



MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963 A

and the state of the second

UNCLASSIFIED						
BOURTY CLASSIFICATION	OF THIS PAGE					

.

	UNCLASSIFIED					AD-A172 393 🔾			
				REPORT DOCUME	NTATION PAGE	:			
18. REPORT S	SECURITY C	LASSIFICA	TION		10. RESTRICTIVE MARKINGS				
UNCLASS				-					
28 SECURITY CLASSIFICATION AUTHORITY				3. DISTRIBUTION/AVAILABILITY OF REPORT					
NA			Approved for public release;						
20. DECLASSIFICATION/DOWNGRADING SCHEDULE			distributio						
NA									
4. PERFORMING ORGANIZATION REPORT NUMBER(S)		JE A (\$)	S. MONITORING ORGANIZATION REPORT NUMBER(S)						
					AFOSR-7	R-86	- 0792		
6 NAME OF	PERFORMI		IZATION	SH. OFFICE SYMBOL	74 NAME OF MONIT				
				(If applicable)					
Univers	ity of I	'exas at	. Austin		AFOSR/NM				
Sc. ADDRESS	City, State	end ZIP Co	la) (* .		7b. ADDRESS (City, State and ZIP Code)				
	C 171	1	1.0	, 	P14- 410				
•			id Comput	er Engineering	Bldg. 410 Bolling AFB, DC 20332-6448				
Austin,									
B. NAME OF		SPONSORII	NG	BD. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER				
AFOSR				NM	AFOSR-81-0047				
	City. State	end ZIP Co	 (ab)		10. SOURCE OF FUNDING NOS.				
					PROGRAM	PROJECT	TASK	WORK UNI	
Bldg. 4					ELEMENT NO.	NO.	NO.	NO.	
Bolling AFB, DC 20332-6448				6.1102F	2304	6-			
11. TITLE (Include Security Classification) A Stability Property						1.5	Į		
			<u>ations (U</u>	NCLASSIFIED)	<u> </u>				
12. PERSON			I Wiego						
J. M. M		and G.	L. WISE		14. DATE OF REPOI	T /Va Ma Dav	15. PAGE C	OUNT	
Reprint				1/80 TO 9/30/85			4		
16. SUPPLEN		OTATION	Tut						
Proceed	lings of	the 198	85 Confer	ence on Informa	tion Sciences	and System	s, Baltimor	e,	
				p. 226-229.					
17.	COSATI	CODES		18. SUBJECT TERMS (C	Continue on reverse if m	cemery and ident	ify by block number	r)	
FIELD	GROUP	<u>su</u>	8. GR.)nonlinear e	nonlinear estimation, conditional expectations, imperfect data, fide Inty criteria				
		,		imperfect d					
				<u> </u>	· · · · ·				
				l identify by block numbe		•			
Th	nis pape:	r is co	ncerned w	ith approximati	ing a conditio	nal expecta	tion of a s	econa	
order r	andom va	ariable	given a	random process	defined over	an interval	by a condi	tional	
expecta	ation of	the ra	ndom vari	able given dist	orted values	or the rand	iom process	al	
finite	Ly many i	cimes.	A SUIIIC	ient condition of more general	which guarant	teria than	approximati	error	
is pres	sentea.	dest e	scimates	bove situation	te addroeeod	for a wide	class of fi	delity	
criteri		uereu,		NOVE SILUALION	To grategoed	LUL & WINC			
LILLEL		••				~ ×1	NTI	C	
l i						\mathcal{M}'			
						· · · ·			

DTIC FILE COPY	×		
28. DISTRIBUTION/AVAILABILITY OF ABSTRACT	21. ABSTRACT SECURITY CLASSIF		
UNCLASSIFIED/UNLIMITED 🔀 SAME AS RPT. 🗆 DTIC USERS	DTIC USERS UNCLASSIFIED		
22. NAME OF RESPONSIBLE INDIVIDUAL	225. TELEPHONE NUMBER (Include Aree Code)		

Se is

1

Major Brian W. Woodruff

t_i,

101

.....

