AD-A172 407 AN ANALYSIS TOOL IN A KNOWLEDGE BASED SOF THARE 172
ENGINEERING ENVIRONHENT(CU) AIR FORCE INST OF
HRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. D M FﬁUTHEREE

UNCLASSIFIED 21 MAR 86 AFIT/GCS/ENG/86M-2

NL

1
-

Q"l
ﬂ

T B i gy

A4,

1p° & PR

“ " -.~‘..-.n

A =
= =

HEEE

m—m.—mh dda4413

2 =

ol o
(o] el
L

125

I
l

A RAARIR

16

14

i

pllrLed

% % NN Y Y v

A RN

) e

M~
, o
' <
; N
. P~
: A waad
I ¥
-
: L

AN ANALYSIS TOOL IN A KNOWLEDGE BASED
SOFTWARE ENGINEERING ENVIRONMENT

F Mes THESIS
t- «
o David W. Fautheree
G Captain, USAF
Lt
:‘—:‘ i-"yz"‘
L-—' o !

for publi~ i icase and ale s
di tibul onis uniinut-d

Thiz dscument ha~ been approved {

T’ﬂ"‘."

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Nem—————

Wright-Patterson Air Force Base, Ohio

6 10 2 1715

o .-
- DY
..........

. W

-

PR R - a0 SIS N A S SO O LS, Sy

DR N 2

ALy WA B

Do)

e,

Ly
Aom e 0,

iy }

.
Ly

AFIT/GCS/ENG/86M-2

AN ANALYSIS TOOL IN A KNOWLEDGE BASED
SOFTWARE ENGINEERING ENVIRONMENT

THESIS

David W. Fautheree
Captain, USAF

Approved for public release; distribution unlimited

............................

wve 5
8
- ’ []
. o .
-
R
[3CY .\.'. . J_‘. ST ‘.-\

2.0 & A

P R

(1

&
P g

AFIT/GCS/ENG/86M-2

AN ANALYSIS TOOL IN A

KNOWLEDGE BASED SOFTWARE ENGINEERING ENVIRONMENT

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science, Computer Systems

David W. Fautheree, B.S.

Captain, USAF

March 1986

Approved for public release; distribution unlimited

YNNI

PREE TV B R S S

5 %
F R R A

~ ﬁﬁ.‘. »

DO

4

AFIT

AFIT/ENG

DBMS
DFD
DEC
HIPO
ISL
KBSEE
KBSMA
SADT
SDW

SDWE

List of Acronyms

Air Force Institute of Technology

AFIT School of Engineering, Department of Electri-
cal and Computer Engineering

Data Base Management System

Data Flow Diagram

Digital Equipment Corporation

Hierarchy plus Input, Process, Output
Information Sciences Laboratory

Knowledge Based Software Engineering Environment
Knowledge Based Software Module Analysis tool
Structured Analysis and Design Technique
Software Development Workbench

SDW Executive

iii

List of Figures

Page

Figure A General Architecture of a Knowledge
Based System ¢« ¢ ¢« e o o I-6

Figure KBSEE Top Level DFD 11-7
Figure KBSEE Major Subsystem DFD .

Figure KBSEE Project Manager DFD .

Figure KBSEE Command Interpreter DFD

Figure DFD for a Typical KSEE Tool

Figure ' DFD for KBSMA
Figure DFD for KBSEE System Design

Figure KBSEE Terminal Display Layout
Table 3.1 KBSEE Keyboard Command Mapping
.Figure 3.3 KBSEE Project Manager DFD . .
Figure 3.4 Project Database Record .

Figure 3.5 User Profile Record . . .

Figure 3.6 Project Save Store Record

Figure 3.7 KBSMA Design DFD . . . « +« .+ « « &
Table 4.1 Languages and Tools on the ISL VAX

Figure 4.1 KBSEE Terminal Keyboard Functions

'_I X

AL VR PR

Rlat i At S ReF,

AFIT/GCS/ENG/86M-2

Abstract

This thesis investigation presents the conceptual level

development of a knowledge based software engineering
environment. A variety of existing software tools are
integrated into the environment as well as newly developed

knowledge based tools, such as the software module analysis

tool designed and implemented for this project. The
environment is an extension of concepts from the AFIT
Software Development wOrkbench/(SDw)f

System development follows the software engineering

lifecycle of requirements analysis, design, implementation,

and operation as well as exploratory programming/rapid

R

protoyping techniques. L e Lol Lo

PNTRTR SAN,

N Table of Contents
Page
Acknowledgements ¢ ¢ v e 6 e e s s e e e ii
List of ACronyms . . . ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o o « o & iii
List of Figures . . . ¢ « & v « ¢ o o o o o o o o« o« « iv
Abstract e s+ e s e e & o e @« o v
I. Introduction ¢ ¢ ¢ 4 4 e e e s e 4 e . I-1
Thesis Objectives « + + ¢« o« o « . I-1
Background+ ¢ ¢ ¢ ¢ o o o o ¢ o o I-1
The Software Development Lifecycle . . I-2
The Software Development Workbench . . I-4
~ Knowledge Based Systems« « .« I-5
QE? Knowledge Based Software Engineering
Environments . . . ¢ ¢ + 4 4 ¢ o 4 . I-7
Problem and Scope . . « « ¢« + ¢« ¢ o « & o 1-9
Standards ¢ . 4 e e e e e e s e I-10
Approach . . ¢ . ¢ v ¢ ¢ v 4 4 e 4 e e e s I-11
Thesis Overview . . . + v o o o o o o o o« & I-13
II. Requirements Definition e e e s e s 4 e e & o TII-1
Introduction & + ¢ ¢ s ¢ 4 o 4 . . II-1
System Specification Development 1II-3
Project Manager Design Specifications . 11-9
: Display Manager Design Specifications . . . 1II-11
2 Command Interpreter Design Specifications . 11-12

R T e e e e e e
p f\d“..‘".-’ .

.......

:if Tool Set Requirements II-12
Conclusion . . . +. & ¢ ¢« & ¢« ¢ o o o« &« « « 1I-15
‘ III. Design .+ ¢ v ¢ v ¢ ¢« o o o s o o o o o o« o« « 11171
| Introduction ¢ ¢ ¢« ¢« 4 ¢ ¢ & . . III-1
System Design . .« « &+ &+ « ¢ o o o o« o & o o III-2
j Display Manager Design III-4
Display Manager Data Structures . . III-8
Command Interpreter Design III-9
g Project Manager Design III-10
A Project Manager Data Structures . . III-12
d Analysis Tool Design III-13
Knowledge Base Design III-15
L “' Production Rules III-18
: Conclusion . ; e+ e e s e e o o & o & o o IIT1-22
Iv. Implementation+ 4 ¢ ¢ e . . . IV-1
Introduction+ . . . IVv-1
- System Implementation 1Iv-1
Display Manager Implementation 1IV-5
Command Interpreter Implemenation 1IV-5
ﬁ Project Manager Implementation 1IV-7
. Tool Set Implementation 1IV-8
KBSMA Implementation 1IV-10
v Conclusion + v ¢« &« & o o « « « « 1IV-13
E V. Conclusion and Recommendations V-1
R R .

e DSl e "y

1l

w eVs e e 2 &l

Lo a6 o

Y
&

1 o/ g

Introduction ., . . ¢« ¢« .« .« . .

Development Summary . « . « o o

Analysis of Current System . .

Recommendations for Future Investigation

Conclusion « + o o &

Appendix A:
Appendix B:

Appendix C:

Appendix D:

Appendix E:

Appendix F:

Bibliography

Vita . . .

Data Dictionary -~ KBSEE . .
Structure Listing - KBSEE .
Source Code - KBSEE
KBSEE.C . . ¢« « ¢ « +
KBSEE EXEC.C
KBSEE PROJ.C
Source Code - KBSMA ., . . .
Literalize Definitions
Starfup e o o e e s e
PrintModule
Coupling
Cohesion
User's Manual - KBSEE . . .

User's Manual - KBSMA . . .

.....
v e
.....

v-1
V-3
V-4
V-5
A-1
B-1
Cc-1

C-2

C-13

C-39

D-1
D-3
D-4
D-5

D-6

D-13

E-1

F-1

BIB-1

.Vita-1

Ll A 2l o R A G

CA AL,

y f
Dl T b o0 R R }

.

v % _"

R eatie g Hadn piticy Aatullicadat e n S inn s it inalied el B A A A e phe At) lo A0 SO0 Rty Riacate gt i a1 08 ate 2l By il aie

I. Introduction

Thesis Objectives

The principal objective of this thesis effort is the
conceptual level development of a knowledge-based software
engineering environment. A variety of existing software
tools should also be integrated. Another objective is the
development an incorporation of the first knowledge-based
tool. This tool should analyze software modules using the
fundamental software engineering design principals of
coupling and cohesion (DeMarco, 1979) (Peters, 1981)
(Woffinden, 1985).

The requirements analysis, design, implementation, and
operation of the Knowledge Based Software Engineering En-
vironment (KBSEE) and the new analysis tool should be

thoroughly documented.

Backqround

This section introduces the software development
process, then provides a description and short history of
AFIT's Software Development Workbench (SDW). Finally,
knowledge based systems are introduced, providing the back-
ground on which the remainder of this investigation is

based. Since a detailed description of these areas is well

........

beyond the scope of this section, numerous references are
provided.

The Software Development Lifecycle. The software

development lifecycle has been characterized 1in many dif-
ferent ways (Myers, 1975) (DeMarco, 1979) (Peters, 1981).
In this thesis investigation, the cycle is divided into five
phases. They are the requirements definition phase, the
design phase, the 1implementation phase, the integration
phase, and the maintenance phase. Since software develop-
ment is an evolving process, each phase receives feedback
information from later phases as well as input from earlier
phases. Hence, distinctions between 1lifecycle phases are
not always entirely clear. Configuration control of all
documentation at each phase in the lifecycle are essential
to prevent confusion, especially 1in the maintenance/opera-
tion phase.

The requirements definition phase emphasizes what the
system should do. In the design phase, requirements are
assigned to various hardware and software components, which
are then refined into interacting modules. During the im-
plementation phase, the defined modules are written in a
formal computer language and tested 1individually and as
groups. In the integration phase, the hardware and software

components are assembled into a system and are subjected to

5" s 2 A b M

P et af el b

.- e a & & AY

s,
~
N

testing as a whole. Finally, the system 1is wused and
modified as necessary during the maintenance phase.

For a detailed discussion of the requirements phase, see
(DeMarco, 1979). The design phase 1is covered in (Myers,
1975’ and (Peters, 1981). Various aspects of the the im-
plementation phase are covered in {Aho and others, 1974),
(Horowitz and Sahni, 1984), and (Wirth, 1976).

The lifecycle phases discussed above are based on the
classical software engineering lifecycle model. Recently,
rapid prototyping and exploratory programming approaches
have been introduced (Sheil, 1983) and (Martin, 1985).
Sheil and Martin advocate the wuse of powerful design tools
which allow the software developer to quickly write and
modify source code. In the rapid prototyping approach, the
requirements and specifications are not rigidly determined
before starting the design, General concepts are explored
in small prototypes to show feasibility of implementation
and correctness of design. From these explorations, re-
quirements and designs are either proven or modified. Even-
tually, the entire system design 1is solidified. In short,
the lifecycle phases evolve from the exploratory

design/implementation phases.

.....
'''''''''''''
.......

NI

)
%a’s's"c’0 &

i

A
~ e
b\ ‘..'

A2 PP

-

The Software Development Workbench. The Software

Development Workbench (SDW), which resides on the AFIT In-
formation Sciences Laboratory (ISL) Digital Equipment Cor-
poration (DEC) VAX-11/780 computer, was conceived and
designed to help the software engineer manage the inherent
complexity of developing computer software. The SDW con-
sists of "an integrated set of automated tools to assist the
software engineer in the development of quality and main-
tainable software" (Hadfield and Lamont, 1983:171). .
The original work on the SDW was done by 2Lt Steven M.

Hadfield for his master's thesis (Hadfield, 1982). 1In his
thesis, 2Lt Hadfield provided motivation for the development
of an interactive and automated software development en-
vironment. He maintained that such an environment should be
integrated, traceable, flexible, and user-friendly. The
original SDW was the result of his implementation efforts.
Since that time, several AFIT graduate students have added
additional tools to the original SDW system:

Rose, 1982

Gatewood, 1983

Thomas, 1984

Shomper, 1984

Moore, 1984

Wolfe, 1985,

B XN

PO b)

PR R

A,

AP

s 00

)

3
s 8 2 @

[N b

-

e At ettt e &
- w.v.o:. NI& S
s

S A N T S A L P PO L TR vl DAL A
- (, l.‘!‘ f"l' -'. -., - .-‘_ v’, ©e, DA . . -’_‘ ’-‘{l.‘.-'l" l_. ".-'-\l .

Knowledge-Based Systems., The study of knowledge-based

systems ("expert systems”) is in part an outgrowth of
artificial intelligence (Al), which involves the study of
automated problem solving, construction of symbolic
representation of knowledge, natural language
communication, and machine learning. Knowledge-based
systems are computer programs consisting of a knowledge
base, situation data, and an implicit or explicit control
structure (Harmon, 1985:49). The knowledge base consists of
a knowledge representation scheme, wusually in the form of
production rules, semantic networks, frames, or a hybrid
scheme. Problem solving knowledge and techniques are
contained in the knowledge base. Situation data is stored
in memory and contains information about the specific
problem being solved. The control structure provides the
reasoning mechanism (inference) to solve the problem. The
general architecture is shown in Figure 1.1.

The six components on the left side of the figure reflect
the capabilities for knowledge acquisition, debugging and
experimenting with the knowledge base, running test cases,
generating summaries of conclusions, explaining the reason-
ing that led to the «conclusion, and evaluating system per-
formance. The main computation engine 1is the search/in-

ference component, which searches the knowledge base for

.J

‘eiii

wl
=a’

RN
YN

!' hI- .-.
amalrat

> h.- -" -
A 35 Y8)

a7

AR

wa3sks paseg abpaymouy e 3JO 81N3IDIITYDIY [e1I3U3H ¥V - T°T 2inbrg

-*
ia

4 ;-‘;'

p———

e
- -
VS,

ajeniead

)

Kioway buryiom

uterdx3

s 3a 1T ba 3 e 1138

2ztTiRWWNS

s 3d a2 u o)

sase) uny

s a3 T n ¥ aou@e 1283 uTl juawt1adxy

/bngaqg
S T @2 P OW 4y o 1 e 93 g

uotytsinboy

asvg abpatmouy sbpatmouyn

o gt Ve

Y ardtlyd

>

9 .

a s &

WSO

LA R

0
Pd

€

e

N e

s G & G o Y, S o SRR

applicable knowledge and makes inferences based on current
problem data stored in memory.

The knowledge base is the main repository for specific
knowledge about the domain. Concepts are declarative repre-
sentations of domain objects, with both abstract classes and
concrete instances. Complex interrelationships are repre-
sented and used in making 1inferences and in constructing
similarities.

Conceptual knowledge includes the basic terms of the
problem domain. Rules are empirical associations linking:
causes and effects; evidence and 1likely hypotheses; and
situations and desirable actions. Models are collections of
interrelated rules, wusually associated with a particular
problem hypothesis or overall diagnostic conclusion.
Strategies are rules and procedures which aid the use of the
rest of the knowledge base; i.e., guiding search and resolv-
ing conflicts when several equally plausible rules apply to

a given situation. (Rychener, 1984).

Knowledge Based Software Engineering Environments

Software systems are 1increasing in size (measured in
lines of executable code) at a rate considerably faster than
programmer productivity (measured in lines of executable

code produced per man-hour) (Myers, 1978). To combat this

« W W

N .
1- ~
7Y .o :
software productivity problem, researchers are developing

¥ new architectures for software engineering environments
using automatic programming and knowledge based system
technology (Kinnucan, 1985) (Kowalsky, 1984) (Ramanathan,
d 1984) (Sheil, 1983) (Teitelbaum and Reps, 1981) (Waters,
1982) (wess, 1984).

These new architectures use one of two paradigms:
"program analysis" and "program synthesis" (Barr and Feigen-
baum, 1982:295-379). In both paradigms, systems are repre-
sented in some formal language, with specified formal trans-
f formations on that representations. These transformations
- eventually produce executable programs. In the analysis
(!5 paradigm, existing programs are examined to gain understand-
N) ing of their overall function and.the overall programming
N task is divided into elementary parts using the software

engineering method of step-wise refinement. In the
N synthesis paradigm, the problem is formally specified in a

very high order language. A major problem with the analysis

P A DA

method is that requirements change, causing repeated
re-analysis. Programming in very high order specification

languages is usually as least as difficult as programming in

it D VIS

a high order programming language (Frenkel, 1985).
There are several texts introducing the field of Artifi-

cial Intelligence and knowledge based systems. Two useful

-C-D.‘.l

[Sl R R R A

A Y

...................................

n - . - - » - - -
'.".'-“'" ‘.‘,‘-‘,'.".'-"-".‘, B R A S A I I LT e e e e e o T T, N et Ty
ROV T DS X PO TR A, S A A A A A SR I D LTSRS S IR P e A AN TP T A W DRSS A i DR S E L AL R LY

PPN

3 of b B MW

e Ye Taata A

-
A
e BV B A -

(]
.

8550 :l o

PO OC

v ot Al

standard texts are (Nilsson, 1980) and (Rich, 1983).

(Hayes-Roth, 1983) and (Forgy, 1984) discuss various expert

system architectures and design methodologies.

Problem and Scope

The SDW tool set is not complete and none of the tools
represent a knowledge-based architecture. Currently the
only program specifically included in the SDW as a design
tool is AUTOIDEF. AUTOIDEF allows one to create Integrated
Computer Aided Manufacturing Definition (IDEF) models.

AUTOIDEF is described in the Interim AUTOIDEF System User's

Reference Manual (UM 170133010, 1982). One of the model

types in AUTOIDEF, IDEFp, can be used to create Structured
Analysis and Design Technique (SADT) charts. Unfortunately,
AUTOIDEF does not provide for any automated consistency
checking. For more information about AUTOIDEF see (UM
170133010, 1982). (Peters, 1981:62-64) describes SADT.

Another tool provided by the SDW which can be applied
during the design phase, but not specifically included as a
design tool, is SYSFL (Mihaloew, undated). SYSFL is a grap-
hics editor which provides standard flowcharting symbols as
primitives. SYSFL can be wused during the design phase to
create structure charts and flowcharts.

None of the design tools currently 1in the SDW have

L 2 S

At e, el Na s " te R . .
, ..f\ ,'.',‘.,."J l-# WL _‘,‘\.»\. \ . f_‘.-‘..' PRI

sufficient power to support the type of rapid prototyping
and exploratory programming advocated by Sheil and Martin.
The SDW does not currently fully support an integrated
knowledge-based tool set. Furthermore, the SDW
human-computer interface 1is a hierarchical menu/command
interpreter system and often requires more keystrokes to use
than to execute the tools directly from a single level
menu/interpreter.

A new KBSEE and integrated set of tools would solve
these problems and extend the SDW concepts in an entire new
environment for future development. The knowledge-based
software module analysis tool is a good example of the type
of tool that can be developed 1in a KBSEE, a useful addition
to the tool set, and a first step towards a complete,

integrated, AI based software environment at AFIT.

Standards

Since this investigation emphasizes the wuse of a
knowledge based software engineering environment and a tool
for the analysis of software modules, the standard for
determining success is whether or not the environment can be
used effectively for software develcpment and whether or not
the tool correctly analyzes the modules and provides useful

information to the software engineer, The tool uses data

............

'\-\‘»\

.....

... . - .
“ ‘I -._ Ll _- <

. ..- . C et -t
1'..-:4- P 4’&:‘1 A".x‘-;’.f -u‘n’ IA-.L(...J_I_LJ .P_‘_L"':'.:'.:'-P .'...P_.'_ et e e e :.A PR AR YRR S "R A

Al S R R R R DA A VA S B TNt A v A L p. nf A MO da e AR LA ol 0 Al orl gfie gl SR g Gl Sl St g Al S Y

LN

Coglietafing e vy

elements identified as design elements in AFIT/ENG Develop-

ment Documentation Guidelines and Standards (AFIT/ENG, 1984)

as its primary source of information. However, these data
elements do not provide sufficient information to allow the
N tool to complete 1its analysis. Efficient, effective in-
teraction with outside elements, including the user, is an

important consideration. If the tool easily obtains its

required data, then this project should be considered suc-

)
.

a e

cessful. An efficient human-computer interface is an impor-

tant consideration. Systems which process data efficiently

- and correctly tend to not be used if they are difficult or
clumsy to use.

s

- Approach

The development of the KBSEE and the analysis tool,

1]
’

.l. I‘l

KBSMA, follow the standard software development cycle
described in the Background section. Exploratory program-
ming and rapid prototyping also contribute to the success of
this project, since these techniques allow various designs
: to be more quickly tested, evaluated, modified, abandoned,

or adopted than the standard software development process

LA AS RS

normally allows. This increase in productivity is due to
the power of employed software tools and the nature of the

implementation lanqguages, which allow separate development

LAE LD

PN

TIA N A AR

''''' RO IR
P SR
P PR PSR G

." '.Q..- ..'. . -
Lo p

-

V. *» T 0 ¥ vV FV BN i w

T v ¥ Ty

and testing. The separate development and testing of small,
exploratory systems directly result in more rapid design of
the larger system. If a large system is developed using the
conventional software engineering lifecycle approach,
detailed design and implementation occur late in the cycle.
Problems occurring this late in the development cycle result
in major modifications of the entire system, In rapid
prototyping/exploratory programming, concepts are adopted or
rejected before the nature of the entire system is firmly
set (Sheil, 1983). When a concept is adopted, the system is
then optimized. Since the KBSEE with the KBSMA can be
categorized as a reasonably large and complex software sys-
tem, exploratory programming/rapid prototyping approaches
can (and do) yield productivity benefits.

The development of the KBSEE 1is very closely related to
the SDW. The goals are essentially the same: the develop-
ment of an organized environment consisting of off-the-shelf
software tools. The approach of the KBSEE differs from the
SDW in the primary emphasis on the human-computer interface
and the incorporation of knowledge based systems. The KBSEE
uses principles discussed 1in (Hansen, 1971) which presents
"User Engineering Principles for Interactive Systems" and
(Teitelman, 1977), which discusses interactions through

terminal displays. Other knowledge based environments

iy "¢ W R “x e 9

PP
1) L
oo, 0 0, 0,

ad™

require the use of exotic hardware, i.e., Lisp machines, or
exotic languages. The KBSEE approach 1is to help software

engineers develop systems using tools and methods they are

already employing.

Thesis Overview

System level requirements are defined, then the specific
requirements of the KBSEE and the knowledge-based software
module analysis tool are examined in Chapter 2. The design
and implementation of the analysis tool is based on earlier
design project for EENG 749, Advanced Topics in Artificial
Intelligence. The design of the KBSEE and the analysis tool

L‘ is described in Chapter 3. Chapter 4 discusses the tool's
implementation. In Chapter 5, the implemented system is
evaluated using the standards described in this chapter and
recommendations for future investigation are provided.

Complete documentation is included as appendices to this

thesis.

T et -,

. - - - L] \'_h‘-‘-..‘l‘h". o
AL A A P A T

II. Requirements Definition |

Introduction

.y

The objective of the requirements definition phase is to

formalize what the system 1is to do into a concise, clear,

PR iy +

and consistent statement (Peters, 198l1). To accomplish this

goal, the system must be viewed from three different

perspectives: customer, user, and designer. The customer

states the requirements by functional description of the

LA

task the system is to accomplish. The user states require-

ments in the form of system operations. The designer con-

J siders the views of both the customer and the user in the

(® design specifications. 1In all three views, requirements are

" stated in some requirements definition language. The lan-
guage may be graphical or lexical or a combination of both.

This chapter presents a broad functional requirements

definition for a knowledge-based software engineering

.. environment and a software module analysis tool in that

environment. First, the overall requirements for the

g

Knowledge Based Software Engineering Environment (KBSEE) are

»
e’ e

presented. Next, more detailed subsystem requirements are

discussed. Finally, the detailed requirements for the
& analysis tool are described. b

The requirements are presented in the form of data flow

I1T -1

YARAAR RANRARR | AN

L g
LA)

e e @
» %

3
b
t

-
F
-~

¢

diagrams (DFDs). DFDs were chosen for use in this inves-
tigation for their simplicity. Other representations, such
as Structured Analysis and Design Technique (SADT) charts
and Systematic Activity Modeling Method (SAMM) activity
cells (Peters, 1981:133-138), show more information, but are
more difficult to create and maintain. DFDs are part of the
structured analysis concepts developed by (Stevens,
1974:115-139). In structured analysis, DFDs are used to
develop a specification and a design. This method is very
widely used, with its popularity stemming from its ease of
use (Peters, 1981:139-148). The use of exploratory program-
ming and rapid prototyping 1in this investigation requires
simplicity in requirements definition since requirements and
conceptual designs are implemented before and during system
specification development. Simplicity 1in requirements
definition was considered more important than detail.

DFDs consist of four basic elements: processes, data
flows, data stores, and sources/sinks. Processes transform
data and are represented by circles. Data flows are paths
between elements are are represented by arrows. Data
stores, represented by line segments or parallel lines, are
files or data bases. Sources and sinks are entities outside
the system which originate and collect data, respectively.

Sinks and sources are represented by rectangles. For a

-~ ‘u '- ".- '_-.
IO I, I W

......
~ -t .

LY

L]

CuAEL AN D b s s iAot A et i S e At St et s Aer ant i g _7*?_

detailed description of the DFD lanquage, see (DeMarco,

1979).

