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ABSTRACT off maps on M. The sequence {Qn )=1 is called a
This paper is concerned with approximating a round off scheme if

conditional expectation of a second order random 1
variable given a random process defined over an (i) V xeM lim dia Q_ (Qn(x)) = 0
interval by a conditional expectation of the and n - n
random variable given distorted values of the and the partition of M defined by Q refines
random process at finitely many times. A suffi- n+l
cient condition which guarantees a good approxi- that defined by Qn, neiN. Note O(Qn)CO(Qn+l).
mation is presented. Best estimates of more The action of these maps suggests a sequence
general fidelity criteria than mean square error of increasingly accurate measuring devices. We
are also considered, and the above situation is will show that, asymptotically, these
addressed for a wide class of fidelity criteria, distinguish Borel sets in M via the
I. INTRODUCTION

Throughout this paper let (l ,:,P) be a fixed Lemma 1: nV (Qn) = (M), the Borel sets in N.
probability space and (M,p) be a separable met- Proof: C: Obvious, since we require each Qn to
ic space. Suppose {X(t):te[O,T]} is a stochas- be Borel measurable.
tic process on (QLaP) taking values in M that D: Choose any open UCM. Pick xeU;
is continuous in probability and YeL2 (Q,!f,P). In lim Q-1(Q(x)) =0 so there is neINs.t.
many theoretical situations one is interested in n n n

E(YIX(t):te[O,T]). This is the optimal o(X(t), Qn1(Qn(x))CU. Thus U may be written as a unionte[OT])-measurable mean square estimate of Y

given perfect knowledge of the process {X(t): of point inverses of the Qn" Since there are
te[O,T]} at all times t.[O,T]; that is, it is
the unique solution [4, pp.43-45] to the problem: only countably many of these, the union is
min -Y-Zl2 :ZeL2( ,c(X(t):te(OT]),P)}. countable so Ue O(Qn ) Since V ON(Q ) is a

f 1 YZIL2 ' ) 2(21(Xt)n=l n n=l n
However in many practical situations we are a-algebra on M containing every open subset of

neither able to observe the process continuously M, we conclude dB(M)C V 2ED
nor do we have perfect knowledge about the pro- n=l n
cess when we are able to observe it. Conven- Lemma 2: Let X:0 -M be Borel measurable. Then
tional measuring devices and computers can only a(X) = V a(Q (0).
handle finite data sets. Effectively, they n=1 n
partition M into finitely many disjoint subsets Proof: This is an easy application of the "good
El ..... En and register a fixed value vk of Ek if se-t-s" principle described in [3, p.5].

they observe xeEk, 1 <k <n. These devices Theorem 3: Let X:Q -M be Borel measurable,
V - - ~ T: p_- nd YeL (Q~,Y'P). Then E(YIQ (X))

are commonly unable to observe the process at L henp n
all times tc[O,' ]. Our question becomes: How 5-P'*E(YIX).
well ;dn we est'mate E(Y!X(t):te[O,T]) given our Proof: [3, p.301] demonstrates that if {.#n}l
defective knowledge of {X(t):tc[O,T]} at only nnl
finitel' many times t .... tn belonging to is an increasing collection of a-algebras on Q
[,1]1? contained in V and 5r = V 5, then

More gener3lly, we are tempted to ask this n=l n
question about best estimates of more general E(YI.fn) P' " E(YlT ),
fidelity criteria than mean square error. In
this paper we will address this question for a Martingale convergence theorems allow us to
very wide class of fidelity criteria, asymptotically reconstruct E(YIX) from
11. ROUND OFF SCHEMES E(YIQ n(X)); see, for instance, [7, Chap. 7].

Definition: Let Q:M- M be Borel measurable and Il1. THE L, CASE
have finite rarge, say (Pl '.Pn }" The map Q Notation: Henceforth for convenience we will

is said to be i round off maid if P =Q ~k)  assume,#is complete. If .TC.f is a a-algebra,
Pk _ .... we denote its P-completion by.i.

