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ANALYTICAL APPROXIMATION FOR STEADY SHIP WAVES
AT LOW FROUDE NUMBERS

Francis Noblesse
David Taylor Naval Ship R&D Center
Bethesda, MD 20084

ABSTRACT

A simple analytical relationship between a ship-
hull form and its steady far-field Kelvin wake is obtained
by considering the low-Froude-number limit of the
Neumann-Kelvin theory. In particular, this relationship
predicts the occurrence of a sharp peak in the amplitude
of the waves in the far-field Kelvin wake at an angle, a,
from the ship track that is smaller than the Kelvin-cusp
angle of 19°1/2 for a hull form which has a small region
of flare and is wall sided elsewhere, if the Froude
number is sufficiently small. An explicit relationship
between the angle, ¢, between the ship track and the
tangent to the ship mean waterline in the region of flare
and the corresponding ‘‘wave-peak'’ angle o in the
Kelvin wake is obtained. For instance, this relationship
predicts the occurrence of a sharp peak in wave
amplitude at an angle a in the Kelvin wake equal to 14°
for a hull having a small region of flare within which the
waterline-tangent angle ¢ is approximately equal to either
30° or 74°. This theoretical result may explain the bright
returns that have sometimes been observed in SAR
images of ship wakes at angles smaller than the Kelvin-
cusp angle. The low-Froude-number asymptotic analysis
of the Neumann-Kelvin theory presented in this study
also predicts that the wave-resistance coefficient is O(F2),
where F is the Froude number, for a ship form with a
region of flare, O(F*) for a ship form that is wall sided
everywhere and has either a bow or a stern (or both) that
is neither cusped nor round, and O(F®) for a wall-sided
ship form with both bow and stern that are either cusped

or round.
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1. INTRODUCTION

It has been observed, see for instance Fu and Holt
(1982) and McDonough et. al. (1985), that SAR
(Synthetic Aperture Radar) images of ship wakes
sometimes reveal bright returns along rays at angles from
the track of the ship smaller than the Kelvin-cusp angle
of 19°1/2. A plausible explanation for these surprising
observations was proposed by Scragg (1983) who
considered a simple ship bow form with large flare for
which he found that the zeroth-order slender-ship
approximation to the far-field wave-amplitude function
given in Noblesse (1983) predicted a sharp peak in the
value of the amplitude of the divergent waves at an angle
from the track of the ship equal to approximately half
the bow entrance angle. This numerical resuit of Scragg
was confirmed by Barnell and Noblesse (1986) who also
found that the peak in the amplitude of the divergent
waves becomes sharper as the value of the Froude
number decreases, and thus suggested that the occurrence
of a sharp peak in the amplitude of the far-field Kelvin
waves was a large-flare low-Froude-number feature.

The numerical studies of Scragg and of Barnell
and Noblesse are based on two simple approximations to
the far-field wave-amplitude function, namely the Michell
thin-ship approximation for which no peak was found
and the zeroth-order slender-ship approximation which
exhibited a peak as was already noted, so that it is not
clear from these studies whether a more realistic
mathematical model for the far-field wave-amplitude
function, such as that provided by the Neumann-Kelvin

theory, would also predict the occurrence of peaks in the
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amplitude of the far-field Kelvin waves. Furthermore, the
numerical results obtained by Scragg and by Barnell and
Noblesse correspond to a particular ship form and thus
provide little physical insight into the origin of the
predicted peak in the amplitude of the fa:-field Kelvin
waves, specifically the manner in which such a peak is
related to the shape of the ship hull.

A complementary analytical study of the low-
Froude-number limit of the Neumann-Kelvin theory for
an arbitrary ship form is thus presented here. This
asymptotic analysis of the Neumann-Kelvin theory
provides a simple analytical relationship between a ship-
hull form and its steady far-field Kelvin wake. In
particular, this relationship predicts the occurrence of a
sharp peak in the amplitude of the waves in the far-field
Kelvin wake at an angle, a, from the ship track that is
smaller than the Kelvin-cusp angle of 19°1/2 for a hull
form which has a small region of flare and is wall sided
elsewhere, if the value of the Froude number is
sufficiently small. A simple explicit relationship between
the angle, ¢, between the ship track and the tangent to
the ship mean waterline in the region of flare and the
corresponding wave-peak angle a in the Kelvin wake is
given and depicted in Figure 3b. For instance, this figure
predicts the occurrence of a sharp peak in the amplitude
of the divergent or transverse waves at an angle o in the
Kelvin wake equal to 14° for a hull having a small region
of flare within which the waterline-tangent angle ¢ is
approximately equal to 30° or 74°, respectively. This
analytical result may explain the bright returns that have
sometimes been observed in SAR images of ship wakes
at angles smaller than the Kelvin-cusp angle.

The low-Froude-number asymptotic analysis of the
Neumann-Kelvin theory presented in this study also
predicts that the wave-resistance coefficient is O(F2),
where F is the Froude number, for a ship form with a
region of flare, O(F% for a ship form that is wall sided
everywhere and has either a bow or a stern (or both) that
are neither cusped nor round, and O(F®) for a wall-sided
ship form with both bow and stern that are eituer cusped
or round