System Specifications Development

While the automatic programming research discussed in
the previous chapter has produced interesting results, a
system which can generate quality, general purpose software
directly from requirements is beyond the current
state-of-the-art. Requirements are stated in some repre-
sentational language. The goal of an automatic programmer
is to transform the requirements language 1into a system
executable language. To accomplish this goal, the require-
ments language must either be represented in a language
close to the implementation language, requiring relatively
simple transformations, or be represented 1in a simpler re-
quirements language, and require complex transformations.
The first representation requires a notation that is nearly
as complex as a programming language, such as C or Lisp, and
is therefore on the same order of difficulty. The second
representation requires a system of automatic transforma-
tions similar to those accomplished by an experienced system
software engineer. If software development is a problem for
human software engineers (Myers, 1975) (Boehm, 1976) (DeMar-

co, 1979) (Peters, 1981) (Sheil, 1983) (Martin, 1985), then

IT - 3

e

ASORA SRy T TN T AR AT TNV X N A ol I e oA A G AU o ST A I a it Sl A Al A At S ARG PR TS R il S AR g

the development of software to automate software development
would compound the problem, except in small, limited cases.

A more practical approach, wusing current technology, is

® 8 s s 8 & -

to develop an environment which aids the software engineer
develop software products using existing tools and met-
- hodologies. Software design would be done by humans, with
the more mundane tasks being automated, 1.e. entering
operating system commands, remembering file names and their
location within the file system. The environment would
allow the human software engineer to devote nearly all at-
< tention on design, not minor project details. Knowledge
based tools can also enhance productivity by using facts,

(rules, and models stored in the knowledge base to help the

| developer design consistent, quality code.

The initial specifications of the KBSEE are derived from

analysis of the user requirements. One requirement is that

- the environment be used to develop software using existing
- tools. It is not reasonable to develop an entire tool set
within the scope of a single thesis investigation. Also,
users know and understand the interactions and operations of
existing software tools. If the environment uses existing
tools, then the user does not need to learn how to use the

new tools as well as how to use the new environment.

<« Software development is a repetitive process. Software

A
e S S

IT - 4

£)

....... LA A AN 8 T T T N T W T g Y v~

modules are usually added to the system incrementally.
First, the designed module 1is implemented by adding it to
the source file. The calling module calls the new module
using a prescribed interface. The source file is then com-
piled and linked to form an executable program. The program
is then executed with a series of test situations to ensure
that the newly implemented module works properly. If there
are errors in the implementation of the module or its inter-
face, the source file 1is modified with a corrected version
of the module and the process is repeated. The user nor-
mally repetitively enters the same sequence of commands,
i.e., EDIT FOO, COMPILE FOO, LINK FOO, RUN FOO. The en-
vironment should have a simple human-computer command in-
terface that does not require the user to re-enter the same
commands.

Software systems usually consist of many separate files.
These files are usually organized 1in some manner within the
file system. Most software developers organize their
projects so that all required components are in the same
portion of the file system. For example, a project may be
located in a file directory with subdirectories for source
modules, data files, and executable files. Software en-
gineers should not have to devote time managing project

files. The environment should keep track of what project

IT - 5

the user is currently developing and where the associated
files are located.

The environment should be as simple in organization as
possible, but convey a large amount of information, i.e.,
available tools, environment status, current project infor-
mation, and user interaction.

This section describes such an environment in terms of
its functional requirements: the Knowledge Based Software
Engineering Environment (KBSEE) developed for this thesis
effort. Figure 2.1 shows the top level Data Flow Diagram
(DFD) for the system. This figure illustrates the scope of
the KBSEE: it accepts command and data from the user and
produces some software product. Figure 2.2 shows the
decomposition of the KBSEE into major subsystems, the
project manager, the display manager, the command inter-
preter, and a set of software tools. These major subsystems
correspond to the broad requirements stated above. The
remainder of this section discusses each of the subsystems
in turn. Detailed requirements for the software module
analysis tool are presented as a subsection of the software

tool set subsystem.

IT - 6

|

ada t1saa1 dol z3IsEu - ' @2anbrta

-
o
- ©
PR a]

uot13le w1
3 2

s 3 0npo 1d
S pu®euwwo D

s e 114

2 1 e m?3) J OS L s s

DWW - R AT v A A ALY RLALLL il MM, ELS s %, e i Et s VR ARRA

-

’ e
-..l-
’ P

PO AAS

e

“n

-

R

“

.
.

L}
L M)
.

-
.

AT T

oy r.'z....-_\'.- O

<ot
L)

-

adq waisdsqns 1ofeW 33sdgy - 7°¢ @anb14

aseqgejeq AAH 13beuey
3o0aloiag 308floag

30aloig 1abeuey
juai1in) Aetdstq

spuewwo)
$S850V

10730371938

/

jusiind
SuotioaTas

Goranoexa 19391da1squr <

puewwo)) puewwoj

L Y L R %

-.":.\

3

Project Manager Design Specifications

The project manager maintains the project database,
which keeps track of the location and names of files used in
various software development projects and maintains a
profile of the user's preferred tools and commands. The
project manager's functions allow the wuser to not have to
repeatedly re-enter commands and remember locations of
project files. Since software engineers usually develop
systems over a period of time ranging from hours to years,
the project manager must store the information in a fairly
permanent medium. The project manager must load information
from the permanent medium into working memory, where it can
be used by other KBSEE functions. Figure 2.3 illustrates
the data flow for the project manager, which consists of
four subfunctions: LOAD PROJECT, SAVE PROJECT, LOAD PROFILE,
and SAVE PROFILE.

When a save project command 1is entered by the user, the
SAVE PROJECT subfunction stores the current working project
information into a wuser's permanent, centralized project
database. This is necessary so that the user does not have
to specify filenames and locations each time the environment
is used.

Once the project information 1is stored into the project

database, a method for retrieval 1is necessary. The LOAD

IT - 9

......

PR

T JUACURIR,

ada

9f T T 3 0 1 4

p e o1

@ T ¢

31T 1T 30 14
2 A e g

\\\\\\\\\.“\Wmu Ut 1oM

e 3 e (@
3 o214

1sbeuey 323(lo1g 3IsEN - €°7 dinbrd4

A 10w oy

a3 seqe3ead

3 209 o 1 g

e 1 e g
2 T T 3 0 1 d

p

e 3 e ad
2 2 L o 1 a4

3lo a L o 1 4

L, Tt et r Ty e RN

2 A ® g

TR

T tea e
e e

RN A AL A A i wd g Rt L e A A AR A T i A Y N e e Rl Rl S CC AL IR AR, S Bt 2 ba i AR ale A ol ik ol AR AR R ol Tl SR B 3

PROJECT function provides this method. If another project
is already in working storage, it is overwritten by the new
project.

The LOAD PROFILE and SAVE PROFILE subfunctions work
similarly to LOAD PROJECT and SAVE PROJECT, except they
maintain information about specific user preferences, such
as which editor or compiler to use and what commands are
used to build an executable software product. These two
functions allow the user to not have to repeatedly re-enter
operating system commands. SAVE PROJECT and LOAD PROJECT
save the information into a permanent local file, rather

than a centralized database.

Display Manager Design Specifications

The display manager organizes and maintains the terminal
screen of the KBSEE. This function is extremely important
in an interactive environment (Teitelman, 1971) (Hansen,
1971). The display manager displays the set of available
tools, presents information about the current project, and
provides positive feedback to the user about the environment
status. The display manager also provides a medium for user

interaction with the KBSEE.

i1 - 11

St A
LR N

[N SR Ve "\' S '.."."-.".. L T
P P D P A S

. bt t

R il 4

Command Interpreter Design Specifications

The command interpreter controls the overall execution
of the KBSEE. Figure 2.4 depicts the data flow for the
command interpreter. As is shown in the diagram, the inter-
preter has two subfunctions: GET COMMAND and PROCESS COM-
MAND,

When the user enters a command, the GET COMMAND routine
validates the command. If the selection can be correctly
interpreted by the GET COMMAND process, the PROCESS COMMAND
routine is called. This routine controls the actual execu-

tion of the user's selected KBSEE routine.

Tool Set Requirements

Tool sets consist of a wide variety of tools. Conven-
tional tools (i.e., compilers, editors, linkers) have been
available for many years and are well understood. They are
generally available off-the-shelf from the computer manufac-
turer or a software vendor. Knowledge based tools have been
introduced comparatively recently, wusually in a research
environment. Knowledge based systems in general have only
recently been in widespread wuse in industry (Harmon, 1985),
which accounts for their limited application. Knowledge
based tools are usually customized for the particular ap-

plication for which they are to be used and for the environ-

ment in which they will execute.

adq 19381d1s3jul puewwo) IISEN - b g 21inb1g

P uewuwo)
b uorT?3o e I a s
P T T®A

3 I n s & ¥
3 Uuot3loaTes

uoT3o0a 7T 3 s

-d‘,;f AT
§° o

T,
> X

,-\‘. _-"_._'_.‘; \
C RPN I W

\f
'.l
N A,

-’

'
'~

w v .
SA A

-
-

o

~
&
hY)

o Ko

...“w - .]

o f‘f

y N
M < ; P . YRR EN NN NN LRI “gataatal g VRRBIIUA A SO OE 4 PR AR s NP LA AP *¢ \

T The selection of the tool set should result in suffi-
cient tools to generate executable code. The tool set

selection should also be based on established, conventional

Alab e,

concepts as well as knowledge based methods. The SDW

provides a useful analysis of tool set requirements

LA v s

(Hadfield, 1982).

An optimal tool set would be one that generates

executable code and provides tools for documentation, all

with minimal redundancy of effort. Which tools comprise an

" ;& .A. .l' .l'

optimal tool set is an issue currently unresolved
(Woffinden, 1985). Indeed, even the selection of a

minimally sufficient set of tools 1is the subject of some

YOS A AN

Qix controversy in the Ada environment (AJPO, 1980).
Figure 2.5 shows the DFD for a "typical" tool, the

compiler. The tool accepts input from some source, in this

SRR AR

case a programming language source code file, and transforms
it into some form of output, such as an object code file.

- Figure 2.6 presents the DFD for a knowledge based tool:
the knowledge based software module analysis tool, KBSMA.
.+ The analysis tool obtains information about the software
. module to be analyzed from available sources. This

information is in the form of module and variable data

]

dictionary entries. Information about the module is then

placed in memory. The 1inference mechanism searches the

P A

-. "
e
I

IT - 14

RO

.« a"." N S i T S Y

R -';.. S AR
SRS I Ty NS UL VA S DT P S N

....................................

knowledge base for any applicable production rules. If any

inferences can be made, the tool then produces its analysis

of the current software module,

Conclusion

This chapter has presented the results of the functional
requirements analysis and design specification phase of this
investigation. Since much of the requirements were
presented in the form of data flow diagrams, the symbology
of DFDs were discussed. The next chapter describes the

design phase of this thesis effort.

NS

et e T T e T T T T ety U T N e e i e L e o e N T TN N T T T T -
S RS N N \.\ N\ ‘...\ RIASAS \'-.' 4 '.\'. < ‘\-.\'.-."-.'.-.'. SN RN R I A 1’\-' SASAR I St e e

20 5 9 ¢t v v

1001 adsgd TeotdAl 103 @ig - §°Z @2anb1tg

2 1 0 1 S

3 ndur-z

ealeq

andurs

puewwo)

Sl S Sl e A et A i el A ang

Introduction

In this chapter, the design of the Knowledge Based
Software Engineering Environment, KBSEE, and the Knowledge
Based Software Module Analyzer, KBSMA, are described and
justified. The description begins with the overall func-
tional system design. Then, the design is decomposed into
functions of increasing detail. Detailed descriptions at
the lowest level of KBSEE's design and KBSMA's design are
given in Appendix B, Structure Listing - KBSEE.

The system-level design is presented 1in the form of a

™ data flow diagram to maintain a consistent format between
the requirements definition/system specification phase and
the design phase. The 1lower level designs are in the form
of structure listings, 1included as Appendix B. Structure
listings show the overall hierarchical structure of the
design. Structured listings are simpler in layout and more
concise than structure charts, while conveying the same
information. Also, they can be easily generated by an
automated tool available on the host computer system.
Details, such as passed parameters and data types are shown
in the data dictionary entries of Appendix A. Structure

charts usually accompany Data Flow Diagrams when using the

IIr -1

--------- o e e Tt .-_,\\\..'. e . TN
IR IS -_.'.\.u‘ \-\-\. .n"" -L\-_.L.\‘FA.L.MA "1-.5..';.‘:.-'._ Yot -'A.‘ A

MM A B A e St Al B A -8 4 0 A AR A a8 s ah w0 ’

structured analysis design methodology (Peters, 1981:139). k
Other notations which can be used to document software
design include Leighton Diagrams, structure charts, and HIPO
charts. These notations often include redundant details k
already shown in the Data Dictionary and are generally not
used in conjunction with DFDs. Changing notation and met-
hodology in the middle of the software development lifecycle I
could allow inconsistencies when one design language is

translated into another. These other methods are discussed

in (Peters, 1981:44-62).

System Design

The system level design of KBSEE is based on the results
of the requirements definitions/system specification phase.
During this phase, the system was decomposed into three
functional elements: the Project Manager, the Command Inter-
preter, and the Tool Set. The basic design is shown in
figure 3.1, with elements DISPLAY MANAGER, COMMAND INTER-
PRETER, and TOOL SET. The Project Manager consists of the
centralized project database, the wuser profile store, the
current project save store, and ACCESS processes for each of
the stores. The Tool Set consists of executable programs
and associated data stores.

The COMMAND INTERPRETER reads input commands from the

ITI - 2

. - - - - . - - - - - O] 0 .- . N) LT e - - - - M - . -
ofintl e ndtnnih e, ot P . A R A P A T R & A A A S

ubtsag wa3lsAs FIsey 103 gad - T'g 2ianbrg

aseqeiled

\
1oaloig
9101¢9 Ss850VY
87113014 — aseqeileqg
18sn $SS3800VY 12aloag

a7t3014d
138N

3oafoiag 1abeuey

Jusiany >MHQWHQ

puewwo)

SSa00V

1013237138

\

RS
puewwo) 185N

juaxain)d
SuotiooTas

19391daajur

uotrlnoaxy

puewwo)

user, then invokes the DISPLAY MANAGER to output the user's
current selection from a list of valid choices. The DISPLAY
MANAGER also obtains the current project and workfile from
the PROJECT MANAGER and loads the user profile for the cur-
rent workfile. Having separate profiles for each workfile
allows multiple workfiles to be used within a single
project. Since there may be several executable program
files within a single project, each workfile should have its
own profile store for its appropriate edit, compile, or link
command. If the workfile is a text file, then the edit
command would contain the appropriate text processing
utility command and the compile and link command portion of
the store would be empty.

Once the user selects the EXECUTION COMMAND, the COMMAND
INTERPRETER uses the profile information to execute the
selected tool from the TOOL SET with minimal user interven-
tion. Depending upon the selection, the tool may access its
own local storage during tool use.

Display Manager Design. The design of the terminal

display is based on concepts from (Teitelman, 1971) and

(Hansen, 1971). The key principles from Hansen are:
1) Use selection, not entry.
2) Use names, not numbers.

3) Display inertia.

fdugi

(AN

.

»
[herd

e
.,

s
s “a'e

.
)

.
aVa®e 274 s

\ 4
o

£

[el M, et - SR AL AR A AN A et I AN A N S A i o i i o

4) Organize commands.
5) Rapid execution of common operations.

To accomplish principle 1, the terminal displays a menu
of choices, with the current choice highlighted. The user
moves the highlight to the desired choice and selects that
item. To accomplish principle 2, the menu choices are the
names of the items, not numbers: i.e,, if the current selec-
tion is EDIT, then EDIT 1is displayed, not an arbitrary num-
ber from a list of choices.

To accomplish principle 3, the basic layout of the dis-
play remains the same in all operations. The user always
knows what choices are available from a single screen. The
user does not have to select a submenu to execute a desired
tool. This also prevents having to exit a submenu, return
to the main menu, and select another submenu to execute two
different tools from different tool categories. This sub-
menu/main menu/submenu interaction 1is reflected in the
current SDW. Display 1inertia is also maintained in the
KBSEE by using multiple windows. A window is a portion of
the screen that can be accessed as a single entity. The
concept of multiple windows originated with XEROX Company's
Palo Alto Research Center (PARC) (Teitelman, 1971). A
multiple window system allows essential information to be

displayed dynamically on the screen in a window, without

changing other windows on other parts of the display screen.

Principles 4 and 5, the efficient organization of com-
mands and rapid execution of common commands, respectively,
are accomplished by placing the most commonly used tools
(editor, compiler, linker) at a location in the menu where
they can be selected with a minimum of user interaction.
Since most developers execute an edit, a compile, and a link
in succession, more rapid execution can be gained if a
single command accomplishes all three in sequence and if the
KBSEE makes this command the current selection upon entering
the environment.

Figure 3.2 shows the layout of the KBSEE display. The
display is designed in accordance with the user engineering
principles discussed in the previous paragraphs. The upper
portion of the screen is divided into four windows which are
used to list selections. The Defaults window displays the
current project, workfile, and 1location within the file
structure. The Status window gives the user positive feed-
back about the process the KBSEE 1is currently executing.
Messages to and from the KBSEE are input and output in the
Messages window. The 1initial display and update of these
windows is the primary purpose of the display manager.

Since data can be read directly from the windows, the
display manager is also invoked by the command interpreter

for reading and highlighting the <current menu selection.

IIT - 6

Main Menu
KBSEE - A Knowledge Based Software Engineering Environment

; Build Program Work File Debugger Spawn to CLI
Edit User Profile Analyzer Exit
-, Compile Introduction Librarian
» Link Printer
- Run Text Formatting

Display Errors
Start Project
Select Project
List Projects
Display Project

|
|
|
|
|
|
|
!
|
|
|
|
|
!
|
]
(®
h!
|
I
|
|
|
|

Defaults >< Status >
. 'PROJECT :
) WORK FILE:
Ny DIRECTORY:
-~ Messages
- Figure 3.2 - KBSEE Terminal Display Layout

.
% ‘-.. o »

»

AL 2

\..

. DN
Y TS)

By

ettt

»
’,

A
-
N

This method is used because of the minimal number of user
keystrokes involved in its use.

Display Manager Data Structures. The display

manager uses several data structures in the maintenance and
operation of the windows. The primary data structure in the
menu_data structure, which maintains the current vertical
and horizontal <cursor positions, the maximum and minimum
vertical positions, and the current menu item. This
structure is wused only for windows used for displaying
menus. The display manager uses the structure to read the
menu selection directly from the display. The maximum and
minimum vertical values prevent attempts to read above or
below the window. For example, 1if the menu has only two
selections, an attempt to move the cursor to'a position
above or below the two selections would be prevented by a
comparison to values in the data structure. By design, this
is prevented by "scrolling" to the appropriate maximum or
minimum value (i.e., if the current selection is the one at
the top of the menu and the user attempts to move the cur-
rent selection wup, the display manager sets the current
selection to the one at the bottom and vice-versa).

The display manager also uses a data structure to store
the current menu. Since the design uses four menus, the

display manager needs to keep track of which one is cur-

ITT - 8

(%

»

..... . PE N A A e At SR> g A (i

rently in use. Whenever the user moves to a different menu,
the value of current menu structure is updated.

Command Interpreter Design. The primary function of the

command interpreter is to translate commands from the user
into a form appropriate for use by the KBSEE. To accomplish
this task, it must compare user inputs 1in the current
keystroke data structure to a set of valid user commands.
One of Hansen's user engineering principles is to minimize
memorization. The more words there are in a command lan-
guage, the more words the user has to remember. Since the
KBSEE is designed to use selection, rather than entry, there
should be a single command for selection. The simplest
command consists of a single entity. Therefore, the selec-
tion command should be a single keystroke. Other commands
are necessary to change the current selection, request help,
and remove the current window. These commands should also
A table of the KBSEE

be specified by a single keystroke.

command langquage is shown in Table 3.1 below:

o e +
| Key Action l
| UP Arrow Move to selection above current one |
| DOWN Arrow Move to selection below current one [
| LEFT Arrow Move to menu left of current menu |
| RIGHT Arrow Move to menu right of current menu l
| Select Select current menu item for execution |
| Remove Remove menus and exit system [
| Help Select help |
o e e e e e e e - +

Table 3.1 - Keyboard Command Map

IIT - 9

.t a te

T
4

LN

3

N

7}

AL .'_v “»

"l'f"l

v v .

»

t W W

« .. R
. [
AT L]

.

Other keyboard inputs are ignored by the interpreter.

As discussed in a previous section, the interpreter inter-
acts with the display manager for menu and menu selection
information. When the wuser 1invokes the Select keyboard
command, the current menu 1item field 1in the menu data

structure is passed to the command interpreter for ex-

ecution.

Project Manager Design

As shown in Figqure 3.3, the project manager maintains
three data stores, a centralized database of all projects
being developed by a user, a user profile for each project
work file, and a current project save store. When the KBSEE
is initially invoked, the project manager LOAD PROJECT func-
tion is invoked. The LOAD PROJECT function éttempts to read
the current project save store. If there is no current
project save store (as is the case for a new user), the user
must supply project information to the project manager. If
the save store 1is present, the current project name and
current work file name are loaded. The LOAD PROJECT func-
tion then accesses the project database for the location of
the current work file. This process also validates the
integrity of the database and save store. The LOAD PROJECT
function then sets the KBSEE current location within the

file system to the 1location obtained from the project

IT1 - 10

...............

-tatl et e ta”

~ . . . “ -
. - . - - » " " .‘.i
Y 2R P R P T W S, SR S,

giaq 13beuey 3o03fo1gd 3asgy - £°¢ a2inb1a

A 1 0w s |

\llwmc._”xuoz

3T T 30 14
P e o T

v 1 e d
2 T 1T 3J ©0 1 4

2 s e qge 3 eaqa

3 03l o014

e 3 e e 3 © Q
@ T Tt 3 o 1 4 3 08 o 1 g

3 T 1t 3 0 1 4 3lo a [o 1 4

3 A © g 2 A © g

RS W y .-...-P.:P-.P.-LE-.--\-.\A o T8 %t e Y A A 'v\.q-!xnu [P & DAY

LA an

S et NN

5 NSO A

PR LR AR [RERL NN

LN AR Y

IR

.

¥ RTINS

i
a s »

database. This ensures that all the files associated with a
project are co-located. Access functions to the user
profile store and the project database are provided through
KBSEE menu item selections. These selections are: Start
Project, Select Project, List Projects, Display Project,
Change Work File, and Change User Profile. The access func-
tion SAVE CURRENT PROJECT 1is invoked automatically when the
user exits the KBSEE. This allows the project manager to
automatically establish the project, work file, location,
and profile whenever the user invokes the KBSEE.

Project Manager Data Structures. The project

database consists of records as shown below in Figure 3.4:

Figure 3.4 - Project Database Record
For multiple work files within a project, the record is
repeated with the same project name, but the location and
work file name may be different.
The project manager also maintains a store for user
profile information. The record format used by this store

is shown below in Figure 3.5:

Figure 3.5 - User Profile Record

ITI - 12

The project save store record format is shown below in

Figure 3.6:

ax
0
2]
o
.
o
g
(nd
zZ
[
]
[/
b3
O
al
=
3
e
—
1
z
[
=]
1

Figure 3.6 - Project Save Store Record

Analysis Tool Design

o)

Figure 3.7 shows the design of the analysis tool, KBSMA,
which follows the general architecture described in Figure
1.1. (Harmon, 1985:178) characterizes the development of
small (less than 200 rules) knowledge based system as a
sequence of six steps:

1) Select a tool and make an implicit commitment to
a particular paradigm.
(e 2)

Identify the problem and analyze the knowledge to
be included in the system.

3) Design the system. Typically, this involves
drafting a few rules.

4) Develop a prototype and test it.

A N N

5) Expand, test, and revise the system until im-
plementation is complete.

6) Maintain and update system as needed.
Most existing tools for developing knowledge based sys-
tems (i.e., OPS-5, M.1l, S.1, KEE, ART) handle the most com-
mon paradigm: diagnosis and prescription. (Harmon,

1985:92-133) contains an excellent survey of commercial

A

tools and languages for developing knowledge based systems.

Pl A

Irr - 13

R R S s T S e e e T e e e Y e e - . - e e
!.’-.' '.-_'.‘ n':-J A S SR - .",.\ R YA R) \r\'.‘.‘. N L e N e T e s e e et -

- - . . ". - I... - . . - .. ‘i_ - .- -. “.."'
I A AT R S I R A A A A SR L

YWSEY 103 @dd - [°§ dinbtg

si103s _~ - ase
/ / d
andayngo st1shkieuy saTny oBpomousy
Aieuot3iotg
eyeq
Kiouway eieg
uotrienyts eseq
burtyaiom
9TNPON
eleqg e
~~ 19 s n
uorjljeniIs uotloeviosljul
x...\. “..

[¢ o - . .
L A NANRS e v . ORI 8, 1, 0 S N e N S TAUA FURN . AL LR AR Ce e, Gttt

The KBSMA problem area 1is of the diagnosis/prescription
type. Software modules are diagnosed and recommendations
for improvement are prescribed. This categorization implies
that the KBSMA can be designed without regard to the actual
implementation language, which will be a representation
scheme for rules in some form. The next step in the design
of the KBSMA is the design of the knowledge base.

Knowledge Base Design. The development of a knowledge

base often requires the skills of a knowledge engineer. A
knowledge engineer is essentially a person skilled in the
translation of rules, principles, and models used by a
domain expert into some knowledge representation scheme.
Whether or not a knowledge engineer 1is required in the
design and implementation of a knowledge based system

depends wupon the communication skills of the knowledge

source (domain expert), the technical abilities of the sys-

tem sponsor/system developer, and the relative difficulty in
representing the domain knowledge in a form usable by the
target knowledge based architecture. In the case of the
KBSMA, the knowledge base was developed entirely without the
aid of a knowledge engineer, There 1is no need for an in-
termediary between the domain expert, the system developer,
and the customer, when all these functions are performed by

the same person. A knowledge engineer would not have con-

Pl SN

P
A
“ar

o
by

-V . i FTATME e e TR T TN T E W e W W & T T W eTw,)

tributed to the development of the KBSMA; in fact, filtering
information through a knowledge engineer would have hindered
the effort, rather than helped.