41 k n. The set {Q'l(p1 ) .... Q-1(pn is First we dispose of a technicality.
called the partJtjion of M defined §Jb . Lemma 4: Let {X(t):te[O,T]} be a process on

Definitiun: Let {Q 'nl be a sequence of round (lfi' continuous in probability and DC[O,TJ
be dense. Then

Presentei ,it the 1985 Conference on Inforwnation Sciences and Systems,
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a(X(t):te[O,T]) = a(X(t):teD). Then it is clear JFmn C Jm+l n and "',n C

Proof: D: Obvious. m,ne]N. For each m we haveC: Fix an open UeM, set Um - =xeM:p(x,u
c)as

1 E(YQ (X(t)):teP ) L '  E(YIX(t):teP
>), and let U. denote the topological closure n Eem

of Ur.  It is easy to see that {Umlml is a non- as n -w Now letting m - and applying Lemma 4,mmM1lim ltm a =.Frec e
decreasing collection of open subsets of M and m rn a =0. For each neN,

U = U1 Um. Pick te[O,T]. Since {X(t),te[O,T]} E(YLQ(X(t))tP L,a.s.

is continuous in probability, there exists a m n

sequence {tn}M1 in D such that t _+ t and X(t An easy extension of Theorem 3 shows
seu nc tnl -1n n L2,a~sX(t) a.s. Pick weX(t) (U); there exists meIN E(YIQn(t)):te[O,T])- E(YIX(t):te[O,T]).

such that X(t)(w)eU . Suppose lim X(t )(w) =
n - Thus lm lim a =0.

X(t)(w); then Um is a neighborhood of X(t)(w) so n.P-m -*- mn

that there exists NeId such that for all n >N, Now turn to the L2 minimization property of

X(t )(.)eUm . Thus, weU U t = the conditional expectation operator to see thatn n =lNlnN n iii a a and a <a m,neIN. Ita -, n an am,n+l a mn
lim inf X(t ) (U ), which we will define as lun fl mn a =0.

m=ln- n mdiately follows lim a =0.m,n m
A. Conversely, suppose weA and that lim X(t )(w) mD

n w n
= X(t)(w). Then there exists nell such that we IV. AN ABSTRACT PRINCIPLE OF BANACH SPACES
lim inf X(t)-l (Um) and X(t)(w)eOm CU. We have Definition: A Banach space B is uniformly
n1m convex if for all E >0 there exists 6 >0 s.t.
just shown AAX(t) (U)C i-{weP:lim X(t )(w) for all x,yeB withl- lxil =lYl1=l, ix-YIl >C

n , w implies II x+yll > 2(1-6 A Banach space B isX(t)(w)}. Since X(t n ) x (t ) a .s., we see that

AAX(t)I (U) has zero probability; and since Ae locally uniformly convex if for any sequences

o(X(t),teD), we see that X(t)-I(U) ea(X(t),teD). {xn}nl 1 and y n}n=l with 1lxnl = lynII= 1,
Thus for any Borel BCN, X(t)-I(B) eo(X(t):teD). nell, " "xn+y n11 *2 implies "xln-ynl11O. A

It follows o(X(t):teOTI)Ca(X t)teD). Banach space B is strictly convex if each point
i Aof the unit sphere is an extreme point of the

Definition: A partition P of the closed Interval closed unit ball.
[O,TJ is a finite point set {O=t 0 <tI ...<tn=T. It is well known that uniform convexity
The mesh of P is defined by w(P) =max {tk-tkl: implies local uniform convexity, which in turn
l kTnT. implies strict convexity.

Lermma 5: Let YeL ( fP) and ()_ IbeanWe denote the metric of B as d.
2(s Pm= be an Theorem 7: Let B be a reflexive Banach space

increasing sequence of partitions of [O,T] with and KCB 5e closed and convex. Then for any xeB
*(P ) -0. If {X(t),te[O,T)} is a process on the set L-{yeK:d(x,y)=d(xK)) is closed andm nonvoid.

(Q..i'P) continuous in probability, then E(YIX(t): Proof: See [12, sections 38 and 39].
tP)-,E(Y!X(t):te[O,T]) in L2 and a.s. Theorem 8: Let B be a reflexive Banach space.
Proof: Set 0 U ; 1 (Pm) -0 so D is dense in TfFe-n- is strictly convex if and only if for all

MYl xeB and for all closed and convex KcB there
[O,T]. Thus E(YLX:teP )  E.a.s.(X:teD ).  exists a unique yeK such that d(x,y) =d(xK).ttm t Proof: This is an easy consequence of Theorem 7.Leruii 4 implies E(Y'X(t):teD) =E(YIX(t):te[O,Ti) lFoe that if B is any Banach space so that
a.s. TLD for any xeB and any closed and convex KcB there

