcement of constraints and the (incremental) translation of the message.® The gram-
mar enforces grammatical constraints and maintains local grammatical information. The
dictionary indicates, for each term in the vocabulary of the message formalism, the various
ways it can be expressed in English. In adapting MUMBLE to this new domain, each of
these three components had to be modified to a different degree.

2.1 The Interpreter

The interpreter is a domain-independent embodiment of MUMBLE’s approach to gener-
ation [McDonald 83a]. The translation process is guided by a depth-first traversal of the
surface structure tree. Each position in the tree has one or more labels, which may indicate
procedures to be run when the traversal enters or leaves that position. The leaves of the
tree will either be words, which are printed out after morphological processing, or pieces
of the original message. In the latter case, the interpreter looks up the message in the
dictionary to find a realization for the message that satisfies the local constraints. The
result is a new piece of surface structure tree which is spliced into the tree, possibly with
part(s) of the original message as new leaves. In this way, the entire message is gradually
translated and printed out.

Because the interpreter actually does some additional work beyond guiding the genera-
tion process, some modification to it was required. In particular, the routine that handles
word morphology needed changes to the way it determined noun phrase plurality. A noun
phrase was considered to be plural if it was derived from a message element that repre-
sented more than one object. This was adequate when the domain contained only specific
objects, as has been the case in past uses of MUMBLE. In TEXT, however, many terms
represent generic concepts, e.g. SHIP, which represents the concept of a ship rather than
any particular ship. Generic concepts can be expressed using either singular or plural, for
example “A ship is a water-going vehicle” vs. “Ships are water-going vehicles”. Thus the
morphology routine had to be modified to look at the surface structure tree to see how the
term had actually been realized. (The grammar and dictionary also had to be modified to
always explicitly mark plural noun phrases in the tree). This was the only modification
necesary to the interpreter.

However, not all of the interpreter was used. In addition to the traversal and incremen-
tal expansion of the surface structure tree, MUMBLE provides a mechanism for subsequent
messages to be combined with the original message as it is translated. This is done via

2The version of MUMBLE used with TEXT dates from March 1985 and was originally set up to translate
the output of the GENARO scene description system|McDonald 83aj.

3 A “message” is simply an expression that the text planner (here TEXT’s strategic component) sends to
MUMBLE to be translated. This is the same as a “realization specification” in {[McDonald 83a].

202

“attachment points” [McDonald 85| that are marked in the tree; a new message from the
planner can be added at an attachment point if there is a way to realize it that satisfies the
attachment point’s grammatical constraints. For example, in translating messages from
GENARO, MUMBLE puts an ATTACH-AS-ADJECTIVE attachment point before the head
noun in noun phrases. This allows MUMBLE to combine the messages such as (introduce
house_1) and (red house_1) and generate the single sentence “This is a picture of a red
house” instead of “This is a picture of a house. It is red.”

This attachment mechanism is not used with the TEXT output.® Originally this deci-
sion was made because TEXT’s strategic component organizes its messages into sentence-
size packets (the propositions), and there seemed little reason to split these up and then
have MUMBLE recombine them.

It turned out, though, that there was one case where attachment points would have
been useful. The attribute-value pair (TARGET-LOCATION X) (where X is the type of target
location, e.g. SURFACE or WATER) can be translated as either “a target location <X as a
prep. phrase>” or “a <X as an adjective> target location”. The latter form is preferred,
but can only be used if X can be realized as an adjective. Thus MUMBLE can produce
“a surface target location”, but must resort to “a target location in the water”. The
problem is that since the interpreter traverses the tree in depth-first order, MUMBLE
must decide which form to use for (TARGET-LOCATION X) before determining whether X
has a realization as an adjective. This is the one case where it was necessary to circumvent
MUMBLE'’s control strategy. Attachment points could have solved this problem; the value
X could have been a separate message which would have been attached ahead of “target
location” only if it had a possible realization as an adjective.

Unfortunately, there was a problem that prevented the use of attachment points. At-
tachment can be constrained so that the result will be grammatical and so that the attached
message will be together with the proper objects. For example, (red house_1) will only
be attached as an adjective in a noun phrase describing house_1. But there was no prin-
cipled way to force several messages to be combined into a single phrase. To see why this
is a problem, consider a simple rhetorical proposition:

(identification SHIP WATER-VEHICLE (restrictive (TRAVEL-MODE SURFACE)))

(“restrictive” indicates that this attribute distinguishes SHIP from other kinds of WATER-
VEHICLE.) This is intended to produce something like “a ship is a water-going vehicle
that travels on the surface”. There are really two pieces of information here: that ships
are water-going vehicles, and the ships travel on the surface. If we separate these out,
the first would become (identification SHIP WATER-VEHICLE), and the second would
become something like (attributive SHIP (TRAVEL-MODLE SURFACE)). The problem is
that there is no way to force MUMBLE to combine these back to get something like the
original sentence. Instead, MUMBLE might translate these as “A ship is a water-going
vehicle. Ships travel on the surface.” The precise characterization of ships has been diluted.
Even worse, if the next proposition is about ships, the travel-mode information may be

4Actually, attachment points are used to attach each proposition as a new sentence. This is simply a
convenience to allow MUMBLE to be invoked once on a list of propositions; the results are exactly as they
would be if MUMBLE were invoked individually on each proposition.

203

combined with it instead, completely destroying the rhetorical structure intended by the
strategic component.

Of course, there is no immediately apparent advantage to splitting up identification
propositions (although it does suggest the possibility of letting more of the structural
decisions be made by MUMBLE). But the same problems arise in trying to solve the
problem with (TARGET-LOCATION X) discussed above. Attachment would allow the sys-
tem to choose correctly between “a surface target location” and “a target location on the
surface”. But then instead of “The missile has a surface target location. Its target loca-
tion is indicated by the DB attribute DESCRIPTION”, MUMBLE might produce “The
missile has a target location. Its surface target location is indicated by the DB attribute
DESCRIPTION.”

What is needed is a way to constrain the attachment process to build several messages
into a single phrase. In fact, this capacity has been added to MUMBLE, although it is not
present in the version used with TEXT [McDonald, personal communication]. It is possi-
ble to create “bundles” of messages that can have additional constraints on their overall
realization while allowing the individual messages to be reorganized by the attachment
process. This facility would make it feasible to use attachment with TEXT.

2.2 The Grammar

A MUMBLE grammar is not simply a declarative specification of valid surface structure
like the rules in a context-free grammar. Rather, it consists of procedures that enforce
(local) constraints and update info about current grammatical environment. The grammar
provides the low-level control on realization as the interpreter traverses the tree. Grammar
in the more conventional sense is a by-product of this process.

The grammar operates via “constituent-structure labels”. These labels are placed on
positions in the surface structure tree to identify their grammatical function. Some, such
as adjective and np, are purely syntactic. Others, such as compound and name, have
more of a semantic flavor (as used with TEXT). Labels constrain the generation process
through an associated “grammatical constraint”. This is a LISP predicate that must be
satisfied by a proposed realization. Whenever the interpreter tries to translate a message,
it checks that the constraints associated with all the labels at the current tree position
are satisfied. These constraints can depend on both the proposed realization and the
current environment. The labels also provide for local operations such as propagation of
constraints through the tree and production of purely grammatical words such as the “to”
in infinitival complements and the “that” in relative clauses. As with the constraints, this
is done by associating procedures with labels. Each label has several “grammar routines”
to be run at various times (such as when the interpreter enters or leaves a node, or after a
message is realized). For example, the rel-clause label prints “that” when the interpeter
enters a node it labels.

The labels handle local aspects of the grammar; global aspects are managed via “gram-
mar variables”. These keep track of global information (i.e. information needed at more
than one tree position). For example, there are grammar variables that record the current

204

subject and the current discourse focus. These “variables” are actually stacks so that em-
bedded phrases can be handled properly. The grammar variables are maintained by the
grammar routines associated with the labels. The clause label, for example, updates the
current subject whenever the interpreter enters or leaves a clause. The grammar variables
enable information to be passed from one part of the tree to another.

Adapting MUMBLE to TEXT required considerable modification and extension to
the grammar. A number of new syntactic structures had to be added. Some, such as
appositives, simply required adding a new label. Others were more complex; relative
clauses, for example, required a procedure to properly update the current subject grammar
variable (if the relative pronoun is serving as the subject of the relative clause) as well as
a procedure to produce the initial “that”. Also, some of the existing grammar had to
be modified. Post-nominal modifiers, for example, previously were always introduced via
attachment and realized as prepositional phrases. When working from TEXT, they are
introduced as part of the original noun phrase, and they can sometimes be realized as
relative clauses, so the constraints had to be completely redesigned.

The grammar was also augmented to handle some constraints that were more semantic
than syntactic. These were included in the grammar because it is the only mechanism by
which decisions made at one place in the tree can affect subsequent decisions elsewhere. In
fact, there is really nothing inherently grammatical about the “grammar™; it is a general
mechanism for enforcement of local constraints and propagation of information through the
tree. It serves well as a mechanism for enforcing grammatical constraints, of course, but it is
also useful for other purposes. For example, the grammar variable current-entity-type
keeps track of whether the current clause is dealing with specific or generic concepts.

2.3 The Dictionary

The dictionary stores the various possible ways each kind of message can be realized in
English. Dictionary entries provide the pieces of surface structure that are organized by
the interpreter and constrained by the grammar. The dictionary has two parts: a look-up
function and a set of “realization classes™ (or “rclasses”). The look-up function determines
which rclass to use for a message and how to construct its arguments (which are usually
either sub-parts of the message or particular words to use in the English realization of the
message). An rclass is a list of possible surface structures, generally parameterized by one
or more arguments.

The look-up function is intended to be domain-dependent. However, the look-up func-
tion that was developed for GENARO, which has a fairly simple keyword strategy, seemed
adequate for TEXT as well. The keyword is the first element of the message if the message
is a list; otherwise it is the message itself. The function then simply looks up the keyword
n a table of terms and rclasses. Using an existing function was convenient, but it did
cause a few problems because it required that keywords be added to TEXT’s formalism in
a few cases. For exawn.ple, numbers had to be changed to (number #) so they would have
a keyword. Some straightforward modifications to the look-up function, however, would
allow MUMBLE to generate from the original TEXT formalism.

205

The realization classes vary greatly in their generality. Some of them are very general.
The rclass SV0, for example, produces simple transitive clauses; the subject, verb, and
object are arguments to the rclass. At the other extreme, the rclass TRAVEL-MEANS-CLASS
is only useful for a particular attribute as used by TEXT; even if another system had an
attribute called TRAVEL-MEANS, it is unlikely to mean exactly the same thing.

Intuitively, it might seem that there would be a number of general realization classes
like SV0. In fact, though, SVO was the only pre-existing rclass used in that was used for
TEXT. None of the other rclasses proved useful.

One source of this lack of generality is that concepts that seem similar are often ex-
pressed quite differently in natural language. For example, of the eight generic attributes
(e.g. TRAVEL-MEDIUM, TRAVEL-MEANS, and TARGET-LOCATION) in the dictionary, three re-
quire special rclasses because the general translation won’t work for them. Inside TEXT’s
domain model, TRAVEL-MEDIUM and TRAVEL-MEANS are considered similar sorts of concepts.
But in English, the two concepts are expressed differently. TEXT’s notion of generic at-
tribute simply doesn’t correspond to any natural linguistic category.

Furthermore, different message formalisms will tend to capture different generaliza-
tions. GENARO can use a CONDENSE-ON-PROPERTY rclass|McDonald 83a] because it has
a particular notion of what a property is and how it gets translated into English. TEXT
doesn’t have anything that exactly corresponds to GENARO’s properties (and even if it
did, it couldn’t condense things because the properties would be buried inside the rhetorical
propositions).

The crux of the matter is that while there are linguistic generalizations that might be
captured in realization classes, they usually cut across the grain of the classes of expres-
sions in a message formalism, and cut differently for different formalisms. Thus whatever
generalizations can be encoded into the rclasses for one formalism are unlikely to be useful
with a different formalism.

For example, TEXT can produce attribute expressions of the form:

(HULL_NO (1 2 DE))

which means, roughly, “characters 1 through 2 of the HULL_NO are DE”. This is a very
idiosyncratic sort of message; it is unlikely that another (independently developed) text
planner would have a message form with even the same meaning, let alone the same syntax.
Thus the dictionary entry for this message is unlikely to be of use with any system other
than TEXT. Many of TEXT’s messages were similarly idiosyncratic, because its message
formalism was designed around the needs of its particular task. Similarly, other generation
systems will have their own idiosyncratic message formalism. Thus they will need their
own highly specific dictionaries to work with MUMBLE.

3 Using MUMBLE to produce text

206

3.1 Examples from TEXT

The new MUMBLE-based tactical component has been very successful. It can process all
of the examples in the appendix to [McKeown 85| and produce comparable English text.
Furthermore, it can process all 57 sentences in the appendix in about 5 minutes; the old
tactical component took that long to produce a single sentence.

For example, TEXT’s strategic component responds to a request to describe the ONR
database with:

(attributive db OBJECT (name REMARKS))
(constituency OBJECT (VEHICLE DESTRUCTIVE-DEVICE))
(attributive db VEHICLE
(based-dbs (SOME-TYPE-OF TRAVEL_MEANS)
(SOME-TYPE-OF SPEED_INDICES)))
(attributive db DESTRUCTIVE-DEVICE
(based-dbs (SOME-TYPE-OF LETHAL_INDICES)))

which is then translated into English by MUMBLE as:

All entities in the ONR database have DB attributes REMARKS. There are 2 types
of entities in the ONR database: vehicles and destructive devices. The vehicle has DB
attributes that provide information on SPEED_INDICES and TRAVEL_MEANS. The
destructive device has DB attributes that provide information on LETHAL_INDICES.

This translation is guided and controlled by the various sub-components that make
up the MUMBLE tactical component, as can be seen in a more detailed example. The
message:

(identification SHIP WATER-VEHICLE (restrictive TRAVEL-MODE SURFACE))
when received by MUMBLE, is first looked up in the dictionary, which indicates that the

overall structure of the sentence will be:

[subject] [predicate]

NN
/

[verb] {obil]

b (VATER-VERICLE (restrictive TRAVEL-NODE SUAFACE))

clause

207

e

— ol

PR

The interpreter then traverses this (partially filled-out) surface structure tree, soon reach-
ing the still untranslated message element SHIP. The first possibility listed for this in the
dictionary is the noun phrase “a ship”; since no constraints rule it out, this choice is se-
lected. The interpreter continues, printing the words “a” and “ship” as it reaches them.
The morphology routine converts “be” to “is” by checking the number of the current sub-
ject and whether any deviation from simple present tense (the default) has been arranged
for. Next the interpreter reaches the object, another message element which is translated
(via dictionary lookup) as

VAR

[det] [head-noun] [post-mods]

a water-going vehicle (TRAVEL-MODE SURFACE)

A” and “water-going vehicle” are simply printed when passed through. The treatment of
(TRAVEL-MODE SURFACE is more complicated. This message element can be translated in
many ways, such as a noun phrase, a bare noun, a verb phrase, and so on. The post-mods
label, however will allow only two possibilities: a prepositional phrase or a relative clause.
Since the dictionary indicates that relative clauses are preferred over prepositional phrases
(for this message) and there are no other constraints blocking it, the relative clause form

is chosen:

[subject] [predicate]

AN

rel-clause

< gap>

[verb] [ppl

|

travel SURFACE

The interpreter continues on through the relative clause in a similar fashion, eventually

208

—;ﬁ*w—-—”

producing “that travels on the surface”. (Note, incidentally, that the word “that” is not
explicitly in the tree; rather it is printed out by an attached routine associated with the
rel-clause label.) The complete translation produced by MUMBLE is:

A ship is a water-going vehicle that travels on the surface.

All three elements of the overall MUMBLE framework have worked together to produce
the fina] English text.

3.2 Mumble and the Generation Process

The fundamental constraint that MUMBLE places on generation is, of course, that it is
deterministic; this is the guiding principle driving its design, and has been discussed at
length elsewhere[McDonald 83b,McDonald 83a]. There are, however, several other inter-
esting constraints that MUMBLE places on the overall design of the generation process:

1. The information used to guide the generation process is centered around
the message formalism, not language.
MUMBLE's knowledge of how language expresses things is stored in the dictionary,
organized around the possible expressions in the message formalism. Thus the “dic-
tionary” does not list meanings of words, but rather possible (partial) phrases that
can express a message. Similarly, the grammar is not set up primarily to express
whether a sentence is grammatical but rather to constrain the choice of realizations
as the sentence is generated. The grammatical constraints depend in part on the mes-
sage being translated and the current grammatical environment (i.e. the grammar
variables), none of which is preserved in the generated English sentence. Thus it may
not be possible to tell whether a given sentence satisfies the grammar’s constraints
(at least without knowing a message it could have been generated from).

This organization is a natural consequence of MUMBLE’s purpose: to generate text.
In language understanding, it is important to know about language, because that
is what the system must be able to decipher. MUMBLE is also set up to know
about its input, but its input is the message formalism, not natural language. What
MUMBLE needs to know is not what a particular word or construction means, but
rather when to generate it.

2. Generation is incremental and top-down.
Large messages are partially translated incrementally, with sub-messages left to be
translated later as the interpreter reaches them. Thus it is easy for large-scale struc-
ture to influence more local decisions, but harder (or impossible) for local structures
to constrain the global structure that contains them. This asymetry is a direct
consequence of determinism; something has to be decided first.

3. Constraints can be associated both with the surface structure being built
up and with possible realizations.
Thus the existing structure can constrain what further structures are built, and

209

— A

4

candidate structures can constrain where they can be placed. This allows some of
the bidirectionality that would seem to be ruled out by determinism. For example;
transitive verbs can insist on only being used with direct objects, and verb phrases
with direct objects can insist on getting transitive verbs. Note though that the
decision to use a transitive verb phrase would still be made first, before the verb was
selected.

. Constraints are largely local, with all global constraints anticipated in

advance.

Most constraints are handled locally by constraint predicates that are attached to the
surface structure tree or to the possible realization. Any global constraints must have
been anticipated and prepared for, either by passing information down to the local
node as the tree is traversed, or by storing the information in globally accessable
grammar variables. Furthermore, all constraints are still locally enforced; global
information can only constrain decisions if there are local constraints that use it.

Conclusion

The new MUMBLE-based tactical component has been very successful; it produces equiv-
alent English text approximately 60 times faster than TEXT’s old tactical component.
Its construction, however, required modifications to each of the three parts of MUMBLE:
the dictionary needed new entries for the new types of messages that TEXT produced;
the grammar needed expansion to handle additional constructions and to implement new
constraints that were needed for TEXT; and the interpreter was modified to handle a new
criterion for noun phrase number. Furthermore, the new component sheds some light on
how MUMBLE organizes the generation process and the consequences of its commitment
to determinstic generation.

References

[Bossie 81| Bossie, Steve. A Tactical Component for Text Generation: Sentence Gen-

eration Ustng a Functional Grammar. Techrical Report MS-CIS-81-5,
CIS Department, University of Pennsylvania, Philadelphia, PA, 1981.

(Karlin 85] Karlin, Robin. Romper Mumbles. Technical Report MS-CIS-85-41, CIS

Department, University of Pennsylvania, Philadelphia, PA, 1985.

[Kay 79| Kay, Martin. Functional Grammar. In Proceedings of the 5th Annual

Meeting of the Berkeley Linguistic Society. 1979.

(McDonald 83a] McDonald, David D. Description Directed Control: Its Implications for

Natural Language Generation. In Brady, N. (editor), Computational Lin-
guistics, pages 111-129. Pergamon Press, 1983.

210

{McDonald 83b] McDonald, David D. Natural Language Generation as a Computational

[McDonald 85|

[McKeown 85]

[Sidner 83]

Problem. In Brady, M. and Berwick, Bob (editors), Computational Mod-
els of Discourse, pages 209-265. MIT Press, 1983.

McDonald, David D. and Pustejovsky, James. TAGs as a Grammatical
Formalism for Generation. In Proceedings of the 28rd Annual Meeting
of the ACL, Association for Computational Linguistics, pages 94-103.
Chicago, 1985.

McKeown, Kathleen R. TEXT GENERATION: Using Discourse Strate-
gies and Focus Constraints to Generate Natural Language. Cambridge
University Press, 1985.

Sidner, C. L. Focusing in the Comprehension of Definite Anaphora. In
Brady, M. and Berwick, Bob (editors), Computational Models of Dis-
course, pages 267-329. MIT Press, 1983.

211

SOME COMPUTATIONAL PROPERTIES
OF TREE ADJOINING GRAMMARS*®

K. Vijay-Shankyr and Aravind K. Joshi

Department of Computer and Information Science
Room 268 Moore School/D2
Univer-it{ of Penusylvania

P

Philade

ABSTRACT

Tree Adjoining Grammar (TAG) s a formalism for natural
language grammars. Some of the basic notions of TAG's were
introduced in [Joshi,Levy, and Takabashi 1975] snd by (Joehi, 1983].
A detailed investigation of the linguistic relevance of TAG's has bees
carried out in [Krock and Joshi,1985). 1o this paper, we will describe
some mew resulta for TAG's, especially in the following areas: (1)
parsing complexity of TAG's, (2) some closure results for TAG's, and
(3) the relationship to Head grammars.

1. INTRODUCTION

lovestigation of coostrained grammatical systems from the
point of view of their linguistic adequacy and their computational
tractability bas been a major concern of computsational linguists for
the last several years. Generalized Phrase Structure grammars
(GPSG), Lexical Fuactional grammars (LFG), Phrase Linking
grammars (PLG), aad Tree Adjoining grammurs (TAG) ate some
key examples of grammatical systems that bave been and still
contioue to be investigated along these lines.

Some of the basic sotions of TAG's were introduced in [Joshi,
levy, and Takahashi,1975] and [Joshi,1983]. Some preliminary
investigations of the linguistic relevance and some computational
properties were also carried out in [Joshi,1983]. More recently, a
detaifed investigation of the linguistic relevance of TAG's were
carried out by |Kroch and Josbi, 1985}

In this paper, we will describe some new resuits for TAG's,
especially in the following areas: (1) parsing complexity of TAG's, (2)
some closure results for TAG's, and (3) the relationship to Head
grammars. These topics will be covered in Sections 3, 4, 2nd §
respectively. In section 2, we will give an introduction to TAG's. In
section 8, we will state some properties not discussed here. A detailed
exposition of these results is given in [Vijay-Shankar and Joshi, 1085}

*This wort wes partially supported by NSF Graste MCS-$210116-CER,
MCS-62-07204. We wast to thask Carl Pollard, Kelly Rosch, David Searl, sad
Dsavid Weir, We have beaefited eoormously by valuadle discussions with them

212

hia, PA 191C4

2. TREE ADJOINING GRAMMARS--TAG's

We now introduce tree adjoining grammars (TAG's). TAG's
are more powerful than CFG's, both weakly and strongly.} TAG's
were first introduced in |Joshi, Levy, and Takabashi, 1075 and

[Joshi, 1983]. We include their description in this sectinn to make the
paper sell-conlained.

We can define a tree adjoining grammar as follows. A tree
adjoining grammar G is a pair (l,Ai where [is 3 net of initial trees,

and A is a set of auxiliary trees.

A tree o is an snitial tree if it is of the form

a =

/7 o\ v €L

. That is, the root node of a is labelled S and the frontier nodes
are all terminal symbols. The internal nodes are all noa-terminals
A tree Jis an auvxiliary tree if it is of the form

8= X
\

That is, the root node of 8 is labelled with a non-termisal X
and the frontier nodes are all labelled wilh terminals symbols except
one which is labelled X. The node labelled by X on the frontier will
be called the foot node of 3. The (rontiers of initial trees belozg to
I*, whereas the [rontiers of the auxiliary trees belong to "Nty
I+ NI

We will now define 3 composition operation called adjoining,
(or adjunction) which composes an auxiliary tree § with a tree 1.
Let 7 be a tree with a node o labelled X and let 8 be an auxiliary
tree with the root labelled with the same symbol X. (Note that 3
must bave, by definition, a node (and ouly ose) labelled X on the
frootier.)

IGramman Gl aad G2 are weakly oq-ivde-t‘ilclh string l;‘;pu(lci ?l‘
G1) = the M tanguage of G2, L{G2). G1 sad G2 are ctroagly equiveles
:{-y)m 'nku“‘e‘q-ln‘l:n and for esch w ia LG} = L(G:'). botb G1 sad G2
sovign the same structaral description Lo w. A ar G is -nl:_ly sdequste
for o (string) laaguage L, ¥ L{G) = L. G i stroagly adequate for L fUG)=L
aand for esch w in L, G assigus s “appropriste® structaru description to w. The
aotion of strosg sdequacy is undoubtedly pot precise because it depends on the

nation of appropriste structersl descriptions

Adjoinisg can now be defined as follows. ltﬂ'nnd!‘oinfltoq
ot the sode n thea the resulting tree 7,' is as shown ia Fig. 2.1

below.

1 A=
s X
/\ /' \
/ \ / \
code / X / \
s/ /N JE TS
/ /_;r_\ \
t
1' =z
S
/\ v
! *TVithout
/7 X\ t
-] \--
/7 N\
-X-- 3
/l \\i-— L 4
Fi;ureg._]

The tree t domioated by X in 7 is excised, A is inserted at the
onde o in 7 sod the tree ¢ is attached to the foot node (labelled X) of
d ie, f is inserted or adjoined to the node n in 7 pushing ¢t
downwards. Note that adjoining is not a substitution operation.

We will sow define

T(G): The set of all trees derived in G starting from initial
trees in | This set will be called the tree set of G.

LG): The set of all terminal strings which appear in the
frootier of the trees in T(G). This set will be called the string
language for langaage) of G. If L is the string language of s TAG G
thea we !aTy that L is a Tree-Adjoining Language {TAL). The
relatioaship betweea TAG's , text-free gr , aand the
correspooding string langeages can be ized 23 follows ({Joehi,
Levy, and Takahashi, 1975}, [Josbi, 1983]).

Theorem 2.1: For every coatext-(tee grammar, G', there is an
equivaleat TAG, G, both weakly aad strongly.

Theotem 2.2: For every TAG, G, we have the followiag

sitnatioss:

2. L{G) is context-free and there is a context-free grammar
G’ that is strongly (end therefore weakly) equivalent to
G.

b L{G) is context-free snd there is no context-free grammar
G’ that is equivalent to G. Of course, there must be a
context-free grammar that is weakly equivaleat to G.

¢. L{G) is strictly context-sensitive. Obviously ia this case,
there is w0 comtext-free grammar that is weakly
equivaleat to G.

Parts (a) sad (c) of Theorem 2.2 appears in ([Joshi, Levy, and
Tskabashi, 1975]). Part (b) is implicit ia that paper, but it is
impoctaat (o state it explicitly as we have dome here becanse of its
Baguistic significance. Example 2.1 illustrates part (a). We will sow
dlustrate parta (b) sad (c).

Example 2.2: Let G == (LA) where

:ﬂ|= 5=

Yo=az= T =
Se /S
‘ \/\
L] s, T
RAN
/7 S\ﬁz
! N \
! 1\
1T _A
I\
v
H
{
.
Ut
S
I\
¢ Th
I\
Sb
|
[]

T = 7o with B, T == 7; with 8,
adjoined at S as indicated in 7. adjoined st T as indicated in T3

Clearly, L(G), the string language of G is
L= f{aned®/n>0)
which is a context-free language. Thus, there must exist s context
free grammar, G, which is at least weakly equivalent to G. It caa be
showa bowever that ihere is no context-free grammar G' which is
steongly equivaleat to G, ie.,, T(G) = T(G'). This follows from the
fact that the set T(G) (the tree set of G) is non-recognizable, i.ec.,
there is no finite staie bottom-up tree automatonm that can recognize
precisely T(G). Thus s TAG may geverate a context-free language,
Xet sssign structural descriptions to the stringe that canmot be
Assigned by any context-free grammar.

