
AD-ft?2 379 A DECISION SUPPORT SYSTEM FOR SPACE TECHNOLOGY 1/2
TRADEOFFS: A MXCROCONPUTER.. (U) AIR FORCE INST OF TECH

NRGT-PATTERSON A:FI ON SCHOOL OF ENGI.. 3 0 SCHINELLI
DECIE !192C5 AFITG/OS/85D-17 F/O 12/2 N

NONEEEE0 hhmhhEI
I~ii flflflf...flfflifl.

9'j.

UU

IIIIL2

AFITIGOR/OS/85D- 17

0V)

A DECISION SUPPORT SYSTEM FOR

SPACE TECHNOLOGY TRADEOFFS:

A MICROCOMPUTER APPLICATION

** THESIS

AFIT/GOR/OS/85D-17

Bruce G. Schinelli, B.S.
lt Lt., USAF

C-C
DTIC
ELECTE

• - OCT 0 2 1986

Approved for public release: distribution unlSmited

6 ~ 10 2 16

AFIT/GOR/OS/85D-17

A DECISION SUPPORT SYSTEM FOR SPACE TECHNOLOGY
TRADEOFFS: A MICROCOMPUTER APPLICATION

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Operations Research

Accesr-lon For

J'1i: If~t io t

Bruce G. Schinelli, B.S.

1st Lt., USAF Dirtrlhution/

AvailX, Ilttv Codes

Dist 'p2cla1

December 19851

Approved for public release: distribution unlimited

Il

Preface

The purpose of this study was to implement a Decision Support

System on a microcomputer to help prioritize space technology issues.

Previous efforts in this area showed that quantitive methods inade-

quately modeled the space R&D effort. However, during the course of

this research I found that traditional DSS implementation strategies may

have serious shortcomings. I address this problem by advancing a new

implementation strategy. I hope that this strategy may one day be used

successfully in many organizations.

This report is limited in scope to implementing a small portion of

the total space portfolio selection process. The specific methodology

implemented in this report was developed by Capt. John Puffenbarger in a

similar thesis effort. Included in this report are: A description of

decison support systems, a review of previous implementation strategies,

an explanation of the "pilot model" implementation strategy, and a pilot

DSS demonstrating the major principles and processes of a decision

support system.

I would like to thank my advisor, Lt Col Mark M. Mekaru for his

guidance and support throughout this thesis effort. He has invested his

time and effort to insure that this research was a valuable learning

experience for myself and my sponsors, the AF Space Technology Center at

Kirtland AFB, New Mexico. I would also like to thank Lt Col Pete Soliz

of the Space Technology Center, who has taken the time to make this a

truely useful effort for myself and his organization.

Ii

Last, but by no means least, I would like to thank my wife Cecily

for her love, patience and support throughout the course of the graduate

program and especially this thesis effort.

-a

-.

'4J
"a,. ,... - - . -. ,. . . . ,. -. . ,. . .. , - . .. - - - . , -. . . .\ -

CONTENTS

Preface . .i

List of Figures. vi

List of Tables. vii

Abstract viii

I INTRODUCTION 1

Background 1
Problem Statement. 4
Research Question. 4
Objectives 4
Scope. 5

II LITERATURE REVIEW. 6

Introduction 6
DSS Definition 6
DSS Implementation 8
Evaluation of DSSs. 12
AFSTC Decision Process. 12

III GENERAL DSS IMPLEMENTATION STRATEGY 14

Current Strategies. 14

Proposed Strategy 19

IV PILOT MODEL DEVELOPMENT CONSIDERATIONS 26

Implemented Decision Process. 26
System Hardware Considerations. 35
System Software Considerations. 36

V IMPLEMENTATION DESCRIPTION. 41

Program Description 41
Program Performance 56
Final Comments. 57

VI ANALYSIS OF THE PILOT MODEL DSS
IMPLEMENTATION STRATEGY 58

APilot Model Implementation Goals. 58
General Comments. 62

VII CONCLUSIONS AND RECOMMENDATIONS 65

iv

%*a

Appendix A:Verification of 6
Computational Algorithms ... 70

Appndi B:User's M~anua1. 73

Appndi C:Pilot DSS Source Code.84

Vita 162

V

List of Figures

Figure

1 MSSTP Hierarchical Flow 2

2 DSS System Architecture
(Sprague and Carlson)10

3 DSS System Architecture (Denise) 11

4 DSS System Architecture
(Ginzberg and Stohr)11

5 MSSTP Hierarchical Flow27

6 Methodology for Determining the "best"
Concept Option28

7 Relationship of Technology Issues
to Concept Option 34

8 STC DSS Functional Flow44

9 Database Management Options Menu47

10 Concept Options DBMS Options48

11 User Database Review Options Menu51

12 VIEW Menu, first Option of
Review Section52

vi

h
*0

List of Tables

Table

NSSTP Definitions 3

2 Implementations strategies,
(advantages and Disadvantages) 17

3 HP Scale of Relative Importance30

14

.

%'

vii

'S

qS' ~ 'S0\ ~ S
0

~ .'j~;.o.v
S S V S

AFIT/GOR/OS/85D-i7

Abstract

The Air Force Space Technology Center is responsible for defining

goals, tasks and priorities for the military R&D effort in space. To

accomplish this task, the Space Technology Center has developed the

Military Space Systems Technology Plan (MSSTP).

Past research has shown that the research and development portfolio

selection process does not lead to an easy quantitative analysis solu-

tion. The very nature of research and development issues leads to a

more direct involvement in the process by the decision-maker. The

concept of decision support systems (DSS) is tailored toward unquanti-

tative, decision intensive problems.

The ob]ective of this research was to begin implementation of a

DSS for the Space Techno-ogy Center. Research indicated, however, that

traditional implementation strategies may have serious drawbacks to

their effectiveness. To overcome the perceived drawbacks to the tradi-

tional implementation approaches, a new implementation strategy was

formed. This strategy is called the pilot approach.

This research develops the new strategy, begins its implemen-

tation and performs an analysis on the system after beginning the

implementation process at the Space Technology Center.

/

4ll

; ..' ..' :' .. ',¢ ' '', ; c.., ',.,'''.Z ,' ..''', '.. ''',. ' ,,-..''' -,,''',.,'i ,.'" ', ,-''' " - ',"vi-ii-;- '

I. Introduction

Background

The Air Force Space Technology Center (STC) is responsible for

defining goals, tasks and priorities for the military research and

development (R&D) effort in space. To accomplish this task, the STC

developed the Military Space Systems Technology Plan (MSSTP) (4:1-1).

The MSSTP was originally intended as an attempt to optimize the

investment of resources for space technology research (21:3-1). It

catalogs space related technology information, lists possible space

system threats, identifies mission requirements, translates mission

requirements into performance parameters, identifies technology

shortfalls between performance parameters and current capabilities and

recommends R&D programs to meet the projected shortfall (4:1-1). The

stated purpose of the MSSTP is to identify and advocate space technology

needs so that the necessary technologies are available when they are

needed to support military space system performance requirements

(4:iii).

The MSSTP is not just a collection of facts, but a process in and

of itself. The purpose of this process is, as previously stated, to

prioritize technology issues. Figure 1 is an illustration of the MSSTP

hierarchical flow and Table 1 is a list of definitions. The MSSTP

process, as evidenced by Figure 1, flows logically from perceived

missions in space to technology plans that intend to provide the

necessary technology to meet the future need. When the NSSTP was first

written in 1981, a resource allocation model called the Technology

Resource Utility Management process (TRUMP) was designed to be used with

the data in the MSSTP. TRUMP was a set of decision rules intended to

MSSTP HIEARCHICAL FLOW

MISSION
REQUIREMENTS VOLUME I\p

PERFORMANCE
REQUIREMENTS

CONCEPTS

VOLUME II

TECHNOLOGY 1
L ISSUES

III, IV, V

TECHNOLOGY

PROGRAMS

VOLUME VI TECHNOLOGY

I PLAN

Figure 1. MSSTP Hierarchical Flow (4:iv)

provide an optimum strategy for resource allocation based upon the input

priorities of the technology programs and their cost. TRUMP, however,

was soon discarded as a viable model because it became obvious that it

was attempting to develop a priority list by applying quantitative

methods to a strategic planning problem, which is unquantitative in

nature (21:3-4,3-5,3-27). In a Masters thesis for the Air Force

Institute of Technology, Rensoms and Chapman developed a decision

support methodology for prioritizing space technology issues,

2 'S

p

_ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ _WVWW _V 1.- '.W. - -- - W; _, ? - , . w

TABLE 1
MSSTP DEFINITIONS

MISSION

-- A general military statement formulated to
counter identified threats and meet needs.

MISSION REQUIREMENT

- - A specific statement of what must be done to
accomplish a mission.

-- Two or more mission requirements per mission.

PERFORMANCE REQUIREMENT

Those quantified capabilities necessary for the
accomplishment of military mission requirements.
Specifically, the coverage, capacity, quality,
timeliness, availability, and survivability of
the space concept should be addressed.

CONCEPT

A general outline of a space system with per-
formance goals and technology requirements.

TECHNOLOGY REQUIREMENT

-- Capability needed to meet desired concept per-
formance.

TECHNOLOGY ISSUE

- - A technology requirement beyond projected state
of the art necessary for space system perform-
ance.

TECHNOLOGY PROGRAM

A specific program which addresses a technology
issue. Most technology issues have more than
one technology program associated with them.

(4:v)

3

specifically for the MSSTP (21:1-1). This methodology recommended the

use of a computer aided decision making tool as the means to effectively

prioritize space technology issues (21:6-1). A computer-based decision

making aid is commonly termed a Decision Support System (DSS).

Problem Statement

A decision-making aid would be helpful to the Space Technology

Center (STC) to help prioritize and advocate the technologies presently

listed in the MSSTP, and any future technology issues. An effective

implementation strategy will be needed to create and maintain advocacy

for a complete structuring of the STC decision process. The decision-

making aid should be designed for use on a microcomputer system to

insure that it can be used by resources currently present at STC. A

pilot Decision Support System, designed for a microcomputer system,

would prove beneficial to the appropriate decision makers at STC in

making more effective decisions.

Research Question

How can a pilot decision support system be designed for the Space

Technology Center to best demonstrate the capabilities of the DSS

concept to provide a basis for advocacy of computer-aided decision

support for the STC decision process?

Obiectives

The major objective of this research is to develop an effective

strategy for the implementation of a decision support system for the

prioritization of space technology issues at the Space Technology

Center. Specific subobjectives are:

1) Develop software that demonstrates the major charac-
teristics of a decision support system.

4

I. 41

2) Demonstrate the pilot model DSS to the STC to begin

the DSS development cycle at STC.

Score

This research is intended to provide an effective strategy for the

development of a DSS at the Space Technology Center. It is also the

intent of this research to begin the first step in the implementation

process and develop a series of software capabilities that demonstrate

the main characteristics of a DSS. This pilot model DSS will be

developed to provide a basis for advocacy of the DSS concept for use

within the STC organization. This research will address shortfalls in

previous implementation strategies and introduce a new strategy that

will overcome them. It is intended that this implementation could be

the nucleus of a full support microcomputer implementation of a DSS for

the prioritization of military space technology issues.

5

4

II. Literature Review

Introduction

In recent years, the term Decision Support System (DSS) has become

a major topic of discussion. The definitions, characteristics,

components and history of DSS are all hotly debated and vary a great

deal in the literature. It is not the purpose of this literature review

to discuss in detail the complete block of knowledge available

concerning Decision Support Systems. In fact, many good literature

reviews and summaries concerning DSS already exist (9;16). Instead,

this review will focus on a basic, generalized overview of the DSS

literature and only provide specific information on those points that

are relevant to this research.

Decision Support System Definition

Since the early 1970's a number of authors have advanced different

definitions of the DSS concept (1;3;9;10;14;17;18). For example, in

1971 Gorry and Scott Morton (10) identified DSS as systems that would

support managerial decision-makers in unstructured or semi-structured

decision processes. The key concepts advanced by Gorry and Scott Morton

in the above definition were support and unstructured. The systems that

they wrote about were aimed at extending the capabilities of the

manager; not replacing him or his judgement. Thus the emphasis is on

support. These systems were also aimed at helping managers solve

unstructured problems, problems that could not be coded into an

algorithm and solved automatically (9:9). A structured problem is one

in which the decision being made is repetitive and routine "to the

extent that a definite procedure has been worked out for handling them

6

• . .. '- ' . .. '' '- ' .-> . ..- , +". ' t -". . "-- ' .'""..- " + .'' . .'+ .'- " . . .-" "+"2.

so that they don't have to be treated de novo each time they occur

(13:85)." In contrast, an unstructured problem has some distinctive

attribute or attributes that makes it unique each time it arises, making

it impossible to deal with automatically. An implicit assumption of

most, if not all, early definitions of DSS was that they should be

computer-based (9:10). This is evident from the fact that the

structured and unstructured definitions closely follow the definitions

of Simon's terms "programmed" and "unprogrammed", respectively, and

Simon's admission of borrowing the terms from the computer industry

(25:6).

An extension of Gorry and Scott Morton's DSS definition was

provided by Little (17). He did not specifically use the term DSS, but

defined "decision calculus" as a system of models to help a decision-

maker solve decisions (9:10). Little also defined characteristics that

such a system must have to be successful, as did Moore and Chang (18)

and Bonczek, Holsapple and Whinston (3), i.e., simple, robust, easy to

control, adaptive, and complete (9:10). Finally, Keen (14) described

DSS as an evolutionary process, with the user, the DSS, and the DSS

designer interacting with each other (9:10). While all of these

definitions provide pieces of the DSS picture, they also raise some

basic questions. For example, Keen's (14) definition may lead us to ask

"how the development process can be structured to assure that the feed-

back loops among user, builder, and system are in place and functioning

(9:12)." Ginzberg and Stohr argue that although the more recent

definitions (1;3;14;18) pose interesting problems, they change the

emphasis of DSS research away from its central issue of supporting and

improving decision making for managers (9:12).

The perceived move away from the real "issue" of DSS lead Ginzberg

7

and Stohr

and Stohr to propose the following definition for a Decision Support

System:

A DSS is a computer-based information system used to
support decision making activities in situations where

it is not possible or not desirable to have an auto-
mated system perform the entire decision process (9:12).

It is the above definition that will be used to define a Decision

*" Support System in this research paper.

A literature review from a different perspective may be found in a

thesis by Koble (16) and a history of the DSS concept in Clark (5).

Both show the DSS as a continuing process developed from electronic data

processing (EDP) and management information systems (MIS). It is argued

that DSS has developed as the role of computers in managerial organiza-

tions has developed. The work of Davis and Ohlson (7) also support this

evolutionary view.

Decision Support System Implementation

While there are many opinions on the definition of DSS, there are

as many or even more opinions on what features constitute a DSS. This

literature review will focus on the characteristics of a DSS that may be

useful for the type of implementation planned.

Some of the most important characteristics of a DSS that are seen

constantly in the literature are:

1. Man-machine interface, where the decision-maker
retains control over the decision process.

2. Utilization of the appropriate mathematical and
statistical models.

3. Query capabilities to obtain information by request.

4. Comprehensive database with database management.

5. Easy to use approach and a completely user
friendly interface between the decision-maker, the

S.

database, and the models.

6. System is adaptive over time, i.e. flexible.
(2;7;9;13;27;29)

The above characteristics drive system architectures that are different,

yet very much the same. For example, Figure 2 is a system architecture

by Sprague and Carlson. It is composed of a database management system

(DBMS), a model-base management system (MBMS), and a dialog management

system (DGMS). The DGMS is another name for the user interface. Figure

3 is from an article by Denise. His system architecture is structured

slightly differently than Sprague and Carlsons. The report block repre-

sents the user interface. The modeling system is represented by two

blocks, statistics and modeling. The database system is represented as

the database block. Finally, Figure 4 is from Ginzberg and Stohr. It

adds a few extra sections to the system configuration. The extra

blocks, however, are not unique to their system representation. They

are implicit in the definition of the user interface for the first two

system architectures. It is interesting that the models all include

databases, user interfaces and modeling capabilities. They only differ

in how the different components are addressed by the DSS, which is by no

means a minor point. They do, however, give a strong indication of the

necessary components, i.e. a database, a modelbase, and a user inter-

face, that should be included in a DSS, and what their capabilities

should be. An interested reader can find further DSS model represent-

ations in Thierauf (29), Alter (2), and Bonczek et al. (3). After

researching what a DSS is, what characteristics it should have, and its

most likely form, it was necessary to look into its applicability to

personal (micro) computers. It has been recognized that (potentially,

at least) the microcomputer represents the single most important advance

9

THE DSS

Database Model base

DBMS Hams

-- DGMS - -Software

system

Task Environment

USER

Figure 2. DSS system architecture -Sprague and Carlson
(27:29)

1.0

W. W.

THE FOUR MAJOR COMPONENTS OF A DSS

MODEINGEt ORTINJ

Figure 3. DSS system architecture -Denise (8:208)

DATABASE DATA EXTERNAL
MANAGEMENT -EXTRACTION ENVIRONMENT
SYSTEM SYSTEM

Z'a

USERLANGAGE YSTE

USER INTEFACE INTEFACE DIRETOR

SYSTEMSYSTE

MODEL

Figre4.DS sste achtetue Gizbrgan Soh(AN:17)N
MANAGEI

SYSTI
SYSTEM

Fiur 4.DSsse rcietr izbr n th

7- 7% 7

in the DSS area. As the speed and capability of the microcomputer

increases, so does their utility to the decision-maker. For the first

time the decision-maker can bring computing power into his office under

his personal control (8:210;15:34). The utility of using microcomputers

to solve Operations Research problems was the topic of a thesis by Greg

White. In his research he found a number of articles that supported

this view (30:8). Nobles (19) also came to the same conclusion in a

similar effort.

It is clear at this point that the literature supports microcom-

puter based decisior-aids in the form of decision support systems.

There is also a large body of knowledge agreeing on what these systems

should do.

Evaluation of Decision Support Systems

One area of operational interest that has not received much

attention is that of DSS evaluation. Bertram Spector, an analyst with a

firm practicing DSS techniques for the corporate world, feels that this

is one of the most pressino areas for DSS research in the coming years

(26:1). Sprague and Carlson agree, stating that few, if any, evalua-

tions of DSS systems have been reported (27:157). They list several

possible ways that a DSS could be eva-uated, such as cost-benefit

analysis, value analysis, cognitive testing and attitude surveys

(27:162). Both Sprague and Carlson and Keen and Scott Morton agree,

however, that the only practical measure of DSS success is if it is

extensively used (13:216:27:158).

AFSTC Decision Process

An extensive review of the AFSTC decision process was accomplished

12

-> . :. .- '>-,". - 5-.." ' -F-. v' ('9 -- - 5- -" .-<--. (." -F'F -'F-F I-.''<.-;- -' ---.- i ..'- ' - F(.- ' -i 'a.,

rVP

by Rensema and Chapman (21). They also completely reviewed the pre-

viously mentioned methods for prioritizing space technology issues. In

their work, they found that the Analytic Hierarchy Process (AHP), a

method of ordering alternatives, was preferable to other methods of

prioritization for the space technology problem (21:2-27,2-28). In

developing a methodolgy to identify the "best" point design among con-

cept alternatives (see Chapter 1), Puffenbarger also selected AHP as the

decision process of choice (20:27).

'€ 13

4..

.4 - • " - . ' - " . " , , % " • % % % % % % % % ,, ° ', ", • . , '" ' .. '''

III. General DSS Implementation Strategy

In general, a Decision Support System (DSS) development effort

requires a number of people to be involved at many different levels of

the effort (27:64). Also, DSS implementations are generally considered

to be iterative processes, where system prototypes are developed,

evaluated, and redeveloped due to end-user inputs (11:80). However, as

stated earlier, it is not the intention of this research to "prototype"

a DSS. This research develops a "pilot" model; a model that demon-

strates the basic principles of a working DSS. This new implementation

strategy and how it fits into the architecture of current iterative

development schemes are the subjects of this section. First, however,

several current strategies for DSS implementation will be profiled.

Current Strategies

Most of the many different implementation schemes advanced in the

literature could be placed (to some degree or another) into the

following three categories: the "quick hit", the staged development

approach, and the complete DSS [as advanced by Sprague and Carlson]

(27). All of these strategies stress the importance of the evolutionary

process that is characteristic of a DSS. In fact, recent literature has

gone "as far as saying that an evolutionary design process is a prere-

quisite for calling a system a DSS (9:24)."

Quick-Hit. The first strategy advanced is the quick-hit. This

strategy advocates the development of a working DSS in an area where

there is an easily recognizable payoff. This would involve using the

most appropriate tools, and reaping the benefits as quickly as possible.

This strategy has some obvious strengths. First, the quick hit method

14

% -!
i J% P1

provides immediate benefits. The organization is able to use a DSS for

a specific task immediatly, producing a fast, measurable payoff.

Secondly, this strategy has an associated lower risk. The develop-

ment of the DSS is "quick", reducing the chance that the decision

process changes during development. The chance of technological obsole-

scence once the system is complete is also minimized.

Third, the quick-hit strategy has easier development procedures.

The quick-hit method requires less planning than other methods because

it is not meant to be expanded. When a new system is required, it would

be built from scratch.

Finally, the quick-hit strategy can take advantage of the

availability of the latest technology. The DSS can be constructed with

the very latest hardware and software available.

After the first DSS is in place and functioning at its intended

purpose, the organization should begin the second iteration of the

implementation process. The changing requirements of the completed

system, as well as new areas in the organizations decision process,

would be identified and included in the design of the next DSS. The

second (and subsequent) iteration DSS would use the latest tools and

technology available to implement a completely new system.

With advantages, however, come disadvantages. The fact that there

is no carryover from the first DSS to subsequent DSS implementations is

a disadvantage as well as an advantage. The software developed for the

first DSS may not be applicable to the next DSS. Also, a DSS developed

using the most expedient means may not be as flexible as a DSS built

using another strategy. Therefore, a quick-hit DSS may require more

maintenance to keep it current (27:60-63). Some of these disadvantages

15

..

are overcome by the second implementation strategy, the staged develop-

ment approach.

Staged Development Approach. The staged development approach tries

to combine the quick-hit method with more planning and forethought.

This strategy involves developing the first DSS with its application

toward the second and subsequent systems kept firmly in mind (27:60).

This strategy hopefully leads to the development of a DSS Generator. A

DSS Generator is defined as "a package of related hardware and software

which provides a set of capabilities to build specific [working] DSS

quickly and easily (27:11)." The main advantage of this approach is

that it gives an organization an initial DSS capability, but does not

sacrifice expendability. The initial DSS is a step toward a DSS gener-

ator that can be rapidly applied to many organizational decision

scenarios. Also, this approach would allow the integration of new

technology without losing the previous capabilities as older systems are

scrapped. At the same time, the organization's risks of technological

obsolescence and changing decision requirements are minimized by the

fairly quick development of the first working DSS. The disadvantages,

however, are that the organization must place some initial resources on

the development strategy and experience some delay in reaping the bene-

fits (27:61-62). The final implementation strategy is the most general

of all and is called the complete DSS by its proponents.

Complete DSS. The complete DSS implemetation strategy proposes

that major planning and development should be accomplished before the

first working DSS is built. This strategy would entail the development

of a complete DSS generator, as defined earlier. Again, there are

advantages and disadvantages to this implementation scheme. This

-16

TABLE 2

QUICK HIT

ADVANTAGES DISADVANTAGES

- Fast payoff - One shot-no likely carry

- Low risk over to next DSS
- Easier to apply technology - Specific DSS may require

and development procedures more effort to change
- Latest technology always

available

STAGED DEVELOPMENT

ADVANTAGES DISADVANTAGES

- Leads to development of - Requires additional cost
DSS Generator up front

- Gives early success and - Delays initial success
visibility somewhat

- Allows integration of new
and old DSS

- Ability to assimilate evolving

technology

COMPLETE DSS

ADVANTAGES DISADVANTAGES

- Likely to be best inte- - Long development time
grated and have beat before first benefits
architecture are realized

- Will reach full strength - High risk of technolog-
soonest ical obsolescense

- High risk of unknown

problems

Implementation Strategies: Advantages and Disadvantages
(27:62)

17

. .•. ., . ,. . . . "..-; - ."; ;.,.: .. - .' , ' '.',.* .- ." -. " " ,',

-W" Y * -. W- IT V.* -7 -7 -- *.

approach has a greater probability of becoming the most efficient gener-

ator. It will probably have a better integrated set of tools to work

with and it will probably have a better system architecture. The com-

plete DSS approach will probably also lead the building organization to

"full-up" status first. That is, this approach will give the organi-

zation its most complete, and beat organized, DSS generator and specific

decision support systems quickest, in the long run. The disadvantages,

however, are considerable. A complete DSS development effort will

probably take a long time, and is considered a multiyear program.

Because of this lengthy development time, the complete DSS is

susceptable to becoming technologically obsolete before the first

working DSS is constructed from the generator (21:63). Table 2 summa-

rizes the major advantages and disadvantages of the implementation

strategies as outlined in the paragraphs above.

Sprague and Carlson, after reviewing the three implementation

strategies listed above, conclude that the staged development approach

is the best as it balances the other two schemes (27:63). In fact, most

DSS researchers seem to agree. Thierauf's (29) implementation scheme

follows closely in most major details with the staged development

approach. It recommends the development of a first complete system with

appropriate planning, and then the integration of more capabilities

later (29:131-147). Keen and Scott Morton also follow the staged

development approach, although they term the phrase quite differently:

as the predesign cycle, design stage and postdesign process (13:167-

185). Their approach also advocates the development of a working model

and increasing capabilities through the iterations. Neither Thierauf

or Keen and Scott Morton specifically mention the concept of DSS gener-

18

PG . . .
- ., -. ' .'. ?.' '.. .'..'. ..- , -. , .--. ' .' .. " ':.->-' - '.... . '..-.... . '. i

ators, but the idea is implied in the continually expanding system.

There is evidence, however, that the staged development implementation

strategy, and all prototyping strategies in general, may have even more

serious shortcomings than previously mentioned. These shortcomings are

dangerous because they are manifested in characteristic strengths of DSS

implementation strategies. In a recent study, two researchers

(Henderson and Ingraham) found that prototyping is a "highly convergent

design process (11:86)." This type of process, they feel, would lead to

a high degree of user satisfaction and therefore, use, which is one of

the previously discussed objectives or characteristics of a DSS (see

chapter 2). They also found that the availability of a specific DSS

ready for use fairly quickly is useful in supporting the user during the

lengthy development time for the system generator (DSS generators are

again not expressly mentioned, but are implied). The problem lies in

Henderson's and Ingraham's findings that this process may lead to infor-

mation requirements and needs being missed, with the propagation of "a

status-quo which is sub-optimal (11:86)." Furthermore, by focusing the

design of the initial DSS on a single user, the entire system may

reflect the bias of that one individual throughout the life of the

system. Finally, they found that the prototyping approach (the staged

development approach) is particularly effective in defining system inte-

gration needs. The single user focus, however, may not be effective in

implementing those requirements into the integrated DSS (11:86).

Proposed Strategy

In this research effort, a new implementation strategy will be

advocated and initiated for the Space Technology Center. This implemen-

tation strategy will be similar to the staged development approach with

19

* ~...

leanings toward both the complete DSS approach and the quick-hit

approach. The new strategy will be called the "pilot" approach.