Theorem 6: LeL Lemma 5 set notation and (Q exists a unique yeK s.t. d(x,y) =d(x,K). then B
We-a round off scheme on M. Then n nzl is strictly convex and reflexive. For a proof

see [9, p.161].
li E(YIQn (X(t)):tP m) E(YIX(t):te[O,TJ) Theorem 9: Let {Knnl be an increasing collec-
mmn - n__

in L2. tion of closed convex subsets of a strictly
Proof: For m,ne l put convex reflexive Banach space B and let K_ be
a* 1E(Y Qn(Y(t)):teP the norm closure of U K.n Note that K_ is

. ( n m closed and convex. Let Pn denote minimum norm
J E (v(Qn(X(t))'tep IIL2 6) projection on Kn . ne]NU{-}; this is well

mnn n(X(tV'tePm' defined by Theorems 7 and 8. Then for all xeB
we have As
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IIx-PM(x)I1 = lir JIx-P (x)11. Throughout we will assume that our Young

n .. .. function : [0,) ,[0,.) has strictly increasing
Proof: Fix xeB. By the minimality of the pro- first derivatives on [0,) and that 4' and its
j-ctions Pn neI U{-}, we have ix-P0 (x)l complementary Young function T satisfy the A2 or

IIx-Pn+l(x)I < fx-Pn(x)II, neIN. Thus doubling condition. Recall the Luxemburg norm
lim IIx-P (x)I1 exists and is not less than of YeL0(1,91,P) is defined by
n - n

IIx-P_(x)II. Conversely, choose c>O. Note that No(Y) = iInf X>: > I L)dP < O()
P_(x)eK implies that there exists neIN and and that for a sequence {Y n}n=l in L, N (Yn-Y)y.K n  s.t, IIX-P n(X)ll -r 11x-Yll+ IlY-PM(x)II 0 iff

' IIx-P_(x)ll E. The arbitrariness of c implies lim f P(IYn-YI)dP = 0.
that lim IIx-P_ (x)I < IIx-P(x) II. OED

n - Furthermore, this norm makes L Da reflexive
Theorem 10: Let B be a reflexive strictly uniformly convex Banach space. Thus the

convex Banach space and let (Kn In=1i K , (Pn~' machinery of the last section applies. Noten - n= however that in general these minimum norm
and P. be as in Theorem 9. Suppose x,zeB and projections are nonlinear.
Pn(x) - z. Then z =P (x). Now let 9 be any sub a-algebra of Y and
Proof: Note that Pn(x)eKn, neiN, and K is YeL (l9,P). The set L (Q,.i,P) is a closed

weakly closed, so zeK. By the weak lower subspace of L 0(NAP) so Y has a unique minimum

semicontinuity of the norm and Theorem 9. 1lx-zl1 norm projection into L ,(QjTP) which we will

< lim inf 1x-P n 1 - lx-P_(x)l . Thus we denote by E,(YI J). The primary tool used in
n -0 the L2 case was the martingale convergence

conclude z =P-(x). OED theorem; we will obtain an analog of it here.

Theorem 11: Let the previous theorem set Lemma 14: Let YeL (Ql,.ofP). { n}n' be annotation. Then P n(X) - P®(x). ('nn
increasing collection of sub a-algebras, of Y

Proof: Choose any subsequence {Pnk (x) of - Jeko .and j'" = V f." Then U L,( ,JT,P) =

{P n(X)In. By the Smul'Iyan theorem [9, pp.145- nl n-l 4' n

156] there exists a further subsequence L (o. f P).

{Pn ix)k(j) x of JPnk(x)} and zeB s.t. Pnk(j)(x) Proof: Put Zn = E(Yl. n), ne]NU{-}. Repeated

z. Theorem 10 implies z =P_(x). We conclude application of Jensen's inequality yields:

that P (x) z =PD id 0 <_o(IZ n ) = (IE(YI. )I)
n )(E(IYI I jinl)

Propusition 12: Let B be a locally uniformly <E(O(Iyj).In),

cove Bnchspcead x - be a seueceiconvex Banach space and Xn=l sequence in dominating {(D(nZnl))- by a uniformly integrable
B with xn -x and lxni! -- lxii. Then xn - x sequence of functions. Thus, {4(Znl)}1_l is
in norm.

