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anplitude of the waves in the far-field Kelvin wake at an angle',ck from the ship track

that is smaller than the Kelvin- cusp angle of 41901/2 for a hull form which has a small

region of flare and is wall sided elsewhere if the Froude number is sufficiently small.

An explicit relationship between the angle,(V, between the ship track and the tangent to
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ANALYTICAL APPROXIMATION FOR STEADY SHIP WAVES
AT LOW FROUDE NUMBERS

by
Francis Noblesse

David Taylor Naval Ship R&D Center
Bethesda, MD 20084

ABSTRACT 1. INTRODUCTION

A simple analytical relationship between a ship- It has been observed, see for instance Fu and Holt

hull form and its steady far-field Kelvin wake is obtained (1982) and McDonough et. al. (1985). that SAR

by considering the low-Froude-number limit of the (Synthetic Aperture Radar) images of ship wakes

Neumann-Kelvin theory. In particular, this relationship sometimes reveal bright returns along rays at angles from

predicts the occurrence of a sharp peak in the amplitude the track of the ship smaller than the Kelvin-cusp angle

of the waves in the far-field Kelvin wake at an angle, a, of 19*1/2. A plausible explanation for these surprising

from the ship track that is smaller than the Kelvin-cusp observations was proposed by Scrau (1983) who

angle of 19°1/2 for a hull form which has a small region considered a simple ship bow form with large flare for

of flare and is wall sided elsewhere, if the Froude which he found that the zeroth-order slender-ship

number is sufficiently small. An explicit relationship approximation to the far-field wave-amplitude function

between the angle, cp, between the ship track and the given in Noblesse (1983) predicted a sharp peak in the

tangent to the ship mean waterline in the region of flare value of the amplitude of the divergent waves at an angle

and the corresponding "wave-peak" angle a in the from the track of the ship equal to approximately half

Kelvin wake is obtained. For instance, this relationship the bow entrance angle. This numerical result of Scragg

predicts the occurrence of a sharp peak in wave was confirmed by Barnell and Noblesse (1986) who also

amplitude at an angle a in the Kelvin wake equal to 140 found that the peak in the amplitude of the divergent

for a hull having a small region of flare within which the waves becomes sharper as the value of the Froude

waterline-tangent angle cp is approximately equal to either number decreases, and thus suggested that the occurrence

300 or 74* . This theoretical result may explain the bright of a sharp peak in the amplitude of the far-field Kelvin

returns that have sometimes been observed in SAR waves was a large-flare low-Froude-number feature.

images of ship wakes at angles smaller than the Kelvin- The numerical studies of Scragg and of Barnell

cusp angle. The low-Froude-number asymptotic analysis and Noblesse are based on two simple approximations to

of the Neumann-Kelvin theory presented in this study the far-field wave-amplitude function, namely the Michell

also predicts that the wave-resistance coefficient is O(F 2). thin-ship approximation for which no peak was found

where F is the Froude number, for a ship form with a and the zeroth-order slender-ship approximation which

region of flare, O(F 4) for a ship form that is wall sided exhibited a peak as was already noted, so that it is not

everywhere and has either a bow or a itern (or both) that clear from these studies whether a more realistic

is neither cusped nor round, and O(F6 ) for a wall-sided mathematical model for the far-field wave-amplitude

ship form with both bow and stern that are either cusped function, such as that provided by the Neumann-Kelvin

or round. theory, would also predict the occurrence of peaks in the

1 j



amplitude of the far-field Kelvin waves. Furthermore, the mean waterline. These are the bow and the stern, on one

• numerical results obtained by Scragg and by Barnell and hand, and (usually but not always) one (or several)

Noblesse correspond to a particular ship form and thus point(s) of stationary phase. Indeed, the number of these

provide little physical insight into the origin of the points of stationary phase, and their position on the

predicted peak in the amplitude of the fa.-field Kelvin waterline, depend on the value of t and on the shape of

waves, specifically the manner in which such a peak is the waterline. The first two terms in the low-Froude-
.1** related to the shape of the ship hull. number asymptotic expansions for the contributions KB,S

A complementary analytical study of the low- of the bow and stern and the contributions K. of the

Froude-number limit of the Neumann-Kelvin theory for points of stationary phase in equation (50) are given by

- an arbitrary ship form is thus presented here. This equations (51)-(55) and (59)-(62), respectively. The

asymptotic analysis of the Neumann-Kelvin theory second-order terms in these asymptotic expansions are

provides a simple analytical relationship between a ship- defined by complex expressions. However, the first-order

, hull form and its steady far-field Kelvin wake. In terms provide simple approximations defined explicitly in

particular, this relationship predicts the occurrence of a terms of the geometrical characteristics of the hull and

sharp peak in the amplitude of the waves in the far-field the velocity components in the tangential directions t-and

Kelvin wake at an angle, a, from the ship track that is F x t to the hull (see Figure 2). In particular, these low-
" %smaller than the Kelvin-cusp angle of 1901/2 for a hull Froude-number asymptotic expansions show that the

form which has a small region of flare and is wall sided contributions KB and Ks of the bow and stern are 0(I)

elsewhere, if the value of the Froude number is except if the bow or stern is cusped or round, in which

sufficiently small. A simple explicit relationship between case we have KB, S  O(F2). The contribution of a given

the angle, (p, between the ship track and the tangent to point of stationary phase is O(I/F), and thus is

the ship mean waterline in the region of flare and the dominant, if the hull has flare at this point; otherwise,

corresponding wave-peak angle a in the Kelvin wake is that is if the hull is wall sided at the point of stationary

given and depicted in Figure 3b. For instance, this figure phase, its contribution is O(F). The low-Froude-number

predicts the occurrence of a sharp peak in the amplitude approximation (50) also shows that we have K(t) =

of the divergent or transverse waves at an angle a in the 0(I/t 3) as t - oo In fact, this result is valid for any

