AD-A172 379 ﬂ DEC!SIOM SUPPORT SYSTEN FOR SPACE TECHNOLOG
ADEOFFS: A NICROCOMPUTER. . (U> AIR FORCE INST OF TECH
RIGHT-PRTTERSD AFB OH SCHOOL OF ENGI.. B G § HELLI
UNCLRSSIFIED 413 DEC 85 ARFIT/GOR/0S5/85D-17 F/B 12/

----"
N A O I -

\

N SAR i -

o

\ 23

R

o Taad B

BT T oa e

mdy L’
87 e

BN PN

e T k..r‘

L EEE

il ©
Nl o~ o
=

m—m—m—mum.._._.m
O__ —

| .
S—
S —
——————
——
——

125

* ||||I

 STA PR A]
PN LL |

18

l
i

/e

L6

14

i

LA

OO YAS Y

L ou 28 J
4

- v =
o

P

eI

™ e s e & & &

LN

Y
&

PLNYMN Y Y

4

.”‘,h |

OTIC FILE COPY

AD-A172 379

Hah Yy

AFIT/GOR/0S/85D-17

P W Y

o«

A DECISION SUPPORT SYSTEM FOR
SPACE TECHNOLOGY TRADEOFFS:
A MICROCOMPUTER APPLICATION

THESIS
AFIT/GOR/0S/85D-17

Bruce G. Schinelli, B.S.
1st Lt., USAF

.

Approved for public release: distribution unlimited

. . R SO N S o
Phabet _‘__5.\.‘\.\..\ , \\.._.\'-\\\

K
e A e T e e e .
'\‘-
P AN

LA.-L' o .1'

“-’v

"
RSN

:.:!.

),
v ¥

~ .,¢ - ’-)\"‘n'.'h"'..‘t

AFIT/GOR/0S/85D-17

A DECISION SUPPORT SYSTEM FOR SPACE TECHNOLOGY

TRADEOFFS: A MICROCOMPUTER APPLICATION

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Operations Research

Bruce G. Schinelli, B.S.

lat Lt., USAF

December 1985

Accession For

Uonna o ced !
Justiftcotion,

NTIS CRAKI |
LI1e Ten

Bv. —

-

Q}stribution/
Availotility Codes

o Avaerl and/or
Dist | <Cpecial
I

Al

Approved for public release: distribution unlimited

‘e % 2% % L R I T VL Y IR I N P S
A A A N A R A VR

e A AT

WA AN

Preface

The purpose of this study was to implement a Decision Support
System on a microcomputer to help prioritize space technology issues.
Previous efforts in this area showed that quantitive methods inade-
quately modeled the space R&D effort. However, during the course of
this research I found that traditional DSS implementation strategies may
have serious shortcomings. I address this probleam by advancing a new
implenentation strategy. I hope that this strategy may one day be used
succeasfully in many organizations.

This report is limited in scope to implementing a small portion of
the total space portfolio selection process. The specific methodology
ismplemented in this report was developed by Capt. John Puffenbarger in a
similar thesis effort. Included in this report are: A description of
decison support systems, a review of previous implementation strategies,
an explanation of the "pilot model" implementation atrategy, and a pilot
DSS demonstrating the major principles and processes of a decision
support system.

I would like to thank my advisor, Lt Col Mark M. Mekaru for his
guidance and support throughout this thesis effort. He has invested his
time and effort to insure that this research was a valuable learning
experience for myself and my aponasors, the AF Space Technology Center at
Kirtland AFB, New Mexico. I would also like to thank Lt Col Pete Soliz
of the Space Technology Center, who has taken the time to make this a

truely useful effort for myself and his organization.

i1

..".. . . Y L. ..-‘.-‘."’.".'.. - <'l'-_'-.-"-'-"-'u'c‘l-.‘_'
R T O BT B R A A A N P N Y A R N A A A RS AT A AL N A

.'.’ -“f[‘ R

DA

{l"tlll‘l ,l"’

; \ ‘: 'n' LY _':_" A

(]

_ -'..) “. v,

-

|

PPPL L

e e e o T € e A

Last, but by no means least, I would like to thank my wife Cecily

for her love, patience and support throughout the course of the graduate

prograa and eapecially this thesia effort.

iii

N e e e s
o A A S e T

CONTENTS ’

Prefa8ce . v v« ¢ ¢ o & ¢ o ¢ ¢ o o o v 2 s e = e o & ii

List of Figures + ¢« & ¢« ¢« s o ¢ ¢ ¢« « o« Vi

> 0 8 _F_

List of Tablea ¢« ¢« ¢ 4 &+ v ¢ o ¢ o « o vii

Abstract ¢ ¢ ¢ v i i 4 e e e e e s e e o Viid

- I INTRODUCTION . . . & ¢ ¢ ¢ ¢ o ¢ o ¢ o » o o &+ 1

Background s . s e e @ o o
Problem Statement
Research Question« . ¢« ¢« & « &« &
Objectives . . . & o ¢« ¢ ¢ & 2 o o s s o
SCOPe . & ¢« 4t i s e e s e e e e e s

N b DD =

o

II LITERATURE REVIEW+ « &

H Introduction ¢« ¢« ¢ ¢« ¢ ¢ ¢ 0 « o o
4 DSS Definition . . ¢ ¢ & ¢ & o o o ¢ o o o«
) DSS Implementation
: Evaluation of DSS8 . . . « &« + ¢ &« o & « &
AFSTC Decision Process « « + « « &

NN ® O
-y

[y

III GENERAL DSS IMPLEMENTATION STRATEGY 14 =

Current Strategies 14
Proposed Strategy 19

v r o ta—a g

IV PILOT MODEL DEVELOPMENT CONSIDERATIONS 26

Implemented Decision Process 26 :
System Hardware Considerations 35 ¢
System Software Considerations 36 .

4 IMPLEMENTATION DESCRIPTION 41

Program Description 41
Program Performance 56
Final Comments + « +« « « « « + &« « 57 .

VI ANALYSIS OF THE PILOT MODEL DSS -
IMPLEMENTATION STRATEGY 58

- Pilot Model Implementation Goala 58
General Comments 62 R

VII CONCLUSIONS AND RECOMMENDATIONS 65 :

nan e B o an e gb e, o

TV W W W

T N e

wARS

Bibliography «

Appendix A: Verification of

Computational Algorithms . . . 70

Appendix B: User’s Manual
Appendix C: Pilot DSS Source Code .

vite - . - . . - - L] - L L] - L L] .

oL P e e AT T e e e N T AT
('\'.. ‘.n'.'":'.l -."- '_(‘.I.)-". ‘.\"b. .'.si.a".'n Cy "4". -a LG o N

o

-

Y

P -

e s s o s« 162

P N ST N
o~ ‘.\’ o _»\(ENS

R R
.-\‘:- BRI L O ’f.

.
YOS

a e N,

[S ReU R AR AR A

4

P Ay A A

o

List of Figures

Figure

1 MSSTP Hierarchical Flow

2 DSS System Architecture
(Sprague and Carlson)

3 DSS System Architecture (Denise) . .

4 DSS System Architecture
(Ginzberg and Stohr)

S MSSTP Hierarchical Flow

6 Methodology for Determining the "best"
Concept Option

7 Relationship of Technology Issues

to

Concept Option .

8 STC DSS Functional Flow

9 Database Management Options Menu . .

10 Concept Options DBMS Optionas

11 User Database Review Options Menu . . .

12 VIEW Menu, first Option of
Review Section . .

‘ > e Ty _'4‘\.-.\(. .

A

cod

vi

10

11

11

27

28

34

44

47

. 48

S1

S2

!'.‘.

OO

.

BRSO SRR

LR SIP AR S S E o G a0 are ok e e e b i ol ger S WYYy

List of Tables

Teble
r
1 MSSTP Definitions 3
2 Inplementations strategies, Kt
(advantages and Disadvantages) 17 .
3 AHP Scale of Relative Importance 30

vii

A

e s v At 2 X

-ve & BB +¥eTaTe B2

evave & @ &

MEE C Va" an

AFIT/GOR/0S/85D-17

Abstract

The Air Force Space Technoiogy Center 18 responsible for defining
goais, tasks and priorities for the military R&D effort in space. To
accomplish this task, the Space Technology Center has deveioped the
Military Space Systemsa Technology Plan (MSSTP).

Past research has shown that the research and development portfolio
selection process does not lead to an easy quantitative analysis solu-
tion. The very nature of research and deveiopment issues leads to a
more direct 1involvement 1n the process by the decision-maker. The
concept of decision support systems (DSS) is tailored toward unquanti-
tative, decision i1ntensive problems.

The objective of this research was to begin implementation of a
D535 for the Space Techno.ogy Center. Research indicated, however, that
traditional implementation strategies may have serious drawbacks to
their effectiveness. To overcome the perceived drawbacks to the tradi-
tional aimplementation approaches, a new implementation strateqgy was
formed. This strategy is called the pilot approach.

This research develops the new strategy, begins its implemen-
tation and performs an analysis on the system after beginning the

. \

implementation process at the Space Technology Center.

s
/

viili

I. Introduction

Background

The Air Force Space Technology Center (STC) 1s responsible for
defining goals, tasks and priorities for the military research and
development (R&D) effort in space. To accomplish this task, the STC
developed the Military Space Systems Technology Plan (MSSTP) (4:1-1).

The MSSTP was originally intended as an attempt to optimize the
investment of resources for space technology research (21:3-1). It
catalogs space related technology information, lists possible space
system threats, identifies mission requirements, translates naission
requirements into performance parameters, identifies technology
shortfalls between performance parameters and current capabilities and
recommends R&D programs to meet the projected shortfall (4:1-1), The
stated purpose of the MSSTP is to identify and advocate space technology
needs so that the necessary technologies are available when they are
needed to support military space system performance requirements
(4:1ii).

The MSSTP is not just a collection of facts, but a process in and
of itself. The purpose of this process is, as previously stated, to
prioritize technclogy issues. Figure 1 is an illustration of the MSSTP
hierarchical flow and Table 1 is a list of definitions. The MSSTP
process, aa evidenced by Figure 1, flows logically from perceived
missions in space to technology plans that intend to provide the
necessary technology to meet the future need. When the MSSTP was first

written in 1981, a resource allocation model called the Technology

Resource Utility Management process (TRUMP) was designed to be used with

the data in the MSSTP. TRUMP was a set of decision rules intended to

e T e o e e T A e e e e et R e T e .-‘..J SN
T S S S R S TR S S M SO

)

MSSTP HIEARCHICAL FLOW X

-

- vy
MIQSIONS 3
»3

’

r

MISSION ‘.
REQUIREMENTS $ VOLUME I N
»

#

PERFORMANCE J
REQUIREMENTS o,

CONCEPTS o

'-

VOLUME II i
TECHNOLOGY :

1SSUES -~

VOLUMES b

I1I1, 1Iv, V ;

TECHNOLOGY !

PROGRANS -

VOLUME VI TECHNOLOGY ?

PLAN

Figure 1. MSSTP Hierarchical Flow (4:iv) ;
provide an optimum strategy for resource allocation based upon the input o
‘s

priorities of the technology programs and their cost. TRUMP, however,
was soon discarded as a viable model because it became obvious that it .
was attempting to develop a priority liat by applying quantitative o
methods to a strategic planning problea, which isa unquantitative in
nature (21:3-4,3-5,3-27). In a MNasters thesis for the Air Force -
Institute of Technology, Rensema and Chapman developed a decision ?

support methodology for prioritizing space technology iasues,

N
<, (-‘a'l'l.'

?,

R e s J

- NN AR P P T L)
s ‘- - "'-I" NN Y .._.\.',”,

e Ve ta .,

: R T I c, Ce S e -."" R . .-' AR T Tt .. N
AR A NIRRT AU AL Oy e .'-\-,\.__.f_‘ N AOAC A &

-

¢

v

"

TABLE 1
MSSTP DEFINITIONS

MISSION
A general military statement formulated to
counter identified threatas and meet needs.
MISSION REQUIREMENT

A apecific statement of what must be done to
accoaplish a mission.

Two or more mission requirements per miasion.

PERFORMANCE REQUIREMENT

Those quantified capabilities necessary for the
accomplishment of military mission requirements.
Specifically, the coverage, capacity, quality,
timeliness, availability, and survivability of
the apace concept should be addressed.

CONCEPT
A general outline of a space system with per-
formance goals and technology requirements.

TECHNOLOGY REQUIREMENT
Capability needed to meet deaired concept per-
formance.

TECHNOLOGY ISSUE
A technology requirement beyond projected state
of the art necessary for space system perform-
ance.

TECHNOLOGY PROGRAN
A specific program which addresses a technology
issue. Most technology issues have more than

one technology program associated with them.
(4:v)

% AT PR T - e . - T e
S (- -_- a,-_;ﬁ.' T \. o) Rt ._.\.,a~~ COT N ‘\‘aﬁ' %. « : . ‘x o~ ‘, '~'$‘

4

" e

(i

:.‘. l", ,..l v

N
b'l.l.. -

. ta®o

0

‘Ll ..

CNLN N I)

.~ bs.

specifically for the MSSTP (21:1-1). This methodology recommended the
use of a computer aided decision making tool as the means to effectively
prioritize apace technology issues (21:6-1). A computer-based deciaion

making aid is commonly termed a Decision Support System (DSS).

Probles Statement

A decision-making aid would be helpful to the Space Technology
Center (STC) to help prioritize and advocate the technologies presently
listed in the MSSTP, and any future technology iasues. An effective
implementation satrategy will be needed to create and maintain advocacy
for a complete structuring of the STC decision process. The decision-
making aid should be designed for use on a microcomputer aystem to
insure that it can be used by resources currently present at STC. A
pilot Decision Support System, designed for a microcomputer system,
would prove beneficial to the appropriate decision makers at STC in

making more effective decisions.

Research Question

How can a pilot deciaion support system be designed for the Space
Technology Center to best demonatrate the capabilities of the DSS
concept to provide a basis for advocacy of computer-aided decision

support for the STC decision processa?

Objectivesa

The major objective of thia research is to develop an effective
strategy for the implementation of a deciaion asupport ayatem for the
prioritization of space technology isasues at the Space Technology

Center. Specific subobjectives are:

1) Develop software that demonatrates the major charac-
teristics of & decision aupport aystenm.

N N "P-.".-

AL IO E ALY

TN o™
.lo.

2) Demonstrate the pilot model DSS to the STC to begin
the DSS development cycle at STC.

Scope

This research ia intended to provide an effective atrategy for the
development of a DSS at the Space Technology Center. It is also the
intent of thia reaearch to begin the firast atep in the implementation
process and develop a series of software cepabilities that demonstrate
the main characteriatica of a DSS. Thia pilot model DSS will be
developed to provide a basis for advocacy of the DSS concept for use
within the STC organization. Thias research will address shortfalla in
previous implementation satrategies and introduce a new satrategy that
will overcome then. It ia intended that this implementation could be
the nucleus of a full support microcomputer implementation of a DSS for

the prioritization of military apace technology iasuesa,

|

L P PRI

%y VTN

% s [s, "y % v %

'I

lls_

Y

-"'.. ~

T

II. Literature Review

Introduction

In recent yeara, the term Deciasion Support Syastea (DSS) has become
a major topic of discussion. The definitions, characteristics,
components and history of DSS are all hotly debated and vary a great
deal in the literature. It is not the purpose of this literature review
to discuss in detail the complete block of knowledge available
concerning Decision Support Systenms. In fact, many good literature
reviews and summaries concerning DSS already exist (9:;16). Instead,
this review will focus on a baasic, generalized overview of the DSS
literature and only provide apecific information on those pointa that

are relevant to this research.

Decision Support System Definition

Since the early 1970’a a number of authors have advanced different
definitions of the DSS concept (1:;3;9:;10;14;17;:18). For example, in
1971 Gorry and Scott Morton (10) identified DSS as aystema that would
support managerial decision-makers in unatructured or semi-atructured
decision processes. The key concepts advanced by Gorry and Scott Morton
in the above definition were support and unstructured. The systema that
they wrote about were aimed at extending the capabilities of the
manager; not replacing him or hia judgement. Thus the emphaaia is on
support. Theae aystema were alao aimed at helping managera aolve
unstructured problems, problema that could not be coded into an
algorithm and aoclved automatically (9:9). A atructured problem ias one
in which the decision being made ia repetitive and routine “to the

extent that a definite procedure has been worked out for handling thenm

e . e e et et atata ot e e
. -) R R P IR I U N S P S P P
o e

)
-
O A A RO AR A A

. .
- e e .

D
'

Al

4

so that they don’t have to be treated de novo each time they occur
(13:85)." In contrast, an unatructured problem has some digtinctive
attribute or attributes that makes it unique each time it arises, making
it impossible to deal with automatically, An implicit assumption of
most, if not all, early definitions of DSS was that they should be
computer-based (9:10). This is evident from the fact that the
structured and unstructured definitions closely follow the definitions
of Simon’s terms “programmed" and ‘"unprogrammed", respectively, and
Simon’s admission of borrowing the terms from the coamputer industry
(25:6).

An extension of Gorry and Scott Morton’s DSS definition was
provided by Little (17). He did not specifically use the term DSS, but
defined "decision calculus™ as a system of models to help a decision-
maker solve decisions (S9:10). Little also defined characteristics that
such a system must have to be successful, as did Moore and Chang (18)
and Bonczek, Holsappie and Whinston (3), i.e., simple, robust, easy to
control, adaptive, and complete (3:10). Finally, Keen (14) described
DSS as an evolutionary process, with the user, the DSS, and the DSS
designer interacting with each other (9:10). While all of these
definitions provide pieces of the DSS picture, they alaoc raise sone
basic questions. For example, Keen’s (14) definition may lead us to ask
*how the development process can be structured to assure that the feed-
back loops among user, builder, and system are in place and functioning
(9:12)." Ginzberg and Stohr argue that although the more recent
definitions (1;3:14;18) pose interesting problems, they change the
emphasis of DSS research away from its central issue of supporting and
improving decision making for managers (9:12).

The perceived move away from the real "issue” of DSS lead Ginzberg

o A s

= e &2 e

. - - an

,’J
S
\
\
~ and Stohr to propose the following definition for a Decision Support
163
Q)
d Syatenm:
,: A DSS ia a computer-based information systea used to
~: support decision making activities in situations where
- it is not possible or not desirable to have an auto-
[nated system perform the entire decision process (9:12).
It is the above definition that will be used to define a Decision
i: i Support Syatem in this research paper.
;k A literature review froa a different perapective may be found in a
thesis by Koble (16) and a hiatory of the DSS concept in Clark (3).
X
j: Both show the DSS as a continuing process developed from electronic data
:: procesaing (EDP) and management information ayatems (MIS). It is argued
j that DSS has developed as the role of computers in managerial organiza-
4
‘: tiona has developed. The work of Davia and Ohlson (7) alao asupport this
S evolutionary view.
. Decision Support System Implementation
n While there are many opiniona on the definition of DSS, there are
~I
- as many or even more opinions on what featurea constitute a DSS. This
e literature review will focus on the characteristicas of a DSS that may be
2.
< useful for the type of implementation planned.
.
- Some of the moat important characteristics of a DSS that are seen
. conatantly in the literature are:
: 1. Man-machine interface, where the deciaion-maker
B retains control over the decision process.
- 2. Utilization of the appropriate mathematical and
. statistical models.

3. (Query capsbilities to obtain information by request.

[
»

Comprehensive database with database management.

[

S. Easy to use approach and a completely user

> friendly interface between the decision-maker, the

L4

')

& 8

‘!

)

N o e e e e e G S

‘w'...:.'b"n '-.""

“w

database, and the models.

6. System is adaptive over time, i.e, flexible.
(237:9:13:27:29)

The above characteristics drive syatem architectures that are different,
yet very much the same. For example, Figure 2 is a system architecture
by Sprague and Carlson. It ia composed of a database management systenm
(DBMS), a model-base management system (MBMS), and a dialog management
aystem (DGMS). The DGMS is another name for the user interface. Figure
3 1is from an article by Denise. His system architecture is structured
alightly differently than Sprague and Carlsons. The report block repre-
senta the user interface. The modeling ayatem is represented by two
blocka, atatistics and modeling. The database ayatem ia represented asa
the database block. Finally, Figure 4 is from Ginzberg and Stohr. It
adds a few extra sectiona to the aystem configuration. The extra
blocks, however, are not unique to their system representation. They
are implicit in the definition of the user interface for the first two
system architectures. It is interesting that the models all include
databasea, user interfacea and modeling capabilities. They only differ
in how the different componenta are addreased by the DSS, which is by no
reansa a ainor point. They do, however, give a atrong indicetion of the
neceasary componenta, i.e. a databaae, a modelbase, and a user inter-
face, that ahould be included in a DSS, and what their capabilities
should be. An interested reader can find further DSS model represent-
ationa in Thierauf (29), Alter (2), and Bonczek et al. (3). After
researching what a DSS is, what characteristics it should have, and its
nost likely form, it was neceasary to look into ita applicability to
personal (micro) computers. It has been recognized that (potentially,

at leaat) the microcomputer represents the single most important advance

-~ e
B

WY

T AR AR R (TS T e T A T T T T T AT e ettt a T a et ettt e e
.‘f.-(' o, o 1~'\. R R \4"'4" I" -*\q' ey L R g S S N R L A -

.
A

]

THE DSS

LA

Database Model base

- DGMS Software
system

25540 5%

Task Environment

*

‘.'\".I".l

USER

LI R R |

" Figure 2. DSS asyatem architecture - Sprague and Carlaon
(27:29)

~ 10

x

»,
.

th

« \-.\q .0

I SO

- ‘e
LR
)

KRN

A A e A N L e e L T TN e

IR
EPEN AR
PRI T

THE FOUR MAJOR COMPONENTS OF A DSS

DATABASE

MANAGER
|
|
| MODELING
!
i
I
I
! \
| , Oa
STATISTICS
!
ENVIRONMENT
Figure 3. DSS system architecture - Denise (8:208)

DATABASE DATA EXTERNAL
MANAGEMENT =1 EXTRACTION [| ENVIRONMENT
SYSTEM SYSTEN
| USER LANGUAGE SYSTEM
USER INTERFACE [| INTERFACE (]| DIRECTORY
SYSTENM SYSTEM
MODEL
MANAGEMENT
SYSTEN
Figure 4. DSS system architecture - Ginzberg and Stohr

(9:17)

1

1

S S IR VAU Y
A A

S
LN et

JAP AN LN N

in the DSS area. As the speed and capability of the microcomputer
increases, 80 doesa their utility to the decision-naker, For the firat
time the decision-maker can bring computing power into his office under
his peraonal control (8:210;15:34). The utility of using microcomputers
to solve Operations Research problemas was the topic of a theais by Greg
White. In his research he found a number of articles that supported
this view (30:8). Nobles (19) also came to the same conclusion in a
similar effort.

It is clear at this point that the literature supports microcom-
puter based decisior-aids in the form of decision support systenms.
There is also a large body of knowledge agreeing on what these systems

should do.

Evaluation of Decision Support Systemsa

One area of operational interest that has not received much
attention is that of DSS evaluation. Bertram Spector, an analyat with a
firm practicing DSS techniques for the corporate world, feela that this
is one of the moat presaina areaa for DSS research in the coming vyearsa
(26:1). Sprague and Carlson agree, stating that few, if any, evalua-
tions of DSS ayatems have been reported (27:157). They 1list several
possible ways that a DSS could be eva_uated, such as cost-benefit
analysis, value analysis, cognitive testing and attitude surveys
(27:162). Both Sprague and Carlson and Keen and Scott Morton agree,
however, that the only practical measure of DSS success is if it is

extenaively used (13:216:27:158).

AFSTC Decision Process

An extensive review of the AFSTC decision process was accomplished

12

WY UWTYW U UL,

'

Ty %% h e

L)

- v ,....",'.-

4y 4

Y REIE
e L

el v o 2’ TN BN

i

and Chapman (21). They alao completely reviewed the pre-

by Rensena

viously mentioned methods for prioritizing space technology issues. In

their work, they found that the Analytic Hierarchy Process (AHP), a

method of ordering alternatives, was preferable to other =methods of
prioritization for the space technology problem (21:2-27,2-28). In
developing a methodolgy to identify the "best” point design among con-
cept alternativea (aee Chapter 1), Puffenbarger also selected AHP as the

decision proceas of choice (20:27).

TR

e)

B

III. General DSS Implementation Strategy

In general, a Decision Support System (DSS) development effort
requirea a number of people to be involved at many different levela of
the effort (27:64). Also, DSS inplementations are generally considered
to be iterative procesases, where ayatea prototypes are developed,
evaluated, and redeveloped due to end-user inputs (11:80). However, as
stated earlier, it is not the intention of this research to “prototype"”
a DSsS. This research develops a "pilot" model; a model that demon-
strates the baasic principles of a working DSS. This new implementation
strategy and how it fits into the architecture of current iterative
development achemes are the aubjecta of this section. First, however,

several current atrategies for DSS implementation will be profiled.

Current Strateqies

Moat of the many different implementation achemea advanced in the
literature could be placed (to some degree or another) into the
following three categories: the "quick hit", the ataged development
approach, and the complete DSS [as advanced by Sprague and Carlsaonl
(27). All of these strategies stress the importance of the evolutionary
process that is characteristic of a DSS. In fact, recent literature has
gone ‘"as far as saying that an evolutionary design process is a prere-
quisite for calling a asystem & DSS (9:24)."

Quick-Hit. The f£first atrategy advanced ias the quick-hit. Thia
strategy advocatea the development of a working DSS in an area where
there is an easily recognizable payoff. This would involve using the
moat appropriate tools, and reaping the benefita as quickly as possible.

This strategy has aome obvioua atrengths, Firat, the quick hit method

14

-y T e Y Tt Lt at . Tt vt N, L P T O P Tt SO St S | ettt Tt
0l ‘t.. Y AT \r~. .._‘-‘. e e e e) R PRI JL N "‘.‘. SRS '.'.-A e . A s
A Al DS . . . y v -

y vy 8 s e

provides immediate benefits. The organization is able to uae a DSS for
a specific task immediatly, producing a fast, measurable payoff.

Secondly, this strategy has an associated lower risk. The develop-
ment of the DSS is "quick"™, reducing the chance that the decision
process changes during development. The chance of technological obacle-
scence once the system ia complete is also minimized.

Third, the quick-hit astrategy haa eaasier development procedures.
The quick-hit method requires leas planning than other methods becauae
it ia not meant to be expanded. When a new syastem is required, it would
be built from scratch.

Finally, the quick-hit atrateqgy can take advantage of the
avajlability of the lateat technology. The DSS can be conatructed with
the very latest hardware and software available.

After the first DSS is in place and functioning at its intended
purpose, the organization should begin the second iteration of the
implementation proceas. The changing requirementa of the completed
syatem, a8 well as new areas in the organizationa decision process,
would be identified and included in the design of the next DSS. The
second (and aubsequent) iteration DSS would uae the latesat toola and
technology available to implement a completely new systea.

With advantagea, however, come disadvantagea. The fact that there

is no carryover from the firat DSS to subsequent DSS implementationa is

a disadvantage as well as an advantage. The software developed for the

first DSS may not be applicable to the next DSS. Alaso, a DSS developed
using the most expedient means may not be as flexible aa a DSS built
uaing another strategy. Therefore, a quick-hit DSS may require more

naintenance to keep it current (27:60-63). Some of these disadvantages

T o P I P S
PO] PN T) ‘-'- e R I L S

LR \. VTR

v NI .
| 2’

P N A N B N NG
e T A L e TG VSRR

are overcome by the second implementation strategy, the staged develop-
ment approach.

Staged Development Approach. The staged development approach tries
to combine the quick-hit method with more planning and forethought.
Thia atrategy involvea developing the firat DSS with ita application
toward the second and aubsequent syatems kept firmly in mind (27:60).
This satrategy hopefully leads to the development of a DSS Generator. A

DSS Generator ias defined as "a package of related hardware and software

which provides & set of capabilities to build apecific [(workingl DSS

gquickly and eaaily (27:11)." The main advantage of this approach is
that it gives an organization an initial DSS capability, but does not
sacrifice expandability. The initial DSS is a atep toward a DSS gener-
ator that can be rapidly applied to many organizational decision
scenarios. Alao, this approach would allow the integration of new
technology without losing the previous capabilities as older ayatema are
scrapped. At the same time, the organization’s risks of technological
obsolescence and changing decision requirements are minimized by the
fairly quick development of the first working DSS. The disadvantages,
however, are that the organization must place some initial resources on
the development strategy and experience some delay in reaping the bene-
fits (27:61-62). The final inplementation strategy is the most general
of all and ia called the complete DSS by ita proponenta.

Complete DSS. The complete DSS implemetation astrategy proposes
that major planning and development should be accomplished before the
firat working DSS ia built. This astrategy would entail the development
of a complete DSS generator, as defined earlier. Again, there are

advantages and disadvantages to this implementation schenme. This

o ae B¢ as)

b I T S
..b.. o~

e N N e et
LN DOy T

TABLE 2

QUICK HIT

ADVANTAGES

Faat payoff

Low risk

Eaaier to apply technology
and development procedures
Lateast technology always
available

STAGED DEVELOPMENT

ADVANTAGES

Leada to development of
DSS Generator

Gives early success and
visibility

Allows integration of new
and old DSS

DISADVANTAGES

- One shot-no likely carry
over to next DSS

- Specific DSS may require
nore effort to change

DISADVANTAGES

- Requirea additional cost
up front

- Delays initial success
somewhat

Ability to assimilate evolving

technology

COMPLETE DSS

ADVANTAGES

- Likely to be beat inte-

grated and have best
architecture

- Will reach full atrength

soonest

DISADVANTAGES

- Long development time
before firat benefits
are realized

- High risk of technolog-
ical obsolescense

- High risk of unknown
problens

Implementation Strategies: Advantages and Disadvantages

(27:62)

17

LN AR P,

P L SR S MR ek YL o WL Ak Ak At Rl & i ate "o A S MMM A

approach has a greater probability of becoming the most efficient gener-
ator. It will probably have a better integrated set of tools to work
with and it will probably have a better system architecture. The conm-
plete DSS approach will probably also lead the building organization to
“full-up" atatus first. That is, this approach will give the organi-
zation ita moat complete, and beat organized, DSS generator and specific
decision support systems quickest, in the long run. The disadvantages,
however, are conaiderable. A complete DSS development effort will
probably take a long time, and is considered a mnmultiyear progran.
Becauae of this lengthy development time, the complete DSS is
susceptable to becoming technologically obaolete before the first
working DSS is conatructed from the generator (21:63). Table 2 sumnma-
rizes the major advantages and disadvantages of the implementation
strategies as outlined in the paragraphs above.

Sprague and Carlson, after reviewing the three implementation
astrategies liated above, conclude that the staged development approach
ia the beat as it balances the other two achemea (27:63). In fact, most
DSS researchers seem to agree. Thierauf’s (29) implementation achenme
followa closely in most =major details with the ataged development
approach. It recommends the development of a first complete asystem with
appropriate planning, and then the integration of more capabilities
later (29:131-147). Keen and Scott Morton alao follow the staged
development approach, although they term the phrase quite differently:
as the predesign cycle, design atage and poatdesign process (13:167-
185). Their approach alao advocates the development of a working model

and increasing capabilities through the iterations. Neither Thierauf

or Keen and Scott Norton specifically mention the concept of DSS gener-

RS

% "y "y "o %

[A

e VW VW ¥ ®

ators, but the idea is implied in the continually expanding systen.
There is evidence, however, that the staged developrent implementation
strategy, and all prototyping strategies in general, may have even more
serioua shortcominga than previously mentioned. These shortcominga are
dangerous because they are manifested in characteristic atrengtha of DSS
implenmentation atrategies. In a recent atudy, two researchers
(Henderaon and Ingraham) found that prototyping is a "highly convergent
deaign process (11:86)." This type of proceas, they feel, would lead to
a high degree of user aatiafaction and therefore, use, which ia one of
the previouasly discusased objectives or characteristice of a DSS (eee
chapter 2). They also found that the avajlability of a apecific DSS
ready for use fairly quickly ias useful in supporting the user during the
lengthy development time for the aystem generator (DSS generators are
again not expresaly mentioned, but are implied). The problem lies in
Henderson’s and Ingraham’s findings that this proceas may lead to infor-
mation requirementa and needa being missed, with the propagation of "a
status-quo which is sub-optimal (11:86)." Furthermore, by focuaing the
design of the initial DSS on a asingle user, the entire aystem may
reflect the biaa of that one individual throughout the 1life of the
aystem. Finally, they found that the prototyping approach (the ataged
development approach) ia particularly effective in defining ayatem inte-
gration needs, The asingle user focua, however, may not be effective in

implementing those requirements into the integrated DSS (11:86).

Proposed Strateqy

In thia research effort, a new implementation atrategy will be
advocated and initiated for the Space Technology Center. Thie implemen-

tation strategy will be aimilar to the ataged development approach with

19

R RTINS

" leanings toward both the complete DSS approach and the quick-hit

) approach. The new atrategy will be called the "pilot" approach.