Example 2.3: Let G = (I,A) where

1: a=
s
|
)
A f = Pa =
H T
I\ /\
s T s S
/1N U
A Y 71\
b § ¢ b c

213

The precise defipition of L{G) ia as follows:
YG) =L, = {wec* /8 >0, wis astring of a's aad b's such that
(1) the mumber of a's == the number of b's == -: and

(2) for any initial substring of w, the sumber
of a's > the number of b's.)

L; is a strictly cootext-sensitive language (i, & context-
sensitive language that is not context-free). This can be shown as
follows. Intersecting L with the regular language 2’ b° ¢ ¢* results in
the language

Ly={a"btec®/aD>o)=L,Na"b’ec’

L5 is well-known strictly context-sensitive language. The result
of intersecting a context-free language with a regular language is
always a cootext-free language; bence, L; is not a context-free
language. It is thus 3 strictly conlext-sensitive language. Example
2.3 thus illustrates part (¢} of Theorem 2.2.

TAG's bave more power thaa CFG's. However, the extra
power is quite limited. The language L, baa equal number of a's, b's
and ¢'s; however, the a's and b's are mixed in a certain way. The
lagguage L, is similar to L,;, except that a's come before all b's.
TAG's as defined so far are mot powerful enough to gemerate L,.
This can be scen as follows. Clearly, for any TAG for L,, each
initial tree must contain equal aumber of a's, b's and c¢'s {including
1e10), and each auxiliary tree must also contain equal number of a's,
b's and ¢'s. Furtber in each case the a's must precede the b’s. Then
it is easy to see from the grammar of Example 2.3, that it will not be
possible to avoid getting the a's and b's mixed. However, L, can be
generated by a TAG with local constraints (see Section 2.1) The so-
called copy language.

Le={wew/[we{ab}'}

also casnot be geaerated by s TAG, however, again, with local
constrnints. [t is thus clear that TAG's can generate more than
context-free languages. It can be shown that TAG's caoaot generate
all context-sensitive languages [Joshi ,1984].

Altbough TAG's are more powerful than CFG's, this extra °

power is highly coastrained and apparently it is just the right kind
for characterizing certain structural descriptions. TAG's share almost
all the formal properties of CFG's (more precisely, the corresponding
classes of languages), as we shall see in section 4 of tbis paper and
[Vijay-Shaskar sad Joshi,1985]. la addition,the string languages of
TAG's can also be parsed in polynomial time, is particalar in O(a®).
The parsing algorithm is described in detail in section 3.

1.1. TAG's with Local Constraints on Adjolning
The adjoining operation as defined in Section 2.1 is ®context-
free®. Aum suxiliary tree, say,

f=

is sdjoinable to 8 tree t at s mode, say, 8, if the fabel of that
wode is X. Adjoining does sot depend om the context {trec context)
around the node o. In this sease, adjoining is coutext-free.

In [Joshi ,1983], local constraints on sdjoining similar to those
investigated by |Joshi sad Levy ,1977] were considered. These are a
generalization of the context-sensitive constraints studied by [Peun
and Ritchie ,1969]. It was soon recognized, bowever, that the full
power of these constraints was never fully utilited, both in the
linguistic context ss well as in the “formal languages® of TAG's.
The so-called proper analysis coatexts and domination contexts (as
defined io [Joshi and Levy ,1077]) as used in [Joshi ,1083] always
turned out to be such that the context elements were always in a
specific elementary tree i.e., they were further localited by being in
the same elementary tree. Based on this obeervation and a
suggestion in |Joehi, Levy and Takahashi ,1975], we will describe s
new way of introducing local coanstraiots. Tbhis approach no? oaly
captures the insight stated above, but it is truly in the spirit of
TAG's. The eatlier approach was aot eo, although it was certainly
adequate for the investigation in [Joeshi ,1983]. A precise
characterization of that approach still remains 30 open problem.

G = (LA) be a3 TAG with local constraints if for each
elementary tree t € | U A, and for each node, n, in t, we specify the
set 8 of auxiliary trees that can be adjoined at the node n. Note
that if there is no constraint thea all auxiliary trees are adjoinable at
o {of course, only those whose root has the same label as the label of
the pode o). Thus, in general, 8 is a subset of the set of all the
auxiliary trees adjoinable at n.

We will adopt the following conventions.

1. Since, by definition, no auxiliary trees are adjoinable to a
node labelled by a terminal symbol, no constraint has to
be stated for node labelled by a terminal.

~n

. If there is no counstraint, i.e., all auxiliary trecs (with the
appropriate root label) are adjoinable at a node, eay, n,
thea we will pot state this explicitly.

3. If no auxiliary trees are adjoinable at a node b, then we
will write the constraint as (¢), where ¢ denotes the null
set.

4. We will aleo allow for the possibility that for a node at
least oae adjoining is obligatory, of course, from the set
of ali possible auxiliary trees adjoinable at that node.

Hence, a'TAG with local constraints is defined as follows. G =
(I, A) is a TAG with local constraiots if for each node, 0. in each tree
t, be specifly one {and only one) of the following constraists.

1. Selective Adjoining {SA:} Ouly a specified subset of the
set of all auxiliary trees are adjoinable at n. SA s
written as (C), where C is a subset of the set of all
auxiliary trees adjoinable at 0.

It C equals the set of all auxiliary trees adjoinable at n,
then we do not explicitly state this at the node a.

2. Null Adjoining (NA:} No auxiliary tree is adjoinable at
the node N. NA will be written as (8).

3. Obligating Adjoining (OA:) At least one (out of all the
auxiliary trees s joinable at n) must be adjoined at .
OA is written as (OA), or as oec) where C is a subset of
the set of all auxiliary trees adjoinable at n.

Example 2.4: Let G = (],A) be a TAG with local constraints where
L a=
S ¢
Bi S S (B

214

A: pl = p’ -
s (8 s (8
/\ /\

/7 \ /
s s (#) (4) s L]

In a; 80 auxiliary trees can be adjoined to the root node. Only
8, is adjoivadle to the feft S node at depth 1 aad ooly 4, is
adjoinable to the right S node at depth 1. In A, only B, is adjoinable
at the root node and no auxiliary trees ste adjoinable at the fuit
node. Similarly for ;.

We must sow modify our definition of adjoiaiag to take care of
the local constraints. given a tree 7 with a node, say, u, labelled A
and given an auxiliary tree, say, f, with the root sode labelled A, we
define adjoining as [ollows. A is adjoiable to 7 at the mode n if § €
B, where 8 is the comstraint associated with the node n in 7. The
tesult of adjoining A to 7 will be ss defined in earlier, except that the
coustraint C associated with o will be replaced by C’, the constraint
associated with the root node off and by C°, the constraint
associated with the foot node of 3. Thus, gives

4= p=

s A (CY)

/\ node & /\

/A (©) /I \

/ \

1/ N\ / \
7/ A\ / \
©*

We also adopt the convention that any derived tree with s mode
which bas aa OA coanstraint associated with it will not be included in
the tree set associated with & TAG, G. The striag language Lof G is
then defined as the set of all terminal strings of all trees derived is G
(starting with initial trees) which bave so OA constraists left-in
them.

Example 2.5: Let G = (I.A) be 3 TAG with local constraivi
where

1: a =

There are no constraints i a;. In # no auxiliary trees are adjoinable
ot the root node and the foot node sad for the ceater S node there
are 8o constraints.

Startiag with a; aad sdjoining B to a; at the root node we
obtaia

7=

Adjoining B to the center S node {the only node at which
adjunction can be made) we bave

v -

It is easy to see that G geperates the string language

L={atb®ec®/n >0}

Other taoguages such as L'={a’ |a >1),L* = (32| a > 1)
slso cannot be generated by TAG's. This is because the strings of »
TAL grow linearly (for a detailed definite of the property called
*contact growth® property, see [Joshi ,1983|.

For those familiar with [Joshi, 1983, it is worth pointing out
that the SA coastraiat is only abbreviating, i.e., it does not affect the
power of TAG's. The NA aad OA constraints however do aflect the
power of TAG's. This way of looking at local constraints has only
greatly simplified their statement, but it has also allowed us to
capture the iasight that the 'locality’ of the constraint is statable in
terms of the elementary trees themselves!

3.3. Simple Lingulstic Examples

We sow give a couple of linguistic examples. Readers may refer
1o [Kroch aad Joshi, 1985] for details.

1. Starting with 7, == a, which is an initial tree and then sdjoining
B; (with appropriste lexical insertions) st the indicated node in a,,
we obtaia 74.

215

T T e = By =
S 4
/\ A
NPe VP P S
N\ I\ /\
DET R VNP YH S
[N B A /\
[(BRI NP VP
the girl | DET K ! N
ia | | . Y NP
s senior [
aet K
the girl {s a senfor i
Bill
17 °
S
/ \
/ \
s \
I NP VP
\WARR A
)\\ \ / \
C AN

the girl) / \\ s senior

L AN

AN

f o V KNP

\ [

. et | \\ « B
\ o
\ I h

So_ B,

The girl who met Bill is & senior

2. Startiog with the initial tree 7; = a, aod adjoining §; at

the tndicated node in @, we obtain 7,.

TR ag = By =
LI U(ﬂg) S
/\ /\
NP VP NP VP
| A | /I\
PRO TO VP N/
N\ | YN S (¢)
v NP John | \
1 [N
inrite ¥ persuaded N
| |
Mary Bill

John persusded Bill S
T3 7

Joho persusded Bill to invite Mary

Note that the initial tree o, is Dot a mattix seotence. In order
for it to become a matrix sentence, it must undergo aa adjunction at
its root node, for example, by the auxiliary tree f3 as showsn above.
Thus, for a, we will specify a local constraint O(f,) for the root

- pode, indicating that a, requites for it to undergo an adjunction at

the root node by an auxiliary tree f;. In a fuller grammar there will
be, of course, some alternatives in the scope of O().

3. PARSING TREE-ADJOINING
LANGUAGES
3.1. Definitions

We will give a few additional dcfinitions. These are not
necessary for defining derivations in a TAG as defined in section 2.
However, they are introduced to help explain the parsing algorithm
a0d the proofs for some of the closure properties of TAL's.

DEFINITION 3.1 Let 7,7 be two trees.We say 7 |— 7' if in 7 we
adjoin an auxiliary tree to obtain 7"
" is the reflexive,trausitive closure of .

DEFINITION 3.2 7' is called a derived tree if 7 =* 7' for some
elementary tree 7.
‘We then say 7' € D(7).

The frontier of any derived tree 7 beloags to either NLHU
D+ N L*if 7€ D(8) for some auxiliary tree §, ot to Z* it 7 € D(a)
for some initial tree a. Note if ¥ € D(a} for some initial tree a, thea
7 is also a sentential tree.

It 8 is an auxiliary tree, 7 € D(5) and the (rontier of 7 is w; X
w, (X is a nonterminal,w,,w, € L") then the leaf node baving this
non-terminal symbol X at the froatier is called the foot of 7.

Sometimes we will be loosely using the phrase ®adjoining with
a derived tree* 7 € D(8) for some auxiliary tree §. What we mean is
that suppose we adjoin § at some node and then adjoin within § and
50 on, we can derive the desired derived tree € D(f) which uses the
same adjoining sequence and use this resulting tree to *adjoin® at
the origina! node.

3.2. The Parsing Algorithm

The algorithm, we present here to parse Tree-Adjoining
Laoguages (TALs), is a modification of the CYK algorithm {which is
described in detail in [Abo and Ullman,1973]), which uses s dynamic
programmiog technique to parse CFL's. For the sake of making our
description of the parsing algorithm simpler, we shall preseut the
algorithm for parsing without considering local constraints. We will
later show how to handle local constraints.

We shall assume that any node in the elementary trees in the
grammar has atmost two children. This assumption can be made
witbout any loss of generality, because it can be easily showa that
for any TAG G there is an equivalent TAG G, such that any node in
say elemeatary tree in G, has atmost two children. A similar
assumption is made io CYK algorithm. We use the terms aacestor
2nd descendant, throughout the paper as a trapsitive and reflexive
relation, for example, the foot node may be called the ancestor of the
foot node.

The algorithm works as follows. Let a,...a_ be the input to be
parsed. We use a four-dimensional array A; each element of (he
array contains a subset of the nodes of derived trees. We say a node
X of & derived tree v beloogs to Ali,jk,l} f X dominates a sub-tree of
7 whose [rontier is given by either a;,,,...8; Y 8458y (where the
foot node of 7 is labelled by Y) or a ;. .a, (ie, j == k. This

216

cotresponds to the case whea 7 is a seutential tree). The indices
(id.k,l) refer to the positions betweea (he imput symbols and range
over O through m. If i == § say, then it refers to the gap between 3
and 3.

Initially, we fill Alii+1,i+1,i+1] with those nodes im the
frontier of the elementary trees whosee label is the same as the input
;41 101 0 < i < o-1. The foot nodes of auxiliary trees will belong to
olt Afiij.j], such that i < j.

We are now in 8 position to fill in all the elements of the array
A. There are five cases to be considered.

Case 1. We know that if » node X in a derived tree is the
ancestor of the foot node, and node Y is its right sibling, such that X
€ Alijk)] and Y € Alim,m,0], then their parent, say, Z should
beloag to Ali,j,k,o], see Fig 3.1a.

Case 2. If the right sibling Y is the ancestor of the foot node
such that it belongs to Afl,m,n,p] and its left sibling X belongs to
Alijjl], then we know that the parent Z of X and Y belongs to
Ali.m,n,p], see Fig 3.1b

Case 3. If peither X nor its right sibling Y are the ancestors of
the foot node (or there is no foot node) then if X € Ali,j,j,l| snd Y €
Allm,m,n| then their parent Z belongs to Alijj.0].

Case 4. If a node Z has only one child X, and if X € Afij k],
theo obviously Z € Ali.j.k.)). -

Case 5. If a node X € Ali,j.,k,}], and the root Y of a derived
tree 7 baving the same label as that of X, belongs to A[m,i,l,n], thea
adjoining 7 at X makes the resulting node to be in A|m,j k,n}, see Fig
3.1c.

' (c) Y
(») /X\ AN
!\ / N\
/ \ / \
/ \ / \
7\ / \
2R 2 WA / \
/7 \ / \
! LAY / \
/ v o\ S 1'-'-"':

/A I\ N\ /\

AR A \ | / \ |
! \/ AUEEEAY a / \ a
""""" S QLR L bt bdidntind / \

sttt 0 / \
[T T T | Tt
s
taed I I
(®) /X\ Ly k1
\
/ \
/ \
2\
2 A
\
/! A
/ . \N

Although we have stated that the elements of the array
contsin a subset of the nodes of derived (rees, what really goes i
there ase the addresses of sodes ia the clemeatary trees. Thus the
the size of aay set io bounded by 3 tant, deuml?ed by the
grammar. It is boped that the presentation of the algorithm below
will make it clear why we do so.

3.3. The algorithm

The complete algorithm is given below
Step 1 For =0 to n-1 step 1 do

Step 2 put all nodes in the frontier of elementsry
treas whose Iabel 18 ngey 18 Al4,i¢1,1¢1,1¢1].

Step 3 For 1=0 to n-1 step 1 do

Stap 4 for j=1 to n-1 step 1 do
Step & put foot nodes of sll asuxiliary trees in
AlL,1.3.1)

Step 6 For 1=0 to n stop 1 do

Stop 7 For i=1 to 0 step -1 do
Step 8 For j=i to 1 step ! do
Step © For k=1 to § step -1 do
Step 10 do Case !

Step 11 do Case 2
Step 12 do Case 3
Step 13 do Case &
Step 14 do Case 4

Step 16 Accept if root of some initisl tree € A[0,§,§.0),
0<y<a

where,

{a) Case 1 corresponds to situation where the left sibling is the
ancestor of the foot node. The pareat is put in Ai,j, k1] if the left
sibling is in Ali,j,k,m] and the right sibling is in A{m,p,p.l], where k
<m<lm<p, p <\ Therefore Case 1 is written as

For a=k to 1-1 step 1 do
for p= s to 1 etep 1 do

1f there is s left sibling fn A(i,§,.k.n) and the
right sibling in Alm.p.p.1] sstisfyiog sppropriste
restrictions then put their parent
1o AlS,§.k.1).

{b) Case 2 correeponds to the case where the right sibling is the
ancestor of the foot node. If the left sibling is in Ali,m,m,p] and the
right sibling is in Alp,j,kl], i < m < p and p < j, then we put their
parent in Afi,j.k.l]. This may be written as

For »=1 to j-1 step 1 do
For p=m+i to § step 1 do

for a1l left sidliags in A{{,s,m,p] and right
sidlings
1o Alp.§.k.1] satistying sppropriate restrictioss put
their parents
in A{L,1,X,1).

217

{c) Cuse 3 corresponds to the case where meither children are
sacestors of the foot sode. If the left sibling € Ali,j.j,m] snd the right
sibling € Alm,p,p.}| then we can put the pareat in Ali,j,j}f if it is the
casethat (i<j<mori<j<m)and{m<p<lorm<p<
1)s This may be writt.a .»

for s = | to 1-1 step 1 do
for p = j to 1 step 1 do
for all left sidblings in A{L,].§,a] azd

right siblings in A{m,p.p.1] eatiafying the sppropriate
restrictions put their parent in Afi,§.3.1).

(¢) Case 5 corresponds to adjoining. If X is » node in Alm,jk,p] and
Y is the root of a auxiliary tree with same symbol as that of X, such
that Yisio Alimpll{i<m<p<lori<m<p<)and(m
<ji<k<porm £j <k <p)) This may be written as

for m = 1 to § step 1 do
for p = a to 1 step 1 do
if & node X € Al».},k,p) and the root of
suxiliary tree is in A{i,m,p.1] then put X in A[1,].k,1]

Case 4 corresponds to the case where a node Y bas only one cbild X
It X € Ali,j.k,}] then put Y in Alijk)|. Repeat Case 4 again if Y haa
no siblings.

3.4. Complexity of the Algorithm

It is obvious that steps 10 through 15 (cases a-¢) are completed
i O(n?), because the different cases have at most two nested for
loop statements, the iterating vatiables taking values in the range 0
through n. They are repeated atmost O(a¢) times, because of Che
four loop statements in steps 6 through 9. The initialization phase
(steps 1 through 5) has a time complexity of Ofa + n?) = Ofa?).
Step 15 is completed i O(n). Therefore, the time complexity of the
parsing algorithm is O(n®).

3.5. Correctness of the Algorithm

The main issue in proving the algorithm correct, is to show
that while computing the contents of an element of the array A, we
must bave already determined the contents of other elements of the
srray needed to correctly complete this entry. We can show this
inductively by considering each case individually. We give an
informal argument below.

Case 1: We need to know the coateats of Alijk,m), Alm,p,p}
whete m < |, i < m, when we are trying to compute the conteats of
Afij.k fl. Since 1 is the variable itererated in the outermost loop (atep
6), we can assume (by induction hypothesis) that for all m < 1 and
for all p,q,7, the contenta of Alp.q,r,m| are already computed. Hence,
the contents of Afijk,m] are known. Similarly, for all m > i, aod
for all p,q, and r < |, A{m,p,q,t| would have been computed. Thus,
Afm,p,p,l) would also have been computed.

Case 2: By a similar reasoning, the contents of Ali,m,m,p| and
Alp..k I} are keown since p < Iaad p > i.

Case 3. When we are trying to compute the contents of some
Alij.iJ], we need to know the nodes in Alij.j.p] sad Alp,q.q.1]. Note j
> ior j < |l Hence, we know that the contents of Alij.j.p| snd

Alp.q.,q,)] would have beea computed already.

Case 5. The contents of Alim,p,l] snd Ajm,jk,p] must be
kaowa in order to compute Alij,k 1}, where (icm<p<loric<
mSpSI)nnd(mSjSk<potm<ilp). Since
either m > i or p < I, contents of Almjk.p| will be koown.
Simifarly, since either m < jor k < P, the contenta of Afi,m,p i}
would have been computed.

218

3.0. Parslng with Local Constraints

So far,we have assumed that the given grammar has no local
constraints. If the grammar bas local constraints, it is easy to modify
the above sigorithm to take care of them. Note that in Case S, if an
adjunction occurs at a node X, we add X again to the element of the
array we are computing. This seems to be in contrast with our
definition of bow to aasociate local constraints with the nodes in a
sentential tree. We should have sdded the root of the suxiliary tree
instead to the e} t of the array being computed, since so far as
the local constraints are concernedthis node decides the local
coastraints at this node in the derived tree. However, this scheme
canoot be adopted in our algorithm for obvious reasona. We let pairs
of the form (X,C) belong to elements of the srray, where X is as
before and C represents the local constraints to be associated with
this node.

We then alter the algorithm as foliows. If (X,C,) refers to a
node at which we attempt to adjoin with an suxiliary tree (whoee
root ia desoted by (Y,C,)). thea adjunction would determined by C,.
If adjunction is allowed, then we can add {X,C;} in the corresponding
element of the array. In cases 1 through 4, we do not attempt to add

3 new element if any ome of the children has an obligatory
constraint.

Ouce it has been determined that the given string belongs to
the language, we can find the parse in a way similar to the scheme
adopted in CYK algorithm.To make thia process simpler and more
efficieut, we can use pointers from the new element added to the
elements which caused it to be put there. For example, consider
Case 1 of the algorithm (step 10). If we add a pode Z to Alig.xd,
because of the presence of its chiidren X and Y in Alijk,m] aad
Alm,ppJ] respectively, then we 2dd pointers from this node 2 in
Ali.j.k)| to the nodes X, Y in Afij.k,m| and A[m,pp.l]. Once this has
been done, the parse can be found by traversing the tree formed by
these pointers.

A parser based on the techniques described above is currently
beiag implemented and will be reported at time of presentation.

4. CLOSURE PROPERTIES OF TAG's

In this section, we present some closure resylts for TALs. ?Ne
now informally sketch the proofs for the closure properties.
Interested teaders may refer to [Vijay-Shaunkar snd Joehi,1985) for
the complcte proofs.

4.1. Closure under Unlon

Let G, and G, be two TAGs generating Ly and L, respectively.
We can construct 1 TAG G such that L(G)=L, U L,.

Let Gy = (I, A\, N;, S). and Gy =~ (15, Ay, N,, S).
Without loss of geaerality, we may sssume that the N, N N, = 4.
Let G = (I, Uly, Ay U Ay, Ny UN,;, S). We claim that L{G) = L,
UL,

Let x € Ly UL, Thea x € L, or x € Ly 1l x € Ly, then it
must be possible to generate the string x in G, since §; , A, are in
G. Heoce x € L(G). Similasly if x € Ly, we can show that x € L(G).
Heoce Ly U Ly € L{G). It x € L{G), then x is derived using either
oaly I;, A, or ooly I, A sibce N, N Ny = ¢ Hence, x € Lyorx €
Ly Thus, 1{G) C L, ULy Therefore, L(G) =L, UL,

A,

C "

4.3. C}

. tion

Let Gy =(1A N1.5;) Gy = (I3.A4,Ny.S;) be two TAGs
generating Ly, Ly respectively, such that N, N Ny = 4. We caa
coastract 8 TAG G == {1, A, N, S) such that L{G)== L, . Ly. We
choose S such that S is not ia N; U N;. We let N = N, U Ny U
{Sh A=A UA, Forallt, €1y, ¢ € I, we add t;5 to I, 25 shown
in Fig 4.2.1. Therefore, | = { tyy / t; € 1;, t; € I}, where the nodes
in the subtrees t, and ¢, of the tree t;; have the same constraints
associated with them as in the original grammars G, and G,;. It is
essy to show that L(G) = L, . Ly, once we note that there are a0
suxiliary trees in G rooted with the symbol S, and that N; N Ny =
’.

$ S
L TO / \ tg = !/ A\

/ \ / \
/ \ / \
s

g = /\
/ \
/ \
/ \
Sy Sy
/ \ / \
7 &4\ [4\
Figure 4.2.1 RS

4.3, Closure under Kleene Star

Let Gy = {I;,A;N,.5;) be 2 TAG generating L,. We can show
that we can construct 3 TAG G euch that L{G) = L,". Let S be
symbol sot iz Ny, and let N = N, U {S}. We let the set 1 of initial
trees of G be {t,}, where ¢, is the tree shown in Fig 4.32. The set of
auxiliary trees A is defined as

A= {ya /e UA,

The tree t,, is as shown in Fig 4.3b, with the coastraints on
the root of each tia being the null adjoining constraint, no
constraints on the foot, and the constraints on the nodes of the
sublrecs t; of the trees t;, being the same as those for the
corresponding nodes in the initial tree t, of G,.

To sce why L{G) = L,°, consider x ¢ L(G). Obviousty, the tree
derived (whose frontier ia given by x) must be of the form showa in
Fig 4.3¢, where each ¢’ is a sentential tree in G, such t;" € D(t;), for
aa nitial tree t; in G,. Thus, L{G) C L,".

On the other band, if x € L,", then x = w,..w,, w; € L, for 1
S i< 0. Let each w; then be the frontier of tie sentential tree 4 of
Gy such that ;" € D{ 1), 4 € I;. Obviously, we caa derive the trce T,
wsing the initial tree t,, and have 2 sequence of adjoinisg operations
using the auxiliary trees t;, for 1 < i < 0. From T we can obviously
M the tree T° the same as givea by Fig 4.3c, using only the
suxiliary trees in A;. The frontier of T* is obviously w,...w,. Heace, x
€ L(G). Therefore, L,* € L(G). Thus L(G) = L,".

s
(d) Lia ® 5 (C) /\
/\ /8
/ N\ / /\
s s, /__\«ty
/\
/ \ety
I\ s
/ \
s /\
I I_Nety
]
T.
Figure 4.3

4.4. Closure under Intersection with Regular Languages

Let Ly be a TAL and Ly be a regular langusge. Let G be a
TAG generating Ly aod M = (Q , L', §, q5 , Qp) be s finite state
automaton recoguiting Lg. We can construct a grammar G and will
show that L{G,) = Ly N Lg.

Let a be an elementary tree in G. We shall sssociate with each
node a quadruple (q,.92,.5.9,) where q,,q2.95,9¢ € Q. Let (q,,95.95.9,)
be associated with a node X in a. Let us assume that a is sn
auxiliary tree, and that X is an ancestor of the foot node of a, and
hence, the ancestor of the foot node of any detived tree v in D{a).
Let Y be the label of the root and foot nodes of a. If the frontier of
4 (71 ia D{a)) is w; wy Y wy w,, aad the fronticr of the subtree of 7
rooted at Z, which corresponds to the node X in a is wy Y wy. The
idea of associating (q,.92.95.9¢) with X is that it must be the case
that 8°(q,, w,) = q,, and &'(qy, ws) = q,. When 7 becomes a part of
the sentential tree 7' whose froutier is given by u w; wo v wy w, w,
then it must be the case that 6°(q;, v) = qq. Following this
reasoning, we must make q, = qq, if Z is not the sncestor of the foot
node of 7, or if 7 is in D(a) for some initial tree a in G.

We bave assumed here, 38 in the case of the parsing algorithm
presented earlier, that any node in any elementary tree has atmost
two childten.