In general, the pilot approach to DSS implementation will be a

parallel effort. Once an organization has decided that a DSS has poten-

tial applications for some of their decision processes, a DSS working

group (much like that for staged development) would be formed. As in

the staged development approach, this group would consist of users,

Operations Research analysts, and programmers. It should be noted that

whether or not this development will be accomplished "in-house" or by

contract has no bearing on the composition of the working group. If the

DSS is to be built in house, the interested parties will be assembled

from different divisions. If the work is to be accomplished by con-

tract, the users will come from the buying organization with perhaps

representation from other departments, such as the programming depart-

ment, if the system will be maintained in-house after purchase.

After the working group is formed, the major difference between the

prototype approach and the pilot approach is evident. At this stage,

the prototype approach would begin working on a preliminary study before

developing the first specific DSS. Under the pilot approach, the group

would begin a preliminary study, but would also immediately develop a

"pilot" DSS. The pilot model DSS would be an actual DSS capable of

functioning and providing an initial, although quite limited, capability

to the end user. It is important to note that the pilot model need not

be a complete working model. The intent of the pilot model is to serve

as a basis for DSS understanding. The pilot model would be built with

no intention of follow on DSSs, as is planned in the staged development

approach.

20

"..n ,. .,

The pilot model should contain as many features as possible, but

remain simple so that it is put together quickly. At the same time, or

perhaps after the pilot model is completed, a complete DSS specification

and implementation strategy would be developed.

As previously stated, the main objective of the pilot model is to

provide a basis for understanding the nature and characteristics of a

decision support system within the organization. To support this, the

major characteristics that the pilot model should display are:

1) User friendliness. The major emphasis in designing
and implementing the pilot model should be the man-
machine interface. If the program is not easy to
use, it won't be used.

2) Appropriate operations research techniques, mathe-
matical and statistical models. The pilot program
should contain enough capability to provide an ac-
curate picture of the potential capabilities of the
eventual "full-up" system for the end-users.

3) The usefullness of databases and database manage-
ment. The DSS software for the microcomputer should

be able to provide an accurate representation of the
information needs of the organizational decision pro-
cess, and how the information will be managed and

presented.

The characteristics listed above are several of the most important

for any DSS. They are not, however, all of the characteristics commonly

listed in the literature (see Chapter 2). Not all characteristics of a

working DSS are necessary in a pilot model. For example, the flexi-

bility of a DSS is usually a major factor in its development. A DSS

should be flexible internally and externally. Internal flexibility

means that the software itself is flexible for the user. It would allow

the user a wide range of options and be able to perform a large number

of tasks. The DSS would perhaps allow the user to link functions and

create new tasks. External flexibility concerns the programmers of the

21

DSS. To be externally flexible the DSS should be easy to change and

iterate as a system. For these reasons, there is no need to emphasize

flexibility in the demonstration model. The program should be flexible

wenough to display the concept of internal flexibility to the user, but

should also remain simple. To remain simple, the program should not

contain external flexibility features that would increase the develop-

ment effort of the programmers and designers of the pilot model.

The pilot approach, as stated, would remove most of the disadvan-

tages cataloged for the other implementation strategies. In fact the

objectives of the pilot model are to overcome the limitations of "proto-

type" strategies, such as the staged development approach. Simply

stated these objectives are: 1) Educating users about DSS's and their

capabilities so that the users may better define their requirements

(type and format of data, type of analysis, possible functions, type of

user interface, displays, etc..) for the complete system: 2) Generate

acceptance and possibly advocacy, which are keys for DSS success, and

generate further interest in other users, to eliminate single user bias;

3) Give users, programmers and designers, the main components of the DSS

working group, an appreciation of the other group members point of view

and to stimulate knowledgeable discussion between them while the DSS

project is in its infancy, thus avoiding costly communication errors:

and 4) As most decision support systems are designed around existing

databases, a pilot model would give the designers/programmers an under-

standing of the current database. This understanding would include

issues such as data content and structure. For example, if information

is stored as characters, but must have arithmetic operations performed

on it to present it in a format palatable to the decision-maker, it must

22

be converted to a numeric format.

In summary, the objective of the pilot system would be to inform

the organization of the many possibilities inherent in DSS, and to

channel the interest into the development of a DSS generator that could

benefit the entire organization, not some small part of it. Secondly,

while educating all people that may be involved in the development

process, the pilot model would point out at an early stage development

problems that need to be addressed.

On one hand, it has been shown that the prototype strategy for DSS

development has some serious shortcomings. On the other, it has some

major advantages also. The pilot approach, as advanced in this

research, is designed to eliminate those disadvantages. No technique,

however, is without its own disadvantages. Some may consider it a waste

of resources and effort to develop a system that may not provide any

real capability, with the intention of discarding it at a later date.

These critics would be at least partially correct. The issue is depen-

dent on the amount of return for the investment. By creating interest

in the organization and demonstrating system capabilities, a more cost
4.

% effective system is achievable. If, for example, the staged development

process is followed for a number of years, and the user that has been

the major focal point of the DSS and its many iterations leaves the

organization, the previous effort may contain too much personal bias to

be palatable to his or her replacement. In contrast, the pilot approach

attempts to increase the number of interested users in the organization.

Also, the purpose of the demonstration model is to promote the education

of the user. If a new user arrives after the pilot model has been

constructed, and the implementation process is nearing completion of the

23

• .

first working model, the pilot model can be used by the designer to

identify any new requirements generated by the new user. This point is

.tremely critical with respect to an organization such as the military,

which experiences frequent personnel changes in its upper and middle

management.

It should be noted that the pilot model implementation strategy may

not be effective when applied to small organizations. This strategy

would not be cost effective for a small organization that does not have

a wide range of decision processes or possible users of the system. The

decision to use a pilot model implementation approach is based upon the

possible gain in knowledge of the user versus the potential costs. A

small organization may not be able to justify the use of resources to

build a pilot model.

The pilot model strategy may be particularly effective when applied

to large organizations. Large organizations may have a multitude of

decision processes. By generating advocacy within the organization the

pilot model approach may lead to an integrated DSS for the entire organ-

ization. An integrated DSS may save the organization significant costs

over the life of a DSS implementation effort.

As a final point, a pilot model implementation approach may indi-

cate that further DSS development is inappropriate. A particular

problem may be insurmountable with current technology, or the decision-

maker may decide that a DSS is not needed by the organization. The

pilot model approach may be a particularly valuable strategy when the

organization is not sure that it needs a DSS. Building the pilot model

could act as a catalyst that would bring the organization to a swift

decision, either for or against further development. In either case,

24

the pilot model would have served its purpose. An organization would

have made its decision with the least cost invested in the development

effort.

Because of the above advantages, the pilot model implementation

strategy is a valuable approach to DSS development in a military

environment.

2

oJ

25%

IV Pilot Model Development Considerations

Implementing a pilot model decision support system for space tech-

nology tradeoffs required a careful analysis of the decision process at

the Space Technology Center. As in any DSS design and development

phase, the pilot approach included, user involvement is essential. The

portion of the MSSTP process selected for implementation had to be the

area most likely to receive the highest degree of user support. This

section first describes the area selected for implementation and the

reason for doing so. System hardware and software considerations are

also discussed.

Implemented Decision Process

The decision process selected for implementation was an extension

of the current MSSTP process developed by Puffenbarger in his thesis "A

Methodology for Assessing Technology Trade-offs of Space-Based Radar

Concepts." In short, Puffenbarger asserts that another step is needed

in the current decision process. He contends that concepts, as defined

in Chapter I, should be broken into concept options (which are point

designs that satisfy the general requirements of a concept). In choosing

the best concept option, using a predefined set of criteria, the tech-

nology issues associated with that concept option would have more weight

in the overall prioritization scheme (20). This methodology was choosen

for implementation for two main reasons. First, STC had expressed great

interest in a process that helped choose the best concept option or

point design of a given concept. This interest could work to the advan-

tage of a pilot model type implementation strategy by generating

interest in decision support systems, once a system is developed.
',

26

* ON.. -N

Secondly, as Puffenbarger's research was conducted concurrently with

this effort, a high degree of involvement by a "user" could be achieved

in the formation of the pilot model. As advances were made in the .,

methodology, changes could be made in the pilot model. A further expla-%

nation of the methodology is given below.

The new methodology expands the concept to technology issue portion

of the MSSTP's current process by adding what Puffenbarger terms "con-

cept options" (20:3). Puffenberger argues that different system

MSSTP HIERARCHICAL FLOW

MISSIONS

MISSION
REQUIREMENTS

VOLUME I

PERFORMANCE
REQUIREMENTS

FCONCEPTS
VOLUME II

TECHNOLOGY VU
ISSUES

IVOLUMES
\C G IIII, IV, V
TECI OLOGYj

PROGRAMS

VOLUME VI TEC NOLOGY

PLAN

Figure 5. MSSTP Hierarchical Flow (4:iv)

27

MISSION MISSION
(Support Mission) (Combat Mission)

(Air Vehicle Detect/Track)

MISSION REQUIREMENTSA SCENARIO
(Detect Aircraft) (Conus/Fleet Air Defense)

PERFORMANCE REQUIREMENTS
(Coverage)

(Capacity)
(Quality)

(Timeliness)
(Availability)

(Survivability)

CONCEPT .-

CONCEPT OPTION A CONC T OPTION B C CEPT OPTION C

PERFORMANCE/DESIGN
(Corporate-fed Phased Array)

14
TECHNOLOGY DISCIPLINES

(RADAR)

TECHNOLOGY ISSUES
(T/R Modules)

CHARACTER OF TECHNOLOGY ISSUES

(Performance)
(Schedule)

(Risk)

Cost

PAIRWISE COMPAIRISONS PAIRWISE COMPARISONS
(Options based on Criteria) (Criteria based on objectivea)

(AHP)J (AHP)

SYNTHESIS

(AHP) . AHP Priority Vector

Figure 6. Methodology for Determining the "Best"
Concept Option (20:96-99)

28

designs influence the rank ordering of technology issues. If the beat

system point design can be found, then the technology issues associated

with that design (concept option) should be ranked the highest in

priority for the given concept. Figure 5 is the representation of the

MSSTP planning or prioritization process from the MSSTP itself, and is a

copy of Figure 1 from Chapter I. Figure 6 is the methodology for

determining the "best" concept option, as developed by Puffenbarger.

The two processes are similar until the concepts (apace system concepts)

are determined. At that point, Puffenbarger breaks a concept into

concept options. Then, Puffenbarger defines four criteria with which

the different concept options can be measured against: performance, "4

schedule, risk and cost. The performance of a concept option is the

estimated performance of the concept option in six areas as defined in

the MSSTP, i.e., survivability, coverage, capacity, quality, timeliness

and availability. The schedule for a concept option would include the

earliest completion date, earliest production date and initial operating

capability (IOC). The risk for a concept option could include factors

such as the number of "risky" technology issues associated with a con-

cept option, the potential variability of the schedule for solving the

technology issues associated with the concept option, and the potential

failure of one or more technology issues in meeting the required perfor-

mance levels. Once these criteria were defined and the concept options

were identified, Puffenbarger chose the Analytic Hierarchy Process as

the methodology best suited to providing a structured decision process

to this problem (20:55-80).

The Analytic Hierarchy Process (AHP)

is a systematic procedure for representing the elements
of any problem. It organizes the basic rationality by

29

......... '..4*.*.***°

breaking down a problem into its smaller constituent
parts and then calls for only simple pairwise compairi-
son judgements to develop priorities in each hierarchy
(22:140).

Translated for simplicity, AHP, as applied to the methodology outlined

above, breaks the problem of finding the best concept option into two

parts. First, the relative weight or priority of the criteria must be

found. Then, the options must be compared against each other with

respect to the criteria, to find the relative weight or priorities of

the concepts with respect to each criteria. The relative priority of

each element of a given level of the hierarchy is found by first

presenting a series of pairwise comparisons of the elements. For

TABLE 3

SCALE OF RELATIVE IMPORTANCE

Intensity of
Relative Definition Explanation
Importance

1 Equal Importance Two activities contribute
equally to the objective.

3 Moderate Importance Experience and judgement

of one over another slightly favor one acti-
vity over another.

5 Essential or Strong Experience and judgement
strongly favor one acti-
vity over another.

7 Very Strong An activity dominates the
other, and demonstrates
it in practice.

9 Absolute Importance The evidence favoring one
activity over another is

overwhelming.

2,4,6,8 Intermediate values When compromise is needed.
(22:145)

30
I,

example, the first level of the hierarchy of Puffenbargers methodolgy is

the attributes criteria, performance, schedule, risk and cost.

The comparisons are based upon a scale that is represented in Table

3. This scale defines the relative importance of one object to another,

and is the value that is used for priority calculations. The compari-

sons build a square, reciprical matrix at each level of the hierarchy.

This matrix is solved for its characteristic eigenvector. This eigen-

vector is then normalized by dividing its components by the sum of all

elements of the eigenvector. The normalized components of the elgen-

vector are then the priority vector for the elements of that level of

the hierarchy (22:141).

The synthesis of priorities is performed after all of the priority

vectors have been calculated. The overall priority of the hierarchy is

calculated

by multiplying local priorities by the priority of
their corresponding criterion in the level above
and adding them for each element in a level accord-
ing to the criteria it affects. This gives the com-
posite or global priority of that element (22:141).

For the methodology of Puffenbarger, this means that the priority or

weights of the four attributes, performance, schedule, risk and cost is

calculated. Then, the priority of the concept options is calculated

based upon each of the attributes, resulting in four seperate priority

vectors. The weight of performance is multiplied to the concept option

priorities based upon the performance measure. The weight of the

remaining three attributes is multiplied to the appropriate vector. The

final priority of each concept option is the sum of the weight of each

concept option after it has been multiplied by the weight of the

attributes.

31

t % ".wrm~LzAt..~-2.Jt S a s-.-

An advantage of this technique is that a measure of the consistency

of the decision-makers judgements is available. The consistency ratio

(CR) measures the departure of the maximum eigenvalue from the number of

elements at a given level of the hierarchy. The consistency ratio is

found by first obtaining the consistency index. The consistency index

is caluclated by subtracting the number of elements (n) from the maximum

eigenvector and dividing by (n - 1). The consistency index is then

divided by a random consistency calculated n elements, yielding the CR.

This measure should be below 10% to indicate consistent judgements by

the decision-maker (22:142-143).

It should be noted that the above is a very cursory explanation of

the Analytic Hierarchy Process. It is actually a rigorous and complex

process designed to set structure to complicated and unstructured prob-

lems. The purpose of this review was to set forth a minor explanation

of how AHP works so that its implementation in this research effort

could be better understood. Explanations of the process and a study of

its relative merits compaired to other approaches can be found in many%

other works. Some deal mainly with the process itself (22;23), while

others, such as theses by Puffenbarger (20) and Rensema and Chapman

(21), deal with AHP in the specific setting of prioritizing technology

issues. These references can be reviewed for a greater degree of under-

standing of the process itself. Finally, in developing a pilot model

for the above methodology, several restrictive assumptions were made

concerning the attributes and the concept options that would be

presented.

First, for this implementation, it was assumed that the performance

measures were equal in value. That is, timeliness is equally as

32

important as survivability. Although this may not be the case, it

simplified the model by removing a level of the hierarchy. Each option

was compaired on the basis of performance as a whole, not on each

seperate performance measure.

A second assumption was that the schedule, risk and cost attributes

were measured in terms of the unique technology issues of a given con-

cept option. This means each concept option could be expressed as a

group of technology issues. The schedule, risk and cost of a concept

option is then the composite schedule, risk and cost of the technology

issues.

For example, the three concept options for a given concept could

each have ten technology issues in common. The first and second options

could have five unique technology issues, and the third option have ten

unique technology issues. The third option in this example (see Figure

7) has two issues in common with the first option, and two with the

second. However, the respective technology issues are not contained in

all three, so they are counted as unique. The decision-maker has to

decide how the risk values of a concept option's unique technology

issues compare to the risk values of another concept option's unique

technology issues. The same argument applies to the schedule and cost

attributes.

A third assumption concerning the implementation of the above

methodology was that data existed in a format that could be used by the

pilot model. Because the computerized version of the MSSTP database was

not completed at the time of this research, an interface between the

existing database and the DSS database could not be considered. It was

assumed that the information, as displayed by the pilot model iaplemen-

33

P :.-k_ * . % ,*v . ..

CONCEPT

Technology

Issues(TI) OPTION A OPTION B OPTION C

1) TI 1 TI A TI 1
2) TI 2 TI B TI A
3) TI 3 TIC TI 2
4) TI 4 TI D TI B
5) TI 5 TIE TI U
6) TI V
7) TI W
8) TI X
9) TI Y

10) TI 2

Risk of Option A is a function of the risk of
technolgy issues 1 through 5. It can be ex-
pressed as a mean, and/or by the number of TIs
with risk values in a certain category (very
low to very high).

Figure 7. Relationship of Technology Issues
to Concept Options.

...

tation, could be obtained from the finished MSSTP database if it were

available. This restriction had some advantage, however. It stimulated

thought into the structure and content of data displays and storage for

the pilot model DSS. This was one of the objectives of the pilot model

implementation strategy as discussed in Chapter III.

Finally, it was assumed that the target audience for the demon-

stration model would be familiar with the MSSTP and its associated dec-

ision process. This assumption reduced the information display and

storage requirements of the DSS. This assumption did not stop the pilot

model from meeting its major objective, educating decision-makers in the

utility of decision support systems. The potential users and purchaser

of the system (if they are not the same person) are located at STC, and

.1

- 34

familiar with the MSSTP. An assumption such as this can be made if it

does not significantly affect the performance of the pilot DSS.

The pilot model DSS is attempting to educate decision-makers and

therefore must contain and use information familiar to its target aud-

ience. Concurrently, time, cost and effort savings in the pilot imple-

mentation effort are of great concern. These savings, however, can not

be made at the expense of some a capability that the pilot model must

have to adequately inform the user. The bottom line is that a delicate

balance must be maintained between to much and to little effort in the

pilot model implementation strategy.

System Hardware Considerations

The objective of this research was to implement a decision support

system on a microcomputer. There are however, literally hundreds of

systems that can be classified as microcomputer systems (30:29). For

this reason, the implemented DSS should be as "machine independent" as

possible. This demonstration model was intended for the Space

Technology Center, however, so the system hardware configuration should

match the capabilities currently available at STC. As White discovered

in his research: "Software which is developed on a system with limited

availability to the target users will not be used extensively (30:29)."

Thus, the hardware for the DSS implementation should be as close to

current STC capabilities as possible, while the system itself is

designed to be as independent and system flexible as possible.

The microcomputer selected for system implementation was the Zenith

Z-100. The Z-100 was selected for several reasons. First, the Air

Force has purchased hundreds of these machines in recent years, making

them available for use at almost any Air Force location. This has

35

several advantages, such as the fact that a pilot model DSS designed and

implemented on a Z-100 can be demonstrated at a multitude of Air Force

units. A demonstration model of this nature is extremely important for

organizations where the decision process is carried out at widespread

geographic locations. For example, STC does not set the priorities of

the concepts contained in the MSSTP. If Space Command were the

designated command that performed this function, the pilot DSS could be

demonstrated to them. The demonstration of the pilot DSS would hope-

fully generate advocacy for a DSS to help Space Command set the

priorities of space system concepts.

Secondly, the Z-100 computer system supports a "basic" system

configuration as defined by White (30:36-37). It is equipped with a

video display screen, two disk drives, and over 64K of random access

memory (RAM). It should be noted that the amount of RAM that the

computer actually supports depends on the organization. In its basic

configuration the Z-100 supports 256K of RAM and is easily expandable to

higher levels of RAM. For DSS transportability, however, this implemen-

tation would take no more than 64K of RAM to run, meaning that the DSS

could run on any system fitting White's definition of a basic system.

As a final note, it was assumed that the user of the demonstration

model would have access to a printer. To gain the full appreciation of

the DSS concept, hardcopy feedback was considered a necessity.

System Software Considerations

As transportability of the DSS was a major consideration in its

design, the type of software chosen for implementation had to be commer-

cially available and widespread in its use. It also had to be capable

of modification to meet the demonstration objectives of the pilot model

.36

b - - -. . Z7 .v

(user friendliness, database management, and modelbase management - see

Chapter 3). Although there are currently a multitude of high level

programming languages available (BASIC, FORTRAN, COBOL, APL, ADA, Pascal

and C to name some of the most popular), only a select few meet the

requirements of being portable from microcomputer to microcomputer and

in being machine independent in their implementation. The languages

that were selected for consideration due to the above reasons were

BASIC, FORTRAN, and Pascal. Other options were available, however. One

of the primary objectives of the demonstration model DSS is to show

database management principles and to educate users, programmers and DSS

designers in the data requirements of the decision process. Several

good database management packages exist for microcomputers, which also

support their own programming languages. Of these, two were selected

for consideration, dBase II by Ashton-Tate, and Savvy by Excalibur

Industries. DBase II was considered because of its popularity with

industry, and the fact that it can be supported by any microcomputer

fitting Whites basic system configuration. Savvy was considered because

it is the software that the MSSTP electronic database is being imple-

mented in.

Of the programming languages selected for review, Savvy was the

least favorable. It requires a minimum hardware configuration of an IBM

PC, IBM PC jr., IBM XT, or IBM AT or a truly IBM compatable (100 V)

system. Furthermore, the system requires at least 128K of internal

memory (24:5).

BASIC was not selected because it does not have any type of

advanced data storage capabilitiess. Also, it is machine specific in

its file handling characteristics, making it less portable from machine

37

M3, rh W EV' WWVWIrklwu WWY .

to machine. Finally, in most implementations, BASIC is an interpretive

language. That is, the program code is executed line by line by a

master program. Interpreted programs are considerably slower in execu-

tion speed than compiled programs, which is a further drawback (30:33).

FORTRAN was not selected because it lacks good data handling

chara-teristics and is not a structured programming language. FORTRAN

is much like BASIC in that it only supports limited data structures

(30:34). It does provide extensive formatting capabilities for system

output and has gained widespread use. The implementations, however, are

many and the quality of some is than others, thus reducing program

portability.

Finally, dBase II was not selected for several reasons. First, the

programming language supported by dBase is an interpretive language,

thus its execution is slower, especially when it must process many loops

in the program code (likewise for BASIC) (19:7-4). Secondly, dBase II

does not support arrays in its data structures (19:7-5). The calcula-

tions involving the Analytic Hiearchy Process involve the processing of

arrays as matrix operations. To use dBase II, extensive extra file

capabilites would have to be implemented. Finally, dBase II does not

support many mathematical functions. Any mathematical functions needed

by the program would have to be written in dBase II programming lan-

guage.

Although each language has its advantages, it was for their disad-

vantages that they were not selected. It was determined that Pascal

maximized the advantages of a programming langauge for microcomputer

systems while minimizing its disadvantages. The Pascal version chosen

for this implementation was Turbo Pascal by Borland International, and

38

it was chosen for the following reasons.

First, Pascal, in general, has excellent data handling character-

istics. It not only supports the data types that the other high level

languages do (real, integer and character values), but it allows the

programmer the option of defining his own data types. These data types

may be nested within each other to achieve maximum effect. For example,

a record, a data type in Pascal, may contain a number of other data

types. It may have other records, which have arrays, whose elements are

other records, etc (6). The flexibility of data types was thus a major

factor in the selection of Pascal.

Secondly, Turbo Pascal is the recognized de facto standard Pascal

implementation. Borland International claims that over 300,000 copies

of the program have been sold, which would make it the most widely used

Pascal implementation (12:25). Also, Turbo Pascal is a general Pascal

implementation. That is, a program that is written in Turbo Pascal will

run on any other computer that supports Turbo, as long as none of the

machine specific functions or options are used. The program code must

be re-compiled for each computer the program will run on, however. This

makes the language extremely flexible and portable from microcomputer to

microcomputer. Finally, Pascal is a structured programming language.

It is written in a series of program blocks called procedures that are

the instructions of the program. The structured programming approach of

Pascal encourages good programming techniques that make program mainte-

nance and modification easier for someone unfamiliar with the program.

In summary, this demonstration model DSS implements a new decision

process as developed by Puffenbarger. This process incorporates the

Analytic Hierarchy Process as its central prioritization technique to

39

S. - _ ° , - . ' '. o - . . - . -. . .- . . '/ .. . - . .. - . - . . ,

t

find the best space system configuration among a series of systems that

represent a space system concept. The DSS was specifically configured

for a Zenith Z-lO0 microcomputer system currently in use at STC. The

DSS, however, will be capable of configuration for any microcomputer

system that supports the Turbo Pascal compiler. The DSS was written in

Turbo Pascal, the high level language that beat helped fulfi4 l the

stated objectives of the pj.ot model.

40

.

p

V. Implementation Deacription

In Chapter 3, the goals and objectives of the pilot model implemen-

tation strategy were discussed. In Chapter 4, the decision process that

was implemented, and hardware and software considerations were

discussed. The purpose of this chapter is to synthesize the information

of the previous two chapters by describing the program implementation

and how it seetp the objectives of the pilot model implementation

scheme. This chapter begins with a general discussion of the program

capabilities, and then describes in detail how the objectives of this

research effort are achieved.

Program Description

The Space Technology Center's Decision Support System (STC DSS) was

implemented using the hardware and software as described in Chapter 3.

The overall purpose of the program (as implemented) is to allow a user

to prioritize a list of concept options within a given satellite concept

using the Analytic Hierarchy Process. The pilot STC DSS is subject to

the following limitations:

-- A total of 10 concepts

-- 5 concept options per concept

-- 15 technology issues per concept option.

The pilot model also is limited to the 4 criteria (attributes) that were

defined by Puffenbarger (see Chapter 3): performance, schedule, risk and

cost. The number of concepts, concept options and technology issues can

be expanded relatively. The number of criteria, however, are fixed, or

would at least require a significant programming effort and recoding of

the pilot model to expand.

41

-* F -.S - .F

The demonstration model DSS consists of a main program and 31

subroutines (Pascal procedures and functions). It required over 3500

lines of code to meet the objectives of the pilot model. The program

was written in a structured form as is encouraged by the use of the

Pascal language, and it is modular in its construction. The subroutines

of the problem range in size according to their function.

One external function is included with the DSS package. It is a

"print screen" function that dumps (prints) the screen to the printer on

command. The program is called PSC.COM and is activated by the (shift

F12> key sequence of the Zenith Z-100 microcomputer. The print screen

function works with any printer as it sends the screen output to the

list device under the Zenith's operating system. The print screen

function is common for most microcomputers, in different versions, and

was thus not a restrictive factor to the portability of this implemen-

tation. In fact, the DSS was also implemented successfully on a Kaypro

2 computer, which operates under a completely different operating system

than the Zenith microcomputer.

To facilitate user friendliness, the Zenith implementation uses the

"batch" command option of the MS-DOS operating system. The DSS command

files are stored on a 5 1/4 inch floppy diskette, and are automatically

called at the system startup signal. The program execution name of the

STC DSS is stored in a batch file called "autoexec.bat." All commands

in that file are executed first, before the system enters the operating "

system environment. For the Zenith implementation, the PSC.COM file is

called first to implement the DSS print screen function, then the DSS

command file is called to begin operation of the pilot DSS. This method

of automatic program start-up facilitates user friendliness by allowing

42

users access to the system immediately, without instructions that may be

necessary for other microcomputer systems. This option is available for

all systems that operate under the MS-DOS operating system.