In general, the pilot approach to DSS implementation will be a

is parallel effort. Once an organization has decided that a DSS has poten-
e tial applications for some of their decision procesasea, a DSS working
f group (much like that for astaged development) would be formed. As in
é ’ the sataged development approach, this group would coneiat of users,
_} Operations Research analysta, and programmers. It should be noted that
3 whether or not this development will be accomplished “in-house” or by
g contract has no bearing on the composition of the working group. If the
; DSS ia to be built in house, the intereasted parties will be aasaembled
~; from different divisions. If the work is to be accomplished by con-
E tract, the users will come from the buying organization with perhapa
g representation from other departmenta, such as the programming depart-
o sent, if the ayatem will be mainteined in-house after purchase.

§ After the working group is formed, the major difference between the
‘E prototype approach and the pilot approach is evident. At this stage,
e the prototype approach would begin working on a preliminary study before
3 developing the first specific DSS. Under the pilot approach, the group
& would begin a preliminary study, but would alao immediately develop a
.: "pilot*™ DSS. The pilot model DSS would be an actual DSS capable of
'; functioning and providing an initial, although quite limited, capability
i to the end user. It ia important to note that the pilot model need not
A be a complete working model. The intent of the pilot model is to serve
3 as a baais for DSS undersatanding. The pilot model would be built with
‘E no intention of follow on DSSa, as is planned in the staged development

approach.

)

Cd

5

20

-
- W

.

Ch " et s 0" e a ™ m N A e et et e e te L T T T . T T S O S SO I ST SIS AR
‘0| e '-,-.,-.,‘- *e \‘\.‘. ...-..\\'.\. . ~, ‘..'.- A SR PR ..-‘.'.-‘\ - | n "."q~.\-.'-(.‘.u_-¢' . _._."- LAY

A T TV,

o s e s b n o

The pilot model ashould contain as many features as possible, but
remain simple so that it is put together quickly. At the same time, or
perhapa after the pilot model ia completed, a complete DSS apecification
and implementation strategy would be developed.

As previously stated, the main objective of the pilot model is to
provide a basis for understanding the nature and characteristics of a
decision support syatem within the organization. To support this, the
rajor characteristics that the pilot model should display are:

1) User friendliness. The major emphasis in designing
and implementing the pilot model should be the man-
machine interface. If the program is not easy to
use, it won’t be used.

2) Appropriate operations research techniques, mathe-
matical and atatistical models. The pilot program
should contain enough capability to provide an ac-
curate picture of the potential capabilities of the
eventual "full-up"” system for the end-users.

3) The usefullneas of databasea and database manage-
nent. The DSS software for the microcomputer should
be able to provide an accurate representation of the
information needa of the organizational decision pro-
cess, and how the information will be managed and
presented.

The characteristics listed above are several of the most important
for any DSS. They are not, however, all of the characteristics commonly
liated in the literature (aee Chapter 2). Not all characteristica of a
working DSS are necessary in a pilot model. For example, the flexi-
bility of a DSS ia usually a major factor in its development. A DSS
should be flexible internally and externally. Internal flexibility
neana that the software itself is flexible for the user. It would allow
the user a wide range of options and be able to perform a large number

of tasks. The DSS would perhaps allow the user to link functions and

create new taska. External flexibility concerns the programmers of the

21

b Sl b ol tag o

AT T T P D T S S LT T T LT T et T T AT RSt e At T e e e N T e e e
S "{5(\{5 AR RN g I -“. ~f. '_.'."' AN ‘ -' . \'_-. .\. '..\._1. - -“‘-'.‘- l\ » ,f_.d" f e vy v SC

i o

1 2l

sy 2 .

el S et Nl Ny R

LGB SRR, LR N

DSS. To be externally flexible the DSS should be easy to change and

iterate as a syatenm. For these reasons, there ia no need to emphaasize
flexibility in the demonatration model. The program should be flexible
enough to diaplay the concept of internal flexibility to the uaer, but
should alao remain ainmple. To remain siaple, the program ashould not
contain external flexibility festures that would increase the develop-
ment effort of the programmers and designera of the pilot model.

The pilot approach, as stated, would remove most of the disadvan-
tagea cataloged for the other implementation strategies. In fact the
objectives of the pilot model are to overcome the limitationas of "proto-
type" atrategieas, such as the staged development approach. Simply
atated these objectivea are: 1) Educating users about DSS’s and their
capabilitiea 8o that the users may better define their requirements
(type and format of data, type of analysis, poseible functiona, type of
user interface, diaplays, etc..) for the complete ayatem; 2) Generate
acceptance and possibly advocacy, which are keys for DSS auccess, and
generate further intereat in other uasers, to eliminate aingle uaser bias;
3) Give users, programmers and designera, the main components of the DSS
working group, an appreciation of the other group members point of view
and to stimulate knowledgeable discussion between them while the DSS
project is in its infancy, thus avoiding costly communication errors;
and 4) As most decision aupport aystema are designed around exiating
databhases, a pilot model would give the designera/programmers an under-
standing of the current database. This understanding would include
issues such as dats content and structure. For example, if information
is stored as characters, but aust have arithmetic operations performed

on it to present it in a format palatable to the decision-maker, it must

22

e ST TR TS G T BN BN AN - . < < o 4 L] Rt Rl JHE DA gih AR A Ne pif shg Ld e et ptl S

-
)

-

be converted to a numeric foramat.

\)
h In summary, the objective of the pilot system would be to infornm
? the organization of the many poasibilities inherent in DSS, and to
channel the interest into the development of a DSS generator that could
t benefit the entire organization, not some amall part of it. Secondly,
: while educating all people that may be involved in the development
3 proceaa, the pilot model would point out at an early stage development
‘: problems that need to be addressed.
; On one hand, it has been shown that the prototype atrategy for DSS
,; developrent has some serious shortcoaings. On the other, it has some
; major advantages also. The pilot approach, aa advanced in this
~ research, is designed to eliminate those disadvantages. No technique,
~
: however, is without its own diasadvantages. Some may consider it a waate
B
': of resources and effort to develop a system that may not provide any
V&. real capability, with the intention of discarding it at a later date.
; These critics would be at leaast partially correct. The isaue ia depen-
; dent on the amount of return for the inveataent. By creating interest
~ in the organization and demonstrating system capabilities, a more cost
'; effective ayatem ia achievable. If, for example, the ataged developaent
‘E process is followed for a number of years, and the user that has been
» the major £focal point of the DSS and ita many iterationa leavea the
A organization, the previous effort may contain too much personal bias to
: be palatable to his or her replacement. In contrast, the pilot approach
attempts to increase the number of interested users in the organization.
E' Also, the purpose of the demonatration model ia to promote the educatjon
E of the user. If a new user arrives after the pilot model has been

constructed, and the implementation process is nesring completion of the

23

L8 s s a

PSS

PR b e TR ANNA

L e e A

'A

first working model, the pilot model can be used by the designer to
identify any new requirements generated by the new user. This point is

vtremely critical with respect to an orgsnization such as the military,
which experiencea frequent personnel changes in ita upper and =aiddle
ranagenent.

It should be noted that the pilot model implementation strategy may
not be effective when applied to small organizations. This satrategy
would not be coat effective for a small organization that does not have
a wide range of decision processes or possible users of the system. The
decision to use a pilot model implementation approach is based upon the
possible gain in knowledge of the user versus the potential cosats. A
sanall organization may not be able to juatify the use of resources to
build a pilot model.

The pilot model strategy may be particularly effective when applied
to large organizations. Large organizations may have a nmultitude of
decision proceases. By generating advocacy within the organization the
pilot model approach may lead to an integrated DSS for the entire organ-
ization. An integrated DSS may save the organizaticn significant coats
over the life of a DSS implementation effort.

As a final point, a pilot model implementation approach may indi-
cate that further DSS development is inappropriate. A particular
problem may be insurmountable with current technology, or the decision-
maker may decide that a DSS is not needed by the organization. The
pilot model approach may be a particularly valuable strategy when the
organization is not aure that it needs a DSS. Building the pilot model
could act as a catalyst that would bring the organization to a awift

decision, either for or against further development. In either case,

24

- -

- SN

ol 00 .~ ‘.-.' 0 " -\.‘ L S ..‘ . .._" . _'.._'.._' . L >- PR PASEUEE o R o LT,
AL N I AL P P A T P AT AP P O P TR F S P A T R T A A

.* s
D,

. . N

the pilot model would have served its purpose. An organization would
have made its decision with the least coat inveated in the development
effort.

Because of the above advantagea, the pilot model implementation

strategy is a valuable approach to DSS development in a military

environment.

L e St

IV Pilot Model Development Considerations

Imnplementing a pilot model deciaion aupport aystem for aspace tech-
nology tradeoffa required a careful analysis of the decision process at
the Space Technology Center. Aa in any DSS design and development
phase, the pilot approach included, user involvement is easential. The
portion of the MSSTP proceas aselected for implementation had to be the
area nmost likely to receive the highest degree of user saupport. This
section firat deacribes the area selected for implementation and the
reason for doing so. Systemr hardware and software conaiderations are

also discuased.

Iaplemented Decision Process

The decision procesa aelected for implementation was an extension
of the current MSSTP process developed by Puffenbarger in his thesis ™A
Methodology for Asasesaing Technology Trade-offs of Space-Based Radar
Concepts.” In short, Puffenbarger asserts that another atep is needed
in the current decision proceas. He contends that concepta, as defined
in Chapter I, should be broken into concept optiona (which are point
designs that satiafy the general requirements of a concept). In choosing
the beat concept option, using a predefined set of criteria, the tech-
nology issuea associated with that concept option would have more weight
in the overall prioritization acheme (20). Thia methodology was choosen
for implementation for two main reasona. Firat, STC had expresaed great
interest in a process that helped choose the beat concept option or
point design of a given concept. Thias interest could work to the advan-
tage of a pilot model type implementation strategy by generetin?

intereat in deciasion aupport syatems, once a ayatem is developed.

26

Secondly, as Puffenbarger’s research was conducted concurrently with

thia effort, a high degree of involvement by a "user" could be achieved
in the foramation of the pilot model. As advances were made in the
methodology, changes could be made in the pilot model. A further expla-
nation of the methodology is given below.

The new methodology expands the concept to technology issue portion
of the MSSTP’s current process by adding what Puffenbarger terms ‘“con-
cept optiona" (20:3). Puffenbarger arguea that different ayatea

e - . L o 4e S Y S M W W S A e e e e

MSSTP HIERARCHICAL FLOW

MISSIONS W
MISSION L
REQUIREMENTS VOLUME I
‘o
PERFORMANCE
REQUIREMENTS |
CONCEPTS
VOLUME 11
TECHNOLOGY
ISSUES 1
N, VOLUMES
e ITI, IV, V
T;SENOLOGY
PROGRANS
VOLUME VI TECHNOLOGY

PLAN

Figure 5. MSSTP Hierarchical Flow (4:iv)

27

“of

RN

e i
LR 4

Bui
a2 040t

o
P

LR R s

EERRE AN

a s ¥

]

T

- 4k .
N

MISSION MISSION
(Support Mission) (Combat Mission)
(Air Vehicle Detect/Track)

MISSION REOUIREHENTS¢7 SCENARIO
(Detect Aircraft) (Conua/Fleet Air Defense)

PERFORMANCE REQUIRENMENTS
(Coverage)
(Capacity)
(Quality)

(Timeliness)
(Availability)
(Survivability)

CONCEPT OPTION A CONCEPT OPTION B CONCEPT OPTION C

v
PERFORMANCE/DESIGN

(Corporate-fed Phased Arrav)

TECHNOLOG;‘DISCIPLINES
(RADAR)

TECHNOLOGY ISSUES
(T/R Modules)

CHARACTER OF TECHNOLOGY ISSUES

(Perforaance)
(Schedule)
(Risk)
Coat
PAIRWISE COMPAIRISONS PAIRWISE COMPARISONS
(Optiona based on Criteria) (Criteria based on objectives)
(ARP) (AHP)
SYNTHESIS
(AHP) » AHP Priority Vector

Figure 6. Methodology for Determining the "Best"
Concept Option (20:96-99)

28

deaigna influence the rank ordering of technology iaauea. If the beat
ayatem point design can be found, then the technology isauea asaociated
with that design (concept option) should be ranked the higheat in
priority for the given concept. Figure S is the repreasentation of the
MSSTP planning or prioritization process froam the MSSTP itself, and is a
copy of Figure 1 from Chapter I. Figure 6 ia the wmethodology for
determining the ‘"best" concept option, as developed by Puffenbarger.
The two processea are aimilar until the concepta (space aystem concepts)
are determined. At that point, Puffenbarger breaka a concept into
concept optiona. Then, Puffenbarger definea four criteria with which
the different concept optiona can be measured against: performance,
schedule, risk and cost. The performance of a concept option is the
eatimated performance of the concept option in six areas aas defined in
the MSSTP, i.e., survivability, coverage, capacity, quality, timelineas
and availability. The achedule for a concept option would include the
earlieat completion date, earlieat production date and initial operating
capability (I0C). The riek for a concept option could include factors
such as the number of “risky"” technology isaues associated with a con-
cept option, the potential variability of the achedule for aolving the
technology issues aassociated with the concept option, and the potential
failure of one or more technology isasueas in meeting the required perfor-
mance levels. Once these criteria were defined and the concept options
were identified, Puffenbarger chose the Analytic Hierarchy Proceas as
the methodology best suited to providing a structured decision process
to this problea (20:55-80).
The Analytic Hierarchy Process (AHP)

is a syatematic procedure for representing the elements
of any problem. It organizes the basic rationality by

29

e PP

-‘.'?".:']

. "
»

v e
Y 5 e

|

DN

R

0
N
.

|
B
~

AR

AL Y I 2
T R

1
MR
[e

7, G

DA ".)

,
N

AR
.

k|

L) "l ..'

breaking down a problem into its smaller constituent

parts and then calls for only simple pairwise compairi-

son judgements to develop priorities in each hierarchy

(22:140).
Translated for simplicity, AHP, as applied to the methodology outlined
above, breaks the problem of finding the best concept option into two
parta. First, the relative weight or priority of the criteria must be
found. Then, the optionas aust be compared againat each other with
reaspect to the criteria, to find the relative weight or priorities of
the concepts with respect to each criteria. The relative priority of
each element of a given level of the hierarchy is found by first
presenting a series of pairwise comparisons of the elements. For

TABLE 3
SCALE OF RELATIVE IMPORTANCE

Intenaity of

Relative Definition Explanation
Importance
1 Equal Importance Two activities contribute

equally to the objective,.

3 Moderate Importance Experience and judgeament
of one over another slightly favor one acti-
vity over another.

S Essential or Strong Experience and judgement
strongly favor one acti-
vity over another.

7 Very Strong An activity dominates the
other, and demonstrates
it in practice.

9 Absolute Importance The evidence favoring one
activity over another is
overwhelming.

2,4,6,8 Intermediate values When compromise is needed.
(22:145)
30

example, the first level of the hierarchy of Puffenbargers methodolgy is
the attributes criteria, performance, achedule, risk and coat.

The comparisons are based upon a scale that is represented in Table
3. This scale defines the relative importance of one object to another,
and is the value that is used for priority calculations. The compari-
sons build a square, reciprical matrix at each level of the hierarchy.
This matrix is solved for its characteristic eigenvector. This eigen-
vector 1is then normalized by dividing its components by the asum of all
elements of the eigenvector. The normalized components of the eigen-
vector are then the priority vector for the elements of that level of
the hierarchy (22:141).

The synthesis of priorities ia performed after all of the priority
vectors have been calculated. The overall priority of the hierarchy is
calculated

by multiplying local priorities by the priority of
their corresponding criterion in the level above
and adding them for each element in a level accord-

ing to the criteria it affects. This gives the coam-
poaite or global priority of that element (22:141).

For the methodology of Puffenbarger, this means that the priority or

weights of the four attributes, performance, achedule, risk and cost is
calculated. Then, the priority of the concept options is calculated
based upon each of the attributes, resulting in four seperate priority
vectors. The weight of performance is multiplied to the concept option
priorities based upon the performance measure. The weight of the
remaining three attributes is multiplied to the appropriate vector. The
final priority of each concept option is the sum of the weight of each
concept option after it has been multiplied by the weight of the

attributes.

B Wy o bt
Y Sl oM

S,

ST K

An advantage of this technique is that a measure of the consistency
of the decision-makers judgements is available. The consistency ratio
(CR) measures the departure of the maximum eigenvalue from the number of
elements at a given level of the hierarchy. The conaistency ratio is
found by first obtaining the consistency index. The consistency index
is caluclated by subtracting the nuaber of elements (n) from the maximum
eigenvector and dividing by (n - 1). The consistency index is then
divided by a random consistency calculated n elements, yielding the CR,
This measure should be below 10X to indicate consistent judgements by
the decision-maker (22:142-143).

It should be noted that the above is a very cursory explanation of
the Analytic Hierarchy Process. It is actually a rigorous and complex
procesa designed to set structure to complicated and unatructured prob-
lens. The purpose of this review was to set forth a minor explanation
of how AHP works so that its implementation in this research effort
could be better understood. Explanations of the proceas and a study of
ita relastive merits compaired to other approachea can be found in many
other works. Some deal mainly with the process itself (22;23), while
othera, such as theses by Puffenbarger (20) and Rensema and Chapnman
(21), deal with AHP in the specific setting of prioritizing technology
issues. Thease references can be reviewed for a greater degree of under-
standing of the process itself. Finally, in developing a pilot model
for the above methodology, several restrictive assumptions were made
concerning the attributes and the concept options that would be
preasented.

First, for this implementation, it was assumed that the performance

measures were equal in value. That is, timeliness is equally as

32

e e e T N U e N e e e e et St (AT e R G GG

N R
PR - .S
P, - ‘.‘.. K
y

PRI

v .
.

LWt

a oy -
's ‘o _a_ ¥ "N

e %r "0 T2

important as survivability. Although this may not be the case, it
simplified the model by removing a level of the hierarchy. Each option
was compaired on the basis of performance as a whole, not on each
seperate performance measure.

A second assumption was that the schedule, risk and cost attributes
were measured in terms of the unique technology issues of a given con-
cept option. This means each concept option could be expressed as a
group of technology issues. The schedule, risk and cost of a concept
option is then the composite schedule, risk and cost of the technology
issues.

For example, the three concept options for a given concept could
each have ten technology issues in common. The firast and second options
could have five unique technology issues, and the third option have ten
unique technology issues. The third option in this example (see Figure
7) has two issues in common with the first option, and two with the
second. However, the respective technology issues are not contained in
all three, 8o they are counted as unique. The decision-maker has to
decide how the risk values of a concept option’s unique technology
issues compare to the risk values of another concept option’as unique
technology issues. The same argument applies to the schedule and cost
attributes.

A third assumption concerning the implementation of the above
methodology was that data existed in a format that could be used by the
pilot model. Because the computerized version of the MSSTP database was
not completed at the time of this research, an interface between the
existing database and the DSS database could not be considered. It was

assumed that the information, as diaplayed by the pilot model implemen-

33

R A,

s, T

s

AN

CONCEPT

Technology
Iasues(TI)

TI
2) TI 2 TI B TI
3) TI 3 TI C TI
1) TI 4 TI D TI
5) TI S TI E TI
6) TI
7) TI
8) TI
9) TI
10 TI

N ECQODN P

Risk of Option A is & function of the risk of
technolgy issues 1 through S. It can be ex-
preased as a mean, and/or by the number of TIa
with risk valueas in a certain catagory (very
low to very high).

Figure 7. Relationship of Technology Issues
to Concept Options.

tation, could be obtained from the finished MSSTP database if it were

available. This restriction had some advantage, however. It atimulated

thought into the structure and content of data displays and storage for
the pilot model DSS. This waa one of the objectives of the pilot model
implementation atrategy as diacussed in Chapter III.

Finally, it was assumed that the target audience for the demon-
stration model would be familiar with the MSSTP and its associated dec-
ision process. This assumption reduced the information display and
storage requirements of the DSS. This assumption did not atop the pilot
rodel from meeting its major objective, educating decision-makers in the
utility of decision support systems. The potential users and purchaser

of the system (if they are not the same person) are located at STC, and

familiar with the MSSTP. An assumption such as this can be made if it
does not significantly affect the performance of the pilot DSS,

The pilot model DSS is attempting to educate decision-makers and
therefore must contain and use information familiar to its target aud-
ience. Concurrently, time, cost and effort savings in the pilot imple-
mentation effort are of great concern. These savings, however, can not
be made at the expense of some a capability that the pilot model must
have to adequately inform the user. The bottom line is that a delicate
balance aust be maintained between to much and to little effort in the

pilot model implementation strategy.

System Hardware Considerations

The objective of thias research was to implement a decision support
aystem on a microcomputer. There are however, literally hundreds of
systems that can be clasaified as microcomputer systems (30:29). For
this reason, the implemented DSS should be as "machine independent" as
possible. This demonstration model was intended for the Space
Technology Center, however, so the system hardware configuration should
natch the capabilitiea currently available at STC. Aa White diacovered
in his research: “Software which is developed on a aystem with limited
availability to the target uasera will not be used extenaively (30:29)."
Thua, the hardware for the DSS isplementation should be aa close to

current STC capabilities as possible, while the system itself is

designed to Be as independent and system flexible as possible.

The microcomputer selected for aystem implementation was the Zenith
2-100. The 2-100 was selected for several reasons. Firat, the Air
Force has purchased hundredas of these machines in recent years, making

them avai{lable for use at almoat any Air Force location. This has

35

e Tt A At et
S " TSRO A A AR A

P

3]
\
LY
LY
‘

several advantages, such as the fact that a pilot model DSS designed and
implemented on a Z-100 can be demonstrated at a multitude of Air Force
units. A demonstration model of this nature is extremely important for
organizations where the decision process is carried out at wideapread
geographic locationas. For example, STC does not set the priorities of
the concepts contained in the MSSTP. If Space Command were the
designated command that performed this function, the pilot DSS could be
demonstrated to them. The demonstration of the pilot DSS would hope-
fully generate advocacy for & DSS to help Space Command set the
priorities of space system concepts.

Secondly, the 2-100 computer system supports a "basic" system
configuration as defined by White (30:36-37). It is equipped with a
video display screen, two disk drivea, and over 64K of random access
memory (RAM). It should be noted that the amount of RAM that the
computer actually supporta depends on the organization. In its basic
configuration the 2-100 supports 256K of RAM and is easily expandable to
higher levels of RAM. For DSS transportability, however, this implemen-
tation would take no more than 64K of RAM to run, meaning that the DSS
could run on any system fitting White’s definition of a basic systenm.

As a final note, it was assumed that the user of the demonstration
nodel would have access to a printer. To gain the full appreciation of

the DSS concept, hardcopy feedback was considered a necessity.

System Software Considerstions

As transportability of the DSS was a major consideration in its
design, the type of software chosen for implementation had to be commer-
cially available and widespread in its uase. It also had to be capable

of modification to meet the demonstration objectivea of the pilot model

36

e s

b B A At et Il Srl v g

(user friendlineas, database management, and modelbase management - see
Chapter 3). Although there are currently a multitude of high level
programming languages available (BASIC, FORTRAN, COBOL, APL, ADA, Paacal
and C to name some of the moat popular), only a select few meet the
requirements of being portable from microcomputer to microcomputer and
in being machine independent in their implementation. The languages
that were selected for consideration due to the above reasons were
BASIC, FORTRAN, and Pascal. Other options were available, however. One
of the primary objectives of the demonstration model DSS is to show
:5 database management principles and to educate users, programmers and DSS
N designers in the data requirements of the decision proceas. Several
good database management packages exist for microcomputers, which also
O support their own programming languages. 0f these, two were selected
L for conaideration, dBase II by Ashton-Tate, and Savvy by Excalibur
Induatries. DBase II was conaidered because of ita popularity with
- industry, and the fact that it can be supported by any microcomputer
fitting Whitea basic system configuration. Savvy was considered because
it is the software that the MSSTP electronic database is being imple-
- mented in.

Of the programaming languages selected for review, Savvy waa the
least favorable. It requires a minimum hardware configuration of an IBN
f: PC, IBM PC jr., IBM XT, or IBM AT or a truly IBM compatable (100 %)
systenm. Furthermore, the saystem requireas at least 128K of internal
nemory (24:5).

... BASIC was not selected because it does not have any type of
Ef advanced data astorage capabilitiesas. Alao, it is machine specific in

ita file handling characteriatica, making it leas portable from machine

-

- M AL E NI) ~ T

to machine. Finally, in most implementations, BASIC is an interpretive
language. That 1is, the program code is executed line by line by a
naster program. Interpreted programa are considerably slower in execu-
tion speed than compiled programa, which is a further drawback (30:33).

FORTRAN was not selected because it lacks good data handling
chara~teristica and is not a atructured programming language. FORTRAN
is much 1like BASIC in that it only supports limited data atructures
(30:34). It does provide extensive formatting capabilities for systenm
output and has gained widespread use. The implementations, however, are
many and the quality of some is than othera, thua reducing progras
portability.

Finally, dBase II was not selected for several reasona. First, the
programming language supported by dBase is an interpretive language,
thus jits execution is slower, especially when it muat proceas many loops
in the program code (likewise for BASIC) (19:7-4). Secondly, dBase II
does not support arrays in its data structures (19:7-35), The calcula-
tiona involving the Analytic Hiearchy Procesa involve the procesaing of
arrays as matrix operations. To use dBase II, extenaive extra f{file
capabilites would have to be implemented. Finally, dBase II doee not
support many mathematical functions. Any mathematical functions needed
by the program would have to be written in dBase II programaing lan-
guage.

Although each language has its advantagea, it was for their disad-
vantages that they were not selected. It was determined that Pascal
naximized the advantages of a programming langauge for microcomputer
systema while minimizing ita disadvantages. The Pascal veraion chosen

for this implementation was Turbo Paacal by Borland International, and

38

4‘4‘"-‘. - .. *
DU O)

IR

e

»

\§ it was chosen for the following reasons.

:{ First, Paacal, 1in general, haa excellent data handling character-

'$' istics. It not only aupports the data types that the other high level

; lanquages do (real, integer and character values), but it allowa the

5 programmer the option of defining hias own data types. These data types

:g nay be neated within each other to achieve maximum effect. For example,

§ a record, a data type in Pascal, may contain a number of other data

L§ typea. It may have other records, which have arrays, whose elements are

- other records, etc (6). The flexibility of data types was thus a major

?; factor in the aelection of Pascal.

'g Secondly, Turbo Pascal is the recognized de facto standard Pascal
implementation. Borland International claims that over 300,000 copies
of the program have been sold, which would make it the most widely used
Pascal implementation (12:25). Also, Turbo Pascal is a general Pascal

. implementation. That is, a program that is written in Turbo Pascal will
3 run on any other computer that supports Turbo, as long as none of the
‘E rachine specific functions or options are used. The program code must
o be re-compiled for each computer the program will run on, however. This
-E? nakes the lanqguage extremely flexible and portable from microcomputer to
-
-i microcomputer. Finally, Pascal is a structured programming language,
v It 1is written in a serieas of program blocks called procedures that are
f%; the instructions of the program. The structured programming approach of
f? Pascal encourages good programming techniques that make program mainte-
— nance and modification easier for someone unfamiliar with the progranm.
; In summary, this demonatration model DSS implements a new decision
3 proceass as developed by Puffenbarger. This process incorporatea the
) Analytic Hierarchy Process as its central prioritization technique to
-

3s

u-l"i"

-
-
-
<
-

s

i .

]

find the best space system configuration among a series of systems that
represent a space system concept. The DSS was specifically configured
for a Zenith 2-100 maicrocomputer system currently in use at STC. The
DSS, however, will be capable of configuration for any microcomputer
systea that supporta the Turbo Paacal coampiler. The DSS was written 1in
Turbo Pascal, the high level language that best helped fulfi.l the

stated objectives of the pi.ot model.

40

V. Implementation Deacription

In Chapter 3, the goals and objectives of the pilot model implemen-
tation strategy were discussed. In Chapter 4, the decision process that
was implemented, and hardware and software considerations were
discussed. The purpose of this chapter is to aynthesize the information
of the previous two chapters by deascribing the program implementation
and how it meets the objectives of the pilot model implementation
achene. Thia chapter begina with a general discusaion of the program
capabilities, and then describes in detail how the objectives of this

ragsearch effort are achieved.

Program Description

The Space Technology Center’s Decision Support System (STC DSS) was
implemented using the hardware and software as deacribed in Chapter 3.
The overall purpose of the program (aa implemented) is to allow a user
to prioritize a list of concept optiona within a given satellite concept
using the Analytic Hierarchy Proceas. The pilot STC DSS is subject to
the following limitations:

-~ A total of 10 concepts

-~ 5 concept options per concept

-~ 15 technology issues per concept option.
The pilot model also is limited to the 4 criteria (attributes) that were
defined by Puffenbarger (asee Chapter 3): performance, achedule, risk and
cost. The number of concepts, concept options and technology issuea can
be expanded relatively. The number of criteria, however, are fixed, or
would at least require a significant programming effort and recoding of

the pilot model to expand.

41

-~

P AN

-

[RPAS

e
= J

Y i«

ittt

.

The demonstration model DSS consists of a main program and 31
subroutines (Pascal procedures and functions). It required over 3500
lines of code to meet the objectives of the pilot model. The prograna
was written in a atructured form as is encouraged by the use of the
Paacal language, and it ia modular in its conatruction. The subroutines
of the problem range in size according to their function.

One external function is included with the DSS package. It is a
"print acreen” function that dumps (prints) the ascreen to the printer on
command. The program is called PSC.COM and is activated by the <shift
F12> key sequence of the Zenith Z-100 microcomputer. The print acreen
function works with any printer aa it sende the acreen output to the
list device under the Zenith’as operating aysatem. The print screen
function ia common for most microcomputers, in different versions, and
wag thus not a restrictive factor to the portability of this implemen-
tation. In fact, the DSS was also implemented successfully on a Kaypro
2 computer, which operates under a completely different operating system
than the Zenith microcomputer.

To facilitate user friendliness, the Zenith implementation uses the
“batch” command option of the MS-DOS operating system. The DSS command
files are stored on a 5 1/4 inch floppy diskette, and are automatically
called at the system atartup signal. The program execution name of the
STC DSS ias atored in & batch file called "autocexec.bat.” All commanda
in that file are executed firast, before the ayastem enters the operating
system environment. For the Zenith implementation, the PSC.COM file is
called first to implement the DSS print acreen function, then the DSS
compand file is called to begin operation of the pilot DSS. This method

of automatic program start-up facilitates user friendliness by allowing

42

Ry

v or ot

"

LAY e 4 & 40 8
ol el o ol \d Ve

L IO
."l._‘

;e
¢ o
D]

Y"l "l o

e “n aa- .y e . e Ao b B A 4 .
MR o L e e flolhe LRnk - DALl S e e et e A A (g AL A A atis ot gt o A AL A I A AR A et oA T e

users access to the system immediately, without instructions that may be
necessary for other microcomputer aystems. This option is available for

all systemas that operate under the MS-DOS operating system.

o A A

As previously stated, the demonatration model DSS waa constructed

P

using modular and astructured programaing techniques. In fact, the DSS
has effectively structured the decision process as outlined in Chapter 3

and is besat described in terma of its program flow. A diagram of the

g
LA AR L RN,

STC DSS program flow is contained in Figure 8. The following discussion

of the program implementation follows the program flow as outlined in

AL S

Figure 8.
Identify User. The firat section of the main program begins

: operation of the DSS by making sure that the user wants to enter the
N

N DSS. The option of immediate program termination was designed into the
£
‘ﬁ syatem due to the use of the automatic astart-up feature implemented in
ad the DSS as outlined above. If the user wishea to enter the DSS, program
f% execution begins. The main program calls a procedure that determines
3 the users nane. The uasers first initial, middle initial and firat six
n letters of the last name are used by the DSS to open a file under the
e

: users name that becomes that uasera private database. Thia file contains
‘j records of all previous runs of the DSS by that user. The information

contained in each record includes:

v

¢

j 1) The name of the concept worked with,

¢

2) The name of the dats file that contains
all of the information pertaining to that
concept,

L}

_; 3) All option names for this concept,
';: 4) All of the pairwise comparisona made by

¢ the user,

Cd

y

o

)
X4 43

A et

Dbl -

a. o A

P AL
4 a

[A S

PR MR

Identify user, determine if
intent is to input data
into main concept option
database and identify if
current user has a database

la

Enter concept
option DBMS

If current user has a data-
base, enter the database,
or if current user is first
time user, begin progras
prioritization run.