Kelvin wake equal to 14' for a hull having a small region value of the Froude number.
of flare within whirh the waterline-tangent angle (p is The latter result implies that the lines along which

• . approximately equal to 300 or 740, respectively. This the steepness of the short divergent waves in the far-field

analytical result may explain the bright returns that have Kelvin wake takes given large values, say 1/7 and 1/15,

sometimes been observed in SAR images of ship wakes are parallel to the ship track, as was found in Figure 21

at angles smaller than the Kelvin-cusp angle. of Barnell and Noblesse (1986) by using the Michell thin-

rhe low-Froude-number asymptotic analysis of the ship approximation for a simple ship form. The

Neumann-Kelvin theory presented in this study also Neumann-Kelvin theory therefore predicts that the far-

predicts that the wave-resistance coefficient is OF 2 ), field Kelvin wake contains three distinct regions: (i) a

where F is the Froude number, for a ship form with a narrow constant-width innc, region bordering the track

region ol flare, 0(F 4 ) for a ship form that is wsall sided of the ship where no divergent gravity waves can exist,

eserywhere and has either a bow or a stern (or both) that (i) an outer region where the usual transverse and

are neither cusped nor round, and O(F 6) for a wall-sided divergent waves are present, and (iii) an intermediate

ship form with both bow and stern that are eiter .usped region at the boundary between the inner and outer

or round regions where short steep divergent waves can he found.

More precisely, the low-roude-numbei asymptotic In reality, surface tension and possibly also viscosity

approximation 150) to the far-field wave-amplitude must evidently be taken into account in the vicinity of

function K(t) shows that the main contributions to the the track of the ship.

*00 function K(I) stem from several particular points on the

oA.
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2. STATIONARY-PHASE APPROXIMATION TO ... :h n a tan.. /2 1) .. 19o28,

THE FAR-FIELD KELVIN WAKE

The far-field Kelvin wake may be conveniently where t,(a) are the values of t for which the phase-

analyzed in terms of the nondimensional far-field function 8 .(t:a) is stationary, 0,(&) = 8+ (tl;a)

coordinates (U.i.) = (X,YZ) g/U 2 , where g is the represents the corresponding values of the phase-function

gravitational acceleration. U is the speed of advance of 0+(t;a), and Az(a) is the function defined as A±(a) =

the ship, and (X,Y,Z) are dimensional coordinates. The (2/w) 1 2 (l + t* 2)1 /2 /[T9'.(t+;&)11 /2 . The functions t±(a),

mean free surface is taken as the plane 4 = 0, with the O,(a) and A±(a) are given by

4 axis pointing upwards, and the I axis is chosen along t t(a) = [(I- 802)1/21/4o, (7)

the track of the ship, that is in the ship centerplane, and e±(a) (3-T(I - 802)1/21

pointing towards the bow. The origin of the system of [I + 4o2+(l - 802)1/2]1/2/ 21/28o, (8)

coordinates is placed within the ship. A (a) (I +4o2±(l - 82)tI20421141

Equations (4), (3a), (7) and (8) in Barnell and 4Al['2032(l - 802)1/4, (9)

N( desse (1986) yield the following expression for the

elevation 4 of the free surface at a sufficiently large where we have

distance behind the ship, such that nonlinearities may be o = tana (10)

neglected: as is given by equation (5).

, n C(i4.) ReJ 0  (E+ + E K(t) (I + t2)1/ 2 dt, (i) The far-field asymptotic approximation (6) shows

where K(t) is the far-field wave-amplitude function and that the wave pattern at any point (.a), with I -

E, is the exponential function defined as and 0 4 a < 19'28 ' , consists in two elementary plane

EI(t,,o) = exp [0,0;01, (2) progressive waves, so-called transverse and divergent

", waves, as is most well known. The wavelengths A. and
with the phase-function 0. and the parameter o defined the directions of propagation ft., measured from the

as track of the ship, of the transverse (A. ,/0 _ ) and

6±(t;o) (l~ot)(l + t2)),2, (3) divergent (A f ,) waves at an angle a from the track of

the ship are given by

For a ship with port- and starboard-symmetry, as is 2() = 2('Il6no/[3I)- 8a,)' 21
[I -4o2.(l -8o')'2) I 2 (11)

considered here, the Kelvin wake is symmetric about the

ship track n = 0. We may then restrict the analysis of P.,(a) = cos 1{2'( 22o/[ + 4o 2 (1 - 802)1 2]i 2. (12)

the Kelvin wake to the quadrant P7 ; 0. J < 0 and We have

assume a 0. Let a be the angle between the track of I ;, /2n • 2/3 > A, /2n >0and (13)

the ship and the line joining the origin of the system of

coordinates to the observation point ( r)). We thus have 0 4 (3 sin '(1/3' 2) , 3516, < -. 90. (14)

a = tan -10. (5) Equation (6) shows that the amplitudes of the

transverse and divergent waves in the Kelvin wake are54A far-field asymptotic approximation, valid as - asymptotically equal to A~ K(t±)!/( _ )i 2 as / o

ooto the wave integral (1) may be obtained by asmttclyeult ,-~tl(-'2a -
-aplto the wetega of a y be, aieb The steepnesses. say s., of these waves then are given by