Proof: See [8, p.233]. uniformly integrable. Now apply convexity and
Weorem 13: Let B be a locally uniformly convex the doubling condition, yielding

Banach space and Ix n nn=], {Pn n~l Kand P, -be O(IZn-Zl) < (IZnl +IZ-l)
as in Theorem 9. Then for any xeB, P n(x) -< 1 0(21Z ) + 1 + (21zI)
P (x) in norm. - 2 n 2

Proof: Recall that local uniform convexity <-w 1) + S c'(Iz),
iiplies strict convexity, so minimum norm
projections are defined. Pick xeB; P (x) -- where c is a constant from the doubling condi-n tion, independent of n. It follows now
P(x) implies x-P (X)). But

!IX-Pn(x)il-- 11x-P(x)lt, so the theorem follows {¢(ZnZ=J)}n 1 is unformly integrable. Since
from Proposition 12. QE Q (InZI)0 a.s., dn 0

V. HE CASE OF L- N¢(Zn-Z- ) -0. The lemma follows immediately.

The basic facts about Orlicz spaces we use Theorem 15: Let { n)n=i be an increasing
here may be found in [6] and [10]. Henceforth n n
we stipulate that (il,.'fP) be nonatomic. collection of sub o-algebras of .V and . -

%
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V ir . Then if YeL,9,P), E(yJ~rn)--1, E(Y'$Q. H. P. Rosenthal, and G. Schechtman of the
n n Department of Mathematics at the University of
Proof: Apply Lemma 14 and Theorem 13. OED Texas at Austin for many helpful discussions.

Remark: Consulting [],[2],[5], and [11] it is REFERENCES
possible to see this convergence is almost sure. [Ii Ando, T., "Contractive projections in Lp

Now we extend Lemma 5: spaces," Pac. J. Math., v.17, 1966, pp. 391-

Lenmna 16: Let YeL,(QY.P) and { be an 405.
mL a (2] Ando, T., and Amemiya, I., "Almost every-

increasing sequence of partitions of [0,T] with where convergence of prediction sequence in Lp
(Pm) -0. If {X(t):te[O,T]} is a process on (I <p <-), Z. Warech., v.4, 1965, pp. 113-

taking values in N that is continuous n [3] Ash, R., Real Analysis and Probability.
probability then New York: Academic Press, 1972.
E (YIX(t):teP ) L,, a.s.) I [4] Ash, R., and Gardner, M., Topics in
<mE(YX(t):te[O,T]) Stochastic Processes. New York: Academic

Press, 1975.
as m --. Furthermore, [5] Brunk, H.D., "Conditional expectation given

lim ff(JE0(YJX(t):tePm )  a a-lattice and applications," Ann. Math. Stat.,lm )ttmv.36, 1965, pp. 1339-1350.
ME yIX*t):te[O,T ]\I ) dP = 0 (6] Diestel, J., Geoetry of Banach Spaces:

[0 Selected Topics, Lecture Notes in Mathematics,
Proof: Imitate Lemma 5. QED #485. New York: Springer-Verlag, 1975.Theorem 17: Let the previous lemma set notation [7] Doob, J.L., Stochastic Processes. New

York: Wiley, 1953.
and {Qn nl be a round off scheme on M. Then (8] Hewitt, E., and Stromberg, K., Real ad

E )L Abstract Analysis. New York: Springer-Verlag,
4(Y n(Xt):em) *E(I~)t[, 1965.

and [9] Holmes, R.B., Geometric Functional Analysis
f¢ ( E(YIQn(X(t):tepm)-E (YlX(t):te[OT)I)dP-0 and Its Applications. New York: Springer-

Verlag, 1972.
[10] Krasnoselskii, M.A., and Rutickii, Ya.B.,as m,n-+. Convex Functions a Oricz Spaces. Groningen:

Proof: For m,ne]N set Jf = O(Q (X(t)):teP ). Cne ucin n risSae.Goign
mn n m P. Noordhoff, 1961.

Choose sequences {mk1kl and {nk kl so that [11] Landers, D., and Rogge, L., "Isotonic
keIN. Then approximation in Ls," J. Approx. ih., v.31,mkn k t-. Put Jk = 'mnk '  1981, pp. 199-223.

m m p T mD [12] Zeidler, E., Nonlinear Functional Analysis
Vk = V "mn Apply Theorem 15. and Applications, V.111. New York: Springer-

Finally, for icing on the cake we get a Verlag, 1985.

similar result for ordinary conditional
expectation:
Theorem 18: Let Theorem 17 set notation. Then
as m,n -_,

F(YQ n(X(t)):tepM ) L E(YIX(t):te[O,T])

and

mE(Y'Qn"Xt)) :tm)-E(Y(X(t):te[O,T])I)dP -.

Proof: Mimic Theorem 17 using the fact that

E(Y.ik) L-L1 E(Y;X(t):te[O,Tj)

derived in Theorem 13.

Rema-rk:. If D(x) -xP/p, xe[O,.) and p >l, L4=L

arid the nonatomicity assumption may be dropped.
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