In order for the KBSMA to perform its function, informa-
tion about the software modules to be analyzed must be made
available to the inference mechanism. The best source of
this information is a centralized data dictionary. Since
the development of a data dictionary system is beyond the
scope of this investigation, the 1information is provided

manually in a format 1identical to the AFIT/ENG Software

Development Guidelines and Standards, Data Dictionary Entry

for a Module and used 1in SDW data dictionary research
efforts (Thomas, 1984) (Wolfe, 1985). This format is
implemented in the module data structure. The module data
structure contains the following information:

Module name

Project name

Module number
Description

Passed variables
Return value

Global variables used
Global variables changed
Files read

Files written

Calling modules
Modules called
Version

Date

Author

Filename

Coupling type
Cohesion type

ITT - 16

& b e e T
TR TIYONN

Recommendation

The fields for the coupling, cohesion, and recommenda-

tion are not from the data dictionary entries, but are used
to hold this information once they have been determined by
the inference mechanism.

Since the AFIT/ENG Data Dictionary Entry for a Data

A e &

Element does not provide all the information necessary for
determining coupling and cohesion, another data structure is
necessary. The variable data structure contains fields for
the name of the variable, its type, and whether or not it is
a control variable. The control field must be provided by
the user since there is no way to directly infer whether or
‘ib not a variable is wused for control by analyzing the data
dictionary entries. |
Small prototypes of the KBSMA showed that coupling can
be inferred automatically from the data dictionary entries.
However, cohesion cannot be determined by examination of the

data dictionary entries. Ideally, cohesion should be

deduced automatically from a description of the function of
the module (i.e., "Natural Language" interpretation) or
directly from the code (i.e., an intelligent interpreter or
overall program structure analyzer). Since the development
of either of these are beyond the scope of this thesis ef-

fort, the KBSMA prompts the wuser until module cohesion is

determined.

£ R N L AN

Production Rules. The design of the production rules

' for determining coupling and cohesion is discussed in this
" section.
Coupling - There are four types of coupling: Data,
Stamp, Control, and Common. The rules for determining each
type are discussed in the following sections.

Common Coupling

- IF
- The module coupling type has not been determined
: AND
A global variable is used
THEN
Set the coupling type to Common
AND
Recommend passing the data item as a parameter.

a N .

Control Coupling

Y

IF
‘Ei The module coupling type has not been determined
= AND

The module passes a parameter

AND
- The parameter is a control variable
N THEN

Set the coupling type to Control

- AND
Recommend modifying the module to not use imported
control information.

Stamp Coupling

IF
The module coupling type has not been determined
AND
K The module passes a parameter
[« AND
M The parameter is not of type Record
AND
The parameter is not a control variable
THEN
g Set the coupling type to Stamp
- AND
Recommend passing only required data item.

.. -~ - . '~. *. « i - - - e c e .
N : : R T P A A A A AL
PR YR Y Nt Y SR TN TSN TR TR N

st e B AN
PPl S a's 2 2 AIL

.{. < e

A A

ol N AN I B R

oL AL AL)

Data Coupling

IF

The module coupling type has not been determined

AND

The module passes a parameter

AND

The parameter is of type Primitive

AND

The parameter is not a control variable
THEN

Set the coupling type to Data

AND

Recommend no improvement necessary.
Cohesion -~ Four questions are sufficient to determine
module cohesion. The answers to these questions are stored
in the cohesion answers data structure.

Cohesion Questions - These rules prompt the user for

the information required to determine cohesion.

(!F - One Function |
The module cohesion type has not been determined
THEN
Ask if the module is performing only one function
AND

Place answer in the one function field

Related Activites

IF
The module cohesion type has not been determined
AND
The module is not performing only one function
THEN

Ask if what relates the activities of the function
AND
Place answer in the activities related field.

Sequence Important

IF
The module cohesion type has not been determined
AND
The relation between activities is Data or Control
THEN

11T - 19

«
2" a

"‘ "-

Pl

AR

., Jl.-.l‘l

MMM =

e

I2LEAT S

.". “

- 'n. ‘-. ‘-. '

« s 00
e v T,

e

L

Ask if sequence is important
AND
Place answer in the sequence important field.

Same Category

IF
The module cohesion type has not been determined
AND
The activity relation is not Control or Data
THEN
Ask if the activities are in the same general
category
AND

Place the answer in the same category field.
Note that as few as one question or as many as all four
may be asked. 1In any case, the minimum number of questions
that allow the KBSMA to infer the cohesion is asked.

Functional Cohesion

IF

The module is performing only one function
THEN

Set cohesion type to functional

Sequential Cohesion

IF
The module is not performing only one function
AND
The activities of the module are related by Data
AND
The sequence is important

THEN
Set cohesion type to sequential

Communicational Cohesion

IF
The module is not performing only one function
AND
The activities of the module are related by Data
AND
The sequence is not important

THEN
Set cohesion type to communicational

I11T - 20

R
S\
' Ny

T Procedural Cohesion
IF The module is not performing only one function
%ﬁg activities of the module are related by Control
%:2 sequence is important
THEN

Set cohesion type to procedural

Temporal Cohesion

IF

The module is not performing only one function
AND

The activities of the module are related by Control
AND

The sequence is not important
THEN

Set cohesion type to temporal

Logical Cohesion

IF

The module i‘, not performing only one function
AND

‘i’ The activities of the module are not related
AND

The activities are in the same general category
THEN
Set cohesion type to logical

Coincidental Cohesion

IF

The module is not performing only one function
AND

The activities of the module are not related
AND

The activities are in the same general category
THEN

Set cohesion type to logical
The coupling rules show how stored data can be used by
an inference mechanism without wuser interaction. The
cohesion rules demonstrate how a knowledge based system can
interact with the wuser to obtain information necessary to

make an inference.

II1 - 21

203

(1)

Sa R R R I B A A2 e M A S

Conclusion

This chapter has described the design of the KBSEE and
the KBSMA. Data Flow Diagrams and Structured Listings were
used in the design documentation. General issues in
knowledge based system design were also discussed. Chapter
IV continues the description of this investigation by

presenting the implementation phase.

R R YA i iier,]

(1

........

IV. Implementation

Introduction

This chapter discusses the implementation of the
Knowledge Based Software Engineering Environment, KBSEE, and
the Knowledge Based Software Module Analysis tool, KBSMA.
First, the system 1level implementation 1is presented, fol-
lowed by a more detailed discussion of each subsystem. The
final section of this chapter describes the integration of
tools into the KBSEE in general and the KBSMA in particular.

Source code listings are contained in Appendix C.

System Implementation

KBSEE is implemented on the AFIT Informatibn Sciences
Laboratory's DEC VAX-11/780 superminicomputer under the
VAX/VMS operating system version 4.2. The ISL VAX was
chosen as the target machine for several reasons. First, it
was available and not overloaded compared to the other com-
puter systems at AFIT. Second, there are a wide variety of
languages and tools available on the system. Table 4.1
shows the languages and tools available on the ISL VAX.
Finally, it 1is the host machine of the SDW (Hadfield,
1982:17-18), on which KBSEE is based.

After deciding upon the host computer system, the selec-

e« 0 ¢ s

rr

-

»

BRI OAD v

o 2 e h
s a2 L a 1 8 2 8 . .

N DAL VRN

. ,
.
KRR Ry

R

XV¥A TSI @yl uo s1o00] pue sabenbueT - 1°'p ajqel

SWd p A
SHWD . G-Sd0

uetieviqi IN

dSIT XVA
18bbnqgaqg 1y

19qut

s1a3ai1daisjur ndl
SNOBURTTIOS TN 1d3d
TdSAS s1031p13

SWAL UT30T71d
SW4 apTISoad 010N TT-¥XVYA

ydeigoaqg
juswabeuey ussiog S 9 SI9TqUassy
1VLOL sotydean Teoseqg
sai1bug ueiliog
aaatT13zeleqg T1ISSen o)
aan Jjouny epvy

jusuwabeuey evieqg

sI193jewWIod IXI]

sis1t1dwo)

.

|

-,

tion of an programming language was the next step in the
implementation phase. Available languages include C,
FORTRAN, Pascal, Ada, LISP, Prolog, and the Digital Command
Language (DCL). Of these, C was selected.

The most important reason for choosing the C programming
language was the nature of the language. The C language is
a general-purpose programming language which is manageable
because of its small size, flexible because of its ample
supply of operators, and powerful 1in its utilization of
modern control flow and data structures. It is a simple
language, but one rich in its variety of Run-Time Libraries
of functions and macros (Kernighan, 1978) (Helms, 1984).

The second reason for choosing C 1is that it is highly
portable, while providing access to the po&erful VAX/VMS
environment. It would not be very difficult to rehost a
software system written in C to a new target computer sys-
tem.

The VAX C programming language contains a Run-Time
Library called Curses (DEC, 1985:26.1-26.39). The Curses
library contains very powerful functions for controlling the
display of terminal screens. Rather than developing operat-
ing system specific or terminal specific routines for screen
management, greater program portability is obtained by using

the Curses library, which is implemented in many C compilers

on a wide variety of host computers.

4% %

L4

,
Ve

»
A L)
¢ _ % s ¢t _ ¥ 0

Furthermore, C was chosen because it handles strings

better than FORTRAN or Pascal, generates code which compiles

A A

faster and runs faster than Ada (a much larger language)

(MacLennan, 1983), and because it generates executable code

that can be moved and run on any VAX/VMS computer whether or

*y

s ‘s s

not a the target system has a C compiler. This transpor-

‘r

tability cannot be accomplished by wusing a LISP or Prolog
interpreter. LISP and Prolog programs require a LISP or

Prolog interpreter for their execution. DCL is also inter-

preted (by the DEC Command Language Interpreter) and runs L

very slow compared to an executable program. DCL programs

are actually series of executable programs, so the VAX/VMS

‘i; operating system must load and execute each DCL command -
separately. N

The particular implementation of C wused is DEC's VAX C

version 2.0. VAX C is a full and complete implementation of o1

the C language, as defined 1in (Kernighan, 1978). It also

a0
i

.

provides access to the very rich VAX Run Time Library (in

PEN
(S

addition to the C Run Time Library discussed in previous

1,0

paragraphs). The VAX-11 Run Time Library includes routines

’

)

to screen management, keyboard management, data conversions, .
system management, and mathematics. The one keyboard

management routine and one system management routine were

used in the implementation of KBSEE. This is discussed in

'."" f l. " l. "‘)

detail below.

s 8 v e e
. . 1

F R O U ST
--------- -

el e c et
: e T T T e e e R T e S e e T
A S S T B A e A L VS S S G L P 0, DA SN

A s 8 8 s s'S

L'v. ,l
.

0

Display Manager Implementation

The display manager uses functions and macros from the
VAX-11 C Curses Run-Time Library to initialize, display, and
maintain the wuser's terminal screen. For a detailed
description of Curses and 1its functions and macros, see
(DEC, 1985). The Curses functions are used to divide the
terminal screen into windows, perform input and output in
the windows, display and remove windows, and update the

entire display.

Command Interpreter Implementation

As described in Chapters II and III, the command inter-
preter obtains valid menu selections from the display
manager. This 1is implemented through the Curses function
winch, which inputs a character from a given location on the
window. The command interpreter processes user command via
keyboard input. The VAX-1l1 Run-Time Library procedures
SMGSCREATE_VIRTUAL_ KEYBOARD and SMGSREAD STRING are used for
reading keyboard function keys and controlling keyboard
input. These routines can read function keys on any ter-
minal defined 1in the VAX/VMS terminal definition table.
Currently, DEC VT-52, DEC vVT-100, and DEC VT-200 series
terminals are defined. The KBSEE uses the numeric keypad of
the VT100 and the edit keypad of the VT-200 for single

keystroke commands, as shown in Figqure 4.1.

Iv - 5

S3T13S 00T IA

inokeT pirvogAay Teutwial IIASEN

T

ey

1°'p @anbra

dTdH =
$§8113S (002 IA

1087189s

diaH

3987T8S

2

S w s ¢ ¢ o ¥

ey W A VDI 4

“g e e p v Y 0

aAQWaYy

LRI T)

SNBSSy YR

Ao abInb AL At Al A6 A

Commands are validated, then appropriate execution
routines are invoked for the individual menu selections. If
the command is for an external tool or program, the VAX-11
Run~Time Library procedure LIBSSPAWN is used to spawn a
subprocess for that tool or program. Details of actual
spawn procedures used for the various external routines are

shown in Appendix E.

Project Manager Implementation

The project manager is a collection of data files with
simple access functions for reading and writing to these
data files. The project database is implemented as a stand-

‘h. ard sequential file, which 1is searched on two fields,
project name and work file name. This implementation uses
standard C Run-Time Library routines. Use of a fully in-
dexed file would speed search in a large file, but would
cause loss of transportability since 1indexed file im-
plementations are not standardized in the C language
definition. The project database should contain less than
100 records, which should not require a noticable delay in
searching. There is a project database for each KBSEE user,
located in the default 1login directory with file name
KBSEE.PROJECTS.

The user profile information store 1is implemented as a

v -7

_..' \.' . .

[SN

. ~-\-A_ --_ .'_ -" .'.
S N T T .

standard sequential file, so the access functions use stand-

ard C I/0 routines. Since the file contains only three
records, an indexed file would not be any faster since all
records in the file are processed whenever the file is ac-
cessed. There is a user profile store for each workfile in
a project, located in the same directory as the workfile.
The name of the user profile store 1is based on the name of
the workfile. For example, 1if the name of the workfile is
FOO.BAR, then the name of the profile store would be
FOO.PROFILE.

The project save store is also implemented as a standard
sequential file. The file contains only one record, with
two data items, so other file formats would not speed access
and would result in loss of transportability. The save
store is located in each user's default login directory with

name KBSEE.SAVE,

Tool Set Implementation

The tool set consists of VAX/VMS compilers, linkers, and
editors, the librarian, and symbolic debugger. Other tools
may be implemented in a manner similar to the tools supplied
by DEC. Tools are wusually executable programs invoked by
either a run command or a Command Language Interpreter (CLI)

command sequence. In either <case, the executive spawns a

IV - 8

K
J

-

.
.
e
-
Bl
'
.

LG

S WV V. W%
1 J

subprocess in order to execute the tool. Since many tools
write to the screen, care is taken to avoid interfering with
the KBSEE display manager windows. This is accomplished by
using DCL command procedure file for the spawned subprocess.
The first line in the command procedure is a clear screen K
command to erase the KBSEE menus. After the tool is invoked
and writes to the terminal screen, another clear screen
command is issued. Once the spawned process returns control
to the KBSEE, the display manager function UPDATE DISPLAY is
called to refresh the display of the KBSEE windows and menus
on the terminal screen. Tools which receive input from the
keyboard must have the VAX/VMS 1logical name SYSSINPUT
‘:‘ defined to be the terminal keyboard. By default, SYS$SINPUT
! is defined to be the command proéedure file for executable
programs invoked from a command procedure. So, prior to the E
actual tool invocation 1in the command procedure, the line
DEFINE/USER_MODE SYSSINPUT SYSS$SCOMMAND must appear. The
/USER_MODE command qualifier makes the definition valid only
for the next program being executed. If this qualifier did
not appear on the DEFINE command, 1input would continue to
come from the keyboard, even when it should not. For tools
which are expected to generate error messages, the VAX/VMS
logical name SYSS$ERROR should be defined to be a file. This

will allow the user to scroll though files whenever con-

—

<

i

O
o A8 5

At 44 L A 3 A A Caliadt apti gl e alicatinatd ok : ! .-.--_.-.'T'?‘.“.'.*F.'me

F P

P
v

: venient, rather than 1loose the error messages when the

screen is cleared after the tool is finished executing.

s & A A4 A&

KBSMA Implementation

The KBSMA is implemented in a rule based production

I T T S

system called OPS-5. Most commercial tools are rule based
systems (i.e., AL/X, ES/P Advisor, INSIGHT, M.l, Personal
2 Consultant, SeRIES-PC, EXPERT, KES, OPS-5, and S.l) or
hybrid systems containing rules within frames or a semantic
network (ART, KEE, and LOOPS) (Harmon, 1985:129-134). Since
all these commercial systems contain rules in some sort, the

implementation decision was dependant on the tools available

LG Y

ﬁw. on the ISL VAX. At the time of KBSMA design and implemen-

tation, OPS-5 was the only commercial knowledge based system

development tool available on the ISL VAX. Also, the

prototype system developed for the Advanced Topics in Ar-
P tificial Intelligence course, EENG 749, was implemented in
" OPS-5 on the AFIT/SI SSC VAX/UNIX system.

OPS is an acronym for Official Production System. The
particular implementation of OPS-5 used is DEC VAX-11 OPS-5
v version 1.0 (DEC, 1984). It generates executable images
which can be run in a manner identical to the code generated
by other compilers., This differs from many other im-

plementations of OPS-5 which require the wuser to first

Oy .al LR .t

Iv - 10

AGROATAN

-

L
3
Lo

L DAY IS L e ah et i sl A g a0 GNR) a0e ol 80 aAR"aie- i’ ol Lol " A i JNa - N L - P i i *.v":ﬂ1

.......

invoke a LISP interpreter, then load OPS-5 (as is the case
with the implementation on the AFIT/SI SSC VAX using Franz
LISP). The code generated by the VAX-11] OPS-5 compiler is
optimized for faster execution.

Rules are easily transformed from their English descrip-

tions into OPS-5 syntax. The KBSMA user's manual in Appen-

dix F explains the process of transforming rules into OPS-5
productions.

The KBSMA module and variable data structures are imple-
mented as OPS-5 LITERALIZE structures. LITERALIZE is an
OPS-5 keyword that specifies that the next item in the list
is the name of a 1list data structure with the remaining

@y« items in the list used as field names within the list; i.e.,
(literalize FOO BARl1 BAR2) would create a data structure
named FOO with items BAR1 and BAR2. The implementation of
the data structures are shown in Appendix D.

The module data structure 1is nearly a one-for-one
translation of the AFIT/ENG gquideline standard (AFIT/ENG,

1984). The exceptions are the parameters passed and globals

o2
(]
»

a ¢

used fields. To allow up to three of passed parameters and

.

2,4

global variables, there are three repeated fields for each:

L 4
¥

WA

passed-parameter-1, passed-parameter-2, passed-parameter-3,
global-1, global-2, and global-3. This is necessary because

although OPS-5 can represent more than one item in a field

5™
«
el

Iv - 11

as a list, it cannot separate list items for separate hand-
ling. This meant a tradeoff was necessary between a general
purpose data representation of a field with multiple items
with a very complicated access scheme requiring invokation
of external system routines or a simple repetition within
the data structure, allow.ng less flexibility, but a much
simpler access scheme. Simplicity was considered more im-
portant since the scheme could easily be extended and is
transportable. The wuser's manual contained in Appendix F
discusses implementation-specific details.

The knowledge base portion of the KBSMA is located in
the OPS-5 source file KBSMA.OPS which is compiled into the

executable program KBSMA.EXE. The knowledge base contains

the data structure definitions, production rules, and a

control procedure - startup. The startup procedure defines
an environment for OPS-5 execution which includes the type
of output, halt mechanism, and search/inference strategy.
The startup procedure also 1loads the situation data into
working memory. Situation data 1is contained in a file name
KBSMA_INSTANCES.DAT. It contains data values for each of
the modules to be analyzed in the variable and module data
structures. The separate instance data allows the knowledge
base to be used to analyze any number of different modules.
The command procedure to invoke the KBSMA has the fol-

lowing lines:

$CLS

SDEFINE/USER SYSS$INPUT SYSSCOMMAND

$RUN KBSMA

$CLS

$SEXIT
The name of the command procedure is KBSEE ANALYZE.COM,
which is located in the KBSEE system directory, KBSEES$SYS-

TEM.

Conclusion

This chapter discussed the implementation of the
Knowledge Based Software Engineering Environment, KBSEE, and
the Knowledge Based Software Module Analyzer, KBSMA. The
choice of host computerA system was discussed, as was the
choice of implementation language. Detailed implementation
decisions were presented for each KBSEE major function and
data structure. Implementation and integration of new tools
were discussed, with the KBSMA presented as a detailed ex-
ample of tool implementation. The next chapter, Chapter V,
concludes this thesis effort and provides recommendations

for further investigation.

Iv - 13

V. Conclusion and Recommendations

Introduction

This thesis investigation has described the development

of a Knowledge Based Software Engineering Environment,

T T KX e—vrww

KBSEE, and a Knowledge Based Software Module Analysis tool,

KBSMA. KBSEE is consists of several interacting components,

including a set of software development tools such as com-

pilers, editors, linkers, and debuggers. The KBSMA analyzes

software modules for the software engineering parameters of

coupling and cohesion. The primary goal of this investiga-

tion is an easily useable environment for developing
ﬁ software.

» This final chapter presents a short summary of the éys-
tem development, followed by an analysis relating the
developed system to the standards described in Chapter 1.
Finally, recommendations for future investigations are

presented.

Development Summary

KBSEE and KBSMA were built wusing a variation of the
classic software development 1life cycle along with ex-
ploratory programming/rapid prototyping. First, an ex-

tensive litera’ure search was conducted to gain a better

M datal b s gt ois SR ie fa s L' a i Sl Rl Ul U

understanding of knowledge based systems, software develop-
ment environments, the software development process and its
problems, and how these problems might be diminished through
automation. The information gleaned from this search, along
with prior knowledge from experience and observation, was
used to perform the requirements analysis phase. In this
phase, sets of requirements were defined for the environment
as a whole, for each subsystem, and for the analysis tool.
After generating the 1initial sets of requirements,
prototypical systems were developed and implemented. A
cyclic process of design and implementation was performed
until a satisfactory system was completed. Feedback from
‘j' the prototypes provided useful information about the com-
pleteness and consistency of the requirements, whiéh were
modified, if necessary. Throughout implementation, routines
were tested as they were developed. This informal testing
was conducted on the isolated module to show that it per-
formed as intended and on the module as it was integrated
into the environment to ensure that 1its system interface
behaved in the intended manner. Although no formal testing
was performed, the informal tests do suggest that the KBSEE

and KBSMA are reasonably error-free.

.f ’.’ L, - . '™
A "‘\‘LA"’ P -'.("y (n‘ x’ (:.(:f\d‘

Analysis of the Current System

The KBSEE is built upon SDW concepts and is designed to

AP 1 2]

free the user from having to remember file names and
locations and re-enter commonly used commands. It has a
. more efficient human-computer interface than does the SDW
- and performs its functions considerably faster. 1Its tool
set is sufficient for building software systems in a variety
- of languages, including C, FORTRAN, Pascal, and Assembler.
The software analysis tool determines a module's
coupling and cohesion. It can obtain information through
interaction with the user and through access to the
situation file.
- (if The KBSEE is not completely implemented and needs to be
extended. It needs a centralized data dictiénary and
appropriate access functions to avoid having to interact
with the wuser for module information and to maintain
consistency checks throughout software development. Not all
menu selections are implemented, although what is currently
implemented does show the wutility of the KBSEE and the
KBSMA, so both portions of this 1investigation should be

considered successful. The next section discusses

o ata e el

recommendations for future investigation.

[
[
N L
\

........

. e T e Te g™ - O U S e T AP R P A L AL
,f"_’..-r‘_-\l SRR | .~‘.‘- S A T G ok SOy B OSSRy e e R L e T T s

ata a4 A A

€1
LAl

s

Recommendations for Future Investigation

Not all the requirements have been fulfilled by the
design and not all the design has been implemented. The
lack of a centralized data dictionary and access functions
is the primary reason for the incompleteness. Also, formal
testing needs to be accomplished. Complete testing is not
especially difficult, but is extremely time-consuming and
even then, does not guarantee the absence of errors.

As discussed earlier, future work needs to be done in
the area of a data dictionary and access functions for the
KBSEE. Hopefully, the system would be based on the AFIT/ENG
guidelines to ensure that the tool would be useful to the
KBSEE and KBSMA. A new data dictionary system could also be
the basis for new tools for consistency checking and
automated graphic output of structure charts, DFDs, SADTs,
etc.

The analysis of software modules for parameters other
than coupling and cohesion would be an excellent topic for
future investigation; i.e., determining the time/space
complexity of a module and then using module complexity to
determine an entire program's overall complexity 1is a
difficult, but interesting problem. Determining the time
complexity would require analyzing the loops and branches of

the module's algorithms. For example, if the current level

e)

is a loop and the current level 1is within the scope of a

previous loop, then the time complexity of the current level

i ot B L S

is of order n-squared. To obtain the type of information
required for this analysis would require parsing of the

programming language syntax. Even then, there are

DNt

subtleties that would require human analysis. Such an

[

investigation would probably require techniques from
S computational analysis, artificial intelligence, and
compiler theory.

The list of useful software development tools that could
be developed for the KBSEE, or any other environment, is

virtually endless. A future investigation of what tools

WS SNA

(& should be in an environment would prove invaluable and
would, in turn, stimulate more work on software tools.

The incorporation of Artificial Intelligence technology

i 2 O

into software engineering environments could be very useful,

as is demonstrated by the KBSMA developed in this effort.

RN
It

Future work needs to be done to <clarify the role of AI in

.5"

software engineering problems.

Conclusion

s e 8 53 05

This thesis effort has shown the utility of combining

Software Engineering and Artificial Intelligence

technologies. The benefits of using off-the-shelf tools in

P MO

LA ALY
»
[}

.
2t

]
.‘

4

.
!

a reasonably efficient environment were also demonstrated.

o All in all, this investigation proved to be a success.

e

.
Te 2

[AENEAEAEN

-
[

Yo
h.l'lli‘a'o

I ':".