More precisely, the low-Froude-number asymptotic
approximation (50) to the far-field wave-amplitude
function K(t) shows that the main contributions to the

function K(t) stem from several particular points on the

mean waterline. These are the bow and the stern, on one
hand, and (usually but not always) one (or several)
point(s) of stationary phase. Indeed, the number of these
points of stationary phase, and their position on the
waterline, depend on the value of t and on the shape of
the waterline. The first two terms in the low-Froude-
number asymptotic expansions for the contributions Kps
of the bow and stern and the contributions K, of the
points of stationary phase in equation (50) are given by
equations (51)-(55) and (59)-(62), respectively. The
second-order terms in these asymptotic expansions are
defined by complex expressions. However, the first-order
terms provide simple approximations defined explicitly in
terms of the geometrical characteristics of the hull and
the velocity components in the tangential directions t and
T X T to the hull (see Figure 2). In particular, these low-
Froude-number asymptotic expansions show that the
contributions Kg and K¢ of the bow and stern are O(1)
except if the bow or stern is cusped or round, in which
case we have Kg g = O(F?). The contribution of a given
point of stationary phase is O(1/F), and thus is
dominant, if the hull has flare at this point; otherwise,
that is if the hull is wall sided at the point of stationary
phase, its contribution is O(F). The low-Froude-number
approximation (50) also shows that we have K(tj =
O(1/t3) as t = oo In fact, this result is valid for any
value of the Froude number.

The latter result implies that the lines along which
the steepness of the short divergent waves in the far-field
Kelvin wake takes given large values, say 1/7 and 1/185,
are parallel to the ship track, as was found in Figure 21
of Barnell and Noblesse (1986) by using the Michell thin-
ship approximation for a simple ship form. The
Neumann-Kelvin theory therefore predicts that the far-
field Kelvin wake contains three distinct regions: (i) a
narrow constant-width innci region bordering the track
of the ship where no divergent gravity waves can exist,
(i1) an outer region where the usual transverse and
divergent waves are present, and (iii) an intermediate
region at the boundary between the inner and outer
regions where short steep divergent waves can be found.
In reality, surface tension and possibly also viscosity

must evidently be taken 1nto account in the vicinity of

the track of the ship.
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2. STATIONARY-PHASE APPROXIMATION TO
THE FAR-FIELD KELVIN WAKE

The far-field Kelvin wake may be conveniently
analyzed in terms of the nondimensional far-field
coordinates (¢n.8) = (X.Y.Z) g/U?, where g is the
gravitational acceleration, U is the speed of advance of
the ship, and (X,Y,Z) are dimensional coordinates. The
mean free surface is taken as the plane { = 0, with the
¢ axis pointing upwards, and the ¢ axis is chosen along
the track of the ship, that is in the ship centerplane, and
pointing towards the bow. The origin of the system of
coordinates is placed within the ship.

Equations (4), (3a), (7) and (8) in Barnell and
N Slesse (1986) yield the following expression for the
elevation { of the free surface at a sufficiently large
distance behind the ship, such that nonlinearities may be

neglected:
ao
n(kn) = Rej; (E, +E_) K@M (1+1HV2 dt, M

where K(1) is the far-field wave-amplitude function and
E

*

is the exponential function defined as

E (t:¢.0) = exp [it6 (t:0)], (2)
with the phase-function 6, and the parameter o defined
as

8,(to) = (IFot)(l +13)72, Q)
0 = n/(-#§). 4

For a ship with port- and starboard-symmetry, as is
considered here, the Kelvin wake is symmetric about the
ship track n = 0. We may then restrict the analysis of
the Kelvin wake to the quadrant n 2 0, ¢ < 0 and
assume o 2 0. Let o be the angle between the track of
the ship and the line joining the origin of the system of

coordinates to the observation point (£.7). We thus have

a = tan ‘o. (5)

A far-field asymptotic approximation, valid as £ =~
—oo, to the wave integral (1) may be obtained by
applying the method of stationary phase, as is wel}
known. The result of this classical asymptotic analysis
may be found in Barnell and Noblesse (1986), for
instance. Specifically, equations (28), (24a), (20b), (25a-d)
and (26a-d) in this reference yield

(-9t a) ~ Re
{A_K(t )exp [i¢®0 -n/4))

+ A, K(t,)exp li(¢8, +n/4))} as ¢ = oo, (6)

oAy

with © € ¢ <tan~ 42732 o 19028,

where t 4(a) are the values of t for which the phase-
function 8 _ (t;a) is stationary, 0, (a) = 9,(!2;0)
represents the corresponding values of the phase-function
8, (t;a), and A_(a) is the function defined as A a) =
Q/mYY1+1,2)12/[76°(1,;0))"2. The functions t (a),
6,(e) and A (a) are given by

1,(a) = [12(1-80%)"?)/40, M
0,(e) = [3%(1-84%)'7Y
(1 +402+(1 - 80%)1/2)1/2/21/284, (8)

A (a) = (1 +40%x(1 - 80917202174/
41!“203/2(1 _ 802)1/4' 9

where we have

o = tana (10)

as is given by equation (5).

The far-field asymptotic approximation (6) shows
that the wave pattern at any point (§.a), with § < -1
and 0 € o < 19°28’, consists in two elementary plane
progressive waves, so-called transverse and divergent
waves, as is most well known. The wavelengths A, and
the directions of propagation fi,, measured fromn the
track of the ship, of the transverse (A _,8_) and
divergent (A, .3, ) waves at an angle o from the track of

the ship are given by

Aa) = 2 26no?/[35() - 80%)' )

1 - 40?201 - 809" Y 2, (n
B.(a) = cos '{2'"220/[1 + 80%=() - 8aH)! 3! 2} 12)
We have
124 /2n22/324,/2n 20 and (13)
0<fA <sin (173" )~ 35°16" € 8, < 90°. (14)

Equation (6) shows that the amplitudes of the
transverse and divergent waves in the Kelvin wake are
asymptotically equal to A_"K(t,)[/( ' last - -
The steepnesses, say s, of these waves then are given by

s, = AilK(tt)l/At(—é)l‘/z. We then have

(-85, (ka) ~ S, K(t,) as § = -, (15)
where the functions S (a) are defined as Sx“’) =
Ax(a)//\x(a). Equations (9) and (11) then yield

