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Preface

The Interaction between the flight control system,

structural dynamics, and aerodynamics of aircraft has become a

major concern to aircraft designers. There has been considerable

effort to develop an accurate method of modelling such

Interactions. This effort develops a simple method to create an

accurate model of this Interaction. This model can then be used

for stability and control analysis Including the effects of

structural dynamics.

I wish to thank my advisor, Dr. Robert A. Calico for his

invaluable guidance and assistance during this research effort. I

would also like to thank my thesis committee members, Dr. Peter

J. Torvik and Maj. Lanson Hudson for their helpful comments and

thorough editing of this document. In addition, I would like to

thank my sponsor, Dr. Thomas E. Moll for his guidance on applying

aeroelastic concepts and for the use of his mathematical model of

the YF-iT. My thanks also go to Mr. Maxwell Blair who helped me

use ADAM, and lit. William Blake who helped run Digital DATCOM.

Fiially, I wish to thank my wife Colleen for lier understanding

and support during this work.
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Nomenclature

Scalars

a, - components of a skew symmetric matrix

b - reference semi-chord length

a - reference chord length

D, - denominator coefficient of the Pade
polynomial

F1 - ith generalized force

FxFy,Fz - thrust forces in the x, y, or z direction

g - gravity

hi - normalized magnitude of the Ith mode shape

ho - magnitude of the plunge mode shape

Ixx Ixy lxz, Iy Iyz IZZ - mass moment or
product ol inertia

K - reduced frequency (I:bw/V)

L - Lagrangian

L - aerodynamic moment about the x axis

M - aerodynamic moment about the y axis

H - mass

j generalized mass of the jth control surface

N - aerodynamic moment about the z axis

H, - numerator coefficient of the Pade
polynomial

p - roll rate

QiJ - force on the Jth mode due to the ith motion

q - pitch rate
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4 - dynamic pressure

r - yaw rate

S - reference area

S - surface area

s - Laplace variable

T - kinetic energy

V - potential energy

V - velocity

V - volume

a - angle of attack

APj - pressure on the jth mode

6j- jth control surface

jo - magnitude of the jth control mode

- bank angle

i- mode shape of the ithe mode of the
elastic motion

y -twist position of wing

, - ith generalized coordinate

II - ith generalized mass

-yaw angle

p- density

w - frequency
w, - frequency of vibration of the ith mode

gl - motion of the ith mode of the elastic motion

gio - magnitude of the ith mode shape

o - pitch angle

So - magnitude of the pitch mode shape
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Vectors

a~bc -general vectors

F -vector of generalized forces producing elastic

mot ion

ER -vector of forces producing rigid-body translation

H -angular momentum

-ovector of moments producing rigid-body rotation

P - linear momentum

Q - vector of generalized force.,

_9- generalized coordinates

Bo position vector of the origin of the body axis
with respect to the inertial frame

IL'- eoit fthe body axis origin with
respect to the inertial frame as seen by an observer
In the inertial frame

Bp position vector of point P on the body with
respect to the inertial frame

- velocity of point P with respect to the
Inertial frame as seen by an observer In the inertial
frame

.- position vector of the undeformed point P with
respect to the body axis

u - m vector of inputs to the aircraft

Y- velocity vector of the body axis origin with
respect to the inertial frame

x - n vector of states of the aircraft

x- p vector of the outputs of the aircraft

6 - elastic deformation of point P with respect
to the undeformed position

q- vector of generalized coordinates

C)B/I - angular velocity vector of the body axis
with respect to the inertial frame



Matrices

[A) - n by n plant matrix

[;1 - skew symmetric matrix

[ail - matrix coefficients of Pade fit equations of motion

(B) - n by m input matrix

[C] - p by n output matrix

[C) - generalized damping matrix

(1) - Identity matrix

(Ic] - inertial coupling matrix

[1 E - elastic inertial matrix

[13) - rigid inertial matrix

(K) - generalized stiffness matrix

(M] - generalized mass matrix

[Q(k)) - genralized aerodynamic force matrix

[X] - aircraft mass matrix (including aerodynamics)
[YJ - aircraft damping matrix (including aerodynamics),

[Z) - aircraft stiffness matrix (including aerodynamics)

a
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Abs tract

The purpose of this effort was to provide a method of

developing a linear model of an elastic aircraft. The model

provides the capability to analyze the coupling between the rigid

and elastic motion of the aircraft. The method developed in

this effort obtains stability derivatives directly from unsteady

aerodynamic forces. This results in a state-space model whose

states are just the normal aircraft states and rates, the

structural coordinates and rates, and the control surface

positions and rates. Using a representation of the YF-17 wind

tunnel flutter model, It was demonstrated that the methodology

developed predicted the required dynamics to make this a viable

method of modelling rigid-body and flutter behavior of the model.

Flutter control laws were designed for motion about an

equilibrium condition represented by a velocity 20X above the

flutter velocity. Both classical and modern techniques yielded

acceptable control laws. The control laws were also analyzed at

off design conditions to check robustness.



MODELLING OF RIGID-BODY AND ELASTIC AIRCRAFT DYNAMICS

FOR FLIGHT CONTROL DEVELOPMENT

I. Introduction

With the advent of high gain control systems on high

performance, structurally efficient aircraft, the

interaction between aerodynamics, structural dynamics and

the flight control system, has become a major concern to

aircraft designers. This interaction has been termed

aeroservoelasticity (ASE). Virtually all major U.S. fighter

aircraft in use today have encountered this phenomenon. The

F-15 has encountered several ASE problems that have

influenced both ground and flight tests (18:Vol I, 8-22).

The F/A-i8 also had many ASE encounters, primarily in ground

tests (18:Vol II, 205-211). The YF-16 and YF-17 also had ASE

encounters (7:482). Even the experimental X-29 had ASE

problems, although not in flight. The ASE interactions are

not limited to new aircraft. The ASE phenomenon has been

encountered on the F-4 (18:Vol I, 3--7; 7:482) and many

aircraft that were in test phases (i8:Vol II, 226-23t;

21:10). This interaction, if severe enough, can limit the

6LM &zia
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performance capabilities of an aircraft. Avoidance of such

problems calls for the development of an accurate aircraft

modelling technique, which can model the interactions

correctly.

Background

Typically, the three phenomenon involved in ASE, have

been analyzed using separate models for each. The

aerodynamic models are usually based on the assumption that

the aircraft is a rigid-body. An accurate representation of

the aerodynamic shape of the aircraft is required to obtain

accurate aerodynamic parameters. The flight control models

are typically linearized rigid-body models, using stability

derivatives developed for a rigid aircraft. These linear

flight control models are then represented by state-space

models or through transfer functions. The usual way to

account for flexibility is to add an elastic correction

factor to the stability derivatives, which does not account

for the dynamics of the structure. The structural dynamics

model, on the other hand, is concerned mainly in a correct

representation of the elastic structure to predict such

things as flutter and divergence. Typically, each of the

three models leads to an analysis which is never

communicated to the other two. This lack of a unified model

-2-



resulted in the problems that were noted previously.

Correcting the unwanted ASE interactions after the

aircraft is built and tested is the most common procedure

for dealing with ASE problems. The typical "quick fixes"

usually involve the control system. Such fixes have

included, adding filters, reducing control system gains,

relocating sensors (18; 21:8), introducing flutter placards,

and in the case of the X-29, limiting the flight envelope

until a better control system could be designed. The

process of separate modelling, and then fixing the problems

after the aircraft is built limits the potential of modern

aircraft design. A unified approach to aircraft modelling

can be accomplished, with all three of the phenomenon

involved in ASE being accounted for.

The history of developing a unified model for aircraft

design goes back well over twenty years. Bisplinghoff and

Ashley (1:450-1486) and Milne (13) were some of the first to

develop the equations of motion for an elastic aircraft.

The implementation of these equations was beyond the

capabilities of computers of that day. In 1974, the first A

computer program that addressed the ASE phenomenon was

FLEXSTAB (5). FLEXSTAB, developed by Boeing, in cooperation

with NASA and the Flight Dynamics Laboratory (FDL), combined

aerodynamic, elastic structure and control system models

into one computer program for analysis and design purposes

-3-



(5). FLEXSTAB was a large and cumbersome program, and as new

design and analysis techniques were developed, they could

not be easily incorporated into FLEXSTAB. The desire to

develop a unified model was continued throughout the 70's.

Etkin (6), Schwanz (22; 23), Taylor and Woodcock (26),

Warren (29), Rodden (19), NASA engineers (18), and many

others (4; 11; 25) all proposed approaches to develop ASE

models. However, it became apparent that even by 1984 there

was no consensus on the best way to develop a unified model

(18).

Recently, the Flight Dynamics Laboratory has developed

an in-house computer program called ADAM (Analog and Digital

Aeroservoelastic Method). It has the capability to combine

unsteady aerodynamics, multi-input multi-output control

systems and a structural dynamics model into one analysis

package (14: 1).

ADAM does have some limitations. The first limitation

is that typical stability derivatives that flight controls

engineers use are not directly available (14:8). A second

difficulty is that ADAM does not include control surface

states and thus cannot predict control surface instabilities

(2: Vol 1, 12). In addition, ADAM has numerical difficulties

inherent in the complexity of the modelling process (14:8).

A method is needed to solve these problems in ADAM to make

it a true ASE analysis tool.

-4-



Purpose

The purpose of this thesis is to develop a method for

use in concert with ADAM, in the analysis of ASE problems.

This method includes prediction of stability derivatives,

addition control surface dynamics, and reducing model

complexity.

This effort will be limited to the development of a

linear time-invariant state-space model of an elastic

aircraft. This effort will examine only longitudinal A

motion, although the theory can be easily extended to

lateral directional motion. The work is also limited to

continuous time models and control systems.

-5
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Approach

This thesis will develop the equations of motion of an

elastic aircraft, using Lagrange's equations. The resulting

equations will then be linearized about an equilibrium

point, and the associated non-linear aerodynamics will also

be linearized. The kinematic coupling between the

rigid-body and elastic motion will be eliminated. Thus the

only coupling between the rigid-body and elastic motion will

be through the aerodynamics. The resulting second order

equations will then be transformed into a first order

state-space model for the elastic aircraft. A computer

program will then be developed which will automate this

procedure. The methodology will be demonstrated with a

representation of the YF-i7 wind tunnel flutter model.

S4d
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II. Theoretical Development

It is desired to develop the equations of motion of an

elastic aircraft, in the form of Eqs i and 2

[ A]x+ [B]u (1)

x: [Clx (2)

where

x - n vector of states of the aircraft
u - m vector of inputs to the aircraft

- p vector of outputs of the aircraft
[A] - n by n plant matrix
[B] - n by m input matrix
[C] - p by n output matrix

There are three general ways that the equations of

motion for an elastic aircraft can be determined. The first

way, and probably the most common way is to use classical

Newtonian dynamics. Etkin (6: 122-145) developed the .

equations of motion for a rigid aircraft using Newtonian

dynamics. Milne (13:4), Taylor (26:22), and Bisplinghoff

and Ashley (1:450-468) developed the equations of motion for

an elastic aircraft using this method. The second method is

to use Hamilton's equations to derive the equations of

motion (3: 1684-1687). The final method of deriving the

equations of motion uses Lagrange's equations, as Schwanz

had done (22). This is the method used in this development,

since it is the most direct and easy to use. Lagrange's

- 7 - XS



equations contain all the information needed to derive the

equations of notion.

Lagrange's Equations

Lagrange's equations are based on energy principles.

If the aircraft's total potential and kinetic energy can be

described, in reference to an inertial frame, then the

equations of motion of that aircraft can be derived. Stated

in a general form, Lagrange's equations for a holonomic

system are

d/dt(bL/ajl-bL/aj)Q (3)

L =T-V (4)

where

T - total kinetic energy,
V - total potential energy,

- generalized coordinates,
Q - generalized forces, and'k/a!9=(6L/b t . . . 6L/qn IT :

Therefore in order to use Lagrange's equations, the kinetic

and potential energy of the elastic aircraft must be found.

Consider an elastic body, as shown in Figure 1. The

inertial axis origin, O1, is a fixed point attached to the

earth. It will be assumed that the earth Is flat and

non-rotating. In general the flat non-rotating earth

a%
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Figure 1. Coordinates for a General Elastic Body
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assumption does not have to be made, however, it is

reasonable to do so for aircraft motion in subsonic and low

supersonic flight (6: 148). This assumption will allow the

notation to be kept simple, and simplifies the dynamics.

The position vector from this inertial origin to any

arbitrary point P on the body,.R is given by:

-p

R.?ro4(5)

where

R - position vector of the body frame origin
-o0 to the inertial frame origin,

r - position vector of the undeformed
position of P to the body axis origin, and

6 - elastic deformation position vector of
point P from the undeformed position.

From this the kinetic and potential energies can be

obtained.

Kinetic Energy. The kinetic energy of the body is 4

defined as

T~/J'~I .IpdV (6)
V

-

where
p - density
V -volume,
AI - velocity of point P with respect to 0,

as seen by an observer in the inertial
reference frame

k I can be represented by-P

- 10 -



*PI=*I~dI/t(.ro6) (7

which can be expanded

where

OB/I - angular velocity of the body axis with
respect to the inertial axis

SB velocity of the deformed point P with respect
to the body axis frame

Substituting this back into Eq 6 yields

T~i/2fpfvo +SB+CQB/IX (ro+d) I iVO+SB+O)B/Ix (r.Ed+) d V (9)
V

where, -kl-o Expanding Eq 9 term by term gives

T~i/2pYo.yodVi/2J'pyo.SBdV,1/2fpyo.iO)B/lx(rCo+6)IdV

,1/2SpSB.V dv+i,/2fpSB.Bdv+112fpSB.(oB/Ix(rE+6)3dV

si,'appB/Ix(r+6n) VodV+i/2Sp(2B/Ix(.ro+6)j PdV

V V

+112fpj(OB/Ix(r+6) ifoB/Ix(r+6) JdV (10)
V

The total mass of the aircraft is defined as



Mf pd V (
V

Combining term in Eq 10, and expanding the remaining

products yields

T=i/2NVo.Vo+,pVo.6BdV+pPVo. (OB/Ixr o )dV+fpV o . (OB/Ix6)dV
V V V

+/afpA.BBdV+J'poB/I. (.rox-B)dV+pgB/I. (_dxSB)dV
V V V

+i/2fp(QB/Ixro). (QB/Ixr o )dV+fp(gB/Ixr o ). (QB/Ixd)dV

V 
V

+fpl(B/Ix ) (QB/Ix,3)dV (12)
V

Since V 0 and _CB/I do not depend on the position within

the volume, they can be pulled outside the integrals. Now

the following assumptions are made to help simplify Eq 12.

First, it is assumed that the body axis origin is at the

center of mass of the equilibrium configuration of the

aircraft. This implies that
% A

oSprod V (13)
V

The second major assumption is that the aircraft body axis -N

system is the mean axis system, which Milne states as the

axis ". at every point, the linear and angular momentum

of the relative motion with respect to the body axis is

- 12 -



identically zero" (13:5). This results in the following

0 :fpId V=,proxdd VfpABd V:JproxABd V (14)
V V V V

This reduces the coupling between the overall motion and the

elastic deformation (13:27), thus reducing the kinetic

energy equation (Eq 12) to

T=112N1 .Vo+l1/apSB.SBdV+fpV.. (gB/I x6I dV
V V

+1/afp(QB/Ixro).(OR/Ixro)dV+fp(OB/Ixro).(QB/IXd)dV J
V V

+Jp(pB/Ix6).(pB/Ix6)dV (15)
V

Noting that the components of the cross product of two

vectors expressed in the same orthogonal reference frame,

say Axb~c, may be obtained from

Ib~c (16)

where Eli is a skew symmetric matrix, defined by .,

[!)=r 0 -a3  aal
I a3  0 -ail
1-ap a1  0j

Eq 15 now becomes

-13-NM
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T:/l2WO.yo+i1/2fpB.BdV+i/20B/I. (IR] .-B/I

V
+ fpgB/I. (6x.B)dvSQB/I. [C C) B/I

V

+I/2(B/I. IE) .)B/I 17

where

[I - rigid body inertia matrix
(I] -inertial coupling matrix between rigid and

elastic motion
[IE]- elastic motion inertia matrix

It is at this point that knowledge about the

equilibrium conditions is necessary to simplify Eq 17. Since

it is desired to develop a linear model, perturbation

equations about an equilibrium condition will be developed.

The equilibrium condition in this development will-be

straight and level flight of an undeformed airframe, thus

the equilibrium body rotation rates (p q, r) are zero.