DD FORM 1473, 83 APR

and the fact at a said a s

EDITION OF 1 JAN 73 IS OBSOLETE.

(202) 767-5027

and a factor a factor and a factor a fa

UNCLASSIFIED

CATION

SEP 1 9 1986

D

22c. OFFICE SYMBOL

AFOSR/NM

SECURITY CLASSIFICATION OF THIS PAGE

N.

AFOSR-TR- 8 - 0 780

Approved for public release; distribution unlimited.

A STABILITY PROPERTY OF CONDITIONAL EXPECTATIONS

John M. Morrison Department of Mathematics University of Texas at Austin Austin, Texas 78712

ABSTRACT

This paper is concerned with approximating a conditional expectation of a second order random variable given a random process defined over an interval by a conditional expectation of the random variable given distorted values of the random process at finitely many times. A sufficient condition which guarantees a good approximation is presented. Best estimates of more general fidelity criteria than mean square error are also considered, and the above situation is addressed for a wide class of fidelity criteria.

I. INTRODUCTION

Throughout this paper let (Ω, \mathscr{G}, P) be a fixed probability space and (M, ρ) be a separable metric space. Suppose $\{X(t):te[0,T]\}$ is a stochastic process on (Ω, \mathscr{G}, P) taking values in M that is continuous in probability and $YeL_2(\Omega, \mathscr{G}, P)$. In

many theoretical situations one is interested in E(Y|X(t):te[0,T]). This is the optimal $\sigma(X(t), te[0,T])$ -measurable mean square estimate of Y given perfect knowledge of the process {X(t): te[0,T]} at all times te[0,T]; that is, it is the unique solution [4, pp.43-45] to the problem: min { $||Y-Z||_{L_2(\Omega)}$: ZeL₂($\Omega, \sigma(X(t):te[0,T]$),P)}.

However in many practical situations we are neither able to observe the process continuously nor do we have perfect knowledge about the process when we are able to observe it. Conventional measuring devices and computers can only handle finite data sets. Effectively, they partition M into finitely many disjoint subsets E_1, \ldots, E_n and register a fixed value v_k of E_k if they observe xeE_k , $1 \le k \le n$. These devices are commonly unable to observe the process at all times te[0, \exists]. Our question becomes: How well tan we estimate $E(Y_k^{(t)}:te[0,T])$ given our defective knowledge of $\{X(t):te[0,T]\}$ at only finitely many times t_1, \ldots, t_n belonging to [0,T12]

 $[0, 1]^2$ More generally, we are tempted to ask this question about best estimates of more general fidelity criteria than mean square error. In this paper we will address this question for a very wide class of fidelity criteria.

II. ROUND OFF SCHEMES

Definition: Let Q:M + M be Borel measurable and have finite range, say $\{p_1, \ldots, p_n\}$. The map Qis said to be a round off map if $p_k = Q(p_k)$, $1 \le k \le n$. The set $\{Q^{-1}(p_1), \ldots, Q^{-1}(p_n)\}$ is called the partition of M defined by Q. Definition: Let $\{Q_n\}_{n=1}^{\infty}$ be a sequence of round

Gary L. Wise Departments of Electrical and Computer Engineering and Mathematics

University of Texas at Austin Austin, Texas 78712

off maps on M. The sequence $\{Q_n\}_{n \neq 1}^{\infty}$ is called a round off scheme if

(i) $\forall x \in M \lim_{n \to \infty} dia Q_n^{-1}(Q_n(x)) = 0$

and (ii) the partition of M defined by Q_{n+1} refines

that defined by Q_n , neN. Note $\sigma(Q_n) \subset \sigma(Q_{n+1})$.