A NN
-‘ P
“_\'."‘
<
|
[ea}

AAS

. - o , - » L RS A P « "’
.. S SN . .
- G PR SIS S 0 SO R RPN 4

Data Dictionary

- for the

. Knowledge Based

- Software Engineering Environment

(KBSEE)

-

AL

&
e
N Data Dictionary - KBSEE
:t \'.‘v‘
- LS

e ARKKKEKAKAARARAkAhkkhkhkkkkkkkhkhkhkhkhkkhkkhkhkhkkkhkkkhkkkkhkhkhkhkkkhkkhkkkkkk

NAME: copyright win
N TYPE: WINDOW (defined by Curses package)
o SCOPE: Global
~
Y . . .
. USE: stores window data for copyright window
" REFERENCED BY MODULES: bld copyright
]
j hhkkhkhhhkhkhkhkhkkhkhkhkhkkhkhkhkhkkkkhkhkhkhkhkhkhkhkhkkkhkkkhkkkhkkkkkhkhkkhkhkhkhkkkhkkkk
" hhkkkkhkkhkhkkkkkhkkhkhkkhkhkhkhkhkhkkhkhkhkhkhhkhkhkkkkkhkhkkhkhkhkkhkhkhkhkkhkhkhkhkkkhkkkk
NAME: curr_dat
y TYPE: record of type menu_data
S SCOPE: Global
AN
< USE: stores menu position information for the current menu
- REFERENCED BY MODULES: chk_left right, chk_move, get_item,
.. main, chk main_1, chk_main_2, chk main_ 3, chk_main_4
{ khkkkdkhkkhkkhkkhkkkhkhkkhkhkkhkhkhkhkhhhkhkkhkkhkhkhkkhkkkkdkhkhkkhkkhkhkhkhkkhkkkkikkkskikxk
k ek ke de K Kk kK dk Kk Kk ok ok ke ko k ke k ok kg ok ke ke ok Kk K de ok Kk ok e kg kg ke gk ok ke ke ok ke ok ke ok ke ok ke ok ok ok ke ok
B Qi’ NAME: curr_proj
N : TYPE: record
. SCOPE: Global
o
- RECORD ITEM NAME: project name
. RECORD ITEM TYPE: array of 20 characters
RECORD ITEM USE: stores name of current project
o
7 RECORD ITEM NAME: location
_;: RECORD ITEM TYPE: array of 64 characters
a RECORD ITEM USE: stores location of current project
RECORD ITEM NAME: work file

- RECORD ITEM TYPE: array of 32 characters
N RECORD ITEM USE: stores name of current work file
.
N REFERENCED BY MODULES: chk_save_file, exec_start_project,
4 get project, save project
A AhkhkhkdhkhkkhkhkhkhhkhkkhkkhkhkhkhkhkhkkhkkhkrkrAhkkhkhkkkhkkhkhkhkhkhkhkhkrkhkhkhkhkhkhkkkhkhkhkkk
<
b
h

& -
A
e

&

. e - - - "
IR R ERA A

Data Dictionary - KBSEE

Khkkkkkhkkhkhkhkhkkkhkhkkkkhkhkkhkhkkkkhkkhkhkkhkhkkkhkkkhkhkkkkhkkkhkhkkkkkkhkkhkhkk

NAME: curr_win
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for current window

REFERENCED BY MODULES: chk_left right, chk _main_sel,
chk_move, get_item, main

khkkhkdhkhkhkhkkhkkhkhkhhkhkhkhkhkkhkkhkhkhkhkhhhkhkhkkhkhkkkhkkkhkhkhkkhkhhkkhkkkhkhkhkkkkikk

khkkhkhkkhkkhkkkkhkhkhkhkhkhkkhkkhkkhkhkhkhkhkhkhhkkhkhkhkkkhkhkhkkkhkhkkhkhkhkkhkhkhkkhkhkkkkkhkkk

NAME: def head
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for default window header

REFERENCED BY MODULES: bld_def, display_menus,
update display

Ahkkhkkkhkkhkhkhkhkhkkhkkhkhkhkhhkhkhkkhkhkhkhkhkhkhkhkkhkhkkhkhkhkhhkhkhkhkhkhkkhkhkdhkkkdkhkikikxk

kkkhkkhkhkhkkhkkkkkkkkkkkkhkhkkkkkkhkkhkhkkkkkkkhkkkkkhkkkkkkkkkkkkkikkxk

NAME: def win
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for default window

REFERENCED BY MODULES: bld def, display menus,
update display

khkkhkhkhkhkhkkhkhkhkhhkhkhkkhkhkhkhkkhkhkhkkhkkkhkkhhkkhkhkhkkkhkhkkkhkkhkhkkkhkhkhkhkhkhkkkkk

AEAKKEKAAKAAKRERAKEEKAEKEKAAARA AL A AAA A A A A A AR A A A A A A kA A kA kb khkhkkhkkkkhkkkk
NAME: exit flag
TYPE: integer
SCOPE: Global, used Local as alias exit now
USE: flag set to exit system

REFERENCED BY MODULES: main

Je K vk deodkok Kok ok ko ko dek ok ok ok ok kg ok ko ke Kk ko ok ok ke ok ke ke ok ok ke ke ke ok ke ok ok ke ke ok ok ok ok ke ke ok ke ok ke ok

e e e mammme -

o oa e

e’y ANEMS S wx &£ KW

) LI B

2. -

Co S 6_4_ 8 ! 4 1,

Data Dictionary - KBSEE

khkhkkkhkhkkkhhkkkhkkhkhkkkhkhhkkhkhhkhkhkhkkkhkhkkhkkkkkhkkkhkkkkhkhkkkkkhkkkkkkxk

NAME: found
. TYPE: integer
SCOPE: Local

USE: flag set to when a comparison is true

REFERENCED BY MODULES: get project

khkhkkkkhkkhkkhkkhkkhkdkhkhkhkhkhkhkhkhkhkhkkkhkhkhkkhkkkhkhkkhkkhkkhkkkhhkkkkkkkkkkkxk

KEEEEKEKKEKEKEKKREKEEKEEKEKEEKEEEKEKEAARRAERAARAKA AR R A Ak Ak Ak hkhkhkhkhkhkkhkikhkkk
NAME: help win
TYPE: WINDOW (defined by Curses package)

) SCOPE: Global

USE: stores window data for help window

S e a_a_ e

REFERENCED BY MODULES: bld_help

khkkhkhkkhkkhkhkhkhkhkkkhkkkhkkkhkkkhhkhkkhkhhkkhkhkkkhkhkhkkhkkhkkkhkhkhkkkkkkkkkdkkk

khkhkhkkhkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkrkhkAkkkAAkhkhkkAhhkkkrkkkkhkhkkkkhkkhkhkikkkkkkkkk

NAME: i
‘jb TYPE: integer
SCOPE: Local

USE: loop control variable

e REFERENCED BY MODULES: chk_save file, exec_start project,
get project, save project

w Y 7 _a_7¥_a

Kok de ke ok ok kok ok ok ok ok ok ok ok ok ok ok ok ok ok ok okokk ok kokkokodk ok ok ok ok ok k ok ok kkkkkkkkkkkkkkkikkkk

hkhkhkhkkhkhkhhkhkhkhkkhkhkhkhkhkkhkhkhkhkhkkhkhkkhkhhkhkhkkhkkhkhkhkhkkkhkhhkhkhkhkkhkkkkhkkkk
NAME: inp 3
TYPE: single character
SCOPE: Local

USE: temporary storate location for string to be converted
into a descriptor type for use in RTL routines

REFERENCED BY MODULES: main

LSRR SRS S S SR SR SRR R SR SR RER R RS ERR sl s Rt RRER SR

. - e ate “atahie ala el ad Safing gl fa I A ok A e e+ 4 PR M A RiA ol ana i sid orh oke Al e o dn afe oA

Data Dictionary - KBSEE

-f%
Sy khkdhkkhkhkhkhkhhhhdhkhhhkhkhkkkhhkkkhkhkikdkkkdkdkdkdkkkkkkthkkkkkkkkhtktat
NAME: input
TYPE: descriptor
SCOPE: Local
USE: descriptor for a string for use in RTL routines
REFERENCED BY MODULES: main
khkkhkhkhkkkhkkkkhkhkhkkhkhkkkkkkkkkkhkhkhkkhkhkhkhkhkhkkhkhkhkhkhhhkhkkkhkhkkkhkkkkkkxk
AkhkkkhkhkhkhkhkhkkkkhkkhkhkkkkkhkkkhkhkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkrkAkhkhkkkhkkhkhkkhkkkhkrkk
NAME: kid
TYPE: unsigned integer
SCOPE: Global
USE: keyboard identifier used by Screen Mgt RTL routines
REFERENCED BY MODULES: main
khkkhkhkhkkkhkhkhkhkkhkhkkhkkkkkkkkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkkikhkkkkhkhkkihkkhkkihkkkikxk
AhkkdkhkhkhkhkhkhkhkhkhkhkhkkhkhkhkkhkhkhkkhrhkhkhkhkhkhkhbhkhkhkhkhkhkhkhkhkkhkXhkhkhkkhkhkhkhkhkhkhkkkixi
NAME: m_len
‘- TYPE: integer
= SCOPE: Local
USE: length of modifiers for RTL routine
REFERENCED BY MODULES: main
Ahkhkhkhkhkhkhkkkhkhkhkhkhkhkkhkhkhkhkhkhhkhhkhkhhkhhkkhkhkhhkhkkhkkhhkhkkkhhhkhkkthkkkhhtiik
KEAKKKKKKAAAKXKAAREEA AKX KA AAERA ALk ARk bk bbbk hkhkrddhkkhhhkk
NAME: modifiers
TYPE: integer
SCOPE: Local
USE: I/0 RTL routine modifiers
REFERENCED BY MODULES: main
KKK KKAKKAKKKAKAKRAKAAAAKRKA A AAA XA AR AkA XAk kAR hkhkkAkhkkkkkhkkkkkkkkkik
A -5
-
e At e T
FIND M AYALT a V G AT 3V I

C B

Ao AL AN Sr i o ae aN i aP b i aoe iy

Data Dictionary - KBSEE

khkkkkhkkhkkkhkhkhkkhkhkhkhkkkkhkkkhkkkhkhkhkhkkhkkhkhkhkkhkhkkkkhkhkkhkkhkkhkkkkikkk

NAME: main data_1

TYPE: record of type menu data

SCOPE: Global

USE: stores menu position information for main_menu_l

REFERENCED BY MODILES: chk_ left right, main

Ahhkhkhkkthkhkhkhkhbhbhkhhhkhhkhbkhkhbkhbhkhkhdhhkhhhbhkhbhbhkhdhbhkhdhhrhkhkhkhhkhkhkkhkhkkhkkhkik

khkkkkhkhkkhkkhkhkkhkkkhkhkkhkkhkhkhkhkkhkdkhdkhkdhhkkdhhkhdhkhhkkkhkkkdkihkkskkkkkhxk

NAME: main_data_2

TYPE: record of type menu data

SCOPE: Global

USE: stores menu position information for main_menu_ 2

REFERENCED BY MODILES: chk_left right, main

khkkkkhkhkhkhkkhkhkkhhkkhkhkhkkhkkkhkhhkkkhkkhkhkkhkkkkkhkhkhkhkkhkhkhkkkhkhkhkkkkkkkkkk

khkkhkkhkkhkkkkkkhkhkhkhkkkhkkhkhkkkhkkkkkhkhkkkhkhkkhkkhkhkkhkkhkkkkhkkhkhkkhkkkkkk

NAME: main _data_3

TYPE: record of type menu_data

SCOPE: Global

USE: stores menu position information for main_menu 3

REFERENCED BY MODILES: chk left right, main

Ahkhkhkhkkhkkhkhkhhkhhkkkhkhkhkhkkkdkhkhkhkkkhkhkhkhkhkdkkkhkkkkkkkkikkkkkkikkikikkik

khkhkhkhkhkkkhhkhkkhkhkhkhkhkkhkhkkkkkkhkkkkhkhkhkkhkkhkhkkhkkkhkhkkkhkhkkkkkkkkhkkkk*k

NAME: main_data_4

TYPE: record of type menu_data

SCOPE: Global

USE: stores menu position information for main_menu 4

REFERENCED BY MODILES: chk_left_right, main

AhkhkhkhkhkAhhkhhkhhArkhbhhhhddhhkhhhhkhhbhbhkrdhhbhkhkhhhhkhkhkhkhkhkhkhkhkhkkhhkhkhkhkhk ki

P Y 2 4 Maiet e w e S st tud e e |

Kb

L 4

S
b

Data Dictionary - KBSEE

kkkhkhkkhkhkkhkk . khkkkkkhkkhkhkkhkhkkhkhkkhkhkhkhkkhkhkhkkkhkhkhkkkhkhkhkhkkkkhkkkkkkk

NAME: main_menu_l
TYPE: WINDOW (defined by Curses package) \
SCOPE: Global ‘

USE: stores window data for main_menu_1

REFERENCED BY MODULES: chk_left _right, chk_main_sel,
bld menu_1l, display menus, update_display, main

hhkhkkkhkhkhkhkkhkhkhkkhkhkkkkhkkhkkkkhkhkhkhkhkhkhkkhkhkhkhkkhkhkhkhkkhkkhkkkkhkkhkkkkkkkk

Ahkkhkkhkhkhkkkhkkkkhkkhkhkkhhkhkkhhkhkhkhkhkhhkkhkhkhkkhkhkkhkkhkhkhkhkkkhkhkhkhkkhkhkkkkkkk

NAME: main_menu_2
TYPE: WINDOW (defined by Curses pa~kage) ,
SCOPE: Global .

USE: stores window data for main_menu_2 :

REFERENCED BY MODULES: chk_left right, chk _main_sel,
bld menu 2, display menus, update display

khkhkkkhkkhkhkhkhkhkhkhkhkkkhkkhkhkhkkkhhkkhkhkhkhkhkkkhkhkkkhkhkkkkkhkhkkkkkkkkkkkkkk

(a khkhkhkkhkkhkhhkhkkkhkkhkhkhkhkhkhkkhkhkhkkkhkhkkhkhkhhkhkhkhkkhkhkhkhkkhkkhkkkkkkkihkkkikk*k

NAME: main_menu 3
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for main_menu 3

REFERENCED BY MODULES: chk left right, chk_main_sel,
bld menu_3, display menus, update_display

Ahkhkhkkhkhkhkkhkkhkhkhkhkkhkkhkhkkhkhkkhkhkhkhkhkhkhkkkhkhkhkhkkkhkhkkkkhkhkhkhkkhkhkkhkkkkik

kAhkhkhhkhkhkhkkkhkhkkhkhkkhkkkhkhkhkhkkhkhkhkhkkkkhkhkhkkkkhkhkhkhkkhkkhkhkkhkkkkhkkkkkkxk

NAME: main_menu_4
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

JSE: stores window data for main_menu_4

REFERENCED BY MODULES: chk_left right, chk_main_sel,
bld menu_4, display menus, update_display

AhkhhkhhkhkAhkhkhkhkhhkhkhkhkhkhhkhkhhkhhkhkhkhhhkhkrhhkhkhkhkhkhkhhkhkhhkhkhkhk kA hkkhhkhkhkhkk ki

e e e

LA P A PEAL T PR

. . v . T - S T . ‘e ‘e . ‘e
. e e e T e e e e e
DL L U UL T Y T S S N W TSN TR TS TS TSN A

IR A\ iuin

Data Dictionary - KBSEE

khkhkkhkhkkhkkkhkhkhkhkkhkhkkhkhkkhkhkhkhkkhkhkhkhkhkhkhhkhkhkkhkhkkhkkhkhkhkkhkkhkkkhkkkkkkk

NAME: menu_data
TYPE: record type definition

SCOPE: Global

RECORD ITEM
RECORD ITEM
RECORD ITEM

RECORD ITEM
RECORD ITEM
RECORD ITEM

RECORD ITEM
RECORD ITEM
RECORD ITEM

RECORD ITEM
RECORD ITEM
RECORD ITEM

RECORD ITEM
RECORD ITEM
RECORD ITEM

REFERENCED BY

NAME: min_y
TYPE: integer
USE: minimum vertical range

NAME: max_y
TYPE: integer
USE: maximum vertical range

NAME: curr_y
TYPE: integer
USE: cursor position within

NAME: curr_x
TYPE: integer
USE: cursor position within

NAME: menu_item
TYPE: array of 17 characters
USE: name of current menu it

of menu items

of menu items

vertical range

horizontal range

em

DATA STRUCTURES: curr_dat, main_data_l1,
main_data_2, main_data_3, main_data_4

kkhkhkhkhkhkhkkhkkkkkhkkhkkkhkhkhkhkkhkhkkhkhkhkhkhkkkhkhkkkkkkkhkkhkkhkkkkkkkkkkkkk

khkhkkhkhkhkkhkhkhkhkhkhkhkhhkkkkkkhkkhkkhkkhkkkkhkkhkhkhkhkkhkhkhkkhkkkkkkkkkkkkkkxk

NAME: menu_hdr_1
TYPE: WINDOW (defined by Curses package)

SCOPE: Global

USE: stores window data for main menu header 1

REFERENCED BY MODULES: bld _menu_hdr, display menus,
update display

KRR A KRR KKK KA KRR KRR AR A A AR A KR AR KRR R A R KA kR h kA kAR ARk kkkkkkkkk

.....

“e s v _a e s s D

A A2 A% 42 9 1’2l e B sl ol ’nd’ N S Ry Avm ata gt o ey Ta S aie ol p v >

Data Dictionary - KBSEE

khkkkhkkhkkhkkkhkkhhkhkkhhhkkkhhkhkkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkkhhkkkhkkhkhkkkkkkkkikk

NAME: menu_hdr_2
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for main menu header 2
REFERENCED BY MODULES: bld _menu hdr, display_menus,
update display

Ahhkhkhkhkhkhhkkhkhkhkhkkhkhkhkhkhhhkkhkhkkhkkkhkhhkhkhkkkkkkhkhkhkkkkkkkkkkkkkkkkkk

khkkhkkhhkkhkhkkkhkhkkhkhkhhkhhkhkhkhkhkhkhkkhkkkhkhkhkkhkhkkhkhkhkkkhkkhkhkkkikkhkkkkxk

NAME: mesg_head
TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for message window header
REFERENCED BY MODULES: bld_mesg, display menus,
update_display

khkkhkhkhkkhhkhkhkhkhkhkhkhkhkkhkhkhkhkhkkhkhkhkhkkhkhkhkkkhkkkkkhkkkkkhkhkkkkkkkkkkkkk

1& hkhkkkhkkhkhkhkhkkkhkkhkikkhkhkhkhkhkkhkkhkhkhkhkhkhkhkkhkkhkkkkkkhkkkhkkkkkhkkkkkhkkkkk
(¥ NAME: mesg_win

TYPE: WINDOW (defined by Curses package)

SCOPE: Global

USE: stores window data for message window

REFERENCED BY MODULES: bld_mesg, display menus,
update_display, chk_main_sel, chk save file,
exec_start_project, get project, chk_main_1l, chk_main_2,
chk_main_3

khkkkkhkhkkhkhkhkhkhkkhkhkhhkhkkhkkhkhkkhkhkhkkhkkhkhkkhkkhkkhkhkhkhhkkkhkhhkkkkkkkkkkkxk

(22 SRS ER SRS R RS R R SRR R RS RERES LR R RS R R

NAME: position
TYPE: integer
SCOPE: Local

USE: current cursor position inside menu string

REFERENCED BY MODULES: get item
R R R Ty T T R e T Y

N Data Dictionary - KBSEE

-]

&! khkkhkhkkhkhkhkhkkkhkkhkhkhkhkkkhkhkkhkhkkhkhkhkhkhkkkhkkhkkhkhkkkhkhkkkkkkkkhkhkkkkkkkhkk
NAME: proj
TYPE: array of 20 characters
SCOPE: Local

USE: name of project read from project database

R X

REFERENCED BY MODULES: get project

khkhkkkkhkkhkkhkkkhkhkhkhkhkkhkhkhkkhkhkkhkhkhkhkkhkhkkkhkkhkhkkhkkhkkkkkkhkhkkkkkhkk

Ahkhkkkhkhkkdkhhkhkhkkhkkhkkhkhkhkhkhkhkkhkhkhkhkhkkkkhkhkhkhkkhkhkhkhkkkhkhkkkhkkhkkkkkkhk

NAME: ret_val
TYPE: integer (used as boolean)
SCOPE: Local

X USE: return value set true if save file exits .

REFERENCED BY MODULES: chk_save file

khkkhkkhkkkhkhkhkkhkkkhkhkkhkhkhkhkhkhkhkkkhkhkhkhkkhkhkhkkkhkhkkkhkhkkhkhkhkkhkkhkkkkhkhkkkkkk

2222 Z 2R ERE SRS RS S SIS SRS ESESTELEEIEEEEEEEEESEFSEEEEESEEEES S S S
NAME: status
‘j‘ TYPE: integer
2 SCOPE: Local

USE: return status of RTL routines

-

REFERENCED BY MODULES: main

KAKKKKKAKKKKRKR KKK KKAAIAKKAKRIAR kKRR hkAkhkhkhkhkkhkAkhkhkhkhhkkkhkhkkhkkkhkkkhkkikxk

KEEKKEKEAKKKE KKK KAAKAK KRR KA K KA AE KKKk kkkkhkkikkkixkkkkkikkkkikkkkiki
NAME: sts head

TYPE: WINDOW (defined by Curses package)
SCOPE: Global

USE: stores window data for status window header
REFERENCED BY MODULES: bld_sts, display menus,
. update display

AR KR K EIKRK KKK KRR A ARIKAKRRIAAR R IRAARA KRR AR AR KRR A AR A ARk kkkkkkk

p “r A - 10

PRSI A At Pl Sl e L Tais S ins e p e Al aty Al At M heCh A A Sttt sl sl XA i A At e Y - AN AN A At Al S\t Rtalty B gt gt gio g%

’

L4

s Data Dictionary - KBSEE

. aJ

’ -

s '.t‘—d' KRR KAkkhkKkhkhkhkhkhkhkhkXhkkkkhkhkhkkkkkkkhkkhkhkkkkhkkkkkkkkthkhkkkkhkkhkikhkhkhhkik
NAME: sts_win
TYPE: WINDOW (defined by Curses package)

3 SCOPE: Global

USE: stores window data for status window

REFERENCED BY MODULES: bld_sts, display_menus,
update display

Ahkkhkkkhkhkhkhhkhhkhkkhkkhkhkkhkhkkkhkhkhkhkhhkhkhkkhkkhkhkkkkhkkkkkkkkkkkkkkkxkkk

v e e ey

L2222 222222222 RRRRRRRRRSRERRSRR SRR R Rt R R R

e NAME: terminator
TYPE: short integer
SCOPE: Local

- USE: keyboard function key terminator for SMG RTL routine
- REFERENCED BY MODULES: chk_left-right, chk_move,

” chk_main_sel, main

': Ahkkkkhkkhkhkkkkhkhkhkhkhhkkhkhkhkhkhkhhkhkkhkhkhkhkhkkhkhkkkkhkhkhkkhkkkkkkkkkkkkkkkxk
¥ ‘$ AKhkkkkkkhkhkkkkhkhkkkkkhkhkhkhkkkhkkhkkkdhkkhkkkhkdhkdkkhkkihkkhkkkkkkkkkkikkkkkkxk
v Q&f NAME: tmp_x

N TYPE: integer

T SCOPE: Local

o

o USE: temporary store for cursor horizontal position

N REFERENCED BY MODULES: get_item

':' AKkkkhkkhkhkhkkhkhkhkhkkhkkkkhkhkhkhkkhkhkhkkhkhkkkhkhkkkhkkkhkhkkkkkkkkkkkkkkikkkikk
.

]

-

s a s
e« 2 8 >,

[AR AR

- L.

L, e _'.‘_-. .'.'_‘- . -.'-' Y .’.‘_;.‘.‘.._'.l..._:-. S L s R _~'.“-.\',_~_-.._ RS ...'.._'_._‘.._-.._ ..-...-‘._-..‘-...» DR ..~.\- . N e e
SlaTalalany e ST 1 A A N R R A L R R I, T L T N R Y W P A A T T A T Y, AR A AP A A ng‘i

LM

b

“.'.

Structure Listing
for the

Knowledge Based

Software Engineering Environment

(KBSEE)

Structure Listing - KBSEE

Level Module Number Couples

0 main 0.0
1 init 1.0
2 bld_help 1.0.0
2 bld copyright 1.0.1
2 bld main 1.0.2
3 bld_menu_hdr 1.0.2.0
3 bld menu_1 1.0.2.1
3 bld menu_2 1.0.2.2
3 bld_menu_3 1.0.2.3
3 bld menu_4 1.0.2.4
2 bld mesg 1.0.3

) 2 bld sts 1.0.4
2 bld_def 1.0.5
1 display_menus 1.1
1 chk_save_file 1.2
1 get_project 1.3
1 get _profile 1.4
1 get_item 1.5 curr_win, curr_dat
1 chk_move 1.6 terminator
1 chk_left_right 1.7 terminator
1 chk_main_sel 1.8 exit _now, termi.ator
2 chk_main_1 1.8.0
3 exec_bld program 1.8.0.0

“e

B - 2

- . -. l-‘ -." -t : - P 'h -t .! o '{ . .A '-O '-- '.. ‘.. - .‘ '.- '.. - .. .-. o .- x '_‘ R
. - AL AP R e e e e e e
i P s et e e TN T e TS Gt e e e .

AT AT

-

"
&!

W

Structure Listing - KBSEE

Level Module

3

N W W Ww W W W W W

NWw W W

w

exec_edit
exec_compile
exec_link

exec_run
exec_display error
exec_start project
exec_select project

exec_list_projects

exec_display_project

chk_main_2
exec_work_file
exec_user_profile
exec_introduction

chk_main_3
exec_debugger
exec_analyer
exec_librarian
exec_printer
exec_text_format

chk_main_4
exec_spawn
exec_exit

save_project

~

Number

Couples

1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.8
1.9

.0.1
.0.2

.0.3
.0.4
.0.5
.0.6

.0.7

.0.8
.0.9

.l

.1'0

1.1

1.2

02

.2.0

2.1

2.2
.2.3
2.4
.3

.3.0
3.1

L R]

Structure Listing - KBSEE

Level Module Number Couples

0 update_display 0.1

713

i:n EPUIIRY

.

ey

‘ 3 ‘et N s 3 >) TN Ty g
L 4 it B et J W Sala’ Aataliat b a" i At St il v L ACail M0 di ol PRl e iAol e iad Sel Sy’ a0 alle i SRS fFy

)
sttt oA,

e A

-

{
3
o8
s
ind
.
o
1
. g
b '
- A
o

Source Code Listing

L‘ for the
Knowledge Based

Software Engineering Environment

(KBSEE)

L i

-

;
{
i
‘
‘
L]
1
"
1
1
[
L

Source Code Listing - KBSEE

/***

DATE: 2/20/86
VERSION: 1.0

TITLE: KBSEE Main Executive Routines

FILENAME: kbsee.c

COORDINATOR: Capt Dave Fautheree

PROJECT: KBSEE (M.S. Thesis)

OPERATING SYSTEM: VAX/VMS version 4.2

LANGUAGE: VAX-1ll C

USE: CC KBSEE

CONTENTS:
chk _main_1 - process selections for main menu
chk_main_2 - process selections for main menu
chk main_3 - process selections for main menu
exec_analyzer - execute KBSMA analysis tool
chk_main_4 - process selections for main menu 4
main - main executive routine

w N =

FUNCTION: Implements main executive functions
and command interpretation.