Thus, OB/I is now just a vector of the perturbation

rotation rates. Both the coupling and elastic inertial

terms of Eq 17 are functions of 6 , a perturbation

motion. Thus the last three terms of Eq IT are third,

third, and fourth order respectively of the perturbation

motion, and thus will be ignored. Thus, Eq 17 becomes

T=1/2NVO.yo+ I/2pSB.6BdV+ 1/2QB/I.[IR]._B/I (18)

As can be seen, this expression for kinetic energy is

-14- -



much simpler than the original equation (Eq 10). The only

term that involves the elastic motion is the middle term in

Eq t8. It is at this point that some assumptions about the

elastic deformations must be made. In general, the elastic

deformations of a body can be described by a set of n

coupled second order ordinary differential equations,

representing the free vibration of the body. These coupled

equations can be decoupled by use of a linear transformation

(12:143-144). Therefore, in this development, it will be

assumed that a set of uncoupled orthogonal modes are

available. This assumption will allow diagonal mass and

stiffness matrices to be developed for the equations of

motion, thus allowing easier decoupling of the elastic and

rigid body equations of motion. The elastic deformations

are defined as

n
6 =Z(x, y, z ), I(t) (19)
1:1

where,

VI(x,y,z) - mode shape of the ith mode, and

gl(t) - time dependent motion of the mode

Since the modes are orthogonal, f ij:0 for iAj

(12: 143). Now defining the generalized mass as

-15-
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ZiP I P-d V (20)
V

and substituting Eqs 19 and 20 into Eq 18 yields

n
T=1/2nO.Vo+1/z.ILii 2 +1/2OB/I. [IRI .B/I (21)

i:1

This is the equation that is required for the kinetic

energy.

Potential Energy. The potential energy of an elastic

structure can be represented by

n

where

Wi 2 - the squared natural frequencies of the various modes.

The same assumption about orthogonality that were made

earlier is also made here (12:168). The potential energy due A

to the Earth's gravitation will be dealt with as an external

force acting on the aircraft.

Eqs 21 and 22 can now be substituted into Eq 4, the

equation for L, and Lagrange's equations formed, and noting

that the rigid-body terms do not appear, gives

1-16-



n
EIjl iji+jLiwi2r i )-_Q (23)

1:1

This can be represented In matrix notation as

0 (24)
[F. Wa [ n 0 L ;L n- - n L n Ln

where

pi - ith generalized mass

wi - ith modal frequency

gi - ith generalized modal coordinate

Fi - ith generalized force I
,'a# 'a-

In this formul&tion, the control surface motions will

be treated as extra degrees of freedom in the elastic

motion. In order to correctly develop the remaining

equations for rigid body motion, the definitions of linear

and angular momentum must be used. The linear momentum may

be found from

PaT/aXo  (25)

Then the equations of motion for rigid translation become

FR:dI/dt (_P) :dI/dt (aT/aVO)

(B/dt(aT/aVo )+_B/Ix (bT/aV o ) (26)

Using the typical formulation, the aircraft equations of

motion become

. 17
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mr) - rqup +F-gsin8 1seHlv+N r 0 - = 
(27)L J -q 

p 

0 wl+Fz-Mgcos 

pcosOJ

where

H - mass
u - velocity in the x direction
v - velocity in the y direction
w - velocity in the z direction
p - roll rate
q - pitch rate
r - yaw rate
X - aerodynamic force in the x direction
Y - aerodynamic force in the y direction
Z - aerodynamic forec in the z direction
Fx - thrust in the x direction

Fy - thrust in the y direction

Fz - thrust in the z direction

g - acceleration of gravity
0 - pitch angle
9 - bank angle

with the following equations for kinematics and trajectory

[P1 ri sine]I,

~: 

Oco 
s9 

sinqcose/ 

(28)

r -stnf cos-cose

"I cec-# Cos* -s:v: sqscV-c,,s s,sos,.cqc, Sc (29)
w] cfsc,,-sPs cses-sgc cqpc0] k]

where

c - cosine

s - sine
# - yaw angle

A similar method can be used to develop the equations

of motion for the attitude motion. The angular momentum is

given by

-18 
-



H-arf/aB/ (30)

The equations for rigid body rotation become

Mo:d1/dt(H):d1/dt(6T/5OB/I)

:dB/dt(aT/_aOB/! )+_B/Ix( T/aoB/I) (31)

These equations (Eqs 26 and 31) are sometimes termed

Lagrange's equations in quasi- coordinates. Eq 31 in matrix

notation becomes

4
rxx -1xy -,xz P

xY Iyy 'yz .9

- p 0 Txz -yz I.,J

where

1 xx, 1xy, IxZ, lyy, yz , Izz - mass moment
or product of inertia

L - aerodynamic moment about the x axis
M - aerodynamic moment about the y axis
N - aerodynamic moment about the z axis

Eqs 24, 27, 28, 29, and 32 comprise the desired equations of

motion. The forces in Eqs 24, 27, and 32 are now function

of both the rigid and elastic motion.

Longitudinal Equations of Motion

The desired equations of motion, Eqs I and 2, are

-19
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linear in nature. The above equations (Eqs 27, 28, 29, and

32) still contain non-linear terms which need to be further

linearized. In this development, however, only the

longitudinal equations will be developed. Therefore, only

those equations appropriate to the longitudinal motion will

be addressed. The equilibrium condition is again straight

and level flight, but now using longitudinal motion,

equations reduce to the following scalar equations

A4i+Mqw:-X+Fx-Mgs nO (33)

Ai-Mu= -Z+F z -Mgcose (34)

Iyq=H (35)

q=6 (36)

U:icose-is me (37 ::

w:xs ine+icose (38)

The attitude equations are uncoupled from the trajectory

equations (Eqs 37 and 38), and thus the trajectory equations

will be disregarded in this development. Now it will be

assumed that each variable will be the sum of its'

equilibrium value and perturbed value (i.e. u:ue+u), and

the derivatives of the equilibrium values are zero. It will

also be assumed that the mass and inertia remain essentially U

constant. If the thrust is to be used as an input it can be NL

used as a control input. Substituting these into Eqs 33-38

yields

-20-
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Mak'+N(q')(w,.+w')=-(Xe+X')+FX-Mgsin(9e+48) (39)

14'-M(q)(ue+u')=-(Ze+Z')+Fz-Mgcos(O)e+O') (40)

Iyyq' :Me+H' (41)

(qI )=6 (42)

Uf' 'c~s(Oe+O'h-isi(Oe+O') (43)

u':x'sin(01.O')+i'cos(Oe+e') (44)

Now takcing all *uhe terms that strictly deal with equilibrium

conditions yields Eqs 45-47 while the remaining terms result

in the perturbation equations, Eqs 48-53.

O:-Xe+Fx-g5 ine (45)

O:-Ze+Fz-gcosoe (46)

Mezo(7

Mak+M(Weq'+w'q' )=-X'-MgsinG' (48)

Jyi+M(ueq'eu'q' )=-Z' (49) 4

Iyyq' :H' (50)

q9=61' (51)

u' :X' (52)

w' :Z' (53)

The equilibrium equations and the perturbation equations are

identical to those developed in Taylor (26:39-44). Assuming 1

that the terms where products of perturbation quantities

exists are small results in the linear set of equations in

-21-
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.- q*

Eq 54, where the primed superscript is dropped.

0 0 [ [ u-e0 e]fU] -X-N901

0 ] [ ) [0 Me Lz (54)

The equations can be combined with the elastic equations of

motion to yield the following matrix equation:

Moo .:O~
0 'MO 0 0 M eO X
0 0 1 yy 0 0 0 ] i

W- I. 0

C. n - F-n

0 0 M g 0x
+000 Iz -Z

000 M (55)

4 i, ~ 1 
. i F l

wOn tin L .n.J n] i

These equations are identical to those of Schwan% (23:54). .

The linear aerodynamics which drive these equations must now--.

be determined to complete the model of the flexible ,

aircraft. From this point on, only the short period motion

will be considered. Thus the first equation in Eq 55 will

not be considered and there will not be an x state.V"

F .°1

,.'I.

q

S,.o

no be co s de e and there will. not. be. an x. stt. . . ..-... ,.,.,- ... ,



Linear Aerodynamics

Since the equations of motion of the aircraft have been

linearized, the aerodynamics associated with this model must

also be linearized. Etkin (6:159) and Taylor (26:45) have

both shown that the aerodynamics can be approximated

linearly. Ignoring symmetric and antisymmetric motion

interactions, and neglecting most higher order aerodynamic

derivatives, the longitudinal aerodynamic forces are of the

following form
all"

m
M=MuU '+Mqq' +maa+mF + -(Mdj 3+ma3j j+ma3 j )

j=i

n
+(M , E+M. .i M4 Zj) (56)
i: i i i

where,

u=b)M/bu, etc.

In general these derivatives are not directly available

from the unsteady aerodynamic methods such as the Doublet

Lattice (8), which is used in flutter prediction work.

Rodden and Giesing (20) have shown however, that stability

derivatives can be obtained from such methods. In

developing unsteady aerodynamic forces and moments, it is

assumed that the motion is purely oscillatory and of the
iwt

form e The resulting generalized forces therefore

- 23 -



contain real and imaginary parts. The aerodynamics are

determined at a constant altitude and Mach number for

various reduced frequencies (K=wb/V, where b is a

reference semi-chord and V is the velocity). This results

in a set of forces for each degree of freedom for each

reduced frequency.

One way to approximate the frequency dependent is to

use a Pade fit as a function of reduced frequency (14:3-4).

In general the equations of motion can be represented by the

second order equations

[M)_i, (Cli+ [[3-g=- (PVS/2) [Q(11))q (57)

where

(MI - generalized mass matrix
[C] - generalized damping matrix
(K] - generalized stiffness matrix
[Q(I)] - generalized aerodynamic matrix
q - generalized coordinate vector
V - velocity
S - reference area

The [Q(k)] matrix is a matrix of complex coefficients based

on simple harmonic motion. In order to solve the flutter

problem in a classical way, many different values of Mc and

the associated [Q(k)) matrices are required. An alternate

technique is to curve fit each coefficient in the [Q(K)]

matrix with respect to k, using Pade polynomials. The

polynomials are of the form

-24-



2 3 . 4

Q ij (MC)=INo0+H I(Ik)+Na2(ik) +H 3 jik, +N 4 nj ,k

Ii+N 0 D I (Ik)+D 2 (ik) 21 (58)

for a fourth order over second order fit. Then substituting

bs/V=ik into Eq 58 yields

2 3 4
Qij (s)=(N0 +N i (bs/V)+H2 (bs/V) +H 3 (bs/V) +N 4 (bs/V) I/

2
I i+No+D (bs/V) D (bs/V) 1 (59)

Taking the Laplace transform of the right side of Eq 57, and

equating terms of like power in s, results in the following
'. ..

equation

.

([js4 +[a 3 J s
3 +[a 2 ]s

2 +[a t s+[a O ] _q(s)=0 (60)

As can be seen, this method, increases the order of the 4,

system by the multiple associated with the order of the

denominator of the Pade fit. The system order is therefore

altered unless the Pade denominator is a constant. This

makes it extremely difficult to form a state-space model of

the aircraft in which all the states relate directly to
.. ..*4

physical quantities. Another method, suggested by Rodden

and Giesing (20) allows the state variables to be explicitly

stated, and may also reduce the order of the model. This is

the method that will be used in this study. d "-"
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In order to derive the equations necessary to find the

derivatives some assumptions must be made. In the analysis

of the unsteady aerodynamic forces, the rigid-body motions

are assumed to be pitch (q) and plunge (h). In aircraft

dynamics, plunge is typically replaced with angle of attack

(a). Plunge is pure vertical motion, and is related

directly to w by (h=w) if measured from the center of

mass. If a is small, which can be assumed since

perturbation motion is being discussed, then; a=w/V=h/V.

And since the equilibrium condition assumes level flight

then a:9 for the equilibrium conditions. .,

The method of Rodden and Giesing was developed to

calculate dynamic stability derivatives from unsteady

aerodynamics (20). This methodology is summarized here,

using the moment equation as an example. First, it is

assumed that stability derivatives can be represented by a

Maclaurian series ..

M=Ma+Maa+Maa+Maa+Mqq+ .(61)

Oscillatory theory cannot predict the M o term, and

therefore it will be omitted. Next it is assumed that the

pitching and plunging motion are oscillatory and are of the

form a:e:Go e iWt and h=h0 eiwt, and thus ,or

pitching motion

- 26-



S
M-Real(Heiwt) (62)

Hence the complex pitching amplitude H due to pitching

motion can be represented by the series expansion to first

order

R: e 0 [(H+ iW (HM&+Mq) (63a)

Similarly for plunging motion with a=h/V

R= hO/2a ( iwMX-w 2 HM&) (63b)

The terms of Eqs 63 can now be directly related to the

appropriate terms of the matrix of complex frequency ,...

dependent aerodynamic coefficients from the Doublet Lattice

method. According to Rodden and Giesing, the steady dynamic

stability derivatives are defined by the limiting values as
,', '-

k approaches 0, so in general, a small value of k should be

used. For greater detail on the procedure used by Rodden

and Glesing, the reader is referred to their paper (O0).

The application of the procedure outlined above in this

effort is as follows. The unsteady aerodynamic forces were

obtained from FASTOP (30) which uses Doublet Lattice

aerodynamics. The generalized forces for a reduced

frequency are

-27-
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Q j= (1/s2 )S(APj/) (hi 1/s )dS (64)

S

where

Q - the force on the ith mode due to the jth
modal deflection

APj - pressure on the jth mode
h. -magnitude of the ith mode
s -reference length
S - surface area
q -dynamic pressure

In order to obtain stability derivatives the 0i terms

must be normalized by both the ith and jth mode shape

magnitudes as was demonstrated by Noll with

lateral-directional derivatives (15). To develop dimensional

stability derivatives the Q, terms must be multiplied by

the dynamic pressure (q), and the reference area (S). Also,

any Q, terms which are related to moments must also be

multiplied by a reference length ( - reference chord).

Thus the terms in Eqs 65-73 are now dimensional quantities.
.e,,

Eqs 65 are the rigid-body results of Rodden and Giesing in n.'

dimensional form

Pitch and Plunge Influence on "Rigid Forces"

OZZ= (iwZ,-w 2 Zd) (ho/V) (h0 )e lwt (65a)

GMZ: (iw MGcw 2 M, ) (ho/V) (e0 ) e iwt (65b)

QZM={Za iW(Za+Zq)|(Oo)(ho)eiWt (65c)

Q]: !+1((M6+M q )( 0 ) (O~e0 •t (65d) Ji
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Rodden and Giesing's method for rigid-body motion can easily

be extended further to obtain the elastic and control

surface influences on the rigid body forces and visa versa,

along with the interactions among themselves. These are

shown in Eqs 66-73.

Elastic Influences on "Rigid Forces"

QZ4 I (ZF.I +iWZ4 i_-2Z4 I)(Fi 0)(ho)eI~t (66a)

QMF i=:(M iI4 i-)MC i )(O)ewt (66b)
i . 1 i 1 0

Pitch and Plunge Influence on "Elastic Forces"
: -wFFi ) )e w  (67a)

F. Z =(iwFq a F.I.I6 (ho/V)(F. i

Q .H=.IM: Ql
+ iW (F F.I + F FI q ) | (S°)(F-Io0)ei t (67b) .

Elastic Influence on "Elastic Forces"

Q =(F +iwF~ ~-w 2 F~ )(Fi )(Fj )ei't  (68)F.~i (F.J i 44i

Control Surface Influence on "Rigid Forces"

QZdi:(Z 6 +iwZ6-w
2 Z )(61 )(ho)eiwt (69a)

QMd :(H,6 
+ IWHia 2M3 )(6i )(O)eiwt (69b)

I 1i 1 0

Pitch and Plunge Influence on "Control Surface Forces"

Qd Z=( )eiwt (70a)

Q6 IM:i(F6 Iaiw(Fd i F6Iq) (Oo)(6i )e iw (70b)
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Control Surface Influence on "Elastic Forces"

Q a -(Fg 6 +iwF, j -W2FF, )(di )(4j. )eiw t (71)

Elastic Influence on "Control Surface Forces"

6F =F . iwF6 -w2F6 )(Fi )(,3j )e lwt  (72)
j i i j

-- az

Control Surface Influence on "Control Surface Forces"

G6 6 = (F6 j +iWF 6 3 -W2 F6 j 3 1 )(6)(6j )eiWt (73)
3 1 j i 3 13 ,J 1 3

In FASTOP, to find the steady derivatives, K is set to zero,

thus only the real terms of the above equations appear. The

remaining derivatives are found at a small value of k. The

expansion was kept to second order which results in no

increase in system order. If higher order dynamics are

needed, they can be easily added by adding higher order

stability derivatives. This will, of course increase the

order of the system.