The action of these maps suggests a sequence of increasingly accurate measuring devices. We will show that, asymptotically, these distinguish Borel sets in M via the

Lemma 1: $\tilde{V}_{n=1} \sigma(Q_n) = \mathcal{B}(M)$, the Borel sets in M. <u>Proof</u>: C: Obvious, since we require each Q_n to be Borel measurable.

⊃: Choose any open UCM. Pick xeU; lim $Q_n^{-1}(Q_n(x)) = 0$ so there is neINs.t.

 $Q_n^{-1}(Q_n(x)) \subset U$. Thus U may be written as a union of point inverses of the Q_n . Since there are only countably many of these, the union is countable so $Ue_{n=1}^{\widetilde{V}} \sigma(Q_n)$. Since $n_{n=1}^{\widetilde{V}} \sigma(Q_n)$ is a σ -algebra on M containing every open subset of M, we conclude $\mathscr{B}(M) \subset \tilde{V}_n \sigma(Q_n)$. <u>QED</u> Lemma 2: Let $X:\Omega \to M$ be Borel measurable. Then

Lemma 2: Let $X: \Omega \rightarrow M$ be Borel measurable. Then $\sigma(X) = \bigvee_{n=1}^{V} \sigma(Q_n(X)).$ Proof: This is an easy application of the "good sets" principle described in [3, p.5].

<u>Theorem 3:</u> Let $X:\Omega \rightarrow M$ be Borel measurable, $1 \le p < \infty$, and $YeL_p(\Omega, \mathscr{G}, P)$. Then $E(Y|Q_n(X))$ $L_p, a.s. E(Y|X)$.

<u>Proof:</u> [3, p.301] demonstrates that if $\{\mathcal{F}_n\}_{n=1}^{\infty}$ is an increasing collection of σ -algebras on Ω

contained in \mathscr{S} and $\mathscr{F}_{n} = \bigvee_{n=1}^{\vee} \mathscr{F}_{n}$, then

Martingale convergence theorems allow us to asymptotically reconstruct E(Y|X) from $E(Y|Q_n(X))$; see, for instance, [7, Chap. 7].

III. THE L₂ CASE

 $E(Y|\mathcal{F}_n) \xrightarrow{L_p, a.s.} E(Y|\mathcal{F}_m)$

Notation: Henceforth for convenience we will assume \mathscr{P} is complete. If $\mathscr{F} \subset \mathscr{P}$ is a σ -algebra, we denote its P-completion by $\overline{\mathscr{F}}$.

First we dispose of a technicality.

Lemma 4: Let $\{X(t):t\in[0,T]\}$ be a process on $(\overline{\Omega,\mathcal{R}P})$ continuous in probability and D \subset [0,T] be dense. Then

Presented at the 1985 Conference on Information Sciences and Systems, Mar h 27-29, 1985; to be published in the Proceedings of the conference.

