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A STABILITY PROPERTY OF CONDITIONAL EXPECTATIONS

John M. Morrison
Department of Mathematics
University of Texas at Austin
Austin, Texas 78712

ABSTRACT

This paper is concerned with approximating a
conditional expectation of a second order random
variable given a random process defined over an
interval by a conditional expectation of the
random variable given distorted values of the
random process at finitely many times. A suffi-
cient condition which guarantees a good approxi-
mation is presented. Best estimates of more
general fidelity criteria than mean square error
are also considered, and the above situation is
addressed for a wide class of fidelity criteria.

1. INTRODUCTION

Throughout this paper let (2,,P) be a fixed
probability space and (M,p) be a separable met-
ric space. Suppose {X(t):te[0,T]} is a stochas-
tic process on {Q,%#P) taking values in M that
is continuous in probability and YeLz(Q.yﬂP). 1

many theoretical situations one is interested in
E(Y]X(t):te[0,T]). This is the optimal o(X(t),
te[0,7])-measurable mean square estimate of Y
given perfect knowledge of the process {xX(t):
te[0,T]; at all times te[0,T]; that is, it is
the un1que solution [4, pp.43-45] to the problem:
min {|lY Z(IL (o)° : Zel (Q a(x(t):te[0,T]),P)}.

However in many practical situations we are
neither able to observe the process continuously
nor do we have perfect knowledge about the pro-
cess when we are able to observe it. Conven-
tional measuring devices and computers can only
handle finite data sets. Effectively, they
partition M into finitely many disjoint subsets
El""'En and register a fixed value Vi of Ek if

they observe erk’ 1<k <n. These devices

are commonly unable to observe the process at
all times te{0,i]. Our question becomes: How
well :an we estimate E(Y!X(t):te[0,T]) given our
defective knowledge of {X(t):te[0,T]} at only
finitely many times t.,....t_ belonging to
[0,7]° 1 n

More generally, we are tempted to ask this
question about best estimates of more general
fidelity criteria than mean square error. In
this paper we will address this question for a
very wide class of fidelity criteria.

II. ROUND OFF SCHEMES
Definition: let Q:M~M be Borel measurable and
have finite rarge, say ‘p]. eoPy }. The map Q

is said to be o round of f map 1f pk -Q(pk).
1 <k<n. The set (Q° (p]) .. (pn)} is
called the partition of M 9211939.91 Q.

Definition: Llet (Q i

be a sequence of round

Gary L. Wise
Departments of Electrical and Computer
Engineering and Mathematics
University of Texas at Austin
Austin, Texas 78712

off maps on M. The sequence {Qn):=l is called a
round off scheme if
(1) ¥ xeM lim dia Q21(Q.(x)) = 0

n-+« n n
and
(ii) the partition of M defined by Qn+1 refines
that defined by Q,» neN. Note o(Qn)Co(Qn”).

The action of these maps suggests a sequence
of increasingly accurate measuring devices. We
will show that, asymptotically, these
distinguish Borel sets in M via the

Lemma 1: V, o(Q } =#B(M), the Borel sets in M.

Proof: C: 0bv1ous. since we require each Q to
be Borel measurable.
D: Choose any open UCM, Pick xeU;

1im Q;](Qn(x)) =0 so there is nelNs.t.
N +x

Q;](Qn(x))CZU. Thus U may be written as a union
of point inverses of the Qn‘ Since there are
only countably many of these, the union is
countable so Uen§1 o(Qn). Since n§1 o(Qn) is a
c-algebra on M containing every open subset of
M, we conclude w(M)CnY]o(Qn). QED
Lemma 2: Let X:Q~+M be Borel measurable. Then
o(x) = V. o(Q,(X)).

Proof: This 1is an easy application of the "good
sets” principle described in [3, p.5].