Resulting Equations

The stability derivatives from Eqs 65-73 can now be

moved to the left hand side of Eq 55, thus filling the

matrices with terms. The only terms left on the right hand

side of Eq 55 are the generalized forces due to the torques

applied to the control surface hinges from the control I..

inputs, as shown in Eq 74.
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A

cIxI+ (Y]I+ (Z)_=xQ (74)

It is shown Kane (9:81-83) that the generalized forces, Q,

due to the control torques can be represented by

Qi=:EO/aO1i .Tj (75)

j=1

where

T - torques applied to the control surface hinges

This can be represented by

Q:[o_/aI [T .. TmlT (76)

The torque can be related to the input signal to the surface

by

Tj =Mj-3 ((77)

where

m. - the generalized mass of the Ith control surface
a is the command signal to the ith control surface

Now letting 1=[61 . 6m) Eq 75 becomes

'.,

0= (El]u (78)

where

- 31 -
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[E] = [a_/6i ] [dial *j)

Thus Eq 74 becomes

[x]x+ [)]x+ [Zlx: [E)u (79)

If the matrix [X] can be inverted, then Eq 79 can be

rearranged into the typical state-space representation

[f-: x-° Z -x-1Y] [f [_x-°tE] -  (80)

Eq 80 is the desired equation in the form of Eq 1. Eq 10 and

the procedure for obtaining the dimensional stability

derivatives from the generalized forces (Eqs 65-73) were

programmed into a computer procedure called MAC (Methodology P.'

for Aeroelasticity and Controls). Appendix B is the User's

Manual, and Appendix C are the subroutines that comprise

MAC.
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III. YF-17 Model Development

In order to demonstrate the methodology developed in

the previous section, a simple model that exhibited flutter

characteristics was needed. A mathematical representation

of the YF-1T wind tunnel flutter model was used. This model

had the required structural properties needed to validate

the methodology. Second, only the first two elastic modes

were necessary to adequately predict flutter. This results

In a simple representation of the model dynamics. ~ ~

The model used Is shown In Figure 2. It Is represented

by six modes; the rigid body pitch and plunge modes, two A

structural modes (first wing bending and first wing torsion

modes), and two control surface modes (the trailing edge

flap and an all moveable horizontal tail). This model will

allow full testing of the influences desired. Table I

contains the generalized masses and structural frequencies

for the model. The model developed Includes an elastic

wing, connected by a rigid extension to a rigid tail. The

mode shapes for the elastic modes were obtained from Noll's

work (16). The geometric and structural data were entered

into FASTOP, a flutter prediction program (30). FASTOP was

used to determine the generalized forces for reduced
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TABLE I

YF-17 FLUTTER MODEL STRUCTURAL DATA

Generalized Vibration
Mode Mass Frequency

(Hz)

1 V.061 0.0

2 77.777 0.0
3 0.3115 4.628
4 0.1019 7.186
5 0.1027 50.0
6 0.1 60.0

r

• .

Sensors

Figure 2. YF-17 Model Planform
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frequencies of 0.0 and 0.02. The flutter prediction

capability of FASTOP, which uses the P-K method of flutter

prediction, was also used to check the validity of this

prediction method. The flutter prediction capability of

ADAM (2:Vol t, 24-25), which uses a 'velocity root locus'

technique to predict flutter, was also used as a check.

Two sensors were chosen near the trailing edge flap, at

40.154 inches along the span, as shown in Figure 2. Each

sensor measures translational motion at that wing location.

The two outputs are then differenced and divided by the

difference between the two sensors, to obtain the twist

angle at that span station. The resulting output matrix,

(C) is then a combination of the two structural mode shapes

at that span station. Appendix A contains the output matrix

used. The sensor and actuator dynamics are not modelled in

this development.

1%
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IV. Results and Discussion

The resulting equations (Eq 80) are linearized

approximations to the actual aircraft dynamics. Where the

aerodynamics are linear with respect to the reduced

frequencies, this model should successfully capture the

essential dynamics and thus predict the low frequency

flutter, with the added benefit of predicting rigid body

stability derivatives. The resulting state space model will

also be of lower order than that obtained using aerodynamics

modelled using the Pade approximant method, since it will

not contain the often unnecessary higher order aerodynamics

associated with curve-fitting the aerodynamics in the

frequency domain.

In order to prove that this method is a useful way to

model elastic aircraft dynamics for flight control use,

three tasks were analyzed. First, the ability of this

method to predict stability derivatives, and thus, the

ability to predict rigid body dynamics, was Investigated.

Next, the methodology's ability to predict flutter and

associated structural instabilities was investigated.

Finally, the model was used to develop a workable flutter

control law.
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TABLE II

STABILITY DERIVATIVE COMPARISON FOR THE YF-17 MODEL

Derivative Datcom MAC

CLG 4.305 4.142

CMa -0.6501 -0.5038

CL-& 2.623 2.276

CMU -4.699 -7.312

CLq 6.03 8.145

CMq -6.799 -7.474

CL6 1.054 1.153
e

CMd -1.886 -1.909
e

CL6 f  0.1432 0.233

CM6f  -0.0751 -0.4366

Stability Derivative Prediction

The capability of MAC to predict rigid body stability

derivatives was validated using the YF-17 model. The

stability derivatives from MAC were compared to the

analytical methods of Digital Datcom (28). As can be seen in

Table II, MAC loes an acceptable job in predicting most

stability derivatives, with the exception of the flap

derivatives. If there are better sources for stability

derivatives, MAC has the capability to incorporate them into

the analysis.
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Flutter Prediction

The capability of MAC to predict flutter was also

evaluated with the YF-i7 model. The results from MAC were

compared to two different flutter prediction methods. The

first is FASTOP, which uses the P-K method of predicting

flutter speeds and frequencies (30). The second Is ADAM,

which uses a 'velocity root locus' technique to predict V

flutter speeds and frequencies (2:Vol 1, 24-25). Figure 3 is

a plot of ADAM's root locus. MAC uses a similar technique

using Eq 80. Figure 4 shows the plot of the velocity root

locus of MAC for various speeds. As can be seen by Figures

3 and 4, both methods are In very close agreement in ,4.

predicting the dynamics of the structural modes. All three

methods agree very well in predicting the flutter speed and

frequency (Table 111). Using FASTOP as a basis, It can be

seen that both ADAM and MAC slightly underpredict the speed

of flutter while slightly overpredicting the frequency. All

the predictions are within 5X of one another.

In comparing the elgenvalues of MAC with ADAM (Table

IV) It is seen that the higher order aerodynamic roots

associated with the Pade fit method of ADAM do not seem to

be important to the dynamics involved. This is similar to

the result that Pasquini reported (t7:31-32). ,.
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TABLE III

COMPARISON OF FLUTTER PREDICTION METHODS FOR THE YF-17 MODEL

Flutter Flutter Flutter
Prediction Speed Frequency
Method (ft/sec) (Hertz)

FASTOP 387 6.10 i

ADAM 371 6.25
MAC 382 6.18

TABLE IV

EIGENVALUE COMPARISON OF MAC WITH ADAM

FOR THE 458 FT/SEC CASE

Eigenvalue MAC ADAM

Rigid Body 0.000 t.838+3.3141
0.000 1.838-3.3141

-2.412+5.586i -4.215.6.084i
-2.412-5.5861 -4.215-6.0841

Elastic -5.890+34.331 -5.901+34.261
-5.890-34.33i -5.901-34.26i
3. 371+ 36. 671 3.485+36.66i
3 .371-36.6T71 3.485-36.661

Control Surface -0.518+314.41
-0.518-3 14.41
-12 .93+373 .31
-12 .93-373 .31i

Aerodynamic - -93. 92+184. 7i
- -93.92-184.71
- -94.01+184.0k
- -94.01-184.01
-- 94.34+184.21 *
- -94.34-184.21
- -94.23+ 184 .31
- -94.23-184.21
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Figure 3. Velocity Root Locus for the Unaugmented
YF-17 Model Using ADAM
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Figure 4. Velocity Root Locus for the Unaugmented
YF-17 Model Using MAC
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Control Design p

From the previous two sections it can be concluded that

Eq 80 accurately captures the essential dynamics of the

YF-17 model. The model from MAC was then used to develop a

flutter control system, using both classical and modern

control techniques. The benefit of using this method of

developing the aircraft equations of motion is that the

state-space model (Eq 80) is formed from the second order

form of the equations of motion (Eq 79). The state vector J.

then, is comprised of the generalized coordinates and their

rates. In contrast, if the Pade approximation method is

used, the state-space model must be formed from the transfer

function equation (Eq 60). Typically, this introduces

additional states, and yields states which are not the

generalized coordinates and their rates.

Both control designs were based on the YF-17 model at -'N

1.2 times the flutter speed (458 ft/sec). All the

eigenvalues of this condition are in Table V.

Classical Design. Transfer functions were determined

from the state-space model for the above condition using

MATRIXx (tO). The transfer function from the sensor to the

flap (y/6f) was then used to develop a feedback ,

control
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TABLE V

EIGENVALUES OF THE UNAUGMENTED YF-17 AT 458 FT/SEC

Eigenvalue Frequency (Hz)

0.000 0.000
0.000

-2.412+5.5861 0.889
-2.412-5.5861 .

-5.890+34.331 5.464
-5.890-34.331
3.371+36.67 1 5.836
3.371-36.671

-0.518+314.41 50.04
-0.518-314.41
-12.93+373.31 59.42
-12.93-373.31

law. Using root locus techniques in TOTAL (2T), the gain

was varied until the unstable structural mode became stable

while keeping the remaining structural mode and the short

period roots stable. The gain chosen was - 50. Figure 5 is

the root locus for the y/ 6 e transfer function, with

twist position feedback. As can be seen, the unstable

structural mode is made stable, however, the very lightly

damped control surface mode goes slightly unstable. This is

not of much concern since the control surface actually has

damping due to frictional forces, which are not accounted

for in this model. The resulting roots of this condition

with the control system are in Table VI.

This simple control system was then tested at off

design conditions. As can be seen from the 'velocity root

-42-
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TABLE VI

EIGENVALUES OF THE YF-17 MODEL AT 458 FT/SEC

USING TWIST POSITION FEEDBACK

Elgenvalue Frequency (Hz)

0.000 0.000
0.000

-2.826+1.5791 0.251
-2.826-1 .5791
-3.003 35.541 5.S56
-3.003-35.541
-0.082+37.441 5.959
-0.082-37.441
0.460+312.11 49.67
-0.460-312.11
-12.92+373.31 59.42
-12.92-373.31

locus' in Figure 6, the control system keeps the structural

modes and the short period mode stable for all conditions

above 250 ft/sec up to the design condition, thus yielding

an acceptable control system, it it is implemented after the

model reaches 250 ft/sec.

Modern Design. Again using the 1.2 flutter speed

condition as the design point, a state-space feedback

control law was developed. Eigenvalue assignment was used

to assign the elgenvalues as shown in Table VII. The

resulting feedback matrix was found using MATRIXx (10).
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Figure 6. Velocity Root Locus for the YF-17
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TABLE VII

EIGENVALUES OF THE YF-iT MODEL AT 458 FT/SEC

USING STATE-SPACE FEEDBACK

Eclenvalue Frequency (Hz)

0.000 0.000
0.000
-2.412*5.5941 0.890 e.
-2.412-5.5941 1-
-5.809+34.331 5.464
-5.889-34.331
-3.375*36.6T 1 5.836
-3.375-36.671
-10.00+314.41 50.04
-tO.00-314.41
-12.93*3T3.31 59.42
-1.93-373.31
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The feedback matrix was then used at the off design

conditions. This state-space feedback system kept the

structural and short period modes stable for all the

conditions above 100 ft/sec. up to the design conditions,

and even beyond (Figure 7).

Quite often the states are not readily measurable.

However, the modelling technique as outlined In this effort

can be used In the design of an estimator or observer. This

model can be usefully employed In a modern control design.

a.-

N ~4

a 381

E 4.00O Velocities
0 in ft/sec aI
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V. Conclusions and Recommendations

The equations of motion of an elastic aircraft, have

been developed in this thesis, including the effects of

control surface dynamics. As was shown, the model developed

is useful for stability and control analysis, including the

effects of structural dynamics. The model can be used as a

basis for either classical or modern control methods. This

model also has merit as a flutter prediction method, at

least where the aerodynamics are well behaved, and can be

linearly approximated at low reduced frequencies.

There are several advantages to using this method.,

First, stability derivatives can be predicted, but if a ',

better source of stability derivatives is Known, they can be

directly incorporated into the model. A second advantage is

that the states are the normal aircraft states and rates,

plus those associated with the structural generalized

coordinates and rates, and those associated with the control

surface rotations and rates. This makes this method

directly applicable to classical and modern control design

procedures. A third advantage is that the second order

approximation used in this thesis results in a lower order

model than the methodology used in ADAM. Even If higher

order dynamics are needed, they can be easily added to the

model as pointed out by Rodden (20). Finally, this method
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can allow the prediction of control surface instabilities,

and unlike ADAM can predict rigid body motion.

This project is a useful design tool and it should

continue to be expanded. The use of other dynamic models

should be used to further validate this method, Including

models in which the rigid modes couple with the structural

modes. Second, the ability to extend this model to beyond

second order, and to extend it to lateral-directional

motion. Finally, the ability to account for sensor and

actuator dynamics, along with control system dynamics needs

to be addressed, to provide a better dynamic model.
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A. YF-17 State-Space Model at 1.2 Vf

This appendix contains the A, B, and C matrices for the

YF-iT model at 20 percent above the flutter speed (458

ft/sec). The states of the system are in Table Al. The A

matrix Is contained in Table A2. The B matrix is shown in .,

Table A3, while the C matrix is in Table A4.

TABLE At

THE STATES OF THE YF-i STATE-SPACE MODEL

z
9
q1 -Structural mode
g2 -Structural mode
61 -Control surface mode
qp-Control surface mode
dZ/dt
dS/dt
df~t/dt ..
dr2 /dt
d ,/at
d62 /dt

2- -NN
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TABLE A2

THE A MATRIX OF THE YF-17 MODEL AT 458 FT/SEC

ROW I
0.OOOOE.O0 0.OOOOE0 O0.OOOOE+O0 0.OOOOE+O0 0.OOOOE+O0 0.OOOOE+OO
O.IOOOE+Oi O.OOOOE.OO 0.OOOOE.00 0.OOOOE0 O0.OOOOE.00 0.OOOOE+O0
ROW 2
o.0E.OO 0 .OOOOE.00 0.OOOOE+0O0 O.OOOOE+0O0 O.OOOOE+00 0 .OOOOEeOO
O.OOOOE+OO 0.iOOOE+01 0.OOOOE.OO 0.OOOOE+O0 0.OOOOE0 O0.OOOOE+0O

ROW 3
O.OOOOE+OO 0.OOOOE+00 0.OOOOE+00O0.OOOOE+00 O.OOOOE+O0 O.OOOOEGOO
O.OOOOE+00 O.OOOOE.OO 0. IOOOE+01 0.OOOOE.OO 0.OOOOE.0O O.OOOOE+O0

ROW 4
O.0000E.O0 0.OOOOE.00 0.OOOOE+O0 0.OOOOE+00 0.OOOOE+00 O.OOOOE+00
0.OOOOE*OO 0.OOOOE+OO 0.OOOOE+0O 0.IOOOE+01 0.OOOOE+O0 0.OOOOE.00

ROW 5
O.OOOOE.00 O.OOOOE.O0 O.0000E.00 0.OOOOE.00 0.0000E+00 0.OO0OE+00
O.OOOOE+OO O.OOOOE+OO O.000E0E.O .0.OO0 0. iOOOE+01 0.OOOOE.00

ROW 6
O.OOOOE+O0 O.OOOOE.O0 O.OOOOE+00 0.OOOOE+00 0.OOOOE+00O0.OOOOE+0O
O.OOOOE+0O 0.OOOOE+O0 O.OOOOE.0O O.OOOOE.00 0.OOOOE+00 O.1OOOE+01

ROW 7
O.OOOOE.O0 0.OOOOE+OO-O.3640E+02 0.8012Ee02 0.17T33E+03 0.6701E+03

-O.1972E.Ot 0.4510E.03-O.3167E.OO-O.19?bE-02 0.2958E+00 0.2355E+00
ROW 8
0.OOOOE+00 O.OOOOE+00-0.2536E+OO O.3157E+O1-O.5i69E+02-0.2357E.03
-O.5530E-O1-0.2834EO1-0.3462E-01 0.6292E-0i-O.1353E-01-O.2464E.OO
ROW 9
O.OOOOE.00 O.OOOOE.00-0.1063E.04 0.5077E+03 0.8081E+03 0.5011E+04

-0.6238E+01 O.1225E.O1-O.2530E.O1 0.9873E+00 0.6515E+00 0.3356E+01
ROW 10
O.OOOOE+00 0.OOOOE+OO-0.273tE.03-0.1428E.04 0.2240E+04 0.6060E+04

-0.9393E+01 O.5419E.01-O.1407'E+O1-O.2632E+O1 0.2659E+01 0.2462E+01
ROW It
O.OOOOE+O0 O.OOOOE.0-O.6130E+0i 0.1664E.02-O.9885E+05 0.2625E+02
-0.2628E.OO-O.2952E.02-O.2426E+00 0.3485EOO-0.tOi5E40i 0.1170E+00
ROW 12
0.OOOOE+00 O.OOOOE,00 0.4492E+02-0.4854E.02-0.1162E.03-0.t395E+06
O.2328E+00-0.3660E+02 0.3252E+00 0.2543E+00-0.1188E+00-0.2577E+02
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A1.=4

TABLE A3

THE B MATRIX OF THE YF-17 MODEL AT 458 FT/SEC

0.OOOOE O0 0.OOOOE+00
O.OOOOE+00 0.OOOOE 001

00000E+00 0.OOOOE+00
0.0000E+00 0.OOOOE 00
O.OOOOE 00 O.OOOOE+00
0•0000E+O0 O.OOOOE+00

1-O.2679E+03 -0.9205E,03;
O.1689E+03 0.3064E+03
-0.1233E+04 -O.4638E+04
-O.2295E+04 -0.6524E+04
0.9885E+05 -0.32T3E+02I
O. 1011E+03 0 1396E+06J.