From G we can obtaia G, as follows. For each initial tree a,
associate with the root the quadruple (qg, Q. Q. qf) where qq is the
initial state of the finite state automaton M, sad q; € Qp. For each
suxiliary tree § of G, associate with the root the quadruple
(21.92:Q5.9,). where 9.9,.92.95.9, are some variables which will later
be given values from Q. Let X be some node in some elementary tree
a. Let [q,,07,.95.04) be sssociated with X. Then, we have to cousider
the follo'wing cases

Case 1: X bas two children Y and Z. The left child Y is the
ancestor of the foot node of a. Then associate with Y the quadruple {
P. Q2. Q3. q). 3ad (q, r, v, 8) with 2, and associate with X the
constraint that only those trees whose root has the quadruple (g, p,
s, G,). among those which were allowed in the original grammar,

" may be adjoined at this node. If q, 3£ p, ot q 3£ & , then the
constraint associsted with X must be made obligatory. If in the
original grammar X bad ao obligatory constraint associated with it
then we retain the obligatory coustraint regardiess of the relationship
between q, and p, and q, and o. If the constraint associated with X
is » null adjoining constraint, we associate (q;, Q5. 95, q). sad (q, 1,

() L 8 ?, Q¢) with Y and 2 respectively, sad associate the aull adjoiniag
/ constraint with X. If the label of Z is a, where 8 € £, then we choose
. s aad q such that & (q, a) = o. In the null adjoining constraint case,
q is chosen such that §(q, 2) = q,.
219
vl - . ettty A

Case 2: This corresponds Lo the case where a node X has two
children Y and Z, with (q;,q5.92.9,) associated at X. Let Z (the right
child) be the ancestor of the the foot node the tree a. Then we shall
associate (p,q.9.¢), {r.q2.95.8) with Y and Z. The associated constraint
with X sball be that only those trees among those which were
allowed in the orignal grammar may be adjoined provided their root
bas the qusdruple (q;.p.s,q) sssocisted with it. If q; 56 p or g & 1
then we make the constraint obligatory. If the original grammar had
obligatory constraint we will retaia the obligatory coanstraint. Null
constraint in the original grammar will force us to use null constraint
and not consider the cases where it is not the case that q; == p snd
qq = 8. If the label of Y is a terminal 'a' then we choose r such that
5(p,a) = r. If the constraint at X is a null sdjoining constraint, then

(ql") =TI

Case 3: This corresponds to the case where neither the left
child Y pnor the right child Z of the node X is the ancestor of the foot
node of a or if a is a initial tree. Then q; = q3 = q. We will
associate with Y and Z the quadruples (p,r,r,q) and (q,8,0,t) resp. The
constraiots are assigned as before , in this case it is dictated by the
quadruple (q;,p,t,q). If it is not the case that q; = p and q = t,
then it becomes an OA coastraint. The OA and NA constraints at X
are treated eimilar to the previous cases, and eo is the case if either
Y or Z is labelled by a terminal symbol.

Case 4: If (q;,92,95.9¢) is associated with a oode X, which has
only one child Y, then we can deal with the various cases as follows.
We will associate with Y the quadruple (p,q;.q;.8) and the constraint
that root of the tree which can be adjoined st X should have the
quadruple (q,,p.8,q,) associated with it among the trees which were
allowed in the original grammar, if it is to be adjoined at X. The
cases where the original grammar bad null or obligatory constraint
associated with this pode or Y is labelled with a terminal symbol, are
treated similar to how we dealt with them in the previous cases.

Ounce this bas been done, let q,...q; be the independent
variables for this elementary tree a, then we produce as many copies
of a so that qj,...q, take all possible values from Q. The only
difference among the various copies of a so produced will be
constraints associated with the nodes in the trees. Repeat the process

for all the elementary trees in G;. Oace this has been done and each

tree givea a unique name we can write the constraints in terms of
these names. We will now show why L(G,) = Ly n Lg.

Let w € L{G;). Then there is a sequence of adjoining
operations starting with an initial tree a to derive w. Obviously, w €
Ly, also siace corresponding to each tree used in deriving w, there in
s corresponding tree in G, which differs only in the constraints
associated with its nodes. Note, however, that the constraints
associated with the nodes in trees in G, are just a restriction of the
corresponding ones in G, or an obligatory constraint where there was
none in G. Now, if we can assume (by induction hypothesis) that if
after n adjoining operations we can derive 7' € D(a’), then there is a
corresponding tree 7 € D(a) in G, which has the same tree structure
as 7' Lot differing only in the conmstraints associated with the
corresponding nodes, then if we adjoin at some node ia 7' to obtain
7', we can adjoin in 7 to obtain v, (corresponding to 7,’).
Therefore, if w can be derived in Gy, then it can definitely be derived
in G.

It we can also show that L{G,) C Ly, then we can conclude
that L(G,) C Lt N Ly. We caa wse induction to prove this. The
iaduction bypothesis is that if all derived trees obtained after k < n
sdjoining operations have the property P then oo will the derived
trees after o + 1 adjoinings where P is defined ss,

Property P: If any node X in a derived tree 7 bas the foot-node of
the tree A to which X belongs labelled Y as s descendaat such that
w; Y wy is the froatier of the subtree of # rooted at X, then if
{9;.92.95.9¢) bad been associated with X, b'(q,,wl) = q, and
8(q.wy) = q,, and if w is the lrontier of the subtree under the foot
node of f in 7 is thea b‘(q,.w) = q;. If X is not the ancestor of the
foot node of B then the subtree of A below is of the form w Wy,
Suppose X has associated with it (q,,9.0.q;) then 8'(qw;) = q,
5.(‘1-"2) = Q2.

Actually what we mean by an adjoining operation is not
necessarily just one adjoining operation but the minimum number so
that no obligatory constraints are associated with any nodes in the
derived trees. Similarly, the base case peed not consider only
elemeontary trees, but the smallest (in terms of the number of
adjoining operations) tree starting with elementary trees which bas
no obligatory constraint associated with any of its nodes. The base
case can be seen casily considering the way the grammar was built
(it can be showa formally by induction on the beight of the tree) The
inductive step is obvious. Note that the derived tree we arc going to
use for adjoining will have the property P, and so will the tree at
which we adjoin; the former because of the way we designed the
grammar and assigned constraints, and the latter because of
induction bypothesis. Thus so will the new derived tree. Oance we
bave proved this, all we bave to do to show that L(G,) C Ly is to
consider those derived trees whick are sentential trees and observe
that the roots of these trees obey property P.

Now, if a string x € L N Ly, we can show that x € L{G). To
do that, we make use of the following claim.

Let 8 be an auxiliary tree in G with root labelled Y aad let v €
D(f). We claim that there is a 8 in G, with the same structure as f,
such that there is a ' in D(beta())’) where 4' bas the same structure
as 7, such that there is no OA constraint in 4'. Let X be a node in
B, which was used ia deriving 7. Then there is a node X' in 7' such
that X' belongs to the auxilliary tree 5" (with the same structure as
ﬂ,. There are several casee to consider -

Case 1: X is the ancestor of the foot mode of f,, such that the
frontier of the subtree of 8, rooted at X is w,Yw, and the frontier of
the subtree of 7 rooted at X is wyw,Zwyw,. Let &'(q,w,;) = q,
8'(q.w;) = qz 8'(q3.w,) = 1, and &'(r,w,) = q,. Thea X' will have
(q;.9.5,.q,) associated with it, and there will be no OA coastraint in

T.

Case 2: X is the ancestor of the foot aode of B;. and the frontier of
the subtree of f, rooted at X is wyYw,. Let the frontier of the
subtree of 7 rooted at X is wyw,wow,. Then we claim that X" in 7'
will bave associated with it the quadruple (q,.q.1.q,). if §'(q,,w,) =
q, 8°(q,wy) = p, 8 (p.w;) = 1, sad &'(r,w,) = q,.

Case 3: Let the frontier of the subtree of 4, (aad also 7) rooted at X
s ww, Let &'(qw,) = p, &(pwg) = r. Thea X' will have
associated with it the quadruple (q,p,p.1).

We shall prove our claim by induction on the number of
adjoining operations used Lo derive <. The base case (where 7 = g) is
obvious from the way the grammar G, was built. We shall now
assume that for all derived trees 7, which have been derived from 2
using k or less adjuining operations, have the property as required in
our claim. Let 7 be a derived tree in # after k adjunctions. By our
inductive hypothesis we may sseume the existence of the
corresponding derived tree 7' € D{#’) derived in G,. Let X be a node
in 7 a8 shown in Fig. 4.4.1. Thea the node X' iz 7° correspondiag to
X will bave associated with it the quadruple (q;'.q2".5"9,"). Note we
are assaming here that the left child Y* of X' is the ancestor of the

220

foot acde of #'. The quadruples (q," 9" %s'.0) 2ad (p.9y.pya,°) will
be associsted with Y' and Z° (by the laduction hypothesis). Let 7, be
detived (rom 7 by adjoiniag A, st X a2 ia Fig. €.4.2. We have to
show the existence of f;°' in Gy such that the root of this suxiliary
tree hes sagocisted with i the quadruple {9.9,'.4,° 1) The existence
of the tree follows from laduction hypothesis (k = 0). We have also
gok 1o show that there exiats 7, with the same strectare as 7 but
oae that allows f,' o be adjoined at the required node. But this
should be 80, since from the way we obtained the trees in G, there
will exist 7,° such that X,* has the quadruple {q.q5°.q5'.) sad the
cozatraints st X;' are dictated by the quadruple (Q.q,'.94"° 1), but
sach that the two children of X' will have the same quadruple as in
1. We can now adjoin B,’ in 7,° to obtaia v,". It can be shown that
;' bas the required property to establish our claim.

[A
/ \
/7 \
/ \
/ \
/ \
/ \
/ \
/ N \
/ / \ \
- / / \ \
/\ !/ / \ \
/] \ e / \-=momee-
/ \ - / \
/ \ / \
/I X \ / \
L L N I\--2ieve-
/7 NN x / \y
/I 1 AT \
A A\ / \
/I I\ /AR / \
A\ N A
T \¥) ANAY /' \ /7 \
--------------------------- ’/ \\ // \\
LA B AP AP o
1 F L T] / \/ \

viYe, wieg
Q1. ¥y)=q 38" (p.#%)} =py

P PRI 5

Q' & y)=r
Figure 4.4.2

Figore 4.4.1

Firstly, any node below the foot of A in 7, will satisly our

reqairements as they are the same as the corresponding modes in 7,°.
Sioce A,' salisfies the requirement, it is simple to observe that the
nodes in f;' will, evea after the adjunction of 4,° in 7,°. However,
because the quadruple associated with X' are different, the
quadruples of the nodes above X' must reflect this change. It is easy
to check the existence of as saxiliary tree such that the nodes above
Xy satisly the cequirements as stated above. It can also be argued sa
1be basis of the design of grammar G, that there exists trees which
sllow (bis aew auxiliary tree to be adjoined at the appropriate place.
This thea allows us to conclude that there exist a detived Lree for
each derived tree beloagin to D(F) as in our claim. The next otep is
to extead our claim to take into accownt all derived trees (ie.,
iscluding the sentential trees). This can be done in a manger similsr
o our treatment of derived trees belonging to D(S) for some
saxiliary tree 5 a8 sbove. Of course, we have (o coasider canly the
Case whete the fisite state antomaton starts from the initial state qq,
30d resches some finsl state ¢ ou the inpat which is the froatier of
tome seatestial tree ia G. This, then allows us to conclude that Ly N
Ly C L(G,). Hence, L(G,) = Ly N Ly,

5. HEAD GRAMMARS AND TAG's

1a this section, we attempt (o show that Head Grammars (HG)
are romarkebly similar to Tree Adjoising Grammars. It appeare that
the basic intuition behiand the two systems is more or lees the same.
Hesd Geammars were latrodeced in [Pollard,1934], bat we follow the
sotations wsed ia [Roach,1084]. It has been observed that TAG's and
HG's share a lot of commoe formal properties such as almost
identicsl closure results, similar paromping §

Consider the basic operation is Head Grammars - the Hesd
Wrapping operation. A derivatios {rom s moa-terminal produces s
pair (i,8y...8;..8,) (a more convenient represeatation for this pair h
8.8y 84418y). The arrow denoter the bead of the strisg, which ia
tura determines where the string is split wp whea wrappiag ope:m
takes place. For example, coasider X->LLy(AB), and let Ao whx

and B "ug v.Then we say, X=t"whogvx.

"We shall define some fuactions used in the HG lomuli-lm.
which we need here. If A derives in O or more steps the headed string
w%x and B derives -*v. then

1) 42 X -> LL,(A,B) is s rule in the graamer then
X derives vzu‘vx

2) 41 X -> LL,{A,B) is & rule in the gramsar then
X derives whugvx
<

3) 1f X -> LC(A,B) s » rule 1o the gramasr then
X derives ':mxgv

4) 4f X -> LCy(A.B) is & rule ia the gramaar thes
X derives whxugy
4+

Rov consider bov a derivation in TAGs proceeds -~

Let A be sa auxilliary tree aad let a be a sentential tree as in
Fig 5.1. Adjoining B at the root of the sub-tree g gives us the
sentential tree o Fig 5.1. We can, now see bow the string whx has
*wrapped sround® the sub-trec iethe string ugv. This ecems to
suggest that there is something similiar in the role played by the foot
in ap auxilliary tree and the bhead in a Head Grammar how the
adjoining operations and bead-wrapping operations operate on
strings. We could say that if X is the root of an auxilliary tree 4 sad
ag...a; X 3;,¢...a, is the frontier of a derived tree 7 € D(S), then the
derivation of v would correspond to a derivation {rom a non-terminal
X to the string 3;..2; (23j4..3y io HG and the use of 7 in eome
scatential tree would corrcspond to how the strings a,... 3y and
%;41.--3, are used ia deriving a string io HL.

= S ﬂ = X
* /' \ /\
/ N\ / N\
X\ / \
/ /*\\ \ £_§x_\x
I 7\ 7
N\
ugv
s
I\
!\
/_X A\
AN
7\
/I_X N\
vw /-Ux
I__\Ne 1
f ugy
Figure 6.1

221

Based on this observation, we attempt to show the close
relationship of TAL's aad HL's. It is more convimient for us to think
of the headed string (i,sy...a,) as the string 2,..a, with the bead
poiatiog in between the symbols a; aad s, rather tham st the
symbol a;. The definition of the derivation operators can be extended
in o straigbtforward manner to take this into accoust. However, we
can scheive the same effect by considering the definitions of the
operators LLLC,etc. Pollard suggests that cases such as LL,(X}) be
left uadefined. We shall assume that if X =why thea LL,F,-X) -

- - - i A -

wh)y, LL,(XX) = X, LC,(;,X) = x), LCg(Ax) = X, LC,(x,)) = X,
2ad LC,(AX) =)x. *

We, thea say that if G is & Head Grammar, thea w, = whx beloags
to L{G) if and only if S derives the headed string wkxtor whix.
With this new definition, we shall show, without giving the proof,
that the cluss of TAL's is contained in the class of HL's. by
systematically converting sny TAG G to a HG G'. We shall sassame,
without loss of generality, that the constraints expressed at the nodes
of elementary trees of G are -

1) Nothing caa be adjoined at a node (NA),

2) Any appropriate tree (symbols at the node and root of the
auxilliary tree must match) can be adjoined {AA), or

3) Adjoining st the sode is obligatory (OA).

It is easy (o show that these constraints are enough, and that
selective adjoining can be expressed in terms of these and sdditional
son-terminals. We know give a procedural description of obtainiag
a8 equivalent Head Grammar from a Tree-Adjoining Grammar. The
procedure works as follows. It is a recursive procedure
(Coavert _to_HG) which takes in two parameters, the first
representing the node oo which it is being applied and the second the
label appearing on the left-band side of the HG productions for this
node. If X is a aonterminal, for each auxiliary tree §.whose root has
the label X, we obtais a scquence of productions such that the first
oae has X on the left-band side. Using these productions, we can
detive the string w Aw, where a derived tree in D(f) bas a frontier
w,Yws. If Y is a'node with with label X is some tree where
sdjoining is allowed, we introduce the productions

Y' -> LLy(X,N') {so thet & derived tree vith root

1sbel X may vrap sround the string derived from the subtree
belov this node)}

W' -> LCy(Ay,....Ay) (assuming that there

are § children of this node and the 12 child is the
socestor of the foot node. By calling the procedure
recursively for all the § children of Y with A,k

ranging from 1 through j, ve can derive from N* the
froatier of the subtree below Y}

Y* -> X* { this is to baodle the case vhere no
sdjunction takee place st Y}

If G is a TAG then we do the following ~
Repeat for every Initisl tree

Convert_to_HG(root,S') {S' will be the start syabol of
the nes Head Gramaar).

Repeat for each Auxilliary tree

Copvert_to_HG(root,rootsyabol)

vhers Convert_to_MG(node,nsme) is defined ss follovs

1f node is an istermal node then

case 1 If the constraint at the sode {s AA

add productione Sya->LLy(node sgyubol N'),
l'-)I.C‘(A,'.....A".....A,')
Syl->LC‘(A,’,...,A“....,A,')

vhere ' A;',A;",...Ay" are pev non-terainsl

synbole Ay, ... Ay correspoad to tbe | childrea

of the node and i=1 {f foot aode is not & descendant
of node else =1 such that the 1%3 child of node is
ancestor of foot pode,j=pusber of childres of node

for k=1 to | step 1 do
Convert_to HG(k'® cbild of node,A,’).
Case 2 The constraint at the node is NA,
Same as Case 1 except don’t add the productions
Sym->LL;{(node symbol.N°),
L RER T T YA YO D
Case 3 The constraint at the node is OA.
Same as Case 1 except that we don't add
Sym->LCy (A", .. A7)
else if the node has a terminal symbol a,
then add the production Sym ->3
olse {1t ie a foot pode }
if the constraint at the foot node is AA then
add the productions _
Sy ->LLy(node syubol,A)/X
if the constraint is OA then add only the
production —
Sym ->LL,(node symbol)

{f the constraint is NA add the production
Sym ->\

We shall now give an example of cooverting 2 TAG G to a
HG. G contains a single initial tree a, and a single auxiliary tree f
as in Fig. 5.2.

S s (¢
a =] 8= I\
. / \
[3 s
/ b\
/1N
/ 1\
b S(¢) ¢
Figure 6.2

Obviously, L(G) = (32b%® [a 2 0}

222

Applying the procedure Convert _to_HG to this grammar we
obtain the HG whose productioss are gives by-

$'-> Ly(s,.A)
->
-> LCy(8,C)
> T
-> LLy(S.D)/D
-y LC,(E,F.C)
%
%
-> ‘E
shich cea be revritten ss
s - s/
S -> LCy(s,R°)
A' o> LLy(S,b)e) or A' ->LLy(S,bc)
It can be m-uuﬁ that this ‘run; generates sxactly
LG .

O™mMMmO Omun>

it is worth emphasising that the mais point of this exercise was
to show the similarities between Head Grammars and Tree Adjoining
Grammars. We have shows bow s HG G' (using owr exteaded
definitions) can be obtained is s systematic fashion from a TAG
G. It is our belief that the extension of the definition may mot
secessary. Yet, this conversion process should help us understand the
similarities between the two formalisms.

6. OTHER MATHEMATICAL PROPERTIES
OF TAG's

Additional formal properties of TAG's have been discussed in
[Vijay-Shankar and Joehi,1985]. Some of them are listed below
1) Pumping lemma for TAG's
2} TAL's are closed under substitution and homomorphisms
3) TAL's ate not closed under the following operstions

a) intersection with TAL's
b) intersection with CFL'e
¢) complementation

Some other properties that have been considered ia [Vijay-
Shankar and Joshi,1985] are as follows

1) closure uader the following properties
a) inverse homomorpbien
b) gsn mappings

2) seailinearity and Parikh-boundedness.

223

References

1. Abo,A.V,, and Ulimsa,J.D., 1073 *Theory of Parsing, Transiation
‘F.% Compiling, Volume 1: Parsing, Preatice-Hall, Eaglewood Cliffs,
4., 1073,

2. Joshi,A K., 1083 *How much conlext itivity ls y for
charecterizing structural descriptions - tree adjoining grammars® ia
Natural Laognage Processing - Theoretical, Computationsl, and
Psychological Perapectives (ed. D,Dowty,f.‘Knttunel, A.Zvicm
Cambridge University P’ress, New York, (originally preseoted in
1983) to appear in 1985.

3. Joshi, AK., and Levy LS, 1977 *Constraints on Structural
Descriptions: Local Transformations®, SIAM Journal of Computing
June 1977, '

4. Joshi, A.K., Levy,..S., and Takahashi, M., 1975 *Tree adjoining
grammars®, Journal of Computer Systems and Scicnces, March 1975

§. Kroch, T., and Joski, A.K., 1285 °Linguistic relevance of tree
adjoining grammars®, Technical Report, MS-CIS-85-18 Dept. of
Computer and Information Science, University of Pennsylvania, April
1985

6. Pollard, C., 1084 *Generalized Thrase Structare Grammars, Head
Grammars, and Natural language®, Ph.D dissertation, Stanford
University, August 1954

7. Roach, K., 1984 °*Form3al Piopcrties of Head Grammars®,
unpublished manuscript, Stanford University, also presented at the
Mathematics of Languages workshop at the University of Michigan,
Ann Arbor, Oct. 1084.

8. _Vijay‘Shanku,K., Joshi A K., 1835 *Formal Properties of Tree
Adjoining Grammars®, Technical Report, Dept. of Computer and
lufotmation Science, University of Peoosylvania, July 1985,

GUMS, : A General User Modeling System

Tim Finin
Computer and Information Science
Unive: sity of Pennsylvania
Phifadelphia, PA

Abstract

Ttus paper describes a general architecture ol 3 domain independent
system for building and maintaining long ferm modeis ol individual
users The user modeling system is intended 10 provide a well
detined set of services for an application system which is interacting
with various users and has a need 1o build and maintain models of
ihem As the application system interacts with a user, it can acquire
knowiedge of him and pass thal knowledge on 10 the user model
manienance sysiem for incorporation We describe a prototype
general user modeling system (herealter called GUMS) which we
have implemented in Prolog. This system salistics some of the
desuable charactenstics we discuss.

Introduction - The Need for User Modeling

Systems which attempl lo interact with people in an intelligent and
cooperalive manner need 10 know many things 2boul the individuals
with whom they are interacting. Such knowledge can be of several
diferent varieties and can be represented and used in a number of
ddterent ways Taken collectively, the information that a system has
ot s users is typically refered 10 as #ts user model. This is so even
when i is distnbuted through out many components af the system

Uzamples that we have been invalved with include systems which
dttempt 10 provide help and advice [4, 5, 15}, tutonal systerns [14],
and natural language interfaces [16] Each of these systems has a
need to represent information about individual users. Most of the
vdarmation s acquired incrementaly through direct observation
and/or interaction. These systems also needed 1o infer additional
fazts about thelr users based on the directly acquired mlormation
fur example, the WIZARD help system {4, 15] had 1o represent
which VMS operating system objects (e.g. commands, command
qualitiers, concepls, elc) a user was familiar with and 10 infer which
other objects he was lkely 1o be familiar with.

We are evolving the e design of a general user model maintenance
syslem which would support the modeling needs of the projects
menlioned above. The set of services which we enwision the model
maintgnance syslem performing includes:
* maintaining a data base of observed facts about the
user.

= infering additional true facts about the user based on the
observed facts.

« infering additional facts which are likely to be true based
on delaukt facts and delault rules.

« iftorming the application system when cerain facts can
be infered 1o be true or assumed frue.

» maintaining the consistency of the model by retracting
default information when # Is not consistent with the
observed facts.

224

David Drager
Arity Comporation
Concord, MA

providing a mechanism for building hierarchies ot
Stereotypes which can form intial, partial user models

« recognizing when a set of observed facts about a uses is
no longer consistent with a given stereotype and
suggesting alternative stersotypes which are consistent

This paper descrbes a general architecture for a doman
independent system for building and maintaining long term models ot
individual users. The user modeling system is intended lo provide a
well defined set ol services for an application system which is
nteracting with various u.ers and has a need 1o build and maintain
models ol them. As the application system interacts with a user, it
can acquire knowledge of him and pass that knowledge on 1o the
user mode! maintenance system for incorporation. We describe a
protolype general user modeling system (hereafler called GUMS !
which we have implemented in Prolog. This system satisfies somn
of the desirable characteristics we discuss.

What is a User Model?

The concept of encorporating user models into interactive systenis
has become cominon, but what has been meant by a user mode!
has varied and is not always clear. In trying 10 specify what is being
refered to as a user model, one has 10 answer 3 number cf
questions: who is baing modeled, what aspects of the user are being
modeled; how is the model to be initially acquired; how will it be
maintained; and how will it be used. In t:us seclion we will attermpt g
characlerize our own approach by answering these questions

Who is being modeled?

The primary distinclions here are whether one is modeling individuas
users or a class of users and whether one is attempting to construct
a short or long term model. We are interested in the aquisition and
use of jong term models of individual users. We want 1o represent
the knowledge and beliefs of individuals and 10 do 580 in a way that
results in a persistent record which can grow and change a3
neccessary.

It will be neccessary, of course,lo represent generic facts which are
true of large classes (even afl) of users. In particular, such fagts may
include inference rules which relate a person's belief, knowledge or
understanding of one thing 1o his beliel, knowledge and
understanding of others. For exampie in the context of a timeshared
computer system we may want to include a rule fike:

If a user U believes that machine M is running,
then U will believe that it is possible for him to log
onto M.

It is just this sort of rule which is required in order to suppor the
kinds of coopera.ive Intaractions sludied In [6) and {7), such as the
following:

User: Is UPENN-LINC up?

System: Yes, but you can’'t log on now.
Preventative maintenance is being
done until 11:00am.

What is to be modeled?

Our currem work is focused on building a general purpose, domain

mode! mal system. Exaclly what information
is 1o be modeled is up to the application. For example, a natural
language system may need to know what language terms a user is
likely to be familiar with [16], a CAl system for second language
leaming may need 1o model a user’s knowledge of grammalical niles
[14], an Intelligent dalabase Query systom may want lo model which
lields of a data base jon a user is & d in[10}, and an
expert system may need 1o model a user's domain goais [11].

How is the model to be aquired and maintained?

Woe are exploring a System in which an initial model of the user will
be selected from a set of gtereotypical user models [13]. Selecting
the most appropriate stereotype from the set can be accomplished
by a number of techniques, from letling the user select one to
surveying the user and having an expert system select one, Once
an inilial modei has been selected, it will be updated and maintained
as direct knowledge about the user is aquired from the interaction.
Since the use ol stereotypical user models is a kind of default
reasoning [12), we will use truth maintenance techniques [3] for
maintaining & consistent model.

In particular, ¥ we learn something which contradicts a fact in the our
curremt model of the user than we need o update the model.
Updating the model may lead to an inconsistency which must be
squared away. it the model can be made consistent by changing any
of the default facts In the model, then this should be done. If there s
a choice of which defaults 10 aller, then a mechanism must be
provided 10 do this (e.9. through further dialogue with the user).
there are no defaulls which can be altered %o make the model

i then the ype must be abandoned and a hew one
sought.

How Is the model to be used?

The model can be accessed in two primary ways: lacls can be
addod dolatodovwdnodlmmmomodeland!actscanbeboked
up or i d. A lorward her with a truth
maintenance systsmmbousodtoupdalo the defautt assumptions
and keep the model consistent.

Architectures for User Modeling Systems

Ourgoallsbpwvldoamdus«nndeﬂmmﬂyomamzedabng

the fines shown in figures 1 and 2. The user modeling systom
provides & service 1o an application program which interacts directly
with a user. This appiication program gathers information about the
user through this interaction and choses 1o store some of this
inflormation in the user model. Thus, one service the user model
Mshwm(wmnmmmmwlhouser

This information may trigger an Inferentlal process which could have
a number of outcomes:

* The user modeling system may detect an Inconsistency

and so inform the application.