User selects the concept
that will be worked with,
or, if not a first time
user, and a previous run
waa unfinished, the user
may begin where he left off

The user begins or finishes
the prioritization with the
concept choosen. After com-
completion of a prioritiza-
tion run, user enters data-
base for report options

Figure 8, STC DSS Functional Flow

44

S) All of the final priority vectors as calcu-
lated by the AHP model,

and 6) The conaiatency ratiocs of the comparisons.
The user friendly features of this section include:
1) Warninga if the uaer statea that he haa not
used the syatem before, while in fact he haa,
that hia current database will be overwritten,

if he doea not change hias anawer,

2) Echoea the user name, as given, to insure that
it is accurate,

3) Warna the uaer if he haa input a user name for
which there ias no file, and statea that he has
used the system before.
The final decision of this section is whether the user has entered the
ayatem to input data into the concept database. The concept database is
a series of ten files that contain up to five records each. There is
one file per concept stored on disk. The records inside the files
contain the complete set of information about the concept options for a
given concept. The records in the concept files contain the following
information:
1) The name of the option,
2) The originator of the option,
3) All of the technology isaues asaociated with
the concept option (up to 15), and the infor-
nation asaociated with each technology iaaue,
that is, schedule, risk and cost information,
4) The performance valuea of the concept option,
based upon the six areas of coverage, capacity,
quality, timeliness, availability and surviva-
bility.
Although the original intention of the pilot model was to demon-

strate database management concepts through the manipulation of each

individual usera database, user inputs on an earlier veraion of the DSS

45

NIRRT,

indicated that proper database management principles should be demon-
strated for the concept database aa deacribed above. This input led to
the inclusion of a database managenent module of the main program. The
decision sequence, aas defined above, leads the user to the database
nanagement module, described below.

Database Management. The database management capabilities of a DSS
are a critical feature of a DSS (see Chapter 2). The proper demon-
stration of those capabilitities is critical to the success of the pilot
model approach (see Chapter 3). The capabilities of the STC DSS data-
base management section are designed to maximize the education of the
potential useras. The process of deaigning and implementing the database
nanagement sysatem was also informative to the designer and programmer
E (in this case, both hats were worn by the researcher) and as this was
: the atated intention of the pilot model the information gained will be
included 1in this research. Firat, however, the capabilities of the
; current database manangement system will be reviewed.

Upon the decision of entering the database management system, the
user is presented a menu that presents the available options. Figure 9
@ is a reproduction of this menu. The databaase management system allows
the user to add, change, or delete all or juast a portion of the data
contained in a concept file. If the user choosea to enter a new
concept, he is given a warning that he ahould enter at leasat two concept
optiona, with all of the required information. Although this may seen
restrictive, and it is, it is not unreasonable for the pilot nmodel

implementation, The goal of the pilot model is to show what can be

YOS

done, not necesearily do everything. In this case, the extra coding

effort necessary to only display concept options that had two or more

~,

o

P T S
L3 .

CONCEPT DATABASE MANAGEMENT SYSTEM
DATABASE OPTIONS

- - ———— .-

1) ENTER a new concept

2) CHANGE or add data to
a concept

3) ERASE a current concept

4) CONTINUE program

S) QUIT program

SELECTION:

Figure 9. Database management options menu.
concepts with complete information was deemed unnecessary. The pilot
nodel DSS was working with contrived data (not real) and the entire dats
sets could be entered. As a final note, if the user wished to enter a
new concept, and ten were already part of the system, he was given a
nessage requiring that he delete an option before he could input
another,

When the user selects the second cption, to aud or change the data
of a concept, a second menu ia generated. Thia menu diaplays all of the
concepta, and aska the user to decide which concept he wishes to work
with. Once a selection is made, the user is presented with a menu that
givea the optiona available for adding or changing data at the concept
option level (within a given concept). Figure 10 ia a reproduction of
thias menu. As in the main database management section, the user may add
an entire new option. If there are already five optiona, he is told so
by the program, warned that he must delete an option before another nmay
be added, and returned to the menu of Figure 10. If option 2 is

selected, to change data, the user is presented with a menu of the

47

A R A e P L A A A AT ST I

A RS
AN AR O IR

-

Choose the appropriate number

Input Options

1) ADD an option

2) CHANGE an option
[or part of onel

3) DELETE and option

4) None of the above

SELECTION:

Figure 10. Concept option DBMS options

concept options. When a concept option is chosen, the user is given a
menu that determinea what portion of the information within the record
that he wishes to change. At each stage of this procesa, the informa-
tion that the user inputs to the asystem is checked to insure that it the
correct ordinal type. That is, if the system requires integers, it is
getting integera. The information is at all times displayed back to the
user for confirmation before it is entered into the database. If the
user elects to delete an option, & menu listing the optiona in the
database is generated and the user aelecta one. Before anything is
deleted, the user is asked to confirm that he wishes to delete the
option he has selected. If he balka, he is returned to the Figure 10
renu. Finally, selection of option 4 from the Figure 10 menu results in
the program reverting back to the Figure 9 menu, the =main database
nanagement menu.

Selection of the third option of the main DBMS menu (Figure 9), to
delete an entire concept, functions exactly like the previously dea-
cribed delete function for the concept options, except on a larger

acale. The user is again asked to confirm the erase decision, and if it

48

" et o w e At Rt et Nk bt mmt et L mae w N

> SRRSO ST S LTI O SO PRI PRI N I SO R R RN
F 1735 Py S IR RIS T AT I I A S R T T R A L G A SR CO TS L LR T PO PR AT -

Y

LR
Ll W T T

e d

is negative, is returned to the Figure 9 menu.

Selection of the fourth option of the Figure 9 menu, continue the
program, allows the user to enter the user database portion of the DSS
or the model system of the DSS.

Finally, selection of the fifth option terminates the DSS. This
option was included to account for the possibility that the persons ;
responaible for maintaining the concept database (each user maintains
his own database) do not perform any prioritization. p

Some of the assumptions necessary to construct the pilot model had
an effect on the design of the database and ita management capabilities.
For example, the conatruction of the database using Pascal files and
records limitas the expansion of the database. If new data requireaments)
were identified, and the DSS database did not already have apace avajil-
able for the data, major code modificationa would have to be made to
accomnodate the change. Also, the data already in the fileas would have
to be transferred to the new files. This would also require a signif-
icant programming effort. The above limitations, however, do not really
limit the use of the pilot model. In fact, such limitations can spur
the type of interaction between the uasera, deasigners and programmers
that the pilot model implementation strategy advocates.

As was the case of the entire development effort, user friendliness

was the overriding consideration during construction of the database

0y Sy e W

nanagement module for the demonstration DSS. Although some of the user
friendly featurea of this section have been mentioned earlier, they are

reatated here for emphasia. The user friendly features are:

1) Menu driven screens of choices at all levels,

2) Conatant looping of the DSS execution to avoid

L I T PRI)

49

'

2
L]

SIC TSR I L Tl ol A R AT A et Y O T I IR e e ey e s g A L S) IR
PN A N N T 22 S N T A I A A N A R R e R S e e T T e

| e > A

irretrievable mistakes,

3) When entering data into the database, the info-
mation is echoed back for approval and checked
for correct type,

4) All mistakes enter error loops that do not allow
the user to leave the loop until the mistake is

a2 a"s 2w

corrected.

N User Database. This demonstration model DSS was originally
% intended for demonstration to users who would not be concerned with the
; input of data to the database. It waa, however, considered important
- that they be exposed to some of the database management principles as
'S were diacussed in the previous section. For this reason the pilot DSS
13 nakes an individual file for each user that serves as a private data-
. base. Each user is restricted to their own database, and is not allowed
: entry into the anyone else’s file. Of course, if the user enters the
%: program uging someone else’s name, access to that file will be gained.
” The information contained in each record of the user database was liated
; in the lIdentify User section.
'E Assuming that the user has used the DSS before, the user database

is entered either upon exiting the DBMS section or directly after the
: introduction section (if the DBMS option is not taken). The user is
i immediatly presented with the menu depicted in Figure 11. The first
» statement of the menu tells the user his current status with the system.
: In the case depicted above, the user had last used the system in priori-
; tizing SpeceQ Based Laser concept optiona. He has used the DSS approxi-
4 mately 11 times, and did not finish the 11lth program run. If the user
2 had finished all of the prioritization procesa, the measage at the top
? of the menu would indicate that aituation. It should be noted that each
.

user is allowed only one incomplete run, and this run will always be

S0

- - :: (*..__.-. PRI

o R S A A A i e e

You have 10 previously coapleted program runs, and
1 incomplete program run, number 11, and you were
working on Space Based Laser.

REVIEW OPTIONS
1) View a previous run
2) Print any run
3) Start a new run
4) Continue unfinished run
S5) Erase all previous runs
6) Quit DSS

Please input the number of your choice:

Figure 11. User database review options menu.

stored as the very latest in the database. The first option that a user
has from this menu is the VIEW option.

The VIEW option allows the user to select a record in his database
and look at what he has done in the past. The acreen output from the
view section is the same as the DSS uses during execution to cause less
confusion on the part of the user. The user, upon entering the VIEW
option is asked to select the number of the record that will be viewed.
The user also has the option of returning to the Figure 11 menu. Once a
record is selected, the user ias presented with the menu presented in
Figure 12. This menu allows the user to select a section of the progranm
to view. When a section is selected, the user is presented with the
output of the record he has chosen to view. The user is asked to hit
return when finished with the screen, and is returned to the Figure 12

menu. If the user is viewing an unfinished run, only the sections that

have been completed can be viewed. If the user selects an unfinished

.t

CAA ' At A e At

Spaced Based Radar

SECTIONS TO VIEW

3 1) Criteria

2) Performance

3) Schedule

4) Risk

S) Cost

3 6) Final priorities

b . 7) Return to previous menu

The catagories above refer to the sections of the

progras in which the prioritization was performed.
Select the number of the section you wish to VIEW:

Figure 12. VIEW menu, first option of review section.

VT A

- - " - o - = - v ER 4n = . = = = S an = e R e e = = am = -

saction for viewing, the DSS will ask for another section automatically.
When the user selecta the option 7 of the Figure 12 menu, the user is
asked if another record will be viewed. The user can also elect to
return to the Figure 11 menu, the main user database menu.

The second option of the review section (user database) is to print
out any record. Only records containing complete DSS prograa runs nay
be printed. After selection of this option, the user is asked which
record is to be printed. Upon selection of a record number, the output
is sent to the computers default liat device. The user can then select
another record to print or return to the Figure 11 menu.

The user, by selecting option 3 from the main review menu, can
enter the model management portion of the DSS. This option initializes
(erases) an unfinished run that the user may not want to complete, or
starts a new run if all previous runs were completed.

Selection of option 4 of the Figure 11 menu allows a user with an

52

T AT e A e e
\..3-. ORI ".'.-~ KRS A

)

’

Fr NN

v

!
h AR

%

LS

}

J

4% L6

incomplete run to enter the modeling system at the point that it was
left. If a user who does not have an incomplete run tries to select
this option, a correction 1loop is entered until another option isa
selected.

Option 5 of the user database option menu is a function that erases
all of a users database records, except the latest prograa run. Upon
selection of the option, the user is asked to verify if he wiahea to
erase the file of his records. If the answer is affirmative, the file
is erased, then reopened, with the latest run becomming the firat of the
new file.

The aixth and final option of the review section ia to quit the
DSS. Selection of this option enters the quit confirmation loop. That
is, if it 1is selected, the user is asked to confirm that the real
intention is to stop execution. If it is, the DSS execution is
terminated. If not, the user is returned to the Figure 11 <(review)
menu.

This section of the progran uses many of the same user friendly
features that were mentioned in the previous sections. The systenm
automatically error detecta and trapa, then entera correction loops
until an acceptable answer is presented. The asystem also provides step-
by-atep menu instructions which are self-explanatory and easy to follow.
Finally, the aystem provides for input mistakes. That is, the user can
not inadvertently erase his database, as he is constantly asked to
verify his intentionsa.

Optiona 3 and 4 of the review menu allow the user to enter the
modeling subsection of the DSS, which is also entered automatically by a

firat time user (by-passing the user database review section because

53

their is nothing in the user database yet). The modeling section of the
DSS actually incorporates blocks 3 and 4 of Figure 8, the DSS functional
flow diagram. As this is the case, these blocks will be described
together in the next section.

Model Management. The first stage of the modeling section is the
presentation of all concepts currently contained in the database. The
concepts are presented so that the user may select a concept that he
wishes to work with. This stage is skipped if the current user has and
is executing a previously unfinished run. The user is not allowed to
leave the program at this stage.

After the user haa choosen a concept, the prioritization process
begins. The process, or model, is composed of five parta, as was
described in Chapter 4. Firat, the user is presented with pairwise
comparisons that help to prioritize the attributes (criteria - perfor-
nance, schedule, risk or cost) based on their relative importance to
this concept. Additional information that the user is presented with
are the Analytic Hierarchy Process Comparison Scale (Table 3, Chapter 4)
and a table of information concerning the attributes. The wuser is
required to view the AHP scale at this stage of the program, but has the
option of viewing the description of the attributes. The user, through
the pairwise comparisons, ranks the four attributes. The progran,
without the users knowledge, has built the Analytic Hierarchy Proceas
(AHP) decision matrix automatically, and solved it for the prioritized
weights of the criteria. The pairwise comparisons made, the priority
vector of the criteria, and the consistency ratio (see Chapter 4) of the
comparisons for this section are saved in the users database, in the

current record. The priority vector and the consistency ratio value are

>

 *

LRIRT

"lj‘l‘li T

™% e %0 T e C et

Ly

SRR | XA

PRI N

Ia

.-.-

v--nl

NS LSRN ;..5 IO N TR _-‘] ‘ e .,~;(el NN P

also displayed to the user. If the user does not agree with the current

priority vector, the DSS loops back to repeat the process. The DSS can
continue the loop wuntil the user is aatisfied with the results.
Finally, the user may quit the DSS after the criteria prioritization
section is complete. The input and output values generated will be
saved, and an appropriate message indicates that to the user.

After the prioritization of the criteria, the firat level of the
AHP decision hierarchy, the user is asked to prioritize the options for
a given concept based upon a given criteria. The criteria are presented
in the following order: Performance, Schedule, Risk and Cost. The user
is firast presented with any tables needed to clarify the values from the
database and the option of reviewing the AHP comparison scale. The
program then presents information from the database for the user to use
in making the judgements about the options. The information concerning
a concept option is presented in aggregate in all of the main screenas of
the four attribute sections. Three of the sections, Schedule, Risk and
Cost, can break the information down into individual Technology Issues,
and present it for each of the concept options. The user can elect to
leave the system after the Performance, Schedule and Risk sections, and
the input and output values for all comparisons made to that point are
saved. All of the four subsections diasplay the final priority vector of
the users comparisons and the consistency ratio, and ask if it is
acceptable. If not, each section loops until the user is satisfied.

As was mentioned above, the user is not given the option of leaving
the program after comparing the options based on the Coat criteria.
This is because the user has completed the prioritization process and

the system automatically presenta the user with the final priority

55

T e ..__x

v R ¥ s 2 Vv -

c e e oW
~'.n,4|t"

""‘\ " .. .' e’y

AR AR

A

-'!'-‘ l’l,

“va
(Pad

screen. This screen presents the final priorities of the options for

this concept based upon the compairisons of the criteria and of the

options based on the criteria that the user has made. The user is asked

if this priority ranking is acceptable, and if not, the user is looped
back to the beginning of the model proceas (prioritization of the
criteria) to begin the program again. If the DSS run ias acceptable, the
DSS automatically saves the data in the user database and enters the
review section.

The model section of the DSS also has all of the user friendly
characteristics of the other sections of the program. The DSS checks
for correct input and places the user into a correction loop when the
input is not of the correct type or not an option. The DSS also
displays many explanation screens that explain the operation of the

system and the procedures required of the user.

Prograa Perforamance

System response time ia considered to be a major factor in user
friendlineas and in gaining user acceptance for computer based implemen-
tations (TT:48). The problem of system response time contributed to the
difficulty of programming the pilot DSS, but was given careful consider-
ation throughout the development of the demonatration model.

Most of the menus and questions that the DSS exhibits are generated
internally, as well as all system error messages. This means that the
menus, messages and error messages are presented quickly after an input
by the user. The response time is not significantly influenced by the
size of the menu, and in all cases the menu is presented faster than the

uger can assimilate the information that is appearing on the screen.

e e e gty e t. L “a - e SR R U Te Tm e T S S Te ta e T
AT) NS R SN s R A N AN I R

Y

R)

The solution of the matrices produced by the user’s pairwise com-
parisons (finding the principle eigenvector) takes over 10 seconds.
y This 1is a noticable difference in the response of the DSS from other

sections so messages were added that indicate that the system is still

working on the problenm.
Finally, due to the size of the program, the object code of DSS is
contained in 4 different files. That is, the program operates as a
series of overlays. The main program has blank sections in the compiled
: object code that are used by the overlay files. The overlay files ¥
contain the object code of functions and procedures that are called one ;
at a time, as needed, to perform system functions. By only placing the
least used subprograms into the overlay files, system response time is

not noticeably degraded.

Final Comments
‘ The pilot model implementation is not and should not be a working
model DSS. It must, however, display the major characteristics of a
complete DSS to fulfill its objectives. This Chapter describes the
implementation of the STC demonstration model DSS. The major enmphasis
of the design was user friendlineas, as was described throughout the
implementation description, while the design also encorporated the AHP
decision model and database management functions. This implementation
demonstrates the major characteristics of a working DSS, as was

intended.

v

]
v g v v

3

f ‘ - .. Pl -~ " ‘7 K - - N R ..- l.>~“-.'.-.'l....-‘. '\‘ .I“.’. o
§ I:' m} \ ‘ ‘v\i";‘k Afh"ﬂ.ﬂf JJA.L‘A.A..LM A.:K:.x:f‘l\ ;ﬂ;::.::f;.\ e LxAA.AAI-i‘.‘.. R I TS e

oA,

tatats

)

A

«
LI A

VI. Analysis of the Pilot Model DSS Implementation Strateqy

The pilot model approach advanced in Chapter 3 of this research was
initiated for the Space Technology Center (STC). The benefits of this
implementation effort have been explicitly and implicitly atated
throughout this report. This chapter summarizes those benefits and
discusses insights gained from the implenentation effort. First, the
goals of the pilot model strategy, and how they were met, will be

reviewved.

Pilot Model Implementation Goals

A major goal of the pilot model implementation approach 1is to
educate the wusers of the pilot DSS about the poasible capabilitiea so
that they may better define their requirements (type and format of datas,
type of analysis, possible functions, type of user interface, displays,
etc..). To begin this process, an early version of the STC pilot DSS
was presented to several potential usera at STC. Even though the firsat
demonstration model DSS was reatricted to a single pass through the
implemented decision process, it caused the users at STC to begin
stating requirements that they felt would be helpful to thenm. These
comments were assimilated by the DSS designer and programmer (in this
case, the researcher) and translated into the development of start and
stop procedures, database accesa capabilitiea, a user controlled per-
asonal database feature, and expanded hardcopy print capabilities.

The content of the comments, however, was not as important as the
type of the comments received. There was a distinct difference between
the type of user comments before and after the pilot model DSS was

demonstrated. When program requirements for the pilot DSS were firat

S8

.2 a2

researched at STC, the potential decision-makers or users were asked to
identify requirements for the demonstration model. The user guidance
received at that time was vague and inspecific. It waas clear that STC
decision-makers were asking for some type of decision aid. What was
unclear was what type of aid waa wanted, what it should do, what data
was needed, and how it should be displayed. The decision-makers were
ineffective in communicating the system requirements that they wanted
for a DSS. After the first iteration of the pilot model, however, the
user comments were more apecific and focused. The user was able to make
a comparison between the capabilities provided by the first pilot DSS
and the capabilities the user wanted, but was unable to quantify.

There is evidence, then, that the pilot model does educate and
stimulate the user into specifying system requirements more effectively.
If this is the case, the pilot model implementation approach may be an
extremely valuable tool for DSS development. Usera would learn how to
state their requirements before, not during development of the first
operational DSS. In contrast, when using a prototype development
strategy the user is learning how to state requirements during the
critical development phase of the aysten. By using the pilot DSS, the
amount of time and effort required to get the first satisfactory DSS on-
line may be shortened, thus saving costs in the long run.

The second goal of the pilot model implementation strategy is to
generate organizational acceptance (and possibly advocacy) and to stimu-
late the interest of other potential users in decision support systems.
The pilot DSS accomplished this in part by the decision process that it

modeled. This research was supported by a sponsor concerned with

finding a prioritized list of all technoclogy issuea. Another departaent

e St B 0k

w R s e

LR D L

c L gL r v

. r n_s ¥, *

Y "y o

- 3

o Ny

at STC is concerned with finding the best satellite point design (con-
cept option) for a given concept. The pilot DSS, as described in
Chapter S, attempts to define the best concept option based upon its
unique technology issues. Although the pilot DSS does not completely
accomplish either task, it demonstrates portiona of both decision
processaes. In fact, the two processes may be linked, in that one feeds
information to the other. By structuring the STC pilot DSS in this
manner, at least two potential users within the organization could be
interested in the operation of the pilot systenm. It appeared that the
STC pilot DSS did generate interest from different potential users.

The measurement of user acceptance levels and the degree of advo-
cacy within an organization is extremely subjective. Without a meaaure,
however, it is virtually impossible to determine the succeas of the
pilot model approach in meeting its second objective. Some method of
neasuring the increase or decrease of user acceptance due to the pilot
model must be found. One possible alternative may be to keep records of
DSS planning meetings. As more users become involved, and the level of
their involvment increases, it could be assumed that the pilot model is
accomplishing its goal. This form of measurement is not rigorous to any
degree, and highlights the need for further research in this area.

The third goal of the pilot model implementation approach is to

stimulate discussions between useras, DSS designera and programmera to

eliminate costly errors resulting from miscommunication. This procesas

began at the earliest stages of the pilot model development effort. In
this case, the DSS designer and the programmer are the researcher.
Communication between the uaser and the designer/programmer led to the

expanded versiocn of the pilot model. As the user and the designer/

},
.
'
yt programmer exchanged ideas about the pilot DSS, it became steadily
;f easier to understand the other parties point of view.
This researcher’s personal experience indicates that the pilot
Y
: model stimulates communication between the users, designers and program-
Y
. nersg involved in the implementation effort. By stimulating commun-
i ication of the different players involved in the development of a DSS
capability, the pilot model approach may reduce coatly errors. As in
;‘ the first goal, the pilot model approach is geared toward producing a
'j planning payoff. The pilot model stimulates communication between the
‘é players early, before critical design stages are accomplished. Again,
E this communication is occuring, if at all, during the critical design
ﬂf stage of a prototype approach. If this is the case, a pilot =model
-E approach has a clear advantage over prototype implementation strategies.
;: The fourth and final goal of the pilot model implementation strat-
. egy was to give designers and programmers an understanding of the cur-
ﬁ rent database. This goal was established as most decsion support
i systems (as discussed in Chapter 2) are built around existing databases.
X At the time of this research STC was involved with constructing a compu-
ﬁ terized version of the MSSTP database. Although the database was not
; complete, ita atructure was known. Therefore, the catagories of data
5 elements contained in the database were also known. Earlier, in Chapter
fi 4, it was assumed that the DSS would receive the data that it needed in
j the proper fora directly from the MSSTP database. This was not the
Er case, however. An excellent example is the storage of technology issue
iz risk values. Risk values are stored as characters in the MSSTP data-
.
; base, and as integer values in the pilot DSS. Specifically, the values
. for risk from the MSSTP database are vl, 1, =m, h, and vh, representing
>
:
. 61
N

ST L Tt % LY R U S P
"'J. ., _.‘.“§"'~'.§\ ‘(F ‘-4"‘-‘_-(" “-'¢". ..-.-.'.-i '.". Sl e

. A 3

.I
CORN

N T A S ST N T Tt e
B R PN 1_.,-._-.._3.‘ e

very low, low, medium, high and very high. The values in the demon-
stration model DSS database range from 1 to 5, with 1 indicating very
low risk and S5 indicating very high risk. The numbers 2, 3, and 4
correspond to the other MSSTP database values. For the pilot DSS to use
the MSSTP database, an interface module would have to be conatructed
that converted the characters of the database to integers for the DSS,
The perasonal experiences of the researcher again indicated that
designing and implementing a pilot model DSS generates an understanding
of the database that must be used in conjunction with the DSS. Further-
more, the pilot model stimulates thought into the topics of database
nanagement, structure and content for the pilot DSS and the complete DSS
that may be developed later. The strength of this conclusion is that
the pilot approach may force this type of thought earlier in the system
development cycle than other implementation approaches. If this is the
case, the pilot model implementation again shows the potential for
avoiding costly mistakes. If problema exist in the structure of a
database, a quick pilot DSS may lead to their discovery and correction
faster than a prototype approach. The early consideration of database
nanagement and content needs may also reap future benefits, by providing
designers/programmers with an initial idea of the magnitude of the DBMS

task.

General Conmments

Software selection is one of the most important factors in
designing any microcomputer based program, and a pilot model DSS is no
exception. The STC pilot DSS was constructed using Turbo Pascal. Pas-
cal’s advantages <(as outlined in Chapter 4) include the use of

structured data types. One Pascal data type, records, formed the basis

62

RS S SR A RO AT NP T A o
RN 20 O R T O S i, 5 S

™~

a ol oy

G
LN A

D)
oA

AR

Y

.
2N 0 a2

'.'t"u'i‘n‘l'i

L P 2O

A

S T P R TN

for the pilot model (system and user) database. On the other hand,
Pascal records and files of records constructed for the demonstration
nodel database are not easily changed. If new data elements were added
to the requirements of a Pascal record type database, a separate progran
would have to be written to move the data from the old files to the new
files. Procedures to accomplish this automatically from within the DSS
would be impossible to construct without prior knowledge of the changes.
The lack of flexibility in the database is not a handicap for the pilot
nodel. It is, however, unacceptable in any working DSS. A record type
database 1like the STC pilot DSS implementation ia not recommended for
the complete DSS. An interesting alternative is available. A database
package, such as dBase Il (see Chapter 4), can be used if it meets two
requirements. First, it must support its own programming language. By
having its own programming language, the database package can be modi-
fied to fit the needs of the DSS. Secondly, the package should be able
to call programs outside of itself and be called by other progranms. By
supporting this requirement, the database package overcomes most of its
disadvantages. The modeling system could be written in a language such
as Pascal and stored on disk as a commend file. An overall conmrand
program could be written that could call and control both the database
package and the modeling program.

Finally, the use of a database package may yield some advantages.
Firat, it would make the addition or subtraction of data elements much
easier. The capabilities to perform these functions are already con-
tained in the database management system an would not have to be dupli-
cated. Secondly, the database package may support features, such as a

query subsystem, that would be useful to the DSS. A good database

63

d
p
» D
L package that meets the two specified requirements may make an excellent
vehicle for DSS development on microcomputers.
3,
#
Al
Al
.
q
d
K
. ;
L\ +
¥ .
) .
L
A
. L}
\
l
L]
" .
~ w»
0 64 <
A e et N b oy e L A I e Ty

;S

A A

Pg

.

A At s

v

, " d : ‘j“_ '\Jﬁ;'. :'

‘I

NN

v 1) Al
AP

.D
)

s

Salan

VII. Conclusions and Recommendations

The main objective of this research was to develop an effective
implenentation satrategy for the application of decision support systenms
to the prioritization of space technology issues at the Air Force Space
Technology Center. The pilot model implementation approach was
developed to satisfy the main research objective. The objectives of the
inplementation, as summarized from Chapter 3, are:

1) The system educates the users about DSS concepts
enabling them to better define their requirements,

2) Pilot models can generate acceptance and advocacy
of DSS in an organization, and attract more users,

3) The approach educates users, DSS designers and pro-
grammers in the other players point of view. This
reduces the chance of miscommunications,

4) Helps designers and programmers gain an understand-
ing of the current database. Stimulates thought
into DSS databesge structure, content and management.

Each of the objectives of the pilot model implementation strategy
were achieved, to some extent, for the STC implementation. It was found
that the pilot model played a significant role in helping the user
define requirements. The pilot model provided a basis for comparison
between user expectations and reality. The pilot model also served as a
nedium to attract more users. Because it did not have to perform as a
working DSS, the demonstration model was constructed to appeal to a wide
range of users. Furthermore, the pilot model served as a catalyst to
stimulate feedback from each of the DSS players, Finally, the pilot
nodel educated the designer and programmer in database management con-

cepts. The structure, content and display of the information within the

pilot DSS database generated thought about how to perform these tasks

65

most effectively and efficiently.

The pilot model implementation strategy has the potential of saving
an organization time, effort and costs. There is a balance that must be
struck, however. If the development eifort of the pilot model is exten-
sive, and the DSS approaches the capability of being used by the organi-
zation, it has defeated its own purpose. On the other hand, if the
pilot model is not sophisticated enough, it may not only fail to nmeet
its objectives, but seriously damage the organizations view of decision
support systems in general. A pilot DSS that meets the objectives
outlined above may be an opportunity for an organization to aaseas its

decision support requirements at minimum cost.

Recommendations

No implementation process is self-sustaining, the pilot approach
included. Although the pilot DSS has been completed, it is only the
first and easiest portion of the decision support system development
process. Much further work remaina to be accomplished. The formation
of a DSS working group at STC is the next logical step. The group, or
an outside agency in conjunction with the group, nmust begin to define
the complete STC decision process. Once the decision process is
completely defined, the identification of all nodels, operations
research techniques, database management and database needs ia assesaed
and evaluated. The capabilities and style of the inputs and outputa to
the DSS must be reconsidered in light of the knowledge gained from the
pilot DSS. Finally, the DSS group must begin the selection and inte-
gration that meets the objectives eatablished by the group.

The pilot model implementation strategy should be applied to other

66

> DY & 8

ALY ¥ sry

AR

l".'.'."‘.'.‘

L A A

._»

iR ok ot o 2N 1
- e

+
-
'
»
.
™
.
-'y
L
)
L

e
RN

v
e et "L,

o

L 30 R

organizations and decision processes. One case study does not prove the
worth of an implementation proceass. In addition, some quantitative
measures of performance should be developed to measure the success of
the implementation strategy. Traditionally, performance measures for
DSS have been difficult to define. This may also be the case for the

pilot model implementation atrategy.

67

o~

iy

="plelip M

.' 'l .‘ "‘ ‘. -. 4‘. -

o e .
PR
LR

Py
-

CAD

™R e ety S he b

O

LY

-

N

Cye

L)

10.

11.

12,

13.

14.

15.

B IS I R M NN T I]
- , -' ("’.. .n. o :} 1..‘ \. e

BIBLIOGRAPHY

Alter, S.L., "Development Patterns for Decision Support Systenms,”
MIS Quarterly, Vol. 2, No. 3, September, 1978, pp. 33-42.

Alter, S.L., Decision Support Systems: Current Practices and Con-
tinuing Challenges, Reading, Massachusetts:! Addison-Wesley, 1980.

Bonczek, R.H., C.W. Holsapple, and A.B. Whinston. "The Evolving
Roles of Models in Decision Support Systems,' Decision Sciences,
Vol., 11, No. 2, 1980, pp. 339-356.

"Classified Document: Qualified requestor may obtain this refer-
ence from AFIT/ENS, Wright-Patterson AFB, OH 45433."

Clark, Thomas D. Unnamed working paper, Air Force Institute of
Technology, Wright-Patterson AFB, OH, 1984.

Cooper, Doug and Michael Clancy, Oh! Pascal! New York: W.W. Norton
& Company, 1982,

Davis, Gordon B. and Margrethe H. Olson. Management Information

Systems: Conceptual Foundstions, Structure, and Development. New
York: McGraw-Hill Book Co., 198S.

Denise, Richard M. "Technology for the Executive Thinker,"
Datamation, Vol. 29, No. 6, June, 1985, pp. 206-216.

Ginzberg, M.J., and E.A. Stohr. "Decision Support Systens:
Issues and Perspectivea," Decision Support Systems, New York:
North-Holland Publishing Co., 1982, pp. 9-31.

Gorry, G.A., and M.S. Scott Morton. "A Framework for Management
Information Systems,” Sloan Management Review, Vol. 13, No. 1, Fall
1971, pp. S5-70.

Henderson, J.C., and R.S. Ingraham, "Prototyping for DSS: A
Critical Appraisal.” Decision Support Systems, New York: North-
Holland Publishing Co., 1982, pp. 79-96,.

Jones, Steven T., "Programming: From BASIC to Turbocharged.”
Profiles, Vol. 3, No. 3, October 1985, pp. 24-31.

Keen, P.G.W. and Michael S. Scott Morton. Decision Support

Systems: An Organizational Perspective. Reading, Mass: Addison-
Wesley Publishing Co. 1978.

Keen, P.G.W., "Adaptive Design for Decision Support Systenms,"”
Data Base, Vol. 12, Noas. 1 and 2, Fall 1980.

Keen, P.G.W., "Decision Support Systems: Translating Analytic
Techniques into Useful Tools,” Sloan Management Review.
Spring, 1980. pp. 33-44.

68

o T N T D R et e e L

o

..“..

. 'J';'{\'."

A A S A A SR A arie

’ 16. Koble, Roger D., Regsearch on Applications of Computers as an Aid in
A Decision-Making in Air Force System Program Offices, Unpublished

. Master’s Thesis, AFIT/LS Wright-Patterson AFB, OH. September, 198S5.

4 17. Little, J.D.C., "Models and Managers: The Concept of a Decision
Calculus," Management Science, Vol. 16, No. 8, April 1970,
pp. B466-B48S.