TABLE A4

THE C MATRIX OF THE YF-I7 MODEL AT 458 FT/SEC

USING TWIST POSITION SENSOR

51
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B. MAC User's Manual

The Methodology for Aeroelasticity and Controls (MAC)

program was developed from the theory presented in the main

body of this thesis. MAC integrates the results of unsteady

aerodynamics codes, structural dynamics, and controls into a

useful tool for both structural dynamics and flight control

engineers. MAC was developed unuer AFIT thesis number

AFIT/GAE/AA/86J-02 for the Flight Dynamics Laboratory. The

program resides on the Flight Dynamics Laboratory Vax ii/785

computer with a VMS operating system. MAC accesses the IMSL

library, the PLOTIO plotting library and the D13000 plotting

library. The example input data in this appendix is the

YF-17 model data used in this thesis.

The majority of input to MAC can either be input from

the terminal or automatically input from files. There are

three exceptions to this. The aerodynamic forces and the

print input data must be input from files, while the

feedback matrices must be input from the terminal. The

following logical file units are assigned to the following

data files.
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TABLE Bt

DATA FILES USED IN PROGRAM MAC

Logical Unit Data File Content

1 Structural Data
2 Aerodynamic Data
3 Initial Conditions
4 Output File
5 Terminal Input
6 Terminal Output
7 Root Locus Input
9 Output Files for Use

in 1ATRIXx
10 Print Data -

ii Forcing Function
Matrix

12 C Matrix
90 Data for Plotting

Root Locus
98 Scratch File

99 Scratch File

The first thing MAC does when started is to read the

system print parameters from a file. Then the user will be

prompted by the following menu.

3.
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MAC ready for input

Enter (#):

1. Automatic input of Items (2)-(7)
2. Read in structural data
3. Read in aerodynamic data
4. Read In initial conditions
5. Read in root locus values
6. Read in forcing function matrix
7. Read in the C matrix
8. Completion of input data

If the user chooses option I, MAC will automatically read in

all the data from items 2-7 from files. If the user wishes

to input the data separately, the options 2-8 must be

accomplished in order. Once the data is input, the

remainder of the program will prompt the user for Input.

The terminal input is in free field format. The remaining

portion of this manual describes the format of the input

data on files.

Print Data. The system constants for the determination

of what is to be output is in this file. The file is in

namelist format, as shown in Table B2. Below is an

explanation of each variable and it's default value.

KAERO(O) - set to I to print the aerodynamic matrices
onto unit 4, the output file

HIAT(O) - set to I to print the X, Y, and Z matrices
onto unit 4
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NIKV(O) - Set to I to print the X matrix
onto unit 4

NAMAT(O) - set to I if the A and B matrices are to be
set to files that are compatible with
1ATRIXx

NEIG(i) - set to 0 if the elgenvalues are not to be
sent to the plot file

NSTAB(O) - set to I if the rigid body non-dimensional
stability derivatives are to be modified 1

TABLE B2

PRINT DATA EXAMPLE

$PRNT NAERO=O, NHAT:i, NINV=O, NAMAT:i, NEIG=I, HSTAB=O $END

Structural Data. The structural data is input the

diagonal elements of mass matrix, and the associated

frequency (in Hz) of vibration. Table B3 contains an

example. The data is input in the following format.

Line I - N:total # of modes (limited to 20), NRB:# of
rigid modes (limited to 2), NS:# of structural
modes (limited to 13), NC=# of control surface .

modes (limited to 5)
Format (415)

Line 2 - Generalized masses in the order of rigid modes,
structural modes, and control surface modes.
Line 2 is repeated as often as necessary to. %J
account for all the modes
Format (4E15.7)

Line 3 - Frequencies of the modes of vibration In the
same order as above. Line 3 Is also repeated

as necessary
Format (4Ei5.7)
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TABLE B3

EXAMPLE STRUCTURAL DATA

6 2 2 2
0.7061300E+01 0.7776900E+02 0.3115000E+00 0.1019000E+00
0.102T00OE+00 0.iO00000E+00
0.OOOOOOOE+00 O.O000000E+00 0.4628000E+01 0.7t86000E+01
0.5000000E+02 0.6000000E+00

Aerodynamic Data. The generalized aerodynamic forces

(Qt s), from unsteady aerodynamic codes is input as complex

pairs with j increasing before I. Table B4 is an example of

this data for the YF-i7. The format of the variables Is P

shown below Table B4. This is all the data that MAC will use V

from this file. It will ignore any other aerodynamic data.

KI should be 0.0, and K2 should be a small value of reduced

frequency.

Initial Condition Data. This data includes the density

speed of sound, reference areas and lengths, and the mode

shape magnitudes. Table B5 Is an example of this data for

the YF-i7. The variable format Is explained below.

3
Line I - RHOO=density used in slugs/ft , AO=speed of

sound at that density altitude in ft/sec,
SREF:reference wing area in ft ,

CBARI.reference chord (Mean Aerodynamic Chord)
If ft, BR=reference semi-chord In ft
Format (FiO.7,FiO.2,3FI0.5)

Line 2 - ALPHAO and HO, the magnitudes of the pitch and
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plunge mode shapes
Format (2Fi0.5)

Line 3 - ZETA(I)=the magnitudes of the structural mode
shapes. This line is repeated as often as
necessary to account for all the elastic modes
Format (6Fi0.5)

Line 4 - DELTA(I)=the magnitudes of the control surface
mode shapes
Format (6FiO.5)

TABLE B5

EXAMPLE INITIAL CONDITION DATA

0.001O700 ti100.00 13.68000 2.97000 1.48500
12.00000 1.00000
1.00000 1.00000

12.00000 12.00000

Root Locus Data. The root locus data contains the

velocities that are to be used to compute the eigenvalues

for plotting. The maximum number is 20. Table B6 shows an

example.

Line I - NVEL:=of velocities to be used
Format (15)

Line 2 - V(I)=each velocity in ft/sec, repeated NVEL
times
Format (FiO.3)
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TABLE B6

EXAMPLE ROOT LOCUS DATA

15
0.000

100.000
200.000
250.000
300.000
350.000
381.000
400.000
420.000
440.000
458.000
470.000
480.000
490.000
500.000

Forcin5 Matrix. The forcing matrix is used to create

the B matrix. It Is defined in the main text of the

thesis. Table B7 Is the example used for the YF-17.

Line I - NIMP=#of Inputs the system
Format (15)

Line 2 - QMAT(l,J)zthe forcing matrix (NxNINP)
input row first, J increases before I. Line 2
is repeated as often as necessary.
Format (6EI5.7)

.

..

,v
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TABLE BT

EXAMPLE FORCING MATRIX

1!

9.0. I+66 .9 009699 I0. 8089 9 -12 -g,1 84610 E.-6I *. 0IWI0W B0+99 + 0.I0 601+0I

Measurement Matrix. The C matrix is Input from this

file. Table B8 Is the example used for the YF-i1.

Line I - NOUT:#of outputs into the system
Format (15)

Line 2 - CMAT(I,J):the measurement matrix (HOUTxH)
input rov first, J increases before i. Line 2

Is repeated as often as necessary.
Format (6E4,5.7)

TABLE B8

EXAMPLE MEASUREMENT MATRIX

2
0.0066006+00 0.090**euR+6* 0.iin6900g+8i 8.1900998B+81 60069966B+" 0.0"90069d669
*.0eIIs+ 6fl+ 0.** **UB+U I. 100se09+61 I. 0IISIO0E+oo *. 0**8000996e I. IS@*WB+01

The remaining inputs are from the terminal, as

requested by the the program prompts.

60.
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C. MAC Program

This Appendix contains the program listings of all the

programs that comprise the MAC program. MAC uses the IMSL

subroutine library for matrix inversion (LINVtF), matrix

multiplication (VMULFF), and eigenvalue computation (EIGRF).

MAC also uses the PLOTIO plot routine library in the

velocity root locus plotting program to clear the screen

before plotting. Finally, MAC uses the D13000 plot routine

library to create both screen plots and the hard copy

plots. The main calling program (MAC) is listed first. The

remaining subroutine libraries are in alphabetical order.

All the routines are listed below as they appear in this

appendix.

TABLE CI

MAC PROGRAM LISTING ORDER

MAC INPUT
AMAT MATSAV
AUGMENT MI NV
BMAT MMULT
EVAL RLPLOT
FASTCHG STABDER

The subroutines are fairly well commented so that a person

familiar with the theory developed in the main text and with

FORTRAN should be able to interpret the program.
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PROGRAM MAC

C This program was developed under AFIT Thesis AFIT/GAE/AA/86J-2
C by John J. Cerra II.
C
C This program uses generalized mass and stiffness matrices,
C along with generalized forces from an external source (FASTOP)
C and combines them into an appropriate state space formulation for
C use by any control analysis and design package. The state space
C model is the minimum order attainable, 2N, where N is the number
C of modes used (including rigid body and control surface modes).
C
C Subroutine INPUT reads in the generalized mass and stiffness
C matrices. It also reads in the generalized forces from FASTOP at
C two reduced frequencies (usually k=O and a small k). The initial
C conditions are also input here, along with the root locus data.
C Finally it also inputs the forcing function mat.- x, f,
C and the C matrix if needed.
C
C Subroutine STABDER computes stability derivatives from the FASTOP
C unsteady aerodynamics. There is also an option to modify the
C derivatives if derivatives from a better source are known.
C
C Subroutine AMAT uses the above data to compute the state space
C A matrix used for stability analysis. The order of A is 2N. A -
C is left as a function of dynamic pressure so that a velocity
C root locus can be performed as in a typical flutter solution.
C
C Subroutine BMAT computes the B matrix from the forcing function
C matrix Q. B is a function of dynamic pressure.
C
C Subroutine MINV, called by AMAT, computes the inverse of the X
C matrix using an IMSL routine LINVIF.
C
C Subroutine MMULT, called by AMAT, and BMAT multiplies matrices.
C This is used to form the A and B matrices.
C
C Subroutine EVAL computes the eigenvalues of the A matrix
C The eigenvalues for various velocities can
C be accomplished and then can be plotted on the real and imaginary
C plane to produce a velocity root locus.
C
C Subroutine AUGMENT augments the A matrix with the appropriate
C feedback, to form the augmented (closed loop) A matrix
C
C Subroutine FASTCHG creates non-dimensional coefficients out of
C the unsteady aerodynamics of FASTOP
C
C Subroutine RLPLOT plots the eigenvalues of the A matrix with respect
C to velocity on the complex plane, creating a 'velocity root locus'.
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C
C Subroutine MATSAV saves matrices to a file in a compatible
C form for MATRIXx
C

CHARACTER*1 QAUG, QLPT
CHARACTR*80 TITLE
INTEGER NVEL
REAL VE,V(20)
COMMON/RL/NVEL, V

C
C Open output file
C

OPEN(4,STATUS='NEW')
CALL INPUT
OPEN (98,STATUS='SCRATCH')
WRITE(98, *) NVEL

C
C Velocity root locus loop for the unaugmented aircraft

IF (NVEL.GT.1) THEN
DO 1 I=1,NVEL
CALL STABDER(NVEL,V(I))
CALL AMAT
CALL BMAT(V(I))
CALL EVAL

1 CONTINUE
ELSE
NVEL=O
VE--0.001
CALL STABDER (NVEL, VE)
CALL AMAT
CALL BMAT (VE)
CALL EVAL

ENDIF
C
C Option to plot the open loop aircraft roots
C

WRITE(*,'(A)') ' Do you want to plot the open loop roots?' .

READ(*,100) QPLT
IF (QPLT.EQ.'Y') THEN
WRITE(*,'(A)') ' What title do you want for the plot?'
READ(*,100) TITLE
CALL RLPLOT(0.0,8.0,-6.0,6.0,TITLE)
CLOSE(90)

ENDIF
WRITE(*,'(A)') ' Do you want to augment the A matrix?' -,
READ(*,100) QAUG 'A
IF (QAUG.EQ.'Y') THEN ,p.

C Call to closed lop augmentation program
C
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CALL AUGMENT
ENDIF V
IDAT=gg
CLOSE (1)
CLOSE(2)
CLOSE (3)
CLOSE (4)
CLOSE(7)
CLOSE (90)
CLOSE(g)
CLOSE (10)
CLOSE (11)
CLOSE (12)
CLOSE(98) 'Ti rga a ne.
WRITE(*2'(A)') Thsporm a ne.

100 FORMAT (A)
END
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SUBROUTINE ANAT
1C
C This subroutine uses the stability derivatives above for use in
C developing the open loop reduced order A matrix for stability

analysis, and control work. It is of much smaller order than
C that resulting from using Pade fit aerodynamics.
C

CHARACTER*1 QASAV
CHARACTER*20 ANAM
INTEGER N,NRB,NS,NC,NV
COMMON/ INDEX/N, NRB, NS, NC
INTEGER NAERO ,NMAT, NINV ,NAMAT, NEIG
COMMON/PRT/NAERO, NMAT, NINV, NAMAT, NEIG
REAL ZALPHA, MALPHA, ZALPHDT, MALPHDTJ ZQ, MQ,

OFZALPHA, FZALPDTN, FZETQ, ZZETA ,MZETA,
OZZETADT,MZETADT, ZZETDDT,MZETDDT,
OFZETZET, FZETZDT, FZEZDDT,
OFZETDEL, FZETDDT, FZEDDDT,
OFDELZET, FDELZDT, FDEZDDT,
OZDELTAMDELTA, FDALPHA, FDALPDT, FDETQ,
OZDELTDT,MDELTDT, ZDELDDT, MDELDDT,
OFOELDEL, FOELDOT, FDEDDDT, VEL
DIMENSION FZALPHA(15) ,FZALPDT(15) ,FZETQ(15) IZZETA (15) ,MZETA(15),

OZZETADT (15) ,MZETADT(15) ,ZZETDOT(15) ,MZETDDT(15),
OFZETZET(15,15) ,FZETZDT(15,15) ,FZEZDDT(15,15),
OFZETDEL(15,5) ,FZETDDT(15,5) ,FZEDDDT(15,5),
OFDELZET(5, 15) ,FDELZDT(5,15) ,FDEZDDT(5,15),
OZDELTA (5) ,MDELTA (5),FDALPHA (5),FDALPDT (5) FDET(5),
OZDELTDT(5) ,MDELTDT(5) ,ZDELDDT(S) IMDELDDT(5),
OFDELDEL (5,5) ,FDELDOT (5,5) ,FDEDDDT(5, 5)

COMMON/DERIV/ZALPHA ,MALPHAI ZALPHDT, MALPHDT, ZQ, MQ, FZALPHA, FZALPDT,
OFZETQ, ZZETA,MZETA, ZZETADT,MZETADT, ZZETDDT,MZETDDT, FZETZET,
OFZETZDT, FZEZDDT, FZETDEL, FZETDOT, FZEDOOT, FDELZET, FDELZDT, FDEZDDT,
OZDELTA, MDELTA, FDALPHA, FDALPDT, FDETQ,
GZDELTDT, MDELTDT, ZDELDDTDMDELDDT, FDELDEL, FDELDDT, FDEDDDT, VEL
REAL GM,GK
DIMENSION GM(20) ,GK(20)
COMMON/STRUCT/OM, GK
REAL K1,K2
COMPLEX GF1,GF2
DIMENSION GF1(20,20) ,GF2(20,20
COMMON/AERO/KI ,K2,OFI ,GF2,PI
REAL X,Y,Z,AMATRIX,XINV,XINVY,XINVZ
DIMENSION X(20,20) ,Y(20,20) ,Z(20,20) ,AMATRIX(40,40) ,XINV(40),
OXINVY (20,20) ,XINVZ (20,20)
COMMON/INV/X,XINV
COMMON/MMUL/Y, Z, XINVY ,XINVZ
COMMON/EIG/AMATRIX
REAL XMOM(5)

P COMMON/MOMENT/XMOM
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COMPLEX E(20)
DIMENSION WKX (20)
REAL*8 A(40,40),DUMMY
N2=-N*2

C .
C Initialization of the matrices of: Xx.Yx.Zx=0.

DO3C=,

DO 30 =1,N

X(I, J) =0.0

Y(I,J)=-0.O
Z (I DJ) =0.0

30 CONTINUE
C

C Input of the structural information into the matrices.