« The user model may infer a new fact about the user
which triggers a demon causing some action (e.9.
informing the application).

225

GUMD .
GUMS (A
GUMS(A,U)
WNEW
Ao ANUXRS
QUERIES
RPN -
A: an Application

GUMS: General User Modeling System
GUMS(A): Modeling System for Application A
GUMS(A,U): Model for User U in Application A

Figure 1: A General Architeclure for a User Modeling Utility

/\
U3 81
A AT
5 56 u?2 87 s8

s|
u

1

NULL: the Empty Stereotype
Si: Stereotype i
Ui User i

Figure 2: A User Modeling System for an Appfication

« The user model may need %o update some previousty
infered default iniormation about the user

Anolher kind of service the user model must provide Is answering
queries posed by the application. The appiication may need to ook
up or deduce certain lnformation aboud ks current user.

We are curently experimenting with some of thesa ideas in a system
called GUMS,. This system is implemenied In prolog and used a
simple defauk logic together with a bach d chaining interp
rather than a tnuth maintenance system and a lorward chaining
engine. The nexi section describes GUMS, and Uis use of default
logic.

Default Logic and User Modeling

A user model is most usetul In a situation where the application does
nol have complete inl lon about the knowledge and beliefs of its
users. This leaves us wilh the problem of how to model a uset given
we have only a kmited amount of knowledge about him. Qur
approach involves using several forms of default reasoning
techniques: stereolypes, explick delault nyles, and failure as
negation.

We assume that the GUMS, system will be used In an application
which incrementaly gains new knowledge about ks users throughout
the interaction. But the mere ability 10 gain new knowledge about the
user is not enough. We can not wait unlil we have full knowledge
about a user 10 reason about him. Fortunately we can very olten
make generalization about users or classes of users. We calt a such
a generalization a stereotype. A stereotype consists of a set of facts
and rules that are believed 1o applied 10 a class of users. Thus a
stereotype gives us a form of defaul reasoning. '

Slereotypes can be organized in higrarchies in which one stereolype
subsumes anolher if & can be thought fo be more general. A
stereotype S, is said 10 be more general than a stereotype S, o
everything which is true about S, is neccessarily true about S,
Locking at this lrom anolther vantage point, a stereolype inherits all
the facts and nules trom every stereotype that # is subsumed by. For
example, in the context of a programmer’s apprentice application, we
might have Stereotypes coresponding 1o different classes of
programimer, as is suggested by the the hiararchy in figure 2.

In general, we wil want a stereotype to have any number of
immediate , allowing us to e a new stereotype out

of several existing ones. In the context of a programmers

apprentice, gor example, wo may wish 1o describe a particular user

as a SymbolicsWizard and a UnixNovice and a ScribeUser. Ttws,

the stereotype system should form a general lattice. Our current
yst ins the sy to atree.

Within a slerectypes we can have defaull information as well, For
instance, we can be sure that a programmer will know what a file is,
but we can only guess that a programmer will know what a file
directory is. f we have categorized a given user under the
programemer stereoltype and discover that he is not familiar with the
concept of a file then we can concludethat we had improperly chosen
a stereotype and must choose a new one. But I we got the
inlormation thal he did not know what a file direclory was, this would
not rule out the possility of him being a programmer. Thus GUMS,

Tperhaps #rough direct Intaraction with her

226

Progzammec
IAYER:
/
ProgrammingWizard
/ \
/ \
LispMachineWizard UnixRacker
// \\ N

SymbolicsWizard XeroxWizard

Figure 3: A Hierachy of Stereotypes

aftows rules and facts within a stereotype to be either definitely true
of true by detault (i.e. in the absence of information to the contrary.)

In GUMS ; we use the certalitv1 predicate 10 introduce a definile tact
or rule and the detault/1 predicate 1o indicate a defaull fact or rule,
as in:

certain(P). a definite fact: P is true.

cedaln(P i Q). a definte rule: P is true it Q is
delinitely true and P is assumed to be
true # Q is only assumed to be true.

default(P). a defaull fact; P is assumed to be true
unless it is known 10 be false.

default(P It Q). a default rule: P is assumed 1o be true

it Q is true or assumed 1o be true and
there is no definite evidence to the
contrary.
As an examgple, consider a sitwation in which we need to model a
persons famifiarity with certain terms. This is a common situation in
systems which need to produce text as explanations or in response
10 queries and in which there is a wide vadation in the users’
familiarity with the domain. We might use the following niies
{a) detavtt{understands Termy{ramy}.

(b} default(understandsTerm(rom;}
i understandsTerm(ram)).

{c) certain{understands Term{pc)
i understands Term(tbmpc)).

(d) certain(~understands Term(cpuj}.
to represent these assedions, ail of which are considered as
pertaining to a padicular user with respect to the stereotype
containing the rules:
(a) Assume the user understands the term ram unless we
know otherwise.

{b) Assume the user understands the lerm rom i we krow
or beliave he understands the term ram unless we
know otherwise.

() This user understands the term pc it he understands
the term ibmpc.
(d) This user does understand the term cpu.

GUMS, also treats negation as failure In some cases as a defautt
rule. In general, logic is nterpreted using an open workd assumption
That Is, the f1ilure 10 be able to prove a proposttion is nol taken as
evidance that § is not frue. Many logic programming languages, such
a prolog, encourage the interprelation ol unprovability as logical
negation. Two approaches have been forwarded lo juslily the

an i and only it definition that Is called the completion of the
predi The purpose of the completed definition is to indicate that
Ihe clauses that dofing a prodicate dofine gvery possiblo instance of
that predicale.

Any approach to negation as failure requires that a negated goal be
ground before execution, (actually a stightly less restrictive rule could
allow a partially instantiated negated goal 1o run but would produce
the wrong answer if any variable was bound.) Thus we nwst have
some way of insuring that every negated literal will be bound. in
GUMS, we have used a simple variable typing sch to achi
this, as will be discussed fater.

We have used a variant of the completed database approach to
show that a predicate within the scope of a negation is closed. A
predicate is closed if and only i # is defined by an i statement and
every other predicate in the definition of this predicate is closed. We
aflow a metalevet statement completed(F) that s used to signify that
by predicate P we really intend the if definition associated with
P. This same lechnique was used by Kowalski{8] to indicate
completion. 8y delault we believe competad(P} whera not indicated.
So i Pis not explickly closed not P is decided by default.

Thus In GUMS, we have the ability to express that a default should
ba taken from the lack of centain Information {i.e. negation as failure)
as well as from the presence of certain information (i.e. delault
rules). For example, we can have a default rule for the programmer
stereotype that can conclude knowledge about linkers from
knowledg wpilers, as in: .

dafault (knows (linkars} if knows (compilers))

We can also have a rule that will =" ~ the lack of knowledge about
compilers as an indication that ti.c user probably knows about
interpreters, as in:
certain (knows (interpreters)
if ~ knows(compilars))

This syslem also allows explicit negative facts and default facts.
When nagation I8 proved in reference lo a negalive fact then
negation Is not consikd .ed a defaull case. Similarly negation as
tailure is not considered a default when the predicate being negated
is closed. Such distinctions are possibie because the GUMS,
interpreter Is based on a four value logic.

The distinction between Wuth or faisity by default {i.e. assumption)
and truth or falsity by logical implication ks an important one 10 this
system. The central predicate of the system s the two argument
precicat~ show which relates a goal G expressed as a literal to a
truth value. Thus show(Gosl,Val) returns in the variable Va/ the
current belief in the Meral Goal The variable Val can be instantiated
to true, faise, {true), or {talse). The meanings of

thess values are as foflows:
true definllely true according fo the curent
database.
assume(true) true by assumgption (i.e. true by default)

sssume(faiss) false by assumption

227

lalse dafinitely not true.
These vahies represent truth values for a given user with respect 1o

a given stereotype. |f the stereotype is not appropriate, then even
definte values may hava to change. v

Having a four value logic allows us 1o distinguish conclusions made
from purely logical Information from those dependent an default
information. Four value logic also aliows a simple lype of
introspectivg reasoning that may be useful for modefing the belicls of
the usor. We currenlly use a delauk rule to represent an uncertain
beliel about what the user knows or believes, but we could imagine a
siluation where we would like 10 model uncertainties that the user
has in his baliefs or knowledge. One such predicate is an embeded
show predicate. For example we might have a rule that a user will
use a operating syst d that he believe might erase a file
only if he is certain that he knows how 1o use that command. This
might encode as:
cextaln{okay_to_use (Command) if
can_erase_files(Comuand),
show (know (Command) , txue)) .

Another predicate assumed(Pred) will evaluate the truth of Pred and
“strengthen® the result. Thatis

demo (assumed (P) ,V) :-

demo (2, V2),

strengthen(V2,V) .
where the strengthen relation maps assumed values into definite
values (e.g. assume(true) becomes true, assume(faise) becomes
false and true and false remain unchanged). The assumed
predicate Is used to express a certain belief from an uncerain
knowledge of belief. For example we might want 1o express a nle
that a user will always want to use a scraen editor i he believes one
may be avaijlable.

certain(willUse (screenkditor) if
assumed(available (screenkditor))).

The interpreter that GUMS, is base on is a metalevel interpreter
writlen in Prolog. The interpreter must generate and compare many
possible answers to each subquery, because of the multiple value
logic and the presence of explicit negative information. Strong
answers 10 a query (i.e. frue and faise) are sought first, followed by
weak answers (i.e. assume(true) and assume(false)). Becausc
slrong answaers have precedence over weak ones, it is not necessary
fo remove weak information that contradicts strong information.

Another feature of this system is that we can specify the types of
arguments to predicates. This lype information can be used to allow
the system to handle non-ground goals. In our system, a type
provides a way to enumerale a complete set of possible values
subsumed by that type. When the top-level show predicate is given
a partially instantiated goal to solve, it uses the type information to
generale a stream of consistent fully instantiated goals. These
ground goals are tried sequentially.

That goals must be fully intantiated follows from the fact that
negation as failure is built into the evaluation aigorithm. Complex
terms will be instantiated to every pattern allowed by the datatype
given the full power of unification. To speciy the type information,
one should specity argument types for a predicate, subtype
inlormation and type instance information. For example, the following
says that the canProgram predicale ranges over instances of the
type p and prog ingl g that the type
functionalLanguage is a sub-type of programminglLanguage and

that the vaue scheme is an

functionalLanguage:
declare (canProgram{person,
programminglLanguage)) .

instance of the lype

aubt ype (programminglLanguage,
functionallanguage) .

inst (functionalLanguage, acheme) .

Limitations of the Present System

Our currend system has several imiations. One problem is that &
does not extract all of the available information lrom a new fact
learned of the user. Il we assert that a predicate is closed, we are
saying that the set of [cedain) rules for the predicate form a
definilion, i.e. a neccessary and sullicient descriplion. In our curent
system, however, the information still only flows direction! For
example, suppose that we would ike to encode the rule that a user
knows about VO redirection it and only of they know about files and
about pipes. Further, let's suppose that the default is that a person
in this stereotype does not know about files ot pipes. This can be
expresses as:

certain (knows (io_redirection) if
knows (pipes),
knows (filea)) .

default (~knows (pipes)) .
dafault (~knows (files))

closed (knows (io_rxedirection}).

If we learn that a particular user does know about /O redirection
then # should follow that she neccessarily knows about both files and
pipes. Adding the assertion

certain(knows (io_redirection))

however, will make no additional changes in the data base. The
valses of knows{pipes) and knows(llles) will not changel A sample
run after this change might be :
7~ show{knows (1o _redirection),Val).
Val = true

?- show(knows (pipes), Val).
Val = assume (false)

?- show({knows (files),Val).
Val = assume (false) .

The reason for this problem is that the current intempreler was
designed to be able to Incorporate new information without actually
using a full tnuth maintenance system. Before a fact F with tnnh
value VIs to be added 1o the data base, GUMS, checks to see If an
inconsistent truth value V' can be derived for F. f one can be, then a
new stereotype Is sought in which the coniradiction goes away. New
knowledge that does not force an obvious inconsistency within the
database is added as is. Neither redundant information or existing
default information effect the correctness of the interpreter. Subtler
inconsistencles are possble, of course.

Another limitation of the current system its inefficiency. The use of
default rules requires us 1o continue to search for solutions for a goal
uniil a strong one is found or all solutions have been checked. These
two limitations may be add ble by redesigning the sy to be

based on a forward chaining truth maintenance system. The

228

quastion ts whather the relative efficlency of forward chaining wilt
offset the relative Inefficiency of truth maintenance. The use of an
assumption based (ruth maintenance system{3] [s another
alternative that we will lnvestigate.

The GUMS, Command Language

Our cument experimental implementation provides the following
commands 1o the application.

show(Query,Val} succeeds with Val as the strongest truth value for
the gaol Query. A Query is a partially or tully instantiated positive or
negative lteral. Val is return and is the value the current belief state
il Query is partially instantiated then # will return more answers upon
backlracking it possible. in general one answer will be provided for
every legal ground substitution that agrees with current type
declarations.

add(Fact,Status) sets belief in Fact to true. If Fact or any legal
instance of it contradicts the current belief state then the user modet
adopts successively higher stereotypes in the hierarchy until one is
found in which all of the added facts are consistent. it no stereotype
is successful then no stereotype is used, all answers will be based
entirely on added facts. Fact must be partially or fully instantiated
and can be either a positive or negalive fiteral. Sfatus must be
uninstantiated and will be bound to a message describing the result
of the addition (e.g. one of several error messages, ok, the name of
a new stereolype, etc).

create_user(UserName,Stereotype, Fite,Status) stores the current
user if necessary and creates a new user who then is the current
user. UserNamne is instantiated to the desired name. Stereolype is
the logical name of the stereolype that the System should assume to
hold. File is the name of the file that information peraining 10 the
user will be stored. Status is instantiated by the system and returns
error messages. A user must be created in order for the system to be
able to answer queries.

store_current(Status) stores the current users information and
clears the workspace for a new user. Stalus is instantiated by the
system on an error,

restore_user(User,Status) restores a previous user after saving the
current user il necessary. User Is the name of the user. Status is
instantiated by the system to pass error messages.

done stores the system state of the user modeling system, saving
the current user # necessary. This command shoukd be Lhe last
command issued and needs to be issued at the end of every
session.

Conclusions

Many Interactive systems have a strong need to maintain models of
individual users. We have presented a simple architecture for a
general user modeling utility which is based on the ideas of a default
logic. This approact provides a simple system which can maintain a
database of known Information about users as well as use rules and
facts which are associated with a stereotype which is believed to be
appropriate for this usur. The stereotype can conlain definite facts
and define rules of Iference as well as default information and rules
The rules can be used 1o derive new information, both definite and
ed, from the ly believed int tion about the user.

Wae believe that this kind of system will prove useful to a wide range
of apphications. We have implemented an inllial version in Prolog

and ara planning lo use i to support the modefing needs of several *

projecis. We are also exploring a more powerul approach o user
madeling based on the notion of a truth maintenance system

Bibliography

1. Clark, Keith L. Negation as Faire. in Logic and Databases,
J. Minker and H. Gallaire, £d., Plenum Press, New York, 1978.

2. Reiler, R. Closed World Dalabases. In Logic and Databases,
H. Gallaire & J. Minker, Ed., Plenum Press, 1978, pp. 149-177.

3. DeKleer, J. An Assumption Based Truth Maintenance System.
Proceedings of JCAI-85, NCAI, August, 1985,

4. Finin, T.W. Help and Advice in Task Oriented Systems. Proc.
7th Int'l. Joint Conf. on At. Intelligence, LJCAIL, August, 1982.

5. Howe, A. and T. Finin. Using Spreading Activation to identify
Relevant Help. Proceeding of the 1984 Canadian Socisty for
Computational Studies of Intefligence, CSCSI, 1984. also available
as Technical Report MS-C1S-84-01, Computer and Information
Seience, U. of Pennsylvania.

6. Joshi, A, Webber, B. & Weischedel, R. Preventing False
Inferences. Proceedings of COLING-84, Stanford CA, July, 1984.

7. Joshi, A., Webber, B, & Weischede), R. Living Up fo
Expectations: Computing Expert Responses. Proceedings of
AAAI-84, Austin TX, August, 1984, .

8. Kowalski, Robert. Logic for Problem Solving. North-Holland,
New York, 1979.

9. McDermolt, D and J. Doyle. “Non-Monotonic Logic I*. Artificial
inteftigence 13, 1-2 (1980), 41 - 72.

10. Motro, A. Query Generalization: A Method for interpreting Nult
Answers. in Larry Kerschberg, Ed., Expert Database Systems,
Benjamin/Cummings, Menko Park CA, 1985.

11. Pollack, M. Information Sought and Information Provided.
Proceedings of CHI'85, Assoc. for Computing Machinery (ACM), San
Francisco CA, April, 1985, pp. 155-160.

12. Reitar, Ray. “A Logic for Defaul Reasoning®. Anificial
inteligence 13, 1 (1980), 81-132.

13. Rich, Elaine. *User Modeling via Stereotypes®. Cognitive
Science 3 (1979), 329-354.

14. Schuster, E. and T. Finin. VP2: The Role of User Modailing in
Correcting Emors in S d Language Learning. Proc. Conference
on Artificial Inteliigence and the Simulation of Behavior, AISB, 1985.

15. Shrager, J. and 7. Finin. An Expert System that Volunteers
Advice. Proc. Second Annual National Conference in Arificial
inteligence, AAAI, August, 1982.

16. Webber, B. and T. Finin. in Response: Next Stepe in Natural
Language interaction. In Artificial Intelligence Applications for
Business, W. Reltman, Ed., Ablex Publ. Co., Norwood NJ, 1984,

229

Appendix - The Demo Predicate

This appendix defines the demo predicate which implements the
hean of the GUMS, interpreter. The relation
show (Goal, Value)
holds if the truth value of proposition Goal can be shown to be Valve
for a particular ground instance ol Goal. The show predicate first
makes sure that Goal is a ground instance via a call to the baanars
predicate and then invokes the meta-evaluator demo. The relation
demo (Goal, Value, Lavel)
requires thal Goal be a fully instanlialed term a@ 'Level be an
it?lqeg'er that represents the fevel of recursion wilhin the dem
predicate. The relation holds il the “strongest” tuth value lor Goalis
Value.

- op(950,.£fy,’~").
I o‘;(llﬁo.x{y.'il').

show (P,V) 1~ bindvars(P), domo (P, V,0) .

) th values
do:aonzP.P,_) :- truthValue (P}, !.

% reflection...
demo (demo (P, V1) ,V,D} @~

i\,
r(vl)
3::7?'(‘“,6) -> Vatrue;V=false.

% disjunction ...

demo ({P:Q),V,D) :- 1,
demo {P,V1,D}),
demo {Q,V2,D),
upperbound Vi, v2.v).

% con%\mct.inn P
demo (1P, Q),V,D} - .
demo (P, V1,D},
demo (Q,V2.D) .
lowerbound (V1,V2,V) .

demo1-P,¥,D) - 1,
demo (P, V1,D),
negate (V1,V.P).

% assumption ...

demo (assumed (P) ,V,D) :— I,
demo (P, V1,D),
strengthen (V1, V).

% call demol with deaper depth and then cut.
demo (P, V,Depth) :-

Deepar is Depth¢l,

demol (P, V, Deaper},

retractall {temp(_, Deeper}),

1.

% definite facts...
demol (P, true,) :=- certain(P}.
denmol {8, false;) :- certain(~P}.

% find a definite rule that ylelds TRUE or FALSE.
v,D} :-
d‘?:ifg-'n(clnnn(p 1f Q), (demo (Q,V, D}, demoNote (V,D)}) -

demol (P,V,D) :-
forsome (certain(~P if Q).
(damo (Q.V1,D},
negate (V1,V.P},
demoNote (V,D))) -

s stop if the best so far was ASSUME (TRUE) .
demol (P, assume (true), -
retract (cow(.num(tmc) D).

t itive facte.
;.:fo"":-.ﬁﬁ: {txve),_} - default (P} .

% try default rules 't{l one gives a positive value.
true), D) :-
d..l:n(op:-::;-wt.:élt(;)if Q). (demo (Q, V. D), positive(Vi)).

1t negative factes.
m{;‘,‘nl-uz(nho)._) :~ default (~P).

s defsult negative rules.

Jemo) (P, assume (false),D)

1ox-om(do!lult(P Al Q), (demo (Q, V. D), positive(V))) .

A Lf P {8 closod, then its false.
demol (P, false, !} :- closed(P), |

demol (P,
\ demoNote(X,D} succeeds 1f X is TRUE or FALSE,
V otherwise Lkt falls after urdunnq temp (A, }
% to be the strongest value known so far.
domoNote(V,) -~ known(V).
demoNotet(v, D) @ -

not (temp ¢, DY),

" .

assart {Lemp(V, D)),

fail.

demoNot e (assume (true) D) -
rotract (temp(D)),

aSsert (tomp(assume (true) D)),
Cail.

% Relations on Truth Values

positive(X}) - X == true ; X == assume(true}.
known (X) :- X == true ; X == false.

higher (true,).

higher {(assumé (true) ,assume (false)}.

higher (_, false).

upperbound (X, ¥, 2} :- higher(X,Y) -> Z~X ; Z=Y.
lowerbound (X, Y,2) :- higher(X,Y) -> 2=Y ; Z=X.
streaqthen (aasume (X) X} .

strengthen(true,t
strengthen{fa

A\ negation is relative to a predicate.
negate(true, fa
negate(assume (t rue¥, assum(lalse),).

negate (assume (falsa), assuma (true),).

negate{fals e,P) :- closed(P).

negate(fal sume (true) ,P) :- no:(clos-d(v)).
truthValue(tive) .

truthValue(false).

truthValue (assume (X)) :- truthValue(X}.

% The Type System

\ i1sSubtype(T1, T2) iff type Tl has an

Vv ancestor ty;;'

135ubtype (T1,7T2)

13Subtype (T1, T2)
subt{pa(‘n JT),
{a5ubtype (T, T2} .

% true if instance I is descendant from type T.
jslnstance (I, T) :- inst(I.T).
tsinstance (I, T) :-

{sSubtype(T1,T},

isinstance (I, T1}.

I subtype (T1,T2) .

% true Lf T is a type.
LeType(T} :- inst(_.T}.
1sType(T) :- subtype(T,).
{sType(T) :- subtype(_,T).

% Grounding Terms

% bindVars(P) ensures that all variables
A in P are bound or it fafls.
bindVars(P) :- var(P),), fail.
bincVars(P) :- atomic(P),l.
bindVars{P) :-

schema (P,PS},

14 (_iAzgal,

PS =.. |Types],
bindArgsTArgs, Types) .

blndqul({
bindA. Atqlntq-] . [TypesiTypes]) :-

bindArg {Arq. g;
bindArgs (Args, Types) .

bindArg (Arg, Type} :-

230

var (Arg),
illnnu\co(kw.‘r .
bindArg (Arg, _ zind\lu(umzq)

%\ scheme(P,S) is true Lif S (s the schama for P, eg
t schems (give{john,X,Y) ,give(parson, person, thing}) .

\ find a docln:-d schama.
schema(P,S) :-
functor (P F,N),
functor(S,F,N},
declare(S),
t.

% uso tho do[ault schema F(thing, thing, ...},
schoma (P, S

functor (P, I-' N),

functor (S,F, N},

lox(l 1,N,axg(I,S,thing)),

SECTION 7: RESEARCH CONTRIBUTIONS
Unziversity of Southern California

A LOGICAL-FORM AND KNOWLEDGE-BASE DESIGN
FOR NATURAL LANGUAGE GENERATION"

Norman K. Sondheimer Bernhard Nebel

USC/information Sciences Institute Technische Iniversitaet Berlin

Marina del Rey, CA Berlin, West Germany
ABSTRACT

This paper presents a technique for interpreting output demanas by a natural language sentence generator in a formally
transparent and efficient way. These demands are stated in a logical language. A network knowledge base organizes the
concepts of the application domain into categories known to the generator. The logical expressions are interpreted by the
generator using the knowledge base and a restricted, but efficient, hybrid knowledge representation system. This design has
been used to allow the NIGEL generator to interpret statements in a first-order predicate calcutus using the NIKL and KL-TWO
knowledge representation systems. The success of this experiment has led to plans for the inclusion of this design in both the
evolving Penman natural language generator and the Janus natural language interface.

1. INTRODUCTION

We have as a general goal the development of natural language generation capabilities. Independent software systems wiil
state demands to the generation facility in @ mutually convenient form. The generator will use those demands to create natural
language sentences. Instead of merging generation with other functions of the overall computer system, this design allows for
reuse of the generator in other systems, specialized processing of linguistic information, and modular development.

Our design requires a notation to represent expressive demands. The notation should be of general applicability. For
example, a good notation ought 1o be acceptable as the output of a natural language parser. The notation should have a
well-defined semantics. In addition, the generator has to have some way of interpreting the demands. This interpretation
has to be efficient.

In our research, we have used formal logic as a demand language. Network knowledge-bases are used to define the
domain of discourse in order to help the generator interpret the logical forms. And a restricted, hybrid knowledge
representation is utilized to analyze demands for expression using the knowledge base.

Arguments for these decisions include the following: Formal logic is a well established means of expressing information with
a well-defined semantics. Furthermore, it is commonly used in natural language analyzers and discourse processors, as well
as other Al systems. Network knowledge-base notations have been shown to be effective and efficient in tanguage processing.
Work on network representations has shown that they too can be given formal semantics [Schmoize and Lipkis 83). Finally,
recent work on hybrid knowledge representation systems has shown how to combine the reasoning of logic and network
systems [Brachman 85). Restricted-reasoning hybrid systems have shown this reasoning can be done efficiently.

On our project, we have:

1. Developed a demand language based on first order logic,

2. Structured a NIKL (New Implementation of KL-ONE) network [Kaczmarek 86] to reflect conceptual distinctions
observed by functional systemic linguists.

3. Developed a method for transiation of expression demands into a propositional logic database,
4. Employed KL-TWO ([Vilain 85] to analyze the translated demands, and

5. Used the results of the analyses to provide directions to the Nigel English sentence generation system [Mann &
Matthiessen 83).

This paper presents our design and some of our experiences with it.

1 .
This research 8 supported by the Defense Advanced Research Projects Agency under Contract No MDAS03 81 C 0335 and by the Air Office of Scientifc Research
under FOBE71-84-01007. Views and conclusions contamed in this repor! are the author's and shoulkd not be mterpreted as representing the official opinion or pohcy of
DARPA, AFOSR, the L.S. Government, or any person or agency connected wih them

2A revised version of this paper will appesr 1 the Proceedngs of the Nationa! Conterence on Artificial intelligence, August 11 - 15, 1986, Phiadeiphia. PA

231

LF and KB Design for Generation

Others have attempted to design an interface between a linguistic generation engine and an associated software system
using an appropriate information representation [Goldman 75, Appelt 83, Hovy 85, Kukich 85, Jacobs 85, McKeown 85]. Still
others have depended on information demand representations with similar well-defined semantics and expressive power.e.g.,
[Shapiro 79]). However, he produces a logician's reading of expressions rather than colloquiai English. For exampte, the
popular song “Every man loves a woman.”, might be rendered “For all men there exist 8 woman that they love.".

The generation component of HAM-ANS [Hoeppner et al. 83} and one effort of McDonald's [McDonald 83] are probably
closest 10 our design. HAM-ANS also uses a logical language (the same one used for representing the analyzed input), has an
extensive network domain model, and has a separable linguistic engine (aithough not as broad in coverage as Nigel).
However, the interface language is close to surface linguistic representation, e.g., there are particular expressions for tense
and voice. So while it is easier to generate sentences from such structures, it is correspondingly harder for software
systems to produce demands for expressions without having access to significant amounts of linguistic knowledge.