¥ % % % %k Ok O % % % % % % A % % ¥ X % X X %

s --v***:‘c**********************************/

- % oF ok % %k % % % % % % ¥ OF %k % % % ¥ % * *

N A e T e e e e e NI R R S e R o
P AT PP JEVEPL Y TR P DU P PP T ~y VPR -t e T S .

LR - S N R . et e T W et e
IO AR S BN AT GRS s . . -
PRSPV RFOWT TP WP PRIV, PV PRV VR PR P T VS A VPV g e S i R G N P Y

AD-A172 407 AN ANALYSIS TOOL IN A KNOWLEDGE lﬁSED SDFTMRE 2/2
ENGINEERING EIWIRONNENT(U) AIR FORCE INST OF TECH
HRIGHT-PATTERSON AFB OH SCHOOL OF ENGI [4 ll FﬂUTHEREE

UNCLASSIFIED 21 MAR 86 AFIT/GCS/ENG/86M-2 F/6 9. NL

o

FFTEEER

EFER

|
| =

2

e
r
re

=y

]
M Wl

= I3

o

—_—
—_—

Source Code Listing - KBSEE

y
&
. #include curses /* Curses Screen Management Definitions */
; #include descrip /* Descriptor Definitions */
X #include iodef /* 1/0 Status Definitions */
| #define ITEM_LENGTH 16
. #define AND
! #define OR [
;! #define EQ ==
v #define NEQ 1=
¢
| #define SIZE_NAME 20

#define SIZE_LOC 64

#define SIZE WORK_FILE 32

struct curr_proj

char project name[SIZE NAME];

char location[SIZE LOCT;

char work_f11e[SIZE_WORK_FILE];
};

struct menu_data

= §
" int min_y;

int max_y;
int curr_y;
int curr x;

char menu_item{ ITEM LENGTH + 1];
}s -

struct menu_data main_data_l
struct menu_data main_data_2
struct menu_data main_data_3
struct menu_data main_data_4

nn};
n"};
nn},

""};

wonoan
A o, i, i,
- ~- - -
e NN
.~ N w0~
[eNeNo N
- - - -
OO OO0O
- - - -

[N Ne N

WINDOW *curr win;
struct menu_data curr_dat;

WINDOW *menu hdr 1,
*menu hdr 2,
*main . menu 1
*main . menu_ "2,
*main | _menu_ 3,
*main _menu "4,
*mesg_head,
*mesg_win,

.........
........
....

o Fut

« e

int
int
int

char

int

Source Code Listing - KBSEE

*sts_head,
*sts_win,

*def win,

*def head,
*help win;
*copyright_win;

SMGSCREATE_VIRTUAL_KEYBOARD();
SMGSREAD_STRING();
LIB$SSPAWN() ;

*project_file;
exit flag = FALSE;

unsigned kid;

#include "KBSEE_EXEC.C" /*

#include "KBSEE_PROJ.C" /*
»
o
7
N
?
:
a

.-::.r,

oS

C -

A A O O O O e oy

include Executive Modules */
Include Project Mgt Modules */

Source Code Listing - KBSEE

a a" s s &

/***

DATE: 2/20/86
VERSION: 1.0

Pl i ¥ 35 |

NAME: chk_main_1
MODULE NUMBER: 1.8.0
DESCRIPTION: checks menu selections for main menu 1
PASSED VARIABLES:
RETURNS
GLOBAL VARIABLES USED: curr_dat, mesg_win
GLOBAL VARIABLES CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:

MODULES CALLED: exec_bld program, exec_edit, exec_compile, exec link,
exec_run exec dlsplay error, exec_start prOJect,
exec_select_project, exec_ list _projects,
exec_display_project

[RE I AW R A by |

CALLING MODULES: chk main_sel

@ié* %Ok X R R Ok R R % % R X ¥ K % H % % % F

AUTHOR: Capt Dave Fautheree
HISTORY:

NNO% % % % % % % O X X ¥ X X N X N N X N ¥ ¥ ¥ ¥ X H* *

*
*
*
*

PP A AR I

(2 22 2R 2SR RS RRRRRS Rt 2 X X2 222222t 2222 22 2 22282222 R X X

?hk_main_l()

if (strcmp(curr_dat.menu_item, "Build Program ") EQ 0)
wpr1ntw(mesg win, "\nBuilding Program");

else

if (strcmp(curr_dat.menu_item, "Edit ") EQ 0)
wprintw(mesg_win, "\nEd1t1ng Program");

else

if (strcmp(curr_dat.menu_item, "Compile ") EQ 0)
wprintw(mesg win, "\nCompiling Program");

else

if (strcmp(curr dat.menu item, "Link ") EQ 0)

A wprintw(mesg win, "\nLinking Program");

else

if (strcmp(curr dat.menu item, "Run ") EQ 0)
wprintw(mesg_win, "\nRunn1ng Program");

else

LSS

- A, 0 a8,

ol e

R

N A B
.

SO

n
{
($,

OO RAN

Source Code Listing - KBSEE

oo
if (strcmp(curr_dat.menu_item, "Display Errors ")
wprintw(mesg win, "\nD1sp1ay1ng Errors");
else
if (strcmp(curr_dat.menu_item, "Start Project ")
exec_start_project();
else
if (strcmp(curr_dat.menu_item, "Select Project ")
wprintw(mesg win, "\nSelect Project”);
else
if (strcmp(curr_dat.menu_item, "List Projects ")
wprintw(mesg win, "\nList Projects ");
else
if (strcmp{curr_dat.menu_ item, "Display Project ")
wprintw(mesg_win, "\nDisplay Project ");
}

SR PEITFEZ LT Y

P

S T AR SO TR DS
»

A
b

y 2%

A A T T T e L T e S e e T e

EQ 0)

EQ 0)

EQ 0)

EQ 0)

EQ 0)

e '."'..-~-'."
RN "-,".-J.LAEA_A -\.-\) I SRR YN *

PP

W

A s RS S B B W

S S S AR LT LT AT GRS L A A e W T e\ W WIR S, T eIy LSl M N b el b at . 2 R phs S s Aur i i o ML E Sa &0 AL Sl

Source Code Listing - KBSEE

o »Q}‘.
/***

DATE: 2/20/86
VERSION: 1.0

NAME: chk _main_2
MODULE NUMBER: 1.8.1
DESCRIPTION: checks menu selections for main menu 2
PASSED VARIABLES:
RETURNS:
GLOBAL VARIABLES USED: curr_dat, mesg win
GLOBAL VARIABLES CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:
MODULES CALLED: exec_work_file, exec_user_profile, exec_introduction

CALLING MODULES: chk_main_sel

AUTHOR: Capt Dave Fautheree
HISTORY:

% % % % % % % % % % % % ¥ % % % % N ¥ X ¥ ¥ %

‘B %% % % % % % % % % % N % % % XN ¥ %N F ¥ %

***/

?hk_main_Z()

if (strcmp(curr_dat.menu_item, "Work File ") EQ 0)
wprintw(mesg win, "\nWork File ");
else
if (strcmp(curr dat.menu item, "User Profile ") EQ 0)
wprintw(mesg win, "\nUser Profile ");
else
if (strcmp(curr_dat.menu_item, "Introduction ") EQ 0)
} wprintw(mesg win, "\nIntroduction ")
r{: .

b e oL =

Lo

_r Ty

Ty Yy v T

-TeTW WWw

¢
.

oy

Source Code Listing

.....

- KBSEE

/***

Rk AAKkhkhkkkkkhkhkhkhkkkkhhkhkdkkdhkhkdhdhdhkdkddkkidhdkdkdkdkkkhkikhihhkikikikhkkikikkikkikkkikikikkik

l-gn-** * Ok O X * Ok X% ¥ A X % % ¥ % N X F * *

DATE: 2/20/86
VERSION: 1.0

NAME: chk_main_3
MODULE NUMBER: 1.8.2

DESCRIPTION: checks menu selections for main menu 3

PASSED VARIABLES:
RETURNS:

GLOBAL VARIABLES USED: curr_dat, mesg_

GLOBAL VARIABLES CHANGED:
FILES READ:

FILES WRITTEN:

HARDWARE INPUT:

HARDWARE OUTPUT:

MODULES CALLED: exec_debugger, exec_analyzer, exec_librarian,

exec_printer, exec_text f
CALLING MODULES: chk _main_sel

AUTHOR: Capt Dave Fautheree
HISTORY:

%hk_main_3()

. ..- ..l

if (strcmp(curr_dat.menu_item, “Debugger
wprintw(mesg_win, "\nDebugger ");

else

if (strcmp(curr_dat.menu_item, "Analyzer
exec_analyzer();

else

if (strcmp(curr_dat.menu_item, "Librarian
wprintw(mesg win, "\nL1brar1an ")

else

if (strcmp(curr_dat.menu_item, "Printer
wprintw(mesg win, ”\nPrlnter ")

else

win

ormat

")

")

")

if (strcmp(curr dat.menu item, "Text Formatting ")

wprintw(mesg win, "\nText Formatting");

EQ 0)

EQ 0)

EQ 0)

EQ 0)

EQ 0)

NNOO% % % % % % O R % % % % % ¥ % % % ¥ ¥ % F * ¥ %

£, 8 9 0 o o -

. Source Code Listing - KBSEE

.
Pd
%?’

/**k************************************

DATE: 2/20/86
VERSION: 1.0

NAME: exec_analyzer

MODULE NUMBER: 1.8.2.1
DESCRIPTION: executes KBSMA analysis tool
PASSED VARIABLES:
RETURNS:
GLOBAL VARIABLES USED:
GLOBAL VARIABLES CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:

MODULES CALLED: update_display

CALLING MODULES: chk main_3

AUTHOR: Capt Dave Fautheree
HISTORY:

‘G:;* % % % % % % % % % % % X % * % % ¥ % % *
SSO¥ % ok ok Ok % % ok N % % % Ok % % % O % X X X % %

(222222 2R SRR SRR RRRRRRRR SRRt st s st Rt st it i o s a2 RaRaR Rt R RN

4 A

exec_analyzer()

{
char inp;
$DESCRIPTOR(input, "@kbsee$system:kbsee analyze.com");
. lib$spawn(&input,0,0,0,0,0,0,0,0,0,0,0);

update_display();

B R TR A AR RGNl AR oL B fh o84 SN ' AR A A o' AR gt pie atd gth M At R Al e A At Il ol Sedh ot Chieale At. at A\ AW e S SN o o bl

Source Code Listing - KBSEE

23
)
/***

DATE: 2/20/86
VERSION: 1.0

NAME: chk_main 4
MODULE NUMBER: 1.8.3
DESCRIPTION: checks menu selections for main menu 4
PASSED VARIABLES:
RETURNS :
GLOBAL VARIABLES USED: curr_dat, mesg win
GLOBAL VARIABLES CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:
MODULES CALLED: exec_spawn, exec_exit

CALLING MODULES: chk main_sel

AUTHOR: Capt Dave Fautheree
HISTORY:

GQEL % % % % % % % % % % % % % % % % % % % ¥ ¥
R R EEEEEEE R I

LA R SRS RR RS R R SRR AR R RRRRRRERRERRRRERE X2 AR 22 2 22 2 2 s X X R R R £

chk_main_4()
{

if (strcmp(curr_dat.menu_item, "Spawn to CLI ") EQ 0)
wprintw(mesg_win, "\nSpawn to CLI ");

else

if (strcmp(curr dat.menu_item, "Exit ") EQ 0)
wprintw(mesg _win, "\nExit ")

c - 10

...........

Source Code Listing - KBSEE

/***

DATE: 2/20/86
VERSION: 1.0

NAME: main
MODULE NUMBER: 0.0
DESCRIPTION: main executive routine
PASSED VARIABLES:
RETURNS:
GLOBAL VARIABLES USED: curr _dat, curr_win, kid, main_data_1,
main_menu 1
GLOBAL VARIABLES CHANGED: curr_win, curr_dat
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:
MODULES CALLED: init, display_menus, chk save file, get project,
get profile, get_item, chk_move, chk_left right,
chk_main_sel

CALLING MODULES:

AUTHOR: Capt Dave Fautheree
HISTORY:

¥ % % % % % % % % Ok % % X % % % A % % % X * ¥ X X ¥

)
T M E R E EE R R R E R E -

’k/

main()

{

int status;
char inp;
$DESCRIPTOR(input, inp);
int m_len = 1;
unsigned modifiers;

short int terminator;

status = SMGSCREATE_VIRTUAL_KEYBOARD(&kid);
modifiers = (IO$M_ESCAPE + IO$M_NOECHO + IO$M_PURGE);

init();
display menus();

curr_win = main_menu_1;

c - 11

-—a_a

st -

......................... - e T " o e e e P P P L PR Y S S T S P
B i L S R S S I SO TR e
PG D% Y INLIN TR WAL V8 "A.f_Lﬂ"..A}.lf.'..?_l TR LIRS PR VS WS DN |

...............

Source Code Listing - KBSEE

curr_dat = main_data_1;
%f (chk_save_file())

get project();
get profile();

Yhile(!exit_flag)

wrefresh(mesg_win);

wrefresh(sts_win);

do

{
get_item(curr_win, &curr_dat);
status = SMGSREAD STRING

(skid,&input,0,&m_len,smodifiers,0,0,0,&terminator,0);

chk move(term1nator)

} while((status) AND
(terminator NEQ SMGSK TRM SELECT) AND
(terminator NEQ SMGSK_TRM_KP7) AND
(terminator NEQ SMGSK_TRM_KP3) AND
(terminator NEQ SMGSK_TRM_RIGHT) AND
(terminator NEQ SMGSK_TRM_KP1l) AND
(terminator NEQ SMG$SK_TRM_LEFT) AND
(terminator NEQ SMG$K_TRM_REMOVE) AND
(terminator NEQ SMGSK TRM PF3) AND
(terminator NEQ SMGSK_TRM_HELP) AND
(terminator NEQ SMGSK_TRM KP4));

chk _left right(terminator);
| chk_main_sel(&exit flag, termlnator)
endwin();
save_project();

printf("B C N U\n");

c - 12

Source Code Listing - KBSEE

. /***

DATE: 2/20/86
VERSION: 1.0

TITLE: KBSEE Executive Routines
for Command Interpreter and Display Manager
FILENAME: kbsee_exec.c
COORDINATOR: Capt Dave Fautheree
PROJECT: KBSEE (M.S. Thesis)
OPERATING SYSTEM: VAX/VMS version 4.2
LANGUAGE: VAX-11 C
USE: Include file for KBSEE.C
CONTENTS:

oA A LAY
¥ % % % % % % ¥ A % ¥ ¥

bld copyright - builds copyright window
bld def - builds defaults window
bld_ _help - builds help window
bld main - builds main menu windows
bld menu_hdr - builds main menu header
bld menu 1 - builds main menu left column
bld menu_2 - builds main menu second column from left
bld menu_3 - builds main menu third column from left
bld menu 4 - builds main menu column on right
bld mesg - builds messages window
* bld sts - builds status window
* chk_left_right - interprets left/right arrow keys
* chk _main_sel - calls executor routines for menus
* chk _move - interprets up/down arrow keys & moves choice
* d1spldy menus - displays windows on screeen
3 * get _ item - highlights current item choice
.. * init - initializes windows
. *
*
*
*
*

PR % % % % % % % % ¥ % % % %N % ¥ % XN X ¥ ¥

1
N

.

aa s a8 & o

update display - updates screen after spawned process
FUNCTION: Implements executive functions for display management
and command interpretation.

L2 2R AR R RS RS E R s R a R R R RRER RS S RS RS RS AR RS XSS R XSS RN X 2 X

NGO X % R % % % X X R X X % X R % N ¥ ¥ % *

K
X}
L

v ¥ ¥
LRI R A
’
Y %
Y
P

C - 13

Source Code Listing - KBSEE

o«
.
‘2

/***

DATE: 2/20/86
VERSION: 1.0

NAME: bld copyright

MODULE NUMBER: 1.0.1
DESCRIPTION: builds copyr® jht window
PASSED VARIABLES:
RETURNS:
GLOBAL VARIABLES USED: copyright win
GLOBAL VARIABLES CHANGED: copyright win
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:

MODULES CALLED:

CALLING MODULES: init

AUTHOR: Capt Dave Fautheree
HISTORY:

Pk % % % O % % % ¥ % % % % X % % ¥ % ¥ ¥ %

(e

I X R SR R R R R X R R E R R RS SRR SRR SS R ERSSES SRS R R RS RER SRR R R RRRRERREEREREESS]

SNNO% % R % % % % % % K % % % % O % ¥ A % X * %

bld copyright()
{

copyright_win = newwin(24, 80, 0, 0);
wsetattr(copyrlght win, REVERSE);
box(copyright win, ' ', ' ');
wclrattr(copyright win, _REVERSE);
mvwaddstr(copyright _win, 0, 32, "Copyright Notice");
wsetattr(copyright_win, _BOLD);
mvwaddstr(copyright win, 4, 10,

"KBSEE - A Knowledge Based Software Engineering Environment");
wclrattr(copyright win, _BOLD);
mvwaddstr(copyright win, 7, 24,

"Air Force Institute of Technology");
mvwaddstr(copyright win, 9, 16,

"Department of Electr1ca1 and Computer Engineering");
mvwaddstr(copyright win, 11, 11,

"Information Sc1ences/Art)f1c1al Intelligence Laboratories");
mvwaddstr(copyright win, 18, 3, "AFIT/ENG");
mvwaddstr(copyright win, 19, 3, "ATTN: Dr Gary B. Lamont");
mvwaddstr(copyrlght _win, 20, 3, "Wright-Patterson AFB, OH 45433");

.

ok

C - 14

Source Code Listing - KBSEE Y

wsetattr(copyright_win, _BOLD);

mvwaddstr(copyright _win, 18, 46, "(C) Copyright 1985 by");
mvwaddstr(copyright win, 19, 50, "David W. Fautheree");
mvwaddstr(copyright _win, 20, 50, "Gary B. Lamont");
wclrattr(copyright_win, BOLD);

wrefresh(copyright win); "
sleep(4); !
wrefresh(copyr1ght win); .
delwin(copyright_win);

A’y

c - 15

................

o Ta .
B A e A e

Source Code Listing - KBSEE

2232277 P

/***

DATE: 2/20/86
VERSION: 1.0

? NAME: bld def
M MODULE NUMBER: 1.0.5
e DESCRIPTION: builds defaults window

PASSED VARIABLES:
RETURNS :
GLOBAL VARIABLES USED: def head, def_win
GLOBAL VARIABLES CHANGED: def head, def_win
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:
MODULES CALLED:

v Y w
e e
.

CALLING MODULES: init

AUTHOR: Capt Dave Fautheree
HISTORY:

% % % O % % % % X % % % % ¥ ¥ % N F % ¥ X %

Ei‘** ¥ % % %k % % % % % ¥ N N ¥ X % ¥ ¥ ¥ ®
[

***/

?ld_def()
def head = newwin(l, 40, 16, 0);
def win = newwin(3, 40, 17, 0);
box{def head, ' ', ' ');
mvwaddstr(def head, 0, 1
mvwaddstr(def head, 0, O,
mvwaddstr(def_head, 0, 39, ">");
mvwaddstr(def win, 0, 1, "PROJECT:");
mvwaddstr(def win, 1, 1, "WORK FILE:");
mvwaddstr (def_win, 2, 1, "DIRECTORY:");
wmove(def win, 0, 0)

5, "Defaults"):
"<");

[4
.
14

-,
-
Y
A
N
-
N

.'.’."- . \:"

P arhy
]

C - 16

AhH MY

a s m a8

LY St e A

riCats

LY
1
L}
Q
-
v
R
»

re,
L3
L s

> Ta

Source Code Listing - KBSEE

/***

EE}* % % X % % %N % % X ¥ % ¥ ¥ ¥ H ¥ ¥ NH ¥ ¥

KAKEEKERAKKREEKRA AR KREARKIKARAAAKRAKRA A AR AR RA A AR AR AR RAR Ak kA Ak hkhkhkhkkhkhkhhkkkhkhkkhkkhkhkkk

DATE: 2/20/86
VERSION: 1.0

NAME: bld_help
MODULE NUMBER: 1.0.1

DESCRIPTION: builds help window

PASSED VARIABLES:
RETURNS:

GLOBAL VARIABLES USED: help win

GLOBAL VARIABLES CHANGED: hElp_win

FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:
MODULES CALLED:

CALLING MODULES: init

AUTHOR: Capt Dave Fautheree
HISTORY:

?ld_helr()

help win = newwin(10, 20, 2, 50);
wsetattr(help win, REVERSE);
box(help win, ' ', " ');
wclrattr{help win, REVERSE);
mvwaddstr(help win, 0, 7, "Help");

C

17

SN ok % % % A % O % % % % % ¥ % % ¥ % K % % % X

ot A Jut liad b s AA A AL A A S AN AN AR AR e e A A At it et il it i S et Rt it e talfoin® B R (ia inddie® 0 e - it SN it ol oy |

Source Code Listing - KBSEE

/***

DATE: 2/20/86
VERSION: 1.0

NAME: bld main
MODULE NUMBER: 1.0.2
DESCRIPTION: builds main menu windows
PASSED VARIABLES:
RETURNS:
GLOBAL VARIABLES USED:
GLOBAL VARIABLES CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:
MODULES CALLED: bld menu_hdr, bld menu_1,2,3,4

CALLING MODULES: init

¥ % % % N % % % ¥ X ¥ N % N X * ¥ ¥ % ¥ %

AUTHOR: Capt Dave Fautheree
HISTORY:

% % % % % % % % % % % % % % % ¥ X % N ¥ ¥ ¥ %

Ly

%3

***/

?ld_main()
bld_menu_hdr();
bld menu_1();
bld _menu_2();
bld_menu_3();
bld menu 4();

« NN
ol
. s

c - 18

- A-.':

Source Code Listing - KBSEE

ATA A & A

/***

_l’.l-. Bl 3

DATE: 2/20/86
VERSION: 1.0

NAME: bld menu_hdr
MODULE NUMBER: 1.0.2.0
DESCRIPTION: builds main menu header
PASSED VARIABLES:
RETURNS :
GLOBAL VARIABLES USED: menu_hdr 1, menu hdr_ 2
GLOBAL VARIABLES CHANGED: menu_hdr 1, menu_hdr_2
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:
MODULES CALLED:

CALLING MODULES: bld main

AUTHOR: Capt Dave Fautheree
HISTORY:

¥ % % % % % % % % % % % % ¥ % % % ¥ * X ¥ X X

gi}** ¥ % % % % % % % % % N % % ¥ % ¥ ¥ ¥ *

***/

bld_menu_hdr ()

{
menu_hdr_1 = newwin(1l, 80, 0, 0);
menu_hdr 2 = newwin(l, 80, 1, 0);
wsetattr(menu hdr 1, REVERSE);
box(menu hdr 1, ' ', ' ');
wclrattr(menu_hdr_1, REVERSE);
mvwaddstr(menu_hdr_1, 0, 35, "Main Menu");
wsetattr(menu_hdr_2, _BOLD);
mvwaddstr(menu_hdr_2, 0, 10,
"KBSEE - A Knowledge Based Software Engineering Environment");
| wclrattr(menu _hdr 2, BOLD);
o :{?4
~: ' .l'.
3 C - 19
J

N S e S S S P T P I S S MU N SEL NN MR A S R S R LS R A U P I
2 -.'.'-".g'.:" SO S A A SO A AN Tl A AT AT e e g e e e L L W T e W o B e Ve

Source Code Listing - KBSEE

/***

DATE: 2/20/86
VERSION: 1.0

NAME: bld menu_1l

MODULE NUMBER: 1.0.2.1
DESCRIPTION: builds main menu left column
PASSED VARIABLES:
RETURNS:
GLOBAL VARIABLES USED: main_menu_1
GLOBAL VARIABLES CHANGED: main_menu_l
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:

MODULES CALLED:

CALLING MODULES: bld main

AUTHOR: Capt Dave Fautheree
HISTORY:

¥ % %k % % % % % % ¥ A ¥ X N ¥ ¥ X A * ¥ % ¥ *

4:3* W % * % % % N N N X ¥ % % N % N N ¥ ¥ W*

***/

?ld_menu_l()

main menu 1 = newwin(1l, 16, 3, 8);
mvwaddstr(main_menu_l, 0, 0, "Build Program ");
mvwaddstr(main menu 1, 1, 0, "Edit ") K
mvwaddstr(main menu 1, 2, 0, "Compile "); .
mvwaddstr(main menu_1, 3, 0, "Link "); ‘
mvwaddstr(main menu l, 4, 0, "Run ")
mvwaddstr(main menu_ 1, 5, 0, "Display Errors ");
mvwaddstr(main menu_ 1, 6, 0, "Start Project ");
mvwaddstr(main menu 1, 7, 0, "Select Project ");

) mvwaddstr(main_menu_1, 8, 0, "List Projects ");

. mvwaddstr(main_menu_l, 9, 0, "Display Project");

s s ey 4 &

Source Code Listing - KBSEE

/***i‘***************

DATE: 2/20/86
VERSION: 1.0

NAME: bld menu_2

MODULE NUMBER: 1.0.2.2
DESCRIPTION: builds main menu second column from left
PASSED VARIABLES:
RETURNS:
GLOBAL VARIABLES USED: main_menu_2
GLOBAL VARIABLES CHANGED: main menu 2
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:

MODULES CALLED:

CALLING MODULES: bld_main

AUTHOR: Capt Dave Fautheree
HISTORY:

P % % % % % % % ¥ % % ¥ % N N % X N N X ¥

\

¥ % % % ¥ % ¥ X % X X % % % % ¥ N % X% % ¥ * ¥

z

***/
bld menu_2()

main menu 2 = newwin(1ll, 1 3, 24);

6,
mvwaddstr{main_menu_2, O, 0, "Work File ");
mvwaddstr(main . menu_ ~2, 1, 0, "User Profile ");
mvwaddstr(main _menu_2, 2, 0, "Introduction ")

}
e

Cc - 21

l‘ﬁy PR

e e 876 2 88

.‘.;. -.l.l

LA f";"-‘-

v
(O

‘.. .u. .-. .. 4,

PSS ROMERD

-'4'1.1 .