DO(1I,GM
Z(I,I)=GK(I)

1 CONTINUE
C
C Input of the aerodynamics into the matrices.
C

IF(NRB.ER.0) GOTO 24
C
C Rigid aero
C

X(1,1)=X(1, 1)-ZALPHDT/VEL
X(2, 1)=-MALPHDT/VEL
Y(l, 1)=-ZALPHA/VEL
Y (2, 1)=-MALPHA/VEL
Y (1, 2)=-ZQ-GM (1)*VEL
Y(2,2)=-MQ

24 CONTINUE
IF (NS.EQ.0) COTO 21

C
C Elastic/Rigid and Rigid/Elastic aero
C

DO 2 I=1,NS
J=I +NRB
IF (NRB.EQ.0) GOTO 20
X(J, 1)=-FZALPDT(I) /VEL
X(1, J)=-ZZETDDT(I)
X (2, J) =-MZETDDT (I)

Y(J,2)=-FZETQ(I)
Y(1,J)=-ZZETADT(I)
Y(2, J)=-MZETADT(I)
Z (1 , J) =- ZZETA (1)
Z (2, J) =-MZETA (1)

20 CONTINUE
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IF (NS.EQ.O) GOTO 4
C
C Elastic/Elastic aero

DO 4 K=i,NS
L=K.NRB 5

X(J,L)=-FZEZDDT(I,K) .X(J,L)
Y(J,L)=-FZETZDT(I ,K)
Z(J,L)=-FZETZET(I,K)+Z(J,L) j

4 CONTINUE
IF (NC.ElQ.O) GOTO 21

C
C Elastic/Control and Control/Elastic aero
C

DO 5 K=1,NC
L=K+NS+2
X(L, J)=-FDEZDDT(K,I)
X(J,L)=-FZEDDDT(IK)
Y(L, J)=-FDELZDT(K, I)
Y(J,L)=-FZETDDT(I,K)
Z(L, J)=-FDELZET(K,I)
Z(J,L)=-FZETDEL(I,K)

5 CONTINUE
21 CONTINUE*. .

2 CONTINUE
IF~~~~- (NBE5- OO2

IF (NR.EQ.O) GOTO 23

C
C Control/Rigid, Rigid/Control aero
C

DO 3 I=1,NC
J=I+NRB+NS
X(J, 1)=-FDALPDT(I)/VEL
X(1, J)=-ZDELDDT(I)
X(2, J)=-MDELDDT(I)
Y (J,l)=-FDALPHA (I) /VEL
Y (J ,2) =-FDETQ (I)
Y (1, J) =-ZDELTDT(I)
Y(2, J)=-MDELTDT(I)
Z(1 , )=-ZDELTA(I)
Z (2, J) =-MDELTA (I)

23 CONTINUE
IF (NC.EQ.O) GOTO 6

CControl/Control aero
C

DO 6 K=1,NC
L=K+NS.NRB
X(J,L)=-FDEDDDT(I,K) +X(J,L)
Y(i,L)=-FDELDDT(I,K)
Z(J,L)=-FDELDEL(I,K) .Z(J,L)

-67-



6 CONTINUE
3 CONTINUE

DO 32 J=1,NC
L=J+NS+NRB
XMOM(J) =Z (L,L)

32 CONTINUE
22 CONTINUE

IF (NMAT.EQ.0) GOTO 14
WRITE(4,'(/A)') ' The X matrix is'
DO 10 I=1,N
WRITE(4,300) I
DO 11 J=1,N,6
WRITE(4,301) (X(I,K) ,K=J,J+5)

11 CONTINUE
10 CONTINUE

WRITE(4,'(/A)') ' The Y matrix is'
DO 12 I=1,N
WRITE(4,300) I
DO 13 J=1,N,6
WRITE(4,301) (Y(I,K) ,K=J,J+5)

13 CONTINUE
12 CONTINUE

WRITE(4,'(/A)') The Z matrix is'
DO 14 I=1,N
WRITE(4,300) I
DO 15 J=1,N,6 .
WRITE(4,301) (Z(I,K) ,K=J,J+5)

15 CONTINUE
14 CONTINUE

C
C Initialization of the A matrix. A
C

DO 31 I=1,N2
DO 31 J=1,N2 (9

AMATRIX(I, J)=0.0
31 CONTINUE

C
C Call to invert X and to multiply XINV*Y and XINV*Z ,
C

CALL MINV
CALL MMULT
DO 8 I=1,N
DO 8 J=1,N
K=I+N
L=J+N
AMATRIX(K,L)=-XINVY(I, J)
AMATRIX(I,K)=1.0
AMATRIX(K, J)=-XINVZ (I, J)

8 CONTINUE
IF (NAMAT.EQ.1) THEN
OPEN (99,STATUS='SCRATCH')
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NV=NINT (VEL)
WRITE(99,310) NV

310 FORMAT('[.MATRXX)A',14.4)
REWIND 99
READ(99,302) ANAM
CLOSE (99)
DO 40 I=1,N2
DO 40 J=1,N2
AIJ=AMATRIX (I, J)
A(I,J)=DBLE(AIJ)

40 CONTINUE
OPEN (9, FILE=ANAM, STATUS='NEW')

C
C Call to the routine to put the A matrix in MATRIXx format
C

CALL MATSAV(9,ANAM,4O,N2,N2,0,A,DUMMY, '(1P8E1S.7)')
CLOSE (9)
ENDIF
WRITE(4,'(/A)') ' The A matrix of dx/dt=A*x is'
DO 16 I=1,N2
WRITE(4,300) I%
DO 17 J=1,N2,6
WRITE(4,301) (AMATRIX(I,K) ,K=J,J+5)

17 CONTINUE
16 CONTINUE

WRITE(98,*) ((AMATRIX(I,J),J=1,N2),I=1,N2)
IF (NRB.NE.O) WRITE(4,304)
IF (NS.NE.O) WRITE(4,305) (I,I=1,NS)
IF (NC.NE.0) WRITE(4,306) (I,I=1,NC)
IF (NRB.NE.0) WRITE(4,307)
IF (NS.NE.O) WRITE(4,308) (I,I=i,NS)
IF (NC.NE.0) WRITE(4,309) (I,I=1,NC)

300 FORMAT(' ROW',13)
301 FORMAT(1X,6E11 .4)
302 FORMAT(A)
304 FORMAT(/,' The states of the A matrix are:',/,

0' THETA')
305 FORMAT(' ZETA(' ,12, ')-Structural mode')
306 FORMAT(' DELTA(',12, ')-Control surface mode')
307 FORMAT(' dZ/dt' ,/,' dTHETA/dt')
308 FORMAT(' dZETA(',12,')/dt')
309 FORMAT(' dDELTA(',12,')/dt')
303 FORMAT(6E15.7)

RETURN
END zi
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SUBROUTINE AUGMENT
C
C This subroutine will augment the state space equations with
C the appropriate feedback (output or state) to form the closed
C loop state equations
C

REAL AUG(40,40),ACL(40,40),TEMP(40,40),CMAT(40,40),
OBMATRIX(40,40),FMAT(5,40) ,V(20)
INTEGER N,N2,NRB,NS,NC,IFDBK,NP,NOUT,IER,NA,NB
CHARACTER*1 QPLTQCHG
CHARACTER*80 TITLE
COMMON/EIG/ACL
COMMON/INDEX/N, NRB, NS, NC
COMMON/CMATRX/NOUT, CMAT
COMMON/BMA rX/NP,BMATRIX
COMMON/RL/NVEL, V
N2=2 *N

3 CONTINUE
DO 8 I=1,5
DO 8 J=1,40
FMAT (I, J) --0.0

8 CONTINUE
C
C Find out whether output or state feedback is to be used
C

WRITE(*, 700)
READ(*,701) IFDBK
IF (IFDBK.GT.2) GOTO 3
IF (IFDBK.EQ.O) GOTO 7 ,
IF (IFDBK.EQ.1) THEN

C
C output feedback augmentation loop, creates BKC=AUG
C

WRITE(*,702) NPNOUT
NA=NP
NB=NOUT
DO 1 I=1,NP
WRITE(*,703) I
READ(*,*) (FMAT(I,J),J=1,NOUT)

1 CONTINUE
GOTO 13

14 CONTINUE
C
C Call to IMSL routine to multiply BK, and then BK*C '
C -%11

CALL VMULFF(BMATRIX,FMAT,N2,NP,NOUT,40,5,TEMP,40, IER)
CALL VMULFF(TEMP,CMAT,N2,NOUT,N2,40,40,AUG,40,IER)
WRITE(4,'(A)') ' For OUTPUT feedback'
WRITE(4,'(A)') ' With a feedback matrix of'
DO 16 I=1,NP 

!
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WRITE(4,703) I
DO 17 J=1,NOUT,6
WRITE(4,706) (FMAT(I,K),K=J,J+5)

17 CONTINUE
16 CONTINUE

ELSEC

C state feedback augmentation loop, creates BK=AUC
C

WRITE(*,702) NP,N2
NA=NP
NB=N2
DO 2 I=1,NP
WRITE(*,703) I
READ(*,*) (FMAT(I,J),J=1,N2)

2 CONTINUE
GOTO 13

15 CONTINUE
C
C Call to IMSL routine to multiply B*K
C

CALL VMULFF(BMATRIX,FMAT,N2,NP,N2,40,5,AUG,40, IER)
WRITE(4,'(A)') ' For STATE feedback'
WRITE(4,'(A)') ' With a feedback matrix of' 2
DO 18 I=1,NP
WRITE(4,703) I
DO 19 J=1,N2,6
WRITE(4,706) (FMAT(I,K),K=J,J+5)

19 CONTINUE
18 CONTINUE

ENDIF
DO 4 J=1,N2
DO 4 I=1,N2
TEMP(I,J)--0.O

4 CONTINUE
C
C Unit 98 contains the unaugmented A matrices created during
C the first root locus. This section now creates another
C root locus loop, computing eigenvalues and using the
C closed loop A matrix Acl=A-AUG
C

REWIND (98)
READ(98,*) NVEL
DO 5 K=1,NVEL-- .
READ(98,*) ((TEMP(I,J),J=1,N2),I=1,N2)
DO 6 I=1,N2
DO 6 J=1,N2
ACL(I,J)=TEMP(I,J)-AUG(I,J)

6 CONTINUE
WRITE(*, 704) V(K)
WRITE(4,704) V(K)
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CALL EVAL
5 CONTINUE 6

C

C Option to plot the root locus points
C

WRITE(*,'(A)') ' Do you want to plot the closed loop roots?'
READ(*,705) QPLT
IF(QPLT.EQ.'Y') THEN
WRITE(*,'(A)') ' What title do you want for the plot?'
READ(*, 705) TITLE
CALL RLPLOT (0.0,8.0,-6.0,6.O,TITLE)
CLOSE(90)

ENDIF
GOTO 3

C
C This section gives the user the option to change the values
C of any portion of the feedback matrix.
C

13 CONTINUE
DO 10 I=1,NA
WRITE(*,703) I
DO 11 J=1,NB,6
WRITE(*,706) (FMAT(I,K),K=J,J+5)

11 CONTINUE
10 CONTINUE

WRITE(*,'(A)') ' Do you want to change any values?'
READ(*,705) QCHG
IF (QCHG.EQ.'N') GOTO 12

9 CONTINUE
WRITE(*,'(A)') ' Please input the row, column, and new value.'
READ(*,*) I, J,FMAT(I, J)
WRITE(*,'(A)') ' Do you want to change another value?'
READ(*,705) QCHG
IF (QCGG.EQ.'Y') GOTO 9

12 CONTINUE
IF (IFDBK.EQ.1) GOTO 14
IF (IFDBK.EQ.2) GOTO 15

700 FORMAT(' What type of feedback are you using?',//,
0' 0. Return to main program',/,
0' 1. Output',/,
0' 2. State',/)

701 FORMAT(15)
702 FORMAT(' The feedback matrix will have',13,' rows by',

013,' columns.',/,' Please input the feedback matrix by rows.',/)
703 FORMAT(' Row',13)
704 FORMAT(//,' The closed loop eigenvalues for ',F1O.3,' ft/sec')
705 FORMAT(A)
706 FORMAT(1X,6E11.4)
7 CONTINUE

RETURN
END
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SUB3ROUTINE BMAT (VEL)
C
C This subroutine takes the forcing function matrix and converts it
C into the B matrix of dx/dt=-Ax.Bu where u is the control input vector

REAL X(20,20) ,XINV(20,20) ,QMAT(20,5) ,BMATRIX(40,5) ,BMAT1 (20,5)

INTEGER N,NRB,NS,NC,NINP,NAERO,NMAT,NINV,NAMAT,NEIG,N2,NV
REAL*8 B(40,40) ,DUMMY
CHARACTER*20 BNAM
COMMON/PRT/NAERO ,NMAT,NINV ,NAMAT ,NEIG,N
COMMON/INDEX/N, NRB, NS, NC
COMMON/BMATRX/NINP, QMAT
COMMON/INV/X, XINV
COMMON/BMATX/NP, BMATRIX
REAL XMOM (5)
COMMON/MOMENT/XMOM

C
C Call to IMSL routine to multiply XINV*QMAT

C CALL VMULFF(XINV,QMAT,N,N,NINP,20,20,BMAT1,20,IER)

NP=NINP

C Creates the actual B matrix
C

DO 2 I=1,N
K=N.I
DO 2 J=1,NINP
BMATRIX (K, J) =BMAT1 (I, J) *XMOM (J)

2 CONTINUE
WRITE (4,603)
N2=2*N
DO 1 I=1,N2
WRITE(4,600) I%
WRITE(4,601) (BMATRIX(I,J) ,J=1,NINP)

1 CONTINUE
IF (NAMAT.EQ.1) THEN
OPEN (99,STATUS='SCRATCH')
NV=NINT (VEL)
WRITE(99,604) NV

604 FORMAT('(.MATRXX]B',14.4)
REWIND 99
READ(99,605) BNAM

605 FORMAT(A)
CLOSE (99)
DO 10 I=1,N2
DO 10 J=1,NINP
BI J=BMATRIX (I ,J)
B(I, J)=DBLE(BIJ)

10 CONTINUE
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OPEN(9,FILE-BNAM,STATUS='NEW')

C Call to routine that puts the B matrix into MATRIXx format
C C E

CALL MATSAV(9,BNAM,40,N2,NINP,O,B,DUMMY,'(1P8E15.7)')
CLOSE (9)

ENDIF
600 FORMAT(' Row',13)
601 FORMAT(1X,6E12.4)
602 FORMAT(6E15.7)
603 FORMAT(//,' The B matrix of dx/dt=Ax+Bu is')

RETURN
END
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SUBROUTINE EVAL
C.
C This subroutine computes the eigenvalues of the A matrix
C using the IMSL routine EIGRF.
C

REAL AMATRIX,WK
DIMENSION AMATRIX(40,40) ,WK(40)
COMMON/EIG/AMATRIX
COMPLEX EIGVAL(40)
INTEGER N,NRB,NS,NC,IER,N2
COMMON/INDEX/N, NRB, NS, NC
INTEGER NAERO, NMAT, NINV, NAMAT, NEIG
COMMON/PRT/NAERO, NMAT, NINV, NAMAT, NEIG
CHARACTER*64 QEIFLE
CHARACTER*14 QEVAFL
REAL*8 XXXY,XZ
N2=N*2
PI=3. 14159

C
C Call to IMSL eigenvalue solver routine
C

CALL EIGRF(AMATRIX,N2,40,0,EIGVAL,Z,IZ,WK,IER)
IF (IER.NE.0) THEN lo
WRITE(*,600) IER
STOP

ENDIF
IF (NEIG. EQ.1) OPEN(90,STATUS='SCRATCH) FORM= 'UNFORMATTED')
WRITE(*,'(/A)') ' The eigenvalues are:'
WRITE(*,'(A)') ' I Eigenvalue Freq(Hz)'
WRITE(4,'(/A)') ' The eigenvalues are:'
WRITE(4,'(A)') ' I Eigenvalue Freq(Hz)'
DO 2 I=1,N2
FREQ=AIMAG(EIGVAL(I))/(2. *PI)
XY=DBLE (FREQ)
RV=REAL (EIGVAL (I))
XX=DBLE (RV)
XIM=AIMAG(EIGVAL(I))
XZ=DBLE (XIM)
WRITE(*,602) I,REAL(EIGVAL(I)) ,AIMAG(EIGVAL(I)) ,FREQ
WRITE(4,602) I,REAL(EIGVAL(I)) ,AIMAG(EIGVAL(I)) ,FREQ
IF (NEIG.EQ.1) WRITE(90) XX,XY,XZ

2 CONTINUE
1 CONTINUE

WRITE(4, '(A) ') '1'
600 FORMAT(///,'**** There was an error in the eigenvalue', -

0' computation, # ',13,' **'//
601 FORMAT(A)
602 FORMAT(I3,2E11 .4, 'i ',E11 .4)