McDonald accepts statements in the first order predicate calculus, processes them with a grammar, and outputs excellent
English forms. It is hard to evaluate the coverage of McDonald's grammar, however, the program does depend on extensive
procedurally-encoded domain-dependent lexical entries. Qur domain dependancies are limited to the correct placement of
concepts in the NIKL hierarchy and the association of lexical entries with the concepts. These lexical entries are only
characterized by syntactic features.

In Section 2, we present the component technologies we have applied. Section 3 presents the method by which they are
combined. Section 4 presents several examples of their use. We conclude with a section describing the open problems
identified by our experiences and our plans for future work.

2. BASIC COMPONENTS

The processes and representations we have employed include a unique linguistic component (Nigel), a frame-based network
knowledge representation (NIKL), a propositional reasoner that can take advantage of the network knowledge representation
(KL-TWO), and our own first order logic meaning reprasentation.

2.1. Nigel

The Nigel grammar and generator realizes the functional systemic framework [Halliday 76) at the level of sentence
generation. Within this framework, language is viewed as offering a set of grammatical choices to its speakers. Speakers
make their choices based on the intormation they wish to convey and the discourse context they find themselves in. Nigel
captures the first of these notions by organizing minimat sets of choices into systems. The grammar is actually just a
collection of these systems. The factors the speaker considers in evaluating his communicative goal are shown by questions
called inquiries [Mann 83a]. A choice aiternative in a system is chosen according to the responses to one or more of these
inquiries.

For example, because processes with addressees are grammatically different from other processes, the grammar has an
inquiry, VerbalProcessQ, to test whether the process is one of communication. Etsewhere, as part of deciding on number,
Nigel has an inquiry MultiplicityQ that determines whether an object being described is unary or muftiple. These are
examples of information characterization inquiries.

Another type of inquiry, called information decomposition, picks out of the environment the conceptual entities to be
described. For example, at appropriate times, Nigel asks for descriptions of the causers of events, CauseriD, or the objects
atfected in them, AtfectedID.

One very special inquiry, TermSpecification|D, establishes the words that will be used. Nige! asks the environment for a
set of lexical entries that can be used to describe an entity. So Nigel might find itself being told to describe some event as a
"Send" or some object as a "Message”.

Nigel currently has over 230 systems and 420 inquiries and covers & large subset of English.

Up until the effort described here, the developers of Nigel had only identified the inquiries of the grammar, but not
implemented them.

232

LF and KB Design for Generation

2.2.NIKL

NIKL is a network knowledge-base system descended from KL-ONE [Brachman and Schmoize 85). This type of reasoner
supports description of the categories of objects, actions, and states of affairs that make up a domain. The central
components of the notation are sets of concepts and roles, organized in IS-A hierarchies. The concepls are used to identify
the categories of entities. The roles are associated with concepts (as "role restrictions™), and identify the refationships that
can hold between actual individuals that belong to the categories. The IS-A hierarchies identify when membership in one
category (or the holding of one relationship) entaits membership in (or the holding of) another.

We have experimented with a mail and catendar NIKL domain model developed for the Consul project {[Kaczmarek, Mark, and
Sondheimer 83). It has a concept Send that is meant to identify the activity of sending messages. Send [S-A type of
Transmit (intended to identify the general activity of transmission of information). Send is distinguished from Transmit by
having a role restriction actee that relates Sends to Messages. The concept of Message is defined as being a kind of a
communication object, through the IS-A relation to a concept Communication. In addition, role restrictions connect
Message to properties of messages which serve to distinguish it from other communication objects. The overall model has
over 850 concepts with over 150 roles.

In flavor, NIKL is a frame system, with the concepts equivalent to frames and the role restrictions to siots. However, the NIKL
representation can be given a formal semantics.

2.3.KL-TWO

KL-TWO is a hybrid knowledge representation system that uses NIKL's formal semantics. KL-TWO links another reasoner,
PENNI, to NIKL. For our purposes, PENNI can be viewed as restricted to reasoning using propositional Iogic:’. As such, PENNI
is more restricted than those systems that use first order logic and a general purpose theorem prover. But it is also more
efficient.

PENNI! can be viewed as managing a data base of propositions of the form (P a) and (Q a b) where the forms are variable
free*. The first item in each ordered pair is the name of a concept in an associated NIKL network and the first item in each
ordered triple is the name of a role in that network. So the assertion of any form (P a) is a statement that the individual a is 2
kind of thing described by the concept P. Furthermore, the assertion (Q a b) states that the individuals a and b are related by
the abstract relation described by Q.

NIKL adds to PENNI! the ability to do taxonomic reasoning. Assume the NIKL database contained the concepts just described
in discussing NIKL. Assume that we assert just the following three facts: {Transmit x), (actee x y) and (Message y). Using
the knowledge base, PENNI is able to recognize that any Transmit, all of whose actees are Messages, is a Send. So if we
ask if (Send x) is true, KL-TWO will reply positively.

KL-TWO can also retrieve information from its database. For example, if asked what individuals were the actees of x, it
could respond with y.

2.4. THE LOGICAL LANGUAGE

Our logical language is based on first order logic. To it, we have added restricted quantification, i.e., the ability to restrict the
set quantified over. In addition, we allow for equality and some related quantifiers and operators, such as the quantifier for
“there exists exactly one ..." (31) and the operator for “the one thing that ..." (). We permit the formation and manipulation of
sets, including a predicate for set membership (ELEMENT-OF). And we have some quantifiers and operators based on Habel's
7 operator {Habel 82].

Figure 2-1 gives three examples of the forms accepted. Included are a few individuals: two people (RICHARD and SMITH),
the computer (COMPUTER), a set of messages (MM33), and the current time (NOW). Later on, we will show how these are
turned into English by our system.

We include in our language a theory of the categories of conceptual entities and their relationships. We have taken what is
often referred to as a Davidson approach [Davidson 67]. This is marked by quantification over events and state of affairs. We
refer to these as ActionOccurrences and RelationOccurrences, respectively. We associate time and place with these

SpENNT is an enhanced version of RUP [McAester 82)

‘PEml actually works with the quantifier-free predicate calculus with equaiity. it has a dernon-like facility capable of some quantdicational reasoning as well.

233

LF and KB Design for Generation

A. (3x € ActionOccurrence)((3p € Past)(timeofoccurrence(x,p)) A
(3y € Transmit)(records(x,y) Aactor(y, SMITH)A(3z € Message)actee(y,z)))

B. (Ix € ActionOccurrence){(3t € Future)(timeotoccurrence(x,)A
(3y € Display)(records(x.y) Aactor(y,RICHARD) A
requestedobject(y.tq{(3z € ActionOccurrence)((3p € Past)(timeofoccurrence(z,p))/\
(3w € Send){records(z,w)Aactor(w,SMITH)Aactee(w.q)))A
beneficiary(y, COMPUTERY)))

C. (3z € ActionOccurrence)
(3d € Display)(records(z.d) Aactor(d, RICHARD) Abeneticiary(d, COMPUTER) A
(¥m € MM33)(3! r € {r{(3s € RelationOccurrence)
(timeofoccurrence(s, NOW)A
(3t € InspectionStatus)(records(s,t) Arange(t.r) Adomain{t.m))}}}
(requestedobject(d.r))))

Figure 2-1: Exampfe Logical Expressions

entities. We differ from Davidson by identifying a class of abstract Actions and Relations that are recorded by
ActionOccurrences and RelationOccurrences®. With Actions and Refations, we associate the participants and

circumstances of the actions and states-of-affairs, e.g., the actor and actee.

In addition to using the logical language for the demands for expression, we use it to maintain a database of factual
information. Besides the “facts of the world"”, we assume the availability of such knowledge as:

*Hearer, speaker, time and place.
*The theme of the ongoing discussion.
*Objects assumed to be identifiable to the hearer.

Work on maintaining this database is proceeding in parallel with the work reported here.

Finally, we have allowed for a speech act operator to be supplied to the generation system aiong with the logical form. This
can be ASSERT, COMMAND, QUERY, ANSWER or REFER. ANSWER is used for Yes/No answers. The others are given
the usual interpretation.

3. CONNECTING LANGUAGE AND LOGIC
Restating the general problem in terms of our basic components, a logical form submitted as a demand for expression must
be interpreted by the Nigel inquiries. Nigel must be able to decompose the expressions and characterize their parts.

To achieve this, we have used NIKL to categorize the concepts {(or terms) of the domain in terms of Nigel's implicit
categorizations. We have written Nige! inquiries which use the structure of the logical language and the NIKL model to analyze
the logical forms. To do this efficiently, we have developed a way to translate the logical form into a KL-TWO database and use
its reasoning mechanisms.

3.1. Functional Systemic Categorizations in a NIKL Knowledge Base

Our NIKL knowledge base is structured in layers. At the top are concepts and roles that reflect the structure we impose on
our logical forms. Here we find concepts like ActionOccurrence and Action, as well as roles like records. At the bottom
are the entities ot the domain. Here we find concepts like Transmit and Send, as well as roles like requestedobiject. All of
these concepts and roles must be shown as specializing concepts at a third, intermec'iate level, which we have i- .roduced to
support Nigel's generation.

Functional systemic linguists take a Whorfian view: that there is a strong connection between the structures of thought and
language. We follow them in categorizing domain concepts in a way that reflects the different linguistic structures that
describe them. For example, we have distinguished three types of actions (verbal, mental and material) because the clauses
that describe these actions differ in structure. We have at least three types of relations (ascription, circumstantial and

51’h»s apDroech 18 mEpred Dy representations that associate ime and place ndices with formulas [Montague 74)

234

LF and KB Design for Generation

generalized possession) for the same reason®.

.

Some of these categories are shown graphically in Figure 3-1. The double arrows are the IS-A links. The single arrows are
role restrictions.

Umastaccurence

Figure 3-1: Example Upper and Intermediate Layer Categories

Relating these distinctions to our earlier examples, the concepts Transmit and Send are modelled as subclasses of
MaterialAction. Message is a kind of NonConsciousThing.

This modelling extends to the role hierarchy, as well. For example, the role requestedobject is modelled as a kind of actee
role.

The insertion of systemic distinctions does not compromise other factors, since non-linguistic categorizations can co-exist
in the knowiedge base with the systemic categories.

Once the domain model is built we expect the systems using the generator to never have to refer to our middle level
concepts. Furthermore, we expect Nigel to never refer to any domain concepts.

Since the domain concepts are organized under our middle level, we can note that all domain predicates in logical forms
are categorized in systemic terms. To be complete, the domain model must identify each unary predicate with a concept
and each binary predicate with a role. The concepts in a logical form must either reflect the highest, most general, concepts in
the network or the lowest layer. The domain predicates must therefore relate through domain concepts to systemic gategories.

3.2. Logical Forms in KL-TWO

Gary Hendrix [Hendrix 75] developed the notion of Partitioned Semantic Networks in order to add the representational
power of quantifier scoping, belief spaces, etc., 1o the semantic network formalism. This does not pay off in terms of faster
inferences, but it allows us to separate the two structures inherent in logical formulas, the quantification scopes and the
connections of terms. In partitioned networks, these are represented by hierarchiczlly ordered partitions and network arcs,
respectively.

This separation of the scope and connection structure is needed. The connection structure can be used to evaluate
Nigel’s inquiries against the model, and the scope structure can be used to infer additional information concerning
quantification.

We transiate a logical form into an equivalent KI.-TWO structure. All predications appearing in the logicat form are put into
the PENNI database as assertions. Figure 3-2 shows the set of assertions entered for the formuta in Figure 2-1A. These are

GM.WMUWh-\MM.MBBW. Circumstantials invoive tme, place, instrument, efC. in addition 10 ownershp,
generakzed includes such rel NpS as part/whole and s0Cwl asgocaton.

235

LF and KB Design for Generation

shown graphically in Figure 3-3 which includes the partitions. KL-TWO does not support partitions. Instead of creating scope
partitions. a tree is created which retlects the variable scoping’.

(ActionOccurrence x) (Past p) (timeofoccurrence x p) (Transmit y)
(records x y) (actor y SMITH) (Message z) (actee y z)

Figure 3-2: Sample PENNI Assertions

3«

{ActlonOccurrence x)

3 1\
e ' / records
timeofoccurrence

(Teansmity)

(Past p) .}d/ 3: \.«\u

SM'TH

(Message 2}

Figure 3-3: Sample Partition Structure

During the translation, the variables and constants are given unique names so that these assertions are not confused with
true assertional knowledge (this is not shown in our examples.). These new entities may be viewed as a kind of hypothetical
object that Nigel will describe, but the original logical meaning may still be derived by inspecting the assertions and the scope
structure.

3.3. implementation of Nigel Inquiries

Our implementation of Nigel's inquiries using the connection and scope structures with the NIKL upper structure is fairly
straightforward to describe. Since the logical forms reflecting the world view are in the highest level of the NIKL model, the
information decomposition inquiries use these structures to do search and retrieval. With all of the predicates in the domain
specializing concepts in the functional systemic level of the NIKL model, information characterization inquiries that consider
aspects of the connection structure can test for the truth of appropriate FENNI propositions. The inquiries that relate to
information presented in the quantification structure of the logical form will search the scope structure. Finally, to supply
lexical entries, we associate lexical entries with NIKL concepts as attached data and use the retneval methods of PENNI and
NIKL to retrieve the appropriate terms.

Let's consider some examples. The generation activity begins with a pointer to the major ProcessOccurrence. By the time
CauserlD is asked, Nigel has a pointer to what it knows to be a caused Action. CauserlD is realized by a procedure that
nnds the thing or things that are in actor type relationships to the Action. AtfectediD works similarly through the actee
predicate. When VerbalProcessQ is asked, Nigel simply asks PENNI if a proposition with VerbalAction and the Action is
true.

These examples emphasize the use of the connection structure to analyze what functional systemic grammarians call the
ideational content of an utterance. In addition, utterances are characterized by interpersonal content, e.g., the relation
between the hearer and the speaker, and textual content, e.g.. relation to the last utterance. We have been developing
methods for storing this information in a PENNI database, so that interpersonal and textual inquiries can also be answered by
asking questions of PENNI.

MultiplicityQ is an example of a more involved process. When it is invoked, Nigel has a pointer to an individual to be
described. The inquiry identifies all sets as multiple and any nan-set individuals as unitary. For non-set variables, it explores
their scoping environment. Its most interesting property involves an entity whose quantification suggests an answer of unitary.
If the entity is shown in the logical form as a property of or a part of some entity and it is inside the scope of the quantifier that
binds that entity and this second entity must be treated as multiple, then both entities are said to be multiple.

7
Mere we diverge o™ Hendox of the of our . Separate scopes are kepl for the range restriction of a quantfication and its predication. n
addion the scope of the lerm formng Operators, ¢ &nd 1] are kept in the scope structure.

236

LF and K8 Design for Generation

TermSpecificationlD is unique in that it explores the NIKL network directly. It is given a pointer to a PENNI individual. It
accesses the most specitic generic concept PENNI has constructed to describe the individual. It looks at this concept and
then up through more general categories until it finds a lexical entry associated with a concept.

4. EXAMPLE SENTENCES

Space constraints forbid presentation ofa complete example. Let's look at a few points involved in transforming the three
example logical forms in Figure 2-1 into English. Assume for Example 2-1A, that, at this moment, the COMPUTER wishes to
communicate to RICHARD the information as an assertion, and that SMITH is known by name through the PENNI database.
The flow starts with x identified as the central ProcessOccurrence. From there, y is identified as describing the main
process.

TermSpecificationlD is applied to y in one of the first inquiries processed. This is stated to be a Transmit. However, we
are also told that its actee is 8 Message. Assuming the model described in Section 2.2, PENNI concludes that y is not just a
Transmit, but a Send as well. This leads TermSpecification]D to look first at Send for a lexical entry.

Next, Nigel asks for a pointer to the time being referred to and receives back p. Later this is evaluated against the speaking
time {o establish the tense.

Further on, Nigel characterizes the process. The inquiries attempt to prove, in turn, that y is a Relation, a MentalActive,
and a VerbalAction. When none of these queries are answered positively , it concludes that y is a MaterialAction.

After establishing that y is a kind of event that is caused, Nigel uses CauserID and AffectediD. It receives back SMITH and
z, respectively.

The actual decision on how to describe SMITH and z are arrived at during separate passes through the grammar. During the
pass for SMITH, TermSpecification!D returns his name, "Smith™. MultiplicityQ is invoked and returns unitary. During the
pass for z, TermSpeciticationID returns "message”, while MultiplicityQ returns unitary.

In the end, the sentence "Smith sent a message.” is generated.

Looking at Example 2-1B, one difference on the 'evel of the outermost ActionOccurrence is the absence of an actee
relation. However, requestedobject is shown in the model as a type of actee relation and Affected!D returns q. In order to
describe q the grammar forms a relative clause, "which was sent by Smith". There is no overt indication of the type of entity q
is. However, from the model of Send, PENN! infers that (Message z) is true. TermSpecificationiD for z returns "message".
Treating the sentence as a command and assuming "show" is associated with Disptay, Nigel will produce "Show me the
message which was sent by Smith.”.

Example 2-1C allows us to consider the use of the scope structure in deciding the multiplicity of r. We are required to
describe the displaying of the single inspection status (or read status) that is found for each message in a set of messages. As
noted, we have modetled InspectionStatus as an Ascription relation. The grammar uses "of" to describe this sort of
relation in a noun phrase. MultiplicityQ evaluates m as multiple. Because ris in m's scope, it too is evaluated as multiple
and the noun phrase is rendered as "the read statuses of the messages”. If the scopings were reversed, the logical form would
indicate that there was only one read status for all the messages. MultiplicityQ would evaluate r as unitary and the noun
phrase would be "the read status of the messages”. if both the quantifiers were existential, then each scoping would result in
MultiplicityQ evaluating both as unitary. The noun phrase wouid be rendered as “the read status of the message”. It m were
bound by an 3!, bound by an ¢ or replaced by a unitary constant, and r bound by a universal quantifier, the rendering would be
“the read statuses of the message”.

in Figure 4-1, we display a set of sentences to give the reader some idea of the generator's range as of January 1986. Nigel
played the part of both participants in the dialogue, which used hand constructed logical forms and dialogue contexts in the
absence of an associated software system.

5. CONCLUSION

237

LF and KB Design for Generation

*User: What is the read status of the message which was sent by Jones?

*System: Message 40 is unread.

*User: Are any messages which were sent by Jones in the tape file?

*System: Yes. There are messages which were sent by Jones. However, the tape is in use.

*User: Did Smith send any messages?

*System: Message 45 was sent by Smith.

*User: Did Smith schedule his New York meeting with me?

*System: Yes.

*User: What does the window show?

*System: The window shows a request by Jones.

*User: Did | create the window?

*System: The window was created when you asked me to display Message 50. You deleted the message, then you
asked me to display it.

Figure 4-1: A Sample Set of.Generated Sentences

5.1. Summary

To summarize, we have developed a first-order predicate-calculus language which can be used to make demands for
expressions to the Nigel grammar. This works by translating the logical forms into two separate structures that are stored in a
PENNI database. Nigel inquiries are evaluated against these structures through the aid of a NIKL knowledge base. Discourse
context is also stored in the data base and lexical entries are obtained from the knowledge base.

Adding this facility to Nigel seems to have added only 10 to 20 percent to Nigel's run time.

§.2. Limitations and Future Plans

For the sake of presentation, we have simplified our description of the working system. Other facilities include an extensive
tense, aspect and temporal reference system. There is also a facility for dynamically constructing logical forms for referring
expressions. This is used when constants are found in other logical forms that cannot be referred to by name or through
pronoun.

There are also certain limitations in our approach. One of which may have occurred to the reader is that the language our
system produces is ambiguous in ways formal logic is not. For example, “the read statuses of the messages” has one reading
which is different from the fogical form we used in our exampie. While scope ambiguities are deeply ingrained in language,
they are not a problem in most communication situations.

Related to this problem is a potentially important mismatch between logic and functional systemic grammars. These
grammars do not control directly for quantification scope. They treat it as only one aspect of the decision making process
about determiner choice and constituent ordering. Certainly, there is a great deal of evidence that logical scoping is not often
a factor in the interpretation of utterances®.

Another set of problems concern the limits we place on logical connectives in logical forms. One limit is the the position of
negations: we can only negate ProcessOccurrences, e.g., "John didn't send a message.”. Negation on other forms, e.g..
“John sent no messages.", affects the basic connection with the NIKL mode!l. Furthermore, certain conjunctions have to be
shown with a conjunctive Retation as opposed to logical conjunction. This includes conjunctions between
ProcessOccurrences that lead to compound sentences, as well as all disjunctions.

Furthermore, we impose a condition that a demand for expression must concern 8 single connected set of structures. In
operation the system actually ignores parts of the logical form that are independent of the main ProcessQOccurrences.
Because the underlying grammar can only express one event or state of affair(not counting dependent processes) and its
associated circumstances at a time, in order to fit in one sentence all the entities to be mentioned must be somehow connected
10 one event or state of affair.

We expect that the limitations in the last two paragraphs will be overcome as we develop our text planning system,

aFov example, Keenan and Faiz state “We feel that the reason for the poor correspondence 1s that NP scope differences in natura! language are not in fact coded of In
peneral reflected in the derivational history of an expression. If $0. we have a situation where we need something n LF which realty doesn't correpond 10 anything in SF -
[Keenan 85, p. 21).

238

— -

LF and KB Design for Generation

Penman [Mann 83b]. A theory of text structure is being developed at USC/ISI that will take less restrained forms and map
them into multi-sentence text structures {Mann 84]. The use of this intermediate facility will mediate for logical connectives
and connectivity by presenting the sentence generator with normalized and connected structures.

The word choice decisions the system makes also need to be enhanced. It currently takes as specific a term as possible.
Untortunately, this term could convey only part of the necessary information. Or it could convey more information than that
conveyed by the process alone, e.g., in our transmit/send example, "send”, unlike "transmit”, conveys the existence of a
message. We are currently developing a method of dealing with word choice through descriptions in terms of primitive
concepts that will support better matching between demands and lexical resources.

A related limit is the requirement in the current NIKL that all aspects of a concept be present in the logical form in order for
the NIKL classiier to have effect. For example, the logical forms must show all aspects of a Send to identity a Transmit as
one A complete model of Send will certainly have more role restrictions than the actee. However, just having an actee
which is 8 Message should be sufficient to indicate that a particular Transmit is a Send. We are working with the developers
of NIKL to allow for this type of reasoning.

Two other areas of concern relate directly to our most important current activity. First, it is not ciear that first-order logic will
be sufficiently expressive for all possible situations. Second, it is not clear the use of hand-built logical forms is sufticient to
test our design to its fullest extent.

5.3. JANUS
The success of our work to date has led to plans for the inclusion of this design in the Janus natural language interface.
Janus is a joint effort between USC/ISI and BBN, Inc., to build the next generation natural language interface within the natural
language technology component of the Strategic Computing initiative {Walker 85]. One feature of the system will be the use of
higher-order logics. Plans are underway 1o test the system in actual use. The future direction of the work presented here will
be largely determined by the demands of the Janus effort.
Acknowledgments

We gratefully acknowledge the assistance of our colleagues Bill Mann, Richard Whitney, Tom Galloway, Robert Albano,
Susanna Cumming, Lynn Poulton, Christian Matthiessen and Marc Vilain.

239

LF and KB Design for Generation

References

[Appeit 83] Douglas E. Appelt, “Telegram: a grammar formalism for fanguage planning,” in Proceedings of the Eighth
International Joint Conlerence on Artificial intelligence, pp. 595-599, 1JCAI, Aug 1983.

[Brachman 85] R. J. Brachman, V. P. Gilbert, H. J. Levesque, "An Essential Hybrid Reasoning System: Knowledge and Symbol
Level Accounts of KRYPTON,” in Proceedings of the Ninth international Joint Conference on Artificial Intelligence,
pp. 532-539, Los Angeles, CA, August 1885. .

[Brachman and Schmolze 85) Brachman, R.J., and Schmolze, J.G., "An Overview of the KL-ONE Knowledge Representation
System,"” Cognitive Science, August 1985, 171-216.

[Davidson 67) D. Davidson, "The Logical Form of Action Sentences,” in N. Rescher (ed.), The Logic of Decision and Action,
pp. 81-85, The University of Pittsburgh Press, Pittsburgh, 1967.

{Goldman 75] Goldman, N. M., "Conceptual generation,” in R. C. Schank (ed.}, Conceptual Information Processing,
North-Holland, Amsterdam, 1975.

[Habel 82} Christopher Habel, "Referential nets with attributes,” in Horecky (ed.). Proc. COLING-82, North-Holland,
Amsterdam, 1882.

[Halliday 76] Halliday, M. A. K., System and Function in Language, Oxtord University Press, London, 1976.

[Hendrix 75] G. Hendrix, "Expanding the Utility of Semantic Networks through Partitioning,” in Advance Papers of the Fourth
International Joint Conterence on Artificial Intelligence, pp. 115-121, Tbilisi, September 1975.

{Hoeppner et at. 83] Wolfgang Hoeppner, Thomas Christaller, Heinz Marburger, Katharina Morik, Bernhard Nebel, Mike
O'Leary, Woltgang Wahlster, "Beyond domain-independence: experience with the development of a German naturat
language access system to highly diverse background systems,” in Proceedings of the Eighth international Joint
Conference on Artificial intelligence, pp. 588-594, IJCA!, Aug 1983.

{Hovy 85] E. H. Hovy, "Integrating Text Planning and Production in Generation," in Proceedings of the Ninth international
Joint Conterence on Artificial Intelligence, pp. 115-121, Los Angeles, CA, August 1985.

[Jacobs 85] Paul Jacobs. 4 Knowledge-Based Approach to Language Production, Ph.D. thesis, University of California,
Berkeley, CA, August 1985

[Kaczmarek 86] T. Kaczmarek, "Recent Developments in NIKL," in Workshop on Expert Systems, DARPA, Asilomar, CA, April
1986.

[Kaczmarek, Mark, and Sondheimer 83) T. Kaczmarek, W. Mark, and N. Sondheimer, "The Consul/CUE Interface: An
Integrated Interactive Environment,” in Proceedings of CHI ‘83 Human Factors in Computing Systems, pp. 88-102, ACM,
December 1983

(Keenan 85] Edward L. Keenan, Leonard M. Faltz, Boolean Semantics for Natural Language. Reidel, Boston, 1985.
[Kukich 85] Karen Kukich, "Explanation Structures in XSEL," in Proceedings of the 23rd Annual Meeting. ACL., Jul 1985.

[Mann 83a] Mann, W. C., "Inquiry semantics: A functional semantics of natural language grammar,” in Proceedings of the
First Annual Conlerence, Association for Computational Linguistics, European Chapter, September 1983.

[Mann 83b] Mann, W. C., "An overview of the Penman text generation system." in Procesdings of the National Conference on
Antificial Intelligence, pp. 261-265, AAAI, August 1983. Aliso appears as USC/Information Sciences Institute, RR-83-114.

[Mann 84) Mann, W.. Discourse Structures for Text Generation, USC/Information Sciences Institute, Marina del Rey, CA,
Technica!l Report RR-84-127, February 1984.