¢ 18. Moore, J.H., and M.G. Chang. "Design of Decision Support Systems,”
Data Base, Vol. 12, Nos. 1 and 2 (Fall 1980), pp. 8-14.

19. Nobles, Clayton M., A Management Information System for the SAC
\ OPSEC Program, Unpublished Master’s Theasis, AFIT/LS, Wright-Patter-

son AFB, OH, March, 1985.

20. Puffenbarger, John, A Methodology for Assessing Technology Trade-

" offs of Space Based Radar Concepts, Unpublished Master’s Thesis,
y AFIT/LS, Wright-Patterson AFB, OH, December 1985.

21. Rensema, Peter H. and Randall W. Chapman, A Decision Support

) Methodology for Space Technology Advocacy. Unpublished Master’s
- thesis. AFIT/LS, Wright-Patterson AFB, OH, December 1984.

22. Saaty, Thomas L., "Priority Setting in Complex Problems." IEEE

Transactions on Engineering Management, Vol. Em-30, No. 3, August,
1983., pp. 140-155.

s e a e 0 2]

23. Saaty, Thomas L., The Analytic Hierarchy Process. New York:
» McGraw-Hill, 1980.

24. Savvy User Manual, Excalibur Technologies Corporation, Albequer-
que, New Mexico, 1984.

25. Simon, Herbert A. The New Science of Management Decision. New
York: Harper and Row, 1960.

26. Spector, Bertram I., “Decision Support Systems,'" News From the DSS
Practice of Booz-Allen & Hamilton Inc. Bethesda, Maryland: Booz-
Allen & Hamilton Inc.

NN

27. Sprague, Ralph H., Jr., and Eric D, Carlson. Building Effective
Decision Support Systems. Englewood Cliffs, N.J.: Prentice-Hall,
Inc., 1982.

28. Strang, Gilbert, Linear Algebra and its Applications. London: Aca-
- demic Press, 1976.

29. Thierauf, Robert J., Decision Support Systems for Effective
Planning and Control. Englewcod Cliffs, N.J.: Prentice-Hall, Inc.,
1982.

e A

30, White, Greg R., Personal Computer Aided Decision Analysis, Unpub-
lished Master’s Thesia, AFIT/LS, Wright-Patterason AFB, QH, December
1984.

-

r

-

APPENDIX A

R RN A . et e e .
{\ -\'{N{\.ﬁh CARS \‘\A 3 "" - ‘-.3- ;.ﬂ.s. L-&hanMMMAMLML

RN DO

EAAAANN

Verification of Computational Alqorithnms

Square Root

The saquare root function was validated as it was a major contribu-
tor to the calculation of the maxirum eigenvalue. The maximunm
eigenvalue of the matrix of comparisons determined the priorities of the
elements that were compared. To verify the square root function, the
output from the Turbo Paacal square root function was tested against the
output of MBASIC’s (Microsoft BASIC) square root function. The argument
of the function was stepped from 0.05 to 10.00 in increments of 0.0S,
The output from both programs was carried to eight significant digits.
The results of the Turbo Pascal aquare root function were equal to the
values of the MBASIC square root function. The Turbo Pascal function
was accepted as valid.

The verification check was limited to the range 0.05 to 10 because
this range is approximately the limit for which the square root function

is called in the AHP prioritization procedure.

Mean and Standard Deviation

The pilot DSS waa required to calculate mean and standard deviation
information throughout the modeling subsection. To verify the mean and
standard deviation calculations yielded correct results, the formulas
used were checked by hand calculator. The mean was defined as the aunm
(S) of n elements divided by n. The standard deviation was defined as
the square root of the sum of each element minus the mean. The results
of the hand calculations matched the output of the pilot DSS for five
trial runs. The computation of the meana and standard deviations were

considered valid.

71

)

(N Y REREY

PR
TATD

Priority Vector and Consistency Ratio

The priorities and consistency ratioa found by the pilot DSS were
verified by the comparison of those values to results published by Saaty
(YY) for an example problen. The output of the demonstration model DSS
matched the values presented by Saaty. The output from the pilot DSS
was considered valid.

The priority vector calculated above was based on the maximum
eigenvalue of the comparison matrix. The method used to find the maxi-
nua eigenvector is called the ordinary power method. The ordinary power
method operatea on the principle of a difference equation. It begins by
guessing an initial eigenvector for the matrix and then successively
forms new estimates. The method is essentially taking a limit (28:274).
This method is not computationally efficient. The lack of efficiency,
however, only effects large matrices. As the pilot DSS workas with
natrices no larger than S X 5, the relative inefficiency of the power
method can be overlooked. A final point concerns the number of itera-
tions needed to accurately estimate the eigenvalue. Strang recommends
at least 20 iterations (28:274). The pilot model DSS uses 50 iterations
to insure accuracy. There is no loss of program speed because the

matrices the DSS works with are small.

72

P - e e e e N et m e

: .. - e e T T e e e T e et ettt . e ca .
R S S T T Ty S S P T L R LS L G VA A

"II.'/J" PAAA.

3N

»

'n l'l‘s.

A’-

DAL, AR

v

OB

?

LACA

2
e s

I e e e e
A ’

APPENDIX B:

SPACE TECHNOLOGY CENTER PILOT MODEL
DECISION SUPPORT SYSTENM

USER’S GUIDE

P

SR S A S S TS .

e

L]

!

&

<.

2

% CONTENTS

j I INTRODUCTION . . ¢ ¢ v & ¢« v ¢ v v ¢« « o« « « 75
i Decision Support Systems 75
“ STCPMDSS . & ¢ ¢« ¢ 4« ¢ o ¢ ¢« o ¢« o« o « . 75
¥ Structure of Manual76
{j II USING THE PILOT MODEL DSS « « . . . 77

)
W
.

. Current Implementation 77
L Starting the STCPMDSS . . . « . « « « « « 77
. System Use . . . ¢ & ¢« ¢ ¢ ¢ o 4 o 0 . . 77
Comments . . . & ¢ ¢ ¢ a « o o o o s o« « 78

I1I Program Specifics . . . « ¢« ¢« « + & &« &« « o 79

Software Environment 79
Program Source Code 80
Disk Filea . . . ¢« v ¢ v ¢ ¢ 2o o « « « «» 81
Inplementation on Other Microcomputers . 82

PR
W

!

AL AL AN

41."

\.\. -‘ ..

R ot

74

P ‘_‘ ,

LETS

RAPL -I >

LR AR A A AR S

Pl Nt)
.'.'.'-'.\

13

YY)

L A -t'

I. INTRODUCTIQON

This document is a reference manual for the Space Technology Center
Pilot Model Decision Support System (STCPMDSS) for prioritizing space
technology issues. It assumes a basic knowledge of the Military Space

Systems Technology Plan.

Decision Support Systeas

A decision support system is a computer-based information aystem
that aids a decision-maker in solving complex and unstructured problems.
The computer is used to provide structure to parts of a decision process

while leaving the flexibility of manager control and judgement.

STCPMDSS

The STC Pilot Model Decision Support System is a demonstration
model decision support system designed to display some of the most
important characteristics of a working DSS. The purpose of the pilot
model 1is to provide a basis for understanding the nature and character-
istics of a decision support system within the STC decision process.
The major characteristics that the pilot model displays are user friend-
liness, model management and database management. The objectives of the
pilot model are: 1) To educate users about potential DSS capabilities to
provide a frame of reference for a more effective statement of require-
ments; 2) To generate acceptance and possibly advocacy of DSS concepts
within the target organization; 3) Give users, programmers, and DSS
designers an appreciation of the others knowledge requirements; and 4)
To educate designers and programmers an understanding of the current
database related to the information requirements of the proposed DSS

database.

75

4\4_ . '1'_1.1‘1_. |)

[l
. %

“aNA

el

[

o R

.‘.‘_: ULy 2 g

In short, the pilot model DSS is meant as a quick and dirty demon-
stration to educate all potential players in DSS development about DSS
concepts. The pilot model is not meant to be used in any capacity other
than as a demonstation. It hopefully reduces long run costs by stopping

miscommunication errors.

Structure of this Manual

This manual is intended as a reference for any individual concerned
with either the use, design or programming of a DSS for the priori-
tization of space technology issues at the Space Technology Center. The
manual is broken into two main sections.

The first section of the manual describes how to use the STCPMDSS.
It describes how to execute and use the demonstration model. This
section is presented for the potential user of the STCPMDSS.

The second section of the manual describes information that
pertains to programmers and designers of decision support systems. It
contains information concerning the construction of the DSS software.

This manual is by no means complete. It does not provide a conm-
plete description of the program operation. In fact, no such descrip-
tion is intended. The operation of the pilot model should be straight
forward. If it is not, the problems that occur can lead to comments

from the users to the designers and programmers, as intended.

76

II. USING THE PILOT MODEL DSS

This section of the ..er’s manual describes how to use the STCPMDSS
software. It provides details on software capability, system files and

directions for use of the systenm.

Current Implementation

The pilot model decision support system ia currently configured for
a Zenith Z2-100 microcomputer system. If your computer is not a Zenith
2-100, see Chapter III of this manual for inatallation inatructions for

other microcomputer systeas.

Starting the STCPMDSS

The STCPMDSS is stored on a S 1/4 inch floppy diskette. After the
computer has been turned on, program execution is initiated by inserting
the diaskette containing the STCPMDSS into drive A. The DSS is a turn-
key systenm. That is, it automatically installs itself in computer
remory when the drive door is closed. The STCPMDSS immediatly asks the
user to confirm that the program should run. If the answer is negative,
program execution is terminated. Otherwise, the STCPMDSS begins progranm

execution.

System Use

The STCPMDSS 1is designed to lead the user through a structured
decision process that helps to define the best option (syatem design’
for a given space system concept. The program provides menus and dis-
plays at all stages of execution. The program is designed to be
completely user friendly. That'is, it is designed to provide constant

error trapping to guard againat any unintended inatruction from the

77

XL £ A

-
-

rr

r)
[

Py g
o .
“ata'e

NG

Y ALS Y N

3

A e

user. Furthermore, the system was designed to be self-explanatory
during execution.

The best way to become familiar with the program and its capa-
bilities is to use the system. The data provided with this implemen-
tation was contrived for example puposes only. The user may delete or
change all or part of any information listed in the concept database.

The STCPNDSS constructs a user databsse for each decision-maker
that uses the systen. This database is under the control of the user.
The data saved is a record of a decision-makers pass through the model
subsystem of the DSS. The system automatically keeps track of the

status of the systenm.

Comments
One objective of a pilot model DSS is to provide an example of a

working DSS to help users better define requirements for a true DSS.
While wusing the pilot model decision-makers should liat their likes and
dislikes of the implementation. The list may include:

1) Input and Output format of the screen displays;

2) Length of time required for program execution;

3) Other solution technigques that may be helpful;

4) Information requirements - more, less, presentation
of, etc...

78

ITI. Program Specifics

This section describes the software system of the pilot model DSS.

The program is not described to the level of detail necegsary to make

changes or modifications easily. The STCPMDSS is intended as a demon- d

atration model only. Although it was programmed in a amanner to h
- facilitate additions and modifications, it was not meant for follow on J
developnrent. A pilot model is only a frame of reference for a true :

working DSS that must still be constructed.

Software Environment
The STCPMDSS was written in the Pascal language. Specifically, t
Turbo Pascal by Borland International. No implementation specific
features of Turbo Pascal were utilized. That is, the program may be
compiled on any computer, using any operating system, supporting Turbo
Pascal. The specific implementation of the STCPMDSS configured for the

Zenith Z2-100 does use two features that are machine specific.

. F v v s % v

The firast implementation aspecific feature of the 2-100 implemen-
tation is the use of the batch command capability of the MS-DOS
operating environment. The £file "autoexec.bat" is called when the
operating system is booted from the DSS execution disk. The commands in
that file are carried out first after the computer reads the operating .
system. This batch file contains two commands, PSC, and DSS. The PSC
command is executed first, to inatall the DSS print screen function.

The second Z-100 specific implementation feature is the print
screen function. The print screen function for the 2-100 is a public)
domain command file titled PSC.CON. This file prints the Z2-100 screen

to its list device. That is, any printer can be used with this progranm.

79 :

WL

2oy

el % L e e el w e et M. te ~.-._-A_‘ R N o R T T ,.—_, S . _a B T R

J'Vf, el e

The key sequence used to activate the print screen function is <shift

F12>,

Program Source Code
The STCPMDSS was programned :in 32 modules, one main program and 31

Pascal procedures and functions. All of the program modules were coded

. using a consistent style. i‘
The STCPMDSS source code is actually contained in six separate E
files. The source code was broken into the six files because of the -
limitations of the Turbo Pascal Compiler. The compiler can not handle ﬁ
all of the source code at once because of ita buffer size. This, E
however, did not limit the size or capabilities of the STCPMDSS. Turbo 2
Pascal alliows for programs larger than the buffer size by placing proce- S
dures in "include" files. The procedures or functions in the include ;!
file are compiled into the main program code when the Turbo Pascal .L
compiler encounters an include file command in the code. The include Ei
file command is & comment in the Pascal source code that tells the ?
compiler to compile the Pascal source code in the named file at this &
point. The files that contain Pascal Source code for the STCPMDSS are: }
1) DSS.PAS - main Pascal source code file:; IS

2) EXTRA1.DSS - first include file; o

3) EXTRA2.DSS - second include file; -

4) EXTRA3.DSS - third include file; e

S5) EXTRA4.DSS - fourth include file; R

6) EXTRAS.DSS - fifth include file, ¥

The exact qontenta of the include files are unimportant, aas long as §
normal precedence rules for Pascal procedures and functions are :_
observed. For example, if the include files are compiled in order from ?f
1 to S, a procedure in EXTRA2.DSS can not call a procedure in ;
EXTRAS.DSS. .
3

80 :

NN a

R IR A RS

- . - '..’. “..'-_._..’ .‘; T ".-'. .-..- ;_‘._ PO \..4 ’.‘~..
. AL PR ALY ‘-\.“.‘{'-.'».V-.'. ,,.‘- .~.J~ 5 4-. UL SO

e A N

Disk Files

Compiled Code. There were four STCPMDSS object code fiies compiled

from the source code. The four files were:

1) DSS.COM main DSS command file;

2) DSS.000 first overlay file;

3) DSS.001 second overlay file;

4) DSS.002 third overlay file.
The three overlay filea contain object code from procedures and func-
tions proceded by the Turbo Pascal reserved word ‘"overlay”. Overlays
were used in the program to reduce the size of the main execution block.
Otherwise, the Pascal code would require modifications to compile it for
a different microcomputer system. To make overlays, the compiler reads
all the procedures and functions preceded by the word “overlay"” and
stores them in a file. It then leaves a space in the main object code
large enough to fit the largest program in the overlay. The main prog-
ram then uses that space for the procedures in the overlay file, as they
are needed.

Database Files. The database structure of the STCPMDSS is a series
of record files. There are two distinct databases used by the STCPMDSS.
The first is the concept database. The concept database can consist of
up to ten files. Each file could contain five concept options with up
to fifteen technology issues per concept option. The ten files are
named CONCEPT».DS5S, where the asterick stands for a letter from A to J.
The number of files indicates the number of concepts contained in the
database. When a new concept is added, it receives itas filenanme
sequentially.

The concept names are contained in a file called CONCEPTS.DSS, and
are related to their respective concept option data files by the

STCPMDSS progranm.

B P UL T L
L N N A
CIPSL IS AT T S I T

AR are o B oM ard ot i ot B av B aede e qaid g d pat arg el gatnds S S S B 4

- - -

The second database is a database constructed by the program for

e

each individual user. Upon entering the program, each user is asked for

his first and middle initial and the first six letters of his last name.

AL

The DSS then opens a file using that name and a <.DSS> identifier after

£ SRy L

it.

A user file is opened each time a user gives his name upon entering
2 ' the STCPMDSS. The user file contains records of the decision-makers
past decision runs through the model sub-section of the pilot DSS. The
user file data base is under the control of the its individual user, and
N is inaccessable to other users.
A Information File. The final file necessary for the operation of
: the STCPMDSS is a file called INFO.DSS. This file contains all of the
"E nenus, tables and displays that are not generated within the STCPMDSS

program code.

»f Inplementation on Other Microcomputers

To implement the STCPMDSS on another microcomputer, a version of
) Turbo Pascal for that microcomputer must be available. Also, a transfer
program to copy programs from one operating system to another must be
found. Assuning that both of these conditions can be met, the STCPMDSS
can be implemented on almost all microcomputer systenms.

T Procedure. Firat, all of the files aasociated with the STCPMDSS
must be tranaferred, except for the object code files (DSS.COM, DSS.000,
etc..). The source code must be transferred so that it can be re-
compiled under the new operating system. Also, all of the concept
database files must be transferred. Moat operating systems offer pro-
grams that will mass copy files. By first copying DSS.PAS, and then

3 copying #.DSS, all files needed for the new implementation can be

82 !

B IR T AT TN 0 I TR P .\‘,'t"\‘
O R N Y (A R o A NN e

tranaferred.

Once the files are transferred, the Turbo Pascal compiler can be
used to generate new object code files.

Limitations. The new implementation will be limited by the lack of
a print screen function, unless a print screen program available for
that microcomputer system. Print screen programa are available in the
public domain for most microcomputer systeas. Another limitation will
be the lack of the automatic start up provided by the batch command
function of MS-DOS. That is, if the new microcomputer does not operate
under the MS-DOS (or related) operating systenm. If it does not, the
user will have to execute a print screen function command first, and

then the DSS.COM file.

83

“ﬂ;‘;}‘*.‘

P A N

[

TYRNTAA

At et e

VITA

lst Lt. Bruce G. Schinelli was born 28 June 1960 in Franklin,
Pennsylvania. He graduated f{from Boonton High School, Boonton, New
Jersey in 1978 and attended the United States Air Force Acadenmy. He
graduated from the Academy in 1982, with a Bachelor of Science degree in
Economics. Upon graduation, he received a regular commission in the
USAF, and was initially stationed at Nellis AFB, Nevada. He entered the
School of Engineering, Air Force Institute of Technology, in June 1984.
He is a member of Omega Rho.

Lt. Schinelli is married to the former Cecily Zahorian of Lincoln

Park, N.J.

Permanent Address: 415 Liberty St.
Boonton, N.J.
07005

162

APPENDIX C

PILOT MODEL DECISION SUPPORT SYSTEN

SOURCE CODE

T e e et T AT e T '_‘—'.‘-'('-'. e e T e e e T L T T
LS, A P B A R W S N S A R SR E IR S A AT S A SRR AT SN T SR R TR

program DSS (input, output);

(Illl.*l"ii‘l"l'.Illll!’ﬂ'llliﬁi‘ll!.'l'ilﬁ.!llil!llllillﬁli!I

L ' YL EanuR
) Ewmnn DSS - Main program of Space Technology Center anzan
B (ZEE 2 Pilot Model Decision Support Systenm. sxann
* %% N [E X X X 2
(XY This program was written as part of a thesis (X E R
(2222 effort in partial fulfillment of the require- tanan
N nann ments for the degree of Master of Science in LR X
N Iy Operations Research from the Air Force Insti- Enann
; LEE LR tute of Technology, December 198S. saenn
R« L2 2 2 X2 (XXX X
XL This program is a demonstration model of a DSS rngua
axnm for aspace technology tradeoffs implemented for LEEE L
sannn the Air Force Space Technology Center. The snuen
rannn program represents the use of a new implement- srane
“annn ation strategy for DSS development, the pilot sanun b
AT L L approach. The cbjectives of the program, as LEEE L !
Ennnn stated in the research, were to educate users samen
"RuuR DSS designers and programmers about their con- rrnae
- LA LR tributions to the DSS implementation and their sunan
f rnunn interactions with each other. The program is rennn
. rEaan written in Turbo Pascal (Borland International) ssaes
S (XX on a Kaypro 2 computer. The first version did nnsne
2212 not contain any special CPM features. The pro- sasss
rnann gram was also implemented on a Zenith Z-100 for sas=s
waann STC. The system can be hosted on any computer IR L
LEEL R that supports the Turbo Pascal compiler. LEEE L :
-: (32 XY sennn \
X LA As the purpose of the pilot model is to educate =ssas !
LA L people, and then be discarded later, it was not ssass
LEEE 2 documented as fully as a full up microcomputer I T T2
LR 2 DSS source code package would or should. The LR L
N LA source code has been documented to the point rannn
- RN where it is easy to follow the program flow. Anans j
A I XXX X XXX X} .
": I ZX X R EAZEZ A ERRESAEREERERRRRERRE SR RRRARRER R R RS EE R RS EEEES R NR] ‘
label 1,2,3,4; (A label indicates a program line, used in
the Turbo Paacal GoTo command. For example :
<if....then GoTo 2;> would send progranm !
execution to the program line defined by
. 2, as in <2:writeln;>. Program execution
* continues from that line forward. A label
is only defined for a current program block. ‘
; Therefore, a GoTo 1 in the main program will ‘
N only send the program to the 1 located in the j
: main program. The numbers can be used over
« again in different procedures. For example,
(]

a label of 1 always indicates the end of a
block.}

85

o
4
o
L}
U
o
L]

const maxnumconcepts = 10; {(Maximum number of concepts!
maxnumoptions = 5; {Maximun number of concept options}
b ="' ’; (Blanks, for printing files}

type Char8o string(801; (80 character string}
Char20 = string(20); (20 character stringl
Chari2 strina{12]; (12 character string}

outputdatafile = array{l..20] of char; (stores choices}
3 outputfilename = array(1l..123} of char;

vector = array(l..maxnumoptionsl of real;

natrix array(l..maxnumnoptions,l..maxnuroptions]

of real;

alloptionnames = array({l..maxnumoptionsl of Char20;

Y

techissues = record
tiname: Char80;
tischedule: integer;
tirisk: integer;
ticost: real
end:

{techisasues - A record to store the achedule, risk and cost
information associated with a technology.)

tecarray = array(l..15]1 of techissues;

{tecarray - an array that specifies the maximum number of
technology issues for each concept option.}

performance = record
coverage: integer:
capacity: integer;
quality: integer;
timeliness: integer;
availability: integer;
survivability: integer
end;

(performance - A record used to store the performance values
of a concept option.}

conceptoption = record
optionname: Char20;
optionorigin: Char20;
optionti: tecarray;
optionperformance: performance
end;

AD-A172 379 ﬁ DECISIOI SUPPORT SVSTE!I FOR SPM:E 'I’ECIHOLDG 272
ADEOFFS: A MICROCOMPUTER. . (U> RIR FORCE IIS'I' OF TECH
HRIGHT-PRTTERSON AFB _OH SCHOOL OF ENGI.. SCIIIHELLI

UNCLASSIFIED 43 DEC 85 ARFIT/GOR/0S5/83D-17

NL

- >

¥ LR g o J

o g vy
- Vo Ay 4 [P SR »
LTI IS, O I I

- 25

|0 &k B
o £
||||| T
= e

22 i e

I

S

¢ {conceptoption - A record that contains all of the information

: used by the DSS about a particular concept

b option. This record is the primary building
block of the files contained in the database.

'

: datafile = record

> conceptname: Char20;

{ conceptorigin: Char20
end;

W (datafile - type of records contained in the “conceptsa.dss file.

v s

used to store the name and originator of a concept.}

-
PR Ry T

choices = record
criteriachoices: outputdatafile;
performancechoices:! outputdatafile;
. schedulechoices: outputdatafile;
riskchoices: outputdatafile;
costchoicea: outputdatafile
end;

|G

» r A
o8

jo* o

{choices - A record used to store the choices a decision-maker
makes at each stage of the AHP process.}

N
"
3 priorities = record
- criteriapriorities. vector;
E performancevector: vector;
‘ schedulevector: vector;
. riskvector: vector;
- coatvector: vector;
ot finalpriorities: vector
{: end;
(priorities - A record of all of the priorities calculated by the
- modeling section for each level of the AHP hierarchy.!}
? userfile = record
¢ conceptname: Char20:
. optiondata: Charil2;
= options: alloptionnames;
- judgementsa: choices;
) priorityvectors: priorities;
. CRvector: vector
L end;
f (userfile - A record of all information concerning a program run
- for an individual user. Primary building block of
the user database file.)
N
A Y
: (In general, The type identifier is used to construct all new variable
N types used in the program. The type declaration for the entire pro-
gram is accompleish in the main program, as type declarations are
global to the entire progranm.!
\Y
N
2
; 87
]
“

by

Var 1, quitindicator,status: integer;
concept: Char20;
filename,personalfile: Charl2;

ATl

$ answer: char;
)
* {Variables - for the main progranm:
L}
‘X
" i: An integer counting variable.
' quitindicator: An integer uaed to govern program execution.
N If it ia a 1, the program ia terminated.
N
»: astatua: Used to identify the atatua of the user.
& concept:! Store the name of a concept.
‘N filenane: Used to store the name of the file that contains
the option information for a concept.
. personalfile! Used to store the name of a users personal database
< file.
. anawer: A character variable that is used to receive answers
é to queationsa by the DSS.)
‘ (IIIIICI!!IliIIQIIIQ.ll.l..lI"I.IIIII!l..l.!lllll..ll...'l'.ll.
- XX EEE X EEZ R R R RS R REEERZE RN RS ESRRR RIS ERR SRR EZEREERR R R X X]
n L X2 X] (2 X X
sens PROCEDURE DECLARATION OF PROGRAM DSS seas
'.: [E X X] (R X X]
*‘ [EEXESEEREEZZZER ARSI ZARENREEEZREREZRZRZREZE R FXNSRRRRRRR SN E RS X R XX J
‘. I.Il'l!ll!QIIlQQIQI!Q.Q!’lIQ.Q.!!!!IIIQQQIDIQQIQQ.I!Q!!I!!!QQ!!)
% {SI extral.das) (Compile code in file extral.dss now.)
3 procedure CheckYorN (Var check: char);
{CheckYorN - A procedure that insures the answer to a yes or no
question is a y or n (can be capitilized). If not the progranm
“ enters an error correction loop until it getas a yea or no anawer.!}
o
- Var i! integer:
Y
~
£ begin
writeln;
: while not (check in (’Y’,’y’,’N’,’'n’1) do
g begin
; write ¢’ Please enter a "Y" ’);
y write (‘or "y" for yes or a "“N” or "n" for no: ’);
hJ readln (check)
_ end (while check not Y or N}
2 end; {CheckYorN}
:: {s] extra2.das) {The statements at right are Turbo Pascal)}
. {sI extra3.dss) {command statements that tell the compiler])
2 {S1 extrad.dss) {to compile the code contained in the filel
{$I extraS.das) (named after the --S5I-- sequence. }
B, 88

1SR R L A A I R Ry \"' Y » Lo

(Q.l.....ﬁ.l..l.illl..l‘l......IQ.lIIQ#'.I.IQ‘IQIIQHIIIQIIIQ.I.I
I EEEEXEEEEZEREEEEE RS RS AN E AN R ERE AN RRRNEER R RR RS RN XX]
tRER (X2 X 2
snan MAIN PROGRAM BEGINS sece
LR X LEZ K}
(XXX R RSS2 RRRSRARdR X R RRRZSRERXXRRRERZARRAXZRRX]

lllll'lll.ll!llll.ll.IQII.Ill.lII'IIIIIl!Il.i!ll!l..l.'lllllll.)

begin
(wenmanes Initialization sxzesnssx]

ClrSecr;
personalfile (=
quitindicator :
atatua := 1000:
filename :=
concept @

4

= 0:

’

{(senne End Initialization esnses}

(Determine if a user wishes to use the program or has entered by
mistake.}

for i 1= 1 to 10 do writeln:

writeln(b,” Do you wish to execute the AFSTC DSS program? ’);
write(b,’ Please anawer Y for yea or N for No: ’);
readln(anawver):

CheckYorN(ansawer):

if (anawer in (’N’,’n’]) then GoTo 1:

GetInfo(156,174); (List the title page of the DSS}
writeln:;

write(’ Press RETURN to continue: ’):
readln(anawer);

{Identify the user and get his atatus}
GetUserFileName(personalfile,statua,quitindicator):

(Thias section (GetUserfileName) allows enterance into the main
database section if it is desired.)

if quitindicator = 1 then GoTo 1:
2:InitializeUserFile(peraocnalfile,status):
if atatus > O then Review(personalfile,status,quitindicator);

ssasnanennnuesn Review - Ugser Database section #essssscssnsss)
review allows a user to enter hia personal database. }

if quitindicator = 1 then GoTo 1;
if atatuas >= 1 then GoTo 4:

status determines where a user

., .
-

R A T N T)
AEREAGNS "o '.\"‘n N v d“‘i\-'
A

O o

TRV W P A §

.1;)}}fﬂ’

(an
PR

% .
l..h a

"ﬁ-'- e as T T RN s .; AAN | ."’.“.

T S A L G e

a8 '8 ok W o u Chd Al St $

(.II'IIIIDIII..II..IIIIIII.I!.I..I’I‘QI'I.I!‘III".IIQIQQI)

(nannenvess Beginning of Modeling subsection sseessesase]
(lll!.lllIllﬂlllliiI!illll..llllll!!l’.llll..’lllll.l..)

ListConcepta(concept, filename, quitindicator):
{Liatconcepta provides choicea of concepts to work on}

if quitindicator = 1 then GoTo 1;
3:Criteria(concept,peraonalfile,quitindicator);
(Criteria findas the priorities of the performance, coat, sachedule
and risk sectiona.)

if quitindicator = 1 then GoTo 1;
4:PrioritizeQptionas(peraonalfile,quitindicator,atatua);
{Prijoritizes the options according to the criteria.,l}

if quitindicator = 1 then GoTo 1;

FinalOptionVector(quitindicator,atatus,personalfile):
{FinalOptionVector ayntheaizes the final concept option priorities
from the information obtained in the other procedures.}

if status = 7 then

begin {User ia unatisfied with reaults of the}
status = O; {prioritization procesa, wanta to repeat it}
GoTo 3

end (then)

else

begin
status := 10; (User does not want to repeat, is sent to)
GoTo 2 {the review section to view or print the }
end: (elsel (the results from the modeling section. |}

liwriteln
end. (main program end}

90

(.lllllQﬂilllllIIIII.Illl.lll!i.ll...llllIl.llll'l.lllllllllllI!IIIQ

BAARNERRBRRARE Source Code file: extral.dss RERARBERE RN
AR AR NN R RN IR SR AR AR AN DR R RN R A RO R AR RR G NN RN RN AR AN AR RNR N ARG N RRERRNR)

overlay function Exist(filename: Charl2): boolean;

(Exist - Determines if a file on the logged disk drive of the
filename <filename> exista. Returns a boolean answer
true or false, when called. Object code for this
procedure is place in the file dss.000 because of the
overlay in front of the function declaration.

fil: a variable indicating a file of any type.}

Var fil: file;

begin
Assign(fil,filename);
(81~} {Shuts off Turbo Pascal automatic error)
Reset(fil); {checking}
(sI+}) {turns automatic checking back on.!}

Exist := (IOresult = Q) (Turbo function tha returns a zero if}
{an input/output error exists)
end; {function Exisat]}

overlay function StatuaCheck(Var
priorityvectors: priorities): integer:

{StatusCheck - An integer function that receives a record of real
vectors and derermines the status by seeing which
vectors contain zeros. Object code for this function
is also contained in dsa.000.

i: a counter variable}
label 1;
Var i: integer;

begir
i = 0;
{Checka the vectors for a zero to see which section a User quit at.!
with priorityvectors do
begin
if criteriaprioritiea{l] <> 0.0 then i
if performancevector({1l] <> 0.0 then i
if schedulevector({l] <> 0.0 then i :=
if riskvector(l]) <> 0.0 then i :=
if costvector(l]l] <> 0.0 then i :=
end; {with priorityvectors)
StatusCheck := i
end; {function check status)

91

D o e 4 T S S S A et e

overlay procedure GetInfo(firstline, lastline! integer):

{GetInfo - Enters a text file that contains most of the tables and
u messages for use within the DSS. It takes a first line
number and a last line number and then prints everything
inbetween those two numbers onto the screen.
The file that this procedure uses for this implementation
is called "info.dss".

L aaan o

currentline: A variable used to keep track of the current line
of the textfile.

letter: A character variable.

textfile: a file of text.)