RETURN
END
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SUBROUTINE FASTCHG
C
C This subroutine changers FASTOP generalized forces into
C non-dimensional form by multiplying by s**2 and by dividing
C by SREF for forces and by SREF*CBAR for moments
C also the difference in the coordinate systems is taken into
C account. FASTOP is a left-hand rule axis system with positive
C Z up and positive moment down. Normal stability in body axes
C positive Z is downward and positive moment is up.
C

COMPLEX GF1,GF2
REAL S,SREFCBAR,PI,SR,CB,K1 ,K2,VO,RHOO,ALPHAO,HO, ZETAO,
ODELTAO,BR
INTEGER N,NRB,NS,NC
DIMENSION GF1 (20,20) ,GF2(20,20) ,ZETAO(15) IDELTAO(5)
COMMON/AERO/KI ,K2, OFI ,GF2,PI
COMMON/IC/VORHOO,SREF,CBAR,ALPHAO, HO, ZETAO, DELTAO, BR
COMMON/INDEX/N, NRB,S
NRBI=NRB*1
NSNRB=NS+NRB
NSNRBI=NSNRB+l
NCNSNRB=NSNRB+NC
S=12.0
SR=SREF*144 .0
CB=CBAR*12 .0
IF (NRB.EQ.0) GOTO I
DO 1 J=1,N
GFi (I, J)=-GF (1, J) .S**2/SR
GF2(1 ,J)=-GF2(1 ,J) .S**2/SR
GFI(2,J)=-GF1(2,J)*S**3/(SR*CB)
CF2(2, i)=-GF2(2, J) .S**3/(SR*CB)

1 CONTINUE
IF (NS.EQ.0) GOTO 2
DO 2 I=NRBI,NSNRB
DO 2 J=11N
GFi (I, J)=-GF1 (I, J) .S**2/SR
GF2(I, J)=-GF2(I ,J) .S**2/SR

2 CONTINUE
IF (NC.EQ.0) GOTO 3
DO 3 I=NSNRBI,NCNSNRB
DO 3 J=1,N
OFi (I, J)=-GF1 (I, J).S..3/ (SR*CB)
GF2 (I, J) =-GF2 (I,J) .S. 3/ (SR*CB)

3 CONTINUE
RE TURN
END
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SUBROUTINE INPUT A
C J
C This subroutine contains all the input necsssary to run the program.
C The total dimensions are 20 total modes, 2 rigid body modes, 5 control
C surface modes and 15 elastic modes maximum.
C

INTEGER N,NRB,NS,NC,NSQ,NVEL,INPT,NINP,N2,NOUT
INTEGER NAERO,NMATNINV,NAMAT,NEIG,NSTAB
CIIARACTER*64 STRUCT,AERO, INCOND,RTLCSF, INPTM,TITLE, OUTPM
CHARACTER.1 Ql,Q2,Q3,Q4,Q5,Q6,Q7,Q8,Q9,Q1O,Q1

REAL K1,K2,Vo,RHOO,SREF,CBAR,ALPHAO,HO,XMACH,A0,BR
REAL GM,GK,ZETAO,DELTAO,OMEGA,V,F(20,20) ,G(20,20)I
REAL QMAT(20,5) ,CMAT(40,40)
1IMENSION GM(20) ,GK(20) ,ZETAO(I5) ,DELTAO(5) ,OMEGA(20) ,V(20)
w-OMPLEX GF1,GF2
DIMENSION GFI(20,20) ,GF2(20,20)
COMMON/STRUCT/OM, GK
COMMON/AERO/KI ,K2,GF1 ,GF2,PI
COMMON/INDEX/N, NRB, NS, NC
COMMON/IC/VO,RHOO,SREF,CBAR,ALPHAO,HO,ZETAO,DELTAO,BR '

COMMON/RL/NVEL,V
COMMON/PRT/NAERO, NMAT, NINV, NAMAT, NEI G
COMMON/BMATRX/NINP, QMAT
COMMON/CMATRX/NOUT, CMAT
NAMELIST/PRNT/NAERO ,NMAT, NINV,NAMAT, NEIG, NSTAB

C
C Default values for the namelist variables
C

NA ER =0
NMAT=O
NINV=0
NAMAT=0
NEIG=1
NSTAB=O
OPEN (10, STATUS= 'OLD)
READ (10, PRNT)
P1=3.14159

C
C Question to find out whether the data is to be automatically
C input, or whether it will be done manually. .
C

24 CONTINUE
WRITE(*,120)
READ(*,121) INPT
IF (INPT.EQ.1) THEN

C
C Auto input of Structural info
C

OPEN(1 ,STATUS='OLD')

READ(1,116) N,NRB,NS,NC
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N2=2*N
READ(1,117) (GM(I) ,I=l,N)
READ(1,117) (OMECA(I),I=1,N)

AuoCo
C Auto input fAr

C
OPEN(2,STATUS='OLD')
READ(2,111) TITLE
READ(2,128) NXMACH I

READ(2,127) KI

RD 216 7 I=1,N(,J),=,N,=1N
DO 7 =1,N

GF1(I,J)=CMPLX(F(I,J) ,G(I,J))
7 CONTINUE

READ(2,127) K2
READ(2,126) (((F(I,J),G(I,J)),I=1,N),J=1,N)
DO 11 I=1,N
DO 11 J=l,N
GF2(I,J)=-CMPLX(F(I, J) ,G(I,J))

11 CONTINUE
C

S C Auto input of initial conditions
C

OPEN(3,STATUS='OLD')
READ(3,118) RHOO,AO,SREFCBAR,BR
IF (NRB.NE.O) READ(3,119) ALPHAO,HO
IF (NS.NE.O) READ(3,119) (ZETAO(I),I=1,NS)
IF (NC.NE.O) READ(3,119) (DELTAO(I),I=1,NC)

C
C Auto input of root locus info
C

OPEN(7,STATlJS='OLD')
-READ(7,121) NVEL

DO 15 I=1,NVEL
READ(7,122) V(I)

15 CONTINUE
C
C Auto input of forcing function matrix

Nj C
UPEN(11,STATU.S=aOLD')
READ(11,121) NINP
READ(11,123) ((QMAT(I,J),J=1,NINP),I=1,N)

C
C Auto input of C matrix

zv C
OPEN(12,STATUS= SOLD ')
READ(12,121) NOUT

GOTO 23
END IF
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IF (INPT.LE.0) GOTO 24
IF (INPT.EQ.2) GOTO 20
IF (INPT.EQ.3) GOTO 21
IF (INPT.EQ.4) GOTO 22
IF (INPT.EQ.5) GOTO 26
IF (INPT.EQ.6) GOTO 25
IF (INPT.EQ.7) GOTO 27
IF (INPT.EQ.8) GOTO 23
IF (INPT.GT.8) GOTO 24

20 CONTINUE
C
C Input of the structural information. N=# of modes, NRB=# of rigid
C body modes (set at two for now), NS=f of structural modes,
C NC=# of control surface modes. OMEGA-modal frequencies
C GM-generalized mass,GK-generalIized stiffness.

WRITE(*,'(A)') ' Is the structural information in a file ?
READ(*,111) Q1
IF (Q1.EQ.'Y') THEN
WRITE(*,'(A)') ' Please input the name of the file.'
READ(*,111) STRUCT
OPEN (1 ,FILE-STRUCT, STATiJS= 'OLD')
READ(1,116) N,NRB,NS,NC
N2=2*N
READ(1,117) (GM(I) ,I=1,N)
READ(1,117) (OMEGA(I) ,I=1,N)
ELSE
WRITE(*,'(A)') ' Do you wish to save the data on a file for'
WRITE(*,'(A)') ' future use?'
READ(*,111) Q2
IF (Q2.EQ.'Y') THEN
WRITE(*,'(A)') ' What is the name of the new file?'
READ(*,111) STRUCT
OPEN (1, FILE=STRUCT, STATUS= 'NEW')

ENDIF
WRITE(*,'(A)') 'Input total # of modes used (max 20).'
READ(*,*) N
N2=2 *N
WRITE(*,'(A)') 'Input # of rigid modes used (2).'
READ(*,*) NRB
WRITE(*,'(A)') 'Input # of structural modes used (max 15).'
READ(*,*) NS

WRITE(*,'(A)') ' Input # of control surface modes used (max 5).'
READ(*,*) NCI
WRITE(*,'(A)') ' Input the generalized masses in the order of'
WRITE(*,'(A)') ' rigid modes (plunge then pitch), structural'
WRITE(*,'(A)') ' modes, and control surface modes.'
READ(*,*) (GM(I),I=1,N)
WRITE(*,'(A)') ' Input the modal frequencies (in Hz)in the order'
WRITE(*,'(A)') ' of rigid modes (plunge then pitch), structural
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READ(*,*) (OMEGA(I) ,I=1,N)
IF (Q2.EQ.'Y') THEN
WRITE(l,116) N,NRB,NSNC
WRITE(l,lll) (GM(I),I=l,N) 4

WRITE(l,117) (OMEGA(I) ,I=l,N)
END IF

ENDI F
GOTO 24

21 CONTINUE
C
C Input of the genaralized aerodynamic forces. It is in the format
C of the output of FASTOP as modified by Max Blair, where the two
C reduced frequencies are combined into one file.
C K1 is the first reduced frequency, K2 is the second reduced frequency.
C CF1 are the generalized forces related to the first reduced frequency,
C GF2 are the generalized forces related to K2. K1 is usually 0.0 ande
C K2 is a small reduced frequency (0.001).
C

WRITE(*,'(A)') ' What is the name of the file for the generalized'
WRITE(', '(A)') ' forces (aerodynamics)?'
READ(*,111) AERO
OPEN(2,FILE=AERO,STATUS='OLD')
READ(2,111) TITLE
READ(2,128) N,XMACH
READ(2,127) K1
READ(2,126) (((F(I,J),G(I,J)),I=1,N),J=1,N)
DO 17 I=1,N
DO 17 J=1,N
GF1(I,i)=CMPLX(F(I,J) ,G(I,J))

17 CONTINUE
READ(2,127) K2
READ(2,126) (((F(I,J),G(I,J)),I=1,N),J=1,N)
DO 18 I=1,N
DO 18 J=1,N
GF2(I,J)=CMPLX(F(I,J) ,G(I,J))

18 CONTINUE
8 CONTINUE

GOTO 24
22 CONTINUE

C
C Input of initial conditions, velocity, density, reference area,
C reference chord (should be the actual A/C area A chord).
C Also the appropriate magnitudes of the mode shapes are input.
C

WRITE(*,'(A)') ' Are the initial conditions in a file ?'
READ(*,111) Q3
IF (Q3.EQ.'Y') THEN
WRITE(*,'(A)') ' Please input the name of the file.'

READ(*,111) INCOND
OPEN (3, FILE=INCOND, STATUS= 'OLD')I
READ(3,118) RHOO,AO,SREF,CBAR,BR
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IF (NRB.NE.O) READ(3,119) ALPHAO,HO
IF (NS.NE.O) READ(3,119) (ZETAO(I),I=1,NS)
IF (NC.NE.O) READ(3,.119) (DELTAO(I) ,I=1,NC)

ELSE
WRITE(*,'(A)') ' Do you wish to save the initial conditions
WRITE(*,'(A)') ' on a file for future use?'
READ(*,111) Q4
IF (Q4.EQ.'Y') THEN
WRITE(*,'(A)') ' What is the name of the new file?'
READ(*,111) INCOND
OPEN (3, FILE=INCOND, STATUS= 'NEW')

ENDIF
WRITE(*,'(A)') ' Please input the following initial conditions.'
WRITE(*,'(A)') ' Density (slugs/ft**3):'
READ(*,*) RHOO
WRITE(*,'(A)') ' Speed of sound (ft/sec) at density altitude:'
READ(*,*) AO
WRITE(*,'(A)') ' Reference Area (in ft**2):'
READ(*, *) SREF
WRITE(*,'(A)') ' Reference Chord (MAC) (in ft):'
READ(*,*) CBAR
WRITE(*,'(A)') ' What is the reference semnichord used in the'
WRITE(*,'(A)') ' aerodynamics routine (from kbw/V) in ft.'
READ(*,*) BR
IF (NRB.EQ.0) GOTO 19
WRITE(*,'(A)') ' Pitch mode shape magnitude:'
READ(*, *) ALPHAO .

WRITE(*,'(A)') ' Plunge mode shape magnitude:'
READ(*,*) HO

19 CONTINUE
IF (NS.EQ.0) GOTO 5
DO 5 I=1,NS
WRITE(*, 108)1
READ(*,*) ZETAO(I)

5 CONTINUE
IF (NC.EQ.0) GOTO 6
DO 6 I=1,NC
WRITE(*,109)I
READ(*,*) DELTAO(I)

6 CONTINUE
IF(Q4.EQ.'Y') THEN
WRITE(3,118) RHOO,AO,SREF,CBAR,BR
IF (NRB.NE.O) WRITE(3,119) ALPHAO,HO
IF (NS.NE.O) WRITE(3,119) (ZETAO(I)J,=1,NS)
IF (NC.NE.0) WRITE(3,119) (DELTAO(I),I=1,NC)

ENDIF
ENDIF
GOTO 24

26 CONTINUE
C
C Manual input of velocity root locus data
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WRITE(*,'(A)') 'Do you wish to perform a velocity root locus?'
READ(*,100) Q5
IF(QS.EQ.'Y') THEN
WRITE(*,'(A)') ' Are the values on file?'
READ(*,100) Q6
IF (Q6.EQ.'Y') THEN
WRITE(*,'(A)') ' What is the name of the file?'
READ(*,100) RTLCSF
OPEN (7, FILE=RTLCSF, STATUS= 'OLD')
READ(7,121) NVEL
DO 16 I=1,NVEL

READ(7,122) V(I) Z
16 CONTINUE

ELSE
WRITE(*,'(A)') ' Do you want to save this data for future use?'
READ(*,111) Q7
IF(Q7.EQ.'Y') THEN
WRITE(*, '(A)'' What is the name cf the new file?'
READ(*,111) RTLCSF
OPEN (7, FILE=RTLCSF, STATUS= 'NEW') V

ENDIF
WRITE(*,'(A)') ' How many velocities t,- use (max 20)?'
READ(*, *) NVEL
IF (Q7.EQ.'Y') WRITE(7,1ol) NVEL
WRITE(*,'(A)') ' Please input the velocities (in ft/sec).'
READ(*,*) (V(I) ,I=1,NVEL)
IF (lQ7.ElQ.'Y') WRITE(7,102) (V(I),I=1,NVEL)

ENDIF
ENDIF
GOTO 24

25 CONTINUE
C
C Manual input of the forcing function matrix 1
C 1

WRITE(*,'(A)') ' Is the forcing function matrix on file?'

IF(Q8.EQ.'Y') THEN
WRITE(*,'(A)') ' Please input the name of the file.'
READ(*,111) INPTM
OPEN (11, FILE=INPTM, STATUS= 'OLD')
READ(11,121) NINP
READ(11,123) ((QMAT(I,J),J=1,NINP),I=1,N)%

ELSE
WRITE(*,'(A)') ' Do you wish to save the data to file?'

IF (Q9.EQ.'Y') THEN
WRITE(*,'(A)') ' What is the name of the new file?'
READ(*,111) INPTM
OPEN(11 ,FILE=INPTMSTATUS='NEW')

ENDIF
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WRITE(*,'(A)') I How many inputs are there?'
READ(*, *) NINP
WRITE (*, 124) N, NINP
DO 30 I=1,N
WRITE(*,125) I

30 CONTINUE
IF (Q9.EQ.'Y') THEN
WRITE(11,121) NINP
WRITE(11,123) ((QMAT(I,J) ,J=1,NINP) ,I=1,N)

ENDIF
ENDIF
GOTO 24

27 CONTINUE
C
C Manual input of the C matrix
C

WRITE(*,'(A)') ' Is the C matrix on file?'
READ(*,111) Q10
IF(QlO.EQ.'Y') THEN
WRITE(*,'(A)') ' Please input the name of the file.'
READ(*,111) OUTPM
OPEN(12,FILE=OUTPM,STATUS=-'OLD')
READ(12,121) NOUT
READ(12,123) ((CMAT(I,J) ,J=1,N2) ,I=1,NOUT)
ELSE
WRITE(ii,'(A)') ' Do you wish to save the data to file?'