$\overline{\sigma(X(t):te[0,T])} = \overline{\sigma(X(t):teD)}.$

<u>Proof:</u> D: Obvious. C: Fix an open UeM, set $U_m = \{xeM: p(x,U^C)\}$ $>\frac{1}{m}$, and let \bar{U}_m denote the topological closure of U_m . It is easy to see that $\{U_m\}_{m=1}^{\infty}$ is a nondecreasing collection of open subsets of M and $U = \bigcup_{m=1}^{U} U_{m}. \text{ Pick te[0,T]}. \text{ Since } \{X(t),te[0,T]\}$ is continuous in probability, there exists a sequence $\{t_n\}_{n=1}^{\infty}$ in D such that $t_n \rightarrow t$ and $X(t_n) \rightarrow t$ sequence $(t_n)_{n=1}^{n}$ (i) o such that $X(t)(\omega)eU_m$. Such that $X(t)(\omega)eU_m$. Suppose lim $X(t_n)(\omega) = n + \infty$ $X(t)(\omega)$; then U_m is a neighborhood of $X(t)(\omega)$ so that there exists NeIN such that for all $n \ge N$, X(t_n)(ω)eU_m. Thus, $\omega \in \bigcup_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{n=1}^{\infty} X(t_n)^{-1}(U_m) =$ $\bigcup_{n=1}^{\infty}$ lim inf X(t_n)⁻¹(U_m), which we will define as A. Conversely, suppose ωeA and that $\lim_{n \to \infty} X(t_n)(\omega)$ = $X(t)(\omega)$. Then there exists nell such that $\omega \epsilon$ $\lim_{n \to \infty} \inf X(t)^{-1}(U_m) \text{ and } X(t)(\omega) \in \overline{U}_m \subset U. \text{ We have}$ $n \rightarrow \infty$ just shown $A\Delta X(t)^{-1}(U) \subset \Omega - \{\omega \in \Omega : \lim_{n \rightarrow \infty} X(t_n)(\omega) =$ $X(t)(\omega)$. Since $X(t_n) + X(t)$ a.s., we see that $A\Delta X(t)^{-1}(U)$ has zero probability; and since Ae $\sigma(X(t), teD)$, we see that $X(t)^{-1}(U) e \overline{\sigma(X(t), teD)}$. Thus for any Borel BCM, $X(t)^{-1}(B) \in \overline{\sigma(X(t):teD)}$. It follows $\sigma(X(t):te[0,T]) \subset \overline{\sigma(X(t):teD)}$. QED Definition: A partition P of the closed interval [0,T] is a finite point set $\{0=t_0 < t_1 \dots < t_n=T\}$. The mesh of P is defined by $\mu(P) = \max \{t_k - t_{k-1}\}$: $1 \leq k \leq n$. Lemma 5: Let $Y \in L_2(\Omega, \mathscr{P}, P)$ and $\{P_m\}_{m=1}^{\infty}$ be an increasing sequence of partitions of [0,T] with $\mu(P_m) \rightarrow 0$. If {X(t),te[0,T]} is a process on (Ω, \mathcal{A}, P) continuous in probability, then $E(Y|X(t): teP_m) \rightarrow E(Y|X(t): te[0,T])$ in L_2 and a.s. <u>Proof</u>: Set $D = \bigcup_{m=1}^{\infty} P_m$; $\mu(P_m) \rightarrow 0$ so D is dense in [0,T]. Thus $E(Y|X_t:teP_m) \xrightarrow{L_2,a.s.} E(Y|X_t:teD)$. Lemma 4 implies E(Y|X(t):teD) = E(Y|X(t):te[0,T]) a.s. Theorem 6: Let Lemma 5 set notation and $\{Q_n\}_{n=1}^{\infty}$ be a round off scheme on M. Then $\lim_{m,n \to \infty} E(Y|Q_n(X(t)):teP_m) = E(Y|X(t):te[0,T])$ in L₂. Proof: For m,nel put $a_{mn} = || E(Y |Q_n(X(t)):teP_m)$ -E(Y X(t) te[0,T]||_{L2}(Ω) $\mathcal{F}_{mn} = \sigma(Q_n(X(t)).teP_m).$

- 2 -

Then it is clear $\mathscr{F}_{mn} \subset \mathscr{F}_{m+1,n}$ and $\mathscr{F}_{m,n} \subset \mathscr{F}_{m,n+1}$ m,nelN. For each m we have

$$E(Y|Q_n(X(t)):teP_m) \xrightarrow{L_2, a.s.} E(Y|X(t):teP_m)$$

as $n \rightarrow \infty$. Now letting $m \rightarrow \infty$ and applying Lemma 4, lim lim $a_{mn} = 0$. For each neIN, $m \rightarrow \infty n \rightarrow \infty$ mn

$$E(Y|Q_n(X(t)):teP_m) \xrightarrow{L_2,a.s.} E(Y|Q_n(X(t)):te[0,T]).$$

An easy extension of Theorem 3 shows

$$E(Y|Q_n(t)):te[0,T]) \xrightarrow{L_2,d.S.} E(Y|X(t):te[0,T]).$$

Thus $\lim_{n \to \infty} \lim_{m \to \infty} a_{mn} = 0$.