• applying the method of stationary phase, as is well
s . = A IK(t±)I/A,±(-4)iwZ. We then have

known. The result of this classical asymptotic analysis

may be found in Barnell and Noblesse (1986), for ( - 4)1/' 2s(.o) - S, ± K(t ,)l as 4 - -- , (I5)

instance. Specifically, equations (28), (24a), (20b), (25a-d) where the functions S.(a) are defined as S,(a) 1

and (26a-d) in this reference yield A (a)/A,±(a), Equations (9) and (11) then yield

( )/24(la) - Re S*(o) =3T(I - 802)121 (I -4o 2 -+(l -802)1 2112

A_ K(t _ ) exp [Ji(4 -n/4)) 1l + 402+(l 802)1 ,23 4,2' 464 o 2{i (1 802)1A . (16)

+ A K(t ) exp [i(LE+ +n/4)1) as J - , (6)

5 3
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Equations (7), (8). (9), (10) and (16) show that we 2-
have

t-= 0, 8- - I, A_ = (2/W)1' 2  (17a,b,c)

and S_ = 1/2112131/ 2 for a - 0, (17d) 1.6
"'"

D"t ,- i/2a.,- 11|4c, A+ r' 1/2xrl/2 , 3 / 2  (18ab,c)

and S ', 1/16w3/'2 7 / as a - , (18d) 1.2-

t, = 1/21/ 2 and 9, = 3(3/2)1/2/4 (19a,b)

fora = tan- 1(11/3 12) , 1928', 0.8-

A5 't 31ni/ 261/4(I -8o 2)1 /4 and (19c) A

S±t 9/4n3/ 26 1/4(l- 8o 2)1/4  (19d) 0.4- t

as a tan- t (I/2 3 /2).

The stationary-phase values t±(a). the phase-functions

42(a), the amplitude-functions A±(a) and the steepness- 0"
functions S(a) are depicted in Figures ia and lb, which 0 30 80 90 12 15 IS
correspond to the transverse and divergent waves, 41 -

respectively. Fig. Ia - The Stationary-Phase Value t _(a), the Phase-
Function 0 (a), the Amplitude-Function A_(a) andIt may be seen from these figures and from the Steepness-Function S _(a) Corresponding to the

equations (19c) and (19d) that the amplitude-functions Transverse Waves in the Kelvin Wake
-,r A,(*) and the steepness-functions S,(&) are singular at

the Kelvin cusp line o2 1 /8, a = tan- 1(1/23/2) " 6
1928 ' , in accordance with the well-known fact that the

asymptotic approximation (6) is not uniformly valid at 5 S+
the boundary of the Kelvin wake. A complementary

asymptotic approximation, expressed in terms of Airy
functions, valid at and near the Kelvin cusp line is given

in UrselI (1960) for the particular case of the Kelvin wave

pattern due to a concentrated pressure point at the free 3- + A
surface. However, Ursell's more complex asymptotic +
approximation -'? not be considered here because the 2-
simple asymptotic approximation (6) is little affected by +

the weak singularity (I - 802) 1 4 for points (I.a) inside
the Kelvin wake and not too near the cusp line a d -

1928 ', in which we are mostly interested in this study.

Equation (II) yields 0_+F A 8n 2 asa- 0. (20) 0°  30 6" 90 12 15°  180
This approximation ant. the approximation (18b) show OL

that there are an infinite number of divergent waves with Fig. lb - The Stationary-Phase Value t (a), the Phase-

o. tthe Steepness-Function S+ (a) Corresponding to the
Sof the ship, as is well known. It may be seen from Divergent Waves in the Kelvin Wake
Figure lb and equations (18a,c,d) that the stationary-

. phase value t (a), the amplitude-function A + (a) and the%' A+ ' (2,f, ) 1t 3/2 and (2)a)

steepness-function S (a) are unbounded in the limit a "d

0. Equations (I8a,c,d) yield S+ , t +'//2/l/2)/2 as t+ - . (21b)

O...r-OM-, .  --. ':4
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- Equations (21a) and (6) show that the amplitude of the as is shown in Noblesse (1983). In this equation. F is the

divergent waves, given by A IK(t+ )t(- 112, vanishes Froude number defined as

at the track of the ship if we have F = U/(gL) 12, (27)

, 12](4) - 0 as t (22) v is its inverse, that is

Furthermore, it is shown in Barnell and Noblesse (1986) = I (28)

that the asymptotic approximation (6) is uniformly valid

at the track of the ship if condition (22) is verified. It p is defined as

may be seen from equations (21b) and (15) that the p = (I +t 2)t / 2, (29)
steepness of the divergent waves, given by and E. represents the exponential function

S+ IK(t+)1/( 4)1/2, is unbounded at the track of the
s hp"f e a vEe= ex p ( - iv 2p (x :t ty ). (30 )

.'ship if we have (0

t7/21K(t)l -- c as t - ®. (23) Furthermore. c and h represent the positive halves of the

mean waterline and of the mean wetted-hull surface,
Both conditions (22) and (23) can be satisfied respectively. The unit vector tangent to c and pointing

simultaneously if we have towards the bow is denoted byT-t ,ty.0), and -n~n,ny.ny)

IK(t)I ",- l/tP as t - c with 3/2 < 0 < 7/2. (24) is the unit vector normal to h and pointing into the

In summary, the asymptotic approximation (6) water, as is indicated in Figure 2. The term n:, is defined

expresses the far-field wave pattern of a ship at a point as

(,a), with 4 << - I and 0 4 a < 19'28', as the sum of a n± -n, + i(nxtny)/p. (31)
transverse wave and a divergent wave. The phase