IF (QI1.EQ.'Y') THEN
WRITE(*,'(A)') 'What is the name of the new file?'
READ(*,111) OUTPM
OPEN(12, FILE=OUTPd, STATUS= 'NEW')

ENDIF
WRITE(am,'(A)') ' How many outputs are there?'
READ(*,*') NOUT
WRITE(*,129) NOUT,N2
DO 34 I=1,NOUT
WRITE(*,125) I
READ(*',*) (CMAT(I,J) ,J=1,N2)

34 CONTINUE
IF (Q11.EQ.'Y') THEN
WRITE(12,121) NOUT
WRITE(12,123) ((CMAT(I,J) ,J=1,N2) ,I=1,NOUT)

ENDIF
END IF
GOTO 24

23 CONTINUE
DO 9 I=1,N
CK (I) =GM (I) *((OMEGA (I) *2. *PI) **2)

9 CONTINUE
VO=-XMACH*AO
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WRITE(4,100) N
WRITE(4,101) NRB
WRITE(4,102) NS
WRITE(4,103) NC
WRITE(4,104)
DO 1 I=1,N
WRITE(4,105) I,I,GM(I)

1 CONTINUE
WRITE (4,106)
DO 2 I=1,N
WRITE(4,105) I,I,GK(I)

2 CONTINUE
C
C Call to the routine that non-dimensionalizes FASTOP aero forces
C

CALL FASTCHG
IF (NAERO.EQ.0) GOTO 4
WRITE(4,114) XMACH
WRITE(4,107) KI
DO 3 I=I,N
WRITE(4,125) I
WRITE(4,112) ((REAL(GF1(IJ)),AIMAG(GF1(I,J))),J=1,N)

3 CONTINUE
WRITE(4,107) K2
DO 4 I=1,N
WRITE(4,125) I
WRITE(4,112) ((REAL(GF2(I,J)),AIMAG(GF2(I,J))),J=1,N)

4 CONTINUE
WRITE(4,'(/A)') ' The initial conditions are:'
WRITE(4,115) RHOO,SREF,CBAR,BR
WRITE(4,'(A)') '1'

100 FORMAT(/,' The total number of modes are:',13)
101 FORMAT(' The total number of rigid body modes are:',I3)
102 FORMAT(' The total number of elastic modes are:',13)
103 FORMAT(' The total number of control surface modes are:',I3)
104 FORMAT(/,' The generalized mass matrix is',/,' RowCol Gen Mass')
105 FORMAT(1X,2I3,E12.4)
106 FORMAT(/,' The generalized stiffness matrix is',

0/,' RowCol Gen Stiff')
107 FORMAT(/,' The generalized force matrix for reduced frequency of',

0F7.4,' is')
108 FORMAT(' Structural mode',12,' magnitude:')
109 FORMAT(' Control surface mode',12,' magnitude:')
110 FORMAT(IX,I4,1X,I4,2E15.7)
111 FORMAT(A)
112 FORMAT(3(1X,2E12.4,'i'))
113 FORMAT(15X,E15.7)
114 FORMAT(/,' For a Mach number of',F6.3)
115 FORMAT(' Density=',Fll.5,'Slugs/ft**3, Reference Area=',

GE11.4,' ft**2',/,
0' Chord=',E11.4,' feet, and an aerodynamic reference',
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0' semi-chord=',E11.4,' feet.')
116 FORMAT(415)
117 FORMAT(4E15.7)
118 FORMAT(F1O.7,F1O.2,3F10.5)
119 FORMAT(6F10.5)
120 FORMAT(' MAC ready for input',//,

0' Enter (#) : ',//,
0' 1. Automatic input of items (2)-(7)',/
o' 2. Read in structural data',/
0' 3. Read in aerodynamic data',/
o' 4. Read in initial conditions',/
0' 5. Read in root locus values',/
0' 6. Read in forcing function matrix',/
0' 7. Read in the C matrix',/
0' 8. Completion of input data',//)

121 FORMAT(I5)
122 FORMAT(F1O.3)
123 FORMAT(6E15.7)
124 FORMAT( ' For n modes, there are n modes with m controls',/,

0' The modes will be set up as follows:',/,
0' Rigid modes',/,
0' Structural modes',/,
0' Control surface modes',/,
0' The matrix will have',13,' rows and ',13,' columns',/,
0' Please input the matrix by row.'//)

125 FORMAT(' Row',13)
126 FORMAT(8E15.7)
127 FORMAT(E15.7)
128 FORMAT(I5,5X,E15.7)
129 FORMAT(' The matrix will have ',13,' rows and',13,' columns',/

O' Please input the matrix by row.'//)
RETURN
END

-85-

A ',



SUBROUTINE MATSAV ( LUNIT, NAME, NR, M, N, IMG,
$ XREAL, XIMAG, FORMT )

C
C -

CI
C (TM)
C MATRIX V5.0
C X
C
C (C) COPYRIGHT INTEGRATED SYSTEMS, INC. 1985
C PALO ALTO, CALIFORNIA
C
C All Rights Reserved
C
C This software may not be copied or altered
C without the express written consent of I
C Integrated Systues, Inc.
C
C-------------------------------------------------
C
C MATSAV writes a matrix to a file in a format suitable for the I
C MATRIXx LOAD operation. I
C
CI---------------------------------------------------------I
C Param. I Type On input- I On output-
CI---------------------------------------------------------I
CI I I I I
C LUNIT INTEGER Fortran logical unit number. unchanged.
C
C NAME CHARACTER*(*) Name of the matrix. One al- unchanged.
C (maximum - phabetic followed by up to 9
C length 10) alphanumeric characters.
C
C IR INTEGER Row-dimension in the unchanged.
C defining dimension or type
C statement in the calling
C program. NR must be greater
C than or equal to M.
C

C M INTEGER Number of rows of the matrix unchanged. I
C

C N INTEGER Number of columns of the unchanged.
C matrix.
C

C IMG INTEGER If IMG = 0, the imaginary unchanged. I
C part (XIMAG) is assumed to II
C be zero and is not saved. I
C
C XREAL DOUBLE Real part of the matrix to unchanged. I
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C PRECISION be saved.
C

C XIMAG DOUBLE Imaginary part of the matrix unchanged.
C PRECISION to be saved.C
C FORMT CHARACTER*(*) String containing the For- unchanged.
C (maximum tran format to be used for
C Ilength 20) writing the elements of the
C matrix.
C

CI---------------------------------------------------------------I
C
C Example: The following Fortran program generates an elementary
C matrix in X and writes it to Fortran unit 1. Assume
C that unit 1 has been preallocated as file (data set)
C TEST.
C
C
C DOUBLE PRECISION X(20,3), DUMMY
C DO 200 J=1,3
C DO 100 I=1,10
C X (I, J)-0.O0 I
C 100 CONTINUE I
C X(J,J)=1 . ODO
C 200 CONTINUE

C CALL MATSAV( 1, 'AMATRIX', 20, 10, 3, 0, C $ X, DUMMY, '(1P2E24.15)1

C STOP I L

C END
CI
CI
C After this program runs, invoke MATRIXx and type:
C
C <> LOAD 'TEST'
CI
C This will put X on the stack as stack-variable-name AMATRIX.

C --------------------------------------------------------------
C

INTEGER LUNIT, M, N, NR, IMG
CHARACTER* (*) NAME, FORMT
DOUBLE PRECISION XREAL(NR,1), XIMAG(NR,1)
CHARACTER NAM*10, FORM*20

C
C
C I write header record. Iq

NAM=NAME
FORM=FORMT
WRITE(LUNIT, '(A10,3I5,A20)') NAM,M,N,IMG,FORM
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C I write real-part of the matrix. I
C

WRITE(LUNITFORM) ((XREAL(I,J),I=I,M),J=1,N)
C
C I write imaginary-part if nonzero. I

IF(IMC.NE.O) WRITE(LUNIT,FORM) ((XIMAC(I,J) ,I=1,M) ,J=1,N)
RETURN
END
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SUBROUTINE MINV
C
C This subroutine inverts the X matrix using the IMSL routine
C LINVIF.
C

REAL X,XINV,WKAREA
DIMENSION X(20,20), XI k (20,20),WKAREA (20)
COMMON/INV/XXINV
INTEGER N,NRBNS,NC,IER
COMMON/INDEX/N, NRB, NS, NC
INTEGER NAERO,NMAT, NINV, NAMAT, NEIG
COMMON/PRT/NAERO, NMAT, NINV, NAMAT, NEIG "

C
C Call to IMSL matrix inversion routine
C

CALL LINVlF(X,N,20,XINV,4,WKAREA,IER)
IF (IER.EQ.34) THEN
WRITE (* ,403) %
GOTO 5

ENDIF
IF (IER.NE.0) THEN
WRITE(*,400) IER
STOP

ENDIF
5 CONTINUE

IF(NINV.EQ.0) GOTO 2
WRITE(4,'(/A)') ' X inverse is'
DO 2 I=1,N
WRITE(4,401) I -

DO 3 J=1,N,6
WRITE(4,402) (XINV(I,K),K=J,J.5)

3 CONTINUE
2 CONTINUE

400 FORMAT(///,' **** There was an error in inverting X, # ',J3,

401 FORMAT(' ROW',I3)
402 FORMAT(6E12.4)
403 FORMAT(///,' The inversion did not meet error criterion',///)
1 CONTINUE

RETURN
END
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SUBROUTINE MMULT

C This subroutine multiplies Xinv*Y and Xinv*Z using the
C IMSL routine VMULFF
C

REAL Y,Z,XINV,XINVY,XINVZ
DIMENSION X(20,20) ,Y (20,20) ,Z (20,20) ,XINV (20,20),

OXINVY (20,20) ,XINVZ (20,20)
COMMON/MMUL/Y,Z,XINVY,XINVZ
COMMON/INV/X, XINV
INTEGER N,NRB,NS,NC,IER
COMMON/INDEX/N, NRB, NS, NC
INTEGER NAERO ,NMAT, NINV, NAMAT, NEIG
COMMON/PRT/NAERO ,NMAT, NINV, NAMAT, NEIG

C
C Call to IMSL matrix multiplication routine to multiply
C XINV*Y
C

CALL VMULFF(XINV,Y,N,N,N,20,20,XINVY,20,IER)
IF (IER.NE.0) THEN
WRITE(*,500) IER
STOP

ENDIF
IF(NINV.EQ.0) COTO 2
WRITE(4,'(/A)') ' XINV*Y is'
DO 2 I=1,N
WRITE(4,501) I
DO 3 J=1,N,6
WRITE(4,502) (XINVY(I,K) ,K=J,J.5)

3 CONTINUE
2 CONTINUE

IER=O
C
C Call to IMSL matrix multiplication routine to multiply
C XINV*Z
C

CALL VMUFF(XINV,Z,N,N,N,20,20,XINVZ,20,IER)
IF (IER.NE.0) THEN
WRITE(a,500) IER
GOTO 1

ENDIF
IF(NINV.EQ.0) GOTO 4
WRITE(4,'(/A)') ' XINV*Z is'
DO 4 I=1,N
WRITE(4,501) I -
DO 5 J=1,N,6

WRITE(4,502) (XINVZ(I,K) ,K=J,J+5)
5 CONTINUE
4 CONTINUE

500 FORMAT(///,' ****There was an error in the matrix multiply,9'
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501 FORMAT(' PIW',I3)
502 FORMAT (6E,,.4)

1 CONTINUE
RETUJRN
END



SUBROUTINE RLPLOT (FL, FH, RL,RH, TITLE)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*4 XPOS,YPOS
CHARACTER*4 NUM
CHARACTER*23 DT
CHARACTER*40 TITLE
LOGICAL PLOT
REAL VAL(13)/.01,.1,.2,.5,1.,2.,5.,1O.,20.,50.,100.,200.,500./!

C
REWIND 90
ZERO=0O.DO
ONE=1 .DO i

WRITE(* ,1010)
READ(*,*)

CALL JBEGIN
C CLEAR SCREEN WITH PLOT10 COMMANDS

CALL IN ITT (960)

CCALL FINITT(O,2800)

C SETUP GRAPHICS

PLOT=.FALSE.
30 IF(.NOT. PLOT) THEN

CALL JDINIT(1)
CALL JDEVON(l)

ELSE
CALL JDINIT(2)
CALL JDEVON (2)

END IF
C

CALL JWINDO(-4.,12.,-3.,15.)
CALL JOPEN
CALL JSIZE(.27, .35)
IF(PLOT) CALL JFONT(5)

C IF(.NOT.PLUT) CALL JFONT(1)

C DRAW BOX AND SET UP AXES
C

CALL JMOVE(> DO.)
CALL JDRAW(1O.,0.)
CALL JDRAW(10. ,10.)

CALL JDRAW(O. ,1O.)

C CALL JDRAW(0.,0.)I
XRANGE=RH-RL W
XRAT=XRANGE/10.
YRANGE=FH-FL
YRAT=YRANGE/1O.

C
DO 50 I=1,13
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IF(XANC.GE.&(I) XTEP=AL()/S
50 IF(XRANGE.GE.VAL(I)) XSTEP=VAL(I)/5.

C
XPDS=SNCL (-RL/XRAT)
CALL JMOVE(XPOS,0.)

CALL JDRAW(XPOS,10.)

C DRAW TIC MARKS AND NUBERS
C

X=RL
60 XPOS=SNGL (X/XRAT-RL/XRAT)

IF (XPOS.GT.10.)GOTO 65
CALL JMOVE(XPOS,0.)
CALL JRDRAW(0.,-.3)

C
ENCODE(4, 1020,NLII)X
CALL JJUST(2,3)
CALL JMOVE(XPOS,- .5)
CALL JHSTRC (NUM) wC
X=X.XSTEP
GOTO 60

C
65 Y=FL
70 YPOS=SNGL (Y/YRAT-FL/YRAT)

IF(YPOS.GT.10.) GOTO 75
ENCODE(4, 1020,NLNJ)Y
CALL JJUST(3,2)
CALL JMOVE(0. ,YPOS)
CALL JRDRAW(- .3,0.)
CALL JMOVE(- .5,YPOS)
CALL JHSTRG (NUMw)

Y=Y+YSTEP

C GOTO 70
75 CALatE(4.5

75 CALL JJSTZ(2,)
CALL JBASE(1.,0.)
CALL JMOVE(5. ,-2,.)
CALL JTET(42, 42HR[LJEL[LJ BC MOET 1/E)[LJ

CALL JBASE(0.,1.,0.)

CALL JJUST(2,1)
CALL JMOVE(-2.,5.)j

CALL JHTEXT (44 ,44H1 [BLCJ MAGINARY [ELC) C BLC) OMPONENT (HZ) (ELCJ)
C-,i
C PRINT TITLE AND DATE AT TOP OF PLOT
C
C CALL JBASE(1.,0.,0.)
C CALL JJUST(1,1)
C CALL JMOVE(-3.,12.)
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CALL JHSTRG (TITLE)

cCALL JMOVE(-3.,11.)
C CALL JHSTRG (DT)
C
80 READ(90,END=999) XH,YH,RF

IF(XH.GT.RH.OR.XH.LT.RL) GOTO 80
IF(YH.GT.FH.OR.YH.LT.FL) GOTO 80 '"

XPOS=SNGL (XH/XRAT-RL/XRAT) lp
YPOS=SNGL (YH/YRAT-FL/YRAT)

CALL JMOVE(XPOSYPOS)

C DRAW A LITTLE SQUARE
C

CALL JRDRAW(.05, .05)
CALL JRDRAW(- .1,0.) -

CALL JRDRAW(0.,-.1)
CALL JRDRAW(.1,0.)
CALL JRDRAW(0.,.l)
GOTO 80

C
C SHUT EVERYTHING OFF
C
999 CALL JCLOSE

IF(.NOT.PLOT) THEN
CALL JPAUSE(1)
CALL JDEVOF(l)
CALL JDEND(1)

ELSE
CALL JPAUSE(2)
CALL JDEVOF (2)
CALL JDEND(2)

END IF
C
C SEND QMS FILE TO THE PRINTER
C
C IF (PLOT) THEN
C WRITE(*,1040)
C ISPAWN=LIBSSPAWN( '0 MAX. ASE .ADAM .DI3SPAWN) MAXRL .COM')
C IF(.NOT.ISPAWN) CALL LIBSSIGNAL(%VAL(ISPAWN))
C PLOT=.FALSE.
C END IF
C
C MENU
C CLEAR SCREEN WITH PLOT10 COMMANDS
210 CALL INITT(960)

CALL FINITT(0,2800)
WRITE (m, 1030)
READ(* , *) IGOTO
IF(IGOTO.LT.1.OR.IGOTO.GT.3) GOTO 210

GOTO (300,400,500) ,IGOTO
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C
C RETUJRN TO ADAM
300 CALL JEI4D

WRITE (*,1050)
READ(*,*)
RETURN

C
C CHANGE PLOT LIMITS
C
400 WRITE("',1060) RL,RH,FLFH

WRITE (*,1070)
READ (*, 1065) RL
WRITE(*, 1080)
READ (*, 1065) RH
WRITE (*, 1090)
READ(. ,1065)FL
WRITE(*, 1100)
READ(*,1065)FH
REWIND 90
GOTO 30

C MAEHARDCOPY OF CURRENT PLOT
500 PLOT=.TRUE.