As previously stated, the demonstration model DSS was constructed

using modular and structured programming techniques. In fact, the DSS

has effectively structured the decision process as outlined in Chapter 3

and is best described in terms of its program flow. A diagram of the

STC DSS program flow is contained in Figure 8. The following discussion

of the program implementation follows the program flow as outlined in

Figure 8.

Identify User. The first section of the main program begins

operation of the DSS by making sure that the user wants to enter the

DSS. The option of immediate program termination was designed into the

system due to the use of the automatic start-up feature implemented in

the DSS as outlined above. If the user wishes to enter the DSS, program

execution begins. The main program calls a procedure that determines

the users name. The users first initial, middle initial and first six

letters of the last name are used by the DSS to open a file under the

users name that becomes that users private database. This file contains

records of all previous runs of the DSS by that user. The information

contained in each record includes:

1) The name of the concept worked with,

2) The name of the data file that contains
all of the information pertaining to that
concept,

3) All option names for this concept,

4) All of the pairwise comparisons made by
the user,

43

.-

'5. 43: ,)+ ? L> N >? > - - ';.. +-,;.+.-+..--..,'-.+-+---. NN

I. Identify user, determine if
intent is to input data
into main concept option
database and identify if
current user has a database

la. Enter concept
option DBMS

2. If current user has a data-

base, enter the database,

or if current user is first
time user, begin program
prioritization run.

3. User selects the concept
that will be worked with,
or, if not a first time
user, and a previous run
was unfinished, the user
may begin where he left off

4. The user begins or finishes
the prioritization with the
concept choosen. After com-
completion of a prioritiza-
tion run, user enters data-
base for report options

Figure 8. STC DSS Functional Flow

44

S-"q ."* * "-5S" ' .,."" '"." p' '': , , ".2 ''.':"''',. . "'. ''€"'. '.,.." ,,,, '"""'-.... ."""'"' . . ,"" ,,

5) All of the final priority vectors as calcu-
lated by the AHP model,

and 6) The consistency ratios of the comparisons.

The user friendly features of this section include:

1) Warnings if the user states that he has not
used the system before, while in fact he has,
that his current database will be overwritten,
if he does not change his answer,

2) Echoes the user name, as given, to insure that
it is accurate,

3) Warns the user if he has input a user name for
which there is no file, and states that he has
used the system before.

The final decision of this section is whether the user has entered the

system to input data into the concept database. The concept database is

a series of ten files that contain up to five records each. There is

one file per concept stored on disk. The records inside the files

contain the complete set of information about the concept options for a

given concept. The records in the concept files contain the following

information:

1) The name of the option,

2) The originator of the option,

3) All of the technology issues associated with
the concept option (up to 15), and the infor-
mation associated with each technology issue,
that is, schedule, risk and cost information,

4) The performance values of the concept option,
based upon the six areas of coverage, capacity,
quality, timeliness, availability and surviva-

bility.

Although the original intention of the pilot model was to demon-

strate database management concepts through the manipulation of each

individual users database, user inputs on an earlier version of the DSS

45

indicated that proper database management principles should be demon-

strated for the concept database as described above. This input led to

the inclusion of a database management module of the main program. The

decision sequence, as defined above, leads the user to the database

management module, described below.

Database Management. The database management capabilities of a DSS

are a critical feature of a DSS (see Chapter 2). The proper demon-

stration of those capabilitities is critical to the success of the pilot

model approach (see Chapter 3). The capabilities of the STC DSS data-

base management section are designed to maximize the education of the

potential users. The process of designing and implementing the database

management system was also informative to the designer and programmer

(in this case, both hats were worn by the researcher) and as this was

the stated intention of the pilot model the information gained will be

included in this research. First, however, the capabilities of the

current database manangement system will be reviewed.

Upon the decision of entering the database management system, the

user is presented a menu that presents the available options. Figure 9

is a reproduction of this menu. The database management system allows

the user to add, change, or delete all or just a portion of the data

contained in a concept file. If the user chooses to enter a new

concept, he is given a warning that he should enter at least two concept

options, with all of the required information. Although this may seem

restrictive. and it is, it is not unreasonable for the pilot model

implementation. The goal of the pilot model is to show what can be

done, not necessarily do everything. In this case, the extra coding

effort necessary to only display concept options that had two or more

46

CONCEPT DATABASE MANAGEMENT SYSTEM

DATABASE OPTIONS

1) ENTER a new concept
2) CHANGE or add data to

a concept
3) ERASE a current concept
4) CONTINUE program
5) QUIT program

SELECTION:

Figure 9. Database management options menu.

concepts with complete information was deemed unnecessary. The pilot

model DSS was working with contrived data (not real) and the entire data

sets could be entered. As a final note, if the user wished to enter a

new concept, and ten were already part of the system, he was given a

message requiring that he delete an option before he could input

another.

When the user selects the second option, to aud or change the data

of a concept, a second menu is generated. This menu displays all of the

concepts, and asks the user to decide which concept he wishes to work

with. Once a selection is made, the user is presented with a menu that

gives the options available for adding or changing data at the concept

option level (within a given concept). Figure 10 is a reproduction of

this menu. As in the main database management section, the user may add

an entire new option. If there are already five options, he is told so

by the program, warned that he must delete an option before another may

be added, and returned to the menu of Figure 10. If option 2 is

selected, to change data, the user is presented with a menu of the

47

.*,l C %. .% ' . . -" € .i -, . '",. .•--.," . . '.

Choose the appropriate number

Input Options

1) ADD an option
2) CHANGE an option

[or part of one]
3) DELETE and option
4) None of the above

SELECTION:

Figure 10. Concept option DBMS options

concept options. When a concept option is chosen, the user is given a

menu that determines what portion of the information within the record

that he wishes to change. At each stage of this process, the informa-

tion that the user inputs to the system is checked to insure that it the

correct ordinal type. That is, if the system requires integers, it is

getting integers. The information is at all times displayed back to the

user for confirmation before it is entered into the database. If the

user elects to delete an option, a menu listing the options in the

database is generated and the user selects one. Before anything is

deleted, the user is asked to confirm that he wishes to delete the

option he has selected. If he balks, he is returned to the Figure 10

menu. Finally, selection of option 4 from the Figure 10 menu results in

the program reverting back to the Figure 9 menu, the main database

management menu.

Selection of the third option of the main DBMS menu (Figure 9), to

delete an entire concept, functions exactly like the previously des-

cribed delete function for the concept options, except on a larger

scale. The user is again asked to confirm the erase decision, and if it

48

X,

is negative, is returned to the Figure 9 menu.

Selection of the fourth option of the Figure 9 menu, continue the

program, allows the user to enter the user database portion of the DSS

or the model system of the DSS.

Finally, selection of the fifth option terminates the DSS. This

option was included to account for the possibility that the persons

responsible for maintaining the concept database (each user maintains

his own database) do not perform any prioritization.

Some of the assumptions necessary to construct the pilot model had

an effect on the design of the database and its management capabilities.

For example, the construction of the database using Pascal files and

records limits the expansion of the database. If new data requirements

were identified, and the DSS database did not already have space avail-

able for the data, major code modifications would have to be made to

accommodate the change. Also, the data already in the files would have

to be transferred to the new files. This would also require a signif-

icant programming effort. The above limitations, however, do not really

limit the use of the pilot model. In fact, such limitations can spur

the type of interaction between the users, designers and programmers

that the pilot model implementation strategy advocates.

As was the case of the entire development effort, user friendliness

was the overriding consideration during construction of the database

management module for the demonstration DSS. Although some of the user

friendly features of this section have been mentioned earlier, they are

restated here for emphasis. The user friendly features are:

1) Menu driven screens of choices at all levels,

2) Constant looping of the DSS execution to avoid

49

irretrievable mistakes,

3) When entering data into the database, the info-
mation is echoed back for approval and checked
for correct type,

4) All mistakes enter error loops that do not allow
the user to leave the loop until the mistake is
corrected.

User Database. This demonstration model DSS was originally

*intended for demonstration to users who would not be concerned with the

input of data to the database. It was, however, considered important

that they be exposed to some of the database management principles as

were discussed in the previous section. For this reason the pilot DSS

makes an individual file for each user that serves as a private data-

base. Each user is restricted to their own database, and is not allowed

entry into the anyone else's file. Of course, if the user enters the

program using someone else's name, access to that file will be gained.

The information contained in each record of the user database was listed

in the Identify User section.

Assuming that the user has used the DSS before, the user database

is entered either upon exiting the DBMS section or directly after the

introduction section (if the DBMS option is not taken). The user is

immediatly presented with the menu depicted in Figure 11. The first

statement of the menu tells the user his current status with the system.

In the case depicted above, the user had last used the system in priori-

tizing Spaced Based Laser concept options. He has used the DSS approxi-

mately 11 times, and did not finish the l1th program run. If the user

had finished all of the prioritization process, the message at the top

of the menu would indicate that situation. It should be noted that each

user is allowed only one incomplete run, and this run will always be

50

You have 10 previously completed program runs, and
I incomplete program run, number 11, and you were
working on Space Based Laser.

REVIEW OPTIONS

1) View a previous run

2) Print any run
3) Start a new run
4) Continue unfinished run
5) Erase all previous runs
6) Quit DSS

Please input the number of your choice:

Figure 11. User database review options menu.

stored as the very latest in the database. The first option that a user

has from this menu is the VIEW option.

The VIEW option allows the user to select a record in his database

and look at what he has done in the past. The screen output from the

view section is the same as the DSS uses during execution to cause less

confusion on the part of the user. The user, upon entering the VIEW

option is asked to select the number of the record that will be viewed.

The user also has the option of returning to the Figure 11 menu. Once a

record is selected, the user is presented with the menu presented in

Figure 12. This menu allows the user to select a section of the program

to view. When a section is selected, the user is presented with the

output of the record he has chosen to view. The user is asked to hit

return when finished with the screen, and is returned to the Figure 12

menu. If the user is viewing an unfinished run, only the sections that

have been completed can be viewed. If the user selects an unfinished

51

Spaced Based Radar

SECTIONS TO VIEW

1) Criteria
2) Performance
3) Schedule
4) Risk
5) Cost
6) Final priorities
7) Return to previous menu

The catagories above refer to the sections of the
program in which the prioritization was performed.
Select the number of the section you wish to VIEW:

Figure 12. VIEW menu, first option of review section.

section for viewing, the DSS will ask for another section automatically.

When the user selects the option 7 of the Figure 12 menu, the user is

asked if another record will be viewed. The user can also elect to

return to the Figure 11 menu, the main user database menu.

The second option of the review section (user database) is to print

out any record. Only records containing complete DSS program runs may

be printed. After selection of this option, the user is asked which

record is to be printed. Upon selection of a record number, the output

is sent to the computers default list device. The user can then select

another record to print or return to the Figure 11 menu.

The user, by selecting option 3 from the main review menu, can

enter the model management portion of the DSS. This option initializes

(erases) an unfinished run that the user may not want to complete, or

starts a new run if all previous runs were completed.

Selection of option 4 of the Figure 11 menu allows a user with an

52

-' 2"> ' " . .)'X. ',, ,)2..,';.','.'. -''. .. " ;- ,'.., -.- ,.., "-"""--,-.-. "-.-''-. C'.'" -'.".'.2"-

-* . . . 'I - _ _V

incomplete run to enter the modeling system at the point that it was

left. If a user who does not have an incomplete run tries to select

this option, a correction loop is entered until another option is

selected.

Option 5 of the user database option menu is a function that erases

all of a users database records, except the latest program run. Upon

selection of the option, the user is asked to verify if he wishes to

erase the file of his records. If the answer is affirmative, the file

is erased, then reopened, with the latest run becomming the first of the

new file.

The sixth and final option of the review section is to quit the

DSS. Selection of this option enters the quit confirmation loop. That

is, if it is selected, the user is asked to confirm that the real

intention is to stop execution. If it is, the DSS execution is

terminated. If not, the user is returned to the Figure 11 (review)

menu.

This section of the program uses many of the same user friendly

features that were mentioned in the previous sections. The system

automatically error detects and traps, then enters correction loops

until an acceptable answer is presented. The system also provides step-

by-step menu instructions which are self-explanatory and easy to follow.

Finally, the system provides for input mistakes. That is, the user can

not inadvertently erase his database, as he is constantly asked to

verify his intentions.

Options 3 and 4 of the review menu allow the user to enter the

modeling subsection of the DSS, which is also entered automatically by a

first time user (by-passing the user database review section because

53

their is nothing in the user database yet). The modeling section of the

DSS actually incorporates blocks 3 and 4 of Figure 8, the DSS functional

flow diagram. As this is the case, these blocks will be described

together in the next section.

Model Management. The first stage of the modeling section is the

presentation of all concepts currently contained in the database. The

concepts are presented so that the user may select a concept that he

wishes to work with. This stage is skipped if the current user has and

is executing a previously unfinished run. The user is not allowed to

leave the program at this stage.

After the user has choosen a concept, the prioritization process

begins. The process, or model, is composed of five parts, as was

described in Chapter 4. First, the user is presented with pairwise

comparisons that help to prioritize the attributes (criteria - perfor-

mance, schedule, risk or cost) based on their relative importance to

this concept. Additional information that the user is presented with

are the Analytic Hierarchy Process Comparison Scale (Table 3, Chapter 4)

and a table of information concerning the attributes. The user is

required to view the AHP scale at this stage of the program, but has the

option of viewing the description of the attributes. The user, through

the pairwise comparisons, ranks the four attributes. The program,

without the users knowledge, has built the Analytic Hierarchy Process

(AHP) decision matrix automatically, and solved it for the prioritized

weights of the criteria. The pairwise comparisons made, the priority

vector of the criteria, and the consistency ratio (see Chapter 4) of the

comparisons for this section are saved in the users database, in the

current record. The priority vector and the consistency ratio value are

54

54 'I.

" , -.. .-. . - - - -.-. ' q T.' -.- ' .o. % • -'-' .' -' .. '.,' , '..'I

ri

also displayed to the user. If the user does not agree with the current

priority vector, the DSS loops back to repeat the process. The DSS can

continue the loop until the user is satisfied with the results.

Finally, the user may quit the DSS after the criteria prioritization

section is complete. The input and output values generated will be

saved, and an appropriate message indicates that to the user.

After the prioritization of the criteria, the first level of the

AHP decision hierarchy, the user is asked to prioritize the options for

a given concept based upon a given criteria. The criteria are presented

in the following order: Performance, Schedule, Risk and Cost. The user

is first presented with any tables needed to clarify the values from the

database and the option of reviewing the AHP comparison scale. The

program then presents information from the database for the user to use

in making the judgements about the options. The information concerning

a concept option is presented in aggregate in all of the main screena of

the four attribute sections. Three of the sections, Schedule, Risk and
,?

Cost, can break the information down into individual Technology Issues,

and present it for each of the concept options. The user can elect to

leave the system after the Performance, Schedule and Risk sections, and

the input and output values for all comparisons made to that point are

saved. All of the four subsections display the final priority vector of

the users comparisons and the consistency ratio, and ask if it is

acceptable. If not, each section loops until the user is satisfied.

As was mentioned above, the user is not given the option of leaving

the program after comparing the options based on the Cost criteria.

This is because the user has completed the prioritization process and

the system automatically presents the user with the final priority

55

screen. This screen presents the final priorities of the options for

this concept based upon the compairisons of the criteria and of the

options based on the criteria that the user has made. The user is asked

if this priority ranking is acceptable, and if not, the user is looped

back to the beginning of the model process (prioritization of the

criteria) to begin the program again. If the DSS run is acceptable, the

DSS automatically saves the data in the user database and enters the

review section.

The model section of the DSS also has all of the user friendly

characteristics of the other sections of the program. The DSS checks

for correct input and places the user into a correction loop when the

input is not of the correct type or not an option. The DSS also

displays many explanation screens that explain the operation of the

system and the procedures required of the user.

Program Performance

System response time is considered to be a major factor in user

friendliness and in gaining user acceptance for computer based implemen-

tations (TT:48). The problem of system response time contributed to the

difficulty of programming the pilot DSS, but was given careful consider-

ation throughout the development of the demonstration model.

Most of the menus and questions that the DSS exhibits are generated

internally, as well as all system error messages. This means that the

menus, messages and error messages are presented quickly after an input

by the user. The response time is not significantly influenced by the

size of the menu, and in all cases the menu is presented faster than the

user can assimilate the information that is appearing on the screen.

56

%
S.

4 "".. " ' /- . ,'?''".,. .°-. " "-' . '-,--. D "".- '

The solution of the matrices produced by the user's pairwise com-

parisons (finding the principle eigenvector) takes over 10 seconds.

This is a noticable difference in the response of the DSS from other

sections so messages were added that indicate that the system is still

working on the problem.

Finally, due to the size of the program, the object code of DSS is

contained in 4 different files. That is, the program operates as a

series of overlays. The main program has blank sections in the compiled

object code that are used by the overlay files. The overlay files

contain the object code of functions and procedures that are called one

at a time, as needed, to perform system functions. By only placing the

least used subprograms into the overlay files, system response time is

not noticeably degraded.

Final Comments

The pilot model implementation is not and should not be a working

model DSS. It must, however, display the major characteristics of a

complete DSS to fulfill its objectives. This Chapter describes the

implementation of the STC demonstration model DSS. The major emphasis

of the design was user friendliness, as was described throughout the

implementation description, while the design also encorporated the AHP

decision model and database management functions. This implementation

demonstrates the major characteristics of a working DSS, as was

intended.

57

VI. Analysis of the Pilot Model DSS Implementation Strategy

The pilot model approach advanced in Chapter 3 of this research was

initiated for the Space Technology Center (STC). The benefits of this

implementation effort have been explicitly and implicitly stated

throughout this report. This chapter summarizes those benefits and

discusses insights gained from the implementation effort. First, the

goals of the pilot model strategy, and how they were met, will be

reviewed.

Pilot Model Implementation Goals

A major goal of the pilot model implementation approach is to

educate the users of the pilot DSS about the possible capabilities so

that they may better define their requirements (type and format of data,

type of analysis, possible functions, type of user interface, displays,

etc..). To begin this process, an early version of the STC pilot DSS

was presented to several potential users at STC. Even though the first

demonstration model DSS was restricted to a single pass through the

implemented decision process, it caused the users at STC to begin

stating requirements that they felt would be helpful to them. These

comments were assimilated by the DSS designer and programmer (in this

case, the researcher) and translated into the development of start and

stop procedures, database access capabilities, a user controlled per-

sonal database feature, and expanded hardcopy print capabilities.

The content of the comments, however, was not as important as the

type of the comments received. There was a distinct difference between

the type of user comments before and after the pilot model DSS was

demonstrated. When program requirements for the pilot DSS were first

58

researched at STC, the potential decision-makers or users were asked to

identify requirements for the demonstration model. The user guidance

received at that time was vague and inspecific. It was clear that STC

decision-makers were asking for some type of decision aid. What was

unclear was what type of aid was wanted, what it should do, what data

was needed, and how it should be displayed. The decision-makers were

ineffective in communicating the system requirements that they wanted

for a DSS. After the first iteration of the pilot model, however, the

user comments were more specific and focused. The user was able to make

a comparison between the capabilities provided by the first pilot DSS

and the capabilities the user wanted, but was unable to quantify.

There is evidence, then, that the pilot model does educate and

stimulate the user into specifying system requirements more effectively.

If this is the case, the pilot model implementation approach may be an

extremely valuable tool for DSS development. Users would learn how to

state their requirements before, not during development of the first

operational DSS. In contrast, when using a prototype development

strategy the user is learning how to state requirements during the

critical development phase of the system. By using the pilot DSS, the

amount of time and effort required to get the first satisfactory DSS on-

line may be shortened, thus saving costs in the long run.

The second goal of the pilot model implementation strategy is to

generate organizational acceptance (and possibly advocacy) and to stimu-

late the interest of other potential users in decision support systems.