Now turn to the L_2 minimization property of the conditional expectation operator to see that $a_{m+1,n} \leq a_{mn}$ and $a_{m,n+1} \leq a_{mn}$, m, ne N. It immediately follows $\lim_{m,n\to\infty} a = 0$.

QED AN ABSTRACT PRINCIPLE OF BANACH SPACES Definition: A Banach space B is uniformly <u>convex</u> if for all $\varepsilon > 0$ there exists $\delta > 0$ s.t. for all x,yeB with ||x|| = ||y||=1, $||x-y|| > \varepsilon$ implies $||x+y|| > 2(1-\delta)$. A Banach space B is locally uniformly convex if for any sequences $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ with $||x_n|| = ||y_n|| = 1$, nelN, $||x_n+y_n|| + 2$ implies $||x_n-y_n|| + 0$. A Banach space B is strictly convex if each point of the unit sphere is an extreme point of the closed unit ball. It is well known that uniform convexity implies local uniform convexity, which in turn implies strict convexity. We denote the metric of B as d. Theorem 7: Let B be a reflexive Banach space and K⊂B be closed and convex. Then for any xeB the set $L = {yeK:d(x,y)=d(x,K)}$ is closed and nonvoid. Proof: See [12, sections 38 and 39]. Theorem 8: Let B be a reflexive Banach space. Then B is strictly convex if and only if for all xeB and for all closed and convex K⊂B there exists a unique yek such that d(x,y) = d(x,k). Proof: This is an easy consequence of Theorem 7. Note that if B is any Banach space so that for any xeB and any closed and convex $K \subset B$ there exists a unique yek s.t. d(x,y) = d(x,k), then B is strictly convex and reflexive. For a proof see [9, p.161]. Theorem 9: Let $\{K_n\}_{n=1}^{\infty}$ be an increasing collection of closed convex subsets of a strictly convex reflexive Banach space B and let K_{m} be the norm closure of $\bigcup K_n$. Note that K_∞ is closed and convex. Let P denote minimum norm projection on K_n , nell $\cup \{\infty\}$; this is well defined by Theorems 7 and 8. Then for all xeB we have Avail and/or Dist Special COPY NSPECTED

N

зs

$||x-P_{\infty}(x)|| = \lim_{n \to \infty} ||x-P_{n}(x)||.$

Proof: Fix xeB. By the minimality of the projections P_n , neN $\cup \{\infty\}$, we have $||x-P_{\infty}(x)|| \leq ||x-P_{\infty}(x)|| \leq ||x-P_{\infty}(x)||$ $||x-P_{n+1}(x)|| \le ||x-P_n(x)||$, neN. Thus $\lim_{x \to P_n} ||x - P_n(x)||$ exists and is not less than $||x-P_{\infty}(x)||$. Conversely, choose $\varepsilon > 0$. Note that $P_{\varpi}(x)eK_{\varpi}$ implies that there exists nell and $y \in K_n \text{ s.t. } ||x - P_n(x)|| \le ||x - y|| + ||y - P_{\infty}(x)||$ $\leq ||x-P_{\infty}(x)|| + \epsilon$. The arbitrariness of ϵ implies that $\lim_{n \to \infty} ||x - P_n(x)|| \leq ||x - P_{\infty}(x)||$. QED Theorem 10: Let B be a reflexive strictly convex Banach space and let $\{K_n\}_{n=1}^{\infty}$, K_{∞} , $\{P_n\}_{n=1}^{\infty}$, and P_∞ be as in Theorem 9. Suppose x,zeB and $P_n(x) \rightarrow z$. Then $z = P_{\infty}(x)$. <u>Proof:</u> Note that $P_n(x)eK_n$, nelN, and K_{∞} is weakly closed, so $z\varepsilon K_{\mathrm{so}}$. By the weak lower semicontinuity of the norm and Theorem 9, ||x-z|| $\leq \liminf_{n \to \infty} ||x - P_n(x)|| = ||x - P_{\infty}(x)||.$ Thus we conclude $z = P_{\infty}(x)$. QED <u>Theorem 11:</u> Let the previous theorem set notation. Then $P_n(x) \rightarrow P_{\infty}(x)$. <u>Proof</u>: Choose any subsequence $\{P_{n_k}(x)\}$ of $\{P_n(x)\}_{n=1}^{\infty}$. By the Smullyan theorem [9, pp.145-156] there exists a further subsequence