.

»
-

.,
-
-
-

.
-

L]
L]

..'-

Source Code Listing - KBSEE

/ﬂ********************‘ﬁ****t*****'k**'k***it************************************

DATE: 2/20/86
VERSION: 1.0

NAME: bld menu_3

MODULE NUMBER: 1.0.2.3
DESCRIPTION: ouilds main menu third column from left
PASSED VARIABLES:
RETURNS:
GLOBAL VARIABLES USED: main _menu_3
GLOBAL VARIABLES CHANGED: main menu 3
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:

MODULES CALLED:

CALLING MODULES: bld main

AUTHOR: Capt Dave Fautheree
HISTORY:

[P 3% ok % b % % % %k % % % % % % % % N % % ¥ ¥

1
X

L2 A SRS SRR RARRRRERRRRERERRRERRRRRt R st 2 22222 RRR0 222X RRRRRRRRERSE S

NNO% % % o6 % % % % % % % % % % % % % % % % X % %

bld _menu_3()

{
main_menu_3 = newwin(1ll, 16, 3, 40);
mvwaddstr{main_menu 3, 0, 0, "Debugger ")
mvwaddstr(main | menu 3, 1, 0, "Analyzer ")
mvwaddstr(main_menu 3, 2, 0, "Librarian ")
mvwaddstr(main menu_3, 3, 0, "Printer ");
mvwaddstr(main_menu_ 3, 4, 0, "Text Formatting");

}

.\.l

I.\..,

Cc - 22
I I I S T B T R S T N e T PN)

=

L]
b Source Code Listing - KBSEE

Vb
\:‘_ "

/** k Kk Kk dk Kk Kk kkkkk

DATE: 2/20/86
VERSION: 1.0

NAME: bld_menu_4

MODULE NUMBER: 1.0.2.4
DESCRIPTION: builds main menu right column
PASSED VARIABLES:
RETURNS
GLOBAL VARIABLES USED: main _menu 4
GLOBAL VARIABLES CHANGED: main_menu_4
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:

MODULES CALLED:

s

a . o o g

CALLING MODULES: bld main

AUTHOR: Capt Dave Fautheree
HISTORY:

N

W' ok % % % % ok % kK % K R X ¥ N R N O %

4
bl

SNO% % % % % % % % ¥ % % % % X F X X X X % % ¥ ®

.i L2 2 2 AR RS R RS R 232 X 2222222222222 22222222 2 X2 2 2

bld menu_4()
. {
main _menu 4 = newwin(1ll, 16, 3, 56);
mvwaddstr(main_menu 4, 0, 0, "Spawn to CLI ");
mvwaddstr(main_menu 4, 1, 0, "Exit ");

st N B 8

L 2)

s ¢« 2%

C - 23

Source Code Listing - KBSEE

“

e

(-2 4

o /*** J

DATE: 2/20/86
VERSION: 1.0

- - . -

NAME: bld mesg

MODULE NUMBER: 1.0.3
DESCRIPTION: builds messages window
PASSED VARIABLES:
RETURNS:
GLOBAL VARIABLES USED: mesg head, mesg_win
GLOBAL VARIABLES CHANGED: mesg_ head mesg_win
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
..ARDWARE OUTPUT:

MODULES CALLED:

WA A &)

CALLING MODULES: init

AUTHOR: Capt Dave Fautheree

AR % % % % % F Ok %k % %k ok X X N K F F * O * %
Ok F R R R R R R b % R % R R F % ¥ O % K F %

S M it B,

HISTORY:
e
*
\J ***/
3
X bld mesg()]
J { h

mesg _win = newwin(3, 80, 21, 0);
mesg_head = newwin(1l, 80, 20, 0);

: wsetattr(mesg_head, REVERSE);

- box(mesg head, ' ', R I

r wclrattr({mesg head, REVERSE);

. mvwaddstr(mesg head "0, 36, "Messages");

wmove (mesg win, 0, 0)

scrollok(mesg_w1n, TRUE);

6 s 8 o as

O FaTaTe

C - 24

.
" SO

Source Code Listing - KBSEE

FrTFTFE
'
g o o 0 o~

£
."-’

} /***

DATE: 2/20/86
VERSION: 1.0

NAME: bld sts

MODULE NUMBER: 1.0.4
DESCRIPTION: builds status window
PASSED VARIABLES:
RETURNS:
GLOBAL VARIABLES USED: sts_head, sts_win
GLOBAL VARIABLES CHANGED: sts head, sts_win
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:

MODULES CALLED:

ML AR U G RN, v g

" WY ¢

Sl

CALLING MODULES: init

M = e

AUTHOR: Capt Dave Fautheree
HISTORY:

&:t* ¥ % % X N % % % X % * N N ¥ H X ¥ ¥ ¥ *

Kded sk d ok ok ok odk ok ok k ok ok ok Ak ok kkok ok ok ok okok kg ko ok ok ok ok ok k de ok d ook ok ok ko ok ok ok ok ok ok gk sk ke kK ek ok ok ke k ke ke ke k ke ok ok ok ok ok ok ok k ok

O % % ok % % % Ok %k Ok Ok %k X % % % % % % ¥ X ¥ ¥ *

bld sts()

{ -
sts_head = newwin(l, 40, 16, 40);
sts win = newwin(3, 40, 17, 40);
box(sts head, ' *, ' '):

mvwaddstr(sts_head, 0, 16, "Status"); :
mvwaddstr(sts_head, 0, 0, "<"); :
mvwaddstr(sts_head, 0, 39, ">");

wmove(sts _win, 0, 0);
scrollok(sts_win, TRUE);

2 TTHEE V.V ."a",": 7T EEKCK C \T N, VS 0 4y

- s

LS
Ve

Cc - 25

2 e, A g

’
A
!
a
K

Source Code Listing - KBSEE .

+

X'y
4
LA

/***

DATE: 2/20/86
VERSION: 1.0

NAME: chk_left right

MODULE NUMBER: 1.1
DESCRIPTION: changes menu when left/right arrow keys are pressed
PASSED VARIABLES: terminator
RETURNS:
GLOBAL VARIABLES USED: curr_win, curr_dat
GLOBAL VARIABLES CHANGED: curr w1n, curr_dat
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:

MODULES CALLED:

»

CALLING MODULES: main

AUTHOR: Capt Dave Fautheree
HISTORY:

¥ % % % % ¥ Ok % % % % A X X % * X X % % % %

.,!:"**i**************%***

3 ***/

chk_left right(terminator)
short int te nainator;
{
if ((terminator EQ SMG$K_TRM KP3) OR X
(terminator EQ SMGSK TRM “RIGHT)) -
{ -
wmove(curr_win, curr_dat.curr_y, curr_dat.curr_x); -
wclrattr(curr_win, REVERSE);
wprintw(curr_win, "%s", curr_dat.menu_item); >
wrefresh(curr win); y
if (curr_win EQ main menu_1)
{ N X
curr_win = main_menu_2; 7
curr_dat = main data 2;
} - <
else N
if (curr _win EQ main menu 2) .
{ - - .

curr_win = main_menu_3;

.

C - 26

.
- 9
~
.'
.\
4.‘
.,

K '.. ‘.- --. -’
SIS S, 3

| AR e e

2R

Source Code Listing - KBSEE

W

N

curr_dat = main_data 3;

}
else
if (curr_win EQ main_menu_3)
{
curr_win = main_menu_4;
curr_dat = main_data 4;

]

}
else
if (curr_win EQ main_menu_4)
{
curr_win = main_menu 1;
curr_dat = main_data_l;

}

else

if ((terminator EQ SMGSK_TRM_KPl) OR
{ (terminator EQ SMG$SK_TRM_LEFT))

wmove(curr_win, curr_dat.curr_y, curr _dat.curr_x);
wclrattr(curr_win, REVERSE);
wprintw(curr_win, "%s", curr_dat.menu_item);
Y) wrefresh(curr_win);
’ %f (curr_win EQ main _menu_1)
curr_win = main_menu 4;
curr_dat = main_data 4;

}
else
if (curr_win EQ main_menu_2)

{

I}

curr_win
curr_dat

main_menu 1;
main_data 1;

}
else
if (curr_win EQ main_menu_3)
{ _ _
curr_win
curr_dat

main_menu_2;
main_data_ 2;

non

}
else
if (curr _win EQ main_menu_4¢)

{

curr win

_ main_menu_3;
curr_dat

main_data_3;

AN DEAE ALY £ 0 e o i o e e o o R A A A EC e e A I e SRS I i IR ADAT MDA AN A e AN g |

TN

Source Code Listing - KBSEE

AN
v

* ¥
-,
[

S

!
‘ [y

KR A A s

D) P NN .0'_,

Nt

L]

()
AL

a '-.,

- »
(] O‘I.

P AV}

LA PR LRl

Source Code Listing - KBSEE

Lk P e
o
o5

/***

DATE: 2/20/86
VERSION: 1.0

NAME: chk_main_sel
MODULE NUMBER: 1.8
DESCRIPTION: calls appropriate menu selection processing routines
PASSED VARIABLES: exit_now, terminator
RETURNS:
GLOBAL VARIABLES USED: curr_win, main_menu_1,2,3,4
GLOBAL VARIABLES CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:
MODULES CALLED: chk _main_1l, chk_main_2, chk_main_3, chk_main_4

TV T YW YTV,

CALLING MODULES: main

AUTHOR: Capt Dave Fautheree
HISTORY:

¥ % % % % % X % % % N ¥ ¥ % F X ¥ ¥ ¥ X * ¥ *

Camt Bl = S0 S N
J:r’ﬁ*'* ¥ % % % % % % N F ¥ N % %X N ¥ * ¥ *

***/

chk_main_sel(exit_now, terminator)
int *exit_now;
short int terminator;

if ((terminator EQ SMGSK_TRM_KP7) OR (terminator EQ SMGS$SK_TRM_SELECT))

if (curr_win EQ main_menu 1)

{
}

else
if (curr_win EQ main_menu 2)

{

chk_main_1();

chk_main_2();
else
if (curr_win EQ main_menu_3)

{
}

chk_main 3();

c - 29

ST EETTYT W Y ¥ BT T e s T TE SN TYTYSTYTEE VYV OV, T V. TP EERE Y VIE T TN
:
g
Kl .,
'...
s . L
K
y
g
f
o' v

a\---_

o
AR A

-~
2

PP AP IE

A,

-
“w
“u
LN

Source Code Listing - KBSEE

|
else
if (curr win EQ main menu 4&)
i — _ _
chk main_4();
}
}
else

%f ((terminator EQ SMGSK_TRM KP4) OR (terminator EQ SMG$SK_TRM_HELP))
wprintw(mesg_win, "\nHelp selected");

else
}f ((terminator EQ SMG$SK_TRM PF3) OR (terminator EQ SMG$K_TRM_REMOVE))

*exit_now = TRUE;

‘ Source Code Listing - KBSEE

/*** !

DATE: 2/20/86
VERSION: 1.0

NAME: chk_move
MODULE NUMBER: 1.6
DESCRIPTION: moves current menu item selection up or down
PASSED VARIABLES: terminator
RETURNS:
GLOBAL VARIABLES USED: curr_win, curr_dat
GLOBAL VARIABLES CHANGED: curr_dat
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:
MODULES CALLED:

T R

CALLING MODULES: main

¥ % % % % ¥ N % % N % ¥ N H N ¥ N ¥ H X ¥
X % % % O % ¥ % X X X A X X X X N X ¥ X F X *

: &
'n ,
; AUTHOR: Capt Dave Fautheree '
. * HISTORY: :
***/ .
: N
Y chk_move(terminator)
h short int terminator; .
{
! if ((terminator EQ SMG$SK_TRM_KP2) OR (terminator EQ SMG$K_TRM_DOWN)) s
: { -]
; wmove(curr_win, curr_dat.curr_y, curr_dat.curr_x); /* UnReverse Ite
p */ .
' wclrattr(curr_win, _REVERSE); :
| wprintw(curr_win, "%s", curr_dat.menu_item);
4 curr_dat.curr_y = curr_dat.curr_y + 1; :
{ if (curr_dat.curr_y > curr_dat.max_y) /* Wrap to top of menu */ |
g curr_dat.curr_y = curr_dat.min_y; :
b } 'y
t else ’
if ((terminator EQ SMGSK_TRM KP5) OR (terminator EQ SMGSK TRM UP))
{
wmove(curr_win, curr_dat.curr_y, curr_dat.curr_x); /* UnReverse Ite ;
*/ .
)

wclrattr(curr_win, REVERSE);
wprintw(curr_win, "%s", curr_dat.menu_item);

oW W WAV RS 8w

Cc - 31 3

5 4B 8 a a &4

w'a 4" s

"9 o el e NN) Falata Joa el M SO A b oy g Vo B

LaAr,

88 8 0 4

~

Source Code Listing - KBSEE

curr_dat.curr_y = curr_dat.curr_y - 1;
if (curr_dat.curr_y < curr_dat.min_y)

curr_dat.curr_y = curr_dat.max_y;

/* Wrap to bottom of men

Source Code Listing - KBSEE

v,
)-
gyt

/***

DATE: 2/20/86
VERSION: 1.0

NAME: display menus
MODULE NUMBER: 1.1
DESCRIPTION: displays newly initialized menus on screen
PASSED VARIABLES:
RETURNS:
GLOBAL VARIABLES USED: menu_hdr_1,2 main_menu_1,2,3,4 sts_win,head
mesg_win, head def win, head
GLOBAL VARIABLES CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:
MODULES CALLED:

CALLING MODULES: init

% % % % Ok % % % % % % % N % ¥ % % % ¥ ¥ ¥

AUTHOR: Capt Dave Fautheree
(@ HISTORY:

SNO% % % o % % O % Ok % % % Ok OF %X % R % % N ¥ X % ¥

22 2SR SRR RS SRR R R RR Rt RSt AR RS SRS SRS ERRR RS R2 2R SRR R R

display_menus()

refresh();
wrefresh(menu_hdr_1);
wrefresh(menu_hdr_2);
wrefresh(main _menu_ 1);
: wrefresh(main_menu_2);
wrefresh(main_menu_3);
wrefresh(main menu 4);
wrefresh(mesg_head);
wrefresh(mesg _win);
wrefresh(sts_head);
wrefresh(sts_win);
wrefresh(def_win);
wrefresh(def head);

[Al ot 9

C - 33

Source Code Listing - KBSEE

/***

DATE: 2/20/86
VERSION: 1.0

NAME: get_item

MODULE NUMBER: 1.5
DESCRIPTION: reads and highlights current selection from menu
PASSED VARIABLES:
RETURNS:
GLOBAL VARIABLES USED:
GLOBAL VARIABLES CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:

MODULES CALLED:

CALLING MODULES: main

AUTHOR: Capt Dave Fautheree
HISTORY:

% % % % % % X ¥ % % ¥ X O N % N O X ¥ X ¥ %

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*x

***/

get_item(win, menu_dat)
WINDOW *win;
struct menu_data *menu_dat;

int position = 0;
int tmp_x = menu_dat->curr_x;

while(position < ITEM LENGTH)
i —

wmove(win, menu dat->curr _Y, tmp_ x);
menu_dat->menu_1item[position] = w1nch(w1n)
tmp x += 1;

position += 1;

menu_dat->menu_item[position] = '\0';

wmove(win, menu dat->curr _Y, menu dat->curr x)
wsetattr(w1n, REVERSE) ;

wprintw(win, "%s", menu_dat->menu item);
wclrattr(win, REVERSE);

Source Code Listing - KBSEE

wrefresh(win);

A

PP

P R W}

i

|
\
5
1
s
}
J
A
%
\
3

e A T T T s et e e T e e)
e e N e e T T e N T

..... RNt s ate Ahe sfe b e gt atuie i dafechin Sniecafielfe s b S MAs AL MRS ot Al gl A a e iy ity pi, gty b gie SACRAT 5% Ahaphe it -

r'ﬁf-{

Source Code Listing - KBSEE

4TSS NN
)
X

‘v
Q

/***

]

DATE: 2/20/86
VERSION: 1.0

NAME: 1nit

MODULE NUMBER: 1.0
DESCRIPTION: initializes windows
PASSED VARIABLES:
RETURNS:
GLOBAL VARIABLES USED:
GLOBAL VARIABLES CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:

MODULES CALLED:

CALLING MODULES: main

AUTHOR: Capt Dave Fautheree
HISTORY:

Yo % % % % N % N % % % A N N N X N ¥ F ¥ ¥

)
3

¥ % % N % O % % ok % O % % % % N % % % ¥ ¥ X %

iy
-

***/

init()
{

I ' T

initscr();

bld_help();
bld copyright();
bld main();
- bld mesg();
bld sts();
bld_def();

e

C - 36

Source Code Listing - KBSEE

J#.'
A
/***

DATE: 2/20/86
VERSION: 1.0

NAME: update_display
MODULE NUMBER: 0.1
DESCRIPTION: updates windows after spawn
PASSED VARIABLES:
RETURNS:
GLOBAL VARIABLES USED: menu_hdr_1,2 main menu 1,2,3,4 sts_win, head
mesg win,head def win, head
GLOBAL VARIABLES CHANGED:
FILES READ:
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:
MODULES CALLED:

CALLING MODULES: executive routines with spawns

AUTHOR: Capt Dave Fautheree
HISTORY:

-

3('3‘.-'*********************
¥ % % % Ok % % % % b % % % % % % % % O % ¥ % ¥ *

***/
update_display()

touchwin(stdscr);
touchwin(menu_hdr_1);
touchwin(menu hdr 2);
touchwin(main menu 1);
touchwin(main_menu_2);
touchwin(main menu 3);
touchwin(main menu 4);
touchwin(mesg_head);
touchwin(mesg head);
touchwin(mesg_head);
touchwin(mesg win);
touchwin(sts_head);
touchwin(sts win);
touchwin(def win);
touchwin(def head);

c - 37

........

Source Code Listing - KBSEE

£ v v r 58

A e e

AT, % e

[on an SRR

PR

L)
D
-
.
.
-

| v N

*af

R A

v pwd

TR

LN

Source Code Listing - KBSEE

/***

* x
* DATE: 2/20/86 *
* VERSION: 1.0 *
* *
* TITLE: KBSEE Project Manager Routines *
* FILENAME: kbsee proj.c *
* COORDINATOR: Capt Dave Fautheree *
* PROJECT: KBSEE (M.S. Thesis) *
* OPERATING SYSTEM: VAX/VMS version 4.2 *
* LANGUAGE: VAX-11 C *
* USE: Include file for KBSEE.C *
* CONTENTS:

* bld copyright - builds copyright window *
* FUNCTION: Implements executive functions for display management *
* and command interpretation, *
* *
***/

i
'J-}J
C - 39
e T e e L e e L e e
W, AT N A R R R AR S SIS S P T T P W

Source Code Listing - KBSEE

/***

4
4
4 * *
. * DATE: 2/20/86 *
3 * VERSION: 1.0 *
* *
., * NAME: chk_save_file *
- * MODULE NUMBER: 1.2 *
“ x DESCRIPTION: checks for save file and loads it, if found *
- * PASSED VARIABLES: *
- * RETURNS: TRUE if file exists *
* GLOBAL VARIABLES USED: curr_proj, mesg win, sts-win *
o * GLOBAL VARIABLES CHANGED: curr_proj *
N * FILES READ: kbsee.save *
o * FILES WRITTEN: *
¥ * HARDWARE INPUT: *
P * HARDWARE OUTPUT: *
* MODULES CALLED: *
_ * *
-~ * CALLING MODULES: main *
-t * *
N * AUTHOR: Capt Dave Fautheree *
N * HISTORY: *
P *
| @ x
i ***/
2 :
o int chk_save file()
' { - .
int i = 0;
- FILE *fptr;
- int ret_val = FALSE;
- wprintw(sts win, "\nChecking SAVE File...");
- wrefresh(sts win);
if (access("kbsee.save", 4) EQ 0)
{
. ret_val = TRUE;
- fptr = fopen("sys$login:kbsee.save", "r");
. fgets(curr_proj.project name, SIZE NAME, fptr);
s fgets(curr_proj.work file, SIZE WORK FILE, fptr);
fclose(fptr);
3 while(curr_proj.project name[i] NEQ ' ')
< i++;
Y curr_proj.project nameli] = '\0';
T
-
- C - 40
-

e N e et . Y
--------- . .
e ST S

.....

. - - et - c. o‘" - . 0 - . N - -
A A T T A T . P P P O T T A R R R J

' VN EdS

5’&4&1&

S
.
’ a ‘- 2,3,

»
o "
P

X
ARSI

9 2,
e

g

"‘ "l

IR

‘. .‘.‘-. . ‘- .,

LA
.,

.
LN

.
.~ -.' -"

[N

K .{._n _."

» " L 4
.
-. l‘ -

¢
-

o
“
~
“
-
..

Source Code Listing - KBSEE

N
i=0;
while(curr proj.work filel[i] NEQ ' ')
i++;
curr_proj.work filel[i] = '\0';
else
{
wprintw(sts _win, "\nNo Current Project...");
wrefresh(sts_win);
wsetattr(mesg win, BLINK | _REVERSE);
wprintw(mesg win, "\nEstablish a Project and Profile IMMEDIATELY");
wclrattr(mesg win, BLINK | REVERSE);
}
wrefresh(mesg win);
wrefresh(def_win);
return(ret_val);
}
:‘: ‘b
O

C - 41

B T T T AJ}AA_A.A\.AAJ‘

“ 4 b K Aty

LA N Y

e L

' iy I A

{
int i:
FILE *fptr;
wprintw(mesg win, "\nEnter Project Name: ");
wscanw(mesg _win, "%s", curr_proj. pro;ect name)
wprintw(mesg w1n, "Enter PrOJect Location: ");
wscanw(mesg win, "%s", curr_proj.location);
wprintw(mesg_ w1n, "Enter Name of Work File: ");
wscanw(mesg win, "%s", curr_proj.work file);
chdir(curr_proj.location);
wmove(def win, 0, 12);
wclrtoeol{def win);
wmove (def win, 1, 12):
wclrtoeol(def win);
wmove(def win, 2, 12);
wclrtoeol(def win);
C - 42
by e T T e N e e T e e

Source Code Listing - KBSEE

/***

DATE: 2/20/86
VERSION: 1.0

NAME: exec_start project

MODULE NUMBER: 1.8.0.6
DESCRIPTION: starts a new project
PASSED VARIABLES:
RETURNS:

GLOBAL VARIABLES CHANGED: curr prOJ
FILES READ:
FILES WRITTEN: kbsee.projects
HARDWARE INPUT:
HARDWARE OUTPUT:

MODULES CALLED:

CALLING MODULES: chk main_1

AUTHOR: Capt Dave Fautheree
HISTORY:

1
.g'*********************

U
3

GLOBAL VARIABLES USED: curr_proj, mesg_win,

sts-win, def win

¥ % % O % ¥ O % % % X % X X % % X X X X % X X

**************************************‘k**************************************/

exec_start_project()

T e et e et .. .

a® ._.r_.r_ A DRI AT

......

Source Code Listing - KBSEE

wsetattr(def win, REVERSE);

mvwaddstr(def win, 0, 12, curr_proj.project_name);
mvwaddstr(def win, 1, 12, curr_proj.work file);
mvwaddstr(def win, 2, 12, curr proj. location);
wclrattr(def win, REVERSE)

wrefresh(def win);~

for (i = strlen(curr proj.project_name); i < SIZE NAME; i++)
curr_proj.project_namel[i] = ' ';
curr_proj.project_name[SIZE NAME - 1] = "\0';

for (i = strlen(curr proj.work_file); i < SIZE_WORK_FILE; i++)
curr_proj.work file[i]l = " ';
curr_proj.work file[SIZE WORK_ FILE - 1] = "\0';

for (i = strlen(curr proj.location); i < SIZE LOC; i++)
curr_proj. location[i] = ' ';
curr_proj.location[SIZE LOC - 1] = "\0"';

fptr = fopen("sys$login:kbsee.projects", "a");
fputs(curr proj project name, fptr);
fputs(curr_ _proj.vork file, fptr);

(w: fputs(curr proj.location, fptr);

=" fclose(fptr);

wprintw(sts_win, "\nProject Added Successfully...");
wrefresh(sts w1n)

<t

w et

PR e 2 ML

.
N

LA AL O,

Source Code Listing - KBSEE

/***

DATE: 2/20/86
VERSION: 1.0

NAME: get project
MODULE NUMBER: 1.3
DESCRIPTION: loads project from project database
PASSED VARIABLES:
RETURNS:
GLOBAL VARIABLES USED: curr proj, mesg_win, sts-win
GLOBAL VARIABLES CHANGED: curr_proj
FILES READ: kbsee.save
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:
MODULES CALLED:

CALLING MODULES: main

AUTHOR: Capt Dave Fautheree
HISTORY:

Y% % O % % % N % Ok % % % Ok % % % ¥ ¥ ¥ ¥

A

¥ % % % % % % % % O % % % %k ¥ % % % ¥ ¥ X A %

q;

b

***/

get project()
{

FILE *fptr;

int i=0;

int found = 0;

char proj[SIZE NAME];

char wfile(SIZE WORK_FILE];

wprintw(sts_win, "\nLoading Current Project...");
wrefresh(sts win);

fptr = fopen("sys$login:kbsee.projects", "r");
while ((feof(fptr) EQ 0) AND (found NEQ 1))
{
fgets(proj, SIZE NAME, fptr);
fgets(wfile, SIZE WORK FILE, fptr);
fgets(curr_proj.location, SIZE_LOC, fptr);

while(projli] NEQ ' ')

C - 44

................