S,(a) = [3%(1 - 80%) 2] [1 - 4022(1 - BaY)! "' "2

[1+ 40221 80Y)! 7P 421 %6an 207 1 - 80H)' . (16)

L ars anh ade oub oud |
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Equations (7), (8), (9), (10) and (16) show that we
have

t_=0,0_=1A_= (/0”2 (17a,b,c)
and S_= 17242 for a = 0, (17d)
t,~1/2a, 8, ~ 1da, A~ 1/ 20V 3032 (182,b,¢)
and S, ~ 1/16n%72 ag ¢ = 0, (18d)
t, = 1122 and 0, = 3(3/2)"%/4 (192,b)
for a = tan—1(1/23/3) v 19°28",

A, ~ 3/x"%61/4(1 - 80%)!4 and (19¢)
8, ~ 9/4n>%6!4(1 - 8?4 (15d)

as a =~ tan~'(172¥3),

The stationary-phase values t +(a), the phase-functions
©_(a), the amplitude-functions A _(a) and the steepness-
functions S_(a) are depicted in Figures 1a and 1b, which
correspond to the transverse and divergent waves,
respectively.

It may be seen from these figures and from
equations (19¢) and (19d) that the amplitude-functions
A (o) and the steepness-functions S_(a) are singular at
the Kelvin cusp line ol = 1/8, @ = 1an" l(I/ZZ‘/Z) o~
19°28°, in accordance with the well-known fact that the
asymptotic approximation (6) is not uniformly valid at
the boundary of the Kelvin wake. A complementary
asymptotic approximation, expressed in terms of Airy
functions, valid at and near the Kelvin cusp line is given
in Ursell (1960) for the panicuiar case of the Kelvin wave
pattern due to a concentrated pressure point at the free
surface. However, Ursell’s more complex asymptotic
approximation » ! not be considered here because the
simple asymptotic approximation (6} is little affected by
the weak singularity (1 - 80%) ' 4 for points (¢.a) inside
the Kelvin wake and not too near the cusp line @
19°28°, in which we are mostly interested in this study.

Equation (11) yields

A, ~Bnolasa — 0, 20)

This approximation an. the approximation (18b) show
that there are an infinite number of divergent waves with
indefinitely shorier wavelength in the vicinity of the track
of the ship, as is well known. It may be seen from
Figure 1b and equations (18a,c,d) that the stationary-
phase value t _(a), the amplitude-function A , (o) and the
steepness-function S | (a) are unbounded in the limit a -~
0. Equations (18a,c,d) yield

—TrrT Ty A A B e e B T el At a |

1.6

o —

Fig. 1a - The Stationary-Phase Value t _(a), the Phase-
Function © _(a), the Amplitude-Function A _(a) and
the Steepness-Function S _(a) Corresponding to the
Transverse Waves in the Kelvin Wake

o T 1 L 1 ¥ 1
0° 3° 6° 9° 12° 15° 18°
o —»

Fig. 1b - The Stationary-Phase Value t , (a), the Phase-
Function © , (a), the Amplitude-Function A , (a} and

the Steepness-Function S , (@) Corresponding to the
Divergent Waves in the Kelvin Wake

A, ~@m''% 32 and 1a)

S, ~t, 722V} ag 1 = oo, Q1b)
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Equations (21a) and (6) show that the amplitude of the
divergent waves, given by A, [K(t,)!/(- £)'’2, vanishes
at the track of the ship if we have

tY2K(t) > 0as t = =, (22)

Furthermore, it is shown in Barnell and Noblesse (1986)
that the asymptotic approximation (6) is uniformly valid
at the track of the ship if condition (22) is verified. It
may be seen from equations (2ib) and (15) that the
steepness of the divergent waves, given by

S, IK(,)I/(- &2, is unbounded at the track of the
ship if we have

U2K()| = o ast = o, 23)
Both conditions (22) and (23) can be satisfied
simultaneously if we have

IK(t)] ~ 1/t¥ as t = o with 3/2 < u < 7/2. (24)

In summary, the asymptotic approximation (6)
expresses the far-field wave pattern of a ship at a point
(,a), with £ << -1 and 0 € o < 19°28’, as the sum of a
transverse wave and a divergent wave. The phase
40 (a)xn/4 of these two waves are defined explicitly in
terms of ¢ and ao; and their amplitudes
A (a)K(t,)/(- &) 2 are given by the product of the
functions A (a)/(- £)' 2, which are also defined
expicitly in terms of ¢ and a, and the far-field wave-
amplitude function K[t (e)], which depends on the speed
(Froude number) and the shape of the ship. The far-fieid

wave-amplitude function i~ now considered.