$${P_{n_k(j)}(x)}$$
 of ${P_{n_k}(x)}$ and zeB s.t. $P_{n_k(j)}(x)$
 $\rightarrow z$. Theorem 10 implies $z = P_{\infty}(x)$. We conclude
that $P_n(x) \rightarrow P_{\infty}(x)$. QED
Proposition 12: Let B be a locally uniformly

convex Banach space and $\{x_n\}_{n=1}$ be a sequence in B with $x_n \rightarrow x$ and $||x_n|| \rightarrow ||x||$. Then $x_n \rightarrow x$ in norm.

<u>Proof:</u> See [8, p.233]. <u>Theorem 13</u>: Let B be a locally uniformly convex Banach space and $(x_n)_{n=1}^{\infty}$, $(P_n)_{n=1}^{\infty}$, K_{∞} , and P_{∞} be as in Theorem 9. Then for any xeB, $P_n(x) \rightarrow P_{\omega}(x)$ in norm.

<u>Proof:</u> Recall that local uniform convexity implies strict convexity, so minimum norm projections are defined. Pick xeB; $P_n(x) \rightarrow n$

 $P_{\infty}(x)$ implies $x-P_{n}(x) \rightarrow x-P_{\infty}(x)$. But

 $||x-P_n(x)|| \rightarrow ||x-P_{\infty}(x)||$, so the theorem follows from Proposition 12. QED

V. THE CASE OF L_{Φ}

The basic facts about Orlicz spaces we use here may be found in [6] and [10]. Henceforth we stipulate that (Ω, \mathcal{A}, P) be nonatomic.

- 3 -

Throughout we will assume that our Young function Φ : $[0,\infty) \rightarrow [0,\infty)$ has strictly increasing first derivatives on $[0,\infty)$ and that Φ and its complementary Young function Ψ satisfy the Δ_2 or doubling condition. Recall the Luxemburg norm of YeL_{Φ}(Ω, \mathcal{G}, P) is defined by

$$\begin{split} & \mathsf{N}_{\phi}(\mathsf{Y}) = \inf \left\{ \lambda > 0 \colon \int_{\Omega} \Phi\left(\frac{|\mathsf{f}|}{\lambda}\right) d\mathsf{P} \leq \Phi(1) \right\} \\ & \text{and that for a sequence } \{\mathsf{Y}_n\}_{n=1}^{\infty} \text{ in } \mathsf{L}_{\phi}, \, \mathsf{N}_{\phi}(\mathsf{Y}_n - \mathsf{Y}) \\ & + 0 \text{ iff} \\ & \lim_{n \to \infty} \int_{\Omega} \Phi(|\mathsf{Y}_n - \mathsf{Y}|) d\mathsf{P} = 0. \end{split}$$

Furthermore, this norm makes L_{ϕ} a reflexive uniformly convex Banach space. Thus the machinery of the last section applies. Note however that in general these minimum norm projections are nonlinear.