The pilot DSS accomplished this in part by the decision process that it

modeled. This research was supported by a sponsor concerned with

finding a prioritized list of all technology issues. Another department

59

~~~~~~~~~~. ... ..... .... ....... ........... ........ ..... .. . .. . tx.. .. . .. ..



at STC is concerned with finding the best satellite point design (con-

cept option) for a given concept. The pilot DSS, as described in

Chapter 5, attempts to define the best concept option based upon its

unique technology issues. Although the pilot DSS does not completely

accomplish either task, it demonstrates portions of both decision

processes. In fact, the two processes may be linked, in that one feeds

information to the other. By structuring the STC pilot DSS in this

manner, at least two potential users within the organization could be

interested in the operation of the pilot system. It appeared that the

STC pilot DSS did generate interest from different potential users.

The measurement of user acceptance levels and the degree of advo-

cacy within an organization is extremely subjective. Without a measure,

however, it is virtually impossible to determine the success of the

pilot model approach in meeting its second objective. Some method of

measuring the increase or decrease of user acceptance due to the pilot

model must be found. One possible alternative may be to keep records of

DSS planning meetings. As more users become involved, and the level of

their involvment increases, it could be assumed that the pilot model is

accomplishing its goal. This form of measurement is not rigorous to any

degree, and highlights the need for further research in this area.

The third goal of the pilot model implementation approach is to

stimulate discussions between users, DSS designers and programmers to

eliminate costly errors resulting from miscommunication. This process

began at the earliest stages of the pilot model development effort. In

this case, the DSS designer and the programmer are the researcher.

Communication between the user and the designer/programmer led to the

expanded version of the pilot model. As the user and the designer/

60



programmer exchanged ideas about the pilot DSS, it became steadily

easier to understand the other parties point of view.

This researcher's personal experience indicates that the pilot

model stimulates communication between the users, designers and program-

mers involved in the implementation effort. By stimulating commun-

ication of the different players involved in the development of a DSS

capability, the pilot model approach may reduce costly errors. As in

the first goal, the pilot model approach is geared toward producing a

planning payoff. The pilot model stimulates communication between the

players early, before critical design stages are accomplished. Again,

this communication is occuring, if at all, during the critical design

stage of a prototype approach. If this is the case, a pilot model

approach has a clear advantage over prototype implementation strategies.

The fourth and final goal of the pilot model implementation strat-

egy was to give designers and programmers an understanding of the cur-

rent database. This goal was established as most decsion support

systems (as discussed in Chapter 2) are built around existing databases.

At the time of this research STC was involved with constructing a compu-

terized version of the MSSTP database. Although the database was not

complete, its structure was known. Therefore, the catagories of data

elements contained in the database were also known. Earlier, in Chapter

4, it was assumed that the DSS would receive the data that it needed in

the proper form directly from the MSSTP database. This was not the

case, however. An excellent example is the storage of technology issue

risk values. Risk values are stored as characters in the MSSTP data-

base, and as integer values in the pilot DSS. Specifically, the values

for risk from the MSSTP database are vl, 1, m, h, and vh, representing

61

A • , . . . . -



~WV-d-- -. f -V.LY V-V-W W V NF J1)Nl*9lFWUI 'V VV.'

very low, low, medium, high and very high. The values in the demon-

stration model DSS database range from 1 to 5, with 1 indicating very

low risk and 5 indicating very high risk. The numbers 2, 3, and 4

correspond to the other MSSTP database values. For the pilot DSS to use

the MSSTP database, an interface module would have to be constructed

that converted the characters of the database to integers for the DSS.

The personal experiences of the researcher again indicated that

designing and implementing a pilot model DSS generates an understanding

of the database that must be used in conjunction with the DSS. Further-

more, the pilot model stimulates thought into the topics of database

management, structure and content for the pilot DSS and the complete DSS

that may be developed later. The strength of this conclusion is that

the pilot approach may force this type of thought earlier in the system

development cycle than other implementation approaches. If this is the

case, the pilot model implementation again shows the potential for

avoiding costly mistakes. If problems exist in the structure of a

database, a quick pilot DSS may lead to their discovery and correction

faster than a prototype approach. The early consideration of database

management and content needs may also reap future benefits, by providing

designers/programmers with an initial idea of the magnitude of the DBMS

task.

General Comments

Software selection is one of the most important factors in

designing any microcomputer based program, and a pilot model DSS is no

exception. The STC pilot DSS was constructed using Turbo Pascal. Pas-

cal's advantages (as outlined in Chapter 4) include the use of

structured data types. One Pascal data type, records, formed the basis

62



for the pilot model (system and user) database. On the other hand,

Pascal records and files of records constructed for the demonstration

model database are not easily changed. If new data elements were added

to the requirements of a Pascal record type database, a separate program

would have to be written to move the data from the old files to the new

files. Procedures to accomplish this automatically from within the DSS

would be impossible to construct without prior knowledge of the changes.

The lack of flexibility in the database is not a handicap for the pilot

model. It is, however, unacceptable in any working DSS. A record type

database like the STC pilot DSS implementation is not recommended for

the complete DSS. An interesting alternative is available. A database

package, such as dBase II (see Chapter 4), can be used if it meets two

requirements. First, it must support its own programming language. By

having its own programming language, the database package can be modi-

fied to fit the needs of the DSS. Secondly, the package should be able

to call programs outside of itself and be called by other programs. By

supporting this requirement, the database package overcomes most of its

disadvantages. The modeling system could be written in a language such

as Pascal and stored on disk as a command file. An overall command

program could be written that could call and control both the database

package and the modeling program.

Finally, the use of a database package may yield some advantages.

First, it would make the addition or subtraction of data elements much

easier. The capabilities to perform these functions are already con-

tained in the database management system an would not have to be dupli-

cated. Secondly, the database package may support features, such as a

query subsystem, that would be useful to the DSS. A good database

63

r.



package that meets the two specified requirements may make an excellent

vehicle for DSS development on microcomputers.

64

%~~
4

.'.\ .-. 4 '



7-: -. 1 7 - -- - - ." ' -, I -. . _-7 ... -s Y

VII. Conclusions and Recommendations

The main objective of this research was to develop an effective

implementation strategy for the application of decision support systems

to the prioritization of space technology issues at the Air Force Space

Technology Center. The pilot model implementation approach was

developed to satisfy the main research objective. The objectives of the

implementation, as summarized from Chapter 3, are:

1) The system educates the users about DSS concepts
enabling them to better define their requirements,

2) Pilot models can generate acceptance and advocacy

of DSS in an organization, and attract more users,

3) The approach educates users, DSS designers and pro-
grammers in the other players point of view. This
reduces the chance of miscommunications,

4) Helps designers and programmers gain an understand-
ing of the current database. Stimulates thought
into DSS database structure, content and management.

Each of the objectives of the pilot model implementation strategy

were achieved, to some extent, for the STC implementation. It was found

that the pilot model played a significant role in helping the user

define requirements. The pilot model provided a basis for comparison

between user expectations and reality. The pilot model also served as a

medium to attract more users. Because it did not have to perform as a

working DSS, the demonstration model was constructed to appeal to a wide

range of users. Furthermore, the pilot model served as a catalyst to

stimulate feedback from each of the DSS players. Finally, the pilot

model educated the designer and programmer in database management con-

cepts. The structure, content and display of the information within the

pilot DSS database generated thought about how to perform these tasks

65



most effectively and efficiently.

The pilot model implementation strategy has the potential of saving

an organization time, effort and costs. There is a balance that must be

struck, however. If the development effort of the pilot model is exten-

sive, and the DSS approaches the capability of being used by the organi-

zation, it has defeated its own purpose. On the other hand, if the

pilot model is not sophisticated enough, it may not only fail to meet

its objectives, but seriously damage the organizations view of decision

support systems in general. A pilot DSS that meets the objectives

outlined above may be an opportunity for an organization to assess its

decision support requirements at minimum cost.

Recommendations

No implementation process is self-sustaining, the pilot approach

included. Although the pilot DSS has been completed, it is only the

first and easiest portion of the decision support system development

process. Much further work remains to be accomplished. The formation

of a DSS working group at STC is the next logical step. The group, or

an outside agency in conjunction with the group, must begin to define

the complete STC decision process. Once the decision process is

completely defined, the identification of all models, operations

research techniques, database management and database needs is assessed

and evaluated. The capabilities and style of the inputs and outputs to

the DSS must be reconsidered in light of the knowledge gained from the

pilot DSS. Finally, the DSS group must begin the selection and inte-

gration that meets the objectives established by the group.

The pilot model implementation strategy should be applied to other

66

- -. . . . . . . . . . . . .- - - - .'



organizations and decision processes. One case study does not prove the

worth of an implementation process. in addition, some quantitative

measures of performance should be developed to measure the success of

the implementation strategy. Traditionally, performance measures for

DSS have been difficult to define. This may also be the case for the

pilot model implementation strategy.

67
q

,9



BIBLIOGRAPHY

1. Alter, S.L., "Development Patterns for Decision Support Systems,"
MIS Quarterly, Vol. 2, No. 3, September, 1978, pp. 33-42.

2. Alter, S.L., Decision Support Systems: Current Practices and Con-
tinuing Challenges, Reading, Massachusetts: Addison-Wesley, 1980.

3. Bonczek, R.H., C.W. Holsapple, and A.B. Whinston. "The Evolving
Roles of Models in Decision Support Systems," Decision Sciences,
Vol. 11, No. 2, 1980, pp. 339-356.

4. "Classified Document: Qualified requestor may obtain this refer-
ence from AFIT/ENS, Wright-Patterson AFB, OH 45433."

5. Clark, Thomas D. Unnamed working paper, Air Force Institute of
Technology, Wright-Patterson AFB, OH, 1984.

6. Cooper, Doug and Michael Clancy, Oh! Pascal! New York: W.W. Norton
& Company, 1982.

7. Davis, Gordon B. and Margrethe H. Olson. Management Information
Systems: Conceptual Foundations Structure. and Development. New
York: McGraw-Hill Book Co., 1985.

8. Denise, Richard M. "Technology for the Executive Thinker,"
Datamation, Vol. 29, No. 6, June, 1985, pp. 206-216.

9. Ginzberg, M.J., and E.A. Stohr. "Decision Support Systems:
Issues and Perspectives," Decision Support Systems, New York:
North-Holland Publishing Co., 1982, pp. 9-31.

10. Gorry, G.A., and M.S. Scott Morton. "A Framework for Management
Information Systems," Sloan Management Review, Vol. 13, No. 1, Fall
1971, pp. 55-70.

11. Henderson, J.C., and R.S. Ingraham, "Prototyping for DSS: A
Critical Appraisal." Decision Support Systems, New York: North-
Holland Publishing Co., 1982, pp. 79-96.

12. Jones, Steven T., "Programming: From BASIC to Turbocharged."
Profiles, Vol. 3, No. 3, October 1985, pp. 24-31.

13. Keen, P.G.W. and Michael S. Scott Morton. Decision Support
Systems: An Organizational Perspective. Reading, Mass: Addison-
Wesley Publishing Co. 1978.

14. Keen, P.G.W., "Adaptive Design for Decision Support Systems,"
Data Base, Vol. 12, Nos. 1 and 2, Fall 1980.

15. Keen, P.G.W., "Decision Support Systems: Translating Analytic
Techniques into Useful Tools," Sloan Management Review.
Spring, 1980. pp. 33-44.

68



16. Koble, Roger D., Research on Applications of Computers as an Aid in
Decision-Making in Air Force System Program Offices, Unpublished
Master's Thesis, AFIT/LS Wright-Patterson AFB, OH. September, 1985.

17. Little, J.D.C., "Models and Managers: The Concept of a Decision
Calculus," Management Science, Vol. 16, No. 8, April 1970,
pp. B466-B485.

18. Moore, J.H., and M.G. Chang. "Design of Decision Support Systems,"
Data Base, Vol. 12, Nos. 1 and 2 (Fall 1980), pp. 8-14.

19. Nobles, Clayton M., A Management Information System for the SAC
OPSEC Program, Unpublished Master's Thesis, AFIT/LS, Wright-Patter-
son AFB, OH, March, 1985.

20. Puffenbarger, John, A Methodology for Assessing Technology Trade-
offs of Space Based Radar Concepts, Unpublished Master's Thesis,
AFIT/LS, Wright-Patterson AFB, OH, December 1985.

21. Rensema, Peter H. and Randall W. Chapman, A Decision Support
Methodology for Space Technology Advocacy. Unpublished Master's
thesis. AFIT/LS, Wright-Patterson AFB, OH, December 1984.

22. Saaty, Thomas L., "Priority Setting in Complex Problems." IEEE
Transactions on Engineering Management, Vol. Em-30, No. 3, August,
1983., pp. 140-155.

23. Saaty, Thomas L., The Analytic Hierarchy Process. New York:
McGraw-Hill, 1980.

24. Savvy User Manual, Excalibur Technologies Corporation, Albequer-
que, New Mexico, 1984.

25. Simon, Herbert A. The New Science of Management Decision. New
York: Harper and Row, 1960.

26. Spector, Bertram I., "Decision Support Systems," News From the DSS
Practice of Booz-Allen & Hamilton Inc. Bethesda, Maryland: Booz-
Allen & Hamilton Inc.

27. Sprague, Ralph H., Jr., and Eric D. Carlson. Building Effective
Decision Support Systems. Englewood Cliffs, N.J.: Prentice-Hall,
Inc., 1982.

28. Strang, Gilbert, Linear Algebra and its Applications. London: Aca-
demic Press, 1976.

29. Thierauf, Robert J., Decision Support Systems for Effective
Planning and Control. Englewood Cliffs, N.J.: Prentice-Hall, Inc.,
1982.

30. White, Greg R., Personal Computer Aided Decision Analysis, Unpub-
lished Master's Thesis, AFIT/LS, Wright-Patterson AFB, OH, December
1984.

69



APPENDIX A



Verification of Computational Algorithms

Square Root

The square root function was validated as it was a major contribu-

tor to the calculation of the maximum eigenvalue. The maximum

eigenvalue of the matrix of comparisons determined the priorities of the

elements that were compared. To verify the square root function, the

output from the Turbo Pascal square root function was tested against the

output of MBASIC's (Microsoft BASIC) square root function. The argument

of the function was stepped from 0.05 to 10.00 in increments of 0.05.

The output from both programs was carried to eight significant digits.

The results of the Turbo Pascal square root function were equal to the

values of the MBASIC square root function. The Turbo Pascal function

was accepted as valid.

The verification check was limited to the range 0.05 to 10 because

this range is approximately the limit for which the square root function

is called in the AHP prioritization procedure.

Mean and Standard Deviation

The pilot DSS was required to calculate mean and standard deviation

information throughout the modeling subsection. To verify the mean and

standard deviation calculations yielded correct results, the formulas

used were checked by hand calculator. The mean was defined as the sum

(S) of n elements divided by n. The standard deviation was defined as

the square root of the sum of each element minus the mean. The results

of the hand calculations matched the output of the pilot DSS for five

trial runs. The computation of the means and standard deviations were

considered valid.

71

--



Priority Vector and Consistency Ratio

The priorities and consistency ratios found by the pilot DSS were

verified by the comparison of those values to results published by Saaty

(YY) for an example problem. The output of the demonstration model DSS

matched the values presented by Saaty. The output from the pilot DSS

was considered valid.

The priority vector calculated above was based on the maximum

eigenvalue of the comparison matrix. The method used to find the maxi-

mum eigenvector is called the ordinary power method. The ordinary power

method operates on the principle of a difference equation. It begins by

guessing an initial eigenvector for the matrix and then successively

forms new estimates. The method is essentially taking a limit (28:274).

This method is not computationally efficient. The lack of efficiency,

however, only effects large matrices. As the pilot DSS works with

matrices no larger than 5 X 5, the relative inefficiency of the power

method can be overlooked. A final point concerns the number of itera-

tions needed to accurately estimate the eigenvalue. Strang recommends

at least 20 iterations (28:274). The pilot model DSS uses 50 iterations

to insure accuracy. There is no loss of program speed because the

matrices the DSS works with are small.

72



APPENDIX B:

SPACE TECHNOLOGY CENTER PILOT MODEL

DECISION SUPPORT SYSTEM

USER'S GUIDE

,,



CONTENTS

INTRODUCTION ....................... .75

Decision Support Systems ........... .75
STCPMDSS ....................... .75
Structure of Manual ... ........... .. 76

II USING THE PILOT MODEL DSS ... ......... .77

Current Implementation ... ......... .77
Starting the STCPMDSS .... ......... .77
System Use ...... ............... .77
Comments ....... ............... .78

llI Program Specifics .................. .79

Software Environment .... ......... .79
Program Source Code ... ........... .. 80
Disk Files ...... ............... .81
Implementation on Other Microcomputers . 82

74



I. INTRODUCTION

This document is a reference manual for the Space Technology Center

Pilot Model Decision Support System (STCPMDSS) for prioritizing space

technology issues. It assumes a basic knowledge of the Military Space

Systems Technology Plan.

Decision Support Systems

A decision support system is a computer-based information system

that aids a decision-maker in solving complex and unstructured problems.

The computer is used to provide structure to parts of a decision process

while leaving the flexibility of manager control and judgement.

STCPMDSS

The STC Pilot Model Decision Support System is a demonstration

model decision support system designed to display some of the most

important characteristics of a working DSS. The purpose of the pilot

model is to provide a basis for understanding the nature and character-

istics of a decision support system within the STC decision process.

The major characteristics that the pilot model displays are user friend-

liness, model management and database management. The objectives of the

pilot model are: 1) To educate users about potential DSS capabilities to

provide a frame of reference for a more effective statement of require-

ments; 2) To generate acceptance and possibly advocacy of DSS concepts

within the target organization; 3) Give users, programmers, and DSS

designers an appreciation of the others knowledge requirements; and 4)

%To educate designers and programmers an understanding of the current

% database related to the information requirements of the proposed DSS

database.

75



In short, the pilot model DSS is meant as a quick and dirty demon-

stration to educate all potential players in DSS development about DSS

concepts. The pilot model is not meant to be used in any capacity other

than as a demonstation. It hopefully reduces long run costs by stopping

miscommunication errors.

Structure of this Manual

This manual is intended as a reference for any individual concerned

with either the use, design or programming of a DSS for the priori-

tization of space technology issues at the Space Technology Center. The

manual is broken into two main sections.

The first section of the manual describes how to use the STCPMDSS.

It describes how to execute and use the demonstration model. This

section is presented for the potential user of the STCPMDSS.

The second section of the manual describes information that

pertains to programmers and designers of decision support systems. It

contains information concerning the construction of the DSS software.

This manual is by no means complete. It does not provide a com-

plete description of the program operation. In fact, no such descrip-

tion is intended. The operation of the pilot model should be straight

forward. If it is not, the problems that occur can lead to comments

from the users to the designers and programmers, as intended.

76

.~_e e_ ..7U*



II. USING THE PILOT MODEL DSS

This section of thE .-er's manual describes how to use the STCPMDSS

software. It provides details on software capability, system files and

directions for use of the system.

Current Implementation

The pilot model decision support system is currently configured for

a Zenith Z-100 microcomputer system. If your computer is not a Zenith

Z-100, see Chapter III of this manual for installation instructions for

other microcomputer systems.

Starting the STCPMDSS

The STCPMDSS is stored on a 5 1/4 inch floppy diskette. After the
p

computer has been turned on, program execution is initiated by inserting

the diskette containing the STCPMDSS into drive A. The DSS is a turn-

key system. That is, it automatically installs itself in computer

memory when the drive door is closed. The STCPMDSS immediatly asks the

user to confirm that the program should run. If the answer is negative,

program execution is terminated. Otherwise, the STCPMDSS begins program

execution.

System Use

The STCPMDSS is designed to lead the user through a structured

decision process that helps to define the best option (system desig)

for a given space system concept. The program provides menus and dis-

plays at all stages of execution. The program is designed to be

completely user friendly. That is, it is designed to provide constant

error trapping to guard against any unintended instruction from the

77

.. - -, " -.-. - ..-. -. , -..-... . . ....- ,. - .. . ..... ....-....- .. ... -.. .. . . -



user. Furthermore, the system was designed to be self-explanatory

during execution.

The best way to become familiar with the program and its capa-

bilities is to use the system. The data provided with this implemen-

tation was contrived for example puposes only. The user may delete or

change all or part of any information listed in the concept database.

The STCPMDSS constructs a user database for each decision-maker

that uses the system. This database is under the control of the user.

The data saved is a record of a decision-makers pass through the model

subsystem of the DSS. The system automatically keeps track of the

status of the system.

Comments

One objective of a pilot model DSS is to provide an example of a

working DSS to help users better define requirements for a true DSS.

While using the pilot model decision-makers should list their likes and

dislikes of the implementation. The list may include:

1) Input and Output format of the screen displays;

2) Length of time required for program execution;

3) Other solution techniques that may be helpful;

4) Information requirements - more, less, presentation
of, etc...

7

78

".'-'', .' '-2 , :"""- . "". - '""- -"-"-. -4, -"- -. .- , "-," ". *." -" ...e" .- . . . . . --



III. ProgrqB S2ecifics

This section describes the software system of the pilot model DSS.

The program is not described to the level of detail necessary to make

changes or modifications easily. The STCPMDSS is intended as a demon-

stration model only. Although it was programmed in a manner to

facilitate additions and modifications, it was not meant for follow on

development. A pilot model is only a frame of reference for a true

working DSS that must still be constructed.

Software Environment

The STCPMDSS was written in the Pascal language. Specifically,

Turbo Pascal by Borland International. No implementation specific

features of Turbo Pascal were utilized. That is, the program may be

compiled on any computer, using any operating system, supporting Turbo

Pascal. The specific implementation of the STCPMDSS configured for the

Zenith Z-1O0 does use two features that are machine specific.

The first implementation specific feature of the Z-100 implemen-

tation is the use of the batch command capability of the MS-DOS

operating environment. The file "autoexec.bat" is called when the

operating system is booted from the DSS execution disk. The commands in

that file are carried out first after the computer reads the operating

system. This batch file contains two commands, PSC, and DSS. The PSC

command is executed first, to install the DSS print screen function.

The second Z-1O0 specific implementation feature is the print

screen function. The print screen function for the Z-100 is a public

domain command file titled PSC.COM. This file prints the Z-100 screen

to its list device. That is, any printer can be used with this program.

79

%~ .



The key sequence used to activate the print screen function is (shift

F12>.

Prgram Source Code

The STCPMDSS was programmed in 32 modules, one main program and 31

Pascal procedures and functions. All of the program modules were coded

using a consistent style.

The STCPMDSS source code is actually contained in six separate

files. The source code was broken into the six files because of the

limitations of the Turbo Pascal Compiler. The compiler can not handle

all of the source code at once because of its buffer size. This,

however, did not limit the size or capabilities of the STCPMDSS. Turbo

Pascal allows for programs larger than the buffer size by placing proce-

dures in "include" files. The procedures or functions in the include

file are compiled into the main program code when the Turbo Pascal

compiler encounters an include file command in the code. The include

file command is a comment in the Pascal source code that tells the

compiler to compile the Pascal source code in the named file at this

point. The files that contain Pascal Source code for the STCPMDSS are:

i) DSS.PAS - main Pascal source code file;
2) EXTRAI.DSS - first include file;
3) EXTRA2.DSS - second include file;
4) EXTRA3.DSS - third include file;
5) EXTRA4.DSS - fourth include file;
6) EXTRA5.DSS - fifth include file.

The exact contents of the include files are unimportant, as long as

normal precedence rules for Pascal procedures and functions are

observed. For example, if the include files are compiled in order from

1 to 5, a procedure in EXTRA2.DSS can not call a procedure in

EXTRA5.DSS.

80

.-.-



Disk Files

Compiled Code. There were four STCPMDSS object code files compiled

from the source code. The four files were:

1) DSS.COM - main DSS command file;
2) DSS.O00 - first overlay file;
3) DSS.001 - second overlay file;

4) DSS.002 - third overlay file.

The three overlay files contain object code from procedures and func-

tions proceded by the Turbo Pascal reserved word "overlay". Overlays

were used in the program to reduce the size of the main execution block.

Otherwise, the Pascal code would require modifications to compile it for

a different microcomputer system. To make overlays, the compiler reads

all the procedures and functions preceded by the word "overlay" and

stores them in a file. It then leaves a space in the main object code

large enough to fit the largest program in the overlay. The main prog-

ram then uses that space for the procedures in the overlay file, as they

are needed.

Database Files. The database structure of the STCPMDSS is a series

of record files. There are two distinct databases used by the STCPMDSS.

The first is the concept database. The concept database can consist of

up to ten files. Each file could contain five concept options with up

to fifteen technology issues per concept option. The ten files are

named CONCEPT*.DSS, where the asterick stands for a letter from A to J.

The number of files indicates the number of concepts contained in the

database. When a new concept is added, it receives its filename

sequentially.

The concept names are contained in a file called CONCEPTS.DSS, and

are related to their respective concept option data files by the

STCPMDSS program.

1

S . . . ' - ' o . " - ' - """ - " """""""% - " . . - . - - ' . '" . , "'"""""""""" , " " %



The second database is a database constructed by the program for

each individual user. Upon entering the program, each user is asked for

his first and middle initial and the first six letters of his last name.

The DSS then opens a file using that name and a (.DSS) identifier after

-it.

A user file is opened each time a user gives his name upon entering

the STCPMDSS. The user file contains records of the decision-makers

past decision runs through the model sub-section of the pilot DSS. The

user file data base is under the control of the its individual user, and

is inaccessable to other users.

Information File. The final file necessary for the operation of

the STCPMDSS is a file called INFO.DSS. This file contains all of the

menus, tables and displays that are not generated within the STCPMDSS

program code.

Implementation on Other Microcomputers

To implement the STCPMDSS on another microcomputer, a version of

Turbo Pascal for that microcomputer must be available. Also, a transfer

program to copy programs from one operating system to another must be

found. Assuming that both of these conditions can be met, the STCPMDSS

can be implemented on almost all microcomputer systems.

Procedure. First, all of the files associated with the STCPMDSS

must be transferred, except for the object code files (DSS.COM, DSS.O00,

etc..). The source code must be transferred so that it can be re-

compiled under the new operating system. Also, all of the concept

database files must be transferred. Most operating systems offer pro-

grams that will mass copy files. By first copying DSS.PAS, and then

copying *.DSS, all files needed for the new implementation can be

82

e- - - - - - - - - - - - - - - . . .- - . - - p .4-



transferred.

Once the files are transferred, the Turbo Pascal compiler can be

used to generate new object code files.

Limitations. The new implementation will be limited by the lack of

a print screen function, unless a print screen program available for

that microcomputer system. Print screen programs are available in the

public domain for most microcomputer systems. Another limitation will

be the lack of the automatic start up provided by the batch command

function of MS-DOS. That is, if the new microcomputer does not operate

under the MS-DOS (or related) operating system. If it does not, the

user will have to execute a print screen function command first, and

then the DSS.COM file.

83



VITA

1st Lt. Bruce G. Schinelli was born 28 June 1960 in Franklin,

Pennsylvania. He graduated from Boonton High School, Boonton, New