,"t(&)±rn/4 of these two waves are defined explicitly in n n Atf
'4. terms of/ Iand a; and their amplitudes C x

A _.( )K(t±)/( _ ) 2 are given by the product of the n x
functions A,(a)/( - Dl 2 which are also defined nxt

expi citly in terms of 4 and a, and the far-field wave-
amplitude function K[t (o,)], which depends on the speed Figure 2 - Definition Sketch for a Single-Hull Ship withu fPort and Starboard Symmetry
(Froude number) and the shape of the ship. The far-field

wave-amplitude function i, now considered. Also, dl and da repiesent the differential elements of arc

length of c and of area of h, respectively. Finally,

3. BASIC EXPRESSIONS FOR THE FAR-FIELD + = *( ) represents the nondimensional disturbance
WAVE-A'PLITUDE FUNCTION potential * = 0 UI at the integration point Von c or h,

'%?" The far-field %ve-amplitude function K(t) may beThe fu represents the derisative of + in the direction of the

coneniently defined in terms of the nondimensional
U-~'tangent vector t to c, and *,is the derivative of + in the

near-field coordinates (x,y.z) = (X.Y,Z)/L, where L i, direction of the sector rti , which is tangent to h and

the length of the ship. In the Neuman,i Kelvin theory, pointing downwards as is shown in Figure 2.
the function K(t) is given -" the sum of an integral Equations (25) and (26) express the far-field wave-

around the mean waterline of the ship and an integral amplitude function Kt) in terms of the value of thr

.,e ne mean wetted-hull surface. pecifically, for a oud number and the torin of the mean wetted-hullu.
ship with port and starboard symmetry. as is considered surlace, as. ,, noted pre,.ously More precisely.=/%srfce here wit, funtteo K(Iiouy More preiessdsnelyor
here, the function K(T) may be expressed in the form equation (26) expresses the function K+(t) as the sum of

K(t) = K, it) - K (t), (25) a line integral around the mean waterline and a surface

where the functions K. are gien h. integral over the mean wetted-hull surface of the ship.

iurthermore. these integral, insole the disturbance
1 Fj f F(n,2 n, .+*d selocot, potential * in their integrands. The relationship

vfh exp(v2p,'I)l .(n,+ vpn.) da. (26) between the far held Aase paticin of a ship and its form

t' e:i'

",.'

"U
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and speed thus is a complex one, which offers litde the Laplace method for approximating the hull-surface

' . physical insight. However, analytical approximations for integral in equation (26). and combining the resulting
the waterline and the hull integrals in equation (26) can waterline integral with that already present in equation

be obtained in the limiting case when the value of the (26), we may obtain __ after lengthy algebraic

Froude number is sufficiently small. This low-Froude- transformations - the following low-Froude-number

number asymptotic approximation for the function K(t) approximation for the function K(t):
,%,is no,,, obtained Ir Eoa.+E-K(t) "- v2q 2  (Eoa +Eoa ) dA as F -0, (35)

4. LOW-FROUDE-NUMBER LAPLACE where we have
APPROXIMATION TO THE FAR-FIELD WAVE-
AMPLITUDE FUNCTION IN TERMS OF A q = I/p 1/(1 +t2 )t' 2 , (36)
WATERLINE INTEGRAL

For large values of v = I/F, or more generally of

vp, the exponential function exp(s 2p2z) in the hull- Eo ± = exp[- iv2p(X0 ±tyo), (37)

surface integral in equation (26) vanishes rapidly for and a, is the amplitude function

negative values of z. Therefore, only the upper part of a

.* .i the mean-Aetted hull surface h yields a significant

contribution in the low-Froude-number limit. More where ut is defined as

precisely, the hull-surface integral can be approximated u = I/[I - iq(x ±ty)], (39)

by a line integral around the mean waterline c. and the functions aT and a,' are now defined

Furthermore, this integral can be combined with the

waterline integral in equation (26). The analysis is The first-order amplitude function ai t is given by

presented in detail in Noblesse (1986a) and is briefly at = Yo' A±/(I + f2) + 2q(x 0'±ty0 ')(u,) 2B,+O

' summarized below + C,+o' + uD±+/(l0 +) ip(yl*0 -y 0o+1), (40)

The mean vwaterline is represented by the

parametric equations where we have

x- x1(A) and y -s 0 (A), (32a,b) x0 'Y1 )/U' (41)

where the parameter A varies between its bow and stern with u defined as

values, that is u = (Xo0)2+(y')2' 2, 142)

A < A 4 A, (32c) and the coefficients A, B., C, and D, are defined as

In the \,iciniti of the mean free surface, the hull surface A_ = [(I + py,)',u)(l - py 0 'iu) +L2

is represented by the parametric equations + i(py O  u)[y!(x 0 ' -±tyo ') ! u + , (43a)

x, A).= X I ()+z 2 . .. (33a) B. = q(y,2:tx,) + i(ylx,-xy,), (43h)

y = y0(A) - zYr y(A) ' 2 () + . (33b) C, = [(-t - p'xo  Yo' 
/ U

where A8 A A, AS and 0. (33c) * (py0 ' "u)2 r(xlx 0 ' +vyYo) /u(I +E2)]
+ i[y(x0 ' ±tY 0 ' )iu +f]

The ,elocit. potential *(A.z) on the hull surface in the Ipx0 'u - ( /u)c(x l () ) u(l rh, (41c)

vicinity of the plane z = 0 ikewise is expressed in the
form D. [(x'ty0 ')/u][(l +E2)(y,±iqt)u, + i(p0 ' u),
,", -(pyo',u)k(py O'/u -t). (43d)

+ = O(A) + Z I(A) + Z
2
+2(A) + ... 