Theorem 3: Let X:2 +M be Borel measurable,
1 <p <=, and Yel (Q,y’P) Then E(Y]Q_(X))

, a.5. n
Lp» 2% L S E(Y]X).
Proof: [3, p.301] demonstrates that if { "}n=1
is an increasing collection of o-algebras on
contained in ¥ and F_ = V].F;, then

n=

Lp, a.s.
E(Y|5,) P—"E(Y]| ) QED
Martingale convergence theorems allow us to

asymptotically reconstruct E(Y|{X) from
E(YlQn(X)); see, for instance, [7, Chap. 7].
111. THE L, CASE

Notation: Henceforth for convenience we will

assume & is complete. If #C./ is a o-algebra,
we denote its P-completion by .¥.

First we dispose of a technicality.

Lemma 4: Let {X(t):te[0,T]} be a process on
{Q,7,PY continuous in probability and Dc[0,T]
be dense. Then

Presented at the 1985 Conference on Information Sciences and Systems,
Map - 57-08, 1885; to Le published in the Proceedings of the comference.
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a(x(t):te[0,T]) = o(X(t):teD).

Proof: D: Obvious.
C: Fix an open UeM, set U = {xeM: p(x,U%)

>—}. and let U denote the topological closure
of U, It is easy to see that {Um}m= is a non-
decreasing collection of open subsets of M and
U= U] U Pick te[0,T]. Since {X({t),te[0,T]}
is continuous in probability, there exists a
sequence {t } =1 Tn D such that t, -t and X(t )~

X(t) a.s. P1ck weX(t)” I(U). there exists melN
such that X(t)(w)eU Suppose Hm X(t Ww) =

X{t){w); then U, is a ne1ghborhood of X(t)(w) S0
that there exists NeN such that for all nzN.

x(t )(m)eU Thus, we U] NUI ﬂ X(t ) (Um) =

u] im inf X(t,)" ‘(um), which we will define as
m=

A. Conversely, suppose weA and that Hinmx(tn)(m)
= X(t){w). Then there exists neN su2h that we
lim inf x(t) 'y, ) and X(t)(w)el, CU. We have
just shown AAX(t)™ (U)CQ—{weO J'im X(t Nw) =
X(t)(w)}. Since X(t Yy +X(t) a.s., we see that
AAX(t)'](U) has zero probabﬂity. and since Ae
o(X(t).teD), we see that X(t) '(U) ea(X(t), teD).
Thus for any Borel BCM, X(t)'](B) eo(X(t):ted).
It follows o(X(t):te[0,T])Co(X(t):teD). QED

Definition: A partition P of the closed interval
[0,T] is a finite point set {0=t o<t <ty =T},

The mesh of P is defined by u(P) =max {tk-tk_]:
1<k< ny.
Lemma 5: Let YeLz(sz,.'I;P) and {Pm}m=l be an

increasing sequence of partitions of [0,T] with
;.(Pm) ~0. If {Xx(t),te[0,T]} is a process on

(Q..AP) continuous in probability, then E(Y|X(t):
ter) --E(V]X(t):ie[O.Tg) in L, and a.s.

Proof: Set [ =Y Pt u(Py) +0 so D is dense in

L;.a.s.
[0.T]. Thus E(let:ter) ~——*E(Y|xt:teD).

Lemma 4 implies E(Y'X(t):teD) =E(Y|X(t):te[0.TL
a.s.

Theorem 6: Lei Lerma 5 set notation and {Q )
be a round off scheme on M. Then

lim  E(Y]Q (X(t)):teP ) =E(Y[X(t):te[0,T])
m,n -~
in l.2-
Proof: For mneN put
an'\r‘, = HE(VIQn(X(t‘)):ter)
E(YIX(E) tel0.T]i1 (o)

= o(Qn(X(t)).ter).

Then it is cleari C# 1.0 and .i"n’nC ';m,nﬂ
m,neN. For each m we have

E(Y]Q, (X(t)):teP ) ILALELIN E(Y[X(t):teP )

as n+=. Now letting m~+« and applying Lemma 4,
lim Tim an = =0. For each neNN,

m+® n+oo

ECY], (X(t)):tep ) “21 2525 (v]q_(x(t)):te[0,TD).
An easy extension of Theorem 3 shows
E(Y]Q,(4):tef0,7]) 22225
Thus 'l‘iin 'l“m a =0

o

E(Y{x(t):te[0,T]).