Now let \mathscr{F} be any sub σ -algebra of \mathscr{G} and YeL_{φ}($\Omega,\mathscr{G},\mathcal{P}$). The set L_{φ}(Ω,\mathscr{F},P) is a closed subspace of L_{φ}(Ω,\mathscr{G},P) so Y has a unique minimum norm projection into L_{φ}(Ω,\mathscr{F},P) which we will denote by E_{φ}(Y| \mathscr{F}). The primary tool used in the L₂ case was the martingale convergence theorem; we will obtain an analog of it here. Lemma 14: Let YeL_{φ}(Ω,\mathscr{G},P), $\{\mathscr{F}_n\}_{n=1}^{\infty}$ be an increasing collection of sub σ -algebras, of \mathscr{F} and $\mathscr{F}_{\sigma} = \bigvee_{n=1}^{\nabla} \mathscr{F}_n$. Then $\bigcup_{n=1}^{\nabla} L_{\phi}(\Omega,\mathscr{F}_n,P) =$ L_{ϕ}($\Omega,\mathscr{F}_{\sigma},P$). Proof: Put Z_n = E(Y|\mathscr{F}_n), neIN $\cup \{\infty\}$. Repeated

application of Jensen's inequality yields: $0 \le \phi(|Z_n|) = \phi(|E(Y|, \mathscr{F}_n)|)$

$$\leq \Phi(\mathbf{E}(|\mathbf{Y}| | \mathbf{F}_n)) \\ \leq \mathbf{E}(\Phi(|\mathbf{Y}|) | \mathbf{F}),$$

dominating $\{\phi(|Z_n|)\}_{n=1}^{\infty}$ by a uniformly integrable sequence of functions. Thus, $\{\phi(|Z_n|)\}_{n=1}^{\infty}$ is

uniformly integrable. Now apply convexity and the doubling condition, yielding

$$\begin{split} \Phi(|Z_n - Z_{\omega}|) &\leq \Phi(|Z_n| + |Z_{\omega}|) \\ &\leq \frac{1}{2} \Phi(2|Z_n|) + \frac{1}{2} \Phi(2|Z_{\omega}|) \\ &\leq \frac{c}{2} \Phi(|Z_n|) + \frac{c}{2} \Phi(|Z_{\omega}|), \end{split}$$

where c is a constant from the doubling condition, independent of n. It follows now $\{\Phi(|Z_n - Z_{\infty}|)\}_{n=1}^{\infty}$ is uniformly integrable. Since $\Phi(|Z_n - Z_{\infty}|) + 0$ a.s., $\int_{\Omega} \Phi(|Z_n - Z_{\infty}|) dP + 0$ and $N_{\Phi}(Z_n - Z_{\infty}) + 0$. The lemma follows immediately. <u>Theorem 15:</u> Let $\{\mathscr{F}_n\}_{n=1}^{\infty}$ be an increasing collection of sub σ -algebras of \mathscr{S} and \mathscr{F}_{∞} =

Then if $\operatorname{YeL}_{\phi}(\Omega, \mathscr{G}, P)$, $\operatorname{E}(Y | \mathscr{F}_{n}) \xrightarrow{\operatorname{L}_{\phi}} \operatorname{E}(Y | \mathscr{F}_{\infty})$. ۷ *S*n.

Proof: Apply Lemma 14 and Theorem 13. QE Remark: Consulting [1],[2],[5], and [11] it is possible to see this convergence is almost sure. Now we extend Lemma 5:

Lemma 16: Let $YeL_{\Phi}(\Omega, \mathscr{G}, P)$ and $\{P_m\}_{m=1}^{\infty}$ be an increasing sequence of partitions of [0,T] with $\mu(P_m) \rightarrow 0$. If {X(t):te[0,T]} is a process on $(\Omega, \mathcal{G}, \mathcal{P})$ taking values in M that is continuous in probability then

$$E_{\phi}(Y|X(t):te_{m}) \xrightarrow{L_{\phi}, a.s.} E_{\phi}(Y|X(t):te[0,T])$$

as $m \rightarrow \infty$. Furthermore,

 $\lim_{m \to \infty} \int_{\Omega} \Phi(|E_{\Phi}(Y|X(t):teP_m)$ $-E_{\phi}(Y|X(t):te[0,T])|) dP = 0.$