(34)

The second-order amplitude function a2± is given
Differentiation of the functions xn(A), yn(A). +n(') with by

respect to the parameter A is denoted by the

superscript ; thus, we have x dxcj(W)dA a- 2u,(+0m 2! 4 +1m I + +2m0  'Y0  )

By using the foregoing parametric representations 6i(u,) 2 [+0(mt± 2 + m0 ±y3±)+ +imo1 2 ]1

for the hull surface and the velocity potential, applying 12(u)34 m (4±
±)% oo( 2 ).

6t4 ,)
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where we have range, that is from the bow and the stern, This

Y q(x,±tyn) (45) stationary-phase analysis is presented in detail in
I i + iq(yn;txn). (46) Noblesse (1986b) and only its re Alts are given here. We

have
with

K(t) " iq 3(KB - KS + I K±) as F -0 , (50)
P0 = Lu. (47a)

hb where K. and KS correspond to the contributions of the
1 = xIY -ylX,' + 2(x2y0 ' -y 2xo'), (47b) bow and the stern, respectively, and Kr corresponds to

02 = x1Y2 ' YIX 2' + 2(x2yl' - Y2 X1') the contribution of a point where the phase of the

+ 3(x3y0 ' - y3x'). (47c) exponential function E0
± is stationary, that is where we

have y0'/(-x 0 ') = ±I/t or dyo/dx0 = T-l/t; the

In the particular case when the phase of the summation in the asymptotic approximation (50) is

exponential function E0
t is stationary, that is at a point extended over all such points of stationary phase on the

(x0.y0 0) wherp we have x0'±ty = 0, the first-order mean waterline c. The expressions for the contributions

amplitude function a,± takes the form of the boy and stern KB S and of the points of

stationary phase K. are given below.

a l + t L (The contribution KBS of the bow or stern may be

+ ip(yl O' - yo' +) if X0 '±tyo ' = 0. (48) expressed in the form

Furthermore, if the hull surface intersects the plane z= 0 KB.S AB.Sexp( - iv2 pXBs, (51)

orthogonally at a point of stationary phase we have where xBs is the abscissa of the bow or stern and the

a 1  = i F2pY' a 2+0 ax2 amplitude-function AB., is given by
if YO±t\, o  0 and n, 1  0, (49) AB. =2n,.A1 + iF 2q(A, A, )+0(F4 ); (52)

and the amplitude function a, then is or order F2. in this expression, the functions A, and At - are defined

The lowh-Froude-number asymptotic approximation by the equations

to the far-field wave-amplitude function K(t) given by the (, + iqn,)A t  nnJ - ipn,(n, + iqn)/(l - n,
2  _ p'n, 2

)J

waterline integral (35) is considerably simpler than the

exact expression (26), which intol,,es both a waterline nt7 ipn t ¢d(l n,
2 +ipn n ),l n 2 - 2) (53)

integral and a hull-surface integral; and the approximate arid

expression (15) is well suited for efficient numerical .A. : tu ai iqu.)2a, (54)

evaluation. Howexer. expression (35) can be simplified by

applying the method of stationart, phase, which takes Ahere the superscript denotes differentiation Aith

adsantage of the rapid oscillations of the exponential respect to the parameter 4. the functions u., al" and a,*

lunction F,' gis en by equation 0') in the Il.w J roude- are delined hs equations (9I, (401 and (44), re%pectis elk.

number limit L, - -. or more generally in the limit and the flunctioti R. is defined as

vp-- This tationar -phase approximation is now 0, x,, tt, (55)

obtained Fxpression (54) for the second-order amplitude-

function A.' is a complex one. However, equation (53)5 I), WI-R()II)F NI MBHIR SITI()NARY-PIIASF
5 APPROXIMATIO)N T(i IH FAR-III) AVF defines the first order amplitude function A1 explicitly in

AMPI ITUDE FLN( 1I[N terms of (he alie of t. p - (I 12)1 2 and q I p. the

The method of stationary phase indivaie,, thai the geometrical charactcristics of the hul at the bow or

major contributions to the integral 0s) in the limit when stern, namel, the unit .ector t(t ,t\,0) tangent to the

the exponential functions F," are rapidly oscillating, that mean waterline and the unti vector ff(n,,n,.n,) normal

".. is if v or more generall, vp stem from points to the hull, and the components +, and #d of the %elocity

where the phases of these exponential functions are sector in the directions of the unit sectors t-and 'TT

stationary, that is Irom points where we haste xo  t , tangent to the hull. 1-quatton (52) shows that the tirst

0, and from the end points A. and A, oi the integration order appioxumarionto it he amplit ude- funct ion AR.,,

* 7
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given by 2nxA,, vanishes if n,- 0. that is if the The expression for the second-order amplitude-
waterline has a cusp at the bow or stem. Equation (53) function A2* is a complex one. However, equation (60)

shows that the first-order approximation to the function and the rut-order approximation to the amplitude

AB.S also vanishes if the bow or stern is round, since we function, namely

then have ny = 0 and +, = - = 0 by symmetry. It A. = (I -nZ2)1/2(nty++d)+O(F2). (63)

may thus be seen that the contribution of the bow or

stern to the far-field wave-amplitude function K(t) is of provide a simple explicit expression for the stationary-

order F2 if nx = 0 or ny = 0 at the bow or stern, phase contribution K. in terms of the geometric

respectively; that is, we have characteristics of the hull and the downward tangential
derivative +d of the potential at the point of stationary