Jersey in 1978 and attended the United States Air Force Academy. He

graduated from the Academy in 1982, with a Bachelor of Science degree in

Economics. Upon graduation, he received a regular commission in the

USAF, and was initially stationed at Nellis AFB, Nevada. He entered the

School of Engineering, Air Force Institute of Technology, in June 1984.

He is a member of Omega Rho.

Lt. Schinelli is married to the former Cecily Zahorian of Lincoln

Park, N.J.

Permanent Address: 415 Liberty St.

Boonton, N.J.
07005

162



- A S - . - .. . -.-- -,lv -77-1 V1 WIV.A- V L . .

APPENDIX C

PILOT MODEL DECISION SUPPORT SYSTEM

SOURCE CODE

ii

-C s-. St. 2 * . .ut,.. .i .



program DSS (input, output):

**** DSS - Main program of Space Technology Center **.,*
Pilot Model Decision Support System.

'.'.. This program was written as part of a thesis
.*** effort in partial fulfillment of the require- ... **

ments for the degree of Master of Science in
Operations Research from the Air Force Insti-

tute of Technology, December 1985.

****- This program is a demonstration model of a DSS **..-
for space technology tradeoffs implemented for

*u..* the Air Force Space Technology Center. The
*.u** program represents the use of a new implement- "w--

ation strategy for DSS development, the pilot
approach. The objectives of the program, as

*'*.. stated in the research, were to educate users *..e*
... DSS designers and programmers about their con-

tributions to the DSS implementation and their *..
.u**. interactions with each other. The program is *.-**

*.*** written in Turbo Pascal (Borland International) ****
on a Kaypro 2 computer. The first version did

-*** not contain any special CPM features. The pro- **.-

*a.** gram was also implemented on a Zenith Z-100 for *

STC. The system can be hosted on any computer '*'*-

-*..** that supports the Turbo Pascal compiler.

As the purpose of the pilot model is to educate **
***4U people, and then be discarded later, it was not
'**** documented as fully as a full up microcomputer *****
*.*** DSS source code package would or should. The *
*-** source code has been documented to the point

* where it is easy to follow the program flow.

label 1,2,3,4; (A label indicates a program line, used in
the Turbo Pascal GoTo command. For example
<if .... then GoTo 2;> would send program
execution to the program line defined by
2, as in <2:writeln:>. Program execution
continues from that line forward. A label
is only defined for a current program block.
Therefore, a GoTo 1 in the main program will
only send the program to the 1 located in the
main program. The numbers can be used over
again in different procedures. For example,
a label of 1 always indicates the end of a
block.)

85



const maxnumconcepts = 10: [Maximum number of concepts)
maxnumoptions = 5; (Maximun number of concept options)
b = 1; (Blanks, for printing files)

type Char8O = string180; (80 character string)
Char20 = string(201; (20 character string)
Charl2 = string(12]; (12 character string)

outputdatafile = arrayl..20] of char; (stores choices)

outputfilename = arrayll..123 of char;

vector = arrayll..maxnumoptiona] of real;

matrix = arrayll..maxnumoptions,l..maxnumoptions]
of real;

alloptionnames = array(l..maxnumoptions] of Char20;

techissues = record
tiname: CharSO;
tischedule: integer;
tirisk: integer;
ticost: real

end:

(techissues - A record to store the schedule, risk and cost
information associated with a technology.)

tecarray = array(l..151 of techissues;

(tecarray - an array that specifies the maximum number of
technology issues for each concept option.)

performance = record
coverage: integer;
capacity: integer;
quality: integer;
timeliness: integer;
availability: integer;
survivability: integer

end;

(performance - A record used to store the performance values
of a concept option.1

conceptoption record
optionname: Char20;
optionorigin: Char20;
optionti: tecarray;
optionperformance: performance

end;

86



AD-A172 379 A DECISION SUPPORT SYSTEM FOR SPACE TECHNOLOGY 2
TRADEOFFS: A NICROCOMPUTER.. (U) AIR FORCE INST OF TECH

". RIGHT-PRTTERSON AFS OH SCHOOL OF EMI.. S 0 SCHINELLI
UNCLSSIFIED 13 DEC 95 RFIT/GOR/OS195D-17 F/I 12/2 ML

Ehhhmmmhhmh



II IMO m2

1.8
IIIJIL2511111_L



-- . .U - __- -- - - .

(conceptoption - A record that contains all of the information
used by the DSS about a particular concept
option. This record is the primary building
block of the files contained in the database.

datafile record
conceptname: Char20:
conceptorigin: Char20

end;

(datafile - type of records contained in the "concepts.dss file.
used to store the name and originator of a concept.)

choices = record
criteriachoices: outputdatafile;
performancechoices: outputdatafile;
schedulechoices: outputdatafile;
riskchoices: outputdatafile;
costchoices: outputdatafile

end:

(choices - A record used to store the choices a decision-maker
makes at each stage of the AHP process.)

priorities = record
criteriapriorities: vector;
performancevector: vector;
schedulevector: vector;
riskvector: vector;
costvector: vector;
finalpriorities: vector

end;

(priorities - A record of all of the priorities calculated by the
modeling section for each level of the AHP hierarchy.)

userfile = record

conceptname: Char20;
optiondata: Charl2;
options: alloptionnames:
judgements: choices;
priorityvectors: priorities;
CRvector: vector

end;
(userfile - A record of all information concerning a program run

for an individual user. Primary building block of
the user database file.)

(In general, The type identifier is used to construct all new variable
types used in the program. The type declaration for the entire pro-
gram is accoapleish in the main program, as type declarations are
global to the entire program.)

87

.%



Var i, quitindicator,statu: integer;
concept: Char20;
filename,personalfile: Charl2;
answer: char;

(Variables - for the main program:

i: An integer counting variable.
quitindicator: An integer used to govern program execution.

If it is a 1, the program is terminated.

status: Used to identify the status of the user.
concept: Store the name of a concept.

filename: Used to store the name of the file that contains
the option information for a concept.

personalfile: Used to store the name of a users personal database
file.

answer: A character variable that is used to receive answers
to questions by the DSS.)

PROCEDURE DECLARATION OF PROGRAM DSS

(SI extral.dss) (Compile code in file extral.dsa now.)

procedure CheckYorN (Var check: char);

(CheckYorN - A procedure that insures the answer to a yes or no
question is a y or n (can be capitilized). If not the program
enters an error correction loop until it gets a yes or no answer.)

Var i: integer:

begin
writeln;
while not (check in ('Y','y','N','n']) do

begin
write (' Please enter a "Y" '):

write ('or "y" for yes or a "N" or "n" for no: ")
readln (check)

end (while check not Y or N)
end; (CheckYorN)

(SI extra2.dss) (The statements at right are Turbo Pascal I
(SI extra3.des) (command statements that tell the compiler)
(SI extra4.das) (to compile the code contained in the iile)
(SI extra5.dss) (named after the --SI-- sequence.

*,
*88

S-' ' i. . .' ' ' ' ., . , ..- :.' . ... '.'; . . -. .'., .',, ,



MAIN PROGRAM BEGINS

begin

(t**...o Initialization *000

ClrScr:
personelfile
quitindicator := 0:
status := 1000:
filename
concept

(a.... End Initialization o..oo)

(Determine if a user wishes to use the program or has entered by
mistake.)

for i := 1 to 10 do writeln:
writeln(b,' Do you wish to execute the AFSTC DSS program? ');
write(b,' Please answer Y for yes or N for No: ";
readln(answer):
CheckYorN(answer):

if (answer in C'N',n ) then GoTo 1:

GetInfo(156,174); (List the title page of the DSS)
writeln:
write(' Press RETURN to continue: ");

readln(answer):

(Identify the user and get his status)
GetUserFileName(personalfile.status,quitindicator):

(This section (GetUserfileName) allows enterance into the main
database section if it is desired.)

if quitindicator = 1 then GoTo 1:
2:InitializeUserFile(personalfile,status):

if status ) 0 then Review(personalfile.statusquitindicator):

( oooooooooo*o Review - User Database section .ooo*o**,*

review allows a user to enter his personal database.

if quitindicator = 1 then GoTo 1:
if status ) 1 then GoTo 4:

status determines where a user may go.

89



{.. ,..H., Beginning of Modeling subsection -.- t-..-}

ListConcepts(concept, filename, quitindicator);
(Listconcepta provides choices of concepts to work on)

if quitindicator = 1 then GoTo 1;

3:Criteria(concept,personslfile,quitindicator);
(Criteria finds the priorities of the performance, cost, schedule
and risk sections.)

if quitindicator = I then GoTo 1:
4:Prioritizeoptions(personalfile,quitindicator,statua):
(Prioritizes the options according to the criteria.)

if quitindicator = I then GoTo 1:
FinalOptionVector(quitindicator,statua,personalfile):

(FinalOptionVector synthesizes the final concept option priorities
from the information obtained in the other procedures.)

if status 2 7 then
begin (User is unatisfied with results of the)
status :2 0; (prioritization process, wants to repeat it)
GoTo 3

end (then)
else
begin

status := 10: (User does not want to repeat, is sent to)
GoTo 2 (the review section to view or print the )
end; (else) (the results from the modeling section. I

1:writeln
end. (main program end)

90



Source Code file: extral.dss

overlay function Exist(filename: Charl2): boolean;

(Exist - Determines if a file on the logged disk drive of the

filename <filename) exists. Returns a boolean answer
true or false, when called. Object code for this
procedure is place in the file des.000 because of the
overlay in front of the function declaration.

fil: a variable indicating a file of any type.)

Var fil: file;

begin
Assign(fil,filename);
{$I-) (Shuts off Turbo Pascal automatic error)
Reset(fil); (checking)
(SI+) (turns automatic checking back on.)
Exist := (IOresult = 0) (Turbo function the returns a zero if)

(an input/output error exists)
end; (function Exist)

overlay function StatusCheck(Var
priorityvectors: priorities): integer:

(StatusCheck - An integer function that receives a record of real
vectors and derernines the status by seeing which
vectors contain zeros. Object code for this function
is also contained in dss.000.

i: a counter variable)

label 1;

Var i: integer;

begir
i := 0;

(Checks the vectors for a zero to see which section a User quit at.)
with priorityvectors do
begin

if criteriaprioritiestl] (> 0.0 then i := 1:
if performancevector[l] <> 0.0 then i := 2;
if schedulevector~l] <> 0.0 then i := 3:
if riskvector[l] () 0.0 then i :- 4;
if costvector(1] (> 0.0 then i := 5

end; (with priorityvectors)
StatusCheck := i

end; (function check status)

91



overlay procedure GetInfo(firstline, lastline: integer);

(GetInfo - Enters a text file that contains most of the tables and
messages for use within the DSS. It takes a first line
number and a last line number and then prints everything
inbetween those two numbers onto the screen.
The file that this procedure uses for this implementation
is called "info.das".

currentline: A variable used to keep track of the current line

of the textfile.
letter: A character variable.
textfile: a file of text.)

Var currentline: integer;

letter: char;
textfile: text;

begin
ClrScr;
currentline := 1;
Assign(textfile,'info.dss'):
Reset(textfile);

(Advance textfile to the first line to be printed)

while currentline <> firstline do
begin
readln(textfile);
currentline := currentline + 1

end;

(while not the last line to be printed)

while currentline <> lastline do
begin

(while not the end of the line, print each character on the line)

while not eoln(textfile) do
begin

read(textfileletter);
write(letter)
end;

writeln;

(read next line of text, advance the current line)

readln(textfile):
currentline := currentline + 1

end
end; (GetInfo)

92

% % *. .... ,,,.



overlay procedure InitializeConceptOption(Var optionrec:
conceptoption);

(InitializeConceptOption - Takes a record of type conceptoption
and initializes it by filling it with blanks
and zeros, where applicable. Object code for
this procedure is in dss.000.]

begin
with optionrec do
begin
optionname :2 "
optionorigin =
for i := 1 to 15 do
begin
optiontili].tiname :=

optionti[i].tischedule := 0;
optiontifi].tirisk :2 0;
optionti[i].ticost 0.0
end; (if to blank optionti)

with optionperformance do
begin
coverage :0 0;

capacity 0;
quality := 0;
timeliness := 0;
availability := 0;
survivability := 0
end (with optionperformance)

end (with optionrec)
end; (InitializeConceptOption)

overlay procedure InitializeUserFile(userfilename: Charl2;
Var status: integer):

(InitializeUserFile - Receives a filename of a user database file,
and a status. Returns either a new status
or a blank record at the last entry position
of a user database file. Object code for
this file is in dsa.000.

userdata - a file of records of type userfile.
userrecord - One record of type userfile.
i,j - counting integers.)

label 1;

Var userdata: file of userfile:
userrecord: userfile;
i,j: integer;

93



begin
Assign (userdata,uaerfiename);
if status =7 then
begin

Reset(userdata):
Seek(userdata,FileSize(userdata) -1)
end;

if status = 6 then
begin

Reset(userdata);
4 Seek(userdata,FileSize(userdata))

end;
if status = 10 then

begin
Reset(userdata);
Seek(userdata,FileSize(userdata)-l);
Read(userdata~userrecord);
status := StatusCheck (userrecord .priorityvectors);
GoTo 1
end; (if status is 10)

if status = 0 then Rewrite(userdata);
with userrecord do
begin
conceptname :
optiondata :

for i := 1 to maxnumoptions do options~i] 2

with judgements do
begin

for i :=1 to 12 do
begin

criteriachoicesli] =
performancechoicesliJ 2

schedulechoiceali] =
riskchoicesli3 l
costchoices~iJ

5 end (for i one to twelve)
end; (with judgement)

with priorityvectors do
begin

for i := 1 to maxnusoptions do
begin

criteriaprioritiesli3 :=0.0;
performancevector Ci] 0.0;
schedulevectorli3 := 0.0;
riakvactorli] :x 0.0;
costvector~i] := 0.0;
finalprioritiesli] := 0.0
end (for i one to maxnumoptions)

end: (with priorityvectors)
for i := 1 to maxnumoptions do CRvector~i] : 0.0

end-, (with userrecord)
Write (userdata ,userrecord);

1 :Close(userdata)
end; (InitializeUserFile)

94



overlay procedure Compare(Var comparisons: matrix:

Var A1,A2,Q0,O2: char; i,j: integer);

(Compare - Makes the comparisons to build the comparison matrix for
the first level of the decision process hierarchy. That
is, it presents the criteria for the comparison to the
decision-maker. Receives the matrix that will be the
matrix used by the AHP subroutine. Also receives the

letters of the comparison (Al,A2), the anser input by
the user (Q1,Q2) and two integers to indiate which com-
parison is being made. (i,j). Object code is in dss.O00.

Oint: integer transfer variable.
k: counting variable.)

Var Qint,k: integer;

begin

Oint := ord(02) - 48;
k := 1;

if ord(Q1) in ((ord(A1)+32),(ord(A2)+32)]
then 01 := chr(ord(Q1)-32);

while (Q1>Al) and (91<)A2) or (Qint<1) or (Qint>9) do
begin

if k = 3 then
begin

writeln;
write(' Remember, the first letter of the ');
writeln('dominating criteria first, then'):
write(' the number representing the'):
writeln('relationship from the comparison scale.');
write(' Ex: P5 (performance dominates 0):
writeln('compairison)')
end;

write(' Again?: ');

read(01,Q2);
Qint := ord(Q2) - 48;
if ord(Ql) in [(ord(A1)+32),(ord(A2)+32)3

then 01 := chr(ord(Ql)-32);
k :=kIc*l

end;
if k > 1 then writeln;

if Q1 = Al then
begin
comparisons[i,3] := Qint;
comparisons[j,i] := 1/Qint
end

else
begin
comparisons(i,j] : 1/Qint;
comparisons[j,i] : Qint

end
end; (Compare)

95



overlay procedure AHP(squarematrix: matrix: Var priorities: vector;
n: integer; Var cr: real);

(AHP - This procedure calculates the maximum eigen value and its
characteristic eigenvector using the ordinary power method.
From the eigenvalue, it calculates the prioirty vector of
the matrix of comparisons passed by squarematris, and returns
the priorityvector as priorities. It also uses n, the number
of comparisons and calculates cr, the consistency ratio.

Object code is stored in dss.O00.

variables - i,],m: integer counting variables.
sum: real value sum of addition in power method.
transform: vector that stores the characteristic

eigenvector.
maxlamda: the estimate of the maximum eigenvalue.)

Var i,j,m: integer;

sum: real;
transform: vector;
maxlamda: real;

begin
sum := 0;
cr := 0;
for i := 1 to n do prioritiesli] := 1;
m := 1;
while a <= 50 do
begin

for i := 1 to n do
begin

transform[i] := 0:
for j := 1 to n do transformli] := squarematrix[i,j)

* priorities[j] + transform~i];
end;

maxlamda := 0.0:
for i := 1 to n do maxlamda := maxlamda + transformli]

* transformaiJ;
maxlamda := sqrt(maxlamda);
for i := 1 to n do priorities~i] :2 transform[i]/maxlamda;
if m = 5 then
begin

writeln;
writeln(b,'CALCULATING PRIORITIES')

end,
if m 25 then writeln(b,'CONTINUING CALCULATIONS');
m := + * 1

end; (while loop to calculate eigenvalue and vector)
cr := (maxlamda - n)/(n - 1);
case n of

1: cr := 0.00;
2: cr := 0.00;
3: cr := cr/0.58;

96



4: cr : cr/0.90;
5: cr cr/1.12;
6: cr : crl1.24;
7: cr 2 cr/1.32;
8: cr : cr/1.41;
9: cr cr/1.45;

10: cr cr/1.49
end; (case n of 1 to 10)

for i :1 1 to n do sum := sum + prioritiesli);
for i := 1 to n do prioritiesCi] := priorities(i]/sum

end; (AHP)

overlay procedure OptionComparisons(Var optionmatrix: matrix;
numoptions: integer; Var choicevector: outputdatafile);

(OptionComparisons - procedure that performs comparisons between
two options. Compares them by number, determined by the number
of options passed by numoptions. Other variable passed to this
procedure are optionmatrix, the matrix built for the AHP subrou-
tine, and choicevector. the vector of that stores the a record
of the users choices for further reference. The ob3ect code for
this procedure is stored in dss.000.

Variables - i,],k: counter variables.
Q1,Q2: character answers from input the user.)

Var i,3,k,I1,I2,counter: integer;
Q1,Q2: char:

begin
counter := 1;
for i := 1 to numoptions do
begin

for j := 1 to numoptions do optionmatrix[i,j] 1
end;

for i := 1 to (numoptions - 1) do
begin

for j := (i + 1) to numoptions do
begin

write(' Option ',i,' vs Option ',j,': ');

read(Q1,02);
Il := ord(Q1) - 48;

12 := ord(Q2) - 48;
k := 1;
while (I1 <> i) and (Il <> j) or (12 < 1) or (M2 > 9)
do begin

if k =3 then
begin
writeln;
write(' Remember - The # of the dominating ");
writeln('option first then the value from');
write(' the comparison scale! Ex: 17 - ");
writeln('option 1, strongly dominates, etc..');

97

D~;K



write(' Option ',i,' vs Option ',j,': ");
k := 1

end; (if k = 3)
write(' Again?: ");
read(Q1,Q2);
I1 :2 ord(0l) - 48;
12 := ord(02) - 48:
k :k +1
end; (while loop)

if counter in E2,4,6,8,10] then writeln;
if I1 = i then
begin
optionmatrix(i,j] := 12;
optionmatrix[j.41 :l i/12

end
else
begin

optionnatrix(ij] := 1/12:
optionmatrix[j,i] := 12

end; (if Il = D)
case counter of

1: begin
choicevector[1] := Q1;
choicevector[2] := Q2

end;
2: begin

choicevector(3] := 01;
choicevector[41 :G 02

end;
3: begin

choicevector[5] :Q 01;
choicevector[6] := G2

end;
4: begin

choicevector[7] :Q 01:
choicevector[8] := 02

end;
5: begin

choicevector[9] := 01;
choicevector[10] := 02

end;
6: begin

choicevector[11) ;= 01;
choicevector[121 : Q2

end;
7: begin

choicevector[13] := Q1;
choicevector[14] := Q2

end;
8: begin

choicevectorE15] :Q 01;
choicevector[16] := Q2

end;

98

-2



9: begin
choicevector[173 :0 Q1:
choicevector[18] := Q2

end;
10: begin

choicevector[l9] :=Q;
choicevector[20] := Q2

end

end; (case of counter)
counter := counter + 1
end (for j loop)

end (for i loop)

end; (OptionComparisons)

overlay procedure PrintOptionComparisons(choicevector:
outputdatafile; numoptions: integer);

(PrintOptionComparisons - Prints the comparisons made by a user.

Prints the number of options determined by numoptions.
Sends the print to the computers list device.)

label 1,3,4,5;

begin
write(Lst,b,' Scale
writeln(Lst,' Scale'):
write(Lst,b,' Comparison Value Comparison'):
writeln(Lst,' Value');

. write(Lst,b,' ---------- )-

writeln(Lst,' ----- ):
case numoptions of

2: ;
3: GoTo 3;
4: GoTo 4;
5: GoTo 5

end; (case of numoptions)

if choicevector[l] = '1' then write(Lst,b,'Option I over 2')
else write(Lst,b,'Option 2 over 1');

writeln(Let,' ',choicevector[2]):
GoTo 1;

3:if choicevector(13 = '1' then write(Lst,b,'Option 1 over 2')
else write(Lst,b,'Option 2 over 1');

write(Let,' ',choicevector[2],'
if choicevector[3] = '1' then write(Lst,'l over 3 ")
else write(Lst,'3 over 1 ");
writeln(Lst,choicevector[4]);
if choicevector[5] = '2' then write(Lst,b,'Option 2 over 3')
el' write(Lst,b,'Option 3 over 2');

writeln(Lst,' ',choicevector[63):
GoTo 1:

99

S - , - - - - - - - - - - . ..- . - - . • ..- . - - . - .



4:if choicevectorfi] = '1' then write(Lat,b,'Option 1 over 2')
else write(Lat,b,'Option 2 over 1');
write(Lat,' 'choicevector[23,'
if choicovector[3] = '1' then write(Lat,'l over 3 1
else write(Lat,'3 over 1 ;

writeln(Latchoicevector (4]);
if choicevectorC5] '1' then write(Lst~b,'Option 1 over 4')
else write(Lst~b,'Option 4 over 1');

write(Lat,' 'choicevector(6J,'
if choicevectorE7] z '2' then write(Lat,'2 over 3 0
else write(Lat,'3 over 2 ;

writeln(Lst,choicevector (8]);
if choicevectorE9] ' 2' then write(Lat,b,'Option 2 over 4')
else write(Lat,b,'Option 4 over 2');

write(Lat p' I choicevector[101,'
if choicevector[11] = '3' then write(Lat,'3 over 4 0
else write(Lat,'4 over 3P)

writeln(Let,choicevector (12]);
GoTo 1;

5:if choicevector~l] = '1' then writeCLat,b,'Option 1 over 2')
else write(Lst,b,'Option 2 over 1');

write(Lat,' ',choicevector[2]p' 0
if choicevector(3J = '1' then write(Lat,'l over 3 A

*else write(Lst,'3 over 1 ;
writeln(Lat,choicevector (4]);
if choicevector[5S] '1' then write(Lst,b,'Option I. over 4')
else write(Lat~b,'Option 4 over 1');

write(Lat,' ',choicevector (6].,' )
if choicevector(7J = '1' then write(Lat.'1 over 5 0
else write(Lst,'5 over 1 0

writeln(Lst~choicevector (8]);
if choicevector[9] = '2' then write(Lat~b,'Option 2 over 3')
else write(Lst,b,'Option 3 over 2');

write(Let,' 'choicevectorEl03,'
if choicevectorfil] = '2' then write(Lat,'2 over 4 1
else write(Lat,'4 over 2

writeln(Latchoicevector[12J);
if choicevector(13] = '2' then write(Lat,b,'Option 2 over 5')
else write(Lst,b,'Option 5 over 2');

write(Lat,' 'choicevector[143,'
if choicevector(15] = '3' then write(Lst,'3 over 4 1
else write(Lst,'4 over 3 )
writeln(Lat,choicevector (16]);
if choicevector[173] '3' then writs(Lst,b,'Option 3 over 5')
else write(Lst~b,'Option 5 over 3');

write(Lat ' P ,choicevector(183,' )
if choicevector[19] = '4' then write(Lst.'4 over 5 1
else write(Lst,'5 over 4 1

writeln(Lat,choicavector (20]);

1:writeln(Lst,' '

end; (PrintOptionComparisons) 

10



overlay procedure WriteOptionComparisons(choicevector:
outputdatafile; numopt.ions: integer);

(WriteOptionComparisons - Same as PrintOptionComparisons, except

this procedure prints to the screen.)

label 1,3,4,5;

beg in
write(' Scale
writeln(' Scale');
write(' Comparison Value Comparison');
writeln(' Value');
write('-- - - - -- - - - -P)
writeln('
case numoptions of
2:
3: GoTo 3;
4: GoTo 4;
5: GoTo 5

end; (case of numoptions)

if choicevectorE1i) '1' then write('Option 1 over 2')
else write('Option 2 over 1');

writeln(' ',choicevectort2]);
GoTo 1;

3:if choicevector~l] = '1' then write('Option 1 over 2')
else write('Option 2 over 1');

write(' ',choicevectorE23,' 1
if choicevector[33 = '1' then write('1 over 3 1
else write('3 over 1 P);r
.riteln(choicevector (43);
if choicevectorC53 = '2' then write('Option 2 over 3')
else write('Option 3 over 2');

writeln(' ',choicevectorE6]);
GoTo 1;

4:if choicevectorE1] z '1' then write('Option 1 over 2')
else write('Option 2 over 1');

write(' 'choicevectorE2],'
if choicevectorC33 a '1' then werite('1 over 3 1
else write('3 over 1

writeln(choicevector (43);
if choicevectortS] a '1' then write('Option 1 over 4')
else write('Option 4 over 1');

write(' ,choicevectorE63,'
if choicevector(7] a '2' then write('2 over 3 1
else write('3 over 2

writeln(choicevector (8]);
if choicevectorE93 a '2' then write('Option 2 over 4')
else write('Option 4 over 2');

write(' 'choicevector[103,'

101



if choicevector~il] ='3' then write('3 over 4
else write('4 over 3 P

writeln(choicevector[12]);
GoTo 1;

5:if choicevector~l] ='1' then write('Option 1. over 2')
else write('Option 2 over 1');

write(' 'choicevector[23,'
if choicevector(3] = '1' then write('l over 3
else write('3 over 1 1
writeln(choicevector (4]);
if choicevector[5] = '1' then write('Option 1 over 4')
else write('Option 4 over 1');
write(' 'choicevector[63,'
if choicevector[7] '1' then write('l over 5 0
else write('5 over 1 ;

writoln(choicevector[8]):
if choicevector(9] '2' then write('Option 2 over 3')
else write('Option 3 over 2');
write(' ',choicevectortl03,'P)
if choicevector[113 '2' then write('2 over 4 1
else write('4 over 2 ;
writeln(choicevector (12]);
if choicevectorEl3J = '2' then write('Option 2 over 5')
else writeC'Option 5 over 2');
write(' ',choicevector(14J,' )

if choicevector[153 '3' then write('3 over 4
else writeC'4 over 3 1

writeln(choicevector[16]);
if choicevector[17J '3' then write('Option 3 over 5')
else write('Option 5 over 3');
write(' '.choicevector(18b,'
if choicevector[19] '4' then write('4 over 5
else write('5 over 4

writeln (choicevector (20]);

1 :writeln
end; (WriteOptionComparisons)

102



. , , Include file: extra2.dss -

procedure ChangeOptionInformation(Var optionrec: conceptoption);

(ChangeOptionInformation - this procedure is part of the database
management system and is only called by the procedure DataBase
Management. It accepts a record of concept option (all the infor-
nation concerning a concept option and provides an oppurunity to
change that information.

Variables - i,j: counting integers.
nuiti: integer counter of the number of technology

issues for this concept.
answer: character to receive input.
OK: boolean to determine if input is real when it must

be, integer when it must be, etc.

label 2,3,4;

Var i,j,numti: integer;
tempoption: conceptoption;
answer: char;
OK: boolean;

begin
InitializeConceptOption(tempoption);
tempoption : optionrec;

2:ClrScr;
writeln;
writeln(b,' Select Appropriate Number');
writeln;
writeln(b,' CHANGE OPTIONS');
writeln(b,' --------------- ); (ChangeOption)
writeln(b,' 1) Option Name'); (Menu)
writeln(b,' 2) Option Originator');
writeln(b,' 3) Technology Issue');
writeln(b,' 4) Performance Value');
writeln(b,' 5) Return to last menu');
writeln;
write(b,' SELECTION: ');
readln(answer);
while not (answer in C'1'..'5'3) do
begin

writeln;
write(b,'Incorrect selection, not (1..5), RESELECT: ');

readln(answer)
end;

with tempoption do
begin
case answer of

'1': begin

103



answer:=n'
while answer in L"N','n'J do
begi±n
ClrScr;
writein;
writein;
write(b,'Current option name is')
write(optionname,', change to (20 char): o);
readin (opt jonname);
writein;
write(b,'Is ',optionname,' correct )

write('(Y or N)?')
readln(answer);
CheckYorN (answer)

end; (while answer in no)
GoTo 2
end; (case of 1 - change option name)

'2': begin
answer :='n';
while answer in C'N','no) do
begin

ClrScr;
writein;
writein;
write(b,'Current option originator is )

write(optionorigin,', change to (20 char): )

readln(optionorigin);
writein;
write(b,'Is ',optionorigin,' correct )

write('(Y or N)?')
readln(answer);
CheckYorN (answer)

end; (while answer in no)
GoTo 2;
end; (case of 1 - change option name)

'3': begin
3:ClrScr;

OK := false;
writein;
write(b,'Select Technology Issue to change')
writeln('by its #');

for i := 1 to 15 do
* . if optiontifi].tiname ''then

nunti := numti + 1;
for i := 1 to nuati do

writeln(' ',i:2.') ',optiontiliJ.tiname);
writeln(' ',i+1:2,') Change none )

writeln;

write(b,b,'SELECTION: 1);
while not OK do
begin

M$-) (Shuts of automatic error checking)
readln(]);

104

S.%



7% W% P-.- -~r SE W- -w IL T- i. V

(C-.) (Turns on automatic error checking)
OK := (IOresult =0);
if not OK or not (j in El..i-l]) then
begin
write(bb,'Not an option, Reselect: )

OK := false
end

end; (while not OKI
if j =i + 1 then GoTo 2;
ClrScr;
writeln;
writeln(b,optionti (jJ.tiname);
write(b,'Change Tech Issue Name (Y or N)?')
readln(answer);
CheckYorN(answer);
while answer in E'Y','y'] do
begin

write('Change to (up to 80 char):')
readln(optionti (j] .tiname);
writeln('Is ',optiontiljJ .tiname);
write~correct (Y or N)?')
readln(answer);
CheckYorN (answer);
if answer in ('N',Wn' then answer :y
else answer := W

end; (while changing tiname)
write(b,'Schedule is ',optiontiljl .tischedule);
write(', do you wish to change (Y or N)? )

readln(answer);
while answer in E'Y','y'] do
begin

OK := false;
write(b,'Change to:')
while not OK do
beg in

M.-) (Shuts of automatic error checking)
readln(optionti Cj].tischedule);

M*I) (Turns on automatic error checking)
OK := (lOresult =0);
if not OK then
begin

write(b,b,'Enter # again: )

OK := false
end

end; (while not OK)
write(b.'Is ',optiontijl .tischedule);
write('. correct (Y or N)? )

readln(answer);
if answer in E'N',Wn' then answer :'y'
else answer := Wn

end; (while changing tiachedule)
write(b, 'Risk is ',optionti Eji .tirisk);
write(', do you wish to change (Y or N)?')

105



* l ' ~ w.~W . . , g J ,. - - . ,i -

readln(answer);

while answer in C'Y','y'] do
begin

OK := false;
write(b,'Change to: ";
while not OK do

begin
($I-) (Shuts of automatic error checking)

readln(optiontil(j.tirisk);
(SI*) (Turns on automatic error checking)

OK := (IOresult = 0):

if not OK then
begin

*: write(b,b,'Enter # again: ");

*, OK := false
end

end; (while not OK)
write(b,'Is ',optiontiEjl.tiriak);
write(', correct (Y or N)? ");

readln(answer);

if answer in ['N','n'] then answer : y
else answer := n

end; (while changing tiriek)
write(b,'Cost is ",optionti[j].ticoat);

write(', do you wish to change (Y or N)? ");
readln(answer);
while answer in ['Y'.'y'] do

begin
OK := false;
write(b,'Change to: ");

while not OK do
begin

($I-) (Shuts of automatic error checking)
readln(optionti[j].ticost);

($I+) (Turns on automatic error checking)
OK :x (IOresult = 0):
if not OK then
begin

write(b,b,'Enter # again: ")
OK := false
end

end; (while not OK)
write(b,'Is ',optionti[]J.ticost);

write(', correct (Y or N)? ";
readln(answer);

if answer in ('N'.'n'] then answer := "y'
else answer := W

end; (while changing ticost)
write(b,'Would you like to change another ");
write('Technology Issue (Y or N)? ');

readln(answer):
if answer in ['Y','y'] then GoTo 3;
GoTo 2

106

S



end; (case of change a Tech Issue)
'4': begin

with optionperformance do
begin
while answer in ('Y','y') do
begin

CirScr;
writeln;
writeln(b,'Select # of Value to Change');
writein;
writeln(b,' Performance Values');
writeln(b,' - - - - - - - - -- )
writeln(b,' 1) Coverage =',coverage);
writeln(b,' 2) Capacity =',capacity);
writeln(b,' 3) Quality =',quality);
writeln(b,' 4) Timeliness =',timeliness);
write(b,' 5) Availability=
writeln(availability);
write(b,' 6) Survivability
writeln(survivability);
writeln(b,' 7) None');
writeln;
write(b,' SELECTION: ');

readln(answer);
while not (answer in ['l'..'7'1) do
begin

write(b,' Reselect: )

readln (answer)
end;

if answer ='7' then answer 'n'
if answer in E'1'..'6'3 then
begin

OK := false;
write(b,'Change to:')
while not OK do
begin

MS-) (Shuts of automatic error checking)
readln(i);

(0I+) (Turns on automatic error checking)
OK := (IOresult z 0);
if not OK then
begin

write(b,b,'Enter # again:')
OK :z false

end
end; (while not OK)

case answer of
'1': coverage
'2': capacity ::
'3': quality i;
'4': timeliness := i;
'5': availability :z i;
'6': survivability :=i

107



end; (case of answer)
answer := 'y';

end (if answer in 1 to 6)
end (while answer is yes)

end; (with performance do)
GoTo 2 .

end; (case answer of '4')

end (case statement)

end; (with tempoption do)
optionrec := tempoption

end; (ChangeOptionInformation)

overlay procedure Quit (Var quitindicator:integer);

(Quit - determines if a user really wants to quit. Uses the global
variable quitindicator. If user wants to quit, Quit returns
a value of 1. If not, a value of 0.
Object code for this procedure will be in dss.001.

Calls CheckYorN

Variable - query: character to receive input.
i: counting integer.)

Var query: char;
i: integer;

begin
i := 0; 1*

ClrScr;

for i := 1 to 10 do writeln;
writeln(b,'Do you wish to leave the program now?');
write(b,' Yes or No ("Y" or "N")? •);

readln(query);
CheckYorN(query);
writeln;
case query of

'Y','y':begin

ClrScr;
for i := 1 to 10 do writeln;
write(b,'You ');

writeln('have terminated execution of the•);
write(b,'AFSTC ');

writeln('Decision Support System (DSS)'):
write(b);
writeln('for Space System Tradeoffs.');
quitindicator := 1
end;

N,'n' :begin

ClrScr;
for i := 1 to 10 do writeln;

".

108

S . -- e -'e