Now turn to the L2 minimization property of

the conditional expectation operator to see that

1.0 < 2o and 3 n+l S 3ne m,neN. It

immediately follows r}‘im amn =0.

s N

QeD
[I):' AN{ABSTRACT PRINCIPLE OF BANACH SPACES
finition: A Banach space B is uniformly
copvex if for all e >0 there exists 6 >0 s.t.
for all x,yeB with || x | =lyll=1, lIx-yll>¢€
implies || x+y||>2(1-6 A Banach space B is
locally uniformly convex if for any sequences
{x}o.y and Ly Yo g with fix |[= [y, l1=1,
neN, ||x, +y i+ 2 implies [[x “Yn |+-0. A

Banach space B is strictly convex if each point
of the unit sphere is an extreme point of the
closed unit ball.

It is well known that uniform convexity
implies local uniform convexity, which in turn
jmplies strict convexity.

We denote the metric of B as d.

Theorem 7: Let B be a reflexive Banach space
and KCB be closed and convex. Then for any xeB
the set L = {yeK:d(x,y)=d{x,K)} is closed and
nonvoid.

Proof: See [12, sections 38 and 39].

Theorem 8: Let B be a reflexive Banach space.
Then B is strictly convex if and only if for all
xeB and for all closed and convex KCB there
exists a unique yeK such that d(x,y) =d{(x,K).
Proof: This is an easy consequence of Theorem 7.

Note that if B is any Banach space so that
for any xeB and any closed and convex KCB there
exists a unique yeK s.t. d(x,y) =d(x,K), then B
{s strictly convex and reflexive. For a proof
see [9, p.161].

Theorem 9: Let (K }n 1 be an increasing collec-

tion of closed convex subsets of a strictly
convex reflexive Banach space B and let K_ be

the norm closure ofkn) Kn‘ Note that K_ is
closed and convex. Let Pn denote minimum norm
projection on Kn‘ neN U {=}; this is well

defined by Theorems 7 and 8. Then for all xeB
we have
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Proof: Fix xeB. By the minimality of the pro-
jections Pns NENU {=}, we have Hx-P_(x)]] <
||X'Pn+1(")” _<_Hx-Pn(x)||. nelN. Thus
J,ii"m le-Pn(x)ll exists and is not less than
{|x=P_(x)]}. Conversely, choose ¢ >0. Note that
P_(x)eK_ implies that there exists nelN and
yeK st || x-P ()] < [[x-yl[+ [ly-P (x}]|
< |Ix=P_{x)|| + €. The arbitrariness of ¢ implies
that 1im || x-P ()| < [[x-P ()]} QED

Theorem 10: Let B be a reflexive strictly
convex Banach space and let {Kn}:ﬂ’ Kes {Pn}:ﬂ‘
and P_ be as in Theorem 9. Suppose x,zeB and
Pn(x) — z. Then z=P_(x).

Proof: Note that Pn(x)eKn. nelN, and K_ is
weakly closed, so zeK . By the weak lower
semicontinuity of the norm and Theorem 9, ||x-z]|
< r]‘1‘31m1'nf ||x-Pn(x)[| = [|x-P_(x)|]. Thus we

conclude z =P_(x}. QED

Theorem 11: Let the previous theorem set
notation. Then Pn(x) - P_{x).

Proof: Choose any subsequence {Pnk(")} of
{Pn(x)}:=]. By the Smul'lyan theorem {9, pp.145-
156] there exists a further subsequence

{Pnk(j)(x)) of {Pnk(x)} and 2€B s.t. Pnk(j)(x)
— 2. Theorem 10 implies 2z =Pm(x). We conclude
that P (x) — P_(x). QED

Propusition 12: Let B be a locally uniformly
convex Banach space and (xn}:ﬂ be a sequence in
B with x — x and ||xn|! — |{x]||. Then X, > X

in norm.

Proof: See (8, p.233].

Theorem 13: tet B be a locally uniformly convex
ne1® Ko» and P_ be
as in Theorem 9. Then for any xeB, Pn(x) -

P (x) ir norm.