Var currentline: integer:
letter: char:
textfile: text;

begin
ClrScr;
currentline := 1;
Asaign(textfile,’info.dss’):
Reset (textfile):;

{Advance textfile to the first line to be printed!}

while currentline <> firstline do
begin
readln(textfile):
currentline := currentline + 1
end;

{while not the last line to be printed)

while currentline <> laatline do
begin

(while not the end of the line, print each character on the line]

while not eoln(textfile) do
begin
read(textfile, letter);
write(letter)
end;
writeln;

{read next line of text, advance the current line}
readln(textfile);
currentline := currentline + 1

end
end:; (GetInfol

92

-‘_. I L ‘.-'.-'-‘_-'_.'..'.‘..'_.‘_. N R S R L LT R P L Y -. --'. N N Y
Aﬁhbhd?q T A A A A T e T ey ﬂ“"*"' e “"‘#

overlay procedure InitializeConceptOption(Var optionrec:
conceptoption):;

{InitializeConceptOption - Takes a record of type conceptoption
and initializes it by filling it with blanks
and zeros, where applicable. O0Object code for
this procedure is in dss.000.!}

begin
with optionrec do
begin
optionname := ’ ’;
optionorigin = ’’;
for i i= 1 to 15 do
begin
optiontilil.tiname := *~
optiontil(il.tischedule :
optiontilil.tirisk i= O;
optiontilil.ticost := 0.0
end; (if to blank optionti}
with optionperformance do
begin
coverage :
capacity := O
quality = 0
timelineas := O;
availability = O;
aurvivability :=
end (with optionperformancel
end (with optionrec!
end; (InitializeConceptOption}

" we

0;

tHh e ve O

overlay procedure InitializeUserFile(userfilename: Charl2;
Var atatus: integer);

{InitializeUserFile - Receives a filename of a user database file,
and a status. Returns either a new status
or a blank record at the last entry poaition
of a user database file. Object code for
thia file ia in das.000.

ugerdata - a file of recorda of type uaserfile.

userrecord - One record of type userfile.
i,3 - counting integera.}

label 1;

Var userdata: file of userfile:
userrecord: userfile:;
i,J! integer:

FL“:; " P F ‘4 i ' Sal it B Al A N = v Sl S TN W W0 Ny v LA i 4 I a3 ary Soliet e B g ¢ Gt Sl S A Al B g

A
K
. begin
:: Assign(userdata,userfilename);
A if status = 7 then
begin
) Reaet (userdata):
% Seek(userdata,FileSize(userdata)-1)
K _ end;
'h - if status = 6 then
Y begin
Resgset (userdatas);
¥) Seek (uaserdata,FileSize(userdata))
:v . end:;
- if status = 10 then
e begin
- Reset (userdata);
Seek(userdata,FileSize(userdata)-1);
- Read(userdata,userrecord);
- status := StatusCheck(userrecord.priorityvectors);
- GoTo 1
o end; (if status is 10}
> if status = O then Rewrite(userdata):
~~ with userrecord do
' begin
fi conceptname = ‘’ ’;
) optiondata := ’ ’;
for i (= 1 to maxnumoptiona do optiona{il = ’* ’;
b1 with judgementa do
begin
N for i i= 1 to 12 do
BN begin
R criteriachoices(i]) := * ’;
-~ performancechoices(il := ’ ’;
xS achedulechoices(i) := ’ ’;
’ riskchoices(i) := * ’;
. costchoices[il := *
o end (for i one to twelve)
. end; (with judgement)
- with priorityvectors do
» begin
] for i = 1 to maxnumoptiona do
3 begin
- criteriapriorities(i]l := 0.0;
oy performancevector([il := 0.0;
Ay schedulevector(il := 0.0;
} riakvactor(il := 0.0;
. costvector (il := 0.0;
finalprioritiealil := 0.0

: end (for i one to maxnumoptionsa)

", end; (with priorityvectorsl

e for i = 1 to maxnumoptiona do CRvector(il := 0.0

{$ end; (with userrecord)
Write(userdata,userrecord);

1:Close(usardata)

end;: (InitializelUserFilel

94

T e e e e T e e e S e e e e e e e e
N S N R R o, et R R S S S O N S SRS A S SR

overlay procedure Compare(Var comparisons: matrix;
Var Al,A2,Q1,Q02: char; i,): integer);

{Compare - Makes the comparisons to build the comparison matrix for
the first level of the decision proceas hierarchy. That
ia, it presenta the criteria for the comparison to the
decision-maker. Receives the matrix that will be the
matrix used by the AHP subroutine. Alaso receives the
letters of the comparison (Al1,A2), the anaser input by
the uaer (Q1,02) and two integers to indiate which com- »
parison is being made. (i,)). Object code is in das.000. :

Qint: integer tranafer variable.
k: counting variable.)

Var Qint,k: integer;

N g g

begin
Qint := ord(Q2) - 48; -3
k 1= 1; X

if ord(Ql) in ((ord(A1)+32),(ord(A2)+32)]
then Q1 := chr(ord(Ql)-32): i
while (Q1<>Al) and (Q1<>A2) or (Qint<1) or (Qint>9) do N

begin .
if k = 3 then .
begin A
writeln:
write(”’ Remember, the first letter of the 7): B
writeln(’dominating criteria first, then’):
write(’ the number representing the’):
writeln(’relatjonship from the comparison scale.’);
write(’ Ex: PS (performance dominates ’): .
writeln(’compairison)’) ‘
end:; ”
write(’ Again?: ‘); .
read(Q1,Q2): .
Qint := ord(Q2) - 48; X
if ord(Ql) in [((ord(Al)+32),(ord(A2)+32)] .
then Q1 := chr(ord(Ql)-32): *
k := k + 1 i
end;

if k > 1 then writeln;
if Q1 = Al then
begin
comparisons(i,jl := Qint;
1= 1

comparisonsa(, il /Qint
end
else
begin
comparisonsii,j]l := 1/Qint;
comparisons{j,il := Qint

end
end; (Comparel

<,
J3
',
»~
y)
2

F LS !

LA

AR LR R R

o, .

{

[N

P4 1‘_ e'als

W\

't-:'. - '.--. . ".'.f\ "'-' o
B

overlay procedure AHP(squarematrix: matrix; Var priorities: vector;

n: integer; Var cr: real);

{AHP - This procedure calculates the maximum eigen value and its

characteristic eigenvector using the ordinary power method.
From the eigenvalue, it calculates the prioirty vector of

the matrix of comparisons passed by squarematris, and returns
the priorityvector as priorities. It also uses n, the number
of comparisons and calculates cr, the consistency ratio.
Object code is stored in dss.000.

variableas - i,3j,m: integer counting variables.

sum: real value sum of addition in power method.

transform: vector that storea the characteristic
eigenvector.

naxlamda: the estimate of the maximum eigenvalue.)

Var i,j,m! integer;

aum: real;
tranaform: vector:
naxlanda: real:

begin
sum := O
cr := O3
for i 1= 1 to n do prioritiesii] := 1;
m o= 1;
while m <= S0 do
begin
for i =1 to n do
begin
transformf{il := O;
for j = 1 to n do transform{il := squarematrix(i,j]
priorities(j]l] + transformlil;
end;
nraxlamda := 0.0;
for i := 1 to n do maxlamnda := maxlamda + transform{il

« transform(il;
maxlamda = sqrt(maxlamda);

for i := 1 to n do prioritiea(il :!= transform(il/maxlamda;
if m = 5 then
begin
writeln;
writeln(b,’CALCULATING PRIORITIES’)
end;
if m = 25 then writeln(b,”CONTINUING CALCULATIONS’);
Rz + 1
end; {while loop to calculate eigenvalue and vector!
cr := (maxlamda - n)/{(n - 1);
case n of

1: cr = 0.00;
2: cr := 0.00;
3: cr := cr/0.58;

36

‘.-'\-_ o .

4 cr := cr/0.90;
St er = cr/1.12;
6: cr := cr/l.24;
7: cr = cr/1.32;
8: cr = cr/l1.41;
9: cr = cr/1.45;
102 cr := cr/1.49
end; {(case n of 1 to 10}
for i = 1 to n do sum := sum ¢+ prioritiesl[il;
for i := 1 to n do priorities{il := priorities(il/sum
end: {AHP)

overlay procedure OptionComparisons(Var optionmatrix: matrix;
numoptions: integer; Var choicevector: outputdatafile);

{CptionComparisons - procedure that performs comparisons between
two options. Compares them by number, determined by the number
of optiona passed by numoptions. OQther variable pasaed to this
procedure are optionmatrix, the matrix built for the AHP subrou-
tine, and choicevector, the vector of that atoreas the a record
of the users choices for further reference. The object code for
this procedure is stored in dass.000.

Variables - i,3,k! counter variables.
Q1,Q02: character answers from input the uaer.}

Var i,3,k,I11,12,counter: integer;
Q1,Q2: char:

begin
counter := 1;
for 1 := 1 to numoptions do
begin
for j := 1 to numoptions do optionmatrixi{i,j]l =1
end;
for i 1= 1 to (numoptions - 1) do
begin
for j (= (i + 1) to numoptions do
begin
write(’ Option ’,i,’ vs Option *,)3,’: ’);
read(Q1,02);
I1 := ord(@Ql) - 48:;
I2 := ord(Q2) - 48;
k ¢= 1;
while (I1 <> i) and (Il <> 3) or (I2 ¢ 1) or (I2 > 9)
do begin
if k =3 then
begin
writeln;
write(’ Remenber - The # of the dominating ’);
writeln(’option firast then the value from’);
write(’ the comparison scale! Ex: 17 - ’);

writeln(’option 1, strongly dominates, etc..’):

97

v e e e e mas e
VIS AN S AR LR SR AR
QNI TGN YA A A AR

-~

Lol

write(’ Option ’,i,’ vs Option “,3,’: ")
k 1= 1
end: (if k = 3}

write(’ Again?: ’);

read(Q1,Q2):

Il := ord(Ql) - 48;

I2 := ord(Q2) - 48;

N
: k 1= k + 1
Py end; (while loop}
if counter in (2,4,6,8,10) then writeln;
if I1 = i then
. begin
. optionmatrix(i,jl := I2;
. optionmatrix(j.i1 := 1/12
> end
else
. begin
N optionmatrix{i,j] = 1/12;
X optionmatrix(j,i} := I2
:j end; (if I1 = i)
. case counter of
- 1: begin
choicevector (1] := Q1;
I choicevector (2] := Q2
. end:;
‘. 2: begin
- choicevector (3] := Qi;
i choicevector(4] := Q@2
" end;
? 3: begin
e choicevector(S] := Q1;
. choicevector{6] := Q2
. end;
‘ 4: begin
'~ choicevector (7] := @1;
N choicevector (81 := Q2
[\ end:;
" S: begin
: choicevector (9] := Ql;
m choicevector(10] := Q2
. end:;
. 6: begin
. choicevector(11] := @1;
" choicevector(12] := Q2
, end;
- 7: begin
choicevector{13] := Q1;
% choicevector(14] := Q2
. end;
N 8: begin
. choicevector (151 := Qi;
choicevector(1i6] := Q2
end:
N
.. as

e o

9: begin
choicevector(17]
choicevector (18}

] end:;

. 10: begin

- choicevector (19]

choicevector [20]

) end

' end; (case of counter)

. . counter :!= counter + 1

end {for j loopl}
end {for i loop}

end; (OptionComparisons}

> <
00
..

W
(2N =}
N =

overlay procedure PrintOptionComparisons(choicevector:
outputdatafile; numoptiona: integer);

L

{PrintOptionComparisona - Prints the comparisons made by a user.
Prints the number of options determined by numoptions.
Sends the print to the computers liat device.}

W s x4 s 4

label 1,3,4,5;

begin

write(Lst,b,”’ Scale ’):
. writeln(Lst,’ Scale’):
- write(Lst,b,’ Comparison Value Comparison’);

writeln(Lst,”’ Value’):
. write(Lst,b,’ = ---cvccece- @ cocee seeccene-- ")
: writeln(Lst,’ -----)
: case numoptions of
L} 2:
- 3: GoTo 3;

4: GoTo 4;

. S: GoTo 5
- end; {case of numoptiona}
q: (I.I.lIII'IQ.‘!II.II.QIQ.II.!I!I'IIII!IIIIIQI‘..IQQI!II.!II.IIIj
\ if choicevector(l]l = ’1’ then write(Lst,b,’Option 1 over 2’)
. else write(Lst,b,’Option 2 over 1’):

writeln(Lst,’ ’ ,choicevector(2]);
“~ GoTo 1;
: (Il..l..!lllﬂlll!illllllllllllllllllllIlllilllll!QQ.QIIDI!IQIIR]
" 3:1f choicevector(1] = ’1’ then write(Lat,b,’Option 1 over 2’)
: elae write(Lat,b,’Option 2 over 1’);

write(Lat,”’ ’,choicevector(2],’ ‘)

if choicevector(3] = ‘1’ then write(Lat,’l over 3)
| else write(lLst,’3 over 1 N
t writeln(Lst,choicevectoriq4l);
~ if choicevector(5S] = ’2’ then write(Lst,b,’Option 2 over 3’)
N el=a write(Lst,b,’Option 3 over 2’);
S writeln(Lst,’ ’ ,choicevector(6});

GoTo 1;

[(..'II.I...IDI.IQ.I.QI'llll'..l.lll.ll.ﬂ.ll..QQIII!I.II‘I.ICQQI)

~ o o -

LR

- a0 *

4:if choicevector(1]
elae write(Lat,b,’Option

write(Lsat,’

if choicevector(3]

= 1’ then write(Lsat,b,’Option

2 over 1’);

’ ,choicevector (2], ‘)

Ill

else write(Lst,’3 over 1
writeln(Lst,choicevector(4l);

if choicevector (5]

‘1’ then write(Lst,b,’Option

then write(Lst,’l over 3 ’)

1):

else write(Lst,b,’Option 4 over 1’);

write(Lst,”’

if choicevector(?]

if choicevector(9]

’ ,choicevector(6],’ ’);

2’ then write(Lst,’2 over 3 ‘)
else write(Lst,’3 over 2
writeln(Lst,choicevector(8]);

’2’ then write(Lst,b,’Option

’);

else write(Lst,b,’Option 4 over 2’);

write(Lst,”’
if choicevector([11l
else write(Lst,’4 over 3
writeln(Lst,choicevector{12]1);
GoTo 1;

(.l.lCl.ﬂlllIII!’I’!D'II!I.Q.I!I-.ICI.QQIII.IIIIQDIll..Illl.lll.lll!lll!!l'II)

S5:if choicevector(ll ’1’ then write(Lsat,b,’Option

’ ,choicevector(10],”’ ’):

13I

then write(Lst,’3 over 4

:);

else write(Lst,b,’Option 2 over 1’);

write(Lat,’

if choicevector (3]

’ ,choicevectorl(2},’ ‘)

=

else write(lLst,’3 over 1
writeln(Lst,choicevector(4]):;

if choicevector(S]

-
=

1’ then write(Lst,b,’Option

‘1’ then write(Lst,’l over 3 ’

I):

else write(Lst,b,’Option 4 over 1’);
write(Lst,”’

if choicevector(7]
else write(Lst,’S over 1

’,choicevector(6l,”’ 2y

= ’1’ then write(Lst,’l over 5)

I):

writeln(Lst,choicevector(8]);

if choicevector (9]

else write(Lst,b,’Option
write(Lst,’
if choicevector{l1]
elgse write(Lat,’4 over 2
writeln(Lst,choicevector(12]):

if choicevectorl[13) = ‘2’ then vwrite(Lst,b,’Option 2 over 5’)

I2'

then write(Lst,’2 over 4

’):

else write(Lst,b,’Option S5 over 2%);
write(Lst,’
if choicevector(15]

else write(Lst,’4 over 3
writeln(Lst,choicevectoril6l);

if choicevector(17] = 3’ then write(Lst,b,’Option

’,choicevector(l14l,”’ T

’3’ then write(lLst,’3 over 4

I):

else write(Lst,b,’Option S over 3’):
write(Lst,’
if choicevector(19]

* ,choicevector{18l},’ ’):
= I4l
else write(Lst,’S over 4

then write(Lst,’4 over 5

l):

writeln(Lst,choicevector{20]1);

(IlIllI.Ill.ll’..llllllll'l.!l..lGIDIICIIl.!llI.ilI..C’..Ill'.‘l'l!ll!!l.ltl.l.)

1:writeln(lst,’)
{PrintOptionComparisons)

end;

T T T RS SR S L IR S
~ .) &

. Mg g -
At .

U
AIRSA SN

e

B

..’,‘

e e T e T g L

100

)

)

)

)

1 over 2*)

1 over 4’)

2 over 4’)

1 over 2°)

1 over 4’)

= ’2’ then write(Lst,b,’Option 2 over 3%)
3 over 2’);
’ ,choicevector(10],’ o H

3 over 5’)

o

T
N T,

RN YAS

\.. - ~“_-\

* o
-

v m_aa

overlay procedure WriteOptionComparisons(choicevector:
outputdatafile; numoptions: integer);

{WriteOptionComparisons - Same as PrintOptionComparisona, except
this procedure prints to the screen.!

label 1;3,415:

begin

write(’ Scale X
writeln(’ Scale’);
write(”’ Comparison Value Comparison’);
writeln(’ Value’):;
write(’ . ~--------=- -c-=e- cec------- ‘)
writeln¢(’ ----- ‘)
case numoptions of

2:

3: GoTo 3;

4: GoTo 4;

5: GoTo S

end; {case of numoptions}

(...ll!.IQI.l'..l.IIIIQQI!D...QIII!IIQ..II!QQICIQIII..II.IIII..)

if choicevector(l] = ‘1’ then write(’Option 1 over 2’)

else write(’Option 2 over 1’);
writeln¢”’ ’ ,choicevector(2l);
GoTo 1;

[ll'l"lll'!lﬂ..l!l.'ll..l!l.l!!l.!l!.!lllll.!.llIQIIQQ.II.II.Q]
3:if choicevector(l] = ’1’ then write(’Option 1 over 2’)
else write(’Option 2 over 1’);

write(’ * ,choicevector(2l,”’ H
if choicevector{3] = ‘1’ then write(’l over 3 ’)
else write(’3 over 1).

writeln(choicevector{4]l);

if choicevector(5S] = ’2’ then write(’Option 2 over 3’)

else write(’Option 3 over 2’);

writeln(’ ’ ,choicevector(61);

GoTo 1;

["II..OIIlQIII.l.IIII.ICQlIIIll..lllll‘.l.lIllll..llllllll.ll!)

4:if choicevector(l]l = ‘1’ then write(’Option 1 over 2’)

else write(’Option 2 over 1’);

write(’ ’ ,choicevector(2],’ ’);
if choicevector(3) = ‘1’ thaen write(’1l over 3 %)
elae vwrite(’3 over 1 ')

writeln(choicevector(4l);
if choicevector(S5] = ’1’ then write(’Option 1 over 4’)
elae write(’Option 4 over 1°);

write(’ * ,choicevector{6l,’ ’):
if choicevector(7] = ‘2’ then write(’2 over 3 ’)
elae write(’3 over 2]

writeln(choicevactor(8]);

if choicevector(S] = ’2’ then write(’Option 2 over 4’)
elae write(’Option 4 over 2%);

write(’ *,choicevector(10]1,’ ’);

if choicevector{1l] = ’3’ then write(’3 over 4 ’)
else write(’4 over 3 ’): ;
writeln(choicevector(12]); by
GoTo 1;
(lIIII...I!..Q’!QQQI.QIQlQ!QlQIll{.'lll!lll.l!lllll’lllIIIIQQ'I)
S:if choicevector(l) = ’1’ then write(’Option 1 over 2°)
else write(’Option 2 over 1’);
write(’ * ,choicevector(21,”’ *):
if choicevector(3] = ’1’ then write(’l over 3 ‘)
else write(’3 over 1 'y]
writeln(choicevector(41); |
if choicevector(S] = ’1’ then write(’Option 1 over 4’) ‘
else write(’Option 4 over 1°);
write(’ ’ ,choicevector(6l,’ ‘) R
if choicevector(7] = ‘1’ then write(’l over S5 ’)
else write(’S over 1 ’):
writeln(choicevector(8]);
if choicevector{9] = ’2’ then write(’Option 2 over 3’)
else write(’Option 3 over 2’);
write(’ ’ ,choicevector(10],’ ’)s:
if choicevector(il]) = ’2’ then write(’2 over 4 ’)
else write(’4 over 2 ’):
writeln(choicevector(121);
if choicevector(13] = ‘2” then write(’Option 2 over 5°)
else write(’Option S over 2’);
write(’ ’,choicevector(14],” ‘)
if choicevector{15] = ’3’ then write(’3 over 4 ‘)
else write(’4 over 3 ’)s:
writeln(choicevector{16l);
if choicevector{17] = ’3’ then write(’Option 3 over 5’) ;
else write(’Option S over 3’);
write(’ ’,choicevector (181, ’):
if choicevector(19] = 4’ then write(’4 over S ’)
else write(’S over 4 ’):
writeln(choicevector{20]1); -
(IIIIIII'IQIIQQQ..Ql!lIIQ..IIIQIIIIIQ‘.II.D!Q...‘ll.lll..!‘..!l)
liwriteln
end; (WriteOptionComparisons) .

-.-" f l‘

b

AR

. ¥

b
5
“
N

L

102 -

g™

e e # e ¥

('II.IIIIII.I.II.IIIIII.IIIII.lll..IliII...llllllllll.llll.lllll.lll

NRERBEBRBRRRDRRR Include file: extral.dss BARBABBARBARBSRBNGEREER
NN SRR R RN SR NN A RN SRR N RN RN RN RR RN RN AR RS RN RNBENERRRERRN)

procedure ChangeOptionInformation(Var optionrec: conceptoption);

{ChangeOptionInformation - this procedure is part of the database
management system and is only called by the procedure DataBase
Management. It accepts a record of concept option (all the infor-
nation concerning a concept option and provides an oppurunity to
change that information.

Variablea - i,j: counting integers.
numti: integer counter of the number of technology
issues for this concept.
anawer: character to receive input.
OK: boolean to determine if input is real when it must
be, integer when it must be, etc. }

label 2,3,4;

Var i,j,numti: integer:;
tempoption: conceptoption;
answer: char;

OK: boolean;

begin
InitializeConceptOption(tempoption);
tempoption (= optionrec;

2:ClrScr;
writeln;
writeln(b,”’ Select Appropriate Number’);
writeln;
writeln(b,”’ CHANGE OPTIONS’);
writeln(b,’ = = = -—ccecoccccne--- ‘) {ChangeQOption}
writeln(b,” 1) Option Name’); {Menu)
writeln(b,’ 2) Option Originator’);
writeln(b,”’ 3) Technology Issue’);
writeln(b,”’ 4) Performance Value’);
writeln(b,’ 5) Return to last menu’);
writeln;
write(b,’ SELECTION: ’);

readln(anawver);
while not (answer in {(’1/..’5’1) do
begin
writeln:
write(b,’Incorrect selection, not (1..5), RESELECT: ‘);
readln(answer)
end;
with tempoption do
begin
case answer of
*1’! begin

103

.J'f . ' “.. q‘\’ -4, -’.v‘,.‘-’.. ‘,';f‘:.‘\-f .-. PN - ~'-¢ '-.: ‘. -..‘..\‘-.-_-. NS ".-.:.h A "n-'..- ". "'.J-‘- --.\-'.\.': ‘-.\‘ . ‘ \'\.\ __n\"‘- '-u\'

.

F T 0 s

»

L)

D
'

answer := ’'n’;

¢ while answer in {’N’,’n’] do
begin
ClrScr;
3 writeln;
writeln;

write(b,’Current option name is ’);
write(optionname,’, change to (20 char): ’);
L readin(optionnanme);
writeln:;
write(b,’Is ’,optionname,’ correct ’);
. write(’(Y or N)?2 ’);
readln(answer):;
CheckYorN(answer)
end; ({while answer in no}
GoTo 2
end; (case of 1 - change option name}

-

e g

: *2’: begin
: answer := ‘n’;
g while answer in [’N’,’n’] do
A begin
ClrScr;
% writeln;
. writeln;
j write(b,’Current option originator is ’);
-~ write(optionorigin,’, change to (20 char): ’);
’ readln(optionorigin);
‘ writeln;
M write(b,’Is ’,optionorigin,’ correct ‘);
> write(’(Y or N)? ’);
¥ readln(answer);
Y CheckYorN(answer)
} end; (while answer in no)
GoTo 2;
> end; (case of 1 - change option namel
P.. ’3’: begin
> 3:ClrSer;
OK := false:
writeln;
write(b,’Select Technology Issue to change ’);
A writeln(’by its #’);
. for i 1= 1 to 15 do
) if optiontif{il.tiname = ’’ then
' numti := numti ¢+ 1;
f for i := 1 to numti do
writeln(’ ’,1:2,’) ’,optiontilil.tiname);
> writeln(’ ’,i+1:2,’) Change none ’):;
5 writeln;
4 write(b,b,’SELECTION: ’);
b while not OK do
< begin
" (81-) {Shuta of automatic error checkingl
readin(j);
»
LS
-
A
\Y 104
‘
e R e T ey e g a2 T T s e N

3

Yol

a a2 L -

1

r s

>l RN

Y

-
e

RIS CURT SRS R

(SI+) {Turns on automatic error checkingl
OK := (IOresult = 0);
if not OK or not (3 in (1..i+1]1) then

begin
write(b,b,’Not an option, Reselect: ’);
OK := false

end

end; (while not 0K}
if 3 =1 + 1 then GoTo 2;
ClrScr;
writeln:
writeln(b,optiontil(jl.tiname);
write(b, ‘Change Tech Issue Name (Y or N)? %);
readln(answer);
CheckYorN(anawer);
while answer in (’Y’,’y’] do
begin
write(’Change to (up to 80 char): ’);
readln(optiontil(jl.tiname);
writeln(’Is ’,optionti(jl.tiname);
write(’correct (Y or N)? ’);
readln(answver):;
CheckYorN(answer);
if anawer in [(’N’,’n’) then answer := ’‘y’
else anawer := ‘n’
end; (while changing tiname}
write(b,’Schedule is ’,optiontiljl.tischedule);
write(’, do you wish to change (Y or N)? ’);
readln(answer);
while anawer in [(’Y’,’y’] do
begin
OK := false;
write(b,’Change to: ’);
while not OK do
begin
(8I-) {Shuts of automatic error checking}
readln(optiontiljl.tischedule);
(SI+]} {Turns on automatic error checking}
OK := (IOresult = 0);
if not OK then
begin
write(b,b,’Enter # again: ’);
OK := false
end
end; (while not OK}
write(b,’Ias ’,optiontif{jl.tischedule);
write(’, correct (Y or N)? *);
readln(anawer):;
if answer in [’N’,’n’] then answer := 'y’
else anawer := ‘n’
end; (while changing tischedulel
write(b, ’Risk is ’,optiontiljl.tirisk);

write(’, do you wish to change (Y or N)? ’);

105

AR A AP P T P A A S TSNS S

>4

4

AN Y)

} iSO

b e 2 X2 . AR LAMAAN,

-
P

o "%

RNl

readln(anawer);
while anawer in (’Y’,’y’l do
begin
OK := falsae;
write(b, "Change to: ’);
while not OK do
begin
(sI-} (Shuts of automatic error checking}
readin(optiontiljl.tirisk);
(81} {Turns on automatic error checking}
OK := (I0result = 0);
if not OK then

begin
write(b,b,’Enter # again: ’);
0K := false

end

end: (while not 0K}
write(b,’Is ’,optiontifjl.tirisk);
write(’, correct (Y or N)? ‘);
readln(anawer);
if answer in (’N’,’n’] then anawer := ’y’
else answer := ’‘n’
end; (while changing tirisk}
write(b,’Cost is ’,optionti()).ticost);
write(’, do you wish to change (Y or N)? ’);
readln(answer);
while answer in (’Y’,’y’] do
begin
OK := false;
write(b, 'Change to: ’);
while not OK do
begin
(sI-) {Shuts of automatic error checking)
readln(optionti()).ticost);
(s8I} {Turns on automatic error checking)
OK := (I0result = 0):
if not OK then
begin
write(b,b,’Enter # again: ');
OK := false
end
end; (while not OK}
write(b, 'Is ’,optiontil()).ticost);
write(’, correct (Y or N)? ");
readln(angwer);
if answer in (’N’,’n’] then answer := 'y’
else answer := ‘n’
end; (while changing ticost}
write(b,’Would you like to change another ’);
write(’Technology Issue (Y or N)? ’);
readin(answer);
if answer in (’Y’,’y’] then GoTo 3;
GoTo 2

106

end: (case of change a Tech Issue)
‘4’ : begin
with optionperformance do
begin i
while angwer in (’Y’,’y’] do
begin

ClrScr;
writeln;
writeln(b,’Select # of Value to Change’);
writeln; 2
writeln(b,’ Performance Valuesa’):;
writeln(b,’ -------------c---- ’);
writeln(b,’ 1) Coverage ’ ,coverage);
writeln(b,’ 2) Capacity ’,capacity);
writeln(b,’ 3) Quality ’,quality);
writeln(b,’ 4) Timeliness ‘,timeliness);
write(b,’ 5) Availability)3
writeln(availability):
write(b,’ 6) Survivability = ’); .
writeln(survivability);
writeln(b,’ 7) None’):
writeln;
write(b,’ SELECTION: ’):
readln(answer):
while not (angwer in (’1’..°7’]) do

begin !
write(b,”’ Reselect: ’);
readln(answer)

end:;

if anawer = ‘7’ then answer := ‘n’;
if answer in {’1’..’6’] then
begin .
0K := falae: N
write(b,’Change to: ’);
while not OK do
begin
{(sI-} {Shuts of automatic error checkingl n
readln(i); M
{s1+) {(Turns on automatic error checkingl
0K := (IQresult = 0);
if not OK then

begin

write(b,b, ’Enter # again: ’);

OK := false .
end .

end; (while not 0K}
case answer of

’1’?: coverage :
*2’: capacity :
’3’: quality := i .
‘4" timeliness := i; X
’S’: availability := i;

’6’: survivability = i

107 o

(]

.

S\t Nt R LS
.

oA LT B TR e N T R TR TR) '\ TR AL YL SRR TR LN TR ."‘._‘."‘.‘t‘*-‘\‘-"
(‘ N -'“- E ! :l o . e - ''. K] oo e --_§‘D.b"n -4~

1

«

LY
(4
end; (case of answer) N
answer := ‘y’; .
end {if answer in 1 to 6) o
end (while answer is yes] .
end; (with performance dol 3
GoTo 2 M,
end; (case answer of ‘4’} '
57 o
end (case statement!} \
end; (with tempoption do} N
optionrec := tempoption
end; (ChangeOptionlnformation} f;
overlay procedure Quit (Var quitindicstor:iinteger); £
(Quit - determines if a user really wants to quit. Uses the global E
variable quitindicator. If user wants to quit, Quit returns KA
a value of 1. If not, a value of 0. -
Object code for this procedure will be in dss.001. ;f
,
Calls CheckYorN
Variable - query: character to receive input. A
i: counting integer.} -
var query: char; oo
i integer;
begin ;{
i:= 0; :i
ClrScr; {'
for i := 1 to 10 do writeln; vy
writeln(b,’Do you wish to leave the program now?’);
write(b,’ Yes or No ("Y” or "N")? ’); s
readln(query);)
CheckYorN(query); }
writeln: -{
case query of Q
’Y’,’y’ :begin
ClrScr: N
for i := 1 to 10 do writeln; f
write(b,’You ’); }.
writeln(’have terminated execution of the’): ;
write(b,’AFSTC ’); .
writeln(’Decision Support System (DSS)’): 2
write(b); =
writeln(’for Space System Tradeoffs.’); :
quitindicator := 1 ‘-
end: N
‘N’,’n’:begin o
ClrScr: !
for 1 (=1 to 10 do writeln; -
108 ::’..

RO S SN SOt N P LU A N S A AL RO R
E}.rl'a};h.t.f":"z':.;‘g‘r* SR SO TS i A

write(b,’ Wait, you ’);

writeln(’will be returned -o the program’);

Delay(1500);
quitindicator := O;
end
end (case query of Y or N}

end: (Quit}

overlay procedure InputNewConcept(Var newconceptrecord: datafile):

{InputNewConcept - takea a record of type datafile and receivea a

new concept name and originator.

Calla CheckYorN

Vari

label

Var i
a

begin
Clr
wit

b

2

3

end;

. .."

ables - i,): counting integers.

answer: a character to receive input.l}

2,3;

»): integer;
nswer: char;

Scr;

h newconceptrecord do
egin

writeln;

write(”’ The new concept name, and the concepts);

writeln(’originator,’);

write(’ both no more than 20 characters, will ’):

writeln(’be input at’);

writeln(’ this time.’);

writeln;

write(’ Enter the new concept name: ’);
readln(conceptnane);

writeln;

write(’ Is ’,conceptname,’ correct (Y or N)? ‘);

readln(answver):

CheckYorN(answer);

if anawer in [’N’,’n’] then goto 2;
writeln;

twriteln;

write(’ Enter the concept originator:
readln(conceptorigin);

writeln;

write(’ Ias ’,conceptorigin,’ correct?

readln(answer);
CheckYorN(answer):
if answer in (’N’,’n’] then goto 3
end (with newconceptrecord}
(InputNewConcept)

109

o, e e e e ‘.r_‘.-_..-_:.-\'.'_:n.:.-.:.~_;.-

A ST OSSR

.

'):

(Y or N)? ’);

‘.

-

IO
» - i)

)

v <

. = o
& e

- . x_a
Yo l.- -1

Ay By -2y g “a

.

AR AN

O YPS

PP RS

AR TR P

| 2 U
i,.

'R

L

oL

NN
LGN

N0
. .
vt

.
“
.

.
o

o

3

AARHR

L)
Oy

(

: I;‘f"l!;’.

o o

. -'A.,o.'-."\"\ S

'
.-

o

OO R R I LS L, »"\."':"-

overlay procedure InputConceptOpti.ns(filename: Charl2;
anawer: char);

{InputConceptOptiona - Governing procedure that determines what
operation will be performed on a concept record.
filename of the appropriate file in the database and a

character answer.