~~~~.-~~.-" " - W- T-IW*Y W W Wr j w - ~ -,

write(b,' Wait, you ");
writeln('will be returned -o the program');
Delay(1500);

quitindicator := 0;
end

end (case query of Y or N)
end: (Quit)

overlay procedure InputNewConcept(Var newconceptrecord: datafile);

(InputNewConcept - takes a record of type datafile and receives a

new concept name and originator.

Calls CheckYorN

Variables - i,j: counting integers.
answer: a character to receive input.)

label 2,3;

Var i,j: integer;

answer: char;

begin
ClrScr;
with newconceptrecord do

begin
writeln;
write(' The new concept name, and the concepts P);

writeln('originator,');
write(' both no more than 20 characters, will ");
writeln('be input at');
writeln(' this time.');

2:writeln;
write(' Enter the new concept name: ")"
readln(conceptname);
writeln;
write(' Is ',conceptname,' correct (Y or N)? ");
readln(answer);
CheckYorN(anawer);
if answer in ['N','n'] then goto 2;
writeln;

3:writeln;
write(' Enter the concept originator: ");
readln(conceptorigin);
writeln;
write(' Is ',concepiorigin,' correct? (Y or N)? ');

readln(answer);
CheckYorN(answer);
if answer in ['N','n'] then goto 3

end (with newconceptrecord)
end; (InputNewConcept)

109

-V - -7

overlay procedure InputConceptOptizns(filename: Charl2;
answer: char);

(InputConceptOptions - Governing procedure that determines what
operation will be performed on a concept record. Receives a
filename of the appropriate file in the database and a
character answer.

Calls: InitializeConceptOption; ChangeOptionlnformation; CheckYorN.

Variables - optionfile, a file of conceptoption records.
optionrec: a record of concept options.
i,j: integer counting variable.

4 numoptions,numissues: # of options and tech issues res.
option,origin: strings of up to 20 characters.
tempanswer: a character holding value.
OK: boolean: to determine if input is correct format.)

label 1,2,3,4;

Var optionfile: file of conceptoption;
optionrec: conceptopt ion;
i, j,numoptions, numissues: integer;

* option, origin: Char2O;
tempanswer: char;
OK: boolean;

begin
Assign(optionfile,filename);
InitializeConceptOption(optionrec);
if answer ='1' then
begin
Rewrite(optionfile);
GoTo 3

* end;
Reset(optionfile);

2:ClrScr;
writeln;

writeln(b.' Choose the appropriate number');

writeln(b.' Input Options'):
writeln(b,' ------- 1
writeln(b.' 1.) ADD an option');

writeln(b,' 2) CHANGE an option'):
writeln(b,' [or part of one]');
writeln(b,' 3) DELETE an option');
writeln(b.' 4) None of the above');
writein;
write(b,' SELECTION: ');
readln(answer);
while not (answer in [11'.'2','3','4']) do
begin
write(b~answer,' not an option. Reselect:';

110

. .-,P 7W :-.1

readln(answer)
end;

case answer of
'1': begin

if FileSize~optionfile) =maxnumoptions then
begin
writein;
write(b,'Only ',maxnumoptions,' options allowed')
writeln('per concept. You must remove');
write(b,'an option before you can input')
writeln('another.');
Delay(1500);
GoTo 2

end; (if over maxnumconcepts)
Seek(optionfile,FileSize(optionfile));
answer:=';
GoTo 3

end; (answer of '1']
'2': begin

numoptions := 0;
Seek(optionfile,O);
Read(optionfile,optionrec);
while (optionrec.optionname <> '

do numoptions numoptions + 1;
ClrScr;
Seek(optionfile,O);
writein;
writein;
writeln(b,'Select number of option to work with');
writein;
writeln(b,o Concept Options');
writeln(b,'

for i := 1 to numoptions do
begin

Read(optionfile,optionrec);
writeln(b,' ',i,') ',optionrec.optionname)

end;
writein;
write(b,' SELECTION:')
readln(answer);
while not (answer in E'1'..chr(numoptions+48)1) do
begin
write(b,anawer,' not an option,')
write('please reselect:)

readin (answer)
end;

Seek(optionfile~ord(answer) -49);
Read(optionfile,optionrec);
ChangeOptionlnformation (optionrec);
Seek(optionfile,ord(answer) -49);
Write(optionfile,optionrec);
GoTo 2
end; (case of Changing an Option)

4%

66..'F -,p

'3': begin
-m numoptions := 0;

Seek(optionfile,O);
Read(optionfile,optionrec);
while (optionrec.optionname < '

do numoptions numoptions + 1;
ClrScr;

Seek(optionfile,O);
writein;
writeln;
writeln(b,'Select number of option to DELETE');
writeln;
writeln(b,' Concept Options');
writeln(b,'
for i :=1 to numoptions do
begin
Read(optionfile,optionrec);
writeln(b,' ',i,') ',optionrec.optionnamae)
end;

writeln(b,' '4i+1,') ','None');
writein;
write(b,' SELECTION: ');

readln(answer);
while not (answer in ('1'..chr(numoptionse49)J) do
begin
write(b,answer,' not an option, please reselect:
readln(answer)
end;

if answer =chr(numoptions + 49) then GoTo 2:
tempanawer :=answer;
Seek(optionfile.ord(answer)-49);
writeln;
write(b,'Confirm removal of ',optionrec.optionname);
write(' (Y or N)?')
readln(answer);
if answer in C'n','N') then GoTo 2;
if (ord(tempanswer)-48) <> numoptions then
begin

Seek(optionfile,numoptions-1);
Read(optionfile,optionrec);
Seek(optionfile,ord(tempanswer)-49);
Write(optionfile,optionrec)
end; (if)

InitializeConceptOption(optionrec);
Seek(optionfile,numoptions-i);
Write(optionfile,optionrec);
GoTo 2
end; (if answer is to delete)

'4': GoTo 1
end; (case of answer for main menu)

3:ClrScr;
writeln;
with optionrec do

112

b.

p

begin
write(b,'What is the new option name? ');
readln(optionname):
write(b,'Is ',optionname,' correct (Y or N)? ');

readln(answer);
if answer in ['N','n'] then
begin
write(b,'Change, ',optionname:20,' to: ")"
readln(optionname)

end:
write(b,'Who is the option originator: ");
readln(optionorigin):
write(b,'Is '.optionorigin,' correct (Y or N)? ');

readln(answer);
CheckYorN(answer):
if answer in ['N','n'] then
begin
write(b,'Change, ',optionorigin," to: ");
readln(optionorigin)

end,-
writeln;
write(' How many Tech Issues do you wish to ');
write('input (integer: 1-15)? ');
repeat

readln(numissues);
($I+)

OK := (IOresult = 0);
if not OK then write(' Must be integer(l-15)');

until OK:
while not (numissues in ..153) do
begin

write(b,'This data base only allows 15 technology ");
writeln('issues per concept option.'):
write(b,'Please reselect: ');

readln(numissues)
end; (while numissues not in 1-15)

for j := 1 to numissues do
begin
ClrScr;
writeln;
write(' Technology Issue - ',j,' out of ");
writeln(numissues);
writeln;
wrtte(' What is the Tech Issue name? ';
readln(optionti[j.tiname):
write(' What is the Tech Issue risk ";
write('(l to 5)? ');

readln(optionti[j].tirisk);
write(' What is scheduled number of years ")
write('to completion? ");
readln(optionti j].tischedule);
write(' What is the cost to solve the issue? '):

113

readin(optionti EjJ.ticost);
writein;
writeln(' Name: ',optiontij .tiname):
write(' Schedule: '.optiontilj3 .tischedule:2);
write(' Risk: ',optiontifj].tirisk,' Cost:)

writeln(optiontij .ticost:8);
write(' Is the above correct (Y or N)?')
readln(answer);
CheckYorN(answer);
if answer in t'N','n') then j := j -1

end; (for j 1 to numissues)
if numissues (15 then
begin

for j := (numissues~l) to 15 do
begin
optionti~j3.tiname :
optionti~j].tirisk :=0;
optiontifjJ.tischedule := 0;

end (for 3)
end; (if numissues < 15)

with optionperformance do
begin
4:ClrScr;
writeln;
writeln(b,' 'optionname);
writeln(b,'Performance values (1U 5)');
writeln;
write(b,'What is the coverage value?)

readIn (coverage);
write(b,'What is the capacity value?)

readln(capacity);
write(b,'What is the quality value?')
readln(quality);
write(b,'What is the timeliness value?';
readln(timeliness);
write(b,'What is the availability value?')

1P readln(availability);
write(b,'What is the survivability value?)

readln(survivability);
writeln;
writeln(b,'Cov Cap Qua Tim Ava Sur');
write(b,' ',coverage,' Pcapacity,' ,quality);
write(' ',timeliness,' 'availability,' ')

writeln(survivability);
write(' Are the above performance values')
write('correct (Y or N)?')
readln(answer);
CheckYorN (answer);
if answer in ('N','n'] then GoTo 4

end (with optionperforuance)
end; (with optionrec)

Write(optionfile,,optionrec);

* 114

r

GoTo 2:
1:ClrScr;
for i := 1 to 11 do writein;
writeln(b, Input Program Terminated');
Close (optionfile)

end: (InputConceptOption)

overlay procedure PrintPreviousRun(Var userdata: userfile;
section: integer);

[PrintPreviousRun - prints to printer a previous user run represented
by the userdata variable. The section to be printed is
the variable section.
Object code stored in dss.001.

Calls - PrintOptionComparisona

Variables i~numoptions: counting integers.)

label 1,2,3,4,5,6;

Var i,numoptions: integer;

begin
numoptions := 0:
for i := 1 to maxnumoptions do

if (userdata.optionsfij <> ' then
numoptions :=numoptions +1;

with userdata do
begin
case section of
1:
2: GoTo 2;
3: GoTo 3;
4: GoTo 4;
5: GoTo 5;
6: GoTo 6

end; (case of section)
ClrScr;
write(Lat,b,' o
writeln(Lst,'PRIORITIZATION OF ATTRIBUTES (CRITERIA)');
writeln(Lst,'')
writeln(Lst,b.' ',conceptname);
write(Lst,b,' Criteria Priority');
writeln(Lat, '-Weight');
write(Lat.b.' ---- --- -o
writeln(Lst,--------
writeln(Lst,')

write(Lst,b,' Performance
with priorityvectors do
begin

writeln(Lat,criteriapriorities(1) :8);

115

write(Lst,b,' Schedule 1);
writeln(Lst,criteriepriorities (2):8);
write(Lst~b,' Risk ;
writeln(Lst,criteriapriorities (3):8);
write(Lst,b,' Cost

o writeln(Lst,criteriapriorities[4) :8);
writeln(Lst,' ');

end; (with priorityvectors do)
writeln(Lst~b.' Consistency Ratio is: ',CRvector~l3 :6);
writeln(Lst,' ');

writeln(Lst,b,' Comparison Scale Value');
writeln(Lst,b,'-----------------------------------);
with judgements do
begin

if criteriachoices(1] in C'P',Pp') then
write(Lat,b,' Performance over Schedule '

else
write(Lst,b,' Schedule over Performance')

writeln(Lst,' ',criteriachoicesf2]);

if criteriachoices[3) in ('P','p') then
write(Lst~b,' Performance over Risk 1

else
write(Lst~b,' Risk over Performance

writein(LIst,' '.criteriachoices[41D;
if criteriachoices[5) in ['P','p'J then

write(Let,b.' Performance over Cost
else
write(Lstb,' Cost over Performance

writeln(Lt,' '.criteriachoices (6]);
if criteriachoices[7) in C'S','s'] then

write(Lat~b'p Schedule over Risk
else
write(Lst,b,' Risk over Schedule

wr ,teln(Lst.' '.criterlschoices(8]);
if criteriachoices(9J in t'S','s'3 then

write(Lst,b,' Schedule over Cost
else
:write(Lst,b,' 10 Cost over Schedule

writeln(Lst,p 'criteriachoices[1OJ):
if criteriachoices1ll] in E'R','r'1 then

write(Lst,b,' Risk over Cost P
else
write(Lst,b.' Cost over Risk

writeln(Lst,' 'criteriachoices[121)
* end: (with judgements do)

writeln(Lst,'
GoTo 1;

2:ClrScr;
writeln(Lst,b.' ATTRIBUTE - PERFORMANCE'):
writeln(Lst,b,' 'conceptname):

116

writeln(Lst,b,'')
write(Lst,b,' Option Same
writeln(Lst, 'Priority');
write(Lst,b,'------
writeln(Lst ---------- 1
writeln(Lst,b,' ');

for i :=1 to numoptions do
begin

writeln(Lst,priorityvectors.performancevectorliJ :8)
end;

writeln(Lst,'')
writeln(Lst,b,' Consistency Ratio: ',CRvectorf2) :6);
writeln(Lst,b,' ');
write(Lst,' Based on the criteria of performance'):
writeln(Lat,', your comparisons were:');
PrintOptionComparisona(judgements.performancechoices,

numoptions);
GoTo 1;

3:ClrScr;
writeln(Lst,b,' ATTRIBUTE - SCHEDULE');
writeln(Lat,b,' 'conceptname):
writeln(Lst,b,'')
writeln(Lat,b,' Option Name Priority');
writeln(Lat,b,'-----------)
writeln(Lst,b,'';
for i := I to numoptions do
begin

writeln(Lst,priorityvectors.schedulevector U] :8)
end:

writeln(Lst,b,'')
writeln(Lst,b,' Consistency Ratio: ',CRvectorf3l :6):
writeln(Lst,b,' ');
write(Lat,' Based on the criteria of schedule,')
writeln(Lst, 'your comparisons were:');
PrintOptionComparisons(judgements.schedulechoices,

numoptions);
GoTo 1:

4:ClrScr;
writein(Lst,b.' ATTRIBUTE - RISK');
writeln(Lat,b,' 'conceptname);
writeln(Lst,b,' Option Priority'):
writeln(LaL,b,' --- ---- 1
writeln(Lst,b,'')
for i := 1 to numoptions do
begin
write(Lstb,' ',i,') ',options~i]:20);
writeln(Lt.' ',priorityvectors.riskvectorli) :8);
end;

writeln(Lst,b,'')

117

', ,

writeln(Lst,b,' Consistency Ratio: ',CRvector[43:6);
writeln(Lst,b,'';
write(Lst,' Based on the criteria of risk. your)

writeln(Lst, 'comparisons were:'):
PrintOptionComperisona(judgements .riskchoices,numoptions);
GoTo 1;

5:ClrScr;
writeln(Lst,b,' ATTRIBUTE - COST');
writeln(Lst,b,' ,conceptname);
writeln(Lat,b,' Option Priority'):
writelri(Lst,b,'--------)
writeln(Lst,b,'')
for i := 1 to numoptions do
begi±n
write(Lst,b.' ',i,') ',options~il:20):
writeln(Lst,' ',priorityvectors.costvectorli] :8);

end;
writeln(Lst,b,'')
writeln(Lst,b,' Consistency Ratio: '.CRvector[5) :6);
writeln(Lst,b,' ');
write(Lst,b,' Based on the criteria of cost, your)

writeln(Lst,'comparisons were:');
PrintOptionCoaparisons (judgements .costchoicesnunoptions);
GoTo 1;

6:ClrScr:
writeln(Lst,b.' FINAL PRIORITIES'):
writeln(Lst,b,'---------
writeln(Lst,b,' 'conceptname):
writeln(Lst,b.' Option Priority'):
writein(Lst,'--------)
for i := 1 to numoptions do
begin

write(Lst,b,' '.i.') '.options~i):20,'
writeln(Lat,priorityvectors.finalprioritiesii) :8)
end:

writeln(Lst,b.'')
p write(Lst,' This is the final priority of the')

writeln(Lst,'options for this concept,');
write(Lst,' based upon your judgernents of the')
writeln(Lat,'importance of the criteria');
write(Lst,' and the ',numoptions,' options corn');
writeln(Lst,'paired against each other, with respect');
writeln(Lst.' to the criteria.');
writeln(Lat,'';

end; (with userdata do)
1:writeln
end; (PrintPreviousRecord)

overlay procedure ViewPreviousRun(Var userdata: userfile:
section: integer);

(ViewPreviousRun - Same as PrintPreviousRun except this procedure
prints to the screen.
Object code is assigned to dss.O0l.

Call view option comparisons.

Variables(extra) :hold, a character to hold the screen for a
return.)

label 1,2,3,4,5,6;

Var i,j,numoptions: integer;
hold: char;

begin
numoptions := 0;
for ± := 1 to maxnumoptions do

if (userdata.optionsli] (>'' then
numoptions :~numoptions +1:

with userdata do
begin

case section of

1:
2: GoTo 2;
3: GoTo 3;
4: GoTo 4;
5: GoTo 5;
6: GoTo 6

end; (case of section)
ClrScr;
writeln(' PRIORITIZATION OF CRITERIA (ATTRIBUTES)'); P

writeln(' ',conceptname);
writeln(' Criteria Priority-Weight');
writeln(-- - - -- - -- - - --')

writein;
write(' Performance
with priorityvectors do
begin
writeln(criteriapriorities[l3 :8);
write(' Schedule
writeln(criteriapriorities (23:8);
write(' Risk
writeln(criteriapriorities (3]:8);
write(' Cost
writeln(criteriapriorities (4] :8)

end; (with priorityvectors do)
writein;
writeln(' Consistency Ratio is: ',CRvector(1J :6);
writein;
writeln(' Comparison Scale Value');

119

writeln(' --- - - - - - - - -)

*1 with judgements do
begin

if criteriachoices~l] in ('P','p'] then
write(' Performance over Schedule 1
else
write(' Schedule over Performance)

writeln(criteriachoicea[23);
if criteriachoices[3] in ('P','p') then

write(' Performance over Risk 0)
else
write(' Risk over Performance);

writeln(criteriachoices (4]);
if criteriachoices[53 in ('P','P'] then

write(' Performance over Coat 1
else
write(' Cost over Performance 1

writeln(criteriachoices(63);
if criteriachoicea(7] in (S's)then

write(' Schedule over Risk 1
else
write(' Risk over Schedule

writeln(criteriachoices (8):
if criteriachoices(9J in ('S','s'J then

write(' Schedule over Cost
else
write(' Cost over Schedule

writeln(criteriachoices[lO]);
if criteriachoices[1iJ in ['R','r'] then

write(' Risk over Cost
else
write(' Cost over Risk

writeln(criteriachoices[123)
end; (with judgements do)

writeln;
write(' Press RETURN when finished reading:
readln(hold);
GoTo 1;

2:ClrScr;
writeln(b,' ATTRIBUTE - PERFORMANCE'):
writeln(b,' 'conceptname);
writeln;
writeln(b,' Option Name Priority');
writeln(b,' -- - - - --- - - -
writeln;
for i :=1 to numoptions do
begin

write(b,i,') 'optionslil:20,'
- writeln(priorityvectora.perforaancevector (i):8)

end;
writeln;

120

WV -v -7 7. -P .

writeln(b,' Consistency Ratio: ',CRvector[2] :6):
writein;
write(' Based on the criteria of performance, your')
writeln('comparisons were:');
WriteOptionComparisons(judgements.performancechoices.

* numoptions);
write(' To continue, press RETURN:')

* readln(hold);
GoTo 1;

3:CirScr;
writeln(b,' ATTRIBUTE - SCHEDULE');
writeln(b,' 'conceptnaae);
writein;
writeln(b,' Option Name Priority');
writeln(b,' - - - - - -- - - -)
writein;
for i :=. to numoptions do
begin
write(b,i,') ',optionsli3:20,' 0
writeln(priorityvectors.schedulevectori :8)
end;

writeln;
4 writeln(b,' Consistency Ratio: ',CRvector[33 :6);

writein;
write(' Based on the criteria of schedule, your 0);
writeln('comparisons were:');
WriteOptionComparison (judgements .schedulechoices,

numoptions);
write(b,'To continue, press RETURN:')

- readln(hold);
GoTo 1;

4:ClrScr;
writeln(b,' ATTRIBUTE - RISK');
writeln(b,' 'conceptname):
writeln(b.' Option priority');
writein(b,' --- ----
writein;
for i := 1 to numoptions do
begin

write(' ',i.') ',optionsfi):20):
writeln(' 'priorityvectore.riskvectorli:8);

end;
writein;
writeln(b,' Consistency Ratio: ',CRvector(4) :6):
writein;
write(' Based on the criteria of risk, your')
writeln('comparisons were:');
WriteOptionComparisonsjudgements.riskchoices,numoptions):
write(' To continue, press RETJRN:')
readln(hold):
GoTo 1:

121

-ft

5:ClrScr;
writeln(b,' ATTRIBUTE - COST');
writeln(b,' 'conceptname);
writeln(b,' Option Priority');
writeln(b,' --- ---- 1
writein;
for i :=1 to numoptions do
begin

write' ',i,') ',options(iJ:20);
writeln(' 'priorityvectors.coatvectorti] :8);

end;
writein;
writeiln(b,' Consistency Ratio: ',CRvector(5] :6);
writeln;
write(' Based on the criteria of cost, your')
writeln('comparisons were:');
WriteOptionComparisons(judgements.costchoices,numoptiona);
write(' To continue, press RETURN:')
readln(hold);
GoTo 1;

6:ClrScr;
writeln(b,' FINAL PRIORITIES');
writeln(b,'---------
writein;
writeln(b,' 'conceptname);
writeln(b,' Option Priority');
writeln(b - ---'----
for £ := 1 to numoptions do
begin

write(' ',i,') ',options~iJ:20,' ;
writeln(priorityvectors.finaipriorities[i) :8)

end;
writein;
write(' This is the final priority of the options')
writeln('for this concept,'):
write(' based upon your judgements of the importan');
writeln('ce of the criteria'):
write(' and the ',numoptions.' options compared ag');
writeln('ainst each other, with respect');
writeln(' to the criteria.');
writein;
write(b,'To continue, press RETURN:')
readln(hold)

end; (with userdata do)
1:writeln
end; (ViewPreviousRecord)

122

INCLUDE FILE EXTRA3.DSS

overlay procedure CriteriaComparisons(Var comparisons: matrix;
concept: Char20; Var selections: outputdatafile);

(CriteriaComparisons - procedure that actually compares the
criteria: performance, cost, schedule and risk. Receives the
comparison matrix, the concept name and selections, a character
array to store the users choices.
The object code for this procedure is stored in dss.O01.

Calls GetInfo, Compare

Variables - i,j: counting integers.

Ql,Q2,Al,A2,hold: characters that receive data
input.)

label 2;

Var i,j: integer:
Q1,Q2,P,S,R,C,hold: char;

begin
ClrScr;
P ::P'
S :"S'
R : 'R'
C := 'C';

2:for i := 1 to 4 do

begin
for j:= 1 to 4 do comparisonsai,j] := 1

end;
GetInfo(53,64): (comparison procedure explanation block 23
readln(hold);
ClrScr;
writeln(' Comparison of Criteria');
writeln;
writeln(' ',concept):
writeln;
writeln(' SCALE');
writeln(' 1 2 3 4 5 6 7 8 9'):
writeln(' 1< ------------- >1 ")

writeln(' equal complete dominance'):
writeln;
write(b,' Performance vs Schedule: ');

readln(01,Q2);
i := 1;)j := 2;
Compare(comparisons,P,S,Ql,02,i,j);
selections~l] : Q1;
selections[2] :: 02;

123

write(b,' Performance vs Risk:)

readln(Q1,Q2);
j ~3;

Compare(comparisons.P,R,01.02,i,j);
aelections(33 01;
selectionsC4j : 02;
write(b,' Performance vs Cost: 1);
readln(Ql,Q2);
j := 4;
Compare(comparisonaP,C,Q1.02,i,j);
selections(5J : 01;
selections(GJ Q 2:
werite(b,' Schedule vs Risk:')
readln(01,02);
i := 2;j := 3;
Compare(comparisons,S,R,0i,Q2,i,j);
selections[73 Q2 1;
selections (8] :02;
write(b,' Schedule vs Cost:')
readln(0.02);
j := 4;
Compare(comparisons,S,CQl,02,ij);
selections(93 :=01;
selections[1O] Q~ 2;
write(b.' Risk vs Cost:
readln(Ql,02);
± := 3;j := 4:

Compare(couparisons,R,C,Q1,02,i,j);
selectionstll :91;
selections[12] : 02

end; (CriteriaComparisons)

overlay procedure GetPerformanceVector(Var inputfilerecord:
userfile; Var quitindicator: integer);

(GetPerformanceVector - procedure that finds priorities of concept
options given the criteria is performance.