%"N KB.s = O(F2) if nx = 0 or ny = 0 (56) phase. In the particular case when the hull surface is

at the bow or stern. In the particular case when the hull vertical at the point of stationary phase we have n=O

surface is vertical at the bow or stern we have n. = 0 and equation (63) becomes

and equation (53) becomes A, = - + + O(F 2) if n, = 0, (64)

A t = t, - t- iptxz/(l -p 2ty2) if n, = 0, (57) which yields

.. , which yields A, = O(F2) if n, = 0. (65)

AI = t,, - + O(F 2 ) if n. = 0 (58) Equation (60) then shows that the stationary-phase

as is indicated by the free-surface boundary condition *z contribution at a point (xo,yo) of c where the hull is

- -F 2+xx = O(F 2). vertical is of order F, that is we have

' The contribution K, of a point of the mean K± = O(F) if nz = 0. (66)

waterline c where the phase of the exponential function

E0 ± is stationary, that is where we have On the other hand. equations (60) and (63) show that we

have
dy0/dx0 = :gl/t. (59)

dyo/do (5) Kt= 0(0/F0 if nz #0. (67)-- - ~~may be expressed in the form K (/)in ¢ . (7
may, "b- epThe stationary-phase contribution at a point where the

-, K± = ±v(2nr)"' 2At hull has flare thus is dominant in the zero-Froude-

.- ' exp (iv 2(y0 t" - X0ty)/ty2 + icn/41, (60) number limit.

where r is the radius of curvature of c at the point of The summation in equation (50) is extended to all

stationary phase (xo,yo), i is equal to + I or - I if the the points of the mean waterline c where the phase of
center of curvature of c at the point (xo.y0) is upstream the exponential function E0 + or the function EO - is

rstationary, that is the points where the slope dYc/dxo of

or downstream from (xoyo), respectively, and the
- a t u nc is equal to - I/t or + I/t, respectively. The number of-%,',r amplitude- function A± is given by

stationary points, and their position along the waterline,
A± = (I - n. 2)1/2(nzty + +d) - F2qA 2t + O(F4); (61) depend on the value of t and on the shape of c. For

in this expression, the second-order amplitude-function instance, for the simple case of a hull with waterline

A2, is defined by the equation consisting of a sharp-ended parabolic bow region 1/4 4

±2((x0 )2 +(y0 ') 2 1 /2A2 ± = ((ual ) / 0 ' x 4 1/2 defined by the equation y = 4bx(l - 2x), where

2 b denotes the ship's beam/length ratio, a straight parallel

midbody region - 1/4 ( x C 1/4, and a round-ended

+ 2iq(u±) 2a2
±, (62) elliptic stern region - 1/2 4 x 4 - 1/4 defined by the

wr tequation y = b[ - 2x(l + 2x)]1 / 2, there is one point of
where the superscript ' denotes differentiation with stationary phase in the stern region given by x =

respect to the parameter A and the functions u±, a,*, a2 ± -[I + I/(1 +4b~t2 )1 /2 j/4. so that we have - /2 • x •

and 8 are given by equations (39), (40), (44) and (55), - /4 for 0 ( t • so with x hv - /2 as t - 40 and x -

respectively. - 1/4 as t - -. and one point of stationary phase in the

8



bow region given by x = (I + l/4bt)/4 for l/4b 4 t 4 region, the range of values of t for which K(t) = O(I/F)

-, so that we have 1/2 • x • 1/4 for I/4b 4 t 4 - is also small. The far-field wave-amplitude function K(t)

with x - 1/2 as t -. I/4b and x - 1/4 as t - c. We can then exhibit a sharp peak for some value of t in the

thus have one point of stationary phase in the stern low-Froude-number limit. In fact, several isolated peaks

region for 0 4 t < I/4b and two points of stationary of the function K(t) can exist if the hull form has several

phase, one in the stern region and one in the bow region, distinct regions of flare within which the slope of the

for I/4b 4 t 4 -. The two points of stationary phase waterline varies gradually.

approach the shoulders x = ±1/4, where dy/dx = 0, as It should be noted that the result K(t) = O(I/F)

t " Go. for values of t for which the hull has flare at the

The asymptotic approximation (50) and equations corresponding points of stationary phase does not imply

(S1)-(58) and (59)-(67) defining the contributions of the that the corresponding free-surface elevation becomes

bow and stern and of the stationary-phase point(s) on unbounded in the zero-Froude-number limit F = 0.

the waterline, respectively, show that the low-Froude- Indeed, the asymptotic approximation (6), where we have

number behavior of the far-field wave-amplitude (,C) =-(X,Z)g/U 2 , then yields Zg/U 2 
= Oil/F( - )1/21

function is strongly influenced by the shape of the hull in OI/(- X/L)1/ 2 as F - 0 and - X/L - -. The free-

the vicinity of the waterline. More precisely, for a value surface elevation Z thus is of order (U 2/g)/( - X/L)1' 2 
as

of t for which there is one (or more) point of stationary F - 0 and -X/L - -, and equation (15) shows that

phase on the mean waterline where the hull has flare, the the corresponding wave steepness s is O(l/( - X L) 21.

contribution of this stationary-phase point dominates the For values of t for which K(t) = 0(l) it is seen that

contribution of the bow and stern and is of order I/F, Zg/U 2 and s are O[F/( - X/L)i 21 as F - 0 and - X/L

that is we have K(t) = O(I/F). On the other hand, for a -

value of t for which either there corresponds no point of It should also be noted that the asymptotic

' . stationarN phase or the hull has no flare at the point(s) approximation (51)-(55) for the contribution of the bow