{Mann & Matthiessen 83] William C. Mann & Christian M | M. Matthiessen, Nigel: A Systemic Grammar tor Text Generation,
USC/Information Sciences Institute, Technical Report ISi/RR-83-105, Feb 1983

[McAliester 82] D.A McAllester, Reasoning Utility Package User’'s Manual, Massachusetts Institute Technology . Technical
R::oort, April 1982

[McDonaid 83] David D McDonald, "Natural language generation as a computational problem: an introduction,” in Brady &
Berwick (eds.), Computational Problems in Discourse, pp 209-264, MiT Press. Cambridge, 1983

[McKeown 85] Kathieen R McKeown, Text generation.: using discourse strategies and focus constraints to generate natural
language text, Cambridge University Press, Cambridge, 1885

240

LF and KB Design for Generation

[Montague 74] R. Montague, Formal Philosophy, Yale University Press, New Haven, CN, 1974.

[Schmolze and Lipkis 83] James Schmolze and Thomas Lipkis, "Classification in the KL-ONE Knowledge Representation
System,"” in Proceedings of the Eighth International Joint Conference on Artificial Intelligence, |JCAI, 1983,

[Shapiro 79} Shapiro, S. C., "Generalized augmented transition network grammars for generation from semantic networks," in
Proceedings of the Seventeenth Meeting of the Association for Computational Linguistics, pp. 25-29, August 1979.

[Vilain 85] M. Vilain, "The Restricted Language Architecture of a Hybrid Representation System," in Proceedings of the Ninth
International Joint Conference on Artificial Inteliigence, pp. 547-551, Los Angeles, CA, August 1985.

[Walker 85] E.Walker, R. Weischedel, N. Sondheimer, "Natural Language Interface Technology," in Strategic Systems
Symposium, DARPA, Monterey, CA, October 1985.

241

The Lexicon in Text Generation

Susanna Cumming, USC/IS!

1. Introduction’

in this paper | will review the state of the text generation lexicon. | have two primary goals: 1) to give the reader an idea of what
is currently being done, by setting out some of the alternatives designers of generation lexicons have faced, the choices they
have made, and the implications of these choices for the types of lexical phenomena they have been able to represent. 2) to
suggest what a generation lexicon could do, i.e. what range of lexical phenomena is relevant to the generation task. These
issues will be addressed more or less in parallei throughout this paper, with more attention to the first goal in the first two
sections, and to the second in the last three sections.

The remainder of this Introduction discusses the issue of what kind of linguistic knowledge can be considered lexical
knowledge, and what kind of lexical knowledge is most relevent to the generation task. The text generation systems which |
have been able to compare are briefly described in section 1.3. Section 2 distinguishes between phrasal and word-based
lexicons, and draws some finer distinctions within these two groups. Section 3 sets out the range of cooccurrence phenomena
that that a lexicon can treat; section 4 deals with lexical choice and lexical semantics in generation systems. Section 5
presents a summary of the kinds of information an ideai generation lexicon could cover.

There are many aspects of lexical representation which | have chosen not to cover in this paper. | haven't given much space to
a description of morphological information, because most of the systems | have information on generate English, which isn't
very interesting from a morphological point of view. Since | haven't looked at any systems which generate speech, there is no
discussion here of how to represent phonological or phonetic information.

1.1. What is lexical knowledge?

A brief examination of a few text generation systems reveals what seem to be staggering differences in the content of the
component labelled "lexicon™ or "dictionary”. Treatments range from dictionaries which contain only information about the
endings of nouns and verbs, 1o systems which store entire sentences as single units in the lexicon; from systems which insert
lexicat material as a !ast stage in the derivation process, to systems with lexicons that do the major part of structure-building
work. However. this apparent diversity is o a large degree illusory: systems represent the same basic kind of information in
different ways and in different components For instance, information about restrictions on the modifiers a word can take can
be treated as part of syntax, as part of semantics, or as a purely idiosyncratic component of a lexical entry. This diversity has
its origin in the diversity of practical goals and theoretica! underpinnings of the text generation systems which | studied.

The diversity of approaches to lexical representation in linguistic theory is not just an artifact of notational differences; it in turn
stems at least partly from the fact that the appropriate characterization of a "word” is different in different subsystems of
language [n other werds, "word” must be differently defined for the purposes of phonological, orthographic, morphological,
syntactic and semantic regularnities, although there is a partial overlap {which accounts for the fact that we can frequently g=t
away with using the same term for all these different units). For most of the systems discussed in this paper, the only crucial
mismatches are those between the syntactic word and the semantic word (though the orthographic word and the
morphological word do cccasionally have to be dealt with as weill).

Because of this complexity, for the purposes of this paper | will avoid answering in any absolute way the question posed in the
title of this section. simply charactenzing as “lexical knowledge” that knowledge which at least one of the systems which |
review contains in a component called a “lexicon™ or “dictionary”, while discussing the connections between the structure of

particular systems and the decisions made in those systems about whether and how to represent particular pieces of lexical
information

Trhe ‘mcearc™ s LLpOO T “y e Date~se Ariavec Aecear - Projects Agency ver Contract No MDA3,3 81 C 0335 Views ana conciusions contamed i this
(8O ATR he AUTHOr § BNd SA0uLd AOL e NtATIrete D AT ppwesers! ng the otfical opnvor o policy of DARPA tre L4 S Government or any person o agengy conneclec

"o en

Tr g pADRT DAy DRt et T meAs 3ty frm o teratt o et @ agminer ot Ty o oeagues, most pctably B Doan Cete Fuc bob Ihgra Joharna Moste, Lynr
Pou bur annt Sandy Thompeoe Spes g #acks are goe o - (rowt 37 Matthessan Any misconCeplions or INa3e0uares Mat rema a'e my own

242

1.2. Understanding vs. generation: different priorities

Betfore | begin, however, | would like to address the issue of the extent to which the directionality of linguistic processing -- i.e.
whether it is a matter of understanding or generation -- intluences the content of the lexicon. According to one ideal, in which
the language processing system models all of the linguistic knowledge of a human speaker, the relevant information should be
the same; and some systems which are bidirectional® use the same lexicon tor both understanding and generation. However,
in practice the two types of iexicon tend to be rather different in the information they encode; aven in the bidirectional systems,
some of the lexical information is only used in one direction. This is due to differences in the type of demands that apply to
most actual understanding and generation projects.3 A text understanding system has to be able to accept whatever input it
gets from the user; this requirement dictates a grammar which is comprehensive at least with respect to a given domain, and a
dictionary which is both lexically comprehensive (contains a large number of words) and syntactically comprehensive
(supports all the syntactic distinctions that the grammar can make). However, it can assume a fluent and cooperative
interlocuter; it doesn't have to weed out input which is textually non-cohesive, unidiomatic, uncooperative, or otherwise
"awkward" (with the exception perhaps of gross syntactic ungrammaticality). A generator, on the other hand, doesn't need a
full range of syntactic capabilities (one way of saying whatever it needs to say may be enough); nor does it need a very large
lexicon (one word for everything it needs to say, and fewer syntactic distinctions corresponding to a smaller syntactic
component). But it has to know more about the syntax and lexicon it does have: it has to have a basis for choosing between
syntactic alternatives and lexical items so as to be not only conceptually appropriate and grammatical, but also cooperative,
idiomatic, non-redundant, and otherwise fluent.* Thus, we can say that the generation task sets different priorities for the
lexicon: roughly speaking, a generation lexicon has to put depth before breadth, while the reverse is true for understanding.

In this paper | will naturally concentrate my attention to those aspects of lexical specification which are most particular to the
generation task.

1.3. Systems surveyed

In order to make more concrete the comparison between systems which | will present in the body of this paper. | first give a
very brief sketch of each of the systems which | have been able to find out about, with particular attention to the structure and
function of the lexicon within the system. More detailed discussion of the interesting features of various of these lexicons will
be given in the body of the paper. Citations for the sources from which | have drawn my information are all given in this
section; hereatter | will reter to systems by name without repeating the citations. (For the convenience of the reader who may
not be familiar with all these systems. | will upper-case system names throughout the text of the paper even when this is not the
conventional speiling of the system name. so as to distinguish them from the names of the researchers who developed them.
In this section, systems are listed alphabetically for easy reference. In some cases, | have assigned a name to unnamed
systems.)

| should add that in most cases. | have not had an opportunity to examine the actua! listings for the lexicons 1 dist:us's.5 My
statements as to the contents of these listings are interred from the publiched descriptions of the systems; frequently only
incomplete or suggestive information 1s provided about the iexicon ® Therefore, my comments should be taken as refiecting
potential capabilities of particular lexicon formalisms, which may not be fully exploited in the working versions of each system.
As the interesting issues have 10 do with what is possible rather than with what has been done, | don't see this as a hability.

ANA: [Kukich 83.--- 83] Generates English text from numerical data about the stock-market. The lexicon
contains entnies for whole subjects and predicates Each entry contains morphological information,
semantic information matching certain patterns in the data. and stylistic information (which aids in lexica!
selection) as well as texical matenal. The predicate entries contain subject slots, with semantic restrictions
on the fillers of these siots.” Thus there are predicate entries like "dispiay a hesitant mood early in the day"

“E.g JANUS, the VIE LANG syster. and PHRED (References o’ ese and the other systems mentioned 10 this paper are all gwven in section 1.3 below)
3
This remark, as mos! of the observations m this paper, apphes orily 1o natural .anguage systems which are intended tc take one side m a COMmMunicatve exchange
with a User 1t does not necessarty apDly 1o systems such as ILIAD. wnich produces sentences for ine purpose of language drifl, or 10 systems which generate random

sentences n order o test grammar rules

4
An analogy Can be made (o the excerience of a human learn rg a seconc language typically the range of the language which the \earner can produce appropriately 1s
much smaller than the range the iearner can comprehend

STM exceptions are the lexcons of the JANUS system (which | have worned or) TEXT. ang ILIAD

6
In many systems, espeCally thase with a case frame onientat.or. the mntormat:on avadanie apphes Only 10 verd entres. | have much less intormation about the
representation of Nouns and even €SS ADOUI Diher Caleinres

7
While there are 8IS0 siots within predicate entres these are onty for quantitative elements which are nserted from the statstical summary

243

ILIAD:

JANUS:

KAMP:

MUMBLE:

PHRED:

PROTEUS:

and "display a hesitant mood late in the day", and subject entries like "the indexes™ and “stock indexes"”.

[Bates & Wilson 81, Bates, Beinashowitz, Brown, Dougherty, Ingria, Shaked, Simpson & Wilson 81, Bates,
Beinashowitz, Ingria & Wilson 81, Bates & Ingria 81]. Generates Engliish sentences designed to test
language ability in deaf children. The lexicon contains semantic information relating the entry to a
conceptual hierarchy, case-frame information with semantic restrictions on the fillers of the slots, and
morphological information.

[Cumming & Albano 86, Cumming 86, Mann & Matthiessen 83, Matthiessen 84). A natural language
interface which includes the Nigel systemic generation grammar developed at IS, and the RUS parser
developed at BBN. The parser and the generation grammar share various data structures, including the
lexicon. The JANUS lexicon (ML, or Master Lexicon) contains lexical entries which are singie words or
continuous multi-word phrases; each entry has a feature specification (which contains morphological as
well as syntactic features), a semantic specification which is the name of one or more concepts in the
knowledge base, and possibly some properties which provide cross-indexing with other lexical entries.
values for case and number of pronouns, etc. The features include ali the feature information required by
the Nigel and RUS grammars; thus some features are used only by one of the grammars. In this discussion
my remarks about JANUS feature specification will be aimed primarily at the subset of features used by
Nigel.

The features of the Master Lexicon are arranged hierarchically in a tree; they can thus be thought of as
defining wordclasses. The wordclass organization contains information about which features are
compatible with which other features, and what can constitute a complete feature specification. A word
can belong to any number of wordclasses. Thus in some respects the feature hierarchy of the JANUS
system is similar 1o the feature systems represented by the “word ranks™ of some other systemic generation
grammars (e g. PROTEUS and SLANG).

[Appelt 85a, Appelt 85b, Appelt 83]. Combines a planner with a "teleological grammar” (Telegram) written
in Kay's unification framework { [Kay 79]). The lexical entries map semantic material to lexical material
annotated by syntactic features. Unlike some other grammars written in this framework (e.g. McKeown's
grammar), lexical entries apparently do not contain internal structure.

{McDonald 80, McDonald 85, McDonald 83). This system produces English text from a variety of input
meaning representations. It contains two main knowledge structures, the “dictionary” and the “"grammar”.
The dictionary builds structures by matching an element of the semantic representation to a structure
containing lexical material and labelled slots. More than one realization of the semantic representation may
be specified, so dictionary entries contain "decision-rules” which choose between alternatives on the basis
of context; the various possible outcomes are called “choices”. The grammar performs realizations on the
structures that enierge from the dictionary.®

[--- 85, Jacobs 83]. The generation half of a natural language dialogue system. Ws principal knowledge
structure is the "pattern-concept pair”, where the pattern is a phrasal unit which specifies structures,
features, and lexical material, linked to the “"concept”, a semantic representation; this may be thought of as
the lexicon. The same knowledge is used in understanding and generation.

[Cavey 78]. A systemic grammar which generates descriptions of tic-tac-toe games. It treats the lexicon
as a "word rank”, as proposed in [Halliday 61]; according to this view of lexis®, lexical choices are
represented in exactly the same way grammatical choices are, as a system network, with their own "rank”
in Davey's system, verbs are treated a little differently: the lexical iter corresponding to the verb is chosen
within the verbal group rather than in the word rank. For convenience, there is also a "lexicon proper”
which contains morphological information about the lexical items which inflect.®

BTM structure of the MUMBLE dictionary seems to have changed somewhat n the version described n [McDonald 85]. with the imtroduction of doman-independant
“realization-classes” which contain some ¢! the more general decision-tule/ChoCe comespondences and which cas be referred 10 « ¥ tionary entries.

QSys!lec imgursts prefer the term “lexis™ to “the lexicon™, since the laller term evokes /mages of a single repository of lexical information which is organized aroung
words rather than chowes, 'l discuss this distinction farther in section 2.3

10,

When wriing aboul English, 1 use Lhe term “inflection” 1o refer to the addiion of endings to Nouns, verds and adiectives 1o indicate number, tense, person, and

degree

244

SLANG: [Patten 86]. Another systemic grammar, which generates from a systemic semantic stratum. Like
PROTEUS, it represents lexical distinctions in a word rank of the grammar. However, in SLANG, inflected
forms are handied as separate words in the grammar, rather than storing infliectional information in a
separate component and doing morphology via a routine.

SMRAD: [Kittredge & Mel'chuk 83] . A proposed system which would incorporate the ideas on dictionary content
represented in [Mel'chuk et al. 83, Mel'chuk & Zholkovsky 84, Mel'chuk 81], etc. In addition to semantic,
syntactic (including case frames), phonological and morphological information, a lexical entry contains
lexical functions which relate the word being defined to other words which conventionally cooccur with it
or have certain other types of semantic relationship with it.

TEXT: [McKeown 85, McKeown 83, Derr & McKeown 84]. Generates English text in response to user questions
about the structure of a database. The system consists of several components, of which the most
important are the strategic component (which creates strings of propositions by selecting a schema and
filling it with propositions from the knowledge base with guidance from focus constraints), the dictionary,
and the “tactical component”, which contains a unification-style grammar and some realization routines.
The "dictionary” is intermediate between the strategic component and the Unification-style grammar; it
matches semantic predicates to verb entries containing lexical material and argument structures, and fills
in the arguments from entires corresponding to the arguments of the semantic representation. The
grammar performs transformations and syntactic realization on the output of the dictionary. There is also a
"lexicon”, which contains morphological information used in realization.

VIE-LANG: [Steinacker & Buchberger 83, Buchberger, Steinacker, Trappl, Trost & Leinfeliner 82, Steinacker & Trost
83]. A bi-directional German dialogue system; the lexicons (of which one contains morphological
information, and the other contains syntactic/semantic information) are shared between the parser and the
generator. The syntactic lexicon contains pairs (similar to the “pattern-concept pairs” of PHRED) which
match semantic representations to syntactic patterns including lexical material and case structures.

GAT [Danlos 85, Gross 84, Danlos 84]. (As far as | can tell, this system is unnamed; I've given it the acronym
GAT from the name of [Danlos 85].) Generates reports of terrorist attacks in English and French, from
summaries of the attacks. It uses the lexicon/grammar developed by M. Gross and others at the LADL
project in Paris: the lexicon can be thought of as a list of all the "simple sentences” which exist in the
language, with labeiled slots for the noun phrase arguments. The “simple sentences" have features
specifying the transformations they can undergo, characteristics of the arguments that can fill the siots,
etc. These “simple sentences” are such things as "ACTOR explode EXPLOSIVE in VICTIM'S:LOCATION",
or "ACTOR open fire on VICTIM'S:VEHICLE".""'

2. Phrasal lexicons and word-based lexicons

The lexicons used in text generation systems can be roughly grouped into two classes, according to what is represented in a
typical lexical entry (unit of the lexicon). One class contains lexicons whose entries are typically single words, like the iexicons
of traditional linguistic theory; the other class contains lexicons whose entries typically represent larger constituents, phrases
or even seniences, with some lexical material (by which | mean orthographically-realized words which will appear in the output
string), and usually also some slots or variables which can be instantiated with further fexical material or lexical entries. The
distinction between these two types isn't always clear-cut. Some systems, as mentioned above, have both types, in which
typically the phrasal lexicon represents syntactic and semantic information, and the word-based lexicon represents
morphological information;’zothers can easily provide either type of representation, and it is a question of practice which
alternative is chosen in any given case.

11My transiation of Danlos’ exampiles. The upper case words are the siots, which are filled in from the event sunmanes.

1?“l’v'us s & much more efficient style of representation where there 1s a tot of morphological information to be expressed, since 1 most systems diferent senses of the
same (orthographic or phonological) word will receive diterent lexical entries, but the mflection will be the same For exampie, be as a passive auxiliary (as in the bug
was esien by the bal) and be as a copula (as in the bug was a spider) are very different syntactically and semantcally, but they share tne same inflected forms (i.e. am.
are, is, was, were. been, being), as do ali the other uses of the verd speiing be. ¥ a morphological and a syntacic/semantic lexicon are distinguished, the inforration
about the forms of be onty needs 10 be represented once. In Enghish, the amount of inflect:onal information that reeds 10 be speciied 15 so small that thrs may not be an
important consideration (be 1s an exireme exampie), but in other indo-European languages i becomes much more impontant.

245

2.1. Phrasal lexicons

Perhaps the most important factors distinguishing generation lexicons are the size of the lexical item, the amount of structure it
contains, and the role of lexical selection in the system. In text generation, as opposed to understanding, there seems to be a
tendency towards a large size, complex structure, and powerful role for the lexical item. In this section, | will discuss the
reasons for each of these tendencies and their implications for text generation; in section 3, | will describe how more traditional
word-based lexicons handle the same ranige of phenomena.

2.1.1.Size

While traditional dictionaries are primarily organized around small finguistic units -- words or even morphemes -- many
computational lexicons have entire syntactic constituents stored as their basic unit, all the way up to multi-clausal units.
(These lexicons can conveniently be described as “phrasal”, although as we will see the kind of unit which counts as a
“phrase” varies widely. An argument for this treatment can be tound in [Becker 75].) This has several advantages in text
generation: 1) all kinds of subcategorization and selectional restrictions which need to be stated as properties of particutar
lexical items can easily be handled without any special mechanism: the allowed patterns are listed in the lexicon, and the
disallowed patterns aren't. Any combination of complement types may be represented without the necessity of deciding
beforehand on a particular inventory of possibilities. 2) Similarly, all kinds of idioms and collocational restrictions can
potentially be handled by specifying the exact wording of the lexical phrase. 3) An indefinitely large syntactic range may be
"simufated” by treating syntactic constructions which can't be generated by the grammar as idioms, thus adding to the
syntactic variety of the output text. This principle may be extended to the point where the iexicon "takes over” most of the
grammar, i.e. all or almost all grammatical patterns are represented only in the specification for the lexical items which they
apply to.

The disadvantages of this method are merely the flip side of the advantages. Generally speaking, the more phenomena which
are represented as idiosyncratic properties of lexical items, the fewer phenomena are treated in a general way (although some
systems have the flexibility to represent the same phenomena as either idiosyncratic or as general). This has two related
consequences: 1) lexicons must be much larger; 2) making additions to the lexicon is a much more lengthy and difficuit
process, as properties of lexical items which may in fact be predictable (cn the basis of either other lexical properties or
semantic properties of the item) must be specified anyway.

2.1.2. Structure

Phrasal lexicons ditfer in the amount of internal structure they can encode within their phrases. Thus, there is a difterence
between encoding an idiom like go mad as a verb or predicate with no internal structure indicated and knowing that go is a
verb and mad is a resultative adjective phrase. If there is internal structure indicated. it is possible to store each of these
variants as a single lexical item (which may be desirable, since the phenomenon is not generally productive), and yet still do
some syntactic variation, e.g., add intervening adverbials (go quietly mad), inflect the verb (/ go mad, he goes mad), or relate it
to other syntactically simitar expressions (go crazy, run dry). Another reason one might want information about the internal
structure of phrases is for stylistic control, e.g. to allow control of the amount of variation in lexical choice and syntactic
structure.'®. The lexicons of TEXT, PHRED, VIE-LANG, and MUMBLE all allow any amount of internal structure to be specified
in a lexical item, in contrast to GAT and ANA; while these two systems contain slots for other elements (various arguments in
GAT, subjects only in ANA), they cannot indicate any further structural complexity.

2.1.3. Depth of lexical selection

Another important parameter which distinguishes generation lexicons is the amount of influence lexical choice has over other
kinds of choices, for example syntactic, rhetorical or stylistic choices, made in the system. To cite some instances of
restrictions imposed by lexical items on clause syntax: some verbs with direct objects can't be passivized (e.g. the candy bar
cost a quarter), verbs {and to a lesser degree adjectives and nouns) restrict the syntax ct their complement clauses in various
ways (e.q. [insist that he come vs. °l insist that he comes, but | hope that he comes vs. *! hope that he come) and some
pronouns can be modified by relative clauses while others can't (€.9. Anyone who wants (o can come but *We who want to
can come’?). Naturally, the degree of constraint the availahility of lexical items can impose on grammatical choice is directly
related to the stage in the generation process (or “depth”, in terms of the metaphor current in transformational grammar) at
which lexical choice is made. If lexical choice is made late in the generation process, it can have litte input into other
decision-making, unless some kind of backtracking is atlowed for.

In many systems, the lexicon acts as the intermediary between semantic and syntactic. representations, and the step of "lexical

1
3xuk-ch discusses this pomt n (.- 83], p. 124)

14
The latter example may be grammatical with a nonresinctive readmg, but it 18 Ot possibie with & restrictive readng

246

insertion” is actually the step at which syntactic structure is built. (This is the case for MUMBLE, TEXT, PHRED, VIE-LANG,
and GAT.) This generally works by matching the predicate of the semantic representation with the lexical entry for a verb, and
then filling in the argument slots of the verb with arguments from the semantic representation. (it may also be more
complicated than this: in both TEXT and MUMBLE, for instance, the way this matching is done may involve information from
contextual information such as focus history or preceding reference; in ANA stylistic factors such as length are considered;
etc.) In these systems, the structure built by the lexicon then undergoes further syntactic realization (e.g. transformations,
morphological adjustments). Since the lexical item has already been chosen when these realizations are performed, properties
of the lexical item have the opportunity to constrain the way these realizations occur. For example, in the TEXT system,
routines in the dictionary itself control the choice of syntactic construction (active, passive or existential) as well as the basic
sentence structure. This avoids problems such as a text plan calling for passive syntax when *'.e verb in question can't be
passivized. In KAMP, syntactic processing (including lexical insertion) is alternated with planning in such a way that plans can
be modified in response to the set of choices made available by a particular lexica! item. In GAT, all the decisions are made
simultaneously by the selection of a particular schema which includes lexical, (clause-level) syntactic and clause-combining
specifications.

Of course, if a grammar is sufficiently rich to treat as regular (i.e. as predictable fron. aspects of the specification of the
sentence) a large range of syntactic phenomena, a correspondingly small range needs to be treated as idiosyncratic to a
lexical item (i.e., as dependent on a particular lexical choice). This is another form of the tradeoff between grammar and
lexicon: the more complete a grammar is, the less dependent it is on early lexical specification to do its job right. Thus, in
Nigel, most of the the syntactic properties of a lexical item are taken to be predictable from its semantic properties, following
Halliday's analysis; so, althaugh a particular lexical item isn't chasen until after syntactic planning has occurred, the syntactic
plan is made with reference to the same semantic categories that constrain iexical choice.' For example, non-subjunctive
"that” clauses, since they refer to reports about the world, are restricted to verbs of saying and thinking.

2.2. Word-based lexicons

Many of the models of language to come out of linguistics until recently assume a word-based lexicon in which syntactic
information is specified in the form of features; word choice is constrained both on the basis of meaning and the fit between the
syntactic features of the word and the syntactic environment it is supposed to fit into. In these models, rather than having the
powerful role it has in the systems discussed above, the lexicon is primarily viewed as an appendage to the syntax, where
information which can't be predicted by general rules is stored. The units represented are small (usually morphemes), and the
amount of internal structure which can be represented within an item is minimal. Systems surveyed here which have this
traditional type of lexicon are ILIAD, KAMP,'® and Mef'chuk’s system."’

In some ways, the difference in practice between a low-level word-based lexicon with features and a highly structured phrasal
lexicon is smaller than it appears. For example, a case-frame representation can be mapped onto a featurr. representation in
which the feature corresponds to a particular case pattern -- e.g. the feature "transitive” can be mapper, onto a cas ame
containing a direct object slot. The major difference is that the case frame representation allows r.ore freedon. . .an is
available with a small set of features (as mentioned above); on the other hand, since features can be thought of as
corresponding to classes of lexical items, a single lexical feature may efficiently encode a range of possible case frames that
tend to cooccur with a particular type of word. In the lexical feature specifications referred to by Nigel, all of the
subcategorizational possibilities of a particular sense of a verb are taken to be predictabie from a single feature representing
its wordclass membershipA16 Thus, verbs such as "see”, "hear" etc. have the feature "perception”; the grammar knows that
these verbs can be generated with either a direct object, with a complement clause in which the verb is in its stem form without
“to" {e.g. "I saw you arrive”, "I heard her come in"), or with a complement clause in which the verb is in its present participle
form ("I saw you arriving”, "l heard her coming in"). This particular configuration of possible compiements is restricted to
verbs which refer to sense perception, and thus it is redundant to list each of these possibilities separately for all the
perception verbs.

Of course, to take advantage of this type of generaliza'.on one must have a detailed theory of the wordclasses of a language.,

1
sThns statement, of course. 1s relative to a particuiar view of the characterizat:on of both syntax and semants, for more discussion of this point, see Section 4 beiow
1
6Annouqh the Undication formalism used 1n KAMP allows for lexical entries containing further structure, just as in Lexscal Functional Grammar representations. as far
as [know Appelt doesn’l exploit this possitiity In tus system.

17 .
Although Mel'chuk's dictionares contain an unusual degree of Cross-referencing between entres, they are still primar iy organized around entries for singie words

w‘!’hosc features are related to the semantic type of the verb as represented in the position of the corresponding concept In the semantic network; however. the
relationship s not direct. As we will see in section 3.2 below, case-frame phenomena and select:onal restriclions are aiso handied i the JANUS system; however, they

are treated purety as part of knowiedge about word meanings, and therefore represented in the semantic net rather than the lexicon

247

such as is available in the systemic framework; and indeed, it's clear that a reasonably compiete grammar must make referenc
to a very large set of such wordclasses. This is another case of a tradeoff between having a relatively complex rule system and
treating few things as “irregular” or unpredictable, and having a relatively simple rule system and treating many things as
irregular. In the computational context, the first option implies a large development effort in the area of grammar, while the
second implies a large effort in the area of lexicon. Which option is preferable depends on the goals of the system.