* Object code is stored in dss.OO1.

procedure Calls: GetInfo. AHP,CheckYorM, OptionComparisons)

label 2;

Var optionfile: file of conceptoption;
optionrec: conceptoption;
performancenatrix: matrix;
numoptions, i, sum: integer;

* answer: char;
mean: real;

begin
Assign(optionfile~inputfilerecord.optiondata);

* Reset(optionfile);
numoptions := FileSize(optionfile);

124

2.Getlnfo(74,81). (Performance Explanation)
write(b,b);
reedln(answer);
CheckYorN (answer);
case answer of

'Y', 'y' :begin
Getlnfo(30,53); (AHP comparison scale)
write(b, Press RETURN to continue:')
readin (answer)

end;

end; (case of answer)
Getlnfo(81,102): (Performance Scale)
writein;
write(b,' To continue, press RETURN:)

readln(answer);
ClrScr;
writein;
writeln(b,' ATTRIBUTE - PERFORMANCE');
writeln(b,' ',inputfilerecord.conceptname):
writeln(b.' Performance Scale');
writeln(b,' 1 2 3 4 5');
writeln(b.' \Deficient \Meets \Exceeds'):
writeln(b,' Performance Requirements');
sum := 0;
write(')
for i 1 to nusoptions do
begin

sum :~sum + 1;
Read(optionfile~optionrec);
inputfilerecord.options(i] :=optionrec.optionname:
write(' ',i,') ',optionrec.optionname):
if sum = 3 then
begin

writeln;
write(b)
end

end;
writeln;
Seek (optionfile,0);
writein;
write(b);
for i := 1 to numoptions do write(' OPTION 'pi,'

* writeln;
write(' Coverage
for i : 1 to numoptions do
begin
Read(optionfile,optionrec);

*5*write(' 'optionrec.optionperformance.coverage):
* write('

end;
writein;
Seek(optionfile,O);

.5write(' Capacity o)

125

for i : 1 to numoptions do
begin
Read(optionfile,optionrec):
write(' ',optionrec.optionperformance.capacity);
write('

end;
writein:
Seek(optionfile,O):
write(' Quality ;
for i :=1 to numoptions do
begin
Read(optionfile,optionrec);

-' write(' 'optionrec.optionperformance.quality):
*write(' 1

end;
writein:
Seek (optionfile,0);
write(' Timeliness 1);
for i 1= to numoptions do
begin

* Read(optionfile,optionrec);
writec' '.optionrec.optionperformance.timelinesa);
write(' A

end;
writein;
Seek(optionfile,0);
write(' Availability')
for i :=1 to numoptions do
begin

Read(optionfile,optionrec);
write(' 1,optionrec.optionperformance.aveilability);
write(' 1

end;
writeln;
Seek(optionfile,0);
write(' Survivability');
for i :=1 to numoptions do
begi
Read(optionfile,optionrec);

* write(' ',optionrec.optionperformance.aurvivability):
write(' 1

end;
writeln;
Seek(optionfile,0);

* writeln;
with optionrec do
begin

with optionperformance do
begin

write(' MEAN ;
for i 1 to numoptions do
begin

sum 0;
mean 0;

126

Read(optionfile,optionrec);
sum :=coverage + capacity + quality + timeliness;
sum sum +U availability + survivability;
Rean :2sum/6;

write(mean:6,'
end; (for i

writein
*end {with optionperformance)

end; (with optionrec)
writein;

* with inputfilerecord do
begin
OptionComparisons (performancematrix, numoptions,

judgements. pert ormancecho ices);
AHP(performancematrix, prior ityvectors pert ormancevector,

Clr~cr;numoptions,CRvector (23);

Seelc(optionfile,O);
writein;
writeln(b,' ATTRIBUTE - PERFORMANCE');
writeln(b,' ',conceptname);
writeln(b, 'Option Name priority');
writeln(b,------------- -----------------)
for i := 1 to numoptions do
begin
Read(optionfile,optionrec);
write(' 0
write(i,') ',optionrec.optionname:20,'
writeln(priorityvectors.performancevectorcil :8)

end;
writeln;
writeln(b,' Consistency Ratio: 'CRvector(23 :6)

end; (with inputfilerecord do)
writein;
write(' This is the prioritized list of the)

writeln('options based on');
write(' the criteria of performance. If the')
writeln('consistency ratio is');
write(' greater than l.OE-O1, a high degree of')
writeln~'inconsistency is');
write(' indicated in your comparisons. Is it')
write('acceptable (Y or N)?'I

* readln(answer);
CheckYorN(answer);
if answer in ['N','n'] then
begin

writein;
write(b,'Okay - we will do the comparisons over')
writeln('again.');

* Delay(1500);
Seek(optionfile,O);
GoTo 2

end;
writeln;

127

write(' You may quit at this time and your inputs)

writeln('will be saved for use at a ');
write(' later time. Q or q and RETURN to quit, or')
write('RETURN only to continue: :

readln(answer);
if (answer in ('Q','q'1) then Quit(quitindicator);
Close~optionfile)

end; (GetPerformanceVector)

overlay procedure GetScheduleVector (Var inputfilerecord:
userfile; quitindicator: integer);

GetScheduleVector - finds priorities based on schedule)

label 2;

Var optionfile: file of conceptoption;
optionrec: conceptoption;
schedulematrix: matrix;

*4 i,j ,numoptions,numti,sum: integer:
answer: char;
mean: real;

begin
Assign(optionfile,inputfilerecord.optiondata);
Reset(optionfile);
numoptions := FileSize(optionfile);
if numoptions > 5 then numoptions := 5;
writeln:

2:GetInfo(102,112);
writein;
write(' Do you wish to review the Comparison Scale
write('(Y or N)?')
readln(answer);
CheckYorN(answer);
if (answer = 'Y') or (answer 'y') then
begin
Getlnfo(30,53);
write(b,'To continue, press RETURN: :

readln (answer)
end;

ClrScr;
writeln(b,' ATTRIBUTE - SCHEDULE');
writeln(b,' ',inputfilerecord.conceptname);
writeln(b,b,' 0 Years');
writeln(' Concept Option sum MEAN');
writeln(' ----------- ----
writeln;
for i :=1 to numoptions do
begin

sum 0;
mean := 0;
numti := 0;
Read(optionfile,optionrec);

128

forj 1 ito 15 do
ifoptionrec.optionti~j].tiname <>

then nuati nuati + 1;
for j :~1 to nuati do sum :

sum +optionrec.optiontiCj] .tischedule;
mean :=sum/nuati;
write(' ',i.') '.optionrec.optionname:20,')
writeln(sum:3,' 'mean:8)
end; (for ji

writein;
write(' Would like to see a particular option')
writeln('broken down');
write(' into its Technology Issues (Y or N)?')
readln(answer);
CheckYorN (answer):
while (answer ='Y') or (answer ='y') do
begin

sum := 0;
mean := 0;
writeln;
write(' Please input the number of the option)

write('you wish to view:')
readln(answer);

* i := ord(anawer) - 48;
while not (i in 1-numoptionsJ) do
beg in

write(' Number selected must be from 1 to)

writeln(numoptions,' as that is the number)

write(' of options for this concept.')
write('Please reselect:')
readln(answer);
i := ord(answe-) - 48

end;
ClrScr;
Seek(optionfile,i-l);
Read(optionfile,optionrec);
with optionrec do
begin

numti := 0;
writeln;
writeln(b,' ',optionname:20);

4,writeln(b,b,b,' # Years to Solve');
write(b,' Tech Issue NAME');

writeln(b, 'SCHEDULE');
write(b,'-- - - - - - -P ;
writeln(b,----------)
writeln;

* for j := 1 to 15 do
if optionrec.optionti(j].tiname <>

then numti :numti 1;
* for j := 1 to numti do

begin
write(' ',j:2,') ',optionti[jJ.tiname:45);
writeln(' ',optionti~jltischodule:2);

129

sun := sun + optiontirj].tischedule
end;

mean := sum/nuti;
writein;
write(b,'SUM =',sum:3,' :: ')

writeln('MEAN ',mean:8)
end:

writein;
write(' Do you wish to view another option)

write('(Y or N)?')
readln(answer);
CheckYorN (answer)
end;

* ClrScr;
Seek(optionfile,O);
writeln(b,' ATTRIBUTE - SCHEDULE');
writeln(b.' ',inputfilerecord.conceptname);
writeln(b,b,' # Years');
writeln(' Option Name sum MEAN');
writeln('-------------------------- --

writein;
for 1 1 to numoptions do
begin

sum :=0;
mean :=0;
numti :=0;
Read(optionfile~optionrec);
for j := 1 to 15 do

if optionrec.optiontij .tinaiae 0)
then nunti numti + 1;

for j 1 to numti do sum :
sum +optionrec.optionti (j).tischedule;

J mean ::sum/numti;
write(' '4i,') ',optionrec.optionname:20,')
writeln(sum:3,' 'mean:8)
end;

* writeln;
* with inputfilerecord do
* begin

OptionComparisons(schedulematrix ,numoptions,
judgements schedulechoices);

* AHP(schedulematrix, priorityvectors. schedulevector,
numoptions,CRvector (3]);

ClrScr;
*writeln(b,' ATTRIBUTE - SCHEDULE');

writeln(b,' ,concept);
writein;
writeln(' Option Name Priority');
writeln('--------------------------------- ;:
writeln;
Seek(optionfile,O);
for i := 1 to numoptions do
begin

Read(optionfile~optionrec):

130

write(' ',i,') ',optionrec.optionname:20,'
writeln(priorityvectors-schedulevectortiJ :8)
end;

writein;
writeln(' Consistency Ratio: ',CRvector[32 :6)
end; (with inputfilerecord do)

writeln;
write(' This is the priority vector of the')
writeln('options based upon');
write(' the criteria of schedule and your')
writeln('compairisons. The Consistency');
write(' ratio should be less than 1.02-01 to')
writeln('indicate consistent comparisons.');
write(' Is it acceptable (Y or N)?')
readln(answer);
CheckYorN (answer);
if (answer in ('N','n'3) then
begin
writein;
write(' Okay -we will do the comparisons over')
writeln('again.'):
Delay(1500);
Seek(optionfile,0);
GoTo 2

end:
Close(optionfile);
writeln:
write(' You may quit at this time and your inputs')
writeln('will be saved for use at a ');
write(' later date. 0 or q and RETURN to quit, or')
write('RETURN only to continue:
readln(answer);
if (answer in ('Q','q']) then Quit(quitindicator)

end; (GetScheduleVector)

overlay procedure GetRiskVector(Var inputfilerecord: userfile:
Var quitindicator: integer);

(GetRiskVector -finds the priority vector for given concept
options based upon the risk criteria.)

label 2;

Var optionfile: file of conceptoption;
optionrec: conceptoption:

riskmatrix: matrix;
numoptions, numti, i, j, sum: integer;
mean, sigma: real;
answer: char:

begin
Assign(optionfile~inputfilerecord.optiondata);
Reset(optionfile):

% numoptions :~FileSize(optionfile);

131

V-NWVV RTTTWIWp

Getlnfo(112,121); (Risk explanation]
writein;
write(' Do you wish to review the Comparison Scale')
write(' (Y or N)?)

readln(answer);
CheckYorN(answer);
if (answer ='Y') or (answer ='y') then
begin
GetInfo (30 ,53);
write(' To continue, press RETURN:')

t. readln(anawer)
end;

Getlnio(121,139); (Risk Scale)
* writein:

write(b,'To continue, press RETURN:')
readln(answer);

2:ClrScr;
writeln(b,' ATTRIBUTE - RISK')
write(b,'')

a. writeln(inputfilerecord.conceptname);
write(' Concept Option Mean Std');
writeln(' Deviation');
write(' ------ - - - -- - -

writeln(-----------
writein;
for i 1 to numoptions do
begin

sum : 0;
mean := 0;
sigma :~0;
nuati :=0;
Read(optionfile,optionrec);
for j := 1 to 15 do

if optionrec.optionti[3l.tiname (>
* then nuati :~nuati + 1;

for j :~1 to numti do sum := sum +
optionrec.optionti fj].tirisk;

mean :~sum/numti;
for j :~1 to numti do sigma

sigma +sqr((optionrec.optiontljl .tirisk - mean));
sigma := sqrt(sigma);
write(' ',i,') '.optionrec.optionname:20.'

*writeln(mean:8.' ',sigaa:10)
end:

writein;
writeln(' Would like to see a particular option broken');
write(' down into its Tech Issues (Y or N)?)

readln(answer);
CheckYorN(answer);
while (answer in ('Y','y']) do
begin
writein:
write(' Please input the number of the option you')
write('wish to view:)

132

* 5'7' .*.. . .,% 5 *

readln(answer);
q i :=ord(answer) - 48;

while not (i in 1..numoptionsj) do
begin

write(' Number selected is not between 1 and')
writeln(numoptions. ',');
write(' the number of options associated with')
writeln('this concept.'):
write(' Please reselect another entry:')
readln(answer);
i :=ord(answer) - 48

end;
ClrScr;
writeln(b,' ATTRIBUTE -RISK');

Seek(optionfile,i-1);
Read(optionfile.optionrec);
SUm 0;
mean :=0;
sigma 0;
numti 0;
with optionrec do
begin

writeln(b,' OPTION - ',optionname);
writeln;

* for j :=1 to 15 do
if optionrec.optiontilj).tiname <)

then numti numti 1;
write(b,' Technology Issue Name');
writeln(b, 'Risk');
write(b.,- - -- - - - -- - - -
writeln(b,'----');
for *j := 1 to numti do
begin

write(' ',):2,') ',optionti[jJ.tiname:45,' P);
writeln(optiontitj] .tirisk);
sum := sum + optiontilj].tirisk

end;
mean ::sum/nuati;
for j ~ 1 to nuati do sigma

sigma +sqr((optionti~jJ.tirisk - mean));
sigma :~sqrt(sigma);
writeln;
write(' MEAN ',mean:S,'P)
writeln('STD DEVIATION ',sigma:8)

* end;
write(' Below is a breakout of the N of Tech Issues');
wr2.teln(' in each risk catagory.');
writein;
for i 1to 5do
begin

sum 0;
for ~ ~1 to numti do
begin
if optionrec.optiontilj).tirisk

133

then sum :=sum +
end;

$ write(' ',sum)
end;

writein;
write(' Very Low Low Medium High');
writeln(' Very High');
writein;
write(' Do you wish to view another option')
write('(Y or N)?';
readln(answer);
CheckYorN (answer)

end;
Seek(optionfile,O);
ClrScr;
writeln(b,' ATTRIBUTE -RISK')
write(b,' ;
writein (inputfilerecord .conceptname);
write(' Concept Option Mean Std');
writeln(' Deviation');
write('-- - - - - - -- - - -

writeln('-----------
writein;
for i :=1 to nunoptions do

* begin
sum 0;
mean 0;
sigma 0;
nuati 0;

* Read(optionfile~optionrec);
pforj 3 =1to15 do

if optionrec.optionti~jJ.tiname (>
then nuati nunti + 1;

for j 1 to nuati
do sum :=sum + optionrec.optiontitj].tirisk;

mean sum/nuati;
for j 1 to nuati do sigma

sigma +sqr((optionrec.optiontifjl.tirisk -mean));

sigma :=sqrt(sigma);
'Cwrite(' ',i:

2
,') ',optionrec.optionname:20,'

writeln(aean:8,' ',aigna:10)
end;

writein;
with inputfilerecord do
begin

* OptionComparisons (riskmatrix ,numoptions.
judgements.riskchoices);

AHP (riskmatrix, priorityvectors. riskvector, numoptions,
CRvector (4]);

Seek(optionfile,0);
* ClrScr;

writeln(b,' ATTRIBUTE - RISK');
writeln(b,' 'conceptname);
writeln(b,' Option Priority');

writeln(b,' --- ---- 0

134

writein;
for i := 1 to numoptions do
begin

Read(optionfile,optionrec):
write(' ',i,') ',optionrec.optionname:20);
writeln(' ",priorityvectors.riskvector[i]:8);

end;
writeln;
writeln(' Consistency Ratio: ',CRvector[4]:6)

end; (with inputfilerecord)
writeln;
write(' Consistency Ratio should be below I.OE-01, ");
writeln('otherwiae some comparisons ');
write(' are inconsistent. Do you agree with this ");
write('priority listing (Y or N)? ');

readln(answer);
CheckYorN(answer);
if answer in ['N" "n'] then
begin

writeln(b,'Okay, we will do the comparisons again.');
Seek(optionfile,O);
Delay(1500);
GoTo 2
end;

Close(optionfile);
writeln;
write(' You may quit at this time and your inputs ");
writeln('will be saved for use at a ');
write(' later date. Q or q and RETURN to quit, or ");
write('RETURN only to continue: ");
readln(answer);
if answer in ['Q','q'] then Quit(quitindicator)

end; (GetRiskVector)

overlay procedure GetCostVector(Var inputfilerecord: userfile;
Var quitindicator: integer);

(GetCostVector - finds the option priority vector based on the

cost criteria.)

label 2;

Var optionfile: file of conceptoption;
optionrec: conceptoption;
costmatrix: matrix;
i, j, numoptions, numti: integer;
answer: char;
sum, mean: real;

begin
Assign(optionfileoinputfilerecord.optiondata);
Reset(optionfile):
numoptions := FileSize(optionfile);
writeln;
GetInfo'139,149);

135

% 1

or-,- -7

writeln;
write(' Do you wish to review the Comparison Scale '):

write('(Y or N)? ');

readln(answer);
CheckYorN(answer);
if (answer = 'Y') or (answer = 'y') then
begin
GetInfo(30,53);
write(" To continue, press RETURN: "):
readln(answer)
end;

2:ClrScr;
writeln(b,' ATTRIBUTE - COST '):

write(b,'
writein(inputfilerecord.conceptname):
write(' Concept Option TOTAL COST -

writeln(" 0 Tech Issues');
write(' -)"
writeln(' ")
writeln;
for i 1 to numoptiona do
begin

sun 0:;
nuati := 0;
Read(optionfileoptionrec);
for 1 : 1 to 15 do

if optionrec.optionti[j].tiname (>
then nuati nuati * 1;

for j := 1 to nuati do sum :=
sum + optionrec.optionti[j].ticost;

write(' ',i,') ',optionrec.optionname:20,' ';

writeln(sum:8,' ",nuati:2)
end;

writeln;
Seek(optionfile,O);
write(' Would like to see a particular option ');

writeln('broken down');
write(' into its Tech Issues (Y or N)? ');

reedln(answer):
CheckYorN(answer);
while (answer in ['Y','y']) do
begin
writeln;
write(' Please input the number of the option you ');
write('wish to view: ");
readln(answer);
i := ord(answer) - 48:
while not (i in [1..numoptions]) do

begin
write(' Number selected is not between 1 and ");
writeln(numoptions,',');
write(' the number of options associated with');
writeln(' this concept.');
write(' Please reselect: ');

136 %

I.

readln(answer);
i := ord(answer) - 48

end-, [while i not in 1 to numoptions)
ClrScr;
Seek (optionfile, i-1)
Read(optionfile,optionrec);
writeln(b,' ATTRIBUTE - COST');
with optionrec do
begin

writeln(b,' OPTION - ',optionname);
writein;
sun 0;
mean :=0;
nuati :=0;
for j : 1 to 15 do

if optionrec.optiontifjJ.tiname <>
then nuati :~nusti + 1;

writeln(b,' Technology Issue Name',b,' 9 - Cost');
writeln(b -------------------------,bp' ----
writein;
for j := 1 to nuati do
begin

write(' ',j:2,') ',optiontifjJ.tiname:45,' ;
writeln(optionti (ji.ticost:8);
sum := sum +optionti~j].ticost

end;
mean := sum/nuati;
writein;
write(' : SUM = ',sux:8,' 1);
writeln('MEAN = ',mean:8,' :'

end;
writein:
write(' Do you wish to view another option')
write('(Y or N)?')
readln(answer);
CheckYorN (answer)

end;
Seek(optionfile.0):
ClrScr;
writeln(b,b,'ATTRIBUTE - COST');
writeln(b,b,inputfilerecord.conceptname);
write(' Concept Option TOTAL COST - V');
writeln(' 0 Tech Issues');
write('-- - - - - - -- - - - - - -)
writeln(' -- - - - - - ;
writein;
for i1: 1 to numoptions do
begin

sum :=0;
nuati := 0;
Read(optionfile~optionrec);
for j := 1 to 15 do

if optionrec.optiontitjJ.tiname <>
* then nuati :2nuati 1;

137

for j 1 to nuati do sum :
sum +optionrec.optionti Ej).ticost;

write(' ',i,') ',optionrec-optionnase:20,'

end;
writeln;
with inputfilerecord do
begin

OptionComparisons (costmatrix,nuaopt ions,
j udgements .coatchoices);

AHP(coatmatrix, priorityvectors.costvector,
numoptions,CRvector (5]);

Seek(optionfile,O):
ClrScr;
writeln(b,' ATTRIBUTE - COST');
writeln(' Option Priority');
writein ('-- - -- - - -P)
writein;
for i :=1 to numoptions do
begin

Read(optionfile,optionrec);
write(' ',i,') ',optionrec.optionname:20);
writeln(' ',priorityvectors.costvector~iJ :8);

end;
writein;
writeln(' Consistency Ratio: ',CRvector(51 :6)
end; (with inputfilerecord)

writein;
writeln(' If Consistency Ratio is above 1.OE-O1, some');
write(' inconsistency in the pairwise judgements is');
writeln(' indicated');
write(' Do you agree with this priority listing')
write('(Y or N)?')
readln(anawer);
CheckYorN (answer);
if answer in ('N','n] then
begin
writeln(b,'Okay, we will do the comparisons again.');
Delay(1500);
Seek(optionfile,O);
GoTo 2
end;-

Close (optionfile)
end; (GetCostVector I

138

9, ***oo~~ooo** EXTRA4.DSS INCLUDE FILE .uo..~~a

procedure PrintWholeRecord(Var userdata: userfile);

(PrintWholeRecord - prints an entire record of type userfile,
the user database main component. Accomplishes this
by calling PrintPreviousRun a number of times.)

Var i: integer;

begin
writeln(Lst,'')
writeln(Lst,b,b,'AFSTC DECISION SUPPORT SYSTEM');
writeln(Lst,b,b,' REPORT OF');
writeln(Lst,b,b,' PRIORITIZATION PROCESS');
for i :=1 to 3 do writeln(Lst,b,'')

* PrintPreviousRun(userdata,l);
for ± : 1 to 4 do writeln(Lst,b,'')

* PrintPreviousRun(userdata,2);
for i :=1 to 5 do writeln(Lst,b,'')
writeln(Last,b,b,' 1');-
for i := 1 to 8 do writeln(Lst,b,'')
PrintPreviousRun (userdata, 3);
for i := 1 to 6 do writeln(Lst,b,'')
PrintPreviousRun (userdata,4);
for i := 1 to 7 do writeln(Lst,b,'')
writeln(Lat,b,b,' 2');
for i :=1 to 8 do writeln(Lst,b,' ');

PrintPreviouaRun (userdata ,5);
for i 1= to 5 do writeln(Lst,b.'')
PrintPreviousRun(userdata,6);
for i := 1 to 3 do writeln(Lst,b,'')
write(Lst.b,'This completes this listing from the')
writeln(Lst, 'AFSTC DSS');
writeln(Lst,' ');

writeln(Lst,'')
writeln(Lst,b,b,' 3')

end; (PrintWholeRecord)

procedure Reports(personalfile: Charl2; status,numrecords:
integer);

(Reports -Governs the user database hardcopy reports section)

label 2;

* Var userdata: file of userfile;
* userrecord: userfile;

answer: char;
integeranswer, i: integer;

139

begin
Assign(userdata,personalfile);
Reset(userdata);

2:ClrScr;
writein;

writeln(b,' PRINT OPTIONS');
writeln(b,'------- ;
writeln(b,' 1) PRINT entire record');
writeln(b,' U1 to ',nuxrecords,'3'):
writeln(b,' 2) Return to previous menu');
writein;
write(b,' SELECTION: ');

readln(answer);
while not (answer in ('l','2'J) do
begin

write(' 'answer,' not an option, please';
write('reselect:')
readln(answer)

end;
case answer of

'1': begin
writeln;
write(' Please select the program run you wish');
writeln(' to PRINT by its number.');
write(' For example, 1 for the first program')
write('run: ');
re&dln(answer);
integeranswer := ord(answer) - 48;
while not (integeranawer in (1. numrecords]) do
begin

write(' Selection not in file, please')
write('reselect number:')
readln(answer);
integeranswer := ord(answer) - 48

end;
Seek (userdata, integeranswer -1);
Read (userdata, user record);
PrintWholeRecord (userrecord);

(will use two existing files)
GoTo 2

end;

end; (case answer of 1 or 2)
Close(userdata)

end; (View)

procedure View (personalfile: Charl2; status,numrecords:
* integer);

View -procedure to allow the user to view a record in the
users personal file.)

label 1,2,3;

140

% % - :i K. - - : ~V

Var userdata: file of userfile;
userrecord: userfile;
answer: char;
integeranswer,i: integer;

begin
Assign(userdata,personalfile);
Reset(userdata);

2:ClrScr;
writeln;
writeln(b,' VIEW OPTIONS'):
writeln(b,' ");
writeln;
writeln(b,' 1) Select a record to VIEW');
writeln(b," (1 to ',numrecords,']');
writeln(b," 2) Return to previous menu');
writeln;
write(b,' SELECTION: ");
readln(answer);
while not (answer in ['1','2'3) do
begin

write(' ,answer,' not an option, please "),
write('reselect: ");
readln(answer)

end;
case answer of

'1': begin
writeln;
write(' Please select the program run you wish');
writeln(' to view by its number.');
write(' For example, 1 for the first program ")-
write('run: ');

readln(answer);
integeranswer := ord(answer) - 48;
while not (integeranawer in [l..numrecords]) do
begin

write(' Selection not in file, please ');
write('reselect number: ");
readln(answer);
integeranswer := ord(answer) - 48

end
end;

'2': GoTo 1
end; (case answer of 1 or 2)

Seek(userdata,integeranswer-1);
Read(userdata,userrecord);

3:ClrScr;
writeln(b,' ',userrecord.conceptname);
writeln;
writeln(b,' SECTIONS TO VIEW');
writeln(b,' '--

writeln;
writeln(b,' 1) Criteria');
writeln(b,' 2) Performance');

1.

141 :

a

writeln(b,' 3) Schedule');
writeln(b,' 4) Risk'):
writeln(b,' 5) Cost');
writeln(b,' 6) Final priorities');
writeln(b,' 7) Return to previous menu');

writeln;
write(' The catagories above refer to the sections ');
writeln('of the program'):
write(' in which prioritization was performed. ');
writeln('Select the number');
write(' of the section you wish to VIEW: ');

readln(answer);
if answer = '7' then GoTo 2;
integeranswer := ord(answer) - 48;
while not (answer in ('l'..'6"]) or

not (integeranswer in (1..status]) do
begin

if not (answer in C'1"..'6']) then
write(' Please reselect: ')

else
begin

write(' That section of this program run ");
write('is not completed. Please reselect: ')

end; (else)
readln(answer);
if answer = '7' then GoTo 2;
integeranswer := ord(answer) - 48

end; (while answer not in 1 to 7)
writeln;
if integeranswer in 1..6] then
begin
ViewPreviousRun(userrecord,integeranswer);
GoTo 3

end; (if then clause)
1:Close(userdata)
end; (View)

procedure DatabaseManagement(Var quitindicator: integer);

(DatabaseManagement - main database management procedure.
this procedure comprises the heart of the database management
system for the pilot DSS.)

label 1,2,3;

Var allconcepts: file of datafile;
optionfile: file of conceptoption;
temprecord, newconceptrecord: datafile;
tempfilename, optionfilename: Char20;
i,j: integer;
answer, tempchar: char:

begin
Assign(allconcepts,'concepts.dss');

142

...-- -,.... ... : .. - -.. .. ? ? ..-.-. -.. .- .-.. % . _-. -,.-......-?.?:...-...-. ...

Reset(allconcepts);
2:ClrScr;

writein;
writein;
writeln(b,' CONCEPT DATABASE MANAGEMENT SYSTEM');

writeln;
writeln(b.' DATABASE OPTIONS'):
writeln(b.' - - - - - - - -)
writeln(b.' 1) ENTER a new concept');
writeln(b,' 2) CHANGE or ADD data to');

*writeln(b,' a concept');
writeln(b.' 3) ERASE a current concept');
writeln(b.' 4) CONTINUE program');
writeln(b,' 5) QUIT program')
writein;
write(b,' SELECTION: 0):
readln(answer);
if not (answer in ('''''''''')then
begin
writein;
write(' ,answer,' is an incorrect selection.')
write('Please reselect:')
readin (answer)

end;
case answer of

'1': begin
tempchar := answer:
if FileSize(allconcepts) =maxnumconcepts then
begin

ClrScr;
writein;
write(' The maximum number of concepts')
writeln('allowed in the database is 10.');
write(' A concept currently in the data');
writeln('base will have to be erased before');
writeln(' new data can be added.');
GoTo 2
end; (if more than 10 concepts)

for i := I to 5 do write(' WARNING');
writeln;
write(' If you do not have all of the data)

writeln('to input at least two full concept)

write(' options into the database, it is best');
writeln(' to wait until you do. Otherwise,');
write(' the program may crash with incomplete');
writeln(' data files during execution. Do');
write(' you wish to continue at this time (Y ');

write('or N)? ');

readln(answer);
if answer in E'N','n'J then GoTo 2;
InputNewConcept Cnewconceptrecord);
Seek(allconcepts.FileSize(allconcepts));
Write (allconcepts,newconceptrecord);
case FileSize(allconcepts) of

143

1:-Jl op"nfienI :w -0-oncepta-aldss';.