Source Code Listing - KBSEE

i++;
projli] =
i=0;
while(wfile[i] NEQ '

i++;
wfile[i] =
i=20;
while(curr_proj.location[i] NEQ '

i++4;
curr_proj.location[i]l = '\0';

"\O';

")

"\O';

")

wprintw(mesg_win, "\nRead =
wprintw(mesg win,"|");
wprintw(mesg w1n,"\nRead
wprintw(mesg win,"|");
wrefresh(mesg_win);

$s",proj);

$s",wfile);

if ((strcmp(curr_proj.project name, proj) EQ 0)
(strcmp(curr_proj.work file, wfile) EQ 0))
{

}

&&

found = 1;

if (found EQ 0)
{
wprintw(sts_win,"\nProject Error - No Match");

else
{

chdir(curr_proj.location);

wmove(def win, 0, 12);
wclrtoeol{def win);
wmove (def win, 1, 12);
wclrtoeol(def win);
wmove (def win, 2, 12);
wclrtoeol{def_win);

wsetattr(def _win, _REVERSE);

mvwaddstr(def_win, 0, 12, curr_proj.project_name);
mvwaddstr(def win, 1, 12, curr _proj.work file);
mvwaddstr(def win, 2, 12, curr _proj.location);
wclrattr(def_win, REVERSE)

wrefresh(def win);

C - 45

.................
...............
.......

P SR At S o 2o L iR e MR e o84 (08 00 AR L gl ST A Al Sl Rl Mol b Vol Ml Ml . S Sl YR ekl AP A L Tl AR Sew 2

TV W T TRTRTTTw T v T

TTY T v. T TR

............

Source Code Listing - KBSEE

wrefresh(sts_win);
fclose(fptr);

Pl & R AR A N S Al R S A R D Gt S Db L e B i i AR AR 0 e

’

PRANRARN

N

-

e
AR

..... LR AN AR AR LAch A Ate A ACRA Salhieca b Ria Rt aC N el 404 G I At Nt b 2

Source Code Listing - KBSEE

/***

&:* ¥ % % % % % % % N % % % H N N N ¥ X ¥ ¥

DATE: 2/20/86
VERSION: 1.0

NAME: save project
MODULE NUMBER: 1.9
DESCRIPTION: saves current project into save file
PASSED VARIABLES:
RETURNS:
GLOBAL VARIABLES USED: curr_proj
GLOBAL VARIABLES CHANGED:
FILES READ: kbsee.save
FILES WRITTEN:
HARDWARE INPUT:
HARDWARE OUTPUT:
MODULES CALLED:

CALLING MODULES: main

AUTHOR: Capt Dave Fautheree
HISTORY:

¥ % % % % % % % % % % % % ¥ % % X ¥ % X % ¥ *

***/

save_project()

int i:
FILE *fptr;

delete("sysSlogin:kbsee.save");
fptr = fopen("sys$login:kbsee.save", "w");
for (i = strlen(curr_proj.project name); i < SIZE NAME; i++)

curr_proj. project name[i] = '7';
curr_proj.project name[SIZE NAME - 1]

v\ov;

for (i = strlen(curr_proj.work_file); i < SIZE WORK_FILE; i++)
curr_proj.work_filel[i] = '"';

curr_proj.work file[SIZE_WORK _ FILE -~ 1] = "\O';

fputs(curr_proj.project name, fptr);
fputs(curr _proj.work file, fptr);

c - 47

c e

¢ 00 a_ e

N fa Rt i B iy ole AL it in gl AR)

Source Code Listing - KBSEE

fclose(fptr);

b R T LT AT RL RS e RN

.
L4

..&'-
Source Code Listing
for the
‘:. Knowledge Based
Software Module Analyzer
(KBSMA)
%
(S
\
.
’
L)
.
L \‘l
e N
D -1 ‘.\'1
™
B
>
2
ey - SN ~ ~ e taa -,~‘,.__._"~\
PR B

o, P

Pt

$f Source Code Listing - KBSMA

l(:,
»

(g
'@
WME WO WME WG WO MWE NP WY Ve MO NE WE NP WE WO NP WY We WH W N Y WMe MO We W WE WE WP WP WE WE WE WE We WG WE NG WE NP WE WY WO We W W -

‘l

khkkkhhkkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkhkkkkhkhkkkhkhhhhkkhkkkhkhkkhkhkhkhkhkhkhkkhkkhkhkhkkkkkhkkikk

DATE: 11/9/85
VERSION: 1.1

*x

*

*

TITLE: OPS-5 Data Structures and Production Rules for *
a Prototype Software Engineering Analysis Tool *
FILENAME: KBSMA.OPS *
COORDINATOR: Capt Dave Fautheree, GCS-86M *
PROJECT: MS Thesis *
OPERATING SYSTEM: VAX/VMS 4.2 *
LANGUAGE: OPS-5 *
USE: RUN KBSMA *
CONTENTS: *
Module *

Variable *
Cohesion-Answers *
Coupling::Data:l *
Coupling::Data:?2 *
Coupling::Data:3 *
Coupling::Stamp:1 *
Coupling::Stamp:2 *
Coupling::Stamp:3 *
Coupling::Control:l *
Coupling::Control:2 *
Coupling::Control:3 *

Coupling: :Common:1 *

Coupling: :Common:?2 *

Coupling: :Common:3 *
Cohesion::0One-Function *
Cohesion::Activities-Related *

Cohesion: :Sequence-Important *
Cohesion::Same-Category *
Cohesion::Functional *
Cohesion::Sequential *

Cohesion: :Communcational *

Cohesion: :Procedural *

Cohesion: :Temporal *
Cohesion::Logical *
Cohesion::Coincidental *

*

*

*

*

*

*

*

FUNCTION: Define data structures and production rules
for a Knowledge Based Software Module Analyzer,
a Software Engineering tool for determining
module coupling and cohesion.
™ |
|

¥ % % O O % % % % % % K % N % % % Ok o H NTTe %% ok ok ok % % % Ok H N Ok O % Ok % ¥ % % O ¥ ¥ H * ¥

Kdedkk ok ok odok ok ddk ok ok ode ok ok ok ok ok ok ko ok ok ok ok ok ok ok ok ko ok kokkokodkkkkhkkkkkkdhkhkkdkkkkkkkkikkkkkk

N
DN
» 2 B B

e a . ST et TR S oL S B A R o, .‘.-‘...'.'.' -~ \-‘:-‘_-' et et e e e e "'-""tl"--'_-i'-"‘)\‘ . .‘»:]
4 R T T P o e T e T T e e i S A W S N U R R R R

- o o =

Ay
-e we wo%

o e O

o » & a8

Source Code Listing - KBSMA

Define Module data structure

(literalize Module ; The following data items are defined from)
; the AFIT/ENG Software Development Guidelines
module-name :
project
module-number
description
; passed-variables
passed-variable-1
passed-variable-2
passed-variable-3
returns
; globals-used
global-used-1
global-used-2
global-used-3
; globals-changed
global-changed-1
global-changed-2
global-changed-3
' files-read
i‘ files-written
calling-modules
modules-called
version
date
author
filename

coupling-type

cohesion-type
reccomendation)

Define Variable data structure

we we we

(literalize Variable
variable-name

type
control)

SIMPLE or RECORD
YES or NO - control variable from
another module

~e we ws

-e W

Define Cohesion Answers data structure

A4

' Source Code Listing - KBSMA .

N
x4

<
[

(literalize Cohesion-Answers
module-name

T

one-function : YES or NO -
activities-related ; DATA CONTROL or NEITHER ‘
sequence-important ; YES or NO '
L same-category) ; YES or NO {

Define KBSMA Startup for OPS5

e
we we we

(startup
(watch 0)
(disable halt)
(strategy lex)
(@ kbsma_instances.dat)
(run)) N

v ¥ EW

Sy e ¥ ¥

AL PR

2

'Yw e w -
N

YEFTW ¥ OW T TR T ATy

. | S TR

. S,

\\

~o % dkk dkk koo ok ok ok ok gk ok ok ok ok ok ok okkkdkokdkdkokkkokkokkdkokkdkkkkkkkkhkkkkkdkkkikkkkkkkkkkkkkkk

-***

(p Pr

RAS Ra i AN AACb At e RA 0te A Bt i AN 2 RN AN A AR e, et 0 Sado ah ot AR R iacid ot M A AR S A St A e a B a0 b ia phe pi gihe 2ec el 44

Source Code Listing - KBSMA

DATE: 5/24/85
VERSION: 1.0

NAME: PrintModule

DESCRIPTION: Prints deduced results for each module

ALGORITHM:
IF the module state is complete

THEN print the module information

AUTHOR: Capt Dave Fautheree

ir+Module

{(Mudule “module-name <nl>
~coupling-type <n2>
~cohesion-type <n3>
~“reccomendation <n4>
~coupling-type <> nil
~cohesion-type <> nil) <module>}

(write (crlf)Module <nl> (crlf))

(write Coupling: <n2> (crlf))
(write Cohesion: <n3> (crlf))
(write Reccomendation: <n4> {(crlf) (crlf))

({remove <module>))

*
*
*
*
*
*
*
*
*
*
*
*

LRI

adi bl

s v s

.« ¢

Source Code Listing - KBSMA

.

;**
Hied LATE: 5/24/85 *
[VERSION: 1.0 *
i *
Hal NAME: Coupling::Common *
i DESCRIPTION: Production Rules for common coupling *
ok *
¥ ALGORITHM: *
H IF the module uses a global and *
H coupling has not been determined *
Hied THEN set module coupling to common and *
Hid give a reccomendation and *
% *
Hi AUTHOR: Capt Dave Fautheree *
.* *
;**

(p Coupling::Common:l
{(Module ~coupling-type nil
~global-used-1 <globall>
~global-used-1 <> nil) <module>}

(modify <module> ~coupling-type Common
~“reccomendation |pass the required data iteml))

(p Coupling::Common:?2
{ (Module ~coupling-type nil
~global-used-2 <global2>
~global-used-2 <> nil) <module>}

(modify <module> ~coupling-type Common
~“reccomendation |pass the required data item]))

(p Coupling::Common:3
{ (Module ~coupling-type nil
~global-used-3 <global3>
~global-used-3 <- nil) <module>}

(modity <module> “~coupling-type Common
“reccomendation |pass the required data item|))

e -'_-_-'_.1'_.. 5N .

- Tt toa Y P L“) -
DRI TR N A D A R A B "GP, . e T
PRI A RN A ST TN WA AT & P S Y |

Source Code Listing - KBSMA

[t

WO WO WO e NE e Ne WS e WS WS We we e wo wo wa S,

R R R R Ty T LT S)
VERSION: 1.0

NAME: Coupling::Control
DESCRIPTION: Production Rules for control coupling

*
*
*
*
*
ALGORITHM: *
IF a module has a parameter and *

coupling has not been determined *

AND the parameter is defined and *

it is a control variable *

THEN set module coupling to control and *

give a reccomendation *

*

*

*

*

AUTHOR: Capt Dave Fautheree

% % % % % ¥ ¥ ¥ % % ¥ * ¥ ¥ ¥ ¥ ¥

L E SRR R R SRS E RS RS ER R ER RS R RS RS R R R XX RS RS SR R R

(p Coupling::Control:l
{ (Module ~coupling-type nil
~passed-variable-1 <param>
~passed-variable-1 <> nil
~global-used-1 nil
~global-used-2 nil
‘if ~global-used-3 nil) <module>}
{(variable ~variable-name <param>
~control Yes) <control>}

42

"
“~
“
Ay

LS

(modify <module> “~coupling-type Control
~“reccomendation |not use imported control informationl|))

rEL

(p Coupling::Control:?2

{(Module ~coupling-type nil
~passed-variable-2 <param>
~passed-variable-2 <> nil
~global-used-1 nil
~global-used-2 nil
~global-used-3 nil) <module>}

{(variable ~variable-name <param>

~control Yes) <control>}

(modify <module> “coupling-type Control

~reccomendation |not use imported control informationl))

(p Coupling::Control:3
{(Module ~coupling-type nil

N L O VL T I F

};

¥, |
» |
- Source Code Listing - KBSMA

T ~passed-variable-3 <param>

. ~passed-variable-3 <> nil
L~ ~global-used-1 nil

N ~global-used-2 nil
e ~global-used-3 nil) <module>}

) {(variable ~variable-name <param>

~control Yes) <control>}
-
; (modify <module> ~coupling-type Control
N ~reccomendation |not use imported control informationl))

(®

PR A
s e e

Mgl S wivin it ke e - d B e Jr e S\ i AR A

Source Code Listing - KBSMA

- R EXTEEETTEIELTE S LSS SIS EE SRR RS R R R RSt R R R RS R EE RS
’

Hid DATE: 5/24/85 *
Hiad VERSION: 1.0 *
H *
P * NAME: Coupling::Stamp *
P * DESCRIPTION: Production Rule for determining stamp coupling *
. %k *
’

e ALGORITHM: *
s ¥ IF a module has a parameter and *
HE coupling has not been determined *
[AND the parameter is defined and *
Hd its type is Record and *
;¥ it is not a control variable *
H THEN set module coupling to stamp and *
3 * give a reccomendation *
.* *
Hie AUTHOR: Capt Dave Fautheree *
« %k *
;**

(p Coupling::Stamp:1
{ (Module "~coupling-type nil
~passed-variable-1 <param>
~passed-variable-1 <> nil
‘ji ~global-used-1 nil
. ~global-used-2 nil
~global-used-3 nil) <module>}
{(variable ~variable-name <param>
~type Record
~control No) <record>}

(modify <module> ~coupling-type Stamp
~reccomendation |only pass in specific data items]|))

(p Coupling::Stamp:2
{ (Module ~coupling-type nil
~“passed-variable-2 <param>
~passed-variable-2 <> nil
~global-used-1 nil
~global-used-2 nil
~global-used-3 nil) <module>}
{(variable ~variable-name <param>
~type Record
~control No) <record>}

(modify <module> ~coupling-type Stamp
~reccomendation |only pass in specific data items]|))

——aatd

...................................

Source Code Listing - KBSMA

LA/

*(p Coupling::Stamp:3
{ (Module ~coupling-type nil
~passed-variable-3 <param>
~passed-variable-3 <> nil
~global-used-1 nil
~global-used-2 nil
~global-used-3 nil) <module>}
{(variable ~variable-name <param>
~type Record
~control No) <record>}

(modify <module> ~coupling-type Stamp
~reccomendation Jonly pass in specific data items]))

D - 10

’

LR R R RN

y v . F E V7 X

LT S A

. ((‘ffc""'

DN

L

F P NN

I’I.I V S

L g
4 Source Code Listing - KBSMA
¥
2

;**

. i * DATE: 5/24/85 *
;% VERSION: 1.0 *
. ;* *
N ¥ NAME: Coupling::Data *
\ Hio DESCRIPTION: Production Rule for determining data coupling *
.* *
4
- Hied ALGORITHM: *
o H IF a module has a parameter and *
- ; * coupling has not been determined *
- P * AND the parameter is defined and *
- Ha its type is Simple and *
il it is not a control variable *
- Hal THEN set module coupling to data and *
-~ P * give a reccomendation *
., ok *
-' ’
4 Hio AUTHOR: Capt Dave Fautheree *
o= R *
> ;**

(p Coupling::Data:l
{(Module ~coupling-type nil
~“passed-variable-1 <param>
~passed-variable-1 <> nil
. ~global-used-1 nil
- ~global-used-2 nil
~global-used-3 nil) <module>}
{(variable ~variable-name <param>
~“type Simple
~control No) <data>}

(modify <module> ~coupling-type Data
~“reccomendation |[keep up the good workl))

- (p Coupling::Data:2
{(Module ~coupling-type nil
. ~passed-variable-2 <param>
~“passed-variable-2 <> nil
~global-used-1 nil
. ~global-used-2 nil
> ~global-used-3 nil) <module>}
{(variable ~variable-name <param>
~“type Simple
v ~control No) <data>}

"

‘

- (modify <module> ~coupling-type Data

< ~reccomendation |keep up the good workl))

D - 11

......

‘4.I~l

. ot et . - -
- “atat et - L S RS -
PR R R SR N N S T P

A S S :.'.'. PRI
WY PAE. NN TR TR SR T S N N

v

Source Code Listing - KBSMA

Al B S

\.‘ -
LT

“(p Coupling::Data:3
{(Module “~coupling-type nil
~passed-variable-3 <param>
~passed-variable-3 <> nil
~global-used-1 nil
~global-used-2 nil
~global-used-3 nil) <module>}
{(variable ~variable-name <param>
~type Simple
~control No) <data>}

-

DRI TP I RV,

CORPEPIPEY S

(modify <module> “~coupling-type Data
~reccomendation |keep up the good workl))

D - 12

CTHEES S Y Y S YEY ST T T TG S S S Y Y T A A S AV S ST S T T T RN Y T Y

_____ e sl ..~ _."_.-',.' LI --*‘. ISR L N
. 4 . -

S N PR . o .
ORISR OSSR GO BTGt CCLOL ULIN DR LG

-_—rrTrrrE e w

Ty I ¥

L gn 3

Source Code Listing - KBSMA

»
»

We WE NG WE WE We We We We We We W wo we we®)/

DATE: 5/24/85
VERSION: 1.0

NAME: Cohesion::Questions
ALGORITHM:
. IF cohesion has not been determined
THEN ask the appropriate question

AUTHOR: Capt Dave Fautheree

* % % % X N X % H N N X X ¥ *

(p Cohesion::One-Function
{(Module ~cohesion-type nil
~module-name <name>) <module>}
-—>

DESCRIPTION: Production Rules for asking Cohesion questions

AND there is insufficient data to deduce it

Ahkkkhkkkkhkkhkhkkhkkhkkhkhkkhkhkhkkhkkkhkkhkhkhkkhkhkkhkkhkhkhkkhkhkhkhkkhkhkkhkhkkkkhkkkkkkkkk

hkhkhkhhkhkhkhhkhkhkhkhkkhkkhkkkhkhkhhkkkhkhkkhkhkhkhkkkhkhkhkkkhkkkhkhkkhkhkkhkhkkhkkdkkkhkkkikkkkkkk

*
*
*
*
*
*
*
*
*
*
*
*
*
*

(write (crlf)Is module <name> doing only one function? |(Yes or No)|)

(make Cohesion-Answers ~module-name <name>
~activities-related nil
“ ~one-function (accept)))
(p Cohesion::Relate-Activities
{(Module ~cohesion-type nil
~module-name <name>) <module>}

{ (Cohesion-Answers “module-name <name>
~activities-related nil
~one-function No) <cohesion>}

-——>

(write (crlf)In module <name> what relates the activities?)

(write |(Data Control Neither)|)

(modify <cohesion> ~activities-related (accept)))

(p Cohesion::Sequence-Important
{ (Module ~cohesion-type nil
~module-name <name>) <module>}
{(Cohesion-Answers “module-name <name>
~activities-related << Data Control >>)
-—>
(write (crlf)In module <name> is the sequence important?)
(write |(Yes No)|)
(modify <cohesion> “~sequence-important (accept)))

D - 13

- PP D T S PO S SN R S S)
et . . % . - Y ~ -
SRS . S .

TS W

<cohesion>}

PR S S

‘.'.‘ s ..{‘.q- G s,‘_“."‘.‘ A S N RN coa o
A AT, W A VR S S S A S G W L S .

Source Code Listing - KBSMA

e
¢7p Cohesion::Same-Category
{ (Module ~cohesion-type nil
~module-name <name>) <module>}
{ (Cohesion-Answers “module-name <name>
~activities-related Neither) <cohesion>}
-—>
(write (crlf)In module <name> are the activities in the)
(write same general category?)
(write |(Yes No)|)
(modify <cohesion> ~same-category (accept)))

D - 14

> % v ¥ v

v £ LS

v rY ¥ Y e v

[SRTRARRS.

Source Code Listing - KBSMA

ALt oo

A

vy
FA

hhkhkhkkhkhkhkhkkhkhkhkkhkhkhkkkkhkkhkhkhkkhkhkhkkkhkkdkhhkkkhkhkkkhkhkhkkhkhkhkhkkkhhkkkhkkkkkkkkkk

DATE: 5/24/85
VERSION: 1.0

AL,

NAME: Cohesion::XXXXXXXXX
DESCRIPTION: Production Rules for determining Cohesion

a

IF cohesion has not been determined
AND there is sufficient data to deduce it
THEN deduce it and remove Answer structure

Fa

P L PN

*
* *
* *
* *
* *
* *
* *
* ALGORITHM: *
* *
* *
* *
* *
* AUTHOR: Capt Dave Fautheree *
* *
* *

Akhkkhkkkhkhkhkkhkhkhkkhkhkhhkhkhkhkhkhkhkhkhkkkhkhkhkhkkhkhhkhhkhkhkkhkkkhkkhhkhkhkhkhkhkhkhkkkkkkkkkkk

WM WS WO WO NG MO NE WH NG WS WP We W W ‘.g

> (p Cohesion::Functional
{ (Module ~cohesion-type nil
~module-name <name>) <module>}
{ (Cohesion-Answers “module-name <name>
~one-function Yes) <cohesion>}
- —_>
' (modify <module> “cohesion-type Functional)
(remove <cohesion>))

@
(p Cohesion::Sequential
{ (Module ~cohesion-type nil
~module-name <name>) <module>}
{ (Cohesion-Answers "module-name <name>
~one-function No
. ~activities-related Data
» ~sequence-important Yes) <cchesion>}
: -—>
(modify <module> ~cohesion-type Sequential)
(remove <cohesion>))

COPEP S WS

3 (p Cohesion::Communicational

{ (Module ~cohesion-type nil

.. ~module-name <name>) <module>}

{ (Cohesion-Answers ~module-name <name>
~one-function No
~activities-related Data
~sequence-important No) <cohesion>}

ek i LIRS,

-—>
(modify <module> ~cohesion-type Communicational)
(remove <cohesion>))

e a4 € A%

‘s

D - 15

Source Code Listing - KBSMA

(p Cohesion::Procedural
{ (Module ~cohesion-type nil
~module-name <name>) <module>}
{ (Cohesion-Answers ~“module-name <name>
~one-function No
~activities-related Control
~sequence-important Yes) <cohesion>}
-—>
(modify <module> ~cohesion-type Procedural)
(remove <cohesion>))

(p Cohesion::Temporal
{ (Module ~cohesion-type nil
~module-name <name>) <module>}
{ (Cohesion-Answers “module-name <name>
~one-function No
~activities-related Control
~sequence-important No) <cohesion>}
-—>
(modify <module> ~cohesion-type Temporal)
(remove <cohesion>))

Cohesion::Logical
" {(Module ~cohesion-type nil.
~module-name <name>) <module>}

{ (Cohesion-Answers “module-name <name>
~one-function No
~activities-related Neither
~same-category Yes) <cohesion>}

-—>
(modify <module> “~cohesion-type Logical)
(remove <cohesion>))

(p Cohesion::Coincidental

{(Module ~cohesion-type nil

~“module-name <name>) <module>}

{ (Cohesion-Answers ~“module-name <name>
~one-function No
~activities-related Neither
~same-category No) <cohesion>}

-—>

(modify <module> ~cohesion-type Coincidental)
(remove <cohesion>))

~ 5
Y]

D - 16

SN
DO

RO AN *n
..~ - - LI .
AR A RS T R LY

5 A Y

.
> v, v, 2,

[T T

’\'4 R

K B

-
-~

Appendix E

User's Manual
for the
Knowledge Based
Software Engineering Environment

(KBSEE)

..‘: ‘:-' Tt '-‘_:.‘ ‘.’_..‘;.“ o .'..
W N I L.I-L“_\ L'_‘A_TJA.“.}"_ At A

(L

F}‘-ﬁ;“)*;‘15%*;*3*3*;*3*1*?*:*n*a*1*tﬂa

User's Manual - KBSEE

t .

Description

The Knowledge Based Software Engineering Environment,
KBSEE, is an executive system encompassing a variety of
software development tools. It consists of four major
subsystems: the command interpreter, the display manager,
the project manager, and the tool set. The command
interpreter reads user keyboard commands and executes user
menu selections. The display manager maintains the multiple
window display. The project manager maintains a data base
of the wuser's projects, files, and locations. It also
stores the user's prefered edit, compile, and link commands.
The tool set consists of a variety of software tools for

‘i! developing, documenting, and maintaining software systems.

System Requirements

Operating System - VAX/VMS version 4.2 or later.
Compiler - VAX C version 2.0 or later (required only for
maintenance and addition of future enhancements).

Terminal - VT 100 series, VT 200 series, or compatable.

System Operation

Logical Name Definition

Each KBSEE must have the logical name KBSEE$SSYSTEM

. defined as the location of the KBSEE executable program and

P AL

E 4

v
s

- .-. ." " AI'l
I "N "R " VR Wl

User's Manual - KBSEE

.COM tool execution files. For example, if the KBSEE is
located in DUAl:[KBSEE], then the logical name would be
defined by the DCL command:
DEFINE KBSEE$SSYSTEM DUAl:[KBSEE]
in the user's LOGIN.COM file or by the DCL command:
DEFINE/SYSTEM KBSEES$SYSTEM DUAl:[KBSEE]
in the system wide startup file SYSSMANAGER:SYSTARTUP.COM.

System Execution

Once the logicl name KBSEESSYSTEM has been defined, the

' KBSEE can be activated in several ways, depending upon the

user and the system manager. Unless one of the steps
described below is accomplished, the user must enter the DCL
command:

RUN KBSEESSYSTEM:KBSEE
to activate the environment. The preferred method is to
have the system manager place the DCL command:

SKBSEE == "RUN KBSEESSYSTEM:KBSEE"
in the system wide login file defined by the system logical
name SYSSSYLOGIN. If this cannot be done, then the command
should be placed in the user's LOGIN.COM file.

Once the symbol KBSEE has been defined in either the
system wide login file or the wuser's login file, the

environment can be executed by enrtering the command:

KBSEE

P S D

.........

A S T T T T T N . . VAR, T P

-

P IR
IS SR R N

",1 PN
"SRR N

LAS e B e e A Na e 0 G 4 S R 40 At B Bie N Biat A B S0 A% 0% A0 Riac il o Al e el oA, W TR LYY e dins it St AtcAfe ARe M Abe Al S An ASe A Ao f A dh W el A R it S SAR 4 Sh A S i
- LAt e B - . . et . ST - L A - - A . B P B P S S

User's Manual - KBSEE

at the VMS DCL $ prompt.