2.3. Systemic grammars

The systemic approach to lexical classification exemptlified in SLANG and PROTEUS doesn't fall easily into either of the
categories described above, although in practice these two systems, like Nigel, have the closest affinity with word-based
systems, since neither supports phrasal lexical items.

The "word rank” of a systemic grammar represents alternatives among word classes in the same way the grammar represents
grammaticat alternatives; the result is a highly structured feature system. Within the word rank, successive choices lead to
actual words in the case of closed class items or "function words" such as prepositions, verbal auxiliaries, and connectives;
these can be thought of as words with unique feature specifications. As mentioned above, the wordclass hierarchy of JANUS
is similar in some ways to & word rank; however, it is more limited in the kinds of relationships it can represent between
features.

In systemic theory, choices between open class items tall into the area called "lexis", often envisioned as an entirely separate
level of grammar ({Halliday, Mclntosh. & Strevens 64, Berry 77, Halliday 76]). it has been proposed that lexis could ultimately
be entirely incorporated into the grammar -- that is, that finer and finer (or, as systemicists say, "more and more delicate")
decisions could ultimately distinguish every word from every other word -- but this "dream” (as Halliday has called it, [Halliday
61]) has never been completely realized.

3. Approaches to cooccurrence phenomena

Now that we have surveyed the various kinds of lexicon and the way they interact with the systems of which they form a part,
we can take a look at the range of phenomena that they express, and consider the implications of these phenomena for optimal
lexicon design. Most of the syntactic information (and some of the semantic information) that needs to be specified about
lexical items can be subsumed under the term “cooccurrence information”, i.e. information about which other linguistic
elements (lexical items or syntactic types) a particular item can "go with”. | will discuss here four distinct types of
cooccurrence phenomena: subcategorization, selectional restrictions, collocation, and idioms'® By "subcategorization™ |
mean specification of the syntactic or semantic frame(s) an item can occur in, such as the fact that think can take a clausal
complement with that but not a complement with to. By "selectional restrictions” | mean semantic restrictions on the fillers of
subcategorization frames, such as the restriction on the subject of the verb elapse that it refer to a period of time. By
“collocation” | mean lexical restrictions (restrictions which are not predictable from the syntactic or semantic properties of the
items) on the modifiers of an item; for example, you can say answer the door but not answer the window. By "idiom" | mean a
fixed phrase whose meaning is noncompositional, i.e. not predictable from the meanings of its parts, e.g. a one-track mind; an
idiom may be “ungrammatical” (i.e., not generatable by independentty motivated rules) if interpreted compositionally, e.g. all
of a sudden.

A consideration of these definitions will at once suggest that the extension of these classes of phenomena depends largely on
the particular model to which they are applied. Whether something needs to be treated as compositiona! or not will depend on
the rules that are available to generate it; there are large numbers of constructions which apply to very limited classes of
words. For example, there is a set of expressions hundreds and hundreds, thousands and thousands etc; this construction is
limited to the number words that act like common nouns in that they can be plural and take articles (so we get a dozen, several
dozens. dozens and dozens but not *a twelve. *several twelves, *twelves and twelves), and also to other kinds of quantity
expressions, e.g. barrels and barrels. While this could be treated as a regular grammatical construction, it is sufficiently
limited in generality that few computational grammars will include it in their syntactic sccpe; it may be more cost-effective to
treat this kind of phenomenon as idiomatic. Similarly, what could be stated as a selectional restriction if one has the right
semantic classes in one's model, may have to be stated as a set of collocations or idioms otherwise. And the line between
selection and subcategorization is blurred when syntactic properties are taken to be predictable from semantic classes.

1gMy use of the terms “subcategorization”™ and ~s-leclionat resctriction™ 15 largely derived from their use in class'cal transtformational theory. “Collocation™ in this
serse can be iraced back 1o [Firih S7) my sense 15 related mest speciically to Firth's “general or usual collocal-ons™. “idiom”™ as used here is more restricted than the
sense (1S grvenine g Longman Dictionary of Engii-h ldioms, ILongman 79] {which inCludes collocations, stancard metaphors, proverbs etc. as weil), 1 15 closer to what
are r haracterzed as “tradihional «ioms ™ in the introd clion to Longman's.

248

3.1. Subcategorization

The handling of subcategorization in several models has been touched on above, in section 2.1.1. 1o reiterate, most phrasal or
case-frame lexicons indicate subcategorization by using slots in a lexical entry. The following lexical entry from PHRED ((-
85], p. 221) for the verb remove is tairly representative:

<Cagent> {root = remove> {physob>
«word = trom> {container>

This entry contains the information that the verb “remove" takes a subject (which is an agent), a direct object, and
prepositional phrase with from. (It also places certain semantic restrictions on the fillers of these slots.)

Word-based lexicons, on the other hand, generally deal with subcategorization by providing lists of features. The entry from
the JANUS lexicon for the same verb contains the tollowing syntactic (and morphological) information:

(make-lexical-item

:name 'REMOVE

:spelling "remove”

deatures '(VERB INFLECTABLE UNITARYSPELLING S-D LEXICAL
CASEPREPOSITIONS OBJECTPERMITTED PASSIVE DOVERB
DISPOSAL EFFECTIVE))

3.2. Selectional restrictions

Some lexicons can handle selectional restriction by attaching semantic restrictions to lexical entry slots. The labels agent,
physob and container in the Phred example above can be thought of as selectional restrictions. ILIAD lexical entries contain
similar restrictions; for examples, the entry for (the verb) "grease" is as follows:

(GREASE SYNCASES
{(SUBJ (HEADCONCEPT T) (MUST-BE (OR (ADULT CHILD))))
(OBJ (HEADCONCEPT T) (MUST-BE VEHICLE))))

This says that the subject of “grease” must be a word that refers to an adult or a child, while the object must refer to a vehicie.
ANA's predicate contain feature restrictions on their subjects (e.g., the entry for display a hesitant mood early in the day has
the features tsubjtype NAME tsubjclass MKT, indicating that the subject must be a name for the stock market), and the
slo’s in the "simple sentence” lexical items of the LADL grammar may have semantic feature restrictions such as + HUMAN
associated with them.

In other lexicons, including that of JANUS and TEXT, selectional restrictions aren't directly represented in the lexicon at all;
rather, these restrictions are in tact captured in another part of the system -- the semantic network. This option is available to
systems that are based on semantic networks composed of hierarchically-arranged concepts, related to one another by "case
roles” (which specify the semantic roles a concept has and the other cancepts that represent possible fillers of each role). In
syster:s that use a semantic net as the source of the representations which go to the grammar, selectional restrictions are
already enforced in the representation that goes to the grammar for expression. This is equivalent to saying that selection,
unlike subcategorization, derives from knowledge about the meanings of words rather than lexical knowledge specific to the
linguistic expressions of those meanings.?

3.3. Collocation

The phenomenon which I've called coliocation is of particular interest in the context of a paper on the lexicon in text
generation because this particular type of idiom is something which a generator needs to know about, while a parser may not.
For example, consider the expression wreak havoc. This can be parsed compositionally as a verb and its object without any
special knowledge; but a generator must know about the special connection between these words, since neither word is found
very often in any other context; we need to avoid generating wreak a mess, make havoc. (Many more examples of this kind of
expression can be found in [Makkai 72, Chate 68, Filimore 79, Fillmore, Kay & O'Conner 84).) Because of this, this set ot

phenomena has been labelled “idioms of encoding".z' i.e. expressions which are compositional, and may seem semanticaliy

mqum differ, however. © how close the mappings are belween concepts and words, semantic role spectiCalions and syntactic case frames; in some systems it
would be hard 10 make an argument that the properties of the “concepts” of the semaniic net aren't simply properties of the words used to exprass hose concepls in a
particuiar isnguage, Or that the “semantic roles” on tnose concepts Aren't really labets for syntactic arguments. For more discussion of thrs issue, see section 4 below.

2, believe the term comes from (Makka 72].

249

3.1. Subcategorization

The handling of subcategorization in several models has been touched on above, in section 2.1.1. To reiterate, most phrasal or
case-frame lexicons indicate subcategorization by using siols in a lexical entry. The following lexical entry from PHRED ({---
85]. p. 221) for the verb remove is fairly representative:

Cagent> <root = remove> {physob>
«word = from> <container>>

This entry contains the information that the verb “remove" takes a subject (which is an agent), a direct object. and
prepositional phrase with from. (It also places certain semantic restrictions on the fillers of these siots.)

Word-based iexicons, on the other hand, generally deal with subcategorization by providing lists of features. The entry from
the JANUS lexicon for the same verb contains the following syntactic (and morphological) information:

(make-lexical-item

:name 'REMOVE

spelling "remove”

features '(VERB INFLECTABLE UNITARYSPELLING S-D LEXICAL
CASEPREPOSITIONS OBJECTPERMITTED PASSIVE DOVERB
DISPOSAL EFFECTIVE))

3.2. Selectional restrictions

Some lexicons can handle selectional restriction by attaching semantic restrictions to lexical entry slots. The labels agent,
physob and container in the Phred example above can be thought of as selectional restrictions. ILIAD lexical entries contain
similar restrictions; for examples, the entry for (the verb) "grease” is as follows:

(GREASE SYNCASES
((SUBJ (HEADCONCEPT T) (MUST-BE (OR (ADULT CHILD))))
(OBJ (HEADCONCEPT T) (MUST-BE VEHICLE))))

This says that the subject of "grease” must be a word that refers to an adul!t or a child. while the object must refer to a vehicle
ANA's predicate contain feature restrictions on their subjects (e.g.. the entry for display a hesitant mood early in the day has
the features tsubjtype NAME tsubjclass MKT, indicating that the subject must be a name for the stock market), and the
slots in the "simple sentence” lexical items of the LADL grammar may have semantic feature restrictions such as + HUMAN
associated with them.

In other lexicons, including that of JANUS and TEXT, selectional restrictions aren't directly represented in the lexicon at all;
rather, these restrictions are in fact captured in another part of the system -- the semantic network. This option is available to
systems that are based on semantic networks composed of hierarchically-arranged concepts, refated to one another by "case
roles” {which specify the semantic roles a concept has and the other concepts that represent possible fillers of each role}. In
systems that use a semantic net as the source of the representations which go to the grammar, selectional restrictions are
already enforced in the representation that goes to the grammar for expression This is equivalent to saying that selection,
unlike subcategorization, derives from knowledge about the meanings of words rather than lexical knowledge specific to the
linguistic expressions of those meanings.2°

3.3. Collocation

The prenomenon which I've called collocation is of particular interest in the context of a paper on the lexicon in text
generation because this particular type of idiom is something which a generator needs to know about, while a parser may not.
For example, consider the expression wreak havoc. This can be parsed compositionally as a verb and its object without any
special knowledge; but a generator must know about the special connection between these words. since neither word is found
very often in any other context, we need to avoid generating wreak a mess, make havoc. (Many more examples of this kind of
expression can be found in {Makkai 72, Chafe 68, Fillmore 73, Fillmore, Kay & O'Conner 84].) Because of this, this set of
phenomena has been labelled “idioms of encoding”,%’ i.e. expressions which are compositional, and may seem semantically

20
Systems drffer. however. n how close the mappings are between concepts and words, semanlic role specifications and syntactic case frames, in some sysiems 1t
wouid be harg o make an arQument thal the properties of the “conceptis™ of the semanic net aren’'t simply properties of the words used to express those concepts i~ 8
particular language or that the “semantic roles™ on those concepts aren’t reaily lapels lor syntactic argumens For more discussion of this isue, see sechion 4 below

1
'} beneve te term comes trom {Makka: 72)

250

transparent to a hearer but require specialized knowledge on the part of a speaker to produce correctly; non-compositional
cooccurrence phenomena like kick the bucket, the ones which | call “idioms™ here, correspond to Fillmore's “idioms of
decoding™; both a parser and a generator must have knowledge of these.

Collocation phenomena aren't explicitly handled as such by any of the systems discussed so far.? They can, of course, be
handled after a fashion, either by treating them as cases of selection (as the JANUS system does) or as cases of idioms (as in
the PHRED system). Hf they're handled as selection, the distinction betweer. idiosyncratic lexical properties and general
semantic properties is lost; and it they're handled as idioms, the regular syntactic behaviour and semantic compositionality of
these phrases isn't expressed. Thus, neither of these solutions is perfectly satisfactory, although one or the other may be
adequate for a small domain in which full generality isn’t crucial.

The only system I'm aware of which addresses this kind of phenomenon in a thorough and explicit way is Mel'chuk's proposal.
He has proposed a device called the "lexical tunction”, which he uses extensively to relate dictionary entries in his
“explanatory and combinatorial” dictionaries of Russian and French. There are a large number of these lexical functions (62
“standard" ones, and an arbitrary number of "non-standard” ones), but they can be roughly divided into two groups' those
that deal with paradigmatic retationships between words (meaning relationships such as hyponymy, synonymy, antonymy et.,
plus words with related meanings but permuted argument structures; for more discussion of some of these phenomena, see
section 4 below), and those that deal with syntagmatic relations -- standard words for the various arguments and modifiers of a
term. ltis this latter group of lexical functions that can be taken as expressing collocational phenomena. For example, there is
a function Magn which relates a word with a modifier which has the meaning “to a great degree”; the words "shave”, “easy”,
“scoundrel” have as Magns "close”, "as pie”. and "unmitigated” respectively. Presumably these lexical functions will be
exploited in the SMRAD text generation system proposed in [Kittredge & Mel'chuk 83].23

3.4, ldioms

Idioms have been discussed in some detail in section 2.1.1 above and in the preceding paragraphs of this section. To reiterate,
most phrasal lexicons can generally handie idioms without any special provisions, either by treating alt pieces of the idiom as
part of the same word as in Kukich's system, or (in case-frame lexicons) by having some of the slots filled in with iexical
material. For example, in PHRED, tell (someone) to get lost is

{person> <root = tell> <person>
<word = to> <word = get> <word = lost>

(Note that there is relatively internal structure to this idiom; in particular, "to get lost” is not a clause.)

In the word-based systems |'ve surveyed, idioms can only be handled as single words, with no intervening material (thus kick
the bucket can be handled -- as an intransitive verb -- but knock (someone’s) block off can't be, and kicked/kicks the bucket
may or may not be.) JANUS can't handle internal inflection, so idioms which are verb phrases aren't possible at all; however,
anything that doesn’t have to inflect internally is allowed, such as many noun phrase idioms (such as red herring, which can
pluralize appropriately as red herrings and such things as complex prepositions (such as face to face with, on account of) can
be handled.

4. Lexical semantics and lexical choice

If the phenomena treated in the previous section are characterized as phenomena of syntagmatic organization -- i.e. facts
about what a lexical item can occur next to -- then the facts discussed in this section can be thought of as facts about
paradigmatic organization -- i.e. facts about what a lexical item can occur instead of, or facts about lexical choice and
meaning relations between words of the same class. The topic of lexical semantics will be treated only rather briefly in this
paper (relative, at least, to the amount that has been said about it in the theoreti :al literature), since not all systems have an
identifiable component of lexical semantics -- separate, that is, from whatever organizing principles underlie the elements of
the demands for expression that are interpreted by the generator. Similarly, not all systems have an explicit strategy for lexical
choice, relying instead on a one-to-one mapping between items in the lexicon and possible elements of the semantic
representation to obviate the need for decision procedures.

zzwrnh Jacobrs discusses these phenomena in [--- 85], he doesn't actually distinguish them from idioms (of decoding) in his system

z’%ﬂuds«:m distinguishes iioms and collocations more or less the same way | do here N his “Word Grammar™ theory, [Hudson B4] (and his abstrac' for this
conference); hus theory is actually quite similar to Mel'chuk's dependency grammar. However, as far as | know Hudson has no p-oposal for a text generator. s0 a

drscussion of hrs account woulkd be out of piace here

251

I'll divide my discussion of semantic phenomena into two sections, of which the first is principally concerned with semantic
classification and the second with how lexical choices are made.

4.1. Semantic classification

The two basic methods by which systems notate semantic classification of lexical items are by feature systems and by
taxonomies. (While Mel'chuk's paradigmatic lexical functions might appear to represent a third system, they are based on an
underlying taxonomy.) The only lexicon which uses a pure feature system is that of ANA: the phrases of ANA's systemare
represented as feature clusters {or, more accurately, as clusters of attribute-value pairs). For example, the four entries
display a hesitant mood early in the day, display a hesitant mood late in the day, creep upward early in the
session, and creep upward late in the session, for example, are distinguished by the values of the two attributes ttim
{time) and tdeg (degree).

Explicit taxonomic concept hierarchies represent (at least) relations of inclusion among word meanings. Thus, a taxonomy
can represent the fact that a cat is a kind of animal; i.e. that the set of cats is included in the set of animals. Taxonomies also
can represent the inheritance of properties from more general to less general concepts; thus, if a cat is an animal and an
animal can have young, then a cat can have young. Taxonomies are composed of concepts, each of which may be associated
with one or more lexical entries; the lexicon is generally the place where the correspondence between concepts and words is
stated. In the above example, we can say that the concept which is associated with the word “cat” is a subconcept of the
concept which is associated with the word "animai”, and that the concept which is associated with the word “animal” 1s a
superconcept of the concept which is associated with the word "cat”. In the following discussion, | will use upper case for
concept names to avoid confusing them with their associated lexical items.

Systems with taxonomies use taxonomic information in radically different ways. In TEXT, a taxonomy is actually the source of
the semantic representations (propositions) from which sentences are generated, since the purpose of the generator is to
describe the taxonomy. In JANUS, taxonomic information is used in the reasoning performed by the grammar during the
generation of sentences. Thus, if the system is generating the sentence "Jones sent the message", the grammar will look at
the taxonomy to see if SEND is the kind of process that typically has an agent. In fact, SEND is a subconcept of the concept
DIRECTED ACTION, and since the grammar knows that directed actions have agents it will construct an agent noun phrase.
Thus, the taxanomy employed in the JANUS system contains all the category distinctions relevant to grammatical choice.

In ILIAD, since its function is to provide grammar drills, the demand for expression consists of a syntactic form; the semantic
taxonomy is used to ensure that the sentence which is finally generated is semantically coherent, i.e., doesn't violate
selectional restrictions. Thus, lexical choice is primarily conditioned by selectional restrictions stated in terms of the
taxonomy. For instance, in the example in section 3.2 above, once "grease™ had been chosen as a main verb the only lexicai
items which would be considered for the direct object would be those associated with subconcepts of VEHICLE. (Since the
actual semantic content of the generated sentence is unimportant in ILIAD, once selectional restrictions have been satisfied,
lexical choice is essentially random.)

Mel'chuk's system contains a richer specification of paradigmatic relations than any of the systems so far discussed. In
addition to hyponymy (the relation between a concept and its superconcept), he has functions for different kinds of synonyms,
antonyms, words which have the same basic meaning but with the syntactic roles of the arguments interchanged (e.g "buy"
and “sell”), and many others that aren't so easily classifiable. This richness is vital in a system whose primary goal is
paraphrase or translation, since it gives the system access to a great deal of knowlecige about what expressions can be
considered semantically equivalent, something not available from a simple taxonomy.

4.2. Lexical choice)

As described above, some systems do all their lexical choice in what might be called the semantics -- that is, by the time they've
decided what to say and before they've laoked into the lexicon, they've already committed themselves to a particular wording.
Systemic grammars with word ranks, conversely, treat lexical choice as part of the grammar (often referred to by systemicists
as "lexico-grammar” for this reason. This is true even in JANUS for closed class items, since these are uniquely selected in
various ranks of the grammar.}) However, there are some systems which have routines for performing lexical choice buift into
the lexicon itself.

TEXT has choice routines built into the dictionary, but they are limited to choice of syntactic category: a given element in the
demand for expression can have lexical realization in more than one category. For example, SURFACE can be realized as
“surface” it is an adjective or a noun, or as “on the surface” it is a prepositional phrase. MUMBLE's decision rules
combine grammatical choices with stylistic choices. ANA provides in the lexicon for choosing in order to enhance stylistic

252

variation of various kinds. Each entry is annotated for its length in syllables, and other things being equal, the grammar
chooses so as to alternate two long sentences with one short one; similarly, each subject entry is annotated for "hyponym
level”, so that on the first mention of a given referent a more specific or more heavily modified phrase is used, and on
subsequent mentions more general or briefer phrases are used; for example, the Dow, the industrials average. and the Dow
Jones average of 30 industrials have successively lower hyponym levels.

5. Some goals for the generation lexicon

In this section | would fike to both summarize the directions which have already been touched on for the generation lexicon,
and add a few new goals to the wish list. These are intended to be goals which system implementars, regardless of the overall
design or underlying linguistic framework of the system, might consider handling somewhere in the system. Some of these
goals are met in some of the systems described here; others as far as | know have not been adequately dealt with in any
working text generation system, and can thus be considered fruitful areas for future research. Many of them will only be
relevant in a really comprehensive text generation system, and can easily be ignored in systems which operate in highly
restricted domains.

5.1. Syntactic range

This isn't, of course, strictly & lexicon issue, but one that has repercussions for lexicon design. Most current systems are able
to give quite detailed specifications for the subcategorizational properties of verbs, but other syntactic categories also impose
subcategorization restrictions on their modifiers. For example, nouns and adiectives“ can take postmoditying clauses with
that (the fact that the world is round is well known, it's good that you could make it) just as can certain verbs. Similarly, ail of
the systems | looked at know about the inflections of verbs (e.g. run/runs/ran/run/running) and nouns (e.g. book/books or
goose/geese), and some know about the inflections of adjectives (e.g. large/larger/iargest, but none that | know of can
generate infiected adverbs, which have the same possibilities as adjectives in English {e.g. He ran fast/faster/fastest.) %® For a
complete coverage, these possibilities must be allowed for.

5.2. The intelligent lexicon

It is a common observation that human languages have many words for things that their speakers commonly talk about -- cf.
the famous claim (attributed to Whorf) that the Eskimos have twenty words for snow. Less universally accepted is the converse
claim, that people tend to think/talk about things that their language has many words for. Whether or not this is the case, it
seems to me that it is a desireable goal for a text generation system that it should not plan to say things which it does not have
the lexical resources to actually produc:e.26 in order to assure that this does not happen, the lexical resources of a system
should be consutted along with the grammar, semantics, and strategic components in planning what to say, so that if it is not
possible to say something using a single word a periphrastic expression can be planned. As mentioned above, work has been
done on this problem in JANUS; KAMP and MUMBLE aiso both allow for some interaction between planning and linguistic
realization such that this kind of negotiation is feasible.

5.3. Cooccurrence phenomena

Ideally, a text generation system should be abie to handle all of the phenomena discussed above -- subcategorization,
selectional restriction, collocation, and idiom -- in such a way that the different degrees of productivity and the ditferent
restrictions on these phenomena are distinguished. Moreover, the ideal system should have the flexibility to treat idioms and
“fixed expressions” which are grammatical either productively (i.e., generate them according to general rules) or store them as
units for the sake of efficiency, depending on the requirements of a given domain. Thus e.g. the phrase We must conclude
that... can be stored as an idiom with a sense equivalent to “therefore™, or generated "from first principles” as a clause with a
first person plura! subject, a modal of necessity etc. In such a system the tradeoff between productive capability and efficient
processing could be avoided, much the way it presumably is in human language use.

24
These are the nouns and adectives that refer to or are predicated of reports of states of atfairs; hence the term “factive™ which 1s sometimes appired to them

2
5Thefe are also ditferences beiween systems in whether every inflected form must be listed for every infiectable word or phrase, or whether some cases are treated as
predicatble.

2€'Thns 15 Not an uncontroversial siatement [McDonald 80] and [--- 83] both argue that the lact tha! their sysiems are occasionally ~al a ioss for words” 15 a poSitive
teature. since it accuraiely models the behaviour of the human language user

253

5.4, Metaphor

A large range of phenomena which have been treated as idiosyncratic to individual lexical items -- ie. as idioms or
collocations -- could perhaps be treated in a more motivated way in a system which had a notion of standard metaphor. (This
proposal is cogently stated in [--- 85]; the sense of metaphor involved here is that presented in e.g. (Lakoff & Johnson 80].) For
example, consider the metaphor “time is money"”. in a system which had a way of representing this association, a number of
collocations involving time -- "spend time", "waste time", “lose time” etc. -- are not random, but can be predicted from the
collocations involving money. Another set of expressions involving time, e.g. “time passed”, "time flies”, “the days marched
by in weary succession” etc., are derived from another standard metaphor for time, namely “time is a moving object”. While
some of Mel'chuk’s lexical functions have to do with standard metaphors of this sort, as far as | know his is the only system that
treats them systematically as such, although any system based on a taxonomic hierarchy with inheritance can simutate
metaphor after a fashion. For example, there is a popular metaphor "a computer is a conscious being"”, which is involved
when we refer to computers as agents of processes that normally only take conscious agents, e.g. "tl.e computer deleted my
files”. In the Janus system, the only convenient way to represent this is by classifying the concept COMPUTER under
CONSCIOUS BEING in the semantic taxonomy. ldeally, however, it would be preferable not to commit one's taxonomy to the
claim that a computer is literally a conscious being, since we also talk about computers as unconscious objects; e.g. we
usually say "the computer that just went down", not “the computer who just wentdown".

5.5. Choice

Ideally. a system should have some way of choosing between lexical items on other than purely grammatical and denotational
grounds. Human speakers take a variety of factors into consideration when making lexical decisions. We use different words
for the same things depending on who we're talking to, what we're talking about, where we are, and what role we're playing. A
simple example is the observation that in more formal contexts English speakers tend to use Latinate words such as "expunge,
remove, infer” instead of Anglo-Saxon phrasal verbs like “wipe out, take off, figure out™. In addition to simply responding to
social context in the way we choose words, we can use words in a way which evoke or create a context for our utterances; for
instance, we can use borrowings from French in order to sound suave, or surfer slang in order to sound cool. We use more
general or more specific terms for the same thing depending on which of its characteristics we're interested in: if we see a
friend careening towards a tree, we're more likely to say “watch out for that tree!” than "watch out for that eucalyptus!” or
“watch out for that plant!” And so on. We're a long way from having natural language generators that have the degree of
control over any level of linguistic choice, grammatical or lexical, that a serious treatment of these considerations would entail;
but we can design our systems such that such distinctions could be accomodated when we have the analyses to support them.

5.6. Conclusion

Lexicons play a wide varieties of roles in text generation systems, from the very central one of providing the primary link
between form and meaning, to the guite peripheral one of finishing up after the grammar is done. Lexical phenomena such as
semantic relationships, syntactic classes, collocation and idioms have received vastly different amounts of attention in different
systems, while other phenomena such as metaphor and non-denotational meaning have received virtually none. Looking at
the capabilities of a wide range of generation lexicons provides an exhilirating sense of the potentia! for future systems, both
from the variety of phenomena that existing systems have dealt with, and from the challenges that still remain. | hope that
bringing a few of these phenomena to light in this paper will succeed in sparking the interest necessary to ensure the lexicon
the attention it warrants in text generation research.

254

References

[Appelt 83] Douglas E. Appeit, “Telegram: a grammar formalism for language planning,” in Proceedings of the Eighth
International Joint Conference on Artificial Intelligence, pp. 595-599, \JCAI, Aug 1983.

[Appelt 85a] Douglas E. Appelt, Planning English Sentences, Cambridge University Press, Cambridge, 1985.
[Appetlt 85b) Douglas E. Appelt, "Planning English referring expressions,” Artificial Intelligence 26, 1985, 1-33.