, of stationary phase, the dominant contribution stems and stern is not uniformly valid for the values of t for

from the bow and stern, and it is of order 1, that is we which the bow or the stern is a point of stationary

, then have K(t) 0(l). However, if nx = 0 or ny = 0 phase, that is for which the waterline slope dy0/dx0 at

at both the bow and the stern, that is if the bow and the the bow or the stern is equal to I, or l/t,

stern are either cusped or round, their contribution is respectively. Indeed, it may he shown that we have

00(2
) and the contribution of the stationary-phase I -n,

2 
- p2n2 = 0 at a point of stationary phase, so

*,• pllnt(s), which is O(F) if there is no flare (as is assumed that the first-order approximation to the amplitude

here), is dominant; so that we then have K(t) = O(F). functions AB,S given by equation (03) becomes

[or a ship form that is everywhere wall sided, the unbounded. The asymptotic approximation (60)-(62) foi

contribution of the bow and stern is dominant for all the contribution of a point of stationary phase likewise ,s

,alues of t, arid we ha'e K(t) =Ot) for 0 < t . 0 . On not uniformly valid at a stationar- phase point where th

the oiher hand, for a hull form that has flare over a waterline has an inflexion point Indeed, the radius of

portion of the waterline and is wall sided elsewhere, the curvature r at such an inflexion point is infinite and

,ontribution of the bow and stern is dominant, and 0(l), equation (60) yields an unbounded contribution K.

onls for those ,alues of t for which the corresponding Asymptotic approximations valid for these special cases

points of tatioiar, phasc fall outside the range of flare; may easily be obtained and are gjen in Noblesse

,oii he rag.gc ot alues tit t for % Inch the corresponding (1986b). It will only be noted here that the far field

111iO1s of siaiionar\ phase are within the range of flare, wave-amplitude function K(it) for a hull form hasing

the .ontrihution of these stationary-phase points is flare at a point where the waterline has an inflexion mas

dominant, ol order I/F. In this instance, the function be expected to exhibit a particularlN pronounced peak at

mKt is 0(0 A-) for a range of values of t (corresponding the value of t corresponding to the inflexion point since

to the region of flare) and OIl) for other values to t. If we have K(t) (I1_i4 'I as I 0 for this parti.ular

the region of flare is of small extent, and the slope value of t.

dy 'dx of the waterline does not vary widely within that



,,, -

6. CONCLUSION: HULL FORM AND KELVIN- Let W denote the angle between the tangent to the
WAKE FEATURES mean waterline and the track of the ship, that is we have

The classical far-field asymptotic approximation to

the Kelvin wake, obtained in section 2 by applying the tan q9 = Jdy 0/dx0 and 0 ( o 4 w/2. (69)

method of stationary phase, and the low-Froude-number Equations (68), (69). (7) and (10) then show that the
asymptotic approximation to the far-field wave-amplitude stationary values t (a) and t_(a) associated with a given
function, obtained in sections 4 and 5 by successively value of a are defined by the equation

using the Laplace method and the method of stationary wo(t) = tan- 1{4/[I:(I -8o2)1/2), (70)

phase, provide a simple analytical relationship between
the hull shape, on one hand, and the waves it generates, where o = tan*. For a given waterline shape, equation

on the other hand. This explicit relationship between the (70) thus defines the number of stationary points and

wavemaker and its waves is summarized below, their position on the waterline corresponding to any

The far-field asymptotic approximation to the given angle a inside the Kelvin wake. In particular,

Kelvin wake (6) shows that at any point (Q.a), with = equation (70) yields

Xg/U 2 < - I and 0 4 a < tan -t (2- 3/2 ) 1928 , the 0 • go+ , tan- 1 (21/ 2) ,e 34o44 ' 4 p _ 4 90 (71)

wave field consists in two plane progressive waves - a and go+ , 2a, go , nw/2-a as a -"0. (72a,b)
transverse wave and a divergent wave - with
wavelengths A - and A+ propagating at angles /3 _ and Points of the waterline with slope between 0 and 54'44'

/ft from the track of the ship, respectively. The thus contribute mostly to the system of divergent waves

wavelengths A:, and the propagation angles P. depend on while waterline slopes between 54044' and 90' mostly

the angle from the ship track a alone, that is A. and /3 contribute to the transverse waves.

are independent of the hull shape and size, as is well Equations (10), (1i), (12) and (70) define the wave-

known. Specifically, the functions A±(a) and 3±(a) are lengths A:, the wave-propagation angles and the

defined by equations (10), (11) and (12). At a given waterline-tangent angles cp, corresponding to a given

downstream distance 4, the amplitudes of these waves, angle from the ship track r. The functions A±(a), f3.(a)

on the other hand, are given by the product of the and 'p±(&) are depicted in Figure 3a, where the subscripts

functions A,(a), defined by equation (9), and the far- T and D are used, instead of - and +, to refer to the

field wave-amplitude function K(t) evaluated at the transverse and divergent waves, respectively. The

stationary values t (a) given by equation (7). The foregoing relationships between a and A. /3., p may be

function K(t) depends on the hull shape and the Froude used for determining the angle from the ship track a, the

number in a fairly complicated manner via an integral wavelength A and the wave-propagation angle /3

over the mean wetted-hull surface and an integral around corresponding to a given waterline-tangent angle (p.

the mean waterline, as is indicated by equation (26). A Specifically, we may obtain the remarkably simple

low-Froude-number asymptotic approximation to these relations

integrals is obtained in sections 4 and 5. a = tan- I [tango/(2 +tan
2 p)j, (73)