3. BASIC EXPRESSIONS FOR THE FAR-FIELD
WAVE-AMPLITUDE FUNCTION

The far-tield wave-amplitude function K(t) may be
convemently defined in terms of the nondimensional
near-field coordinates (x,y,2) = (X,Y,Z)/L., where L 1<
the length of the ship. In the Neumani: Kelvin theory,
the funciton K(t) ts given b the sum of an integral
around the mean waterline of the ship and an integral
over ne mean wetted-hull surface. Specifically, for a
ship with port and starboard symmetry. as is considered

here, the function K(t) may be expressed in the form

Koy = K, (1« K (0, (25)
where the functions K, are given by

FIK, () = ﬁ E.n2 et 8 npe,+ivipen, di

‘szh C\p(v:pzli[ ,(n“u:p‘\n,)da. (26)
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as is shown in Noblesse (1983). In this equation, F is the
Froude number defined as
F = U/@gL)"2, @n
v is its inverse, that is
v = I/F, (28)
p is defined as
p = (1+)172 29
and E_ represents the exponential function
E, = exp [~ ivip(xzty). 30)
Furthermore, ¢ and h represent the positive halves of the
mean waterline and of the mean wetted-hull surface,
respectively. The unit vector tangent to ¢ and pointing
towards the bow is denoted by—ﬂt‘,ty.O). and ﬁ(nl,ny.nl)
is the unit vector normal to h and pointing into the
water, as is indicated in Figure 2. The term n, is defined
as
n,6 = -n1+i(nx:lny)/p. an
- —_
n - ¥4 f
C
x
! nxt h )

Figure 2 - Definition Sketch for a Single-Huil Ship with
Port and Starboard Symmetry

Also, dl and da represent the differential elements of arc
length of ¢ and of area of h, respectively. Finally,

¢ = 0(.7(.) represents the nondimensional disturbance
potential ¢ = @ ‘Ul at the integration point X on ¢ or h,
Qr represents the derivative of ¢ in the direction of the
tangent vector 1 to ¢, and ¢4 is the derivative of ¢ in the
direction of the vector n « T, which is tangent to h and
pointing downwards as 1« shown in Figure 2.

Equations (25) and (26) express the far-field wave-
amplitude function K(1} in terms of the value of the
Froude number and the form of the mean wetted-huil
surface, as was noted previously. More precisely,
cquation (26) expresses the function K (1) as the sum of
a line integral around the mean waterline and a surface
integral over the mean wetted-hull surface of the ship.
Furthermore, these integraly involve the disturbance
velocity potential ¢ 1n therr integrands. The relationship

hetween the far ficld wave paticen of a ship and its form
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and speed thus is a complex one, which offers little
physical insight. However, analytical approximations for
the waterline and the hull integrals in equation (26) can
be obtained in the limiting case when the value of the
Froude number is sufficiently small. This low-Froude-
number asymptotic approximation for the function K(t)

s now obtained

4. LOW-FROUDE-NUMBER LAPLACE
APPROXIMATION TO THE FAR-FIELD WAVE-
AMPLITUDE FUNCTION IN TERMS OF A
WATERLINE INTEGRAL

For large values of v = 1/F, or more generally of
vp, the exponential function exp(vzpzz) in the hull-
surface integral in equation (26) vanishes rapidly for
negative values of z. Therefore, only the upper part of
the mean-wetted hull surface h yields a significant
contribution in the low-Froude-number limit. More
precisely, the hull-surface integral can be approximated
by a line integral around the mean waterline c.
Furthermore, this integral can be combined with the
waterline integral in equation (26). The analysis is
presented in detail in Noblesse (1986a) and is briefly
summarized below

The mean waterline is represented by the

parametric eguations

x = x, (A and y = v,(d), (32a,b)

where the parameter i varies between its bow and stern
values, that is
Ag €A < Ag (32¢)

In the vicinity of the mean free surface, the hull surface

is represented by the parametric equations

«»

= oA ez xR+ ) e (33a)
y = Y+ 2y, (0 2y e, (33b)
where AH <€A <€ AS and 7 € 0. {33¢)

The velocity potential ¢(4.z) on the hull surface in the
vicinity of the plane z = 0 hikewise is expressed in the

form
4= 4+ 4N+ v (34)

Differentiation of the functions x (), y (A), ¢, (1) with
respect to the parameter A is denoted by the
superscript '; thus, we have x;, = dx,(A)/di.

By using the foregoing parametric representations

for the hull surface and the velocity potential, applying

Ly RO
"

",

the Laplace method for approximating the hull-surface
integral in equation (26), and combining the resulting
waterline integral with that already present in equation
(26), we may obtain _____ after lengthy algebraic
transformations _____ the following low-Froude-number
approximation for the function K(t):
K(t)szqul:S(Eo’a*+Eo‘a4)dl as F —~ 0, (3%
where we have

q = 1/p = /(1+1)1"2, (26)

EO’ is the exponential function

Eot = expl - ivp(xgztyg)), an
and a, is the amplitude function
a, = u,a,*+F%w,%a,* + OFY, 8

where u_ is defined as
u, = /01 - iq(xlzlyl)], (39)
and the functions a,* and a,* are now defined.
The first-order amplitude function a,* is given by

8% = yo A, /(1+€%) + 2q(xy’ 2y, Nu,)?B ¢,

+ C,8" + uD ¢,/(146%) + iply, by =¥y $)). (40)
where we have
£ = (yo'x‘ —xo'yl)/u. “4n
with u defined as
u = flxg P+, 1R (42)

and the coefficients A_, B_, C, and D, are defined as

A_ = [(L+py, 7ull - pyy /u)+ €
+ i(pyy “uly(xg 2y, ) u+ ¢, (42a)
B! = q(y,¥Fx,) + i(ylx:~x|y2), (43b)

C, = [(Il—pzxo'yo'/'uz)

“+

+ Py wlx Xy + ¥y, Vull + )

+

iy (xq £ty )V u+c]

[DXO' u - (pyo'/u)c(xlxo‘ + ylyo')v u(l + [:)]‘ (43¢)

D, = [(xo’g(yo')/u}[(l +cz)(y|:iql)ux + |(py0‘ udey]
- (pyy /uk(pyy /u —ie). (43d)
The second-order amplitude function a,* is given
by
ay =y 4 2u($gmyT 4 dm T domeTay,y,yT)