[Bates & Ingria 81] M. Bates, J. Beinashowitz, R. Ingria, & K. Wilson , "Controlled Transformational Sentence Generation,” in
Proceedings of the 1981 Meeting of the Association lor Computational Linguistics, ACL, 1981.

[Bates & Wilson 81] Madeleine Bates and Kirk Wilson, ILIAD: Interactive Language Instruction Assistance for the Deat, BBN,
10 Moulton St., Cambridge, MA 02138, Technical Report 4771, Sep 1981.

[Bates, Beinashowitz, Brown, Dougherty, Ingria, Shaked, Simpson & Wilson 81] M. Bates, J. Beinashowitz, D. Brown,
D. Dougherty, R. Ingria, V. Shaked, W. Simpsor, & K. Wilson, ILIAD Database Reference, BBN, 10 Moulton St., Cambridge,
MA 02138, Supplement to Tech Report 4771, Sep 1981.

[Bates, Beinashowitz, Ingria & Wilson 81] M. Bates, J. Beinashowitz, R. Ingria, & K. Wilson , "Generative Tutorial Systems,” in
Proceedings of the 1981 Meeting of the Association for the Development of Computer-Based Instructional Systems, 1981.

[Becker 75) Becker, J.D., “The phrasal lexicon," in Schank & Webber (eds.), Theoretical Issues in Natural Language
Processing, , Cambridge, 1975.

[Berry 77] M. Berry, Introduction to Systemic Linguistics, Batsford, London, 1977.

[Buchberger, Steinacker, Trappl, Trost & Leinfellner 82] Ernst Buchberger, Ingeborg Steinacker, Robert Trappl, Harald Trost,
Elisabeth Leinfellner, “VIE-LANG: A German Language Understanding System," in Cybernetics and Systems Research,
pp. 869-874, North-Holland, Amsterdam, 1982.

[Chate 68) Wallace Chafe, "Idiomaticity as an anomaly in the Chomskyan paradigm," Foundations of Language 6, (1), 1968.

[Cumming 86] Susanna Cumming, Design of a Master Lexicon, USC/Information Sciences Institute, Technical Report
ISI/RR-85-163, Feb 1986.

[Cumming & Albano 86] Susanna Cumming and Robert Albano, A guide to lexical acquisition in the JANUS system,
USC/Information Sciences Institute, Technical Report ISI/RR-85-162, Feb 1986.

[Danios 84] Laurence Danlos, "Conceptual and linguistic decisions in generation," in Proceedings of Coling84, pp. 501-504,
COLING, July 1984.

[Danios 85) Laurence Danlos, Generation automatique de textes en langues naturelles, Masson, Paris, 1985.
[Davey 78] Anthony Davey, Discourse Production, Edinburgh University Press, Edinburgh, 1978.

[Derr & McKeown 84] Marcia A. Derr and Kathleen R. McKeown, "Using fucus to generate complex and simple sentences,” in
Proceedings of Coling84, pp. 319-326, COLING, July 1984,

[Fitlmore 78] Charles Filimore, "Innocence: a second idealization for linguistics,” in Proceedings of the 5th Annual Meeting of
the Berkeley Linguistics Society, BLS, 1979.

[Fillmore, Kay & O'Conner 84] Charles Fillmore, Paul Kay & M.C. O'Conner, Regularity and idiomaticity in grammar: the case of
fet alone, University of California, Coginitive Science Working Paper, 1984.

[Firth 57] J.R. Firth, Modes of Meaning, Oxford University Press, Oxtord, , 1957.

[Gross 84] Maurice Gross, “Lexicon-gr: nar and the syntactic analysis of French," in Proceedings of Coling84, pp. 275-282,
COLING, Jul 1984,

[Hahiday 61)] M.A.K. Halliday, "Categories of the Theory of Grammar,” Word 17, 1961.

(Halliday 76] Halliday, M.A K., "Lexical Relations." in G.R. Kress (ed.), Halliday: system and function in language, Oxtord
University Press, London, 1976.

[Halliday, McIntosh, & Strevens 64] M.A K. Halliday, Angus Mcintosh, & Peter Strevens, The Linguistic Sciences and Language
Teaching, Indiana University Press, Bloomington, 1964.

[Hudson 84] Richard Hudson, Word Grammar, Blackwell, Oxford, 1984,

255

[Jacobs 83] Paul S. Jacobs, "Generation in a natural language interface,” in Proceedings of the Eighth International Joint
Conference on Artiticial Intelligence, pp. 610-612, IJCAI, Aug 1983.

[Kay 79] Martin Kay, "Functional Grammar," in Proceedings of the 5th Annual Meeting of the Berkeley Linguistics Society.
pp. 142-158, BLS, 1979.

[Kittredge & Mel'chuk 83] Richard Kittredge & igor Mel'chuk, “"Towards a computable model of meaning-text relations within a
natural sublanguage,” in , pp. 657-659, 1JCA!, 1983.

[Kukich 83] Karen Kukich, "Design of a knowledge-based report generator,” in Proceedings of the 21st Annual Meeting, ACL,
Jun 1983.

[--- 83] Karen Kukich, Knowledge-based report generation, Ph.D. thesis, University of Pittsburgh, Interdisciplinary Department
of Information Science, Aug 1983.

[Lakotf & Johnson 80] George Lakoff & David Johnson, Metaphors We Live By, University of Chicago Press, 1980.
[Longman 79} Longman Group Ltd., Longman Dictionary of English Idioms, Longman, Harlow and London, 1979.
[Makkai 72} Adam Makkai, Idiom Structure in English, Mouton, The Hague, 1972.

[Mann & Matthiessen 83] William C. Mann & Christian M.L.M. Matthiessen, Nigel: A Systemic Grammar tor Text Generation,
USCIntormation Sciences Institute, Technical Report 1SI/RR-83-105, Feb 1983.

[Matthiessen 84] Christian M.I.M. Matthiessen, Systemic Grammar in Computation: the Nigel case, USC/Information Sciences
Institute, Technical Report iISi/RR-83-121, Feb 1984.

[McDonald 80] David D. McDonald, Natural language productions as a process of decision-making under constraints,
Ph.D. thesis, Massachusetts Institute of Technology, Aug 1980.

[McDonatd 83] David D. McDonald, "Natural language generation as a computational problem: an introduction,” in Brady &
Berwick (eds). Computational Problems in Discourse, MIT Press, Cambridge, 1983.

[McDonald 85] David D. McDonald, "Description-directed natural language generation,” in Proceedings of the Ninth
International Joint Conference on Artificial inteftigernce, IJCAI, 1985.

[McKeown 83] Kathleen R. McKeown, "Focus constraints on language generation,” in Proceedings of the Eighth International
Joint Conference on Antificial Intelligence, pp. 582-586, 1JCAI, 1983.

[McKeown 85] Kathleen R. McKeown, Text generation: using discourse strategies and focus constraints to generate naturaf
language text, Cambridge University Press, Cambridge, 1985.

{Mel'chuk 81] Igor Mel'chuk, "Meaning-text models: a recent trend in Soviet linguistics,” Annual Review of Anthropology 10,
1981, 27-62.

[Mel'chuk & Zholkovsky 84] 1gor Mel'chuk & Alexander K. Zholkovsky, Explanatory Combinatorial Dictionary of Modern
Russian, Wiener Slawistischer Almanach, Vienna, 1984.

{Mel'chuk et al. 83] gor Mel'chuk, Lidija lordanskaja, Nadia Arbatchewsky- Jumarie, and Adele Lessard, "Trois principes de
description semantique d'une unite lexicale dans un dictionnaire explicatif et combinatoire,” Canadian Journal of
Linguistics 28, (2), 1983, 105-121.

[Patten 86] Terry Patten, interpreting Systemic Grammar as a Computational Representation: a problem solving approach to
text generation, Ph.D. thesis, University of Edinburgh, 1986.

[--- 85]) Paul S. Jacobs, "PHRED: a generator for natural language interfaces,” ACL 11, (4), 1985, 219-242.

[Steinacker & Buchberger 83] Ingeborg Steinacker & Ernst Buchberger, "Relating Syntax and Semantics: the syntactico-
semantic lexicon of the system VIE-LANG," in Proceedings of the First Conference of the European Chapter, pp. 96-100.
ACL, Sep 1983.

[Steinacker & Trost 83} Ingeborg Steinacker & Harald Trost, "Structural relations -- a case against case,” in Proceedings of
the Eighth International Joint Conference on Artificial Intelligence, pp. 627-628, IJCAI, Aug 1983.

256

Assertions from Discourse Structure

Wiltiam C. Mann
USC Information Sciences Institute

and

Sandra A. Thompson
UCLA Linguistics Department

Introduction

As part of an ongoing study of discourse structure of natural texts, we have
identified a particular class of propositions that affect the hearer’'s perception of the
coherence and communicated content of texts. As an example, if the text (spoken in
a suitable situation) is:

“I'm hungry. Let's go to the Fuji Gardens.”

then the most natural interpretation is that the Fuji Gardens is a restaurant at which
the speaker would like to eat with the hearer. The text is heard as exhibiting a
problem-and-solution structure. Consequently, we can say that there is a proposition
which says that there is a “solutionhood” relation between the two sentences. In this
case, going to the Fuji Gardens (partially) solves the hunger problem.

The solutionhood construct is one type of relational propositions. Note that
the proposition about solutionhood is not stated explicitly in the text.

Although phenomena resembiing relational propositions have been
recognized, there is no widely accepted explanation of how they arise from text. This
paper characterizes relational propositions and presents a theory of discourse
structure to explain them. In this Rhetorical Structure Theory (RST), relational
propositions arise in direct correspondence to particular elements of the structure of
a discourse.

We present Rhetorical Structure Theory progressively during analysis of a
published, two-paragraph poiitical advocacy text. The text involves substructures for
informing, giving evidence, conceding, requesting an action, justifying a presentation,
asserting conditionally, and cthers.

The two elements that form the basis for this paper, relational propositions and
Rhetorical Structure Theory, have both been described in more detail elsewhere. The
explanatory relation between them, however, has not [Mann & Thompson 83, Mann
84].

257

[Mann & Thompson 83] examines various other theoretical constructs,
including implicature, presupposition and indirect speech acts, to see whether they
account for the textual properties of relational propositions. It concludes that these
constructs do not account for them. The paper also discusses relationships between
relational propositions and the work of Grimes, Hobbs, van Dijk, Martin, Longacre,
Beekman and Callow, and it includes analyses of several texts.

1 The Phenomenon of Relational Propositions

The Fuji Gardens statement and the solutionhood relation have already
illustraied that relational propositions need not be signalled explicitly in order to be
rec:ognized.1 Extending the example, we now describe properties relational
propositions hold more generally, giving special attention to those properties that can
be accounted for by Rhetorical Structure Theory.

1.1 Relational Propositions Assert

In our informal presentations of relational propositions, virtually everyone
recognizes that texts such as the political letter analyzed in this paper convey the
particular relational propositions that we attribute to them, even though it does not
represent them explicitly. If the text author were to deny a particular relational
proposition, most readers would be sirprised--and puzzled about the status of the
part of the text containing that proposition.

This general consensus testifies that the relational proposition is conveyed.
Further evidence lies in the apparent redundancy or somewhat bizarre markedness

that occurs when the relatioral proposition is asserted explicitly by adding a clause to
the text:

"I'm hungry. Let s go to Fuji Gardens. Our going to Fuji Gardens would
contribute significantly to solving the problem of my hunger.”

1.2 Relational Propositions are Coherence Producing

One way to demonstrate that a relational propaosition is coherence-producing
is to insert a denial of the relational proposition into the text. Doing so makes some
portion of the text a non-sequitur:

“I'm hungry. Let’s go to the Fuji Gardens. Of course, going to the Fuji
Gardens won't do anything about my hunger.”

1We use constructed examples in this section only, lor expository reasons. RST is a theory of naturai

texi, it was developed entirely on natural texts, such as the political advocacy text analyzed below.

The second sentence above has become a non-sequitur, and as a result the
text as a whole is incoherent. Relational propositions are always
coherence-producing in this way. We will see later that this is a consequence
predictable from RST, particularly from the structural forms that RST posits. Also,
relational propositions are always present in coherent multisentence texts.

1.3 Other Kinds of Relational Propositions

The list below names several kinds of relational propositions besides
solutionhood, and gives an example of an asserted, coherence-producing proposition
for each. These are drawn form the larger collection of [Mann & Thompson 83]; we
believe tl;at still more kinds of relational propositions could be discovered or perhaps
created.

EVIDENCE: They're having a party again next door. | couldn't find a parking
space.

ELABORATION: | love to collect classic automobiles. My favorite car is my 1899
Duryea.

MOTIVATION: Take Bufferin. The buffering component prevents excess

stomach acid.

THES!IS/ANTITHESIS:Players want the referee to balance a bad call benefiting one team
with a bad call benefiting the other. As a referee, | just want to call
each play as I see it.

CONCESSION: | know you have great credentials. I'm looking for someone with
great experience.

CONDITION: Give her a subscription to Science magazine. She'll be in seventh
: heaven.
REASON: I'm going to the corner. We're all out of milk.

JUSTIFICATION: Let me make one thing perfectly clear. | am not a crook.

We desire a theory that will answer two questions about relational
propositions:

1. What relational propositions are possible?

2\M_- have shundant natural correlates for these constructed examples. They have been designed to

dlustrate the fact that the refations and relational propositions are identifiable without any explicit
signalling, such &s a clause, conjunction, or lexical selection.

259

2. What relational propositions does a particular text assert?

The answers come from studying discourse.

2 Rhetorical Structure Theory

RST has not been developed simply to account for relational propositions; it
arose from a much broader desire to understand text and communication and to learn
how texts may be created. We identified and began studying relational propositions
only after RST had largely assumed its present shape.

We wanted a theory of text organization--a way to describe what kinds of parts
atext can have, how they can be arranged, and how parts can be connected to form a
whole text. We especially valued the following attributes.

1. Comprehensiveness: The theory should apply to many kinds of text.

2. Functionality: The theory should be informative in terms of how text
achieves its effects for the writer.

3. Scale insensitivity: The theory should apply to a wide range of sizes of
text and should be capable of describing all of the various sized units of
text organization that occur in a large text.

4. Definiteness: The theory should lend itself to formalization and
computer programming;

5. Constructive potential: The theory should be usable in text
construction as well as text description.

We developed this theory primarily in response to small writizn texts, although
it has also been applied to larger texts. We have constructed RST descriptions for a
variety of texts, including:

- Administrative memos

- Personal letters

- Advertisements

- Editorial letters in magazines

- Complete Scientific American articles
- Newspaper articles

- Public notices in magazines

- Research technical reports

- Travel brochures

- Cookbook recipes

260

To introduce the theory, let us consider the analysis of a text that appeared in
a political newsletter, The Insider, Vol. 2.1, July 1982.2 The Insider is the California
Common Cause state newsletter. This text was the “con" part of a "pro” and “con*
pair of letters on the issue of California Common Cause's endorsement of the nuclear
freeze initiative, which was then on the California state ballot.

The text has been reformatted, numbered, and divided the text into units.
Units are roughly equivalent to clauses, except that that relaiive clauses and
complement clauses are considered to be part of the unit in which their governing
item appears, rather than as independent units. As long as the whole text is analyzed,
the size of the minimal v~'ts can vary without affecting the larger analysis.

1. 1 don’t believe that endorsing the Nuclear Freeze lnitiative is the right step
for California CC.

2. Tempting as it may be,
3. we shouldn’t embrace every popular issue that comes along.
4. When we do so

5. we use precious, limited resources where other players with superior
resources are already doing an adequate job.

6. Rather, | think we will be stronger and more effective

7. if we stick to those issues of governmental structure and process, broadly
defined, that have formed the core of our agenda for years.

8. Open government, campaign finance reform, and fighting the influence of
special interests and big money, these are our kinds of issues.

aLelter used by permission

261

9. (New paragraph) Let's be clear:

10.1 personally favor the initiative and ardently support disarmament
negotiations to reduce the risk of war.

11.But | don't think endorsing a specific nuclear freeze proposal is
appropriate for CCC.

12. We should limit our involvement in defense and weaponry to matters of

process, such as exposing the weapons industry's influence on the
political process.

13. Therefore, | urge you to vote against a CCC endorsement of the nuclear
freeze initiative.

(signed) Michael Asimow, California Common Cause Vice-Chair and
UCLA Law Professor

How is this text organized? At the most general level, the text as a whole
functions as a request to vote in a certain way. At its coarsest level of decomposition,
it has two parts. One part presents the request, presented in segment 13, and the
remainder supports that presentation.

The theory has a number of patterns, called rhetorical schemas, that represent
organizational information about text. To represent the particulars of two-part
decomposition of the text, we use one of these rhetorical schemas, the Request
Schema, Figure 1.

Regues:
enablement

i~

Figure 1: Request Schema

A text that instantiates the Request Schema has a nuclear part, called the
nucleus, that presents a request. It also has one or more supplementary parts, called
satellites, that are functionally related to the nucleus. Satellites are related to the

nucleus by a named relation. Here we have relations named motivation and
enablement.

262

Let us illustrate the parts of a Request Schema in a short example:

“Call me. | have a surprise for you. My extension number is 110.”

The nucleus is “Call me," the motivation satellite is "l have a surprise for you," and
the enablement satellite is "My extension number is 110." These elements can be
arranged in any order and still be an instance of the Request Schema. Schemas do

not encode the order of segments; in this case, the segments can be rearranged freely
without disturbing their meaning or structural relation.

Satellites are all optional, so we can delete either one in this example and still
instantiate the Request Schema--but there must be at least one satellite. The political
text has a motivation satellite, segments 1 through 12, but no enablement satellite.

We analyze each of the two top-level segments of the political text in the same
way. The final segment is a single unit, so we don't try to divide it. The first segment,
12 units long, consists of a claim (unit 1) and two arguments that give evidence for the
claim. We analyze this arrangement with the Evidence Schema (Figure 2), in which
the claim is the nucleus and an evidence relation connects the nucleus to the satellite.
Figure 3 shows the resulting structure.

Evidence
, mdence
Figure 2: Evidence Schema Request
/_\"‘o(iva!ion

Evidence

/\ovldon<

1 2 3 4 5 6 7 8 9

evidence

10 n 12 13
Figure 3: The Upper Structure of the Political Text

263

Both of the nuclei obey what we call the Most Favorable Audience Rule: For
the most knowl able an itively predi hearer, the nucl lone woul
be sufficient to perform the function of the structure; the satellites function to increase
the likelihood that the nucleus will succeed. This rule is a summary of many
observations about the rhetoricatl structures of texts. It does not always hold, but
there i.. a strong, unexplained tendency for it to hold.

In this case of the Request Schema, presenting the request (to vote in a certain
way) to a favorably predisposed hearer would be enough to get that reader to vote as
desired; the supporting argument makes the desired vote more likely for most readers.

This application of the Evidence Schema contains two arguments: One says
that the proposal is wasteful, and the other says that better alternatives exist. They
make the reader more likely to accept the claim that endorsement is not righ(.‘

The analysis goes on, down to single units. Figure 4 shows the additional
schemas used. They are drawn from a larger set of about 25 schemas, defined
through use of about 30 relations.

Thesis /Antithesis Concessive
‘ /msus/anmhesns concesm ‘
Inform
backgroun,d\ Gborahon
Justify Conditional

lushflcam I ?dim l

Figure 4: Other Schemas Used 1o Analyze the Political Text

‘Allhouqh the unit begins "i don't befieve that...,” the claim here is really about whether this step is right
tor CCC. The evidence that foliows in units 2 through 11 s a8bout what benctits CCC, not about whether the
author believes this claim or not. RST does not represent the indirectness of the form of the claim.

264

To illustrate the relations used here, we turn back to the text.

The thesis/antithesis relation connects units 11 and 12. 11: “But | don't think
endorsing a specific nuclear freeze proposal is appropriate for CCC." 12: "We
should limit our involvement..."

The concessive relation connects units 2 and 3: 2: "Tempting as it may be,”
3. "we shouldn't embrace every popular issue that comes along.”

Unit 8 is an elaboration for the Inform Schema, it lists instances, such as open
government and campaign finance reform.

Unit 9 says "Let's be clear.” This is in a justification relation to the argument
that follows, in 10 through 12. It obtains permission 10 present a s~cond argument,
defending the same conclusion.

Finally, units 4 and S5 are in a conaition relation 4 "Whenwedoso “ 5 “we
use precious resources..."

Figure 5 shows the structure of the whole text.

2.1 Definition Mechanisms of RST

How is RST defined? How do claims about particular texts arise from an RST
analysis of it? The theory is defined in terms of just three mechanisms: schemas,
schema application conventions, and relation definitions.

Schemas are simply sets of relations. There is no schema-specific information
beyond the identities of the relations that comprise the schema.

Schema_ application conventions are descriptions of what it means for a
particula(span of text to instantiate a schema. Its conventions are easy to state:

1. One schema is instantiated to describe the entire text.

2. Schemas are instantiated to describe the text spans produced in
instantiating other schemas.

3. The schemas do not constrain the order of nucleus or satellites in the text
span in which the schema is instantiated.

4. All satellites are optional.
5. At least one satellite must exist.

6. A relation that is part of a schema may be instantiated indefinitely many
times in the instantiation of that schema.

265

$19QUINN Wuf)

\2‘ 43 13 3 (] e 3 9 S 4 € 14

2 " L 9 s y £ 2
/ \ / /
G_:c-\._-..: vonpuos — Co:_vcoo — C..:ucou
ot 9
SISIQ LMY /15Oy | JouoUIpu0) Jouoiipuo) 24185250
]
wuoful 2uIp1ag

WISTIN0)

Afuisng SIsagHIy £ 5150y |

266
[.-

IUIPIAS

l/

/ /.:.g,./l\

Figure 5: Full Rhetorical Structure of the Political Text

auapisg

€

N

UOIBA|I0W

iordo y

7. The nucleus and satellites do not necessarily correspond to a single
uninterrupted text span.

8. The relation definition must be consistent with the spans of text related by
the instantiation of the schema containing the retation.

It is possible for the conventions to apply to a text in more than one way, so
that the text is rhetorically ambiguous.

A relation definition specifies three kinds of information:

1. A characterization of the nucleus.

2. A characterization of the satellite.

3. A characterization of what sorts of interactions between the conceptual
span of the nucleus and the conceptual span of the satellite must be
plausible.

To define, for example, the motivation relation, we would include at least the
following.

1. The nucleus describes an action performable, but not yet performed, by
the reader.

2. The satellite describes the action, the situation in which the action takes
place, or the result of the action in ways that help the reader associate
value assessments with the action.

3. The expected value assessments are positive, to lead the reader to want
to perform the action.

The relational propositions do not arise independently of the relation
definitions. Rather, finding that a relation definition holds is sufficient to establish the
corresponding relational proposition. As readers recognize the functional relations of
the parts, they are recognizing that the relation definitions hold. The content of the
relational proposition is identified in this process. As a consequence, the definition
scheme for RST requires no additional definitions in order to specify the relational

proposition. In any particular case, the proposition can be derived from the way the
relation definition fits.

We have found the relation definitions, useful in predicting other facts about
the text, such as the kinds of conjunctions that will appear in certain places. We have
analyzed a large number of texts, including thousands of clauses, in this way. We are
confident that we can perform this analysis, with fairly high reliability, for vitually any
small, written, multisentence monologue in general American culture, using only
about 25 schemas. ’

Note that these rhetorical schemas are defined in terms of the functions of
segments of text. The evidence relation applies when one segment supports another
as evidence. Solutionhood applies when we can see one segment as identifying a

267

L

problem and another as a partial solution to that problem. These are not criteria of
form; as one might expect, the relationship of these function categories to form
categories is quite loose. The rhetorical structure of text, in these terms, is composed
of function-specific unitc. The structure does not express categories of knowledge or
form as much as it expresses the roles of specific parts in relation to the whole text,
especially the role of each satellite relative to one particular, immediate portion of the
text, the corresponding nucieus.

3 RST as an Account of Relational Propositions

The key observation for the purposes of this paper is:

For every relation of the rhetorical structure of a text, a
corresponding relational proposition is asserted.

For solutionhood relations, the discourse structure asserts a solutionhood
proposition. For evidence relations it asserts an evidence proposition, and so forth.
Readers attribute the assertions to the text because they recognize the functional
relations of the parts.

Now we can explain why relational propositions are coherence-producing.

First, RST structures always have the connectivity of trees. The schema
application conventions guarantee this, because when a span is decomposed, each
of the parts is further decomposed separately.

If a portion of the text is to be connected to the whole without being a
non-sequitur, some refation must be established. A relation is estabiished through
implicit assertion of a relational proposition. Since the relations focrm a tree, denial of
any one relational proposition is sufficient to separate the structure into two parts,
thus destroying connectedness, a key attribute of coherence.

Now we can also explain why relaticrnal propositions are always present in
coherent multisentence texts. In regarding the text as a single whole, readers impute
rhetorical structure to it, necessarily positing relations between the parts; the relations
give rise to assertion of reiational propositions.

We can also see how to create more precise specifications of relational
propositions. They can be developed from the relation definitions of RST. RST tells
what sorts of propositions can be relational, gives the conditions under which
relational propositions arise, and tells how to alter a text or a situation so that the
asserted relational proposition is changed. Rather than simply searching texts for
potential relational propositions, we can search rhetorical structures for the
necessary relational propaositions.

268

4 Uses of Rhetorical Structure Theory

Rhetorical Structure Theory provides an attractive basis for explaining
relational propaositions, although some details need development.

in addition, RST satisfies some of the attributes identified in section 2, above,
as desirable for a descriptive theory of text organization. It is comprehensive enough
to apply to many different kinds of text; it is functipnal, in that it explains what various
portions of a text do for the writer. And it is scale insensiive, applying to a wide range
of sizes of units, from simple clauses up to whole magazine articles.

However, RST still lacks two desired attributes: it needs for more detailed
expression of each part, and it would be useful to develop a constructive counterpart
to the descriptions, a way to select schemas and plan texts.

In addition to these attributes, we recognize other opportunities for and
benefits of RST.

1.1t gives a partial account of the distribution of interclausal and
intersentential conjunctions.

2. It leads to new observations of text phenomena, including some related to
nuclei, such as the most-favorable-reader hypothesis.

3. The advantages of a recursive theory are obtained for text structure.

Beyond the phenomena identified above, RST appears to be useful in
accounting for other kinds of discourse phenomena. We have found no boundary for
its uses; it is like trying to delimit the uses of a grammar. We have identified the
following as particularly attractive applications:

- Thematization and text development

- Distributions of tense selections in text

- Lexical selection

- Pafterned shifts of hypotheticality, identifiability, or coruitionality
- Patterns of use of conjunctions

- Purposeful clause combining

- Distribution of topicalization markers

- Text ordering (under way)

- Relating coherence to cohesive devices

5 Summary
The assertion of relational propositions is a hitherto unexplained

phenomenon. Rhetorical Structure Theory provides a way to explain such assertions
in terms of discourse structure. In addition to explaining r»fational propositions,

269

Rhetoricat Structure Theory can be used to explain other text characteristics as well,
and it provides a way to address a wide range of discourse phenomena.

References

[Mann 84] Mann, W. C., Discourse Structures for Text Generation, USC/Information
Sciences Institute, Technical Report RR-84-127, February 1984. Also appeared
in the proceedings of the 1984 Coling/ACL conference, July 1984.

{Mann & Thompson 83] Mann, W. C., and S. A. Thompson, Relational Propositions in
Discourse, USC/Information Sciences Institute, Technical Report RR-83-115,
July 1983. To appear in Discourse Processes.

270