Proof: Imitate Lemma 5. Theorem 17: Let the previous lemma set notation and $\{Q_n\}_{n=1}^{\infty}$ be a round off scheme on M. Then

$$E_{\phi}(Y|Q_{n}(X(t)):te_{m}) \xrightarrow{L_{\phi}} E_{\phi}(Y|X(t):te[0,T])$$

and

$$\int_{\Omega} \Phi(|E_{\Phi}(Y|Q_{n}(X(t):teP_{m})-E_{\Phi}(Y|X(t):te[0,T)|)dP + 0)$$

as m.n +∞.

Proof: For m, neIN set $\mathcal{F}_{mn} = \sigma(Q_n(X(t)):teP_m)$. Choose sequences $\{m_k\}_{k=1}^{\infty}$ and $\{n_k\}_{k=1}^{\infty}$ so that

 $m_k^{n_k}, n_k^{n_k} \neq \infty$. Put $\mathcal{F}_k = \mathcal{F}_{m_k}n_k^{n_k}$, kelN. Then ۷.۶ k

Finally, for icing on the cake we get a similar result for ordinary conditional expectation:

Theorem 18: Let Theorem 17 set notation. Then as m.n →∞,

$$E(Y|Q_{n}(X(t)):teP_{m}) \xrightarrow{L_{\Phi}} E(Y|X(t):te[0,T])$$

and

$$\int_{\mathbb{C}^2} \Phi(|E(Y|Q_n(X(t)):teP_m)-E(Y|X(t):te[0,T])|)dP + 0.$$

Proof: Mimic Theorem 17 using the fact that $E(Y|,\bar{\mathscr{F}}_{k}) \xrightarrow{L_{\Phi}} E(Y|X(t):te[0,T])$

derived in Theorem 13.

QED

Verlag, 1985.

Remark: If $\phi(x) = x^p/p$, $xe[0,\infty)$ and p > 1, $L_{\phi} = L_p$ and the nonatomicity assumption may be dropped.

ACKNOWLEDGEMENT This research was supported by the Air Force Office of Scientific Research under Grant AFOSR-81-0047. The authors would like to thank Professors Y. Benyamini, E. W. Odell,

H. P. Rosenthal, and G. Schechtman of the Department of Mathematics at the University of Texas at Austin for many helpful discussions. REFERENCES

[1] Ando, T., "Contractive projections in L spaces," Pac. J. Math., v.17, 1966, pp. 391-P 405. [2] Ando, T., and Amemiya, I., "Almost everywhere convergence of prediction sequence in Lp (1 < p <∞), Z. Warsch., v.4, 1965, pp. 113-120. [3] Ash, R., Real Analysis and Probability. New York: Academic Press, 1972. [4] Ash, R., and Gardner, M., *Topics in* Stochastic Processes. New York: Academic Press, 1975. [5] Brunk, H.D., "Conditional expectation given a σ -lattice and applications," Ann. Math. Stat., v.36, 1965, pp. 1339-1350. [6] Diestel, J., Geometry of Banach Spaces: Selected Topics, Lecture Notes in Mathematics, #485. New York: Springer-Verlag, 1975. [7] Doob, J.L., Stochastic Processes. New York: Wiley, 1953. [8] Hewitt, E., and Stromberg, K., Real and Abstract Analysis. New York: Springer-Verlag, 1965. [9] Holmes, R.B., Geometric Functional Analysis and Its Applications. New York: Springer-Verlag, 1972. [10] Krasnoselskii, M.A., and Rutickii, Ya.B., Convex Functions and Orlicz Spaces. Groningen: P. Noordhoff, 1961. [11] Landers, D., and Rogge, L., "Isotonic approximation in L_s," J. Approx. Th., v.31, 1981, pp. 199-223. [12] Zeidler, E., Nonlinear Functional Analysis and Applications, V.III. New York: Springer-