+ 6i(u!)2”0(m|1¥2’ + m():ij) + hmO!sz]

12(u,) 4gmo(r, 1% (44)
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where we have

t

Ya© = Qix xty), (45)
m.* =+ gy, Fix,'), (46)
with

Mg = U, (47a)
M= XY X 20Y" S Yaxg ), (47b)

Hy = X9y~ Y%y + 200Gy - yx, )

+ 3(x3¥0" —¥3%')- (47¢)

In the particular case when the phase of the
exponential function EOt is stationary, that is at a point
(Xg,¥g:0) where we have Xg 2ty = 0, the first-order

amplitude function a;* takes the form
a)® = = gliyy +(pyliil)#U'Iu¢']/(lzic)
+ iply 4y — ¥y ¢ if xy 2y, = 0. (48)

Furthermore, if the hull surface intersects the plane z=0

orthogonally at a point of stationary phase we have
a® = lepr'az%ax2
if xo ty," = Oand n, = 0, (49)

and the amplitude function a, then is or order F2.

The tow-Froude-number asymptotic approximation
to the far-field wave-amplitude function K(t) given by the
waterline integral (35) is considerably simpler than the
exact expression {26), which involves both a waterline
integral and a hull-surface integral; and the approximate
expression (35) 18 well suited for efficient numerical
evaluation. However, expression (35) can be simplified by
applying the method of stationary phase, which takes
advantage of the rapid oscillanions of the exponential
function E,7 given by equation (37)n the low-Froude-
number hmMit v = 2, or more generally 1n the himit
vp — 9 This stationary-phase approximation s now

obtained

S TOW-FROUDE NUMBER STATIONARY-PHASE
APPROXIMATION TO THE FAR-FIEL D WAVE.
AMPLITUDE FUNCTION

The method of stationary phase indicates that the
major contributions to the integral (3) 1n the imit when
the exponennial functions E,° are rapidly osallating, that
1 f v — o or more generally vp = o, stem from points
where the phases of these exponential functions are
stationary, that 1s trom points where we have x," =ty

0. and from the end pomnts Ay and A of the integration
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range, that is from the bow and the stern. This
stationary-phase analysis is presented in detail in
Noblesse (1986b) and only its re-alts are given here. We
have

K@) ~ i}(Kg-Kg+ I K,)as F ~ 0, (50)

where Ky and Kg correspond to the contributions of the
bow and the stern, respectively, and K corresponds to
the contribution of a point where the phase of the
exponential function EO’ is stationary, that is where we
have y,'/(-x4') = tl/tor dyo/dxo = ¥1/¢t; the
summation in the asymptotic approximation (50) is
extended over all such points of stationary phase on the
mean waterline ¢c. The expressions for the contributions
of the bow and stern KB,S and of the points of
stationary phase K are given below.

The contribution KB‘S of the bow or stern may be

expressed in the form
Kgg = Agsexpl —wszg's), (s1)

where xg ¢ 15 the abscissa of the bow or stern and the

amplitude-function AB_S Is given by
Apg = 20 A +iFlQ(AL T L A, )+ O(FY); (52)

in this expression, the functions A, and Az’ are defined

by the equations

. _ . . 2. 2.2
(n +iqa)A, = nn [l —ipn(n, +ign,)/(] - n,° - p°n, )

+ l_\¢‘ -ipn (1 - n,2+ipn‘n,)r’(l 'n73 Apzn‘z) (53)
and
8, Ay = (u,a,%.8,) +iq(u:)zazl‘ (54)

where the superseript * denotes differentiation with
respect 1o the parameter &, the functions u_, a," and a,’
are defined by equanons (39} (40 and (44), respectively.

and the function 8 1 detined as

B, - Xgriy, (55)

.

Fxpression (54) for the second-order amplitude-
function A:‘ 1s a complex one. However, equation (1)
defines the first-order amplitude function A, explicitly in
terms of the value of t.p — (1« 19! 2 and q = 1 p, the
geometrical characteristics of the hull at the bow or
stern, namely the umit vector l.(t'.l\.()) tangent to the
mean waterhine and the unit vector @ (n_,n_.n,) normal
1o the huli, and the components ¢, and ¢, of the velocity
vector 1n the directions of the unit vectors Tand A xT
rangent to the hull. Fquation (52) shows that the first-

arder approximation to the amphtude-function Ag (.
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given by 2n A, vanishes if n, = O, that is if the
waterline has a cusp at the bow or stern. Equation (53)
shows that the first-order approximation to the function
Ap s Also vanishes if the bow or stern is round, since we
then have n, = 0 and 4 = -0, = 0 by symmetry. It
may thus be seen that the contribution of the bow or
stern to the far-field wave-amplitude function K(t) is of
order F2if n, = 0 or n, = 0 at the bow or stern,
respectively; that is, we have

Kps = O(F?) ifn, = 0orn, =0 (56)
at the bow or stern. In the particular case when the hull
surface is vertical at the bow or stern we have n, = 0
and equation (53) becomes
Ay =t -$-ipt$/(1-pR ) ifn, = 0, [ty
which yields
A, = t,—4+O(F) ifn =0 (58
as is indicated by the free-surface boundary condition ¢4,
= -F§, = O(F).