Calls: InitializeConceptOption; ChangeOptionInformation; CheckYorN.

Variables - optionfile, a file of conceptoption records.

optionrec: a record of concept options.
i,J: integer counting variable.

numoptions,numrissues: # of options and tech iasues res.
option,origin: strings of up to 20 characters.

tempanswer: a character holding value.

OK: boolean: to determine if input is correct format.)
label 1,2,3,4;

Var optionfile: file of conceptoption;

optionrec: conceptoption;
i,j,numoptions,numissues: integer;
option, origin: Char20;
tempanswer: char;

OK: boolean:;

begin

Assign(optionfile,filenanme);
InitializeConceptOption(optionrec);
if answer = ‘1’ then
begin

Rewrite(optionfile);

GoTo 3

end;
Reset (optionfile);

2:ClrSer:

writeln:
writeln(b,’ Choose the appropriate number’);
writeln;

writeln(b,’ Input Optionsa’);
writeln(b,’ = = = ==ccc-e--c---)
writeln(b,’ 1) ADD an option’);
writeln(b,”’ 2) CHANGE an option‘);
writeln(b,’ [or part of onel’);
writeln(b,’ 3) DELETE an option’);
writeln(b,”’ 4) None of the above’):;
writeln;

write(b,’ SELECTION: ’):

readln(anawer);
while not (answer in (’1’,’2’,’3’,’4’1) do
begin
write(b,anaver,’ not an option. Reselect: ’);

110

RGP AL B A8

Receives a

readln(answer)

>

end;
case answer of
*1’: begin
if FileSize(optionfile) = maxnumoptions then
begin
writeln; .
write(b,’Only ’,maxnumoptions,’ options allowed ’); K
writeln(’per concept. You must remove’); .
write(b,’an option before you can input ’);)
writeln(’another.’); 3
Delay(1500); ‘
GoTo 2 3
end; (if over maxnumconcepts}
Seek(optionfile,FileSize(optionfile));
anawer = ‘y’;
GoTo 3 :
end; (answer of ’1’} .
*2’: begin A

numoptions := O;
Seek(optionfile,0);
Read(optionfile,optionrec);
while (optionrec.optionname <> ’’)
do numoptions := numoptions + 1;
ClirScr;
Seek (optionfile,0);
writeln;
writeln;
writein(b,’Select number of option to work with’);
. writeln;
writeln(b,”’ Concept Options’); X
writeln(b,’ = -e;cceccmeccooaa ’): .
for i = 1 to numoptions do K
begin
Read(optionfile,optionrec);
writeln(b,”’ ’,1,’) ’,optionrec.optionnane)
end;
writeln:
write(b,”’ SELECTION: ’);
readln(anawer);
while not (answer in [’1’..chr(numoptions+48)1) do
- begin -
: write(b,anawer,’ not an option, ’);
write(’please reselect: ’);
readln(answer) 9
end; ,
Seek(optionfile,ord(anaswer)-49);
Read(optionfile,optionrec);
ChangeOptionInformation(optionrec);
Seek(optionfile,ord(answer)-49);
Write(optionfile,optionrec);
GoTo 2 o
end; ({(case of Changing an Option)

111

CALL AN

LRy S A

XA

AN

1

.'
e

- "-

FarCag " 2

rat AN A
LN AN

>,

LAY

*

o/ L RERE AN

’3’: begin
numoptions i= O;
Seek(optionfile,0);
Read(optionfile,optionrec);
while (optionrec.optionname <> *’)
do numoptiona := numoptions + 1;
ClrScr;
Seek(optionfile,0);
writeln;
writeln;
writeln(b,’Select number of option to DELETE’);
writeln;
writeln(b,”’ Concept Options’);
writeln(b,” = =---sccco-co—-- ')
for i (= 1 to numoptions do
begin
Read(optionfile,optionrec);
writeln(b,’ *,i,’) ’,optionrec.optionnane)
end:;
writeln(b,’ ’,i+1,’) ’,’None’);
writeln;
write(b,’ SELECTION: ’):
readln(answer);
while not (anawer in [’1’..chr(numoptions+49)]) do
begin
write(b,answer,’ not an option, pleaae reselect:
readln{(anawer)
end;
if answer = chr(numoptions + 49) then GoTo 2:
tempanswer = answer;
Seek(optionfile,ord(answer)-49);
writeln;
write(b,’Confirm removal of ‘,optionrec.optionname);
write(’ (Y or N)? ’);
readln(answer):
if anawer in {(’n’,’N’] then GoTo 2
if (ord(tempanswer)-48) <> numoptions then
begin
Seek(optionfile,numoptiona-1);
Read(optionfile,optionrec);
Seek(optionfile,ord(tempanswer)-49);
Write(optionfile,optionrec)
end; (if)
InitializeConceptOption(optionrec);
Seek(optionfile,numoptions-1);
Write(optionfile,optionrec);
GoTo 2
end; (if answer is to delete)
‘4’ . GoTo 1
end; {(case of answer for main menul
3:ClrScr;
writeln;
with optionrec do

112

l):

TR TN TN T T,

% %% VI

begin
write(b,’What is the new option name? ’);
readln(optionnane);
write(b,’Ia ’,optionname,’ correct (Y or N)? *);
readln(answer);
if answer in [’N’,’n’] then
begin
write(b,’Change, ’,optionname:20,’ to: ’):
readln(optionnane)
end:;
write(b,’Who is the option originator: ’);
readln(optionorigin);
write(b,’Is ’,optionorigin,’ correct (Y or N)? *);
readln(answer):
CheckYorN(anawver):;
if anawer in [’N’,’n’] then
begin
write(b,’Change, ’,optionorigin,’ to: ’);
readlin(optionorigin)
end;
writeln;
write(”’ How many Tech Issues do you wish to ’);
write(’input (integer: 1-15)? %);
repeat
(s1-)
readin(numissues);
(SI+) -
OK := (I0result = 0);
if not OK then write(”’ Must be integer(1-15)’);
until OK:;
while not (numissues in {1..15]) do
begin
write(b,’This data base only allows 1S technology ’):;
writeln(’issues per concept option.’);
write(b,’Please reselect: ’): N
readln{(numnissues)
end; (while numissues not in 1-15}
for j := 1 to numissues do
begin
ClrScr;
writeln; .
write(’ Technology Issue - ’,3,’ out of ’);
- writeln(numissues);
writeln;
write(’ What is the Tech Isaue name? ’);
readln(optionti(jl.tiname);
write(’ What is the Tech Iasue risk ’); ;
write(’(1 to 5)? *); -
readln(optionti{jl.tirisk); <
write(’ What is scheduled number of years ’);
write(’to completion? ’); .
readln(optionti()).tischedule);
write(’ What is the cost to solve the issue? ’):

Bt et N

5

A rL LR

It »

¥ v ¥

. ‘e 'r"'r\ o ’u’ *

-
-

AT

o
'l

N &;'_.ul “ "y

. .

113]

. te™

'.'.‘-'.'._ IR
PP IR ¢

readin(optiontiljl.ticost);

writeln;

writeln(’ Name: ’,optionti{jl.tiname);

write(’ Schedule: ’‘,optionti(j].tischedule:2);
X write(’ Risk: ’,optiontiljl.tirisk,’ Cost: *);
. writeln(optionti{jl.ticost:8);
&' write(’ Is the above correct (Y or N)? ‘)
] readln(answer);

CheckYorN(answer);
if answer in [’N’,’n’] then) = 3 -1

- end; {for) 1 to numissues})

n if numisaues < 15 then

v begin

b for j = (numissues+1l) to 15 do
- begin

optionti(jl.tiname
optiontiljl.tirisk
. optiontifj).tiachedule :=
. optiontiljl.ticost := 0.0
: end (for 3}
> end; (if numissues < 15}
with optionperformance do
. begin
o 4:ClrScr;
. writeln;
~ writeln(b,’ ’,optionnanme);
,f writeln(b,’Performance values (1 - S5)’):
K writeln;

write(b, ’What is the coverage value? ’);
‘- readln(coverage);
’ write(b,’What is the capacity value? ’);

i readln(capacity);
! write(b,’What is the quality value? ’);
4 readin(quality);
write(b,’What is the timeliness value? ’);
& readln(timelinesas);
- write(b,’What is the availability value? “);
< readin(availability);
j write(b,’What is the survivability value? *);
3 readin(survivability);
writeln;

o writeln(b,’Cov Cap Qua Tim Ava Sur’);
3 write(b,’ ’,coverage,’ ’,capacity,’ ’,quality);
Y write(’ ’,timeliness,’ ’,availability,”’ Y
§ writeln(survivability);
- write(’ Are the above performance values ’);
B write(’correct (Y or N)? ’);
5 readln(answer);
. CheckYorN(answer);
. if answer in [’N’,’n’] then GoTo 4
. end {(with optionperformance)
X end; (with optionrec)

Write(optionfile,optionrec);
\
"
4
. 114
»
Cad
o«
’,
e A T A T A T (‘"Hfﬁf\fﬁrﬁf'ﬁ L R TRV DN O S SRt O R SR IO

GoTo 2;

1:ClrScr:
for i =1 to 11 do writeln;
writeln(b,’Input Program Terminated’);
Close(optionfile)

end; {InputConceptOption)}

overlay procedure PrintPreviousRun(Var userdata: userfile;
section: integer);

{PrintPreviousRun - prints to printer a previous user run represented
by the userdata variable. The section to be printed is
the variable section.
Object code stored in dss.001.

Calls - PrintOptionComparisons

Variables i,numoptions: counting integers.}
label 1,2,3,4,5,6;
Var i,numoptions: integer;

begin
numoptions := 0;
for i := 1 to maxnumoptiona do
if (userdata.optionslil <> * ‘) then
numoptions := numoptions + 1;
with userdata do
begin
case section of
1: ;
2: GoTo 2:
3: GoTo 3;
4: GoTo 4:
S: GoTo S;
6: GoTo 6
end; (case of section}
ClrScr:
write(Lsat,b,’ ’):
writeln(Lat,’PRIORITIZATION OF ATTRIBUTES (CRITERIA)’);
writeln(Lat,’ ’);
writeln(Lst,b,’ ’ ,conceptnane);
write(Lsat,b,”’ Criteria Priority’);
writeln(Lst,’-Weight’);
write(Lat,b,’ = ssc-cece-- eececeaa- ’):
writeln(Lst,’------- Y
writeln(Lat,’ *):
write(Lat,b,’ Performance ’):
with priorityvectors do
begin
writeln(Lst,criteriapriorities(1]1:8);

J’
".';,;.),1-', BN

LF

2 % % 20]

» TR FIE T

vy &ET T L

v,

DN RN)

P 2% e pat A L L 3 AT i A A it i it kA I A T 2 5 2 At o Pl gD gri i e hath o™ e gl oME u il R e o

el S}

write(Lst,b,”’ Schedule S H
writeln(Lst,criteriapriorities{2]:8);
write(Lst,b,’ Risk ’)e
writeln(Lst,criteriapriorities{31:8);
write(Lst,b,’ Cost ‘)
. writeln(Lst,criteriapriorities{41:8);
writeln(Lst,’ ’);
: end; (with priorityvectors do}
writeln(Lst,b,”’ Consistency Ratio is: ’,CRvector({l11:6);
writeln(Lst,’ ’);
writeln(Lat,b,’ Comparison Scale Value’):
writeln(lLst,b,” = =-==ceveue- = cececmcceca-- ‘)
. with judgements do
; begin
! if criteriachoices({l]l in (’P’,’p’] then
write(Lst,b,”’ Performance over Schedule ’)
; else
; write(Lst,b,’ Schedule over Performance ’);
. writeln(Lst,’ ‘,criteriachoices(2});

if criteriachoices{3] in [’P’,’p’] then

i write(Lst,b,”’ Performance over Risk)
. else
write(Lst,b,”’ Risk over Performance ’):
writein(Lst,’ ’,criteriachoices(4l);
if criteriachoices(S] in [’P’,’p’] then
write(ist,b,’ Performance over Cost)
else
write(Lst,b,’ Cost over Performance Y
writeln(Lst,’ ‘,criteriachoices(6]);
if criteriachoices(7] in (’S’,’s’] then
write(Lst,b,”’ Schedule over Risk)
else
write(Lst,b,’ Risk over Schedule '’
writeln(Lat,’ ’,criteriachoices(8]);
if criteriachoicesa(9) in (’S’,’s’] then
2 write(Lat,b,’ Schedule over Coat *)
. else
write(Lst,b,”’ Cost over Schedule ’):
- writeln(Lst,’ ’,criteriachoices{101);
N if criteriachoicea(l1] in [’R’,’r’] then
. write(Lst,b,”’ Risk over Cost)
; else
write(Lst,b,”’ Cost over Risk ")
writeln(Lst,’ ’,criteriachoicea{12])

] end; (with judgements dol
| writeln(lst,’” "):

X GoTo 1;
] (I.II..I..!I..I.I.’.'...QCI.....’Iil..ll.l...l..lll.QI.IQI.IQlI]
2:ClrScr:;
i writeln(Lst,b,’ ATTRIBUTE - PERFORMANCE’):
writeln(lLst,b,”’ ’ ,conceptnane):;
N 116
g S T 0 0 R S R R R R R SRR S R A O

writein(Lst,b,’” ’);

write(Lst,b,’ Cption Name S H
writeln(Lst, ’Priority’);
write(lLst,b,” = = =----------- ’y:
writeln(lLst,’~----~--- ‘)

) writeln(lst,b,’ ’);
for i (= 1 to numoptions do

begin
write(Lst,b,” ’,i,’) ’,options{il:20,’ ")
writeln(Lat,priorityvectors.performancevector(ij:8)
end;
writeln(Lsat,’ ’);
writeln(Lst,b,’ Consistency Ratio: ’,CRvector{2]:6);
writeln(Lst,b,’ ’);
write(Lst,”’ Based on the criteria of performance’):

writeln(Lst,’, your comparisons were:’);
PrintOptionComparisons(judgements.performancechoices,
numoptions);

GoTo 1:
[Ql!l!ll!l!!!ﬂl!’l!!!’llIQll.III!!RQIQ‘lﬂ*lIll!!ll!!l!lllll.llll.]
3:ClrScr:
writeln(Lst,b,’ ATTRIBUTE - SCHEDULE’):
writeln(Lst,b,’ ’ ,conceptname) ;
, writeln(lLst,b,’ ’):
3 writeln(Lst,b,’ Option Name Priority’);
) writeln{(Lst,b,” = = ==-=cescece- = ceece-c-- ‘)

writeln(Lst,b,’ ’);
for i != 1 to numoptions do

begin
write(Lst,b,” “‘,i,’) ’,options{il:20,”’ ‘)
writeln(Lst,priorityvectors.schedulevectoril:8)
end:;
writeln(Lst,b,’ ’);
writeln(Lst,b,”’ Consistency Ratio: ’,CRvector(31:6):
writeln(Lsat,b,’ ’);
write(lLst,’ Based on the criteria of schedule, ’):

writeln(Lst, ’your comparisons were:’):
PrintOptionComparisons(judgements.schedulechoices,
numoptions);
GoTo 1:
(l'lIll.ll‘llil!!lIlllll'lll”llll!!lIIQQ’IQI!IQQI!l!'l..l!ll!ll!)
4:ClrScr;
writeln(Lst,b,”’ ATTRIBUTE - RISK’):
writeln(Lst,b,’ ’ ,conceptnane);

) writeln(Lsat,b,”’ Option Priority’);:
writeln(Lst,b,’” = ==<c-e- eeaa-a-- ‘)
writeln(Lst,b,’ ’):
for i != 1 to numoptions do

begin

write(lLat,b,’ ’,i,”) ’,options(il:20);

writeln(Lat,’ ’,priorityvectors.riskvector(i]:8);
end:;

writeln(Lat,b,’ ’):

117

~

I I B T T e e e e b e e e e T A Ae AT ST e T e e T e e
.'4‘.'1 oF ¢, .'-"._‘c‘-"ﬂ'.“f.'-\- " N‘:‘ .' 0 ey e et ey AU » f‘_‘ -.. . ._’.‘ TS e T e 3

| N ISP IT S

o e > o’ <, L ARy A AL

‘;. . r". L

JERERARA

z

.

.

\\ﬁ"#ﬁ\

* .s .s ‘5‘$

X

rﬂﬂ_

|,

R P A A I S A T A R AR S C DD I S ST N S I S R AT A SO 3 ST My

writeln(Lst,b,’ Consistency Ratio: ’,CRvectoriq4j:6);
writeln(lLst,b,’ ");
write(Lst,”’ Based on the criteria of risk, your ’):

writeln(Lst,’comparisons were:’):

PrintOptionComparisons(judgements.riskchoices,numoptions);

GoTo 1;
(Illl!llll!lllll!!IQQIIQIIQII.!Il!i’llIIQlIIIQIII’!IIII.QIQI'QIQ’)

S:ClrScr;

writeln(Lst,b,”’ ATTRIBUTE - COST’):

writeln(Lst,b,”’ ’,conceptnane);

writeln(Lst,b,”’ Option Priority’):

writeln(lLst,b,” = ==cx-- ceeeeea- ‘)

writeln(Lst,b,’” ’):

for i = 1 to numoptions do

begin
write(lLst,b,” ’,i,’) ’,optiona(il:20):
writeln(Lat,”’ ’,priorityvectors.costvector(il:8);
end:
writeln(Lst,b,’” ’);
writeln(Lst,b,’ Consistency Ratio: ’,CRvector(S51:6);
writeln(Lst,b,’ ’);
write(Lst,b,’ Based on the criteria of cost, your °):

writeln(Lst, ‘comparisons were:’);
PrintOptionConparisons(judgements.costchoices,numoptions);

GoTo 1:
(.l!.!l.DII.III.IIilI.!l.ll.'.l..lll'!...ll.I.l..l.’.l..l'l..IIQQ)
6:ClrScr;
writeln(Lst,b,’ FINAL PRIORITIES’):
writeln(Lst,b,” = sececcmccecaaoo ‘)
writeln(Lsat,b,’ ’,conceptname);
writeln(Lst,b,’ Option Priority’):
writeln(Lst,b,’ = =eee-c meeee-e-)
for i {= 1 to numoptions do
begin
write(Lst,b,” ’.,i,’) ’,options{il:20,’ ’);
writeln(Lst,priorityvectors.finalpriorities(i]):8)
end:;
writeln(Lat,b,’ %)
write(Lst,’ This is the final priority of the ’);
writeln(Lsat, ’options for thia concept,’);
write(Lst,’ based upon your judgements of the ’);
writeln(Lat,’importance of the criteria’);
write(Lst,’ and the ’,numoptions,’ optiona com’);
writeln(Lst,’paired against each other, with respect’);
writeln(Lst,’ to the criteria.’);

writeln(Lst,’ *):
[!lll.l.lllll.l""l.ill”..‘l‘!.QillllillllQOQI'IQQI.IQQQQIQ.I.Q)
end; (with userdata do}
liwriteln
end; (PrintPreviousRecord}

118

-

- TN .
. ._-.\ .\q \..\. .

overlay procedure ViewPreviousRun(Var userdata: userfije:
section: integer);
{ViewPreviousRun - Same as PrintPreviousRun except this procedure
prints to the screen.
Object code is assigned to dss.001.

Call view option comparisons.

N

Variables(extra) : hold, a character to hold the screen for a
return.) R

label 1,2,3,4,5,6: R

Var i,),numoptions: integer;
hold: char;

begin -
numoptions :s= O;
for i = 1 to maxnumoptions do

b if (userdata.options{il <> * ’) then

numoptions := numoptions + 1;

o oI

with userdata do
begin
case section of

1: ;
2: GoTo 2:
3: GoTo 3;

' 4: GoTo 4; x
! S: GoTo 5; R
f 6: GoTo 6 By
end: (case of section) g
{ ClrScr; -
writeln(’ PRIORITIZATION OF CRITERIA (ATTRIBUTES)’): =
writeln(’ ’ ,conceptnane); .
writeln(’ Criteria Priority-Weight’); ~
! writeln¢* = =-=-===-=-- = ceeeceemccec---~ ’)s :
writeln; J
write(’ Performance ’): ;
with priorityvectors do i
begin
writeln(criteriapriorities(1]1:8);
write(’ Schedule *);
writeln(criteriaprioritiea(2]:8); -
write(’ Riask *): -
writeln(criteriaprioritiea(3]1:8); -
write(’ Cost ’): -
) writeln(criteriapriorities(4]:8) -
end; (with priorityvectors do} :
writeln; /
writeln(’ Consistency Ratio is: ’,CRvector(l]:6); -
writeln:;
writeln(’ Comparison Scale Value’):
119 K

et a® oo TS R P S T TN N A ey m et L P T T T IR Y A T P TR AR
~I-q' . \n:“ T O TS DS -._‘ o '.-;'.'. K ‘e P IR '.-'_\" T T e e e AR SNSRI ot

M i e
.\'} <. \q’\q «

R

>,
»
: writeln¢(’ = ---e-eewe-- meeeeeo--. ‘)
" with judgementa do
begin
if criteriachoices(1l in ({’P’,’p’]l then
j write(’ Performance over Schedule)
> else
: write(’ Scheduie over Performance)
‘¢ writeln(criteriachoices(21);
“ if criteriachoicea(3] in [(’P’,’p’] then
write(’ Performance over Riak)
I elae
~ write(’ Risk over Performance ")
X writeln(criteriachoicea(4l);
- if criteriachoicea(S] in (’P’,’p’] then
o write(”’ Performance over Coat)
else
. write(’ Cost over Performance ’):
A writeln(criteriachoiceal(6]l);
Y if criteriachoicea{7] in [’S’,’a’] then
N write(’ Schedule over Risk ’)
b elae
write(’ Risk over Schedule ’):
= writeln(criteriachoicea(81);
o if criteriachoices(9] in (’S’,’s’] then
: write(’ Schedule over Cost ’)
® else
- write(’ Cost over Schedule 7y
writeln(criteriachoices{101);
. if criteriachoices(11] in [’R’,’r’] then
- write(’ Risk over Cost)
’ else
. write(’ Cost over Risk ')
writeln(criteriachoiceal121)
. end; (with judgements dol
‘: writeln:
- write(”’ Preass RETURN when finished reading: ’);
N readln(hold):
2 GoTo 1:
(IIlIIIIIIiIIII'...'I.l'.!‘l.l...li.....III.'!I.C.III'!II....'I]
. 2:ClrScr;
o writeln(b,’ ATTRIBUTE - PERFORMANCE’);
- writeln(b,’ ’ ,conceptnane);
y writeln;
o writeln(b,’ Option Name Priority’);
. writeln(b,’ = = ====w-eceee cem-e-e- ’);
e writeln:
> for i = 1 to numoptions do
5 begin
- write(b,i,’) ’,optionalil;20,’ ’y;
3 writeln(priorityvectora.performancevector(il:8)
end;
writeln:;
b

120

IR

R UL SN IR ST BRI SR S R I S) - e s R S U TV L I Ve e e
e (._". I."..'.'."- l,'-l'- LSRN \"-."- e N e %t O 0 IR N Ta e e N et N "'-'-(\' '-('.\. AT et e et

A ~t

-
-

b
: writeln(b,”’ Consistency Ratio: ’,CRvector{21:6);
N writeln;
5 write(’ Based on the criteria of performance, your ’);
writeln(’comparisons were:’);
. WriteOptionComparisons(judgements.performancechoices,
Ke numoptions);
. write(’ To continue, presas RETURN: ’);
g readln(hold);
. GoTo 1;
(QI!!!IIII.QI!I!!II‘l’!l!!!IQIIQQ"!Q.IDQIQ!.!IQ!lll!l!!llll!IIQI)
: 3:ClrScr;
- writeln(b,”’ ATTRIBUTE - SCHEDULE’):;
- writeln(b,”’ ’ ,conceptname);
A writeln;
- writeln(b,”’ Option Name Priority’);
writeln(b,’” --=--=--=---- = cecewe--- ‘)
) writeln;
- for 4 (= 1 to numoptions do
i begin
. write(b,i,’) ’,options(il:20,’ ‘)
" writeln(priorityvectors.sachedulevector{i]:8)
end;
’ writeln;
g writeln(b,’ Conajatency Ratio: ’,CRvector(31:6):
- writeln;
) write(’ Bagsed on the criteria of achedule, your ’):
% writeln(’comparisons were:’);
WriteOptionComparisona(judgementa.achedulechoices,
- numoptions);
. write(b,’To continue, press RETURN: ’);
~ readlnc¢hold);
X GoTo 1;
\‘ (!lll!llllIIIQIl!.l..llI'Illl!ﬂl!lIII!IIQQllll.!ll!l!.llllll.llll)
* 4:ClrScr;
writeln(b,’ ATTRIBUTE - RISK”):
writeln(b,”’ ’ ,conceptnanme);
, writeln(b,’ Option Priority’);
. writeln(b,” -~=---- cece-a- ’):
A writeln;
for i := 1 to numoptions do
begin
g write(’ ‘y1,’) ’,options(il:20);
S writeln(’ ’,priorityvectora.riskvector{il:8);
. end;
N writeln;
- writeln(b,’ Consistency Ratio: ",CRvector(4]1:6):
; writeln;
u' write(’ Based on the criteria of risk, your ‘)
) writeln(’comparisons were:’);
WriteOptionComparisons(judgements.riskchoices,numroptions);
¢ write(’ To continue, press RETURN: ’);
0 readin¢hold):

GoTo 1:

121

(enanne

S:

I'IIQ.I!I.III'II.II.lll'l.lllllIIIQQI.III!IQIIIQIIIQIIQ!QI)
ClrScr;
writeln(b,”’ ATTRIBUTE - COST’):
writeln(b,’ ’ ,conceptnane);
writeln(b,”’ Option Priority’);
writeln(b,’ ---=-- = --ee---- ')
writeln;
for 1 := 1 to numoptions do
begin
write(’ ’,1,’) ’,optiona(il:20):
writeln(’ ’,priorityvectors.costvector(il:8);
end:
writeln;

writeln(b,’ Consiatency Ratio: ’,CRvector(5]1:6);
writeln;

write(’ Baased on the criteria of cost, your *);
writeln(’comparisons were:’);
WriteOptionComparisona(judgementa.costchoices,numoptiona);

write(’ To continue, press RETURN: ’);
readln(hold);
GoTo 1;
(II!Ill!lllll'lllllllll!l.l.l!..l’!!l.l!l!l!Ql!l!.lllll!llll.llll)
6:ClrScr;
writeln(b,’ FINAL PRIORITIES’);
writeln(b,” = --------v-ce--o- ’);
writeln;
writeln(b,’ ’ ,conceptnanme);
writeln(b,’ Option Priority’);
writeln(b,’ -=v=e-~ = ecece=ea- ‘)
for i := 1 to numoptions do
begin
write(’ ’,i,”) ’,options(il}:20,’ ’):
writeln(priorityvectors.finalpriorities(i]:8)
end;
writeln;
write(’ This is the final priority of the options ’);
writeln(’for this concept,’):
write(’ based upon your judgements of the importan’);
writeln(’ce of the criteria’);
write(’ and the “,numoptiona,”’ options compared ag’);
writeln(’ainat each other, with respect’);
writeln(’ to the criteria.’);
writeln:
write(b,’To continue, press RETURN: ’):
readin(hold)

(l...l’.I.II.II...I.I..I..II.IIIlIlQl.IIII!.'QIII...I'.IIIIllll.!)
end; (with userdata do}
liwriteln

end;

(ViewPreviousRecord)

122

j» -

1"a®2%2%2"a"

[RX Y

(.IllllIlﬂlllllllilllilliﬂlllQlliiﬁiﬁlliiilllliﬁliiIIIIIIII.I.'.!

ARRsRRRRREN INCLUDE FILE EXTRA3.DSsS segEsRNRaANRRRS

.ilIIQ’.l..II.II..I!.II.II!.’I!I.'.Q.I.!I{I!QlIlIIIIIII.QiIIIQII)

overlay procedure CriteriaComparisons(Var comparisona: matrix;
concept: Char20; Var selections: outputdatafile);

{CriteriaComparisons - procedure that actually compares the
criteria: performance, cost, schedule and risk. Receives the
comparison matrix, the concept name and selections, a character
array to store the users choices.

The object code for this procedure is stored in dss.O0O0l.

Calls GetInfo, Compare
Variables - i,): counting integers.
Q1,02,A1,A2,hold: characters that receive data
input.}
label 2:

Var i,3:! integer;
Q1,Q2,P,S,R,C,hold: char;

or i i= 1 to 4 do
begin
for j:= 1 to 4 do comparisons{i,j] =1
end;
GetInfo(53,64); (comparison procedure explanation biock 2}
readin(hold);

ClrScr:

writeln(’ Comparison of Criteria’);
writeln;

writeln(’ ’ ,concept);

writeln:

writeln(’ SCALE’):

writeln(’ 12345678289’):
writeln(’ R %)
writeln(’ equal complete dominance’):
writeln;

write(b,’ Performance va Schedule: ’);
readln(Ql1,Q2);

i :=1; 3 1= 2;
Compare(conmparisons,?P,S,Q1,02,i,3);
selections(l]) := Q1:

selectiona(2] := Q2;

123

. '.-."'-."-."\' o g“.-;'-".-.' o e L -.'.o_' ..'.\‘ e

v e 0 5 "%

LIPS

E e ah an ob ax e g o B B e o e

- o WTH M I RENTEYR g A0 DA DA A S U B 22 Ao tph Saf Nal iy o«

write(b,” Performance vs Risk: ’):
readln(@1,Q2);
J = 33
Compare(conparisons,P,R,Q1,Q82,1i,3);
selections(3] := Q1:;
selectionsa({4] := Q2;
write(b,’ Performance vs Cost: ’);
readln(Ql,Q@2);
) = 43
Compare(comparisons,P,C,Q1,Q2,1i,3);
selections(S] := Q1;
selections(6] := Q2;
write(b,’ Schedule va Risk: ’):
readln(Ql,Q2);
i = 233 1= 3;
Compare(comparisons,S,R,0Q01,02,i,3);
selections(7] := Q1:;
selections (8] := Q2:
write(b,” Schedule va Cost: ’);
readln(Q1,Q2):
) = 4;
Compare(comparisons,S,C,Q01,Q02,i,3);
selections{9] := Q1:
selections(10] := Q2;
write(b,’ Risk vs Cost: ’);
readln(Ql,Q2);
i = 333 = 4;
Compare(comparisons,R,C,Q1,Q02,i,3);
selections(11] := Ql;
selectiona{12] := Q2
end; {CriteriaComparisonsi]

overlay procedure GetPerformanceVector(Var inputfilerecord:

userfile; Var quitindicator: integer);

{(GetPerformanceVector - procedure that finds priorities of concept

options given the criteria is performance.
Object code is stored in dss.0O0l1.

procedure Calls: GetInfo,AHP,CheckYorN, OptionComparisonsa}
label 2;

Var optionfile: file of conceptoption;
optionrec: conceptoption;
performancematrix: matrix;
numoptions, i, sum: integer;
answer: char;
mean: real;

begin
Assign(optionfile,inputfilerecord.optiondata);
Reset (optionfile);
numoptions := FileSize(optionfile);

124

o’

¢
\

e B

” (] »
A'&)'.' e

o'y

b
[SR N

2:GetInfo(74,81); {Performance Explanation]
write(b,b);
readln{(answer)
CheckYorN(anawer);
case answer of
’Y’,’y’ tbegin
GetInfo(30,53); (AHP comparison scalel
write(b,’Press RETURN to continue: ’);
readln(answer)
end;
IN"InI: [
end: (case of answer}
GetInfo(81,102); {Performance Scale}

writeln;

write(b,’ To continue, press RETURN: ’);
readin(anawer);

ClrScr;

writeln;

writeln(b,” ATTRIBUTE - PERFORMANCE’):
writeln(b,”’ ’,inputfilerecord.conceptnane);
writeln(b,”’ Performance Scale’):;
writeln(b,”’ 1 2 3 4 5’);
writeln(b,”’ \Deficient \Meets \Exceeds’);
writeln(b,”’ Performance Requirements’);

aum := O
write(’ ‘)

for i = 1 to numoptions do

begin

BUm = sum + 1:
Read(optionfile,optionrec);
inputfilerecord.options{i] := optionrec.optionnanme;
write(’ *»i,’) ’,optionrec.optionnanme);
if sum = 3 then
begin
writeln;
write(b)
end
end;
writeln;
Seek(optionfile,0);
writeln;
write(b);
for 1 = 1 to numoptions do write(’ OPTION ’,i,’ ’ye
writeln;

write(’ Coverage ")
for £ := 1 to numoptiona do
begin
Read(optionfile,optionrec);
write(’ ’ ,optionrec.optionperformance.coverage);
write(’ ’)
end;
writeln;
Seek(optionfile,0);
write(”’ Capacity ‘)

125

¢

o
3
T
]
s
.
t
.
«

io

for 1 = 1 to numoptions do
begin
Read(optionfile,optionrec):
write(’ ‘,optionrec.optionperformance.capacity):
3 write(’)
3 end;
writeln;
. ’ Seek(optionfile,0);
write(’ Quality ’);
for i 1= 1 to numoptions do
begin
Read(optionfile,optionrec);
write(’ ’ ,optionrec.optionperformance.quality):
write(’)
end;
writeln;
Seek(optionfile,0);
write(”’ Timeliness)
for i (= 1 to numoptions do
begin
Read(optionfile,optionrec);
write(’ ‘’,optionrec.optionperformance.timelinesa);
write(’)
end;
writeln;
N Seek(optionfile,0);
' write(’ Availability ’);
for i := 1 to numoptions do
begin
Read(optionfile,optionrec);
- write(’ ’,optionrec.optionperformance.availability):
write(’ ’)
end;
writeln;
Seek(optionfile,0);
write(’ Survivability’);
for i = 1 to numoptions do
begin
Read(optionfile,optionrec);
write(’ ’,optionrec.optionperformance.survivability); f

> s s

PN R AR

[AR A %

ata

write(”’ ")
end;
writeln;
Seek(optionfile,0);
writeln:
with optionrec do
begin
with optionperformance do
begin {
write(’ MEAN ’)e
for i := 1 to numoptions do 1
begin
sum := O

e

PO

NS

126

L
.