Once the environment has been activated, the copyright

notice appears for approximately 3 seconds, followed by the
main menu. The system tries to load the last project
selected by the wuser. If the file KBSEE.SAVE does not
exist, then the user must start or select a new project and
user profile as soon as possible. This is accomplished by
selecting the START PROJECT or SELECT PROJECT menu items and
the USER PROFILE menu item. The environment will interact
with the user 1in the messages window for the necessary
information.

Keyboard Commands

i}g The current menu selection 1is always highlighted.
Pressing the select key on the VT200 editing keypad or 7 on
the VT100 numeric keypad causes the current selection to be
executed. The current selection 1is changed by pressing the
arrow keys or numeric keypad keys 1, 2, 3, and 5, which
simulate the left arrow, down arrow, right arrow, and up
arrow keys, respectively (see attached fiqure). The remove
key on the VT200 editing keypad or the PF3 key on the VT100
numeric keypad removes the current menu. If the current
menu is the main menu, then the system exits immediately.
The menus have a wrap around capability; i1.e., if the user

is at the bottom of a menu and presses the down arrow, the

Wt LT e
«pw
STy

R T U
- LA T I, T Tt Sl S P PO VSR A - - -
. ~! ot v tas ~:l.l:\!l.~:-.l-_- .:‘-;“.:’-.

W

T

W W

° .
-

User's Manual - KBSEE

current menu item becomes the top item on the menu. The
same is true for changing the menu column of the main menu.
Pressing the right arrow when the current item is in the
rightmost menu column causes the topmost menu item in the
leftmost column to become current.

Menu Selections

Build Program - edits, compiles, and links the current
work file,

Edit - edits the current work file.

Compile - compiles the current work file.

Link - 1links the object code produced by compiling
current work file.

Run - runs the executable 1image produced by the link
command,

Display Errors - displays the error messages returned by

any of the previous selections.

Start Project - starts a new project and makes it
current,
Select Project - makes a different project 1in the

project database current.

List Projects - lists all projects in the user's project
database.

Display Project - displays all work files and locations

associated with the current project.

Yy ¥ T

3

.......

AR AALAY SRR MLAL ‘g Al) A0 gt g b e Siialt AR K SAECS I K A St et A e A A S AN e AN A NS A A .‘,‘F','ﬂ

“~
E User's Manual - KBSEE
) Work File - <creates a new work file or selects an

‘ﬁ existing one from the project database and makes it current.
3 User Profile - creates a profile of the edit, compile,

‘ and link commands for the current work file.

5 Introduction - displays useful information about the
KBSEE.

Debugger - executes the VAX/VMS symbolic debugger.

% Analyzer - analyzes the modules using the KBSMA.

; Librarian - executes the VAX/VMS librarian utility.

. Printer - prints a file on one of the system printers.

- Text Formatter - executes a text formatting utility,
’ MASS11 or Runoff.

j (?' Spawn to CLI - temporarily exits the KBSEE and invokes a

- subprocess at the Command Language Interpreter level.
- Entering the DCL command LOGOUT returns the user back to the

KBSEE.

Exit - exits the system.

Maintenance

Building the System

Y .
AT AL LA A

The source code for the KBSEE 1is contained in three

[l
e

files. The master file 1is named KBSEE.C, which calls the

other two files through C preprocessor commands:

#include kbsee proj

ts

Y

®e
\J'.

e

ot

e
NS

ORI

o
......

User's Manual - KBSEE

#include kbsee exec
The file kbsee proj.c contains the code for the project
manager. The file kbsee_exec contains the code for the
command interpreter and display management functions.

To modify the system, edit the appropriate source file.
Then, compile the modified system by entering the following
DCL command:

CC KBSEE
Ignore the warning about the conflicting definition of
LIBSSPAWN,

Prior to the link command, check to ensure that the two
logical names LNKSLIBRARY and LNKSLIBRARY 1 are defined as
shown below:

define/nolog lnk$library sysS$library:vaxcrtl

define/nolog lnkS$library 1 sys$library:vaxccurses
These logical names are essential for the proper operation
of the link command when 1linking KBSEE. It defines the
location of all external Run Time Library functions called
by KBSEE. Since almost all routines used by the KBSEE
modules are in one of these Run Time Libraries, failure to
specify these logical names will cause severe errors in the
link process.

Once the modified system compiles without fatal errors
and the two 1lnk$ logicals are defined, link the KBSEE with

the following command:

............

a e,
e R

User's Manual - KBSEE

5",
oy
S
Yy _r LN

LINK KBSEE, OPTIONS_FILE/OPT
where options file is a file named options file.opt with the

following line:

W SN AN

sys$share:vaxcrtl.exe/share
This options file speeds the link time and execution time by
making all the references to the VAX C Run Time Library 9
shareable.

For further information about compiling and linking, see

. T

the Programming in VAX C and the VAX/VMS Linker Reference

.
1

Manual.
The file generated by the link command is the executable
image for the KBSEE, KBSEE.EXE, This is the file used by
‘j the DCL RUN command when the user enters KBSEE or RUN
KBSEESSYSTEM:KBSEE into the DCL CLI. ‘

Adding a New Tool

To add a new tool to the KBSEE, edit the file
KBSEE EXEC.C and add an item to one of the menus ,
(main menu_l, main_menu_2, main menu_ 3, main menu_4). Then -
edit KBSEE.C and modify the main_data structure
initialization for the appropriate menu by adding 1 to the -
max_y value. Add an appropriate string comparison to the
chk main_1, 2, 3 or 4, routines (depending on which menu the
new item is 1in) and add a function call to a new exec

routine that actually calls a subprocess command file and

L,-r./. 4

'_.-'.‘.". el (.

''''''''''''' * et
LAL‘_\,LLLP_‘_LAL-.A

h.fA.‘fA. ‘_;_..ia.,..am.;.m.h PR TR R T P R TR T PTG P T

User's Manual - KBSEE

executes the tool. If the tool writes to the screen, then
the command file must contain a clear screen command before
and after the tool is actually invoked. See the
exec_analyzer.com and exec_edit.com for examples of how to

accomplish this. 1If the tool does not write to the screen,

then use the exec_compile.com as an example.

ad R P el aab at at it A ad Ad A A I AT AN I Bl b A A A A i i A A B fel Sl B8 Nl Rt it b Lol S b b b b D

Appendix F

User's Guide

for the

Knowledge Based
Software Module Analyzer
(KBSMA)

R R T T N S TN e T T T o T A A TAT A At Lt M v a,
) .. SaTel Gy \..’.‘.}.’l...f:'.!.‘.u.~.'..‘t..‘-) '..-:.- SPrere "-" “l‘“ BTN "W:. s
- B i A 4)

A R INCI)
LJ N

a

. '.~

. e Ceye B G S SR - e e YR A A T T RSN ~
B R L A e O o A W N A S D R R e 2O R A0

- VWU L LR S W + bl & el L LA e iatic ath SR AR AR AL o) gt

User's Guide - KBSMA

Description

The Knowledge Based Software Module Analyzer, KBSMA, is
a knowledge based system which analyzes software modules
using the software engineering principles of coupling and

cohesion.

System Requirements

Operating System - VAX/VMS version 4.2 or later.
Compiler - VAX OPS-5 version 1.0 or later (required only
for maintenance and addition of future enhancements).

Terminal - VT 100 series, VT 200 series, or compatable.

System Operation

Knowledge Base

The KBSMA consists of two files, the knowledge base,
which contains the rules and the data structure definitions,
and the instances, containing data about the modules to be
analyzed. The rules are written in OPS-5 productions. The
data structures are defined by OPS-5 LITERALIZE statements.
For details on the syntax of OPS-5 productions and

literalizations, see the OPS-5 User's Manual.

The knowledge base for the KBSMA 1is contained in the
file KBMSA.OPS. This file does not have to be recompiled
unless more productions or data structures definitions are

added.

",

L)

o 2 8 v 1

g 8V ® ey~

- -~ - - "
et -
=

.................

User's Guide - KBSMA

The instances are contained in the file
KBSMA INSTANCES.DAT, which contains all the data about the
specific modules to be analyzed. This file must be edited
manually to add the necessary information. The current
version of the file is an excellent example of the required
syntax and data items. This file 1is loaded into working
memory whenever the KBSMA is activated. This separation of
the knowledge base and instances provides a great deal of
flexibility and ease of wuse, since the knowledge base does
not change for each module, only the instances.

System Execution

The KBSMA can be activated 1in two different ways,
manually and by selection of the Analyze option in the
KBSEE. To activate the system manually, enter

RUN KBSEES$SYSTEM:KBSMA
The KBSMA contains startup information which 1loads the
instances into working memory automatically. The STARTUP
function is 1located in the file KBSMA.OPS. The KBSMA
prompts the user for cohesion information, but automatically

deduces the coupling type from the instances.

Maintenance

Building the System

The source code for the KBSMA 1is contained in the file

User's Guide - KBSMA

KBSMA.OPS. To build a new executable image, enter the
following command:

OPS KBSMA
The OPS-5 compiler produces an executable 1image file
directly, so no link operation is necessary.

Adding a New Rule

To add a new rule, design the rule in an Engish like
manner, then translate it into the OPS-5 language. For

details on the OPS-5 syntax, see the OPS-5 User's Manual.

The new rule needs to be added to the source file KBSMA.OPS.
If the new rule uses a data structure that has not yet been
defined, then add another LITERALIZE to the source file
which defines the new structure,

Edit the instances file KBSMA_ INSTANCES.DAT and add new
instances using the newly defined and currently existing
data structures,. Then, recompile the knowledge base with
the new rules and data structure definitions as described
above. Test the new rule by executing the newly build

executable image, KBSMA.EXE.

F - 4
RN L \-...- LI AL ‘.."..'\.‘ o PRI "..~‘. S R L
v, '.mt&i\&. ':&.:ﬁ..-.g o, {.L‘._‘- g“{f.‘:xi’g\\\“‘fdlﬁlgﬁ.‘].'-.x..A'._n TR L‘,.‘A.'."i‘;.’n." . w0 ,‘J‘L‘_‘A“_‘. ,..L. .'_l‘A'_p.,'.l.'

......

......... P LY T T LY Y S W VL LR, CTLIR VYRR TATYRVRETOITO T T AT CNATS TR T TS d

Bibliography

AFIT/ENG. AFIT/ENG Development Documentation Guidelines and
Standards, Draft #2. Department of Electrical and
Computer Engineering, School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson Air Force
Base, Ohio, 1984.

Aho, Alfred V. et al. The Design and Analysis of Computer
Algorithms. Reading MA: Addison-Wesley Publishing

Company, 1974,

AJPO, Ada Joint Program Office. Requirements for a
Programming Environment for the Common High Order
Language, preliminary Stoneman, Department of Defense,
Washington, DC, 1980.

AJPO, Ada Joing Program Office. Ada Programming Language
Reference Manual, ANSI/MIL-STD 1850A-1983, Department of
Defense, Washington, DC, 1983.

Babb, Robert G. II et al. "Workshop on Models and languages
for Software Specification and Design," Computer, 18:
103-108 (March 1985).

Barstow, David R. and Howard E. Shrobe. "From Interactive
to Intelligent Programming Environments", Interactive
Programming Environments, McGraw-Hill Book Company, New
York, New York, 1984.

Boehm, B. W. "Software Engineering", IEEE Transactions on
Computers, Vol C-25, 12:1226-1241 (December, 1976).

Chandrasekaran, B. "Generic Tasks in Expert System Design
and Their Role in Explanation of Problem Solving,"
Proceedings of the NAS/ONR Workshop on AI and
Distributed Problem Solving, May 1985.

————— . "Towards a Taxonomy of Problem Solving Types," The
Al Magazine: 9-17 (Winter/Spring 1983).

Charniak, Eugene et al. Artificial Intelligence Programming.
Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers,
1980.

Cohen, Paul R. and Edward A. Feigenbaum. The Handbook of
Artificial Intelligence. Los Altos, California: William
Kaufmann, 1982,

BIB-1

e

LV N S e Y

DEC. OPS5 User's Manual, AA-BHOOA-TE, Digital Equipment
Corporation, Maynard, Massachusetts, 1984.

4
j ————— . Programming in VAX C, AA-L270B-TE, Digital Equipment
D Corporation, Maynard, Massachusetts, 1985.

DeMarco, Tom. Structured Analysis and System Specification.
New York: Yourdon Press, 1979.

~ Deutsch, Michael S. "Validating Functional Requirements
- using a Human Knowledge Base,"” Draft for Submission to
~ IEEE Transactions on Software Engineering: August 1985.

: Forgy, Charles, et al. "Initial Assessment of Architectures
for Production Systems," Department of Computer
Science, Carnegie Mellon University, DAPRA Order No
3597: 116-120 (1984).

pPAPY

]
P ')

r.

Freeman, P. Tutorial on Software Design Techniques, IEEE
Computer Society, (1976).

Gould, John and Clayton Lewis. "Designing for Usability: Key
Principles and What Designers Think," Communications of
the ACM, 28 (3): 300-311 (March 1985).

I N

Hadfield, 2Lt Steven M. and Gary B. Lamont. "The Software
Development Workbench: An Integrated Software
Development Environment," Proceedings of the Digital
Equipment Computer Users Society: 171-177 (1983).

Hadfield, 2Lt Steven M. An Interactive and Automated
Software Development Environment. MS Thes1s
AFIT/GCS/EE/82D-17. School of Engineering, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH,
December 1982.

LN N

[

‘k.

Hansen, Wilfred J. "User Engineering Principles for
Interactive System", Fall Joint Computer Conference
Proceedings, (39): 523-532 (1971).

. Harmon, Paul and David King. Expert Systems: Artificial
) Intelligence in Business, John Wiley and Sons, New York,
1985,

Hayes—-Roth, Frederick et al. Building Expert Systems.
Reading, Mass: Addison-Wesley Publishing Co, 1983.

NGNS

Helms, Harry L. Computer Language Reference Guide, Second
Edition, Howard W Sams and Co, Indianapolis, Indiana,
e 1984,
o BIB-2

'l
4,

. . » Tw -'I N - w" » . -- -- . v., 7 '. - o .. _' ,.
vt '..AA{..‘."AJ:IL:':Q.,‘_A..':“.{n:‘.‘l".‘:."’.'_l}_l:"!?J.?:I:‘A".{':“:‘J.‘

’I
. {'
2
D N
~ Horowitz, Ellis and Sartaj Sahni. Fundamentals of Data
2 Structures in Pascal. Rockville MD: Computer Science
d Press, 1984,
M
f1 Houghton, Raymond C., Jr. "Software Development Tools: A
8 Profile," Computer, 16 (5): 63-70 (May 1983).
s IEEE. "IEEE Standard Glossary of Software Engineering
! Terminology," IEEE Std 728-1983.
? Kernighan, Brian W. and Dennis M. Ritchie. The C
- Programming Language, Prentice-Hall, Englewood Cliffs,
New Jersey, 1978.
N Kinnucan, Paul. "Software Tools Speed Expert System
= Development,” High Technology, 5 (3): 16-21 (March
- 1985).
"
‘ Kowalsky, Robert. "AI and Software Engineering," Datamation:
o 92-102 (November 1, 1984).
lg Linden, Eugene. "IntelliCorp: The Selling of Artificial
- Intelligence,” High Technology, 5 (3): 22-25 (March
=) 1985).
@ L :
< MacLennan, Bruce. Principles of Programming Languages,
Holt, Reinhart, and Winston, New York, 1983.
E Manuel, Tom. "Cautiously Optimistic Tome Set for 5th
.- Generation," Electronics Week, 57 (34): 57-63 (December
3, 1984).
7 Manuel, Tom and Michael Rand. "Has AI's Time Come At

Last?", Electronics Week, 58 (5): 51-62 (February 4,
N 1985).

Martin, James. System Design from Provably Correct
- Constructs. Englewood Cliffs, New Jersey:
S Prentice-Hall, 1985,
3 Mihaloew, Reed A. SYSFL, A Systems Flowcharting Routine
. Using Interactive Graphics. Aeronautical Systems

Division Computer Center, Air Force Systems Command,

N Wright-Patterson AFB OH, undated.
e |
~ |
: Myers, Glenford J. Reliable Software Through Composite
-~ Design. New York: Von Nostrand Reinhold Company, 1975. |
~ |
3 N BIB-3
h"
L]

"
-
-

Myers, Ware. "The Need for Software Engineering," Computer,
11 (2): 12-25 (February 1978).

Nilsson, Nils J. Principles of Artificial Intelligence.
Palo Alto, California: Tioga Publishing Co, 1980.

Partach, H. and R. Steinbruggen. "Program Transformation
Systems," Computing Surveys, 15 (3): 199-236, 1983.

Peters, Lawrence J. Software Design: Methods and
Techniques. New York: Yourdon Press, 1981.

Ramanathan, Jayashree. "Softer Ware," News in Engineering,
Ohio State University 56 (2): 15 (March 1984).

Rich, Elaine. Artificial Intelligence. New York:
McGraw-Hill Book Company, 1983.

Rychener, M. D. "Expert Systems for Engineering Design:
Problems, Components, Techniques, and Prototypes,”
Carnegie-Mellon University, Report DRC-05-02-83 (26
March 1984).

) Sheil, B. A. "Power Tools for Programmers," Datamation,
‘H. Technical Publishing Co, 1983.
Swartout, William R. "XPLAIN: A System for Creating and

Explaining Expert Consulting Programs,” Artificial
Intelligence Journal, 21 (3): 285-325 (September 1983).

Teitelbaum, Tim and Thomas Reps. "The Cornell Program
Synthesizer: A Syntax-Directed Programming Environment, "
Communications of the ACM, 24 (9): 563-573 (September

1981).

Teitelman, Warren. "A Display Oriented Programmer's
Assistant", CSL 77-3, XEROX PARC, Palo Alto, California,
1977.

UM 170133010. ~terim AUTOIDEF System User's Reference
Manual, Materials Laboratory, Alr Force Wright

Aeronautical Laboratories, Air Force Systems Command,
Wright-Patterson AFB OH, 1982.

Waters, Richard C. "The Programmer's Apprentice: Knowledge
Based Program Editing,"” IEEE Transactions on Software
Engineering, SE-8 (1): (January 1982).

g BIB-4

......
-

_.4' S L g
LY 1 e YR e N

T T T e N T L e e ST e e T T e L
R e e G L S T I T L N S R T R X T Bk € T R IR IE. VUK TP L A QNITNE SR A WA W SR LS ST PR W oMt SR

e % N S ey,

IHRCRERCRE AL AN

RN

WNMM NN AN

DARNENE N NN

Nl N R

Wess, Bernard P., Jr. "Artificial Intelligence Techniques
Speed Software Development," Mini-Micro Systems: 127-136
(September 1984).

Wirth, Niklaus. Algorithms + Data Structures = Programs.
Englewood Cliffs NJ: Prentice-Hall, Inc., 1976.

Woffinden, D.S., Instructor of Electrical and Computer
Engineering. Lecture materials in EENG 793, Advanced
Software Engineering. School of Engineering, Air Force
Institute of Technology, Wright-Patterson AFB, OH, 1985.

(o

-

o
« &4 2

BIB-5

o e L e

P N

|

A% Ak

HLL

1ta

VITA-1

L8 e s s el

~
.‘
-
-
-
o
1
-
“
hY
-
&
J
¥y
|
]
N
. Y
- ’.
[}
4
.
J-
%5 .0..'0- ' ‘u

VITA

Captain David W. Fautheree was born on 8 July 1958 in

Stuttgart, West Germany. He graduated from a U.S.

Department of Defense Overseas Dependants high school in

Naples, Italy in June 1976. He then attended Lousiana Tech

University from which he received the degree of Bachelor of

Science in Mathematics in May 1980. Upon graduation, he

received a commission in the United States Air Force through

the Air Force Reserve Officer Training Corps as a

Distinguished Military Graduate. After completing the

Computer Systems Development Officer course at Keesler AFB,

Mississippi, his first assignment was to the Air Force

Contract Management Division, Kirtland AFB, New Mexico,

where he was the Chief, Computer Systems Planning Branch in

the Computer Resources Management and Communications Office.

During this time, Capt Fautheree designed, implemented, and

managed a nationwide computer network. He entered the

School of Engineering, Air Force Institute of Technology, in

May 1984.
Permanent address: 14103 Oakstead
San Antonio, TX 78231
VITA-2
o {. . .‘.. '_:_.‘:.. X .\ ._.--‘.; e e et \.'. o “.):.. RN .’.- - "_“\‘.‘-‘ L I

A TP LT L ST L RSO s ¢ TUE TUANIGE IR R 2 TG, T2 SR RS IR

REPORT DOCUMENTATION PAGE

UNGLASSEFIRD = o= o=
SECURITY C

LASSIHFICATION OF THIS PAGE

TS TIFY TR VS &Y

b arter ad SHSRC o MERER: RIK TA N AN TR A A2 SIS Pirs ¥ & LA Sag il 2t 24

P S S am am o o

hf PORT SECURITY CLASSIFICATION
%' Unclassified

1. RESTR«CTIVL M”]:y;!

L TR, Tm

20.

SECURITY CLASSIFICATION AUTHORITY

Ll i s aa

IZDA DECLASSIFICATION/DOWNGRADING SCHEDULE

3. UISTRIBUTION/AVAILALILITY OF RePCGiT

Approvad
distribution anlimiited,

Yor Puybliec Relecasc;

-

4. PERFORMING ORGANIZATION REPORT NUMBE R(S]

AFIT/GCS/ENG/86M-2

5. MONITORING ORGANIZATION HKOPOHT NUNGO RS

YT TR TIPS E T

PAC ey L

NAME OF PERFORMING ORGANIZATION 3b. OFFICE SYMBOL

Ja. NAME OF MONITORING CRGANIZATION

S~ FIEETT YT
o
[al

h

6a.
(If applicable)
School of Engineering AFIT/ENG
. ADDRESS (City, State end ZIP Code) 7b. ADORESS (City, State end ZIP Code) !
Air Torce Institute of Technology !
Wright-Patterson AFB OH 45433]
8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMEOL 9, PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER "
ORGANIZATION (1f epplicadle)]
AFIT ENG

',
Sy

.l
F e

i

o
uid

i

I FIC1 D GROUP SUB. GR. Software Engincering
] Artificial Intelligence
Fxperxt_Systonme

8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NG3,
Air Force Institute of Technology PROGRAN PROJECT TASK WOFRK UNIT ﬁ
. : FMENT NO. NC. NO. N
Wright-Patterson AFB OH 45433 Eie ° ¢ °© ° X
11. TITLE tInclude Security Classtfication)
Sea Box_ 12 :
17 PLRSONAL AUTHORIS) i
§@®r.utherce, David W., B.S., Captain, USAT ;
{135 TYPE OF REFORT 13b. TIME COVERED 14. DATE OF REFOAT (Yr, Mo.. Day) 15. PAGE COUNT 3
) MS_Thes FROM T0 1986 March 21 29 ;
6. SUPTLEMLNTARY NOTATION 7 !
1
117, COSATI CODES 13. SUBJECT TERMS (Continue on revvrse if necessary and identify by Yochk number) Yy
v a3

Softwarce Design
Software Life Cycle

T

19. ABSTRACT (Continue on reverse «f nccessary and tdentify dy Gluck number)

TITLE: An Analysis Tool in a Knowledge Based

Environment

THESIS CHATRMAN: Gary B. Lamont, Ph.D,

Ay — e - POV - Yo m e e - e ¢ Avbaiy

~ T T HILTION/ ANV —x[ll 17

ABLAIsC

~
S - :
CLASSIFIED/UNLIMIIED i SAmE AC ReT. L oricusens [

UDPW

222 NAML OF RISPONITLLE motvx JUAL

Gary B. Lanont, PPh,D.

200 1 ll

thclud e Ane o)

W2l o T TR LT IR S s Lo KL PRSI I PR T SRR 1t 2 SURIE TR I SO S I Tl it 4 LI
DD FORH 1"1/3, .(:\; l“\;"R EONTUO 60y iy
™
e mgT et . e Y. e Te ' - . .« L. .
‘w..\..‘-',- .I.ﬂh". TRTLE R e, . ENPRE ‘--{’-(_ .
PR TE Y Y. h

Software Engincering

- —

sy Aty

oved for ‘j tic release: IAW AFB ll-l{
T § My €L
Dean lor Raumch qnd Protesstonal Development

Alr Force lInstitute of Techaology (RS-
Wright-Patterson AFB OH 45433

T T

i
S e - N .r
PR i ’ i
Avi /e E
oo P)
f o) V v Ty ’ RS

o e a gy e - g g e

RS DR IR 3% 2h

J—Y 9 Oy & F S aVEssTes s T 5 4/ & b m T

TR W

TV W

WEWCTTUEEN VY Y V¥ W

UNCLASSLIFLED

SECURITY CLASSITICATION GF THIS PAGE

b

v
G
o

ABSTRACT

o,
.".,'u

’
*

This thegis investigation presents the conceptual level
develepment ef a Knowledge Desad softvare enpincering
environment. A variety of existing toels zve integrated
into the environment as well as newly developed

knowledge based teols, such as the softvare medule analysis
tool designed and implemented for this project,

Systenm development fellows the software engineering
lifecyele of requivements analysis, design, implementation,
and operation as well as exploratory progranmming/rapid
prototyping techniques,

TR

il tly Lo E A Rt dnd Aut ol et s Ll A A RAARAAA SA L S Al LA b s S L aih auh gnh gt gis bt g h 2) i o+¢ AR S SN AR b g C A At s 9

r‘.‘" T)

“-.

¢ ‘(g .{:. ..- _' . . N ‘:.. .'i.‘.‘. < e .>.'.. . ..'. . - * .‘.
}1:’)) \:)‘. \n EIJ‘IJ..A “l‘\n.‘i l" I - \:‘n‘ ...'\J‘ '.'\ﬂ\—k\-t oL, '-'\.':' at 'J\ \- al 1\.‘ A}.&\A\ \A\.d