The contribution K, of a point of the mean

waterline ¢ where the phase of the exponential function

E,* is stationary, that is where we have
dyo/dx0 = T/, (59)
may be expressed in the form

K, = svmn)'?A,

b 4

exp [Tiv(ygt, - xoly)/(yz +ien/4), (60)
where r is the radius of curvature of ¢ at the point of
stationary phase (xq,¥g), ¢ is equal to +1 or -1 if the
center of curvature of ¢ at the point (xg,y,) is upstream
or downstream from (x,,y,), respectively, and the
amplitude-function A, is given by
A, = (1-n2)"2nt +4y) - FigA,* + OF); 61
in this expression, the second-order amplitude-function
A,* is defined by the equation

£2((xg 1+ (yo 21 ?2ALE = [(u,a)*)'/8,"')
+u,a,*(56,"")2/38," -0, 9)/46, ")}
+ 2iq(u:)za2‘. (62)
where the superscript ' denotes differentiation with
respect to the parameter A and the functions u,, al*, a,*

and 6, are given by equations (39), (40), (44) and (55),
respectively.

The expression for the second-order amplitude-
function A,* is a complex one. However, equation (60)
and the first-order approximation to the amplitude
function, namely

A, = (-0 2@y +49)+OF), (63)

provide a simple explicit expression for the stationary-
phase contribution K, in terms of the geometric
characteristics of the hull and the downward tangential
derivative ¢, of the potential at the p.oim of stationary
phase. In the particular case when the hull surface is
vertical at the point of stationary phase we have n,=0
and equation (63) becomes

A, = ~$,+O(F) ifn, = 0, (64)
which yields

A, = O(F) ifn, = 0. (65)
Equation (60) then shows that the stationary-phase

contribution at a point (xo.yo) of ¢ where the hull is
vertical is of order F, that is we have

K, = O(F) ifn, = 0. (66)
On the other hand, equations (60) and (63) show that we
have

K, = O(1/F) ifn, # 0. 67)

The stationary-phase contribution at a point where the
hull has flare thus is dominant in the zero-Froude-
number limit.

The summation in equation (50) is extended to all
the points of the mean waterline ¢ where the phase of
the exponential function Ej* or the function E,~ is
stationary, that is the points where the slope dy,/dx, of
¢ is equal to ~ 1/t or + 1/t, respectively. The number of
stationary points, and their position along the waterline,
depend on the value of t and on the shape of ¢. For
instance, for the simple case of a hull with waterline
consisting of a sharp-ended parabolic bow region 1/4 €
x € 1/2 defined by the equation y = 4bx(l — 2x), where
b denotes the ship's beam/length ratio, a straight parallel
midbody region —1/4 € x € 1/4, and a round-ended
clliptic stern region —1/2 € x € - 1/4 defined by the
equation y = b[ - 2x(1 + 2x)]!/2, there is one point of
stationary phase in the stern region given by x =
— {1+ 1/(1 + 4b%%)!/2)/4, 50 that we have ~1/2 € x €
-1/4 for0 €t € © withx = -1/2ast = 0and x =

-1/4 as t = oo, and one point of stationary phase in the
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bow region given by x = (1+1/4bt)/4 for 1/4b € t €
o, 50 that we have 1/2 2 x > 1/4 for 1/4b € 1 €
withx = /2 ast—~ 1/4band x <> 1/4 as t = . We
thus have one point of stationary phase in the stern
region for 0 € t < 1/4b and two points of stationary
phase, one in the stern region and one in the bow region,
for 1/4b € t € . The two points of stationary phase
approach the shoulders x = +1/4, where dy/dx = 0, as
t—= o

The asymptotic approximation (50) and equations
(51)-(58) and (59)-(67) defining the contributions of the
bow and stern and of the stationary-phase point(s) on
the waterline, respectively, show that the low-Froude-
number behavior of the far-field wave-amplitude
function is strongly influenced by the shape of the hull in
the vicinity of the waterline. More precisely, for a value
of t for which there is one (or more) point of stationary
phase on the mean waterline where the hull has flare, the
contribution of this stationary-phase point dominates the
contribution of the bow and stern and is of order 1/F,
that 15 we have K(1) = O(1/F). On the other hand, for a
value of t for which either there corresponds no point of
stationary phase or the hull has no flare at the point(s)
of stationary phase, the dominant contribution stems
from the bow and stern, and it is of order 1, that is we
then have K(t) = O(1). However, if n, = 0 or n, = 0
at both the bow and the stern, that is if the bow and the
stern are either cusped or round, their contribution is
O}y and the contribution of the stationary-phase
poinils), which is O(F) if there is no flare (as is assumed
here), is dominant; so that we then have K(t) = O(F).

For a ship form that is everywhere wall sided, the
contribution of the bow and stern is dominant for all
values of 1, and we have K(t) = O(l) for0 € 1 € © On
the other hand, for a hull form that has flare over a
portion of the waterline and is wall sided elsewhere, the
contribution of the bow and stern is dominant, and O(1),
only for those values of t for which the corresponding
points of stationary phase fall outside the range of fare;
tor the range of values ot t for which the corresponding
points of stationary phase are within the range of flare,
the Zontnibution of these stationary-phase points is
dominant, ot order 1/F. In this instance, the function
K(t) 15 O(1/F) for a range of values of t (corresponding
to the region of flare) and Oil) for other values to t. If
the region of flare is of small extent, and the slope

dy - dx of the waterline does not vary widely within that
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region, the range of values of t for which K(t) = O(l/F)
is also small. The far-field wave-amplitude function K(t)
can then exhibit a sharp peak for some value of t in the
low-Froude-number limit. In fact, several isolated peaks
of the function K(t) can exist if the hull form has several
distinct regions of flare within which the slope of the
waterline varies gradually.