. e fa . e . . -t
P R e PR AR T A
LA SRRy DA 'A*.““'“._‘

Lot WO ? $ ad ‘Al At X VOWUVLUW N Y Al TN . it “xary o il ate piee ST SR AE AN 0L 'k

o

Read(optionfile,optionrec);
8um := coverage + capacity + quality + timeliness:;
sum !s sum + availability + survivability;
nean := sum/6;
write(mean:6,’ ’)
end; { for i }
writeln
end { with optionperformance}
end; { with optionrec)
writeln;
. with inputfilerecord do
begin
OptionComparisons(performancenatrix,numoptions,
judgementsa.performancechoices);
AHP(performancematrix,priorityvectors.performancevector,
numoptions,CRvector(2]l);
ClrScr;
Seek(optionfile,0);
. writeln;
writeln(b,’ ATTRIBUTE - PERFORMANCE’):
writeln(b,’ ’,conceptnanme);
writeln(b,’Option Name Priority’);
writeln(b,’~-------=~-~-- eeemen-o ’)e
for i := 1 to numoptions do
begin
Read(optionfile,optionrec);
write(’ ’);
= write(i,’) ’,optionrec.optionname:20,’ ’);
writeln(priorityvectors.performancevector(i]:8)
end:
writeln;
writeln(b,”’ Conaistency Ratio: ’,CRvector{21:6)
end; (with inputfilerecord do}
writeln;
write(’ This is the prioritized list of the *):
writeln(’options based on’);
write(’ the criteria of performance. If the ’):
writeln(’consiastency ratio is’);
. write(’ greater than 1.0E-0l1, a high degree of ’);
. writeln(’inconsistency is’);
write(’ indicated in your comparisons. Is it *);
write(’acceptable (Y or N)? %)
. readln(answer);
CheckYorN(anawer);
) if answer in [’N’,’n’] then
begin
writeln;
write(b,’Okay - we will do the comparisons over ’):
writeln(’again.’);
Delay(1500);
Seek (optionfile,0);
GoTo 2
end;
writeln;

AR

.
")I A]

- -
. o .

U

127

e el R T R e N B BT N S
‘A .;f.: R U I LA I 2 I S SR LR Dt N A

)
'

Ry

)

‘. write(’ You may quit at this time and your inputs ’);
} writeln(‘will be saved for use at a *);

‘ write(’ later time. Q or q and RETURN to quit, or “):

write(’RETURN only to continue: ’):
readln(anaver);
! if (anawer in {’Q’,’q’]) then Quit(quitindicator);
W) . Close(optionfile)
. end; {GetPerformanceVector)

overlay procedure GetScheduleVector(Var inputfilerecord:
userfile; quitindicator: integer);

{ GetScheduleVector - finds priorities based on schedulel
& label 2;

Var optionfile: file of conceptoption;
optionrec: conceptoption;
schedulematrix: matrix;
i,j,numoptions,numti,sum: integer:
answer: char;
mean: real;

Sy
LaNHy

| L7

begin

Assign(optionfile,inputfilerecord.optiondata);

Reset (optionfile);

numoptions := FileSize(optionfile);

if numoptions > 5 then numoptions := 5;
o writeln;
:{. 2:GetInfo(102,112);
Lhd writeln;
*: write(’ Do you wish to review the Comparison Scale ’);
N write(’(Y or N)? ’);

readln(answer);

. CheckYorN(answer);
.. if (anawer = ’Y’) or (answer = ’y’) then
T begin
- GetInfo(30,53);
o write(b,’To continue, preas RETURN: ’):
) readln(answer)

end:
ClrScr:
writeln(b,’ ATTRIBUTE - SCHEDULE’):
writeln(b,’ ’,inputfilerecord.conceptnane);
writeln(b,b,” # Years’):
writeln(’ Concept Option SUNM MEAN’);
writeln(’ = -~==e-c-v---cso- - -——=’):
writeln;
for i 1= 1 to numoptions do

begin

DO Rt]
P N R R

>

b)
ALs -'J‘.:’J P

numti := O:
Read(optionfile,optionrec);

128

L
OIS

fo s s d

- A

! g -‘-A"—I' l’./

B
PR,

NI

» L

£ s

SSNLAN

DA

|

"ty
A AP A

for 3 =1 to 15 do
if optionrec.optiontiljl.tiname <> °’
then numti = numti +« 1;

for j != 1 to numti do sum :=
sum ¢+ optionrec.optionti{jl.tischedule;
mean := sum/numti;

write(’ ‘,i,’) ’,optionrec.optionname:20,’ ’):
writeln(sum:3,’ ’,mean:8)
end; (for)}
writeln;
write(’ Would like to see a particular option ’):
writeln(’broken down’);
write(’ into its Technology Iasues (Y or N)? ’);

readln(answer);
CheckYorN(anawer) ;
while (anawer = ’Y’) or (anawer = ‘y’) do
begin
sum := O;
mean := O;
writeln:
write(’ Please input the number of the option ‘);
write(’you wish to view: ’);
readln(answver);
i !z ord(anawer) - 48;
while not (i in [1..numoptionsl]) do

begin
write(’ Number selected must be from 1 to ’);
writeln(numoptions,’ as that is the number ’):
write(’ of options for this concept. ’);

write(’Please reselect: ’);

readln(answer):

i = ord(anawe.) - 48

end;
ClrScr;
Seek(optionfile,i-1);
Read(optionfile,optionrec);
with optionrec do

begin
numti := O;
writeln;
writeln(b,’ ’,optionname:20);
writeln(b,b,b,’ # Years to Solve’);
write(b,’ Tech Isaue NAME’):
writeln(b,’SCHEDULE’);
write(b,’” = -c-cec----eno--- ’);
writeln(b,’--=~----~ ’);
writeln:

for) =1 to 15 do
if optionrec.optionti(jl.tiname <> *~
then numti := nuati + 1;
for j := 1 to numti do

begin
write¢’ ’,3:2,’) ’,optiontiljl.tinane:45);
writeln(’ ‘,optionti[jl.tischedule:2);

129

2R LA

sum {= sum + optiontiljl.tischedule
end;
mean = sum/nuati;
writeln;
write(b,’SUM = ’,sum:3,’” ! ‘)
writeln(’MEAN = ’,mean:8)
end;
writeln;
write(’ Do you wish to view another option ’);
write(’(Y or N)?2 ’);
readln{(answer);
CheckYorN(answer)
end;

ClrScr;

Seek(optionfile,0);

writeln(b,’ ATTRIBUTE - SCHEDULE’);

writeln(b,”’ ’,inputfilerecord.conceptnane);

writeln(b,b,’ # Years’);

writeln(’ Option Name SUM MEAN’);
writeln(* = s-=-s---c-- -—- -—-==’):
writeln;

for i := 1 to numoptions do

begin

sum = 0

nunti := O;
Read(optionfile,optionrec);
for j := 1 to 15 do
if optionrec.optiontiljl.tiname <> °’
then numti = numti + 1;

for 3 f= 1 to numti do sum :=

sum + optionrec.optiontiljl.tischedule;
mean := sum/numti:;

writet(’ ’,i,’) ’,optionrec.optionname:20,’ I
writeln(sum:3,”’ ’ ,mean:8)
end;
writeln:
with inputfilerecord do
begin

OptionComparisons{(schedulenatrix,numoptions,
judgements.schedulechoices);

AHP(schedulematrix,priorityvectors.schedulevector,

numoptions,CRvector(3])

ClrScr;

writeln(b,’ ATTRIBUTE - SCHEDULE’):;

writeln(b,’ ’,concept) ;

writeln;

writeln(’ Option Name Priority’);

writeln(* = =cececaec-ce- ceeee-e- ’):

writeln:;

Seek(optionfile,0);

for i := 1 to numoptions do

begin

Read(optionfile,optionrec);

130

.
’

W write(* ’,i,’) ’,optionrec.optionname:20,’ ")
Q writeln(priorityvectors.schedulevector(il]:8)
2 end:
writeln;
E. writeln(’ Consiastency Ratio: ’,CRvector(31:6)
end; (with inputfilerecord do}
4 writeln:;
5 write(”’ This is the priority vector of the ");
N writeln(‘options based upon’):
write(’ the criteria of schedule and your ’);
< writeln(’compairisons. The Consistency’);
o write(’ ratio should be less than 1.0E-01 to ’);
. writeln(’indicate consistent comparisons.’);
:: write(”’ Is it acceptable (Y or N)? 7);
s readln(answer);
CheckYorN{(answer);
. if (anawer in [(’N’,’n’l) then
» begin
O writeln;
b write(’ Okay - we will do the comparisons over ’‘);
53 writeln(’again.’);
Delay(1500);
. Seek(optionfile,0);
" GoTo 2
- end;
L Cloge(optionfile);
::: writeln:
i write(’ You may quit at this time and your inputs ’);
- writeln(’will be saved for use at a ’):
- write(’ later date. Q@ or q and RETURN to quit, or ’);
j; write(’RETURN only to continue: ’);
R readln(answer);
s if (answer in (’Q%,’q’]) then Quit(quitindicator)
’ end; (GetScheduleVector}
:: overlay procedure GetRiskVector(Var inputfilerecord: userfile;
> Var quitindicator: integer);
~; {GetRiskVector ~ finds the priority vector for given concept
v optiona based upon the risk criteria.}
label 2;
"G Var optionfile: file of conceptoption;
N optionrec: conceptoption;
- riskmatrix: matrix;
numoptions, numti, i,), sum: integer;
. rean, aigma: real;
:: answer: char;
X
ﬁ: begin
« Assign{(optionfile,inputfilerecord.optiondata);
Reset (optionfile);
124 numoptions := FileSize(optionfile);
.s
.

A8 131

L N v e dad ad e el Y o oy . . o . Wy oy o pb

Ve GetInfo(112,121); (Risk explanation)
N writeln;
2 write(’ Do you wish to review the Comparison Scale ’);
write(’ (Y or N)? *);
1N readln(angswer);
:i CheckYorN(answer);
s if (answer = 'Y’) or (answer = ‘y’) then
- begin
oY GetInfo(30,53);
. write(’ To continue, presa RETURN: ’);
- readln(answer)
? end;
’ GetInfo(121,139); {Riak Scalel
S writeln;
. write(b,’To continue, presa RETURN: ’):
readlin(answver):;
., 2:ClrScr;
. writeln(b,’ ATTRIBUTE - RISK *);
o2 write(b,’ oF
o0 writeln(inputfilerecord.conceptnane);
- write(’ Concept Option Mean Std’);
writeln(’ Deviation’);
N write(’ = =--eccmc-cee~o -———- --=’):
?. writeln(’---~------)
eﬁ writeln;
o5 for i := 1 to numoptions do
~ begin
N sum := O;
. mean := 0O;
- sigma := O;
~ numti := O
o Read(optionfile,optionrec);
. for j := 1 to 15 do
\ if optionrec.optiontilj).tiname <> *’
- then numti := numti + 1;
:: for j := 1 to numti do sum := sum +
X optionrec.optiontiljl.tirisk;
: mean := sum/numti;
. for j = 1 to numti do sigma :=
s sigma + aqr((optionrec.optionti(jl.tirisk - mean));
b e, sigma := aqrt(sigma);
- write(’ *,1,’) ’,optionrec.optionname:20,’ "y
- writeln(mean:8,’ ’,aignat10)
= end:;
;: writeln;
writeln(’ Would like to see a particular option broken’);
- write(’ down into ita Tech Iasues (Y or N)? ’);
{; readln(answer);
Na CheckYorN(angwer);
> while (answer in (’Y’,’y’l) do
(: begin
+- writeln:;
' write(’ Please input the number of the option you ’);
e write(’wish to view: ’);

R
’
'$, 132

'sd aallaat Al olah ol b 2 A S i gy~ Al ol ; el \ 2 N “w 7 (At N A ARt i

i

-

readln(answer);
i = ord(answer) - 48;
while not (i in {1..numoptionsl]) do
begin
write(’ Number selected is not between 1 and ’):
writeln(numoptions,’,’):;
write(’ the number of options associated with *);
writeln(’this concept.’):
write(’ Please reselect another entry: ’);
readln(answver):
i = ord(answer) - 48
. end;
ClrScr;
- writeln(b,’ ATTRIBUTE ~ RISK’);
Ca Seek(optionfile,i-1);
Read(optionfile,optionrec);
sum := 0
nean := 0
sigma :
numti :
with optionrec do
begin
writeln(b,”’ OPTION - ‘,optionname):
writeln:
for 3 (=1 to 15 do
if optionrec.optionti(jl.tiname <> **
then numti = numti + 1;
write(b,”’ Technology Issue Name’);
writeln(b,’Risk’):
write(b,’ = ce-ccecccccccmncocio ')
- writeln(b,’----’):
for j (= 1 to numti do
begin
write(’ *,3:2,’) ’,optiontil[jl.tiname:45," ’):
writeln(optiontiljl.tirisk);
sum = sum + optionti(jl.tirisk
end;
rean := asum/numti;
for) = 1 to numti do sigma :=
sigma + aqr((optiontiljl.tiriask - mean)):
sigma (= aqrt(asigma);
. writeln:
.- write(’ MEAN = ’,mean:s,’ ’y,
e writeln(’STD DEVIATION = ’,signma:8)
) end;
write(’ Below is & breakout of the # of Tech Ilassues’):
2 writeln(’ in each risk catagory.’);
. writeln;
! for i != 1 to S do
begin
sum := Q;
for 3 =
begin
if optionrec.optiontiljl.tirisk = i

Prad Tam

P4

0;
0;

We 2 a o

wtaf "]

1 to numti do

- 133

LYY S P T P T e T e e e A AT A
S oL o .~ O A SO AL SO

r D
e \"‘."

4
g
[
]
o
¢
.
v
o
’
.
‘
¥
&
3
[
[

al
]
N then sum := sum ¢+ 1
;: end;
¥ write(’ ’,8um)
Y end;
writeln;
! write(’ Very Low Low Medium High’);
:# writeln(’ Very High’):
N writeln;
oy write(’ Do you wish to view another option ’);
u write(’ (Y or N)? *);
. readln(answer);
o CheckYorN(answer)
iﬂ end:
’ Seek(optionfile,0);
.:: ClrScr;
writeln(b,”’ ATTRIBUTE - RISK ’);
write(b,’ ’y;
. writeln(inputfilerecord.conceptnane);
. write(’ Concept Option Mean Std’);
B4 writeln(’ Deviation’);
A .)
;; write(* = ~-cecccecco-o--- -——— --=7);3
o writeln(’---------«- *);
writeln;
4 for i 1= 1 to numoptions do
. begin
. sum := O;
- mean := Q;
" aigma := O;
) nuati := 0;
d Read(optionfile,optionrec);
2 for 3 = 1 to 15 do
LW, if optionrec.optiontiljl.tiname <> *’
:; then numti = numti + 1;
{i. for j := 1 to nuamti
do sum := sum + optionrec.optiontif{jl.tirisk;
N mean = sum/numti;
:; for j i= 1 to numti do sigma :=
" sigma ¢+ aqr((optionrec.optiontiljl.tirisk - mean));
:Z sigma := aqrt(sigma);
oo write(’ ’,i:2,°) ’,optionrec.optionname:20,’ ’):
o writeln(mean:8,’ ’,8igma:10)
. end;
e writeln;
- with inputfilerecord do
- begin
- OptionComparisons(riskmatrix,numoptions,
> judgements.riskchoices);
AHP(riskmatrix,priorityvectors.riskvector,numoptions,
ﬁ' CRvector{41);
{: Seek(optionfile,0);
12 ClrScr;
(g writeln(b,’ ATTRIBUTE - RISK");
nﬂ writeln(b,’ ’ ,conceptnama);
writeln(b,”’ Option Priority’);
:ﬁ writeln(b,’” =------ --e----- &

134

LAARN

YWY Y Y ST K

writein;
for i = 1 to numoptions do

begin
Read(optionfile,optionrec):
write(’ ‘,1,’) ‘,optionrec.optionname:20);
writeln(’ ’,priorityvectors.riskvector(ii:8);
end;
writeln:
writeln(’ Consistency Ratio: ’,CRvector(4i1:6)
end; (with inputfilerecordl
writeln;
write(’ Consistency Ratio should be below 1.0E-01, ’);
writeln(’otherwise some comparisons ’);
write(’ are incongistent. Do you agree with this ’);

write(’priority listing (Y or N)? ’);

readln(answer):

CheckYorN(answer):;

if answer in [(’N’,’n’] then

begin
writeln(b,’Okay, we will do the comparisons again.’);
Seek(optionfile,0);

Delay(1500);

GoTo 2

end;
Cloase(optionfile);
writeln;
write(’ You may quit at this time and your inputs 7);
writeln(’will be saved for use at a ’);
write(’ later date. Q or q and RETURN to quit, or *);

write(’RETURN only to continue! ’);
readln(ansver);

if answer in [’Q’,’q’] then Quit(quitindicator)
end; (GetRiskVector}

overiay procedure GetCostVector(Var inputfilerecord: userfile;
Var quitindicator: integer);

{GetCostVector - finds the option priority vector based on the
cost criteria.)}

label 2:

Var optionfile: file of conceptoption;
optionrec: conceptoption;
costratrix: matrix;

i, 3, numoptions, nuati! integer;
anawer: char;
Sum, mean: real;

begin
Asaign(optionfile,inputfilerecord.optiondata);
Reset(optionfile):;
numoptions := FileSize(optionfile);
writeln;
GetInfo/139,149);

135

writeln; ¢
write(’ Do you wish to review the Comparison Scale ’); '
write(’(Y or N)? ’);
readln(answer):
CheckYorN(anawer);
if (answer = ‘Y’) or (anaswer = ‘y’) then
begin

GetInfo(30,53);

write(’ To continue, presa RETURN: *);

readln(anawver)

end; ;

2:ClrScr;

writeln(b,’ ATTRIBUTE - COST ')
write(b,”’ 'y A
writeln(inputfilerecord.conceptnane); .
write(’ Concept Option TOTAL COST - s°);
writeln(”’ # Tech Issues’); x
write(’ = se--seesms--eeo mmmemmeeoeoee- ‘) I
writeln(’ ------------- ‘) S
writeln;
for i := 1 to numoptions do -~
begin

gum = O0;

numti = O;

Read(optionfile,optionrec);

for 3 =1 to 15 do

if optionrec.optiontiljl.tiname <> **
then numti := numti + 1:;

Syt Ay S S

for) := 1 to numti do sum :=
sum + optionrec.optiontiljl.ticost;
write¢(’ ‘,i,’) ’,optionrec.optionname:20,’ ¥
writeln(sum:8,’ ‘,nuati:c2)
end;
writeln;
Seek(optionfile,0);
write(’ Would like to see a particular option ’);
writeln(’broken down’):
write(’ into its Tech Iassues (Y or N)? ’); o
readln(anawver);
CheckYorN(answer):
while (answer in [’Y’,’y’1) do
begin
writeln;
write(’ Please input the number of the option you ’);
write(’wish to view: ’); .
readln{(answer);
i != ord(anawer) - 48;
while not (i in (l..numoptionsl) do
begin
write(’ Number selected is not between 1 and ’);
writeln(numoptions,’,’);
write(’ the number of options associated with’);
writein(’ thia concept.’):
write(’ Please reselect: ’);

(I T 2 el

e & m_®,
et A

I P

Vi se Y

IR A

136

-

e e
e PR
LI RN _\

P S T e e sy
AN L R

readin{answer):
i := ord(answer) - 48
end; {while i not in 1 to numoptions}

ClrScr:

Seek(optionfile,i-1);
Read(optionfile,optionrec);

writeln(b,”’
with optionrec
begin

writeln(b,”’
writeln:;
aum := 0
mean :=
numti :=
for 3 i=

if opt

0

- O ve

writeln(b,”’
writeln(b,’
writeln:

ATTRIBUTE - COST’);
do

OPTION - ’,optionname);

to 15 do
onrec.optiontif{jl.tiname <> *~

then numti := numti + 1;
Technology Issue Name’,b,’ g - Coat’);

for) := 1 to numti do

begin
write(’ ’

»32,’) ’,optionti{jl.tiname:45," ’);

writeln(optionti{j).ticoat:8);
aum := sum + optiontif{jl.ticoat

end;

nean := aum/numti;

writeln;
write(’

writeln(’MEAN

end;
writeln:
write(’
write(’(Y or N)
readln(anaver);

HE SUM = ’,3umi8,’ ::: ‘)3
= ’,mean:8,’ HHHAS

Do you wish to view another option ’);
? %)

CheckYorN(answer)

end:;
Seek(optionfile,0)
ClrScr;

writeln(b,b,’ATTRIBUTE - COST’):;
writeln(b,b,inputfilerecord.conceptnane);

write(’ Concept Option

TOTAL COST - $%);

writeln(’ # Tech Iassues’);

write(’ ---
writeln(’ ————

writeln:;

for i = 1 to numoptiona do

begin
aum := O;
nuati := 0;

Read(optionfile,optionrec);
for 3 := 1 to 15 do
if optionrec.optionti(jl.tiname <> *’

then numti := numti + 1;

137

for 3 := 1 to numti do sum :=
sur + optionrec.optiontiljl.ticeoat;

write¢(’ ‘,i{,’) ’,optionrec.optionname:20,’ ‘)

writeln(sum:8,”’ ’,numti2)
1 end;
] writeln; {
[with inputfilerecord do :
: begin

OptionComparisona(coatmatrix,numoptions,
judgements.coatchoices);
AHP(coastmatrix,priorityvectora.coastvector,
numoptions,CRvector (5]1);
Seek(optionfile,0); .
ClrScr: K
writeln(b,’ ATTRIBUTE - COST’):
writeln(’ Option Priority’);
writeln¢* = e--c--- eeece---- ’y;: 5
writeln; ;
for i = 1 to numoptionsa do
begin
Read(optionfile,optionrec);
write(’ ‘,i,’) ’,optionrec.optionname:20);
writeln(’ ’,priorityvectors.costvector(i]:8);
end;
) writeln;
writeln(’ Consistency Ratio: ’,CRvector(31:6)
end; (with inputfilerecord}
writeln;
writeln(” If Consistency Ratioc is above 1.0E-01, some’);
write(’ inconsistency in the pairwise judgements is’);
writeln(’ indicated’);
write(’ Do you agree with this priority listing %);
write(’(Y or N)? ’);
readln(anawver);
CheckYorN(anawer);
if answer in (’N’,’n’] then
begin
writeln(b,’Okay, we will do the comparisona again.’);
Delay(1500);
Seek(optionfile,0); h
GoTo 2
end:;
Close(optionfile)
end; (GetCostVector]

RIS

138

(III..II.'.ﬂll‘Illllll.l!l.'ll.l"llll'..l...l...l.'illlllllll.i

>
z sRGRRNRRRRS EXTRA4.DSS INCLUDE FILE RERREEANARARNRER
\
)

Illllill!'ll.I!Il.ll’lll..l{.'IlllIQIII..Q..II!!..'I’IIIIIIIII‘)

. procedure PrintWholeRecord(Var userdata: userfile);

{PrintWholeRecord - prints an entire record of type userfile,
the user database main component. Accomplishes this
by calling PrintPreviousRun a number of times.)

Var i! integer;

begin
writeln(Lst,’ ‘)
writeln(Lst,b,b,’AFSTC DECISION SUPPORT SYSTEM’):
writeln(Lst,b,b,’ REPORT OF’);
writeln(Lst,b,b,”’ PRIORITIZATION PROCESS’);
for i := 1 to 3 do writeln(Lst,b,’ ’);
PrintPreviousRun(userdata,i);
for i := 1 to 4 do writeln(Lst,b,’ *):
PrintPreviousRun(userdata,2):
for i := 1 to S do writeln(Lst,b,” *);
writeln(Lst,b,b,”’ 1%):
for i := 1 to 8 do writeln(Lst,b,’ ’);
PrintPreviousRun(userdata,3);
for i := 1 to 6 do writeln(Lst,b,’ ’);
PrintPreviousRun(userdata,4);
for i (= 1 to 7 do writeln(Lst,b,’ ’);
writeln(Lst,b,b,”’ 27);
for i := 1 to 8 do writeln(Lst,b,’ ’);
PrintPreviousRun(userdata,S):
for i (= 1 to S do writeln(Lst,b,’ ’);
PrintPreviousRun(userdata,6);
for i := 1 to 3 do writeln(Lst,b,’ ’);
write(Lst,b,’This completes this listing from the *);
writeln(Lst,’AFSTC DSS’);
writeln(Lst,’ 7):
writeln(Lst,’)
writeln(Lst,b,b,’ 3"

end; (PrintWholeRecord}

RSN b)

LRI AAN

A A AN

DA A N

procedure Reports(personalfile: Charl2; atatus,numrecords:
integer);

e

(Reports - Governs the user database hardcopy reports section}

label 2;

Var userdata: file of userfile;
s userrecord: userfile;
answer: char;
integeranswer,i: integer;

% 133

L P S L I

begin
Assign(userdata,personalfile);
Reset (userdata);

2:ClrScr;
writeln;
writeln(b,”’ PRINT OPTIONS’):;
writeln(b,’” = -—==-----no--- ’):
writeln(b,”’ 1) PRINT entire record’);
writeln(b,”’ {1 to ’,numrecords,’1’):
writeln(b,’ 2) Return to previous menu’);
writeln:
write(b,”’ SELECTION: ‘)

readln(answer);
while not (answer in (’1’,’2’1) do

begin
write(’ ’,answer,’ not an option, please ’);
write(’reselect: ’);
readln(answer)

end;

case answver of
’1’: begin

writeln;

write(’ Please select the program run you wish’);
writeln(’ to PRINT by its number.’);

write(’ For example, 1 for the first program ’);

write(’run: ’);
recdln(answver);
integeranswer := ord(answer) - 48;
while not (integeranswer in (l1..numrecordsl) do
begin
write(’ Selection not in file, please ’);
write(’reselect number: ’);
readln(angawer);
integeranswer :!= ord(anawer) - 48
end:;
Seek (userdata, integeranswer-1);
Read(userdata,userrecord);
PrintWholeRecord(userrecord):
(will use two existing files)
GoTo 2
end;
2’
end; (case answer of 1 or 2}
Close(userdata)
end; (View)

procedure View (personalfile: Charl2; status,numrecords:
integer);

(View - procedure to allow the user to view a record in the
users personal file.}

label 1,2,3;

140

" - - stee o, NN
s " e -] y et 4" . " LI TP

L 1Y

LSO

RSO

w
i»
ks
Var userdata! file of userfile; Q
ugerrecord: userfile: :x
answer: char; rod
integeranswer,i! integer; .
-
\
begin N
Assign(userdata,personalfile); S
) Reset (userdata); :
2:ClrSer; V]
writeln; .
writeln(b,”’ VIEW OPTIONS’): o
writeln(b,’ = =----------- ‘) >
writeln: v
writeln(b,”’ 1) Select a record to VIEW’): :
writeln(b,’ [1 to ’,numrecords,’l’); v
writeln(b,”’ 2) Return to previous menu’):;
writeln; ol
write(b,’ SELECTION: ’); -
readln(answer); o
while not (answer in [’1’/,°2’]1) do -
begin -
write(’ ’,anawer,’ not an option, please ’); -
write(’reselect: ’); b
readln(ansver) t'
end:; -
case answer of o
’1’: begin .
writeln; —
write(’ Please select the program run you wish’); ;
writeln(’ to view by its number.’):; o
write(’ For example, 1 for the first program ’): :f
write(’run: ’); .
readlin(answer):; ~d
integeranawer := ord(anawer) - 48; Y
while not (integeranswer in {l..numrecords)) do .
begin -3
write(’ Selection not in file, please ’); >
write(’reselect number: ’); }:
readln(answer); o
integeranswer := ord(answer) - 48
end
end; -
*2’: GoTo 1 .
end; (case answer of 1 or 2) -~
Seek(userdata, integeranswer-1); y
Read(userdata,userrecord); L
3:ClrScr;
writeln(b,”’ ’ ,userrecord.conceptnane) fi
writeln; .
writeln(b,’ SECTIONS TO VIEW’): .
writeln(b,’” = =~---------cce--- ’); .
writeln; Y
writeln(b,”’ 1) Criteria’); R
writeln(b,’ 2) Performance’); .:
141 -
2

A

a¥e s A B

{LILﬁLML{.h{L{AJ«L“.::I_’ PRy i < ..* iy v 1 o vy AEATAD 7 Ao - . PR AN

writeln(b,’ 3) Schedule’);

writeln(b,’ 4) Riak’):

writeln(b,’ S) Cost’):

writeln(b,”’ 6) Final priorities’):
writeln(b,” 7) Return to previous menu’);

writeln;

write(’ The catagories above refer to the sections ’);
writeln(’of the program’);

write(’ in which prioritization was performed. ’):
writeln(’Select the number’);

write(’ of the section you wish to VIEW: %)

readln(answer):
if answer = ’7’ then GoTo 2:
integeranswer := ord(anawer) - 48;
while not (answer in {’1’..’6’1) or
not (integeranswer in [1..statusl) do

begin
if not (answer in {’1’..’6’1) then
write(’ Please reselect: ’)
else
begin
write(’ That section of this program run ‘);

write(’is not completed. Please reselect: ’)
end: (else}

readln(answer):;

if answer = ’7’ then GoTo 2;

integeranswer := ord{(answer) - 48

end; (while answer not in 1 to 7}
writeln;
if integeranswer in {1..6] then
begin
ViewPreviousRun(userrecord, integeranswer);
GoTo 3
end; {if then clause)

1:Cloge(userdata)
end; (View}

procedure DatabaseManagement(Var quitindicator: integer);

{DatabaseManagement - main database management procedure.
this procedure comprises the heart of the databsse management
system for the pilot DSS.}

label 1,2,3;

Var allconcepts: file of datafile;
optionfile! file of conceptoption;
temprecord, newconceptrecord: datafile;
tempfiiename, optionfilename: Char20;
1,): integer;
answer, tempchar: char;

begin
Assign(allconcepts, ‘concepts.das’);

142

- - ot T et et

= Sl P

PO

Reset(allconcepts);
2:ClrScr;
writeln;
writeln;
writeln(b,”’ CONCEPT DATABASE MANAGEMENT SYSTEM’);

writeln;

writeln(b,”’ DATABASE OPTIONS’):
writeln(b,” = =---cscscmcean.- ’):
writeln(b,”’ 1) ENTER a new concept’):;
writeln(b,”’ 2) CHANGE or ADD data to’):
writeln(b,’ a concept’):;
writeln(b,’ 3) ERASE a current concept’);
writeln(b,’ 4) CONTINUE program’);
writeln(b,’ S5) QUIT program *);
writeln;

write(b,’ SELECTION: ’):

readln(ansawer):
if not (answer in {(’1’,’2’,’3’,’4’,’5’1) then

begin
writeln;
write(”’ ’,answer,’ is an incorrect selection. ’):
write(’Please reselect: ’);
readln(answer)
end;

case answer of
*1’: begin
tempchar := answer;
if FileSize(allconcepts) = maxnumconcepts then

begin
ClrScr;
writeln;
write(’ The maximum number of concepts ‘);
writeln(’allowed in the database is 10.’);
write(’ A concept currently in the data’);
writeln(’base will have to be erased before’):
writeln(’ new data can be added.’):
GoTo 2
end; (if more than 10 concepts}
for i := 1 to 5 do write(’ WARNING’);
writeln;
write(’ If you do not have all of the data ’);
writeln(’to input at least two full concept ’);
write(’ options into the database, it is best’);
writeln(’ to wait until you do. Otherwise,’);
write(’ the program may crash with incomplete’);
‘writeln(’ data files during execution. Do’);
write(’ you wish to continue at this time (Y ’);

write(’or N)?2 ’);

readln(answer);

if answer in (’N’,’n’] then GoTo 2:
InputNewConcept (newconceptrecord);
Seek(allconcepts,FileSize(allconcepts));
Write(allconcepts,newconceptrecord);
case FileSize(allconceptsa) of

143

1: optionfilename := ’‘concepta.dss’;
2: optionfilename := ’conceptb.dss’;
3: optionfilename := ‘conceptc.das’;
4: optionfilename != ’‘conceptd.dss’:;
5: optionfilename := ’‘concepte.dss’;

e
"

6: optionfilename
7: optionfilename
‘ 8: optionfilename
9: optionfilename "concepti.dss’;
10: optionfilename ‘concept).dss’
end: {case to decide filename}

InputConceptOptions(optionfilename,tempchar);

GoTo 2

end; (case answer of enter new conceptl

*2’: begin
tempchar = answer;

’conceptf.dss’;
’conceptg.dss’;
‘concepth.dss’;

ee ss ae aa
LU 1

ClrScr;

write(’ Select ietter of concept ’'):
writeln(’to add or change data.’);

writeln;

writeln(b,”’ Concept’);
writeln(b,* = -==---- ’):

Seek(allconcepts,0);
for i 1= 1 to FileSize(allconcepts) do

begin
Read(allconcepts,newconceptrecord);
write(b,’ ’,chr(i+64),’) ")
writeln(newconceptrecord.conceptnane)
end;
writeln;
write(b,’ SELECTION: %)

readin(answer);
if answer in (“a’..’3j’] then
answer := chr(ord(answer)-32);
while not
(anawer in {’A’..chr(FileSize(allconcepts)+64)]1) do
begin
write(b,’Incorrect answer, Please Reselect: ’);
readln(answer)
end;
case answer of
’A’: optionfilename
‘B’: optionfilenanme :
‘C’: optionfilename :
‘D’: optionfilenanme
‘E’: optionfilename
‘F’: optionfilename
‘G’: optionfilenane
‘H’: optionfilenane ‘concepth.dss’;
'I’: optionfilenanme ’concepti.dss’;
*J’: optionfilename := ‘concept).dss’
end: (case of answer)
InputConceptOptions(optionfilenane,tempchar):
GoTo 2

‘concepta.dss’;
’conceptb.dss’;
’conceptc.dss’;
’conceptd.dss’;
’concepte.dss’;
‘conceptf.dss’;
’conceptg.dss’;

*e ea
W on onow M

144

“‘-.’ -". \'.’- ‘f_ . < 5'-$..$" "-I .."*"4 o "-;A"(.. "-_r.-'" \f$('~. -"-\"-n"’ .".-." \'..‘-'.‘-'\'-' ; .:f\;-'.;f ,- -'.:-' \.-‘ .:-‘ . :"‘:0'_ X

- .-'\l...‘--‘.