- \®°
Banach space and (xn‘n=l’ {Pn

Proof: Recall that local uniform convexity

inplies strict convexity, so minimum norm
projections are defined. Pick xeB; Pn(x) —

P (x) implies x-Pn(x) — x-P_(x). But

f{x-P (x)i] > [[x-P_(x)[f, so the theorem follows
from Proposition 12. QED
V. THE CASE OF Lg

The basic facts about Orlicz spaces we use
here may be found in [6] and [10]. Henceforth
we stipulate that (:,,P) be nonatomic.

Throughout we will assume that our Young
function ¢: [0,») +[0,=) has strictly increasing
first derivatives on [0,») and that ¢ and its
complementary Young function ¥ satisfy the 4, or

doubling condition. Recall the Luxemburg norm
of Yel, 2,9P) is defined by

Ng(Y) = inf {A>0:IQ¢(|+|>dP < 0(1)}

and that for a sequence {Y in ch’ N¢(Y -Y)
+0 iff n

1i Y -Y|)dP = 0.
ﬂ‘-'bna) —[QO(I" |) 0

n}n=l

Furthermore, this norm makes Lo a reflexive

uniformly convex Banach space. Thus the
machinery of the last section applies. Note
however that in general these minimum norm
projections are nonlinear.

Now let # be any sub o-algebra of & and
YeLo(Q..ZP). The set L°(Q,.i,P) is a closed

subspace of LQ(Q,.‘];P) s0 Y has a unique minimum
norm projection into LQ(Q,J'.P) which we will
denote by EO(YIJ). The primary tool used in
the L2 case was the martingale convergence
theorem; we will obtain an analog of it here.
Lemma 14: Let Yel,(2,%P), {.i;'}::=1 be an
increasing collection of sub g-algebras, of &
and & = n:\?' # . Then n(?] Lyl #,P) =
LO(Q.J;.P).

Proof: Put - E(Yl.in). nelN U {=}. Repeated

application of Jensen's inequality yields:
0 < o(1Z,1) = o([E(Y[.£)])

S(E(|Y] | )

< E(o([Y])] £,),
dominating {0({Zn|))n=1 by a uniformly integrahle
sequence of functions.  Thus, {0(|Zn|)}:=] is

1A

uniformly integrable. Now apply convexity and
the doubling condition, yielding

o(1Z,-2.1) < ollz,] +12.)
Toiz 1) +  e(212,)
5 91Z,1) + § o(1Z,]),

where ¢ is a constant from the doubling condi-

tion, independent of n. It follows now
{6(12,-2,])},,; s uniformly integrable. Since

o(12,-2_1) +0 a.s., [Qo(lzn-qu )dP +0 and

1A

A

No(Z,-Z,) +0. The lemma follows immediately.

Theorem 15: Let {.#} _; be an increasing
collection of sub o-algebras of ¥ and ¥ =

v e T
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P

L
Vg, Then if Yel,(2,%P), E(vw’n)—& E(Y[F,).

Proof:

Remark: Consulting [1],[2],[5], and [11] it is

possible to see this convergence is almost sure.
Now we extend Lemma 5:

Lemma 16: Let YeLq?(Q,.?;P) and {Pm}::=1 be an

increasing sequence of partitions of [0,T] with

p(Pm)'*O. If {X(t):te[0,T]} is a process on

(2,%,P) taking values in M that is continuous in
probability then

Lo, a.s.
E¢(Y|X(t):ter) —_— E¢(Y|X(t):te[0.T])
as m—+«, Furthermore,
lin [Qoued,(v{x(t):tepm)
-E®(Y|X(t):te[0.T])|) P =0.

Proof: Imitate Lemma 5. QED
Theorem 17: Let the previous lemma set notation

and {Qn}:;] be a round off scheme on M. Then

L
E,(Y1Q,(X(t)):teP ) =2 E,(V]X(t):te[0,T])
and
[o(1E,(Y1Q, (X(t):teP )-E,(¥[X(t):te[0.T)[)dP +0

Apply Lemma 14 and Theorem 13. QED

Department of Mathematics at the University of
Texas at Austin for many helpful discussions.
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