2: optionfilename 'coriceptb.dss';
3: optionfilename 'conceptc.dss';
3: optionfilename 'conceptd .dss':
5: optionfilename :~'concepte.das';

6: optionfilename 'conceptf.das';

7: optionfilename 'conceptg.dss';
8: optionfilename 'concepth.dss':
9: optionfilename 'concepth.dss':
10: optionfilename :~'concepti.dss';

end: (case on ecie filename)t~d
enund (caet tondeci flename epca)
GopToncp osotofieaetmca)
end; 2cs nwro ntrnwcnet

2' begn; (aease fetrnwcnet
t2: ein r ~anwr
Clrpchr : nwr
wlrt(elc eterfcncp)

write('o adde orehaner ata.');p
writein;'oado hnedt.)
writein (, onet)
writeln(b, Cocp')
Seiellncepts-----);
for i :lcon1tFes, zalcneps)d
beg in: oFl~z~lcnet)d

Read (allconcepts, newconceptrecord);

writeln (newconceptrecord .conceptname)
end;

writein;
write(b,' SELECTION:)

readin(answer);
if answer in ('a'..'j'] then

answer := chr(ord(answer)-32);
while not
(answer in U'A'..chr(FileSize(allconcepts)+64))) do
begin
write(b,'Incorrect answer, Please Reselect:)

readln (answer)
end;

case answer of
'A': optionfilename :='concepta..dss';
'B': optionfilename '=conceptb.dss';
'C': optionfilename :~'conceptc.dss';
'D': optionfilename :~'conceptd.dss';
'E': optionfilename :~'concepte.dss';
'F': optionfilename 'conceptf.dss';
'G': optionfilename :~'conceptg.dss':
'H': optionfilename :'concepth.dss';
'I': optionfilename :~'concepti.dss';
'VJ': optionfilename :='conceptj.dss'

end; (case of answer)
InputConceptOptions(optionfilename,tempchar):
GoTo 2

144

end; (case of add or change data to existing file)
'3': begin

ClrScr;
write(' Select letter of concept')
writeln('to ERASE.'):
writeln;
writeln(b,' Concept');
writeln(b,' ---- 1
Seek(allconcepts,O);
for i := 1 to FileSize(allconcepts) do
begin

Read(allconcepts,newconceptrecord);
write(b,' P,chr(it64),')')
writein (newconceptrecord.conceptname)

end;
writeln(b,' 'chr(i+65),') None'):
writeln;
write(b,' SELECTION: ');
readln(answer):
if answer in ('a'..'j') then

answer := chr(ord(answer)-32);
while not
(answer in ('A'. .chr(FileSize(allconcepts).65)]) do
begin

write(b,'Incorrect answer, Please Reselect:')
readln(answer):
if answer in ('a'..'j'] then

answer := chr(ord(answer)-32)
end:

tempchar := answer;
writeln;
Seek(allconcepts,ord(answer) -64);
Read (alIlconcepts, newconceptrecord);
write(b,'Confirm ERASE of ');
write (newconceptrecord .conceptname,' (Y or N)?')
readln(answer);
CheckYorN (answer);
if answer in C'N','n' then GoTo 2:
answer := tempchar;
case answer of

WA: optionfilenate :~'concepta.dss':
'B': optionfilename :~'conceptb.dss';
'C': optionfilename :~'conceptc.dss';
'D': optionfilename :~'conceptd.dss':
'E': optionfilename :~'concepte.dss':
'F': optionfilename :~'conceptf.dss';
'G': optionfilename :~'conceptg.dss';
'H': optionfilename :~'concepth.das';
'I': optionfilename :~'concepti.dss';
'J': optionfilename :z'conceptj.dss';
'K': GoTo 2

end; (case of answer)
for i :~(ord(answer)-64) to

(FileSize(allconcepts) -1) do
begin

145

Seek(ellconcepts~i'1);
Read(allconcepts,newconceptrecord):
Seeic(allconcepts, ±);
Write(allconcepts)

end,

Seek(allconceptsFileSize(allconcepts)-l); -

newconceptrecord conceptname
newconceptrecord .conceptorigin 1

Write (allconcepts,newconceptrecord)
end; (case of erase a concept - choice 3)

4':
5': begin

Quit(quitindicator);
if quitindicator (> 1 then GoTo 2

end
end: (case answer of)

1 :Close(allconcepts)
end: (DatabaseManagement)

146

INCLUDE FILE EXTRA5.DSS .eou.o..u......

procedure GetUserFileName(Var personalfile: Charl2;
Var status, quitindicator: integer):

fGetUserFileName - Gets the name of the user for access into the
user database (stores the name in personalfile, a 12
character string.) This procedure also queries for
access to the main concept database.]

label 2;

Var answer: char;
i: integer;
outfilename,temp: outputfilename;

begin
2:answer := "N';
while answer in ['N','n') do
begin

personalfile '

ClrScr;
for i := 1 to 8 do outfilenameli] := "
outfilename[9] :- ".';
outfilename[lO :="d:
outfilenameil] :=P's'I
outfilename[12] := "
for i := 1 to 5 do writeln;
write(' Enter first initial: ');

readln(outfilenaae[l]);
write(' Enter middle initial (or second letter'):
write(' of first name): ');

readln(outfilenameC2]);
write(' Enter first six (6) letters of last name: ');

read(outfilename[3].outfilename[4],outfilename[5],
outfilename[6],outfilename[7],outfilename[8]);

writeln;
write(' ",outfilename[l]," ',outfilename[2].' ');

for i := 3 to 8 do write(outfilenamefi]);
write(' Is this correct (Y or N)? ');

readln(answer);
CheckYorN(answer)

end; (while answer is No)
temp • outfilename:
for i :I 1 to 8 do

while not (ord(outfilenamelil) in 165..90,97..1221) do
outfilenamefi] := z';

personalfile := outfilename;
writeln;
write(" Is this your first time using this program');
write(' (Y or N)? ');

:eadln(answer);

147

I'f --. &:'2 ! ::~ 4 ~Z~ax:~>--g. : :>...:*.x...>

CheckYorN(answer):
if answer in ['Y','y'] then

begin
if Exist(personalfile) = false then status 0
else
begin

write(' WARNING: A file exists under the name ");
writeln('you have given.');
write(' It will be erased if you do not change');

writeln(' your answer.');
write(' Do you wish to Change (Y or N --

write('last answer [Y])? ');

readln(answer);
CheckYorN(answer):
if answer in ['Y','y'] then status := 0

else status := 10
end (else Exist is true)

end (if answer is Yes)
else
begin
if Exist(personalfile) = true then status := 10 else
begin

write(' There is no record of you using this ");
writeln('program before under');
write(b,'the name you have given: '):

write(temp[l],' ',temp[2],' ');
for i := 3 to 8 do write(tempUiJ);
writeln('.');
write(' You may change the name you have given ');
writeln('or you may start a new file.');
write(' Do you wish to input a new name ");
write('(Y or N)? ");
readln(answer);
CheckYorN(answer);

if answer in ['y','Y'] then GoTo 2 else status := 0
end (if file does not exist)

end; (if answer is Yes)
write(' Do you want to enter the database and input ");

* write('new data (Y or N)? ');
*readln(answer);

CheckYorN(answer);
if answer in 'Y','y'] then

DatabaseManagement(quitindicator)
end; (GetUserFileName)

overlay procedure Review(Var personalfile: Char12;
Var status,quitindicator: integer);

(Review is the main user database file. It governs all of the
functions of viewing, printing, or deleting records from the
user database. Ob)ect code for this file goes to dss.002)

label 2;

148

Var userdata: file of userfile;
userrecord: userfile;
i,j ,numrecords: integer:
answer: char;

begin
2: Assign(userdata~personalfile);
Reset(userdata);
Seek (userdata,FileSize (userdata) -1);
Read(userdata,userrecord);
nunrecords := FileSize(userdata);
ClrScr;
if status = 5 then
begin
writein;
write(' You have ',numrecords,' previously')
writeln(completed program runs.');
wr itel n

end
else
begin

writeln;
write(' You have ',numrecords-1,' previously');
writeln(' completed program runs, and');
write(' 1 incomplete run, # ',numrecords);
writeln(', and you were working on')
writeln(' 'userrecord .conceptname,'.')

end;
writeln;
writeln(b,' REVIEW OPTIONS');
writeln(b,' -------)
writeln(b.' 1) View a previous run');
writeln(b,' 2) Print out any run');
writeln(bv' 3) Start new run');
writeln(b,' 4) Continue unfinished run');
writeln(b,' 5) Erase all previous runs');
writeln(b,' 6) Quit DSS'):

writeln;
write(b,'Please input the number of your choice:')
readln(answer);
while not ord(answer) in [49..55] do
begin

write(' Must be a number between 1 and 6.')
write('Please reselect:')
readln(answer)

end;
while (answer ='4') and not (status in [1-.4J) do
begin

write(' You do not have any unfinished runs.')
write('Please reselect:')
readIn (answer)

end;
case answer of
'1': begin

Close(userdata);

149

View(personalfilestatus,numrecords):
GoTo 2
end;

'2': begin
Close(userdata);
Reports(personalfile,status,numrecords);
GoTo 2
end;

'3': begin
Close(userdata);
if status = 5 then status := 6 else status :2 7:
InitializeUserFile(personalfile,status);
status := 0

end;
'4': begin

Close(userdata);
case status of

1: begin
write(b,'You quit after choosing the ');

writeln('criteria values. You will ');

write(b,'start with compairing the ");
writeln('option. based upon performance.')

end;
2: begin

write(b,'You quit after choosing the ");
writeln('performance values. You will ');

write(b,'start with compairing the '):
writeln('options based upon schedule.')

end;
3: begin

write(b,'You quit after choosing the ');
writein('schedule values. You will ');
write(b,'start with compairing the ");
writeln('options based upon risk.')

end;
4: begin

write(b,'You quit after choosing the ");
writeln('risk values. You will ');
write(b,'start with compairing the ");
writeln('optiona based upon cost.')

end
end; (case of status)

write(b,'Press RETURN to continue: '):
readln(answer)

end; (answer being 4 - continue unfinished run)
'5': begin

writeln;
write(b,'Confirm erase of all previous runs ');
write('(Y or N)? ');
readln(answer);
CheckYorN(answer);
if answer in ['Y','y'] then
begin
writeln;

150

Seek(userdata,FileSize(userdata)-l);
* Read(userdata,userrecord);

Close(userdata);
Erase(userdata);
status := 0;
rnitializeUserFile(personalfile,status);
Reset(userdata);
Write (userdata, userrecord);
Close(userdata);
status :=10;
InitializeUserFile(personalfile,status);
write(' All previous records erased')
writeln('except for the most recent run.');
Delay(1000);
GoTo 2

end (if answer is Yes)
else GoTo 2

end; (case 5)
'6': begin

Clos(userdata);
Quit(quitindicator);
if quitindicator = 0 then GoTo 2

end (case 61
end (case of answer)

end; (Review)

overlay procedure ListConcepts(Var concept: Char2O; Var
filename: Charl2; Var quitindicator: integer);

(ListConcepts - Opens the file concepts.dss to obtain all of the
concepts in the database. Displays then for selection by the
user.)

label 2:

Var choicefile: file of datafile;
conceptrec: datafile;
numconcepts.level,filenbr, i: integer;
choice: char;
origin: Char2O;

begin
Assign(choicefile, 'concepts.dss');

2:Reset(choicefile);
filenbr := 0:
nusconcepts := FileSize(choicefile);
ClrScr;
writeln:
writoln(b. CONCEPT ORIGIN'):
writeln(b, ' -- - --- -- -P;

writeli;
for i := 1 to nusconcepta do
bogi£n
with conceptrec do

4. 151

begin
read (choicef i Is conceptrec):
write('#)
write(chr(i-64),') ',conceptname:20);
writeln(' ',conceptorigin:20)

end (with conceptrec)
end; (for i)

writeln;
write(' Please choose the letter of the concept 1);
writeln('you wish to work with.');
writeln;
write(b,' ? will list available help:)

readln(choice);
£ilenbr := ord(choice);
if (filenbr in E97..(nusconceptse96)3) then

filenbr := filenbr -32;

while not
(filenbr in (63,65..(numconcepts'64))) do

begin
writeln;
write(' You have not choosen a viable option.')
write('Please reselect:')
readln(choice);
filenbr := ord(choice);
if (filenbr in (97..(numconcepts+96)3) then

filenbr := filenbr -32;

end; (while filenbr not an option)
case filenbr of

65. .74: begin
Seek(choicefile,filenbr-65);
Read(choicefile~conceptrec);
concept =conceptrec .conceptname;

origin :=conceptrec.conceptorigin;
Close(choicefile);
case filenbr of
65:filename :='concepta.dss';
66:filename :='conceptb.dss':
67:filename :='conceptc.dss':
68:filename :~'conceptd.dss';
69:filename :'concepte.dss';
70:filename :='conceptf.des';
71:filename :'conceptg.das';
72:filename 'concepth.das';
73:filename :='concepti.dss';
74:filename 'conceptj.ds'

end (specific case of filenbr)
end; (case filenbr member of concept file)

63: begin
level := 1;
Close(choicefile);
Help(level);
GoTo 2
end (case filenbr indicates ?)

end (case)

152

end; (ListConceptsa

overlay procedure Criteria(concept: Char20; personalfile: Chari2:
Var quitindicator: integer):

(Criteria - governs the selection of the priority rankings of the
criteria. The first level of the AHP hierarchy for this
problem.
Ob3ect code is stored in overlay dss.002}

label 2;

Var userinput: file of userfile;
inputfilerecord: userfile:
answer: char;
numcriteria, i: integer;
comparisons: matrix;

begin
Assign(userinput,personalfile);
Reset(userinput);
Seek(userinputFileSize(userinput)-l);
Read(userinput,inputfilerecord);
numcriteria := 4:
ClrScr;
writeln;
GetInfo(l,9); (Tells about attributes Blockl)
readln(answer);
CheckYorN(answer);
case answer of

'Y,'y': begin
GetInfo(10,30); (Factors that impact attributes)
writeln;
write(' When finished reading, Please ');

write('press RETURN: ');

readln(answer)
end;

'N','n':

end; (case of answer)
ClrScr;
for i := 1 to 10 do writeln;
write(' You will now view the Comparison Scale. Please');
writeln(' read it');
write(' carefully, as you will need it to ");
writeln('make the comparisons.');
Delay(1500);
Getlnfo(30,53); (This is to display the AHP scale)
write(' When finished reading, press RETURN: ');
readln(answer);

2:with inputfilerecord do
begin

CriteriaComparisons(comparisonsconcept,
judgements.criteriachoices);

(Builds comparison matrix)

AHP(comparisons, priorityvectors.criteriapriorities,

153

%.

numcriteria, CRvector [11);
ClrScr;
writein;
writeln(b,' PRIORITIZATION RESULTS FOR THE CRITERIA');
writein;
writeln(b,' ,concept):
writeln(b,' Criteria Priority-Weight');
writeln(b,' - - - - - - - - - - -)
write(b,' Performance 1
writeln(priorityvectors.criteriaprioritiesflJ :8);
write(b,' Schedule P
writeln(priorityvectors.criteriapriorities (2):8);
write(b,' Risk P
writeln(priorityvectors.criteriapriorities (3) :8);
write(b,' Cost
writeln(priorityvectors..criteriapriorities(43 :8);
writein;
writeln(b,' Consistency Ratio is: ',CRvector1l) :6);
conceptname :~concept;
optiondata :filename

end; (with inputfilerecord)
writein;
write(' The above is a priority vector based upon the')
writeln('comparisons of the');

%IIwrite(' criteria (attributes) that you have made. If');
writeln(' the Consistency Ratio');
write(' value is above i.OE-0l (0.10), signifying')
writeln('inconsistent ');
write(' compairisons, you may want');
writeln(' to repeat the compairson procedure.');
write(' Is it acceptable (Y or N)?')
readln(answer);
CheckYorN (answer);
if answer in ('N','n'] then
begin

writein;
write(b,'Okay, we will go back and repeat the')
writeln('comparisons.');
Delay(1500);
GoTo 2

end; (if answer is No)
Seek(userinput,FileSize(userinput)-l);
Write(uaerinput, inputfilerecord);
writeln;
write(' You may Quit the DSS at this point and your')
writeln('inputs up to this point');
write(' will be stored for later use. (0 or q and')

writeln('RETURN to Quit, or');
S' . write(' RETURN to continue:')

readln(answer);
if answer in ('Q','q') then Quit(quitindicator):
Close(userinput)

end; (Criteria)

overlay procedure Prioritizeoptions(personalfile: Charl2:

154

Var quitindicator, status: integer);

(PrioritizeOptions governs the for "GET" vectors that find the
prioritized options based on each criteria.
Object code is stored in dss.002)

label 1,2,3,4,5;

Var userinput: file of userfile:
inputfilerecord: userfile;
hold: char;

begin
Assign (userinput,personaifile);
Reset (user input);
Seek(userinput,FileSize(userinput)-1):
Read(userinput, inputfilerecord):
case status of
0:
1: Gol'o 2;
2: GoTo 3;
3: GoTo 4;
4: GoTo 5
end;%

Getlnfo(64,74);
readln(hold);

2:GetPerformance Vector (inputfiierecord,quitindicator);
if quitindicator =1 then GoTo 1;

3:GetScheduleVector (inputfiierecord,quitindicstor);
if quitindicator =1 then GoTo 1;

4: GetRisk~ector (inputfilerecord,quitindicator):
if quitindicator =1 then GoTo 1;

5: GetCostVector (inputfilerecord,quitindicator);
l:Seek(userinput,FileSize(userinput)-lJ;
Write(userinput, inputfilerecord);
Close(userinput)
end; (PrioritizeOptions)

overlay procedure FinalOptionVector (Var quitindicator,
status: integer; personaifile: Charl2):

(FinalOptionVector - synthesizes the AHP results from the criteria
and for the options based on the attributes.
Object code is stored in dss.002)

label 1;

Var userinput: file of userfile;
inputfilerecord: userfile;
i, j,numoptions: integer;
answer: char;

begin
status := 10;
if quitindicator 1 then GoTo 1;

155

L IL.

p.KWM~~~~~Z7XV I -r- V- " NY- U N- NY~ I-' 1 I,--. ' -W , - ,- ---

numoptions :=0;
Assign(userinput,personalfile);
Reset(userinput):
Seek(userinput,FileSize(userinput)-I);
Read(userinput, inputfilerecord);
for i :=1 to maxnumoptions do if

inputfilerecord.optionsli) 0 > then
numoptions numoptions 1;

Getlnfo(149,156);
with inputfilerecord do
begin

with priorityvectors do
begin
writein;
writeln(b,' FINAL PRIORITIES');
writeln(b.'-- - - - - - --

writeln(b,' ',conceptname);
writeln(b,' Option Priority');
writeln(b,' --- ---- P
for i := 1 to numoptions do
begin

finalpriorities~iJ := ((criteriapriorities(1)
performencevectorti]) - (criteriapriorities(23
schedulevectorl13) +(criteriapriorities[3]
riskvectorti]) +(criteriaprioritiesC4]
costvector ti)));
write(' ',i,') ',optionst±J:20,'
writeln(' ',finalprioritiesi :8)
end

end (with priorityvectors do)
end; (with inputfilerecord do)

writeln;
write(' Does this final vector make sense to you %
write('(Y or N)?')
readln (answer);
CheckYorN (answer);
if answer in ('N',Wn' then
begin

writein;
write(' Do you wish to erase current effort and)

write('start over (Y or N)? 1);
readln(answer);
CheckYorN(answer);
if (answer in E'Y','y'3) then
begin

quitindicator := 0;
status := 7;
Close(userinput);
InitializeUaerFile(personalfile,status);
GoTo 1

end (Yes, repeat the process)
end; (if answer is no, finalvector does not make sense)

Seek(userinput,FileSize(userinput)-l);
Write(userinput, inputfilerecord);
Close(uaerinput);

156

1 :wr±teln
end; (FinalOptionVector)

0%

0%
0%

0%
0%

Up

00~*

0l~

.,UU

Us~.

U.

*1

-i

U

S..
00*

U.

157
/
a

-U ~ ~b . . p -% -
S. d~ - -

mo*.*o*-u Menus and tables stored on disk and accessed *...**..**

•*.**... by the GetInfo procedure.

At this time, you will make a series of pairwise comparisons
between the attributes (criteria) - Performance, Schedule,
Risk, and Cost. The comparisons will help define which
attribute you consider most important.

Do you wish to see a further definition of the attributes?
(Y or y for Yes, N or n for No)

Factors that impact the attributes are as follows:

Performance Cost

Survivability R & D
Coverage Replacement
Capacity Deployment
Quality Resupply
Reliability
Timeliness

Availability

Schedule Risk

Earliest Completion Number of High Risk
Date Tech Issues

Earliest production Number of proven
date technologies

Potential schedule Number of technologies
variability common to other concepts

COMPARISON SCALE

INTENSITY OF DEFINITION EXPLANATION
IMPORTANCE

1 Equal importance Two criteria contribute
equally to the objective.

3 Weak importance of Slightly favor one cri-
one over the other terion over the other.

5 Essential or strong Strongly favor one cri-
importance of one terion over another.

7 Very strong or demon- A criterion has demon-
strated performance strated its dominance.

9 Absolute importance Evidence favoring one
criterion is of highest

158

order.

2,4,6,8 Intermediate values Compromise as needed.

Example - Schedule vs Cost: C7

The above example shows the comparison procedure. When a
comparison is presented to you, input the first letter of
the attribute that dominates the other, and then the integer
value of how much it dominates, from the comparison scale.
Therefore, the above example shows that Cost has very strong
dominance over Schedule (example only).

To continue, press RETURN.

You will compare the options of the chosen concept at
this time. The general procedure will be to compare the options
with respect to each of the four criteria individually. Once
this is accomplished the four resulting vectors can be combined
and multiplied with the criteria vector you have just completed,
providing a final ordering of the options, based upon your
judgements.

To continue, press RETURN

The performance values for the available options will be
displayed at this time. You will then perform a series
of pairwise comparisons that will define which option you
feel performs "best".

Do you wish to review the Comparison Scale (Y or N)?

The performance values are based on the following scale:

INTENSITY EXPLANATION

5 Option strongly exceeds performance requirement

3 Option meets performance requirement

I. Option has serious shortcomings in performance

2,4 Compromise as needed

Example: Option A Option B
Coverage 2 5
Capacity 3 2

For this series of comparisons, the procedure will be to
input the number of the option that dominates the comparison
and then the comparison value.

Ex: Option 1 vs Option 2: 27 - Option 2 dominates strongly

The options will now be ordered according to the schedule
criteria. The procedure will be exactly the same as for

159

%- %

the performance criteria. The number of years until con-
each Concept Option is displayed, along with the mean
value for each option. Then, you will be asked to compare
the options based upon this criteria. Again, the format
will be the number of the option, then the value from the
comparison scale. Ex: 17 - means option I dominates the
comparison with a value of 7 (strong domination).

The options will now be ordered according to the third
criteria - Risk. The procedure will be the same as for
the first two criteria. The displays available will be
a display of the options and the mean risk from their
technology issues, or a detailed list of the risk assoc-
iated with each technology issue under a given option.
Format for the comparisons will again be two integers,
i.e. 17.

The Risk values are based upon the following scale:

Level Risk Explanation

1 very low High probability that Tech issue can

be solved in time to meet IOC given
current effort.

2 low Probability is high but but some doubt
exists.

3 medium Probability of completion is 50/50.

4 high Low probability of solving issue.

5 very high Very strong possibility that Tech issue
is unsolvable in necessary time.

The options will now be ordered according to the Cost
criteria. Again, the procedure will be the same as for
the previous attributes. The system will display each
option with its associated total cost to solve all Tech-
nology Issues unique to the given concept option. The
pairwise comparison procedure will follow the same format.

Ex: Option 1 vs Option 2: 17 - Option 1 dominates Option
2 strongly in this example.

The following vector will be the priorities of the options
for this concept based upon your evaluations of the criteria,
performance, schedule, risk and cost, and the different options
compared in relation to these attributes. It should be noted
that this priority vector is subjective, as it is based upon
your judgement.

WELCOME TO THE A.F. SPACE TECHNOLOGY
CENTER DECISION SUPPORT SYSTEM (DSS)

160

This DSS is designed to take you through a series of
decision steps that will help you to prioritize the concept
options that are contained in a concept. The system uses
a method called the Analytic Hierarchy Process, which was
developed by Thomas L. Saaty to structure complex decision
processes. By following the outlined instructions, you will
place your subjective judgements into a series of matrices
that are solved for the final priority of the listed options.

As a final note, this software is currently configured for a
Zenith Z-100 computer running under the MS-DOS operating system.
If this computer is a Z-100, the key sequence (shift F12) will
print the screen at any time in the program. That is, if you
have a printer, and it is hooked up, and it is turned on.

1.1

a.°

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
is REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED
2s. SECURITY' CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAI LABILITY OF REPORT

pproved for public release; distribution
2b. DECLASSIFICATION/OOWNGRADING SCHEDULEunite

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NIUMBER(S)

* AFIT GCC1 C1 '85D-17
1

6. FNAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION -

(If apicabie)

School of Engineering AI/21 ____________________

6C. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)

Air Force Institute of Technology%
Wright-Patterson AM (CH 45433

Ga. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

-ORGANIZATION (it appicable)

Space Technology Center 1AFSI'C/YHP ____________________

Sc. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT

Kirtland AFB NM 87117 ELEMENT NO. NO. NO. NO.

11. TITLE l~nclude Security Classification)

See Box 19
12. PERSONAL AUTHOR(S)

Bruce G. Schinelli. BS.. Capt. USAF
134L TYPE OF REPORT 13b. TIME COVERED j4DTOF REPORT (Yr.. Mo., Day) 15. PAGE COUNT

MS Thesis FROM _ __TO 85_ D sec 13 (170 -

18. SUPPLEMENTARY NOTATION

17. COSATI CODES I18. SUBJECT TERMS (Continue on reverse if neceseary and identify by block number)

FIELD IGRO0UP I SUB. GR. I
05 10 Decision Support Systems, Microcomnputers

19. ABSTRACT iConginue on reverse if necessary and identify by block number,

Title: A Decision Support System for Space Technology Tradeoffs: A Microcomputer
Application

Thesis advisor: Mark M. Mekaru, Lt Col, PhD, UISAF az = Udino gai aa IUS

DOMyin SW na 2410s CIO POgM Dw,.qd

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. AB3STRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED CX SAME AS RPT. E; DTIC USERS 0UCASFE

22s. NAME OF RESPONSIBI.E INDIVIDUAL 22b TELEPHONE NUMBER 22c OFFICE SYMBOL

Mark M. Mekaru, Lt Col, USAF 1(513) 255-3362 AI/N 6

00 FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. ~L IFE
SECURITY CLASSIFICATION OF THIS PAGE

_____________________ - -.- '- .- '- * -. * **~* -. - 0- - * .-

4.

N
-~ I

/ I *1

\ I

N

A

I

4

p K
I,,,

g V

5 a?1'
~J * 1' * * * q . *-----, ~

a. * a *..',' ~