It should be noted that the result K(t) = O(1/F)
for values of t for which the hull has flare at the
corresponding points of stationary phase does not imply
that the corresponding free-surface elevation becomes
unbounded in the zero-Froude-number limit F = 0.
Indeed, the asymptotic approximation (6), where we have
(8.8 =(X,Z)g/U?, then yields Zg/U? = O[1/F(-#)}/?] =
O[1/(-X/L)"? as F - 0 and - X/L = . The free-
surface elevation Z thus is of order (Uz/g)/( -X/L)V? as
F -+ 0 and - X/L -~ o, and equation (15) shows that
the corresponding wave steepness s is O{1/( - X /L)' '?].
For values of t for which K(t) = O(1) it is seen that
Zg/U? and s are O[F/(- X/L)""?] as F = 0 and - X/L
- o,

It should also be noted that the asymptotic
approximation (51)-(55) for the contribution of the bow
and stern is not uniformly valid for the values of t for
which the bow or the stern is a point of stationary
phase, that is for which the waterline slope dy,/dx, at
the bow or the stern is equal to [/t or 1/1,
respectively. Indeed, it may be shown that we have
I - nlz— pzn‘2 = 0 at a point of stationary phase, so
that the first-order approximation to the amplitude
functions AB_S given by equation (53) becomes
unbounded. The asymptotic approximation (60)-(62) for
the contribution of a point of stationary phase hikewise 18
not uniformly vahd ar a stationarv-phase point where th
waterline has an inflexion point. Indeed, the radius of
curvature r at such an inflexion point is infinite and
equation (60) yields an unbounded contribution K |
Asymptotic approximations vahd for these special cases
may easily be obtained and are given in Noblesse
(1986b). It will only be noted here that the far ticld
wave-amplitude function K(1) for a hull form having
flare at a point where the waterline has an inflexion may

be expected to exhibit a particularly pronounced peak at

the value of t corresponding to the inflexion point since
we have K(1) = O(1/F* Y as I = 0 for this particular I

value of t.




6. CONCLUSION: HULL FORM AND KELVIN-
WAKE FEATURES

The classical far-field asymptotic approximation to
the Kelvin wake, obtained in section 2 by applying the
method of stationary phase, and the low-Froude-number
asymptotic approximation to the far-field wave-amplitude
function, obtained in sections 4 and § by successively
using the Laplace method and the method of stationary
phase, provide a simple analytical relationship between
the hull shape, on one hand, and the waves it generates,
on the other hand. This explicit relationship between the
wavemaker and its waves is summarized below.

The far-field asymptotic approximation to the
Kelvin wake (6) shows that at any point (¢.a), with ¢ =
Xg/U2 << -1and 0 € o < tan~'(27%2) ~ 19°28', the

wave field consists in two plane progressive waves a

transverse wave and a divergent wdve _____ with
wavelengths A_ and A, propagating at angles §_ and
fi, from the track of the ship, respectively. The
wavelengths A_ and the propagation angles f§ , depend on
the angle from the ship track a alone, that is A, and ”:
are independent of the hull shape and size, as is well
known. Specifically, the functions A,(a) and f,(a) are
defined by equations (10), (11) and (12). At a given
downstream distance &, the amplitudes of these waves,
on the other hand, are given by the product of the
functions A, (a), defined by equation (9), and the far-
field wave-amplitude function K(t) evaluated at the
stationary values t,(a) given by equation (7). The
function K(t) depends on the hull shape and the Froude
number in a fairly complicated manner via an integral
over the mean wetted-hull surface and an integral around
the mean waterline, as is indicated by equation (26). A
low-Froude-number asymptotic approximation to these
integrals is obtained in sections 4 and 5.

The analytical approximation (50) shows that for a
given value of t corresponding to a given value of a, as
is specified by equation (7), the main contributions to the
function K(t) stem from several particular points on the
mean waterline. These are the bow and the stern, on one
hand, and (usually but not always) one (or several)
point(s) of stationary phase. Indeed, the number of these
points of stationary phase and their position on the
waterline, defined by the condition

Idyg/dxol = 171, (68)

depend on the shape of the waterline and the value of t.

10
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Let ¢ denote the angle between the tangent to the
mean waterline and the track of the ship, that is we have

tan @ = |dyg/dx,f and 0 & ¢ € n/2. (69)

Equations (68), (69), (7) and (10) then show that the
stationary values t , () and t _(a) associated with a given
value of a are defined by the equation

@.(a) = tan~ {do/[12(1 - 80} 2]}, (70)

where 0 = tane. For a given waterline shape, equation
(70) thus defines the number of stationary points and
their position on the waterline corresponding to any
given angle o inside the Kelvin wake. In particular,

equation (70) yields
0< ¢, Stan~!2"Y) v 84°44' < _ € 90° n
andp, ~2a,¢_~n/2-aasa—~0. (72a,b)

Points of the waterline with slope between 0 and 54°44°
thus contribute mostly to the system of divergent waves
while waterline slopes between 54°44° and 90° mostly
contribute to the transverse waves.

Equations (10), (11), (12) and (70) define the wave-
lengths A_, the wave-propagation angles §, and the
waterline-tangent angles ¢ corresponding to a given
angle from the ship track o. The functions i_(a), 8,(a)
and ¢ (@) are depicted in Figure 3a, where the subscripts
T and D are used, instead of - and +, to refer to the
transverse and divergent waves, respectively. The
foregoing relationships between o and A, 8. ¢ may be
used for determining the angle from the ship track a, the
wavelength A and the wave-propagation angle f§
corresponding to a given waterline-tangent angle .