REWIND 90
GOTO 30

C
1010 FORMAT(' SWITCH TO GRAPHICS MODE AND HIT RETURN')
1020 FORMAT(F4.0)
1030 FORMAT(///' PLOT ROUTINE MENU'//' 1-RETURN TO MAC'//' 2-CHANGE

1 PLOT LIMITS'//' 3-MAKE A HARDCOPY OF CURRENT PLOT'//)
1040 FORMAT (' SUBPROCES SPAWNED. FILE ON ITS WAY TO PLOTTER')
1050 FORMAT (' RETURN TERMINAL TO STANDARD MODE AND HIT RETURN KEY')
1060 FORMAT(' XMIN',F8.4/' XMAX=',F8.4/' YMIN',F8.4/' YMAX=',F8.4)
1065 FORMAT (F9 .5)
1070 FORMAT(' NEW XMIN ?'/)
1080 FORMAT(' NEW XMAX ?'/)
1090 FORMAT(' NEW YMIN ?/
1100 FORMAT(' NEW YMAX ?/
1110 FORMAT(' NEW ROW ?/
1120 FORMAT(' NEW COL ?/
1130 FORMAT(13)

END
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SUBROUTINE STABDER (NVEL, V)
C
C This subroutine computes the dimensional, and some non-dimensional
C stability derivatives for use in developing the reduced order model.
C

CHARACTER*1 QCHANGE
INTEGER N,NRB,NS,NC
COMMON/INDEX/N, NRB, NS, NC
REAL K1,K2
COMPLEX GF1,GF2
DIMENSION GF1 (20,20) ,GF2 (20, 20)
COMMON/AERO/Ki,K2,F , GF2, P1
REAL VO, RHOO, SREF, CBAR, ALPHAO, HO, ZETAO, DELTAO, BR
DIMENSION ZETAO(15) ,DELTAO(5)
COMMON/IC/VO,RHOO, SREF, CBAR, ALPHAO, HO, ZETAO, DELTAO,BR
REAL ZALPHA, MALPHA, ZALPHDT, MALPHDT, ZQ, MQ,

OFZALPHA, FZALPDTh, FZETQ, ZZETA ,MZETA,
OZZETADT, MZETADT, ZZET.DDT, MZETDDT,
OFZETZET, FZETZDT, FZEZDDT,
OFZETDEL, FZETDDT, FZEDDDT,
GFDELZET, FDELZDT, FDEZDDT,
@ZDELTA ,MDELTA, FDALPHA, FDALPDT, FDETQ,
OZDELTDT,MDELTDT, ZDELDDT,MDELDDT,
OFDELDEL, FDELDDT, FDEDDDT,VEL
DIMENSION FZALPHA(15) ,FZALPDT(15) ,FZETQ(15) ,ZZETA(15) ,MZETA(15),

OZZETADT(15) ,MZETADT (15) ,ZZETDDT(15) ,MZETDDT(15),
OFZETZET(15,15) ,FZETZDT(15,15) ,FZEZDDT(15,15),
OFZETDEL(15,5) ,FZETDDT(15,5) ,FZEDDDT(15,5),
OFDELZET(5,15) ,FDELZDT(5,15) ,FDEZDDT(5,15),
OZDELTA (5) ,MDELTA (5),FDALPHA (5) ,FDALPDT (5) ,FDETQ (5),
OZDELTDT (5),MDELTDT (5) ,ZDELDDT (5) ,MDELDDT (5),,
OFDELDEL (5,5) ,FDELDDT (5,5) ,FDEDDDT (5,5)

COMMON/DERIV/ZALPHA, MALPHA, ZALPHDT, MALPHDT, ZQ, MQ, FZALPHA, FZALPDT,,
@FZETQ, ZZETA ,MZETA, ZZETADT, MZE7TADT, ZZETDDT, MZETDDT, FZETZET,
@FZETZDT, FZEZDDT, FZETDEL, FZETDDT, FZEDDDT, FDELZET, FDELZDT, FDEZDDT,
GZDELTA, MDELTA, FDALPHA, FDALPDT, FDETQ,
OZDELTDT, MDELTDT, ZDELDDT, MDELDDT, FDELDEL, FDELDDT, FDEDDDT, VEL
REAL CMALPHA, CZALPHA, CMALPDT, CZALPDT, CMQ, CZQ, CMDELTA,

OCZDELTA, MODE
DIMENSION MODE(20) ,CMDELTA (5) ,CZDELTA(5)

C
C If a velocity root locus is desired, then the velocity takes on
C the velocities desired, otherwise the initial velocity is used.
C

IF (NVEL.EQ.O) THEN
VEL=VO

ELSE
VEL=V
END IF
WRITE(. ,203) VEL,RHOO
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WRITE(4,203) VEL,RHOO
QBAR--0.5*RHOO*VEL*i*2
IF (VEL.EQ.O.O) THEN

QBAR=0 .0
VEL=-0.001
ENDIF
IF (NR8.EQ.0) GOTO 29
MODE (1) =HO
MODE (2) =ALPHAO

29 CONTINUE
IF (NS.Eq.O) GOTO 1
DO 1 I=1,NS
J=I+NRB
MODE (J) =ZETAO (I)

1 CONTINUE
IF (NC.EQ.0) GOTO 2
DO 2 I=1,NC
J=I+NRB+NS
MODE (J) =DELTAO (I)

2 CONTINUE
C
C Computation of all the dimensional derivatives is accomplished
C below. They are based on the paper by Rodden, AIMA
C and the formula for the generalized forces from FASTOP

C F(NRB.EQ.0) GOTO 20

ZALPHA=REAL(GF1 (1,2)) *QBAR*SREF/ (MODE (1) *MODE (2))
* - MALPHA=REAL(GF1 (2,2)) *QBAR*SREF*CBAR/ (MODE(2) **2)
A ~ZALPHDT=-REAL (GF2 (1,1)) *(SREF*QBARasBR**2/ (K2**2*VEL)) /

O (MODE (1) * *2)
MALPHDT=-REAL (GF2 (2,1)) *(SREF*CBAR*QBAR*BR**2/ (K2**2*VEL)) /

o (MODE(1) *MODE (2))
ZQ=AIMAG (GF2 (1,2)) *(SREF*QBAR*BR/ (K2*VEL)) /(MODE (1) .MODE (2))-

GZALPHDT
MQ=AIMAG (GF2 (2,2)) *(SREF*CBAR*QBAR*BR/ (K2*VEL)) /(MODE (2) **2) -

OMALPHDT
20 CONTINUE

IF (NS.EQ.0) GOTO 22
DO 3 I=1,NS
J=I.NRB
IF (NRB.EQ.0) GOTO 21
FZALPHA(I)=REAL (GFI (J, 2)) .QBAR*SREF/ (MODE(J) *MODE(2))
FZALPDT (I) =-REAL (GF2 (J, 1)) *(SREF*QBAR*BR**2/ (K2**2*VEL)) /

0 (MODE (1) *MODE (J) )
FZE7TQ(I)-AIMAG(GF2 (J,2)) *(SREF*QBAR*BR/ (K2*VEL) )/ (MODE(J) *

OMODE (2)) -FZALPDT (I)
ZZETA(I)=REAL (OFi(1 ,J)) .QBAR*SREF/ (MODE(1) *MODE(J))
MZETA (I) =REAL (GFi(2 ,J)) .QBAR*SREF*CBAR/ (MODE (2) *MODE (J))
ZZETADT (I) =AIMAG (GF2 (1, J)) *(SREF~qBAR*BR/ (K2*VEL)) /

@(MODE(1) *MODE(J))
MZETADT(I)=AIMAG(CF2 (2, J)) *(SREFsCBAR*QBAR*BR/ (K2*gVEL)) /
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O (MODE (2) *MODE (J))
ZZETDDT(I)=- (REAL (GF2 (1, J)) *(SREF*QBAR/ (MODE (1) .MODE (J)))

@-ZZETA (I)) /((K2*VEL/BR) '*2)
MZETDDT(I)=- (REAL (GF2 (2, J))a (SREF*CBAR"'QBAR/

O (MODE (2) .MODE(J) )) -MZETA (I)) /( (K2*VEL/BR) **2)
21 CONTINUE

DO 4 K=l,NS
L=K+NRB
FZETZET(I, K)=REAL (GFi i, L)) *QBAR*SREF/ (MODE(J) *MODE(L))
FZETZDT(I, K)=AIMAG (GF2 (J, L)) *(SREF*QBAR*BR/ (K2*VEL)) /

O(MODE(J) *MODE(L))
FZEZDDT (I ,K)=-(REAL (GF2 (J, L)) *(SREF*QBARI (MODE (J) *MODE CL))) -

OFZETZET(I,K))/((K2*VEL/BR) **2)
4 CONTINUE

IF (NC.EQ.O) COTO 5
DO 5 K=1,NC
L=K.NRB.NS
FDELZET (K, I) =RFAL (GF1 (L, J)) *QBAR*SREF*CBAR/ (MODE (L) *MODE (J))
FZETDEL (I, K) =REAL (GF1 (J, L)) *QBAR*SREF/ (MODE (J) *MODE CL))
FDELZDT(K, I)=AIMAG(GF2 CL, J)). (SREF*CBAR*QBAR*BR/ (K2*VEL)) /

O (MODE (L) *MODE (J))
FZETDDT (I, K) =AIMAG (GF2 (J, L)) *(SREF*QBAR*BR/ (K2*VEL)) /

O (MODE (J) .MODE (L))
FDEZDDT (K, I)= (REAL(GF2 CL, J)) *(SREF*CBAR*QBAR/ (MODE CL) *

OMODE (J))) -FDELZET (K, I)) /((K2*VEL/BR) **2)
FZEDDDT (I, K)=-(REAL (GF2 (i,L)) *(SREF*QBAR/ (MODE (J) *MODE (L))) -

GFZETDEL (I, K)) /((K2*VEL/BR) **2)
5 CONTINUE
3 CONTINUE

22 CONTINUE
IF (NC.EQ.O) COTO 23
DO 6 I=1,NC

J=I +NRB.NS
IF (NRB.EQ.O) GOTO 25
ZDELTA (I) =REAL (GF1 (1, J)) .qBAR*SREF/ (MODE (1) *MODE (J))
MDELTA(I)=REAPL (GF1 (2, J)) *QBAR*SREF*CBAR/ (MODE (2) *MODE(J))
FDALPHA(I)=REAL (CF1 (J,2)) .QBAR*SREF*CBAR/ (MODE i) *MODE (2))
FDALPDT(I)=-REAL(GF2(i,1)) *(SREF*CBAR*QBAR*BR**2/

o (K2**2*VEL)) /(MODE (1) *MODE (J))
FDETQ (I) =AIMAG (GF2(J ,2)) *(SREF*CBAR*QBAR*BR/ (K2*VEL)) /

o (MODE(J) *MODE(2) )-FZALPDT(I)
ZDELTDT(I)=AIMAG(GF2(1 ,J)) *(SREF*QBAR*BR/ (K2*VEL) )/

O(MODE(1) *MODE(J))
MDELTDT(I)=AIMAGCF2 (2, J)). (SREF*CBAR*QBAR*BR/ (K2*VEL)) /

O (MODE (2) *MODE Ci))
ZDELDDT(I)=-(REAL(GF2(1,J)) *(SREF*QBAR/(MODE(1)*MODE(J)))-

OZDELTA (I)) / ( K2*VEL/BR)**a2)
MDELDDT (I)=-(REAL (GF2 (2, J)) *(SREF*CBAR*QBAR/ 1

O (MODE (2) .MODE i) )) -MDELTA (I)) /( (K2*VEL/BR) **2)
25 CONTINUE

IF (NC.EQ.O) COTO 24
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DO 6 K=1, NC
L=K+2*NS
FDELDEL(I,K)=REAL(GF1 (J,L)) .QBARiiSREF*CBAR/ (MODE(J) .MODE(L))
FDELDDT(I,K)-AIMAG(GF2(J, L)) *(SREF*CBAR*QBAR*BR/ (K2*VEL) )

O (MODE (J) *MODE (L)
FDEDDDT (I, K)=-(REAL (GF2 i, L)) *(SREF*CBAR*QBAR/

@(MODE(J)*MODE(L)))-FDELDEL(I,K))/((K2*VEL/BR)**2)
24 CONTINUE
6 CONTINUE

23 CONTINUE
C
C Computation of the non-dimensional stability derivatives of interest
C from the dimensional derivatives. These can be used for comparison
C against another aerodynamic code to check for accuracy.
C

IF (NRB.EQ.0) GOTO 26
CMALPHA=MALPHA/ (0. *RHO0*VEL**2*SREF*CBAR)
CZALPHA=ZALPHA/ (0. *RHOO*VEL*i'2*SREF)
CMALPDT=MALPHDT/ (0. 5RHOO*VEL**2*SREF*CBAR) *(2*VEL/CBAR)
CZALPDT=ZALPHDT/ (0. 5'RHOO*VEL**2*SREF) *(2*VEL/CBAR)
CMQ=MQ/ (0. 5RHOO*VEL*w.2*SREF*CBAR) *(2*VEL/CBAR)
CZQ=ZQ/ (0. *RHOO*VEL**2*SREF) *(2*VEL/CBAR)
WRITE (* ,200) CMALPHA, CMALPDT, CMQ
WRITEC. ,201) CZALPHA,CZALPDT,CZQ
WRITE(*,'(A)') 'The control surface derivatives are:'
WRITE (4,200) CMALPHA, CMALPDT, CMQ
WRITE (4,201) CZALPHA, CZALPDT, CZQ
WRITE(4,'(A)') ' The control surface derivatives are:'

26 CONTINUE
IF (NC.Eq.0) GOTO 7
DO 7 I=1,NC
CMDELTA (I) =MDELTA (I) /(0. 5.RHOO*VEL**a2*SREF*CBAR)
CZDELTA (I) =ZDELTA (I)/ (0. 5.RHOO*VEL**2*SREF)
WRITE(. ,202) I ,CMDELTA (I) ,I ,CZDELTA (I)
WRITE(4,202) I ,CMDELTA(I) ,I ,CZDELTA (I)

7 CONTINUE
IF(NSTAB.EQ.0) GOTO 8
WRITE(*,'(/A)') ' Do you want to change any of the derivatives?' A
READ(,204) QCHANGE
IF(QCHANGE.NE.'Y') COTO 8
IF (NRB.EQ.0) GOTO 27
WRITE(*,'(A)') ' CMalpha:' I

READ(*,*) CMALPHA
MALPHA=CMALPHA*QBAR*eSREF*CBAR
WRITE(*,'(A)') ' CZalpha:' q

READ(*,*) CZALPHA
ZALPHA=-CZALPHA*QBAR*SREF
WRITE(a','(A)') 'CMq:'
READ(,*) CMQ
MQ=CMQ*QBARi.SREF*CBAR**2/ (2iVEL)
WRITE(*, '(A))' CZq: 3
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READ(*,*) CZQ
ZQ=-CZQ*SREF*CBAR/ (2*VEL)
WRITE(,'(A)') ' Ctalphadt:'
READ(*,*) CUALPOT
MALPHDT=-CMALPDT*QBAR*SREF"'CBAR""'2/ (2.VEL)
WRITE(,'(A)') 'CZalphadt:'
READ(,*) CZALPDT
ZALPHDT=-CZALPDT*QBAR*SREF*CBAR/ (2*VEL)

27 CONTINUE
IF (NC.EQ.O) GOTO 9
DO 9 I=1,NC

WRITE(s,205) I
READ (*i, *) CMDELTA (I)
MDELTA (I) =CMDELTA (I) .qBAR*SREF*CBAR
WRITE(*,206) I
READ(*,*) CZDELTA(I)
ZDELTA (I) =CZDELTA (I) *QBAR*SREF*CBAR

9 CONTINUE
IF (NRB.EQ.0) GOTO 28
WRITE(*,'(/A)') ' The new derivatives are:'
WRITE (.,200) CUALPHA, CMALPDT,CMQ
WRITE(. ,201) CZALPHA,CZALPDT,CZQ
WRITE(,'(A)') 'The new control surface derivatives are:'

WRITE(4,'(/A)') The new derivatives are:'
WRITE (4,200) CMALPHA, CMALPDT, CMQ
WRITE(4,201) CZALPHA, CZALPDT, CZQ
WRITE(4,'(A)') ' The new control surface derivatives are:'

28 CONTINUE
IF (NC.EQ.0) GOTO 10
DO 10 I=1,NC
CMDELTA (I) =MDELTA (I) ((0. 5*gRHOO*VEL* .2*SREF*CBAR)
CZDELTA (I) =ZDELTA (I) /(0. 52aRHOOVEL**2*SREF)
WRITE(. ,202) I ,CMDELTA (I) ,I, CZDELTA (I)
WRITE(4,202) I,CMDELTA(I) ,I,CZDELTA(I)

10 CONTINUE
8 CONTINUE

200 FORMAT(' CMalpha=',E11.4,' CMalphadot-',E11.4,' CMq=',Ell.4)%

201 FORMAT(' CZalpha=',Ell.4,' CZalphadot&,E11.4,2 CZq=',El1.4)

202 FORMAT(' CMdelta(',I1,')=',E11.
4,2 CZdelta(',I1,')=',E11.4)

203 FORMAT(//,' For a velocity of',F1O.4,' ft/sec, and a density of',
0F8.5, 'slugs/ft**3')

204 FORMAT (A)
205 FORMAT(' CMdelta(',I1,'):')
206 FORMAT(' CZdelta(',I1,'):')

RETURN
END
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