The analytical approximation (50) shows that for a A/2n = sin 2 go and/3 = n/2 - p. (74a,b)

given value of t corresponding to a given value of a, as

is specified by equation (7), the main contributions to the The functions a(go), A('p) and 3('p) are depicted in Figure

function K(t) stem from several particular points on the 3b. Alternatively, the foregoing relationships among cp. a.

mean waterline. These are the bow and the stern, on one A and / can be represented in the form of Figures 3c and

hand, and (usually but not always) one (or several) 3d, which depict the functions (p(P). a((f). k13) and cp(),

pointis) of stationary phase. Indeed, the number of these a(A), P3(A), respectively. These equivalent graphical

points of stationary phase and their position on the representations show that we have

waterline, defined by the condition 0 • (PD < tan -(2t/2) n- 54044 r 'PT 900, (a)

dy0 /dxo; = I/t, (68) 0 4 AD/ 2 n • 2/3 • AT/ 2 ft • I, (75b)

depend on the shape of the waterline and the value of t. 900 ;kD ;11 tan - 1(2 3/2) , 35016, /3. • 0, (75c)
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Cx -. 4P
Fig. 3a - The Waterline-Tangent Angle (p, the Wave- Fig. 3b - The Angle From the Ship Track a, the Wave-

Propagation Angle / and the Wavelength A as Functions Propagation Angle / and the Wavelength A as Functions
of the Angle From the Ship Track a; the Subscripts T of the Waterline-Tangent Angle o.
and D Refer to the Transverse and Divergent Waves,

Respectively.

TRANSVERSE DIVERGENT DIVERGENT TRANSVERSE

- So-/
08--70* 70*- Ol

3 54t44' 50*- -54"44'

0.4 -3516'

0.2 19'28' 20' -- 19'28'

0 . .. . 0 0 ---- I
0 20' 35'16' 50' 70' 90' 0 0.2 0.4 2/3 0.8 113--- 02nr ---

Fg 3c - The Waterline-Tangent Angle p, the Angle Fig. 3d - The Waterline-Tangent Angle (p, the Angle
From the Ship Track a and the Wavelength A as From the Ship Track a and the Wave-Propagation Angle

Functions of the Wave-Propagation Angle /. (3 as functions of the Wavelength A.

where the subscripts D and T refer to the divergent and case we have Ki., s O(F2,. The contribution of a given

transverse waves, respectively, point of stationary phase is O(I/F). and thus is

The first two terms in the low-Froude-number dominant, if the hull has flare at this point; otherwise,

asymptotic expansions for the contributions KB.S of the that is if the hull is wall sided at the point of stationary

bow and %tern and the contributions K. of the points of phase, its contribution is O(F).

stationary phase in equation (50) are given by equations Thius. for a ship form that is everywhere wall

(5 0-455) and (59)-(62). respectively. The second-order sided, the contributions of the bow and stern are

terms in these asymptotic expansions are defined by dominant (asuming that they are not both either round

complex expressions. However, the first-order terms or cusped) for all .alies of the angle a from the ship

provide simple approximations defined explicitly in terms track, that is eserywhere in the far-field Kelvin wake. On

of the geometrical characteristics of the hull and the the other hand, for a hull that has flare over a portion

velocity components in the tangential directions rand of the waterline and is wall sided elsewhere, the

, xito the hull. In particular, the low-Froude-number contributions of the bow and stern are dominant, and

asymptotic expansions given in section 5 show that the Off), only for those angles a in the Kelvin wake for

contributions K. and Ks of the bow and stern are O(l which the corresponding points of stationary phase on

except if the bow or stern is cusped or round, in which the waterline fall outside the region of flare; for the

"- 11
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range of values of a for which the corresponding points for the steepness of the short divergent waves in the

of stationary phase are within the range of flare, the vicinity of the track of the ship. By using equations (4)

contribution of these stationary-phase points is and (5), which yield a n. ,I/( - 1) as a - 0, in equation

dominant, of order I/F. In this instance, the amplitude (78) we may obtain

of the waves in the far-field Kelvin wake is of order

(U2/g)/( -X/L)". as F - 0 and X/L - -- , for the

range of values of a corresponding to the region of flare Equation (79) thus shows that the lines along which the

and of order F(U2 g)/( - X/L)I/ 2 for values of a outside steepness of the short divergent waves in the far-field

this range. If the region of flare is of small extent, and Kelvin wake takes given large values, say s, = 1/7 and

the waterline-tangent angle p does not vary widely within 1/15, are parallel to the ship track, as was found in

that region, the corresponding range of values of the Figure 21 of Barnell and Noblesse (1986) by using the

angle a where the wa,,e amplitude is an order of Michell thin-ship approximation for a simple ship form.

magnitude larger than elsewhere is also small, and thus The Neumann-Kelvin theory therefore predicts that the

appears as a peak for sufficiently small values of the far-field Kelvin wake contains three distinct regions: (i) a

Froude number. This peak is particularly pronounced for narrow constant-width inner region bordering the track

a hull with a small region of flare in the Nicinity of an of the ship where no divergent gravity vwases can exist,

inllexion point of the waterline. (it) an outer region where the usual transverse and

The low-roude-number asymptotic analysis of the divergent waves are present, and (iii) an intermediate

Neumann-Kelin theory presented in this study thus region at the boundary between the inner and outer

show, that the characteristics of the far-field Kelvin wake regions where short steep divergent waves can be found.

strongy depend on the shape of the ship hull, notably In reality. surface tension must evidently be taken into

the presence of flare and the shape of the waterline at account in the %icinity of the track of the ship.

the how arid stern. This analysis also ptedicts that the
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