Specifically, we may obtain the remarkably simple

relations
a = tan" ! [tanp/(2 +taniy)), (73)
A2n = sinfpand f=n/2-¢. (74a,b)

The functions a{¢). A(¢) and f(¢) are depicted in Figure
3b. Alternatively, the foregoing relationships among ¢. e.
A and 8 can be represented in the form of Figures 3¢ and
3d, which depict the functions ¢(f). a(f). A(B) and ¢(4),
a(A), B(A), respectively. These equivalent graphical

representations show that we have

0< op < tan~'(213) o 54°44" < o < 90°, (75a)
0< Ap/2n € 2/3 & Ap/2n € 1, (75b)
90° 3 f, > tan~'(27 1)  35°16" > By 2 0, (75¢)
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From the Ship Track a and the Wavelength 4 as
Functions of the Wave-Propagation Angle fi.
where the subscripts D and T refer 1o the divergent and

transverse waves, respectively.

The tirst two terms in the low-Froude-number
asymptotic expansions for the contributions KB.S of the
bow and stern and the contributions K, of the points of
stationary phase in equation (50) are given by equations
(51)-(55) and (59)-(62), respectively. The second-order
terms 1n these asymptotic expansions are defined by
complex expressions. However, the first-order terms
provide simple approximations defined explicitly 1n terms
of the geometrical characteristics of the hull and the
velocity components in the tangential directions T and
n > T to the hull. In particular, the low-Froude-number
asymptotic expansions given in section 5 show that the
contributions Ky and Kq of the bow and stern are (1)

except if the bow or stern is cusped or round, in which

@ —

Fig. 3b - The Angle From the Ship Track a, the Wave-
Propagation Angle § and the Wavelength A as Functions
of the Waterline-Tangent Angle .
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Fig. 3d - The Waterline-Tangent Angle ¢, the Angle
From the Ship Track e and the Wave-Propagation Angle
B as functions of the Wavelength A.
case we have Ky ¢ = O(F?). The contribution of a given

pomnt of stationary phase is O(1/F), and thus is
dominant, if the hull has flare at this point; otherwise,
that is if the hull is wall sided at the point of stationary
phase, its contribution is O(F).

Thus, for a ship form that is everywhere wall
wuded, the contnibutions of the bow and stern are
dominant {assuming that they are not both either round
or cusped) for all values of the angle @ from the ship
track, that is everywhere in the far-field Kelvin wake. On
the other hand, for a hull that has flare over a portion
of the waterline and is wall sided elsewhere, the
contributions of the bow and stern are dominant, and
O(1), only for those angles a in the Kelvin wake for
which the corresponding points of stationary phase on

the waterline fall outside the region of flare; for the
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range of values of a for which the corresponding points
of stationary phase are within the range of flare, the
contribution of these stationary-phase points is
dominant, of order 1/F. In this instance, the amplitude
8 of the waves in the far-field Kelvin wake is of order
| (U¥g)/(-X/LY'2, as F = 0 and X/L — -, for the
‘ range of values of a corresponding to the region of flare
and of order F(U? g)/( - X/1)""? for values of a outside
this range. If the region of flare is of small extent, and
the waterline-tangent angle ¢ does not vary widely within
that region, the corresponding range of values of the
angle a where the wave amplitude is an order of
magnitude larger than elsewhere is also small, and thus
appears as a peak for sufficiently small values of the
Froude number. This peak is particularly pronounced for
a hull with a small region of flare in the vicinity of an
inflexson point of the waterline.

The low-Froude-number asymptotic analysis of the
Neumann-Kelvin theory presented in this study thus

shows that the characteristics of the far-field Kelvin wake

strongly depend on the shape of the ship hull, notably
the presence of flare and the shape of the waterline at

the bow and ~tern. This analysis also predicts that the

ST e A &

nondimensional wave-resistance coefficient R/QU2L:,
where U and ©. are the speed and the length of the ship
and ¢ v the density of water, which is given by the

Havclooh integral
2 4 ® . 2 2 [
nR ¢l -1 - 3 0 Ky =(1 +15y ' = dt, (76)

s O(F7) tor a ship furm with a region of flare, O(F%) for
a ship torm that +« wall sided everywhere and has either
| a bow or a stern (or both) that s neither cusped nor
) round. and O(F®) for a wail-sided shp form with both
) bow and stern that are either cusped or round.
» The low-Froude-number asymptotic approximation

(SO) also shows that we have
MM Ol thast = (1

ihl\ result s actually vabd for any value of the Froude

) number; indeed, the assmptone approximation (50y s

| valid not only 1n the low-Froude-number limit F —= 0 but
more generally in the imit vp - (1 + 1) 2F = oo, that
s as F —= 0 or/and as t = %, as may be seen from tne
exponential functions exp (vzpzz) and E, -
exp | ivip(x+ty)] in equation (26).

X Equations (15), (18a), (21b) and (77) then yield

( ' N e~ P it tasa =0 (78)
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for the steepness of the short divergent waves in the
vicinity of the track of the ship. By using equations (4)
and (5), which yield @ ~ n/(-¢) as @ = 0, in equation
(78) we may obtain

s, (&m ~ 1/m''2asn = 0. (19

Equation (79) thus shows that the lines along which the
steepness of the short divergent waves in the far-fieid
Kelvin wake takes given large values, say s, = 1/7 and
1718, are paralle! to the ship track, as was found in
Figure 21 of Barnell and Noblesse (1986) by using the
Michell thin-ship approximation for a simple ship form.
The Neumann-Kelvin theory therefore predicts that the
far-field Kelvin wake contains three distinct regions: (i) a
narrow constant-width inner region bordering the track
of the ship where no divergent gravity waves can exist,
(11) an outer region where the usual transverse and
divergent waves are present, and (iii) an intermediate
region at the boundary between the inner and outer
regions where short steep divergent waves can be found.
In reality, surface tension must evidently be taken into

account in the vicinity of the track of the ship.
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