PP TS SRR A
AU \'.,‘ \‘.'.‘-'l

»_v_ v v

\ end; (case of add or change data to existing file]
) ’3’: begin

ClrScr;

write(’ Select letter of concept ’);
writeln(’to =RASE.’):

writeln;

writeln(b,’ Concept’):
writeln(b,” = =-=-~-- ’)s

T w

Seek(allconcepts,0);
for i (= 1 to FileSize(allconcepts) do

T e

begin
Read(allconcepts,newconceptrecord);
write(b,’ *,chr(i+64),’) ’);
writeln(newconceptrecord.conceptnane)
end;
writeln(b,”’ ’,chr(i+«65),’) None’):
writeln;
write(b,’ SELECTION: ’);

readln(answer):
if answer in {’a’..”3j’] then
) anawer := chr(ord(anawer)-32):
while not
(anawer in (“A’..chr(FileSize(allconcepts)+65)]) do
begin
write(b,’Incorrect answer, Please Reselect: ’);
readln(answer);
if answer in [“a’..’3’] then
answer := chr(ord(answer)-32)
end;
tempchar := anawer;
writeln;
Seek{(allconcepts,ord(anawer)-64);
Read(allconcepts,newconceptrecord);
write(b, ‘Confirm ERASE of ’);
write(newconceptrecord.conceptname,’ (Y or N)>? ’);
readln(answer);
CheckYorN(answer);
if answer in {’N’,’n’] then GoTo 2;
answer := tempchar;
cage answer of
‘A’: optionfilenane
‘B’: optionfilename
’C’: optionfilenane
’D’: optionfilenanme
*E’: optionfilenane
’F’: optionfilenanme
*G’: optionfilename
’H’: optionfilenamre
*I’: optionfilenanme
*J’: optionfilenane
X 'K’: GoTo 2
end; (case of answer)
for i := (ord(answer)-64) to
(FileSize(allconcepts) - 1) do

’concepta.dsass’;
‘conceptb.das’;
’conceptc.das’;
’conceptd.dss’;
’concepte.dss’:;
‘conceptf.dss’;
’conceptg.dss’;
’concepth.dss’;
‘concepti.dss’;
’concept).dss’:

begin

, 145

I S R N A T e B S e A e S R S R RN

PR

-

)

1)

Seek(allconcepts,i+l); ¢
Read(allconcepts,newconceptrecord): SN
Seek(allconcepts,i); R
Write(allconcepts) .

end;
Seek(allconceptsa,FileSize(allconcepts)-1); :5
newconceptrecord.conceptnare = °’; ;{
newconceptrecord.conceptorigin = *’; ¢
Write(allconcepts,newconceptrecord) <
end; (case of erase a concept - choice 3}

4’ > 4
*S’: begin ..
Quit(quitindicator); ?:

if quitindicator <> 1 then GoTo 2 <.

end -

end; {(case answer of}

1:Close(allconcepts) N
end; {(DatabaseManagement] -9
~3

g

\!

\.I

N

\!

N

A

v

. AS
R

X

K{

L] 3

k:

146 N

- Pl Ll
LA L LA CRL R A OR Su

[I.I..!IIliIl.llI!IIIII..I.I‘III.II...OCQ.II.QDIIIQDCI.QI.IDIGGI.IIQI

FRRBERRAINERRR INCLUDE FILE EXTRAS.DSS REREARRERNANNNBRRERND RS
Iy Iy """ I mnmMmMmMMMMMMmMmMmMmMmnImIIInmMmMmMmMInmnrmTrTOTOTImOITTI

. procedure GetUserFileName(Var personalfile: Charl2; !
: Var astatus, quitindicator:! integer):

{GetUserFileName - Gets the name of the user for access into the
user database (stores the name in personalfile, a i2
character string.) This procedure also queries for
access to the main concept database.}

label 2;

Var answer: char;
i! integer:

A outfilename,temp: outputfilename;
) begin !
. 2:answer := ‘N’;)
) while answer in [’N’,’n’] do
begin ¥
personalfile = ’ ’;
ClrScr;

for i := 1 to 8 do outfilenamef{il := * ’:
outfilename(9]) := *,
outfilename(1G] :=

» s

s s & 8 &

outfilename(11]
outfilename(12] := ’
for i (= 1 to 5 do writeln; '

write(’ Enter first initial: ’): X
readln(outfilename(ll); y
write(’ Enter middle initial (or second letter’):]

write(’ of first namel): ’);

readln(outfilename{2]);

write(’ Enter first six (6) letters of last name: ’);

read(outfilename(3],outfilenamel(4],outfilenane(S],
outfilename{6l,ocutfilename(7],outfilename(81);

) writeln;
P write(’ ’,outfilename(1],’ ’,outfilename(21,’ *);
for i := 3 to 8 do write(outfilenamelil):
write(’ Is this correct (Y or N)? ’);
" readln(answer):
K. : CheckYorN(answer)
. end: (while anawer is Nol

temp (= outfilename; i
for 1 := 1 to 8 do

while not (ord(outfilenamel(il) in (65..90,97..122]1) do

outfilename{il := ’2’;

personalfile := outfilename;
writeln;
» write(’ is this your first time using this program’);
write(’ (Y or N\D? ’);
readln(answer):

147 .

.
o

CheckYorN(answer)
if angwer in (’Y’,’y’] then

s begin
if Exist(personalfile) = false then status = O
else
begin

write(’ WARNING: A file exists under the name ’);
writeln(’you have given.’);
write(’ It will be erased if you do not change’); '
writeln(’ your answer.’);
write(”’ Do you wish to Change (Y or N -- ') N

write(’last answer (Y])? ");
| readln(answer);
3 CheckYorN(anawer):;
if answer in [(“Y’,’y’] then status := O
else status := 10
end (else Exist is true)
end (if anawer is Yes)

else :
. begin ;
if Exist(personalfile) = true then status := 10 else
begin
write(”’ There is no record of you using this ’);
writeln(’program before under’); J
. write(b,’the name you have given: ’); y

write(temp(l],’ ’,templ2],’ ’);
for i 2= 3 to 8 do write(temp{il);
writeln(’.’);

write(’ You may change the name you have given ’);
writeln(’or you may start & new file.’);
write(’ Do you wish to input a new name ’);

write(’(Y or N)? ’);
readln(answer) ;
CheckYorN(anawer);
if answer in (’y’,’Y’] then GoTo 2 else status := 0
end (if file does not exist}
A end;: (if anawer is Yes}
. write(’ Do you want to enter the database and input ’); .
write(’new data (Y or N)? ’); ’
readln(answer): .
CheckYorN(answer);
if anawer in (’Y’,’y’]1 then K
DatabaseManagement (quitindicator) R

s o v _ - o

e =

end; (GetUserFileNanmel

overlay procedure Review(Var personalfile: Charl2;
Var status,quitindicator: integer);

(Review is the main user database file. It governs all of the
functions of viewing, printing, or deleting records from the
e user database. Object code for this file goes to dss.002}

label 2;

148

Var userdata: file of userfile:
userrecord: userfile;
i,),numrecords: integer:;
answer: char;

b P P

begin y
2:Assign(userdata,personalifile);
Reset (userdata):
Seek(userdata,FileSize(userdata)-1); N
Read(userdata,userrecord);
numrecords := FileSize(userdata):

ClrScr; A
if atatus = 5 then &
begin
writeln; i
write(’ You have ’,numrecords,’ previously ’); :
writeln(’completed program runs.’);
writeln g
end -
elae K
begin b
writeln; ;
write(’ You have ’,numrecords-1,’ previously’);
writeln(’ completed program runs, and’);
write(’ 1 incomplete run, # ’,numrecords);
writeln(’, and you were working on ’):
writeln(”’ ’ yuserrecord.conceptnanme,’.”’)
end;
writeln; =
writeln(b,”’ REVIEW OPTIONS’);
writeln(b,’ = = ----cceccccca-- ‘) ~
writeln(b,”’ 1) View a previous run’); N
writeln(b,’ 2) Print out any run’);
writeln(b,”’ 3) Start new run’);
writeln(b,’ 4) Continue unfinished run’);
writeln(b,”’ 5) Erase all previous runs’):
writeln(b,’ 6) Quit DSS’): -
writeln; ﬁ
write(b,’Please input the number of your choice: ’); "
readln(answer): f
A while not ord(anawer) in (49..55] do o
begin
write(’ Muat be a number between 1 and 6. ’): .
write(’Please reselect: ’): -
readln(answer) N
end; -
while (answer = ’4’) and not (status in [1..4]) do A
begin
write(’ You do not have any unfinished runs. ’): R
write(’Please reselect: ’); ’
readln(anawer) :
end; K
case ansver of y
*1l’: begin '

Close(userdata);

149

Y

b View(personalfile,status,numrecords);

t GoTo 2

Y end;

| ’2’: begin

: Close(userdata):
Reports(personalfile,status,numrecords):

. GoTo 2
end:;
’3’: begin
Close(userdata):;
if status = 5 then status = 6 eise status = 7:

InitializeUserFile(personalfile,status);
status = O
end:
‘4’: begin
Cloge(userdata);
cagse status of
1: begin
write(b,’You quit after choosing the ’);
writeln(’criteria values. You will *):
write(b,’atart with compairing the *); J
writeln(’optiona based upon performance.’)
end:;
2: begin
write(b,’You quit after choosing the ’);
write.n(’performance values. You will ’);
write(b,’start with compairing the ’);
writeln(’options based upon schedule.’)
end;
3: begin
write(b,’You quit after choosing the ’);
writeln(’schedule values. You will ’);
write(b,’start with compairing the ’);
writeln(’options based upon risk.’)
end:; 4
4: begin :
write(b,’You quit after choosing the ’); .
writeln(’risk values. You will ’); y
write(b, "start with compairing the ’);
writeln(’options based upon cost.’)
end
end;: (case of atatus)
write(b,’Preas RETURN to continue: ’):
readln(answer)
end; (anawer being 4 - continue unfinished run}
*’5’: begin
writeln:
write(b,’Confirm erase of all previous runs ’);
write(’(Y or N)? ’); :
readln(answver); 4
CheckYorN(answer); '
if answer in (’Y’,’y’] then
begin
writeln;

o _» o -

s _ o _o_w_»m

1S0

L I T I S)
' e P P
\", 't‘:‘n .‘t“_a' -,

Seek(userdata,FileSize(userdata)-1);
Read (userdata,userrecord):
Close(userdata):
Erase(userdata);
status := O;
InitializeUserFile(personalfile,status);
) Reaset (userdata);
. Write(userdata,userrecord);
’ Close(userdata);
status := 10;
InitializeUserFile(personalfile,status);
. write(’ All previous records erased ’);
writeln(’except for the most recent run.’);
Delay(1000);
GoTo 2
end (if anawer is Yes}
elae GoTo 2
end; (case S}
’6’: begin
Close(userdata);
Quit(quitindicator);
if quitindicator = 0 then GoTo 2
end (case 6}
end {case of anawer}
end: (Reviewl

et s s 4 8 a

2555

!;’-’- PO Ll.4

)

HRAAAAL

overlay procedure ListConcepts(Var concept: Char20; Var
filename: Charl2; Var quitindicator: integer):;

(ListConcepts - Opens the file concepts.dsa to obtain all of the
concepts in the database. Displays them for selection by the
L user.)

label 2:

" Var choicefile: file of datafile;
conceptrec: datafile;
numconcepts,level,filenbr,i: integer;
- choice: char;

origin: Char20:

- begin
o i Aasign(choicefile,’concepts.das’);
- 2:Reset(choicefile);

filenbr := O
nuaconcepts := FileSize(choicefile);

ClrScr;
writeln;
N writeln(b,’ CONCEPT ORIGIN’):
Dy writeln(b,’ = = =----=-- ceee--)
' writeln;
" for i = 1 to numconcepta do
begin
) with conceptrec do
-
Cd
: 151
2
N

4 e ene L PR N A T SR T I LN
N P AN Y, G SR L RO S T A Y

begin
read(choicefile,conceptrec);
write(’ 7y
write(chr(i+64),’) ’,conceptname:20);
writeln(’ ’,conceptorigin:20)}
end {(with conceptrec}
end; f(for i}

writeln;

write(’ Please choose the letter of the concept ’);
writeln(’you wish to work with.’);

writeln;

write(b,” ? will list available help: *);
readln(choice);
filenbr := ord(choice);
if (filenbr in [97..(numconcepts+96)]1) then
filenbr := filenbr - 32;

while not
(filenbr in (63,65..(numconcepts+64)]) do
begin
writeln;
write(’ You have not choosen a viable option. ’);

write(’Please reselect: ’);
readln(choice);
filenbr := ord(choice);
if (filenbr in [97..(numconcepts+396)]) then
filenbr := filenbr - 32;
end; {while filenbr not an option}
case filenbr of
65..74: begin
Seek(choicefile,filenbr-63);
Read(choicefile,conceptrec);
concept = conceptrec.conceptname;
origin := conceptrec.conceptorigin;
Close(choicefile);
case filenbr of

65:filename := ‘concepta.dss’;
66:filename := ’‘conceptb.dss’;
67:filename := ’‘conceptc.das’;
68:filename := “conceptd.dss’;
69:filename := ’concepte.dss’;
70:filename := ’‘conceptf.dss’;
71:filename := ’conceptg.dss’;
72:filename := ‘concepth.dss’:
73:filename := ’concepti.das’;

74:filename ’concept).dss’
end (specific case of filenbr!}
end: (case filenbr member of concept filel
63: begin
level := 1:
Close(choicefile);
Help(level);
GoTo 2
end ({(case filenbr indicates ?}
end {casge}

152

R AGTTRS S VoK 3G SN CA L LR RN

L —o

end: {(ListConceptal}

overlay procedure Criteria(concept: Char20; personalfile:! Charil:
Var quitindicator: integer):

{Criteria - governa the selection of the priority rankings of the

criteria. The first level of the AHP hierarchy for this

problen.
Object code is stored in overlay dss.002}

label 2;

Var userinput: file of userfile:
inputfilerecord: userfile;
anawer: char;
nurcriteria, i: integer;
comparigong: matrix;

begin
Assign(userinput,personalfile);
Reset (userinput);
Seek(userinput,FileSize(userinput)-1);
Read(userinput, inputfilerecord’;
numcriteria = 43
ClrScr;
writeln;
GetInfo(1,9):; {Tells about attributes Blockl}
readln(answer);
CheckYorN (anawer) ;
case answer of
’Y’,’y’: begin

GetInfo(10,30); (Factors that impact attributes)

writeln;
write(”’ When finished reading, Piease ’);
write(’preas RETURN: ’);
readln(answver)
end;
’NI,InI: :
end; (case of answer}
ClrScr;

for i := 1 to 10 do writeln:

write(’ You will now view the Comparison Scale, Please’);
writeln(’ read it’);

write(’ carefully, as you will need it to ‘);
writeln(’make the comparisons.’);

Delay(1500);
GetInfo(30,53); (This is to display the AHP scale}
write(’ When finished reading, press RETURN: *);

readln(answer):
2:with inputfilerecord do
begin
CriteriaComparisons(comparisons,concept,
judgements.criteriachoicea);
(Builda comparison matrix}
AHP(comparisons, priorityvectors.criteriapriorities,

153

T N T PN N
PO A A -

|

IS KA

s

NS

iyu»ssﬁ

- ‘,. Y ‘v\"'l

15

..l :’A

L

a bt

R AR

o o e €
A .
.“ s o o 5 i

o

T
i.lv

P
st
)
Lttty

-

RN
.\l'f'._'

AN
L)

e

AR e A RS e =) foc il Sale Seibinl Sl SeA Sl W S A A A RN At a N e A AR i

numcriteria, CRvectorili):

ClrScr;

writeln;

writeln(b,’ PRICRITIZATION RESULTS FOR THE CRITERIA’);
writeln;

writeln(b,”’ ’ ,concept);

writeln(b,’ Criteria Priority-Weight’);
writeln(b,” = ---=-=-- = ece-—ec-o---—-- ‘)
write(b,”’ Performance oK
writeln(priorityvectors.criteriapriorities{1]:8);
write(b,”’ Schedule ’):
writeln(priorityvectors.criteriapriorities(21:8);
write(b,”’ Risk oK
writeln(priorityvectors.criteriapriorities{3]:8);
write(b,’ Cost ’)s
writeln(priorityvectora.criteriapriorities{4]:8);
writeln;

writeln(b,”’ Consistency Ratio is: ’,CRvector(1]:6):

conceptname := concept:
optiondata := filename
end; (with inputfilerecord}

writeln;

write(’ The above is a priority vector based upon the ’);
writeln(’comparisons of the’);

write(’ criteria (attributes) that you have made. 1If’);
writeln(’ the Consistency Ratio’);

write(’ value is above 1.0E-01 (0.10), signifying ’);
writeln(’inconsistent ’);

write(’ compairisons, you may want’);

writeln(’ to repeat the compairson procedure.’);

write(’ Is it acceptable (Y or N2? *);

readln(answer);
CheckYorN(anawer):
if answer in {’N’,’n’]) then
begin
writeln;
write(b,’Okay, we will go back and repeat the ’);
writeln(’comparisons.’);
Delay(1500);
GoTo 2
end; {if answer is No}
Seek(userinput,FileSize(userinput)-1);
Write(userinput,inputfilerecord);

writeln;

write(’ You may Quit the DSS at this point and your ’);
writeln(’inputs up to this point’);

write(’ will be stored for later use. (Q or q and ’);
writeln(’RETURN to Quit, or’):

write(’ RETURN to continue: ’);

readln(ansawer);

if answer in (’Q’,’q’] then Quit(quitindicator);
Close(userinput)
end:; {Criterial

overlay procedure PrioritizeOptiona(personalilfile: Charl2;

154

T

DAl i i g

< v

Var quitindicator, status: integer);

(PrioritizeOptions - governs the for "GET"™ vectors that find the
prioritized options based on each criteria.
Object code is stored in dss.002}

e
2L

label 1,2,3,4,5;

Var userinput: file of userfile;
inputfilerecord: userfile;
hold: char;

-y~

begin
Assign(userinput,personalfile);
Reset (userinput); .
Seek(userinput,FileSize(userinput)-1); -
Read(userinput, inputfilerecord):
case status of -
o: ;
1: GoTo 2;
2: GoTo 3;
3: GoTo 4;
4: GoTo S
end;
GetInfo(64,74):
readin(hold);
2:GetPerformanceVector (inputfilerecord,quitindicator):
if quitindicator = 1 then GoTo 1:
3:GetScheduleVector (inputfilerecord,quitindicator):
if quitindicator = 1 then GoTo 1;
4:GetRiskVector (inputfilerecord,quitindicator);
if quitindicator = 1 then GoTo 1;
S:GetCoatVector (inputfilerecord,quitindicator);
1l:Seek(userinput,FileSize(userinput)-1);
Write(userinput, inputfilerecord);
Close(userinput)
end; {PrioritizeOptions}

-~ - T e
" M

CXXRARR, |2

o ol o 4R o o

v .-
PR
MION]

overlay procedure FinalOptionVector(Var quitindicator,
atatus: integer; personalfile: Chari2);

LI A 4

{FinalOptionVector - aynthesizes the AHP results from the criteria
and for the options based on the attributes.
Object code is atored in dsa.002} -

label 1: W

Var userinput: file of userfile; __
inputfilerecord: userfile; S
i,),numoptiona: integer; W

answer: char; S~

o
-

begin
status := 10;
if quitindicator = 1 then GoTo 1;

155

numoptions = 0;

Assign(userinput,personalfile);

Reset (userinput);

Seek(userinput ,FileSize(userinput)-1):

Read (userinput, inputfilerecord);

for i = 1 to maxnumoptions do if
inputfilerecord.options(i] <> ’ ’ then

numoptions := numoptions ¢ 1;
GetInfo(149,156);
with inputfilerecord do

begin
with priorityvectors do
begin
writeln;
writeln(b,’ FINAL PRIORITIES’);
writeln(b,” = <~~sc-cecccncenon ’);
writeln(b,”’ ’ ,conceptnanme);
writeln(b,’ Option Priority’);
writeln(b,” = ------ = eecsc-c---)
for i := 1 to numoptions do
begin
finalprioritiealil := ((criteriapriorities{l] =«
performancevector(il) + (criteriapriorities(2] «»
schedulevector{il) + (criteriapriorities(3] =
riskvector{il) + (criteriapriorities{q4l e
costvector(il));
write(’ ’,i,’) ’,optionsa(il:20,”’ ’y:
writeln¢’ ’,finalpriorities(il:8)
end

end (with priorityvectora doi
end; (with inputfilerecord do}
writeln:
write(’ Does this final vector make sense to you ’);
write(’ (Y or N)? %);
readln(answer):
CheckYorN(answer):;
if answer in [’N’,’n’] then
begin
writeln;
write(’ Do you wish to erase current effort and ’);
write(’start over (Y or N)? ’):
readin(answer);
CheckYorN(answer);
if (answer in (’Y’,’y’]) then
begin
quitindicator := 0O;
status := 7;
Close(userinput);
InitislizeUserFile(personalfile,statua);
GoTo 1
end (Yes, repeat the process)
end; (if answer is no, finalvector does not make sense)
Seek(userinput,FileSize(userinput)-1);
Write(userinput,inputfilerecord);
Close(userinput);

LAY

‘-l‘.“‘."-"‘

L~

BRI

px oy v v v,

o

e A

‘IIJ

g

Ao

OO

RN,

£ 7

i

g 'y
“hhYy

R BEUNF

2,07
Tt

e
wdy

-
e .

NN £

-
I Y

liwriteln
end:

. -,"-(-. \ --". Ry

(FinalOptionVector!

157 |

. v e

. ;..,,‘-‘.i .\".'4'-'(‘\(AT ST e SR L R

{’-..'-.. e

RERRERRBERRBRANAERERERENRRERERBRBRN NGRS ARBESRRN RN BRI RDIRNREROANIRNNS

L ERnmsRER Menus and tables stored on disk and accessed tasesnanes
X rennnsnn by the GetInfo procedure. sananennne
‘ SRABABRABRARERARAEBRARERRBAARARRERRRERRRAARAAAR AR ARRRREIRNETR RGO EERARS
i At this time, you will make a series of pairwise comparisons
Ny between the attributes (criteria) - Performance, Schedule,
f Risk, and Cost. The comparisons will help define which
attribute you conaider most important.
o Do you wish to see a further definition of the attributes?
i (Y or y for Yes, N or n for No)
Factors that impact the attributea are as follows:
' Performance Cost
N Survivability R&D
X Coverage Replacenment
¥ Capacity Deployment
- Quality Resupply
Reliebility
< Timeliness
. Availability
> Schedule Risk
Earliest Completion Number of High Risk
. Date Tech Issues
: Earliest production Number of proven
\ date technologies
X Potential schedule Number of technoiogies
v variability common to other concepts
“ COMPARISON SCALE
:: INTENSITY OF DEFINITION EXPLANATION
% IMPORTANCE
1 Equal importance Two criteria contribute
. equally to the objective.
. 3 Weak importance of Slightly favor one cri-
i one over the other terion over the other.
[)
) S5 Essential or strong Strongly favor one cri-
A R importance of one terion over another.
3 7 Very strong or demon- A criterion has demon-
strated performance strated its dominance.
4
9 Absolute importance Evidence favoring one

criterion is of highest

158

A0 A

order.
2,4,6,8 Intermediate values Compromise as needed.
Example - Schedule va Cost: C7

) The above example shows the comparison procedure. When a
comparison is presented to you, input the first letter of
the attribute that dominatea the other, and then the integer
value of how much it dominatea, from the comparison scale.
Therefore, the above example shows that Cost has very strong
dominance over Schedule (example only).

To continue, press RETURN.

You will compare the options of the chosen concept at

thia time. The general procedure will be to compare the options
with respect to each of the four criteria individually. Once
this is accoaplished the four resulting vectors can be combined
and multiplied with the criteria vector you have just completed,
providing a final ordering of the options, based upon your
judgenments.

To continue, press RETURN
The performance values for the available options will be
displayed at this time. You will then perform a series
of pairwise comparisons that will define which option you
feel performs "“best".

Do you wish to review the Comparison Scale (Y or N)?

The performance values are based on the following scale:

INTENSITY EXPLANATION
5 Option strongly exceeds performance requirement
3 Option meets performance requirement
1 Option has serious shortcomings in performance
2,4 Compromise as needed
Example: Option A Option B
Coverage 2 S5
Capacity 3 2

For this series of comparisons, the procedure will be to
input the number of the option that dominatea the comparison
and then the comparison value,

Ex: Option 1 vs Option 2: 27 - Option 2 dominatesa strongly

The options will now be ordered according to the schedule
criteria, The procedure will be exactly the same aa for

159

e

‘. ke 5 '-:l 5 A

NN AL

L

.

.
h

the performance criteria. The number of years until com-
each Concept Option is dispiayed, along with the mean
value for each option. Then, you will be asked to compare
the options based upon this criteria. Again, the format
will be the number of the option, then the vaiue from the
comparison scale. Ex: 17 - means option 1 dominates the
comparison with a value of 7 (strong domination).

The options wiil now be ordered according to the third
criteria - Risk. The procedure will be the same as for
the first two criteria. The displays available will be
a display of the options and the mean risk from their
technology issues, or a detailed list of the risk assoc-
iated with each technology issue under a given option.
Format for the comparisons will again be two integers,
i.e. 17.

The Risk values are based upon the following acale:

Level Risk Explanation
1 very low High probability that Tech issue can
be solved in time to meet IOC given
current effort.

2 low Probability is high but but some doubt
exists,

3 medium Probability of completion is S0/50.

4 high Low probability of solving issue.

5 very high Very strong possibility that Tech issue

is unsolvable in necessary time.

The options will now be ordered according to the Cost
criteria. Again, the procedure will be the same as for
the previous attributea. The aystem will display each
option with its associated total cost to soclve all Tech-
nology Issues unique to the given concept option. The
pairwise comparison procedure will follow the same format.

Ex: Option 1 va Option 2: 17 - Option 1 dominatea Option
2 strongly in this example.

The following vector will be the prioritiea of the optiona

for this concept based upon your evaluations of the criteria,
performance, schedule, risk and cost, and the different options
compared in relation to these attributes. It should be noted
that this priority vector is subjective, as it is based upon
your judgement.

WELCOME TO THE A.F. SPACE TECHNOLOGY
CENTER DECISION SUPPORT SYSTEM (DSS)

160

This DSS is designed to take you through a series of
deciaion ateps that will help you to prioritize the concept
optiona that are contained in a concept. The system uses
a method called the Analytic Hierarchy Process, which was
developed by Thomas L. Saaty to structure complex decision
processes, By following the outlined instructions, you will
place your subjective judgements into a seriea of matrices
that are solved for the final priority of the iisted options.

As a final note, this software is currently configured for a
Zenith 2-100 computer running under the MS-DOS operating systea.
If this computer is a 2-100, the key sequence <shift F12> will
print the screen at any time in the program. That is, if you
have a printer, and it is hooked up, and it is turned on.

161

g

o

r YA YD

AN

a-
‘i

‘Rt 3 ’ . B At v Vot 2\)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

18 REPORT SECURITY CLASSIFICATION

UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2s. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release; distribution

2. DECLASSIFICATION/DOWNGRADING SCHEDULE

unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

AFIT/GOS/0S/85D-17

5. MONITORING ORGANIZATION REPORT NUMBER(S)

b. OFFICE SYMBOL
(1f applicable)

AFIT/ENS

6s. NAME OF PERFORMING ORGANIZATION

School of Engineering

78. NAME OF MONITORING ORGANIZATION

6¢c. ADDRESS (City, State and ZIP Code)
Air Force Institute of Technology
Wright-Patterson AFB OH 45433

7b. ADDRESS (City, State and ZIP Code)

8b. OFFICE SYMBOL
(1f applicable)

| AFSTC/ YHP

8s. NAME OF FUNOING/SPONSORING
-ORGANIZATION

Space Technology Center

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8¢c. ADDRESS (City, State and ZIP Code)

Kirtland AFB NM 87117

10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT
ELEMENT NO. NO.

WORK UNIT
NO.

TASK
NO.

11. TITLE (Include Security Classification)

See Box 19

12. PERSONAL AUTHORI(S)

Bruce G. Schinelli, B.S,, Capt, USAF

13a. TYPE OF REPORT 13b. TIME COVERED

14. DATE OF REPORT (Yr, Mo., Day) 15. PAGE COUNT

MS Thesis FROM TO 85 Dec 13 170
16. SUPPLEMENTARY NOTATION
COSATI CODES 18. SUBJECT TERMS (Continue on reverse (f necessary and identify by block number)
FIELD GROUP SUB. GR.
05 10 Decision Support Systems, Microcamputers

19. ABSTRACT Continue on reverse (f necessary and (dentify by block number)

Title:
Application

Thesis advisor:

A Decision Support System for Space Technology Tradeoffs:

Mark M. Mekaru, Lt Col, PhD, USAF

A Microcamputer

Y e e 3 11 my

wn ‘: WOLAVER BFayt

Rl Pores Dastinte ot Tommnreerocl Development
AFR 64 45433

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED (X Same as RPT. T oTic usens (J

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

22s. NAME OF RESPONSIBILE INDIVIDUAL

Mark M. Mekaru, Lt Col, USAF

OD FORM 1473, 83 APR

T e e L]
.:.‘-{."\.5'.&':’- s.‘h':\"_‘.‘_n PR U STV Y | .‘x‘&i‘!)"‘ﬁ gl

EDITION OF 1 JAN 73 1S OBSOLETE.

LT CR R T L ST AR
A AL ” I_,,-,i._— s,

22¢c OFFICE SYMBO0L

22b TELEPHONE NUMBER
tInclude Area Code:

(513) 255-3362

_ UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

et ataema- .
T S

pe
ILRLH

- \‘-.‘.' "-\ "\

n
A
e’

LI g
o

r
v !

’
14

L (I BN R]
:-'-‘; l\ LA %G G184

SR
- 3 *,

YN

LR N Y
»

R .".' .'—,
o s [

1.

]
P
PR

-
.

} 2" e
o
R

.
»

., :'{ : '.‘l.‘" “‘l'" o {

. - R G) ! ki) '\ « X7, e bt v
A e, VLA S DA RS SN BN S 5 S I
o
o

N
A W TP 2zt
-~

T, A
I S s gp, vy D

L %
- L»rx :
-

¥« 5
e

AIMAS
)

w
-

L I R S
"

LR C R R A R AN AP A JE K
L’ LA ot ot et et . et AT e
e atare PNy AN